Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration
2015-01-01
The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.
Numerical relativity simulations of precessing binary neutron star mergers
Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang
2018-03-01
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.
Single-spin precessing gravitational waveform in closed form
Lundgren, Andrew; O'Shaughnessy, R.
2014-02-01
In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.
Sparse representations of gravitational waves from precessing compact binaries.
Blackman, Jonathan; Szilagyi, Bela; Galley, Chad R; Tiglio, Manuel
2014-07-11
Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.
Lense-Thirring precession around neutron stars with known spin
Van Doesburgh, Marieke; van der Klis, Michiel
2016-07-01
Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Precessional Instability in Binary Black Holes with Aligned Spins.
Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele
2015-10-02
Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
Directory of Open Access Journals (Sweden)
2016-10-01
Full Text Available This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016.]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom and an 11-dimensional nonprecessing effective-one-body (EOB model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR. Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016.], and we quote updated component masses of 35_{-3}^{+5} M_{⊙} and 30_{-4}^{+3} M_{⊙} (where errors correspond to 90% symmetric credible intervals. We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Spin Hall effect, Hall effect and spin precession in diffusive normal metals
Shchelushkin, R. V.; Brataas, Arne
2005-01-01
We study transport in normal metals in an external magnetic field. This system exhibits an interplay between a transverse spin imbalance (spin Hall effect) caused by the spin-orbit interaction, a Hall effect via the Lorentz force, and spin precession due to the Zeeman effect. Diffusion equations for spin and charge flow are derived. The spin and charge accumulations are computed numerically in experimentally relevant thin film geometries. The out-of-plane spin Hall potential is suppressed whe...
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
Spin-Precession Organic Magnetic Sensor
2012-09-26
with the voltage and we get a value of ~200 per tesla for the quantity [V -1 (dV/dB)], which roughly translates into a sensitivity of 14 nT/Hz 1/2...Ideally, the response should be similar to the spin- valve measurements—the resistance changes as the magnetization of each of the contacts flips as we...strips. Typical spin- valve measurements employ strip widths of ~10-20 nm. However, the smallest width achievable in our FIB process is 500 nm, and the
Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin
International Nuclear Information System (INIS)
Barut, A.O.; Cruz, M.G.
1993-05-01
The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs
Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2010-01-01
It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,
Precessing Black Hole Binaries and Their Gravitational Radiation
Directory of Open Access Journals (Sweden)
László Á. Gergely
2018-02-01
Full Text Available The first and second observational runs of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO have marked the first direct detections of gravitational waves, either from black hole binaries or, in one case, from coalescing neutron stars. These observations opened up the era of gravitational wave astronomy, but also of gravitational wave cosmology, in the form of an independent derivation of the Hubble constant. They were equally important to prove false a plethora of modified gravity theories predicting gravitational wave propagation speed different from that of light. For a continued and improved testing of general relativity, the precise description of compact binary dynamics, not only in the final coalescence phase but also earlier, when precessional effects dominate, are required. We report on the derivation of the full secular dynamics for compact binaries, valid over the precessional time-scale, in the form of an autonomous closed system of differential equations for the set of spin angles and periastron. The system can be applied for mapping the parameter space for the occurrence of the spin flip-flop effect and for more accurately analyzing the spin-flip effect, which could explain the formation of X-shaped radio galaxies.
Three-axis atomic magnetometer based on spin precession modulation
Energy Technology Data Exchange (ETDEWEB)
Huang, H. C.; Dong, H. F., E-mail: hfdong@buaa.edu.cn; Hu, X. Y.; Chen, L.; Gao, Y. [School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)
2015-11-02
We demonstrate a three-axis atomic magnetometer with one intensity-modulated pump beam and one orthogonal probe beam. The main field component is measured using the resonance of the pumping light, while the transverse field components are measured simultaneously using the optical rotation of the probe beam modulated by the spin precession. It is an all-optical magnetometer without using any modulation field or radio frequency field. Magnetic field sensitivity of 0.8 pT/Hz{sup 1∕2} is achieved under a bias field of 2 μT.
On the Bohr radius relationship to spin-orbit interaction, spin magnitude, and Thomas precession
Lush, David C.
2007-01-01
The dynamics of the spin-orbit interaction in atomic hydrogen are studied in a classical electrodynamics-like setting. A Rutherfordian atomic model is used assuming a circular electron orbit, without the quantum principle as imposed arbitrarily in the Bohr model, but with an ad hoc incorporation in the electron of intrinsic spin and associated magnetic dipole moment. Analyzing the motions of the electron spin and orbital angular momenta, it is found that in the presence of Thomas precession, ...
Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries
Energy Technology Data Exchange (ETDEWEB)
Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)
2014-09-10
Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.
Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni
Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.
2017-08-01
In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.
Energy Technology Data Exchange (ETDEWEB)
Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.
1996-08-01
The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)
Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry
2018-03-01
The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.
Gravitational waves from spinning eccentric binaries
Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás
2012-12-01
This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.
2017-12-01
Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.
Spin precession experiments for light axionic dark matter
Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas
2018-03-01
Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.
Shot noise of charge and spin transport in a junction with a precessing molecular spin
Filipović, Milena; Belzig, Wolfgang
2018-03-01
Magnetic molecules and nanomagnets can be used to influence the electronic transport in mesoscopic junction. In a magnetic field, the precessional motion leads to resonances in the dc- and ac-transport properties of a nanocontact, in which the electrons are coupled to the precession. Quantities such as the dc conductance or the ac response provide valuable information, such as the level structure and the coupling parameters. Here, we address the current-noise properties of such contacts. This encompasses the charge current and spin-torque shot noise, which both show a steplike behavior as functions of bias voltage and magnetic field. The charge-current noise shows pronounced dips around the steps, which we trace back to interference effects of electrons in quasienergy levels coupled by the molecular spin precession. We show that some components of the noise of the spin-torque currents are directly related to the Gilbert damping, and hence are experimentally accessible. Our results show that the noise characteristics allow us to investigate in more detail the coherence of spin transport in contacts containing magnetic molecules.
Energy Technology Data Exchange (ETDEWEB)
Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn
2017-03-15
We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.
Electronic spin transport and spin precession in single graphene layers at room temperature.
Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T; van Wees, Bart J
2007-08-02
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.
Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging
Energy Technology Data Exchange (ETDEWEB)
Piegsa, Florian Michael
2009-07-09
The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the
Extracting the orbital axis from gravitational waves of precessing binary systems
Kawaguchi, Kyohei; Kyutoku, Koutarou; Nakano, Hiroyuki; Shibata, Masaru
2018-01-01
We present a new method for extracting the instantaneous orbital axis only from gravitational wave strains of precessing binary systems observed from a particular observer direction. This method enables us to reconstruct the coprecessing frame waveforms only from observed strains for the ideal case with the high signal-to-noise ratio. Specifically, we do not presuppose any theoretical model of the precession dynamics and coprecessing waveforms in our method. We test and measure the accuracy of our method using the numerical relativity simulation data of precessing binary black holes taken from the SXS Catalog. We show that the direction of the orbital axis is extracted within ≈0.07 rad error from gravitational waves emitted during the inspiral phase. The coprecessing waveforms are also reconstructed with high accuracy; the mismatch (assuming white noise) between them and the original coprecessing waveforms is typically a few times 10-3 including the merger-ringdown phase, and can be improved by an order of magnitude focusing only on the inspiral waveform. In this method, the coprecessing frame waveforms are not only the purely technical tools for understanding the complex nature of precessing waveforms but also direct observables.
Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads
International Nuclear Information System (INIS)
Wang Xianchao; Xin Zihua; Feng Liya
2010-01-01
The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field.
Miah, M Idrish
2009-03-13
Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (theta) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function of theta are obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electron g-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.
Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2011-01-01
The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.
Weak antilocalization and spin precession in quantum wells
Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.
1996-02-01
The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.
Spinning gas clouds with precession: a new formulation
International Nuclear Information System (INIS)
Gaffet, B
2010-01-01
We consider Dyson's model (Dyson F J 1968 J. Math. Mech. 18 91) of an ellipsoidally stratified ideal gas cloud expanding adiabatically into a vacuum, in the Liouville integrable case where the gas is monatomic (γ = 5/3) and there is no vorticity (Gaffet B 2001a J. Phys. A: Math. Gen. 34 2097; Paper I). In the cases of rotation about a fixed axis the separation of variables can be achieved, and the separable variables are linearly related to a set of three variables denoted by ρ, R, W (Gaffet B 2001b J. Phys. A: Math. Gen. 34 9195; Paper II). We show in the present work that these variables admit a natural generalization to cases of rotation about a movable axis (precessing motion). The present study is restricted to the consideration of the so-called degenerate cases (see Gaffet B 2006 J. Phys. A: Math. Gen. 39 99; Paper III), but we hope to generalize our results in the future to the non-degenerate ones as well. We also present a new, compact and generally valid formulation of one of the integrals of motion, of the sixth degree in the momenta, denoted by I 6 .
1974-01-01
The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.
Negative muon spin precession measurement of the hyperfine states of muonic sodium
International Nuclear Information System (INIS)
Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.
2005-01-01
Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous
Tilting Styx and Nix but not Uranus with a Spin-Precession-Mean-motion resonance
Quillen, Alice C.; Chen, Yuan-Yuan; Noyelles, Benoît; Loane, Santiago
2018-02-01
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet-planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet's obliquity to near 90° or 180° depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus's high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus's high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.
Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field
Directory of Open Access Journals (Sweden)
Miah M
2009-01-01
Full Text Available Abstract Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.
Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S. [Lobachevsky Nizhny Novgorod State University (Russian Federation)
2015-07-15
An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effective magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.
Planar quark diagrams and binary spin processes
International Nuclear Information System (INIS)
Grigoryan, A.A.; Ivanov, N.Ya.
1986-01-01
Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed
Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation
Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen
2018-04-01
Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.
Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin
International Nuclear Information System (INIS)
Krivoruchenko, Mikhail I
2009-01-01
Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)
Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin
Energy Technology Data Exchange (ETDEWEB)
Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)
2009-08-31
Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)
Ma, T. P.; Zhang, S. F.; Yang, Y.; Chen, Z. H.; Zhao, H. B.; Wu, Y. Z.
2015-01-01
Rotational field dependence of laser-induced magnetization precession in a single-crystal Fe/MgO(001) sample was studied by the time resolved magneto-optical Kerr effect. Polar and longitudinal magnetization components were separated by measuring precession dynamics under opposite fields. When the applied field is weaker than the anisotropy field of an Fe film, the precession amplitude is small for the field direction near the easy axis and becomes larger as the field rotates towards the hard axis, showing a four-fold symmetry in agreement with the in-plane magnetic anisotropy; whereas at higher fields, the amplitude displays a drop near the hard axis. Such precession behavior can be well reproduced using an excitation model with rapidly modified but slowly recovered magnetic anisotropy and considering the elliptical precession trajectory. Our results indicate that the dominant mechanism for triggering Fe spin precession is the anisotropy modulation correlating with the lattice thermalization, rather than the transient anisotropy modulation due to the high electron temperature within 1 ps.
Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem
Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz
2017-07-01
Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.
Manifold corrections on spinning compact binaries
International Nuclear Information System (INIS)
Zhong Shuangying; Wu Xin
2010-01-01
This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov
Garcon, Antoine; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Figueroa, Nataniel L.; Graham, Peter W.; Kimball, Derek F. Jackson; Rajendran, Surjeet; Gil Sendra, Marina; Sushkov, Alexander O.; Trahms, Lutz; Wang, Tao; Wickenbrock, Arne; Wu, Teng; Budker, Dmitry
2018-01-01
The cosmic axion spin precession experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the Universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses {m}{{a}}∼ {10}-14–{10}-6 eV. Sub-Hz frequencies are typically difficult to probe with NMR due to the diminishing sensitivity of magnetometers in this region. To circumvent this limitation, we suggest new detection and data processing modalities. We describe a non-resonant frequency-modulation detection scheme, enabling searches from mHz to Hz frequencies ({m}{{a}}∼ {10}-17–{10}-14 eV), extending the detection bandwidth by three decades.
The BANANA Survey: Spin-Orbit Alignment in Binary Stars
Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.
2012-04-01
Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.
Spin-dynamics simulations of vortex precession in 2-D magnetic dots
Energy Technology Data Exchange (ETDEWEB)
Depondt, Ph., E-mail: depondt@insp.jussieu.fr [Institut des NanoSciences de Paris, Universite Pierre et Marie Curie, UMR 7588 CNRS, 75252 Paris Cedex 05 (France); Levy, J.-C.S., E-mail: jean-claude.levy@univ-paris-diderot.fr [Materiaux et Phenomenes Quantiques, Universite Denis Diderot, UMR 7162 CNRS, 75013 Paris (France)
2011-10-31
Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.
Spin-dynamics simulations of vortex precession in 2-D magnetic dots
International Nuclear Information System (INIS)
Depondt, Ph.; Levy, J.-C.S.
2011-01-01
Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.
Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island
Zaffalon, M; van Wees, BJ
We experimentally study spin accumulation in an aluminum island with all dimensions smaller than the spin-relaxation length, so that the spin imbalance throughout the island is uniform. Electrical injection and detection of the spin accumulation are carried out in a four-terminal geometry by means
Gravitational waves from spinning compact binaries in hyperbolic orbits
De Vittori, Lorenzo; Gopakumar, Achamveedu; Gupta, Anuradha; Jetzer, Philippe
2014-12-01
Compact binaries in hyperbolic orbits are plausible gravitational-wave (GW) sources for the upcoming and planned GW observatories. We develop an efficient prescription to compute post-Newtonian (PN)-accurate ready-to-use GW polarization states for spinning compact binaries, influenced by the dominant-order spin-orbit interactions, in hyperbolic orbits. This is achieved by invoking the 1.5PN-accurate quasi-Keplerian parametrization for the radial sector of the orbital dynamics. We probe the influences of spins and the gravitational radiation reaction on h+ and h× during the hyperbolic passage. It turns out that both polarization states exhibit the memory effect for GWs from spinning compact binaries in hyperbolic orbits. In contrast, only the cross-polarization state exhibits the memory effect for GWs from nonspinning compact binaries. Additionally, we compute 1PN-accurate amplitude corrected GW polarization states for hyperbolic nonspinning compact binaries in a fully parametric manner and perform initial comparisons with the existing waveforms.
Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.
2017-11-01
Optically pumped atomic magnetometers have found widespread application in biomagnetic studies. Most of the studies utilize MX gradiometers as sensitive and simple arrangements. One the sensitivity improvement methods in the MX configurations is detection of magnetic resonance at higher harmonics due to nonlinear precession of spin polarization. To enhance the harmonic components, we have proposed square wave RF magnetic fields with various duty cycles as substitute for sinusoidal fields. Our results revealed that detection of the 5th harmonic of a 10% duty cycle square wave magnetic field, improved the magnetometer sensitivity by a factor of 4.5 respect to the first harmonic which could be a reliable option to generate high sensitivity MX magnetometers in the MCG applications.
International Nuclear Information System (INIS)
Mohapatra, P.K.
1991-01-01
This paper investigates the possibility of spin-(flavor) precession combined with short wavelength vacuum oscillation as a solution for the solar neutrino puzzle. A large frozen-in magnetic field inside the sun with a neutrino magnetic moment of the order of 10 -10 Bohr magneton can completely depolarize the ν eL resulting in a factor of half of the emitted number. With a short wavelength vacuum oscillation and maximal mixing, the number of ν eL 's reaching the earth is reduced by another factor of half; this explains the Homestake chlorine experiment. The difference between the Homestake and the Kamiokande-II experiments can be attributed to the contribution to the Cherenkov radiation in the latter through the neutral current and electromagnetic interactions of the components which are inert in the former
Simulating merging binary black holes with nearly extremal spins
International Nuclear Information System (INIS)
Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela
2011-01-01
Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.
Isoyama, Soichiro; Nakano, Hiroyuki
2018-01-01
Black holes (BHs) in an inspiraling compact binary system absorb the gravitational-wave (GW) energy and angular-momentum fluxes across their event horizons and this leads to the secular change in their masses and spins during the inspiral phase. The goal of this paper is to present ready-to-use, 3.5 post-Newtonian (PN) template families for spinning, non-precessing, binary BH inspirals in quasicircular orbits, including the 2.5 PN and 3.5 PN horizon-flux contributions as well as the correction due to the secular change in the BH masses and spins through 3.5 PN order, respectively, in phase. We show that, for binary BHs observable by Advanced LIGO with high mass ratios (larger than ∼10) and large aligned-spins (larger than ∼ 0.7 ), the mismatch between the frequency-domain template with and without the horizon-flux contribution is typically above the 3% mark. For (supermassive) binary BHs observed by LISA, even a moderate mass-ratios and spins can produce a similar level of the mismatch. Meanwhile, the mismatch due to the secular time variations of the BH masses and spins is well below the 1% mark in both cases, hence this is truly negligible. We also point out that neglecting the cubic-in-spin, point-particle phase term at 3.5 PN order would deteriorate the effect of BH absorption in the template.
Dynamics of spinning compact binaries in general relativity
Hartl, Michael David
This thesis investigates the dynamics of binary systems composed of spinning compact objects in the context of general relativity. Compact binaries are promising sources of gravitational radiation for both ground- and space-based gravitational-wave detectors. If the dynamics of these systems were chaotic, the number of waveform templates needed to match a given gravitational-wave signal would grow exponentially with increasing detection sensitivity, rendering the preferred matched filter detection method computationally impractical. It is therefore urgent to understand whether the binary dynamics can be chaotic, and, if so, how prevalent this chaos is. We first consider the dynamics of a spinning compact object orbiting a much more massive rotating black hole, as modeled by the Papapetrou equations in Kerr spacetime. We find that many initial conditions lead to positive Lyapunov exponents, indicating chaotic dynamics. Despite the formal existence of chaotic solutions, we find that chaos occurs only for physically unrealistic values of the small body's spin. As a result, chaos will not affect theoretical templates in the extreme mass-ratio limit for which the Papapetrou equations are valid. We next consider the dynamics of spinning black-hole binaries, as modeled by the post-Newtonian (PN) equations, which are valid for orbital velocities much smaller than the speed of light. We study thoroughly the special case of quasi-circular orbits with comparable mass ratios. Our survey shows that chaos occurs in a negligible fraction of possible configurations, and only for such small radii that the PN approximation is likely to be invalid. As a result, at least in the case of comparable mass black-hole binaries, theoretical templates will not be significantly affected by chaos. In a final, self-contained chapter, we discuss various methods for the calculation of Lyapunov exponents in systems of ordinary differential equations. We introduce several new techniques applicable
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, J.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoebeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Bruegmann, B.; Campanelli, M.; Chu, I.W.T.; Clark, M.; de Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Roever, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.
2016-01-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).
Estimating the final spin of a binary black hole coalescence
International Nuclear Information System (INIS)
Buonanno, Alessandra; Kidder, Lawrence E.; Lehner, Luis
2008-01-01
We present a straightforward approach for estimating the final black hole spin of a binary black hole coalescence with arbitrary initial masses and spins. Making some simple assumptions, we estimate the final angular momentum to be the sum of the individual spins plus the orbital angular momentum of a test particle orbiting at the last stable orbit around a Kerr black hole with a spin parameter of the final black hole. The formula we obtain is able to reproduce with reasonable accuracy the results from available numerical simulations, but, more importantly, it can be used to investigate what configurations might give rise to interesting dynamics. In particular, we discuss scenarios which might give rise to a flip in the direction of the total angular momentum of the system. By studying the dependence of the final spin upon the mass ratio and initial spins, we find that our simple approach suggests that it is not possible to spin-up a black hole to extremal values through merger scenarios irrespective of the mass ratio of the objects involved
Czech Academy of Sciences Publication Activity Database
Starčuk jr., Zenon; Starčuková, Jana; Štrbák, Oliver; Graveron-Demilly, D.
2009-01-01
Roč. 20, č. 10 (2009), 104033:1-9 ISSN 0957-0233 Grant - others:EC 6FP(XE) MRTN-CT-2006-035801 Source of funding: R - rámcový projekt EK Keywords : magnetic resonance * fast spectroscopic imaging * steady-state free-precession * coupled-spin system * density matrix simulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.317, year: 2009
Global symplectic structure-preserving integrators for spinning compact binaries
Zhong, Shuang-Ying; Wu, Xin; Liu, San-Qiu; Deng, Xin-Fa
2010-12-01
This paper deals mainly with the application of the second-order symplectic implicit midpoint rule and its symmetric compositions to a post-Newtonian Hamiltonian formulation with canonical spin variables in relativistic compact binaries. The midpoint rule, as a basic algorithm, is directly used to integrate the completely canonical Hamiltonian system. On the other hand, there are symmetric composite methods based on a splitting of the Hamiltonian into two parts: the Newtonian part associated with a Kepler motion, and a perturbation part involving the orbital post-Newtonian and spin contributions, where the Kepler flow has an analytic solution and the perturbation can be calculated by the midpoint rule. An example is the second-order mixed leapfrog symplectic integrator with one stage integration of the perturbation flow and two semistage computations of the Kepler flow at every integration step. Also, higher-order composite methods such as the Forest-Ruth fourth-order symplectic integrator and its optimized algorithm are applicable. Various numerical tests including simulations of chaotic orbits show that the mixed leapfrog integrator is always superior to the midpoint rule in energy accuracy, while both of them are almost equivalent in computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides good precision and needs no expensive additional computational time. As a result, it is worth performing a more detailed and careful examination of the dynamical structure of chaos and order in the parameter windows and phase space of the binary system.
GPU accelerated manifold correction method for spinning compact binaries
Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying
2018-04-01
The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.
Observing Mergers of Non-Spinning Black-Hole Binaries
McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.
2010-01-01
Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.
International Nuclear Information System (INIS)
Hu, Yanhui; Liu, Xuejing; Li, Yang; Yao, Han; Dai, Lingling; Yang, Biyao; Ding, Ming
2017-01-01
We present an ultrahigh-sensitivity electro-optic modulator (EOM) detection method for detecting the atomic Larmor precession in an all-optical K–Rb hybrid atomic magnetometer operating in the spin-exchange relaxation-free regime. A magnetic field sensitivity of ∼10 f T Hz −1/2 has been achieved by optimizing the probe laser parameters and the EOM modulation conditions, which is comparable to that with the Faraday modulation method and has a better performance than the balanced polarimetry method in the low frequency range. The EOM detection method in the atomic magnetometer presents several advantages, such as simple structure, no extra magnetic noise, moderate thermal effect, high measurement sensitivity and reliable stability. It is demonstrated to be feasible for the improved compactness and simplicity of atomic magnetic field measurement devices in the future. (paper)
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.
Overview of new Larmor precession techniques
Rekveldt, M T; Kraan, W H; Grigoriev, S V; Uca, O; Keller, T
2002-01-01
Larmor precession has been used in the past in neutron spin-echo and neutron depolarisation. In the last decade, interest has been revived in the inclined front and end faces of the precession regions combined with the neutron-resonance spin-echo (NRSE) technique. Various techniques based on these inclined faces have been developed, such as spin-echo, small-angle neutron scattering (SESANS), off-specular neutron reflectometry using SESANS and high-resolution diffraction using Larmor precession. An overview will be given of the various state-of-the-art techniques. (orig.)
International Nuclear Information System (INIS)
Bendali, N.; Duong, H.T.; Saint-Jalm, J.M.; Vialle, J.L.
1984-01-01
Measurement of nuclear spin in the collinear laser spectroscopy method has been investigated using a fast sodium atomic beam excited collinearly by a C.W. single mode dye laser beam. The atomic magnetic moments are first aligned by optical pumping process, then they interact with a static magnetic field H 0 . The magnetic alignment of the atomic system just at the exit of the magnetic field is monitored by the laser induced fluorescence. Upon varying the amplitude of H 0 , the fluorescence signal presents a fringed structure. This structure is due to the Larmor precession of the aligned magnetic moments around H 0 , and therefore it is a signature of the spin involved. The modulation patterns corresponding to different relative orientations of H 0 and light polarization direction, are fitted by an analytical formula. In a second step, a classical magnetic resonance experiment with a static magnetic field and a radiofrequency field has been performed. The monocinetic character of our fast atomic beam allowed us to observe, even at high r.f. power, resonances line shapes in agreement with the Majorana formula
Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana
2017-01-01
Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
Matched filtering of numerical relativity templates of spinning binary black holes
International Nuclear Information System (INIS)
Vaishnav, Birjoo; Hinder, Ian; Herrmann, Frank; Shoemaker, Deirdre
2007-01-01
Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes, and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary but nonprecessing spin and inclination for the axial case considered here
Catalog of 174 binary black hole simulations for gravitational wave astronomy.
Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A
2013-12-13
This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.
Leading order finite size effects with spins for inspiralling compact binaries
International Nuclear Information System (INIS)
Levi, Michele; Steinhoff, Jan
2015-01-01
The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.
No evidence for black hole spin powering of jets in X-ray binaries
Fender, R.P.; Gallo, E.; Russell, D.
2010-01-01
In this paper, we consider the reported measurements of black hole spin for black hole X-ray binaries and compare them against the measurements of jet power and speed across all accretion states in these systems. We find no evidence for any correlation between the properties of the jets and the
Spin-multipole effects in binary black holes and the test-body limit
Vines, Justin; Steinhoff, Jan
2018-03-01
We discuss the effects of the black holes' spin-multipole structure in the orbital dynamics of binary black holes according to general relativity, focusing on the leading-post-Newtonian-order couplings at each order in an expansion in the black holes' spins. We first review previous widely confirmed results up through fourth order in spin, observe suggestive patterns therein, and discuss how the results can be extrapolated to all orders in spin with minimal information from the test-body limit. We then justify this extrapolation by providing a complete derivation within the post-Newtonian framework of a canonical Hamiltonian for a binary black hole, for generic orbits and spin orientations, which encompasses the leading post-Newtonian orders at all orders in spin. At the considered orders, the results reveal a precise equivalence between arbitrary-mass-ratio two-spinning-black-hole dynamics and the motion of a test black hole in a Kerr spacetime, as well as an intriguing relationship to geodesic motion in a Kerr spacetime.
Attempt to explain black hole spin in X-ray binaries by new physics
International Nuclear Information System (INIS)
Bambi, Cosimo
2015-01-01
It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M s un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)
Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO
Energy Technology Data Exchange (ETDEWEB)
Hotokezaka, Kenta [Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010 (United States); Piran, Tsvi [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2017-06-20
We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf–Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintains its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ∼2–3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ∼0.5–1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.
Binary-black-hole encounters, gravitational bursts, and maximum final spin.
Washik, Matthew C; Healy, James; Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A
2008-08-08
The spin of the final black hole in the coalescence of nonspinning black holes is determined by the "residual" orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole, and the gravitational bursts in a sequence of equal mass encounters. The initial orbital configurations range from those producing an almost direct infall to others leading to numerous orbits before infall, with multiple bursts of radiation. Our sequence consists of orbits with fixed impact parameter. What varies is the initial linear momentum of the black holes. For this sequence, the final black hole of mass M_{h} gets a maximum spin parameter a/M_{h} approximately 0.823, with this maximum occurring for initial orbital angular momentum L/M_{h};{2} approximately 1.176.
The expected spins of gravitational wave sources with isolated field binary progenitors
Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.
2018-01-01
We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.
Recoil velocity at second post-Newtonian order for spinning black hole binaries
International Nuclear Information System (INIS)
Racine, Etienne; Buonanno, Alessandra; Kidder, Larry
2009-01-01
We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.
ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Carl L. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Zevin, Michael; Pankow, Chris; Kalogera, Vasilliki; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)
2016-11-20
The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 could be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.
International Nuclear Information System (INIS)
Levi, Michele; Steinhoff, Jan
2014-01-01
The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date
Binary and Millisecond Pulsars
Directory of Open Access Journals (Sweden)
Lorimer Duncan R.
2008-11-01
Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.
Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit
Kiziltan, Bülent; Thorsett, Stephen E.
2010-05-01
In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. While the generic spin-down age may give realistic estimates for normal pulsars, it can fail for pulsars with very short periods. Details of the spin-up process during the low-mass X-ray binary (LMXB) phase pose additional constraints on the period (P) and spin-down rates (\\dot{P}) that may consequently affect the age estimate. Here, we propose a new recipe to estimate millisecond pulsar (MSP) ages that parametrically incorporates constraints arising from binary evolution and limiting physics. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age while the standard spin-down age may overestimate or underestimate the age of the pulsar by more than a factor of ~10 in the millisecond regime. We use this approach to analyze the population on a broader scale. For instance, in order to understand the dominant energy loss mechanism after the onset of radio emission, we test for a range of plausible braking indices. We find that a braking index of n = 3 is consistent with the observed MSP population. We demonstrate the existence and quantify the potential contributions of two main sources of age corruption: the previously known "age bias" due to secular acceleration and "age contamination" driven by sub-Eddington progenitor accretion rates. We explicitly show that descendants of LMXBs that have accreted at very low rates (\\dot{m}≪\\dot{M}_{Edd}) will exhibit ages that appear older than the age of the Galaxy. We further elaborate on this technique, the implications and potential solutions it offers regarding MSP evolution, the underlying age distribution, and the post-accretion energy loss mechanism.
Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling
Singh, Sobhit; Valencia-Jaime, Irais; Pavlic, Olivia; Romero, Aldo H.
2018-02-01
Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several thermodynamically stable crystal structures of BixSb1 -x (0
Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics
Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan
2011-01-01
"We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."
Numerical Investigations of Post-Newtonian Hamiltonian Dynamics for Spinning Compact Binaries
Zhong, S. Y.
2012-03-01
Spinning compact binaries, consisting of neutron stars or black holes, not only have rich dynamic phenomena of resonance and chaos, but also are the most promising source for detecting gravitational waves. There should be a certain relation between the dynamics of the gravitational bodies and the gravitational waveforms. Based on the least-squares correction, several manifold correction schemes like the single-scaling method and the dual-scaling method are designed to suppress numerical errors from 6 integrals of motion in a conservative post-Newtonian (PN) Hamiltonian of spinning compact binaries. Taking a fifth order Runge-Kutta algorithm as a basic integrator, we wonder whether the PN contributions, the spin effects, and the classification of orbits exert some influences on these correction schemes and the Nacozy's approach. It is found that they are almost the same in correcting the integrals for the pure Kepler problem. Once the third-order PN contributions are added to the pure orbital part, there are explicit differences of correction effectiveness among these methods. As an interesting case, the efficiency of correction is better for chaotic eccentric orbits than for quasicircular regular ones. In all cases tested, the new momentum-position dual-scaling scheme does always have the optimal performance. It costs a little but not much expensive additional computational cost when the spin effects exist, and several time-saving techniques are used. The corrected numerical results are more accurate than the uncorrected ones, so that chaos from the numerical errors can be avoided. See Phys. Rev. D 81, 104037 (2010) for more details. Lubich et al. (Phys. Rev. D 81, 104025 (2010)) presented a noncanonically symplectic integrator for the PN Hamiltonian of a spinning compact binary. However, the Euler mixed integrator is problematic because of its bad numerical stability.We improved the work by constructing the second-order and the fourth-order fixed symplectic
Structure of stable binary neutron star merger remnants: Role of initial spin
Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B.
2017-08-01
We present general relativistic numerical simulations of binary neutron star (BNS) mergers with different initial spin configurations. We focus on models with stars of mass 1.4 M⊙ each, which employ the equation of state (EOS) by Shen, Horowitz, and Teige, and which result in stable NSs as merger remnants. For comparison, we consider two irrotational equal mass (M =1.35 M⊙) and unequal mass (M =1.29 , 1.42 M⊙ ) BNS models using the APR4 EOS, which result in a supramassive merger remnant. We present visualizations of the fluid flow and temperature distribution and find a strong impact of the spin on vortex structure and nonaxisymmetric deformation. We compute the radial mass distribution and the rotation profile in the equatorial plane using recently developed measures independent of spatial gauge, revealing slowly rotating cores that can be well approximated by the cores of spherical stars. We also study the influence of the spin on the inspiral phase and the gravitational wave (GW) signal. Using a newly developed analysis method, we further show that gravitational waveforms from BNS mergers can exhibit one or more phase jumps after merger, which occur together with minima of the strain amplitude. We provide a natural explanation in terms of the remnant's quadrupole moment, and show that cancellation effects due to phase jumps can have a strong impact on the GW power spectrum. Finally, we discuss the impact of the spin on the amount of ejected matter.
Rb-129Xe spin-exchange rates due to binary and three-body collisions at high Xe pressures
International Nuclear Information System (INIS)
Cates, G.D.; Fitzgerald, R.J.; Barton, A.S.; Bogorad, P.; Gatzke, M.; Newbury, N.R.; Saam, B.
1992-01-01
We have studied the spin relaxation of 129 Xe nuclei due to collisions with Rb atoms at Xe pressures of 245--1817 Torr. Our results can be characterized by two parameters, the Rb- 129 Xe velocity-averaged binary spin-exchange cross section left-angle σv right-angle and a rate γ M that characterizes spin relaxation due to van der Waals molecules. Our results complement earlier studies performed at Xe pressures of about 1 Torr and N 2 pressures of 10--100 Torr. This work is useful for predicting spin-exchange rates between polarized Rb atoms and 129 Xe nuclei
Precessing deuteron polarization
International Nuclear Information System (INIS)
Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.
2002-01-01
The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments
International Nuclear Information System (INIS)
Gupta, A; Gopakumar, A
2014-01-01
We present a prescription to compute the time-domain gravitational wave (GW) polarization states associated with spinning compact binaries inspiraling along quasi-circular orbits. We invoke the orbital angular momentum L rather than its Newtonian counterpart L N to describe the binary orbits while the two spin vectors are freely specified in an inertial frame associated with the initial direction of the total angular momentum. We show that the use of L to describe the orbits leads to additional 1.5PN order amplitude contributions to the two GW polarization states compared to the L N -based approach and discuss few implications of our approach. Furthermore, we provide a plausible prescription for GW phasing based on certain theoretical considerations and which may be treated as the natural circular limit to GW phasing for spinning compact binaries in inspiraling eccentric orbits (Gopakumar A and Schäfer G 2011 Phys. Rev. D 84 124007). (paper)
Precession and nutation of a gyroscope
International Nuclear Information System (INIS)
Butikov, Eugene
2006-01-01
A simple treatment of the important old problem of the torque-induced rotation of a spinning symmetrical top is suggested. Our discussion is appropriate for teaching introductory mechanics and general physics to undergraduate students and is free from the difficulties of a traditional approach to the problem. The origin of nutation that accompanies forced precession is explained in detail, with an accent on its relationship to the torque-free precession of a symmetrical body. A small simulation program is developed that visualizes the investigated motion and illustrates its principal features. The program facilitates understanding about the counterintuitive behaviour of a gyroscope on a qualitative level
Directory of Open Access Journals (Sweden)
Yoshiki Yoshida
2001-01-01
destabilizing in the region of negative precessing speed ratio (-0.3<Ω/ω<0, at the design flow rate; (2 At reduced flow rate, the destabilizing fluid force moments occurred at small positive precessing speed ratio (0.2<Ω/ω<0.4; (3 From the comparison of direct measured fluid force moments with those estimated from the unsteady pressure measured on the front and back casing walls, it was found that the destabilizing moments in the backward precession are mainly caused by the fluid forces on the front surface of the present impeller, where there is large clearance between the back shroud and casing.
International Nuclear Information System (INIS)
Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.; Healy, James; London, Lionel; Shoemaker, Deirdre
2011-01-01
Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M T (set-membership sign)[80,350]M · , using numerical relativity waveforms and templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m=±1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.
Flip-flopping binary black holes.
Lousto, Carlos O; Healy, James
2015-04-10
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.
Varma, Vijay; Ajith, Parameswaran
2017-12-01
We study the effect of nonquadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from black hole binaries with nonprecessing spins, using Advanced LIGO. We evaluate the loss of the signal-to-noise ratio (SNR) and the systematic errors in the estimated parameters when a quadrupole-mode template family is used to detect GW signals with all the relevant modes. Target signals including nonquadrupole modes are constructed by matching numerical-relativity simulations of nonprecessing black hole binaries describing the late inspiral, merger, and ringdown with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that neglecting nonquadrupole modes will, in general, cause unacceptable loss in the detection rate and unacceptably large systematic errors in the estimated parameters, for the case of massive binaries with large mass ratios. For a given mass ratio, neglecting subdominant modes will result in a larger loss in the detection rate for binaries with aligned spins. For binaries with antialigned spins, quadrupole-mode templates are more effectual in detection, at the cost of introducing a larger systematic bias in the parameter estimation. We provide a summary of the regions in the parameter space where neglecting nonquadrupole modes will cause an unacceptable loss of detection rates and unacceptably large systematic biases in the estimated parameters.
Behzadi, Naghi; Ahansaz, Bahram
2018-04-01
We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.
Patruno, A.; Haskell, B.; Andersson, N.
2017-11-01
We study the current sample of rapidly rotating neutron stars in both accreting and non-accreting binaries in order to determine whether the spin distribution of accreting neutron stars in low-mass X-ray binaries (LMXBs) can be reconciled with current accretion torque models. We perform a statistical analysis of the spin distributions and show that there is evidence for two subpopulations among LMXBs, one at a relatively low spin frequency, with an average of ≈ 300 {Hz} and a broad spread, and a peaked population at higher frequency with an average spin frequency of ≈ 575 {Hz}. We show that the two subpopulations are separated by a cut-point at a frequency of ≈ 540 {Hz}. We also show that the spin frequency of radio millisecond pulsars (RMSPs) does not follow a log-normal distribution and shows no evidence for the existence of distinct subpopulations. We discuss the uncertainties of different accretion models and speculate that either the accreting neutron star cut-point marks the onset of gravitational waves as an efficient mechanism to remove angular momentum or some of the neutron stars in the fast subpopulation do not evolve into RMSPs.
Relativistic shifts of bound negative-muon precession frequencies
International Nuclear Information System (INIS)
Brewer, J.H.; Froese, A. M.; Fryer, B.A.; Ghandi, K.
2005-01-01
High-field negative-muon spin precession experiments have been performed using a backward-muon beam with substantial transverse spin polarization, facilitating high-precision measurements of the magnetogyric ratio of negative muons bound to nuclei in the ground states of muonic atoms. These results may provide a testing ground for quantum electrodynamics in very strong electromagnetic fields
Precession of the Earth-Moon system
Energy Technology Data Exchange (ETDEWEB)
Urbassek, Herbert M [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)], E-mail: urbassek@rhrk.uni-kl.de
2009-11-15
The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics of the spinning top in undergraduate courses.
Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well
Li, Z J; Liang, J J; Liang, J Q
2003-01-01
The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.
Lopez, Martin; Batta, Aldo; Ramírez-Ruiz, Enrico
2018-01-01
Globular clusters have about a thousand times denser stellar environments than our Milky Way. This crowded setting leads to many interactions between inhabitants of the cluster and the formation of a whole myriad of exotic objects. One such object is a binary system that forms which is composed of two stellar mass black holes (BHs). Due to the recent detection of gravitational waves (GWs), we know that some of these BH binaries (BHBs) are able to merge. Upon coalescence, BHBs produce GW signals that can be measured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) group on Earth. Spin is one such parameter that LIGO can estimate from the type of signals they observe and as such can be used to constrain their production site. After these BHBs are assembled in dense stellar systems they can continue to interact with other members, either through tidal interactions or physical collisions. When a BHB tidally disrupts a star, a significant fraction of the debris can be accreted by the binary, effectively altering the spin of the BH members. Therefore, although a dynamically formed BHB will initially have low randomly aligned spins, through these types of interactions their birth spins can be significantly altered both in direction and magnitude. We have used a Lagrangian 3D Smoothed Particle Hydrodynamics (SPH) code GADGET-3 to simulate these interactions. Our results allow us to understand whether accretion from a tidal disruption event can significantly alter the birth properties of dynamically assembled BHBs such as spin, mass, and orbital attributes. The implications of these results will help us constrain the properties of BHBs in dense stellar systems in anticipation of an exciting decade ahead of us.
Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming
2018-04-01
This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.
The BANANA Project. V. Misaligned and Precessing Stellar Rotation Axes in CV Velorum
Albrecht, Simon; Winn, Joshua N.; Torres, Guillermo; Fabrycky, Daniel C.; Setiawan, Johny; Gillon, Michaël; Jehin, Emmanuel; Triaud, Amaury; Queloz, Didier; Snellen, Ignas; Eggleton, Peter
2014-04-01
As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of βp = -52° ± 6° and βs = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i sstarf) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i sstarf. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary. Based on observations made with ESOs 2.2 m Telescopes at the La Silla Paranal Observatory under programme ID 084.C-1008 and under MPIA guaranteed time.
Larmor precession reflectometry
International Nuclear Information System (INIS)
Lauter, H.J.; Toperverg, B.P.; Lauter-Pasyuk, V.; Petrenko, A.; Aksenov, V.
2004-01-01
Larmor precession phase encoding is applied to modulate TOF reflection spectra measured from a polymer multilayer and from an Fe/Cr multilayer. It is proposed that decoding of the spectra can be used to extract the small-angle scattering signal from the polymer film-embedded nanoparticles. The second example is directed to demonstrate one of the plausible realizations of the vector polarization analysis in reflectometry of magnetic systems. This would allow to unambiguously reconstruct the transverse and lateral distribution of the magnetization vectors throughout the multilayered superlattices
Suvorova, S.; Clearwater, P.; Melatos, A.; Sun, L.; Moran, W.; Evans, R. J.
2017-11-01
A hidden Markov model (HMM) scheme for tracking continuous-wave gravitational radiation from neutron stars in low-mass x-ray binaries (LMXBs) with wandering spin is extended by introducing a frequency-domain matched filter, called the J -statistic, which sums the signal power in orbital sidebands coherently. The J -statistic is similar but not identical to the binary-modulated F -statistic computed by demodulation or resampling. By injecting synthetic LMXB signals into Gaussian noise characteristic of the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), it is shown that the J -statistic HMM tracker detects signals with characteristic wave strain h0≥2 ×10-26 in 370 d of data from two interferometers, divided into 37 coherent blocks of equal length. When applied to data from Stage I of the Scorpius X-1 Mock Data Challenge organized by the LIGO Scientific Collaboration, the tracker detects all 50 closed injections (h0≥6.84 ×10-26), recovering the frequency with a root-mean-square accuracy of ≤1.95 ×10-5 Hz . Of the 50 injections, 43 (with h0≥1.09 ×10-25) are detected in a single, coherent 10 d block of data. The tracker employs an efficient, recursive HMM solver based on the Viterbi algorithm, which requires ˜105 CPU-hours for a typical broadband (0.5 kHz) LMXB search.
2003-08-01
applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Luc Blanchet
2014-02-01
Full Text Available To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc. and by the future detectors in space (eLISA, etc., inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins, and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.
International Nuclear Information System (INIS)
Foucart, F; Kasen, D; Desai, D; Brege, W; Duez, M D; Hemberger, D A; Scheel, M A; Kidder, L E; Pfeiffer, H P
2017-01-01
Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers. (paper)
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.
2018-04-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate
Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.
2018-02-01
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.
Combined obliquity and precession pacing of late Pleistocene deglaciations.
Huybers, Peter
2011-12-08
Milankovitch proposed that Earth resides in an interglacial state when its spin axis both tilts to a high obliquity and precesses to align the Northern Hemisphere summer with Earth's nearest approach to the Sun. This general concept has been elaborated into hypotheses that precession, obliquity or combinations of both could pace deglaciations during the late Pleistocene. Earlier tests have shown that obliquity paces the late Pleistocene glacial cycles but have been inconclusive with regard to precession, whose shorter period of about 20,000 years makes phasing more sensitive to timing errors. No quantitative test has provided firm evidence for a dual effect. Here I show that both obliquity and precession pace late Pleistocene glacial cycles. Deficiencies in time control that have long stymied efforts to establish orbital effects on deglaciation are overcome using a new statistical test that focuses on maxima in orbital forcing. The results are fully consistent with Milankovitch's proposal but also admit the possibility that long Southern Hemisphere summers contribute to deglaciation.
DO JETS PRECESS... OR EVEN MOVE AT ALL?
Energy Technology Data Exchange (ETDEWEB)
Nixon, Chris [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); King, Andrew, E-mail: chris.nixon@jila.colorado.edu [Department of Physics and Astronomy, University of Leicester, University Road, LE1 7RH Leicester (United Kingdom)
2013-03-01
Observations of accreting black holes often provoke suggestions that their jets precess. The precession is usually supposed to result from a combination of the Lense-Thirring effect and accretion disk viscosity. We show that this is unlikely for any type of black hole system, as the disk generally has too little angular momentum compared with a spinning hole to cause any significant movement of the jet direction across the sky on short timescales. Uncorrelated accretion events, as in the chaotic accretion picture of active galactic nuclei (AGNs), change AGN jet directions only on timescales {approx}> 10{sup 7} yr. In this picture AGN jet directions are stable on shorter timescales, but uncorrelated with any structure of the host galaxy, as observed. We argue that observations of black hole jets precessing on timescales short compared to the accretion time would be a strong indication that the accretion disk, and not the standard Blandford-Znajek mechanism, is responsible for driving the jet. This would be particularly convincing in a tidal disruption event. We suggest that additional disk physics is needed to explain any jet precession on timescales short compared with the accretion time. Possibilities include the radiation warping instability, or disk tearing.
Mergers of black-hole binaries with aligned spins: Waveform characteristics
International Nuclear Information System (INIS)
Kelly, Bernard J.; Baker, John G.; Centrella, Joan; Boggs, William D.; McWilliams, Sean T.
2011-01-01
We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission--an implicit rotating source. We further apply the late-time merger-ringdown model for the rotational frequency introduced in [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).], along with an improved amplitude model appropriate for the dominant (2, ±2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state of the final black hole formed in the merger. We provide an explicit model for the merger-ringdown radiation, and demonstrate that this model agrees to fitting factors better than 95% with the original numerical waveforms for system masses above ∼150M · . This model may be directly applicable to gravitational-wave detection of intermediate-mass black-hole mergers.
Toroidal Precession as a Geometric Phase
Energy Technology Data Exchange (ETDEWEB)
J.W. Burby and H. Qin
2012-09-26
Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.
Thomas precession for dressed particles
Oblak, Blagoje
2018-03-01
We consider a particle dressed with boundary gravitons in three-dimensional Minkowski space. The existence of BMS transformations implies that the particle’s wavefunction picks up a Berry phase when subjected to changes of reference frames that trace a closed path in the asymptotic symmetry group. We evaluate this phase and show that, for BMS superrotations, it provides a gravitational generalization of Thomas precession. In principle, such phases are observable signatures of asymptotic symmetries.
From the Kinematics of Precession Motion to Generalized Rabi Cycles
Directory of Open Access Journals (Sweden)
Danail S. Brezov
2018-01-01
Full Text Available We use both vector-parameter and quaternion techniques to provide a thorough description of several classes of rotations, starting with coaxial angular velocity Ω of varying magnitude. Then, we fix the magnitude and let Ω precess at constant rate about the z-axis, which yields a particular solution to the free Euler dynamical equations in the case of axially symmetric inertial ellipsoid. The latter appears also in the description of spin precessions in NMR and quantum computing. As we show below, this problem has analytic solutions for a much larger class of motions determined by a simple condition relating the polar angle and z-projection of Ω (expressed in cylindrical coordinates, which are both time-dependent in the generic case. Relevant physical examples are also provided.
Spin Injection in Indium Arsenide
Directory of Open Access Journals (Sweden)
Mark eJohnson
2015-08-01
Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.
Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.
2013-01-01
This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18
Schoen, Martin A. W.; Lucassen, Juriaan; Nembach, Hans T.; Koopmans, Bert; Silva, T. J.; Back, Christian H.; Shaw, Justin M.
2017-04-01
A systematic experimental study of Gilbert damping is performed via ferromagnetic resonance for the disordered crystalline binary 3 d transition-metal alloys Ni-Co, Ni-Fe, and Co-Fe over the full range of alloy compositions. After accounting for inhomogeneous linewidth broadening, the damping shows clear evidence of both interfacial damping enhancement (by spin pumping) and radiative damping. We quantify these two extrinsic contributions and thereby determine the intrinsic damping. The comparison of the intrinsic damping to multiple theoretical calculations yields good qualitative and quantitative agreement in most cases. Furthermore, the values of the damping obtained in this study are in good agreement with a wide range of published experimental and theoretical values. Additionally, we find a compositional dependence of the spin mixing conductance.
Larmor-precession based neutron scattering instrumentation
International Nuclear Information System (INIS)
Ioffe, Alexander
2009-01-01
The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)
Milankovitch cycles of terrestrial planets in binary star systems
Forgan, Duncan
2016-12-01
The habitability of planets in binary star systems depends not only on the radiation environment created by the two stars, but also on the perturbations to planetary orbits and rotation produced by the gravitational field of the binary and neighbouring planets. Habitable planets in binaries may therefore experience significant perturbations in orbit and spin. The direct effects of orbital resonances and secular evolution on the climate of binary planets remain largely unconsidered. We present latitudinal energy balance modelling of exoplanet climates with direct coupling to an N-Body integrator and an obliquity evolution model. This allows us to simultaneously investigate the thermal and dynamical evolution of planets orbiting binary stars, and discover gravito-climatic oscillations on dynamical and secular time-scales. We investigate the Kepler-47 and Alpha Centauri systems as archetypes of P- and S-type binary systems, respectively. In the first case, Earth-like planets would experience rapid Milankovitch cycles (of order 1000 yr) in eccentricity, obliquity and precession, inducing temperature oscillations of similar periods (modulated by other planets in the system). These secular temperature variations have amplitudes similar to those induced on the much shorter time-scale of the binary period. In the Alpha Centauri system, the influence of the secondary produces eccentricity variations on 15 000 yr time-scales. This produces climate oscillations of similar strength to the variation on the orbital time-scale of the binary. Phase drifts between eccentricity and obliquity oscillations creates further cycles that are of order 100 000 yr in duration, which are further modulated by neighbouring planets.
Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu
2018-04-01
We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.
Spinning Black Hole Pairs: Dynamics and Gravitational Waves
Grossman, Rebecca
Black hole binaries will be an important source of gravitational radiation for both ground-based and future space-based gravitational wave detectors. The study of such systems will offer a unique opportunity to test the dynamical predictions of general relativity when gravity is very strong. To date, most investigations of black hole binary dynamics have focused attention on restricted scenarios in which the black holes do not spin (and thus are confined to move in a plane) and/or in which they stay on quasi-circular orbits. However, spinning black hole pairs in eccentric orbits are now understood to be astrophysically equally important. These spinning binaries exhibit a range of complicated dynamical behaviors, even in the absence of radiation reaction. Their conservative dynamics is complicated by extreme perihelion precession compounded by spin-induced precession. Although the motion seems to defy simple decoding, we are able to quantitatively define and describe the fully three-dimensional motion of arbitrary mass-ratio binaries with at least one black hole spinning and expose an underlying simplicity. To do so, we untangle the dynamics by constructing an instantaneous orbital plane and showing that the motion captured in that plane obeys elegant topological rules. In this thesis, we apply the above prescription to two formal systems used to model black hole binaries. The first is defined by the conservative 3PN Hamiltonian plus spin-orbit coupling and is particularly suitable to comparable-mass binaries. The second is defined by geodesics of the Kerr metric and is used exclusively for extreme mass-ratio binaries. In both systems, we define a complete taxonomy for fully three-dimensional orbits. More than just a naming system, the taxonomy provides unambiguous and quantitative descriptions of the orbits, including a determination of the zoom-whirliness of any given orbit. Through a correspondence with the rational numbers, we are able to show that all of the
Supermassive black hole spin-flip during the inspiral
International Nuclear Information System (INIS)
Gergely, Laszlo A; Biermann, Peter L; Caramete, Laurentiu I
2010-01-01
During post-Newtonian evolution of a compact binary, a mass ratio ν different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in ν of the mass ratios at their encounter. In the mass ratio range ν in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios ν in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios ν in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.
Triaud, Amaury H. M. J.; Hebb, Leslie; Anderson, David R.; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P.; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don
2012-01-01
This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F,...
Bistable flows in precessing spheroids
Energy Technology Data Exchange (ETDEWEB)
Cébron, D, E-mail: david.cebron@ujf-grenoble.fr [Université Grenoble Alpes, CNRS, ISTerre, Grenoble (France)
2015-04-15
Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739–51). So far however, no analytical result for the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in detail since their discovery by Noir et al (2003 Geophys. J. Int. 154 407–16). In this work we aim at deriving analytical results for the solutions, aiming in particular at first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412–39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, their conditions of existence, and their stability in a systematic manner. We then successfully compare these analytical results with the theory of Busse (1968). Dynamical model equations are finally proposed to investigate the stability of the solutions, which describe the bifurcation of the unstable flow solution. We also report for the first time the possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids. Numerical integrations of the algebraic and differential equations have been efficiently performed with the dedicated script FLIPPER (supplementary material). (paper)
Evolution and precession of accretion disk in tidal disruption events
Directory of Open Access Journals (Sweden)
Matzner C.D.
2012-12-01
Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.
Fermi-Walker transport and Thomas precession
Pastor Lambare, Justo
2017-07-01
An exact derivation of the Thomas precession formula is presented based on the Fermi-Walker transport equation. Given that the Thomas precession effect is not a particularly intuitive phenomenon, such that when discovered in 1925 it took by surprise even experts in relativity theory, Einstein included, an alternative perspective can be useful at an intermediate level for physics students. The existing literature linking the Thomas precession to Fermi-Walker transport use geometric algebra as mathematical tool. Here the mathematics is kept within the limits of the usual vector and tensor algebra commonly used in special relativity theory at a level appropriate for advanced undergraduate and beginning graduate students.
Binary compact object inspiral: Detection expectations
Indian Academy of Sciences (India)
leads to a periodic change of the orbital plane orientation and therefore modifies the inspiral gravitational wave signal received by ground-based detectors. The effect of this precession modulation also depends on the spin magnitude of the more massive object and the tilt angle of this spin with respect to the orbital angular.
Spin-wave-induced spin torque in Rashba ferromagnets
Umetsu, Nobuyuki; Miura, Daisuke; Sakuma, Akimasa
2015-05-01
We study the effects of Rashba spin-orbit coupling on the spin torque induced by spin waves, which are the plane-wave dynamics of magnetization. The spin torque is derived from linear-response theory, and we calculate the dynamic spin torque by considering the impurity-ladder-sum vertex corrections. This dynamic spin torque is divided into three terms: a damping term, a distortion term, and a correction term for the equation of motion. The distorting torque describes a phenomenon unique to the Rashba spin-orbit coupling system, where the distorted motion of magnetization precession is subjected to the anisotropic force from the Rashba coupling. The oscillation mode of the precession exhibits an elliptical trajectory, and the ellipticity depends on the strength of the nesting effects, which could be reduced by decreasing the electron lifetime.
Screened precession method for area detectors.
Edwards, S L; Nielsen, C; Xuong, N H
1988-04-01
A method is presented in which the features of a Buerger-type mechanical precession camera can be simulated using an electronic area detector and a three-circle automated goniostat. The resulting display as viewed on a video monitor is very much like a conventional precession photograph. The detector is stationary which causes a distortion that is negligible for precession angles less than 10 degrees. The virtue of this new method is that a precession image may be collected very fast and the intensities of the reflections when displayed are already digitized. The usefulness of these features is presented through two familiar tasks: the determination of a new protein crystal space group and the evaluation of a heavy-atom derivative.
Laws of motion and precession for black holes and other bodies
International Nuclear Information System (INIS)
Thorne, K.S.; Hartle, J.B.
1985-01-01
Laws of motion and precession are derived for a Kerr black hole or any other body which is far from all other sources of gravity (''isolated body'') and has multipole moments that change slowly with time. Previous work by D'Eath and others has shown that to high accuracy the body moves along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-momentum vector. This paper derives the largest corrections to the geodesic law of motion and Fermi-Walker law of transport. These corrections are due to coupling of the body's angular momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The resulting laws of motion and precession are identical to those that have been derived previously, by many researchers, for test bodies with negligible self-gravity. However, the derivation given here is valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and precession can be converted into equations of motion and precession by combining them with an approximate solution to the Einstein field equations for the surrounding spacetime. As an example, the conversion is carried out for two gravitationally bound systems of bodies with sizes much less than their separations. The resulting equations of motion and precession are derived accurately through post/sup 1.5/-Newtonian order. For the special case of two Kerr black holes orbiting each other, these equations of motion and precession (which include couplings of the holes' spins and quadrupole moments to spacetime curvature) reduce to equations previously derived by D'Eath. The precession due to coupling of a black hole's quadrupole moment to surrounding curvature may be large enough, if the hole lives at the center of a very dense star cluster, for observational detection by its effects on extragalactic radio jets
Padilha, J E; Pontes, R B; Schmidt, T M; Miwa, R H; Fazzio, A
2016-05-23
We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties.
NuSTAR discovery of an unusually steady long-term spin-up of the Be binary 2RXP J130159.6-635806
DEFF Research Database (Denmark)
Krivonos, Roman A.; Tsygankov, Sergey S.; Lutovinov, Alexander A.
2015-01-01
We present spectral and timing analysis of NuSTAR observations of the accreting X-ray pulsar 2RXP J130159.6-635806. The source was serendipitously observed during a campaign focused on the gamma-ray binary PSR B1259-63 and was later targeted for a dedicated observation. The spectrum has a typical...... shape for accreting X-ray pulsars, consisting of a simple power law with an exponential cutoff starting at ~7 keV with a folding energy of Efold=~18 keV. There is also an indication of the presence of a 6.4 keV iron line in the spectrum at the ~3σ significance level. NuSTAR measurements of the pulsation...... period reveal that the pulsar has undergone a strong and steady spin-up for the last 20 years. The pulsed fraction is estimated to be ~80%, and is constant with energy up to 40 keV. The power density spectrum shows a break towards higher frequencies relative to the current spin period. This, together...
Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations
Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S.
2018-02-01
Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g. angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time-scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well resolved, our isolated discs spread out, causing both the alignment and precession to slow down.
Precession effects on a liquid planetary core
Liu, Min; Li, Li-Gang
2018-02-01
Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.
Higher-order relativistic periastron advances and binary pulsars
International Nuclear Information System (INIS)
Damour, T.; Schafer, G.
1988-01-01
The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.
2017-12-08
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Linear scaling between momentum and spin scattering in graphene
Jozsa, C.; Maassen, T.; Popinciuc, M.; Zomer, P. J.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.
2009-01-01
Spin transport in graphene carries the potential of a long spin-diffusion length at room temperature. However, extrinsic relaxation processes limit the current experimental values to 1-2 mu m. We present Hanle spin precession measurements in gated lateral spin valve devices in the low to high (up to
International Nuclear Information System (INIS)
Bose, Sukanta; Ghosh, Shaon; Ajith, P
2010-01-01
We study the astrophysical impact of inaccurate and incomplete modeling of the gravitational waveforms from compact binary coalescences (CBCs). We do so by the matched filtering of phenomenological inspiral-merger-ringdown (IMR) signals with a bank of inspiral-phase templates modeled on the 3.5 post-Newtonian TaylorT1 approximant. The rationale for the choice of the templates is threefold. (1) The inspiral phase of the phenomenological IMR signals, which are an example of complete IMR signals, is modeled on the same TaylorT1 approximant. (2) In the low-mass limit, where the merger and ringdown phases are much shorter than the inspiral phase, the errors should tend to vanishingly small values and, thus, provide an important check on the numerical aspects of our simulations. (3) Since the binary black hole signals are not yet known for mass ratios above ten and since signals from CBCs involving neutron stars are affected by uncertainties in the knowledge of their equation of state, inspiral templates are still in use in searches for those signals. The results from our numerical simulations are compared with analytical calculations of the systematic errors using the Fisher matrix on the template parameter space. We find that the loss in signal-to-noise ratio (SNR) can be as large as 45% even for binary black holes with component masses m 1 = 10 M o-dot and m 2 = 40 M o-dot . Also the estimated total mass for the same pair can be off by as much as 20%. Both of these are worse for some higher mass combinations. Even the estimation of the symmetric mass ratio η suffers a nearly 20% error for this example and can be worse than 50% for the mass ranges studied here. These errors significantly dominate their statistical counterparts (at a nominal SNR of 10). It may, however, be possible to mitigate the loss in SNR by allowing for templates with unphysical values of η.
Brown dwarfs in retrogradely precessing cataclysmic variables?
Directory of Open Access Journals (Sweden)
Martin E.L.
2011-07-01
Full Text Available We compare Smoothed Particle Hydrodynamic simulations of retrogradely precessing accretion disks that have a white dwarf primary and a main sequence secondary with observational data and with theory on retrograde precession via tidal torques like those by the Moon and the Sun on the Earth [1, 2]. Assuming the primary does not accrete much of the mass lost from the secondary, we identify the theoretical low mass star/brown dwarf boundary. We find no observational candidates in our study that could qualify as brown dwarfs.
Deviation and precession effects in the field of a weak gravitational wave
Bini, Donato; Geralico, Andrea; Ortolan, Antonello
2017-05-01
Deviation and precession effects of a bunch of spinning particles in the field of a weak gravitational plane wave are studied according to the Mathisson-Papapetrou-Dixon (MPD) model. Before the passage of the wave the particles are at rest with an associated spin vector aligned along a given direction with constant magnitude. The interaction with the gravitational wave causes the particles to keep moving on the 2-plane orthogonal to the direction of propagation of the wave, with the transverse spin vector undergoing oscillations around the initial orientation. The transport equations for both the deviation vector and spin vector between two neighboring world lines of such a congruence are then solved by a suitable extension of the MPD model off the spinning particle's world line. In order to obtain measurable physical quantities a "laboratory" is set up by constructing a Fermi coordinate system attached to a reference world line. The exact transformation between TT coordinates and Fermi coordinates is derived too.
International Nuclear Information System (INIS)
Lovelace, Geoffrey; Chen Yanbei; Cohen, Michael; Kaplan, Jeffrey D.; Keppel, Drew; Matthews, Keith D.; Nichols, David A.; Scheel, Mark A.; Sperhake, Ulrich
2010-01-01
Research on extracting science from binary-black-hole (BBH) simulations has often adopted a 'scattering matrix' perspective: given the binary's initial parameters, what are the final hole's parameters and the emitted gravitational waveform? In contrast, we are using BBH simulations to explore the nonlinear dynamics of curved spacetime. Focusing on the head-on plunge, merger, and ringdown of a BBH with transverse, antiparallel spins, we explore numerically the momentum flow between the holes and the surrounding spacetime. We use the Landau-Lifshitz field-theory-in-flat-spacetime formulation of general relativity to define and compute the density of field energy and field momentum outside horizons and the energy and momentum contained within horizons, and we define the effective velocity of each apparent and event horizon as the ratio of its enclosed momentum to its enclosed mass-energy. We find surprisingly good agreement between the horizons' effective and coordinate velocities. During the plunge, the holes experience a frame-dragging-induced acceleration orthogonal to the plane of their spins and their infall ('downward'), and they reach downward speeds of order 1000 km/s. When the common apparent horizon forms (and when the event horizons merge and their merged neck expands), the horizon swallows upward field momentum that resided between the holes, causing the merged hole to accelerate in the opposite ('upward') direction. As the merged hole and the field energy and momentum settle down, a pulsational burst of gravitational waves is emitted, and the merged hole has a final effective velocity of about 20 km/s upward, which agrees with the recoil velocity obtained by measuring the linear momentum carried to infinity by the emitted gravitational radiation. To investigate the gauge dependence of our results, we compare generalized harmonic and Baumgarte-Shapiro-Shibata-Nakamura-moving-puncture evolutions of physically similar initial data; although the generalized
Precession X-ray diffraction chamber
International Nuclear Information System (INIS)
Rieder, M.
1978-01-01
An X-ray diffraction chamber is described whose design allows the tilting of the goniometric head 90deg along the axis normal to the axis of precession. Images may thus be made in the reverse reflexion region and of reciprocal networks in any arbitrary direction with a single adhesion of the crystal. (H.S.)
Resonant spin-flavor precession constraints on the neutrino ...
Indian Academy of Sciences (India)
... University, Shimla 171 005, India; Government College, Kotshera, Shimla 171 004, India; IGNOU Regional Centre, Khanna 141 401, India; Government College, Karsog Dist., Mandi 171 304, India; Centro de Fisica das Interccoes Fundamentais, Instituto Superior Tecnico, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal ...
Precession of a Spinning Ball Rolling down an Inclined Plane
Cross, Rod
2015-01-01
A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…
Resonant spin-flavor precession constraints on the neutrino ...
Indian Academy of Sciences (India)
Department of Physics, Himachal Pradesh University, Shimla 171 005, India; Government College, Kotshera, Shimla 171 004, India; IGNOU Regional Centre, Khanna 141 401, India; Government College, Karsog Dist., Mandi 171 304, India; Centro de Fisica das Interccoes Fundamentais, Instituto Superior Tecnico, Av.
Resonant spin-flavor precession constraints on the neutrino ...
Indian Academy of Sciences (India)
differential rotation of the Sun and the global convection by introducing several adjustable parameters. Some of these computer simulations [1] reproduce the basic characteristics of the solar cycle to a remarkable degree of agreement. The magnetic flux tubes encir- cling the rotational axis of the Sun appear naturally in ...
Resonant spin-flavor precession constraints on the neutrino ...
Indian Academy of Sciences (India)
Sun, remains a distant dream. Apart from the observed suppression of the solar neutrino flux, the Homestake data hint to an anticorrelation of the solar neutrino flux with the solar magnetic activity. Of course, the Kamiokande and the gallium experiments do not report any statistically significant anticorrelation but the statistics ...
Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.
2018-03-01
Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.
IFR channel-guiding of spinning beams
International Nuclear Information System (INIS)
O'Brien, K.J.
1986-06-01
A simple model is adopted to study the Ion Focussed Regime (IFR) laser channel-guiding of a spinning relativistic electron beam. It is discovered that spinning beams precess about the IFR axis as they damp; whereas, nonspinning beams remain planarly polarized
Merli, Marcello; Sciascia, Luciana; Pavese, Alessandro; Diella, Valeria
2015-05-01
Thermo-chemical properties and T- X phase relations diagram of the (Mg,Fe)O solid solution are modelled using mixing Helmholtz energy, Δ F( T, x)mixing, calculated by quantum mechanical and semi-empirical techniques. The sub-solidus MgO-FeO binary has been explored as a function of composition, with iron either in high-spin (HS) or low-spin (LS) configuration. Only the HS model provides physically sound results at room pressure, yielding a correct trend of cell edge versus composition, whereas LS's issues are at variance with observations. Mixing Helmholtz energy has been parametrized by the following relationship: Δ F( T, x)mixing = x × y × [U0( T) + U1( T) × ( x - y) + U2( T) × ( x - y)2]- T × S( x, y)config, where y = 1- x and U j( T) are polynomials in T of the second order. Δ F( T, x)mixing exhibits a quasi-symmetric behaviour and allows one to build the T- X phase relations diagram over the MgO-FeO join. The HS model including vibrational contribution to the Helmholtz energy predicts a solid solution's critical temperature of some 950 K, remarkably larger than olivine's and Mg-Fe garnet's. All this points to a more difficult Mg-Fe mixing in periclase-like structure than olivine and garnet, which, in turn, provide more structure degrees of freedom for atomic relaxation. From Δ F( T, x)mixing, we have then derived Δ H( T, x)excess and Δ S( T, x)excess. The former, characterized by a quasi-regular behaviour, has been parametrized through W × x × (1- x), obtaining W H,Mg-Fe of 17.7(5) kJ/mol. Δ S( T, x)excess, in turn, increases as a function of temperature, showing absolute figures confined within 0.1 J/mol/K. Mixing Gibbs energy, calculated combining the present issues with earlier theoretical determinations of the magnesio-wüstite's elastic properties, has shown that the HS configuration is stable and promote Mg-Fe solid solution up to ≈15 GPa.
Gravitational waves from freely precessing neutron stars
International Nuclear Information System (INIS)
Jones, D.I.
2001-01-01
The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)
Stepwise Precession of the Resonant Swinging Spring
Holm, Darryl D.; Lynch, Peter
2002-01-01
The swinging spring, or elastic pendulum, has a 2:1:1 resonance arising at cubic order in its approximate Lagrangian. The corresponding modulation equations are the well-known three-wave equations that also apply, for example, in laser-matter interaction in a cavity. We use Hamiltonian reduction and pattern evocation techniques to derive a formula that describes the characteristic feature of this system's dynamics, namely, the stepwise precession of its azimuthal angle.
Structure refinement from precession electron diffraction data.
Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D
2013-03-01
Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.
Particle spin tune in a partially excited snake
International Nuclear Information System (INIS)
Lee, S.Y.; Tepikian, S.; Courant, E.D.
1985-01-01
In this paper, we address the question on the effect of the particle spin when a snake is turned on adiabatically near a depolarization resonance while not accelerating. The spinor equation and its solution are reviewed briefly and the spin transfer matrix method in the presence of a snake are used to evaluate the spin tune and the precession axis
Visualizing spin states using the spin coherent state representation
Lee Loh, Yen; Kim, Monica
2015-01-01
Orbital angular momentum eigenfunctions are readily understood in terms of spherical harmonics. However, the quantum mechanical phenomenon of spin is often said to be mysterious and hard to visualize, with no classical analog. Many textbooks give a heuristic and somewhat unsatisfying picture of a precessing spin vector. Here, we show that the spin-coherent-state representation is a striking, elegant, and mathematically meaningful tool for visualizing spin states. We also demonstrate that cartographic projections such as the Hammer projection are useful for visualizing functions defined on spherical surfaces.
Controlling a nuclear spin in a nanodiamond
Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete
2017-09-01
The sensing capability of a single optically bright electronic spin in diamond can be enhanced by making use of proximal dark nuclei as ancillary spins. Such systems, so far realized only in bulk diamond, can provide orders of magnitude higher sensitivity and spectral resolution in the case of magnetic sensing, as well as improved readout fidelity and state storage time in quantum information schemes. Nanodiamonds offer opportunities for scanning and embedded nanoscale probes, yet electronic-nuclear spin complexes have so far remained inaccessible. Here, we demonstrate coherent control of a 13C nuclear spin located 4 Å from a nitrogen-vacancy center in a nanodiamond and show coherent exchange between the two components of this hybrid spin system. We extract a free precession time T2* of 26 μ s for the nuclear spin, which exceeds the bare-electron free-precession time in nanodiamond by two orders of magnitude.
Spin-Dephasing Anisotropy for Electrons in a Diffusive Quasi-1D GaAs Wire
Liu, J.; Last, T.; Koop, E. J.; Denega, S.; van Wees, B. J.; van der Wal, C. H.
We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields
Long-lived hole spin dynamics in a 2D system at sub-Kelvin temperatures
Energy Technology Data Exchange (ETDEWEB)
Wagner, Anton; Korn, Tobias; Schulz, Robert; Maurer, Andreas; Hirmer, Michael; Schuh, Dieter; Wegscheider, Werner; Schueller, Christian [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany)
2008-07-01
The spin dynamics of holes in semiconductors have, so far, been less intensely studied than the electron spin dynamics. We performed time-resolved Faraday rotation (TRFR) measurements on a 2D hole system within a 15nm wide, modulation-doped GaAs/AlGaAs quantum well grown on a [001] substrate. In the TRFR measurements, the sample is excited by a circularly-polarized laser pulse tuned to the exciton energy. An in-plane magnetic field up to 10 T is applied, causing a precession of the photocreated carriers. At 4.5 K temperature only the fast electron spin precession is observed, whereas a second, long period precession, superimposed on the electron spin precession, appears and gets more intense as the temperature is lowered from 1.2 K to 0.4 K. We identify this signal as the hole spin precession, which has a low frequency due to the small g-factor of holes along the [001] direction. The hole g-factor is highly anisotropic, which we measured by varying the angle of incidence of the pump beam relative to the sample plane. The appearance of the long-lived hole spin precession only at very low temperatures indicates that the hole spin lifetime is increased by localization. Surprisingly, while the hole spin lifetime increases drastically at lower temperatures, the electron spin lifetime is reduced.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Energy Technology Data Exchange (ETDEWEB)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Venus's southern polar vortex reveals precessing circulation.
Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F
2011-04-29
Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros
2017-09-01
Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.
Evaluation of a possible upgrade of the IAU 2006 precession
Liu, J.-C.; Capitaine, N.
2017-01-01
Context. The International Astronomical Union (IAU) adopted a new precession model at its 2006 General Assembly. After more than ten years since the publication of the so-called IAU 2006 precession, we have noticed progress in solar system ephemerides and geophysical observations, which can be used to refine the precession model. Another progress is the increase by 30% since 2003, of the length of the very long baseline interferometry (VLBI) observations to be compared with the theoretical model. Aims: The aim of this paper is to investigate the possibility of upgrading the IAU 2006 precession model based on new solutions of the Earth-Moon barycenter (EMB) motion, new theoretical contributions to the precession rates, and the revised J2 long-term variation obtained from the satellite laser ranging (SLR). Methods: The new precession expressions for the ecliptic are derived by fitting the new analytical planetary theory VSOP2013 to the numerical ephemerides DE422 or INPOP10a. The solution for the precession of the equator was obtained by integrating the dynamical precession equations with the use of an updated Earth model including the J2 quadratic long-term variation. The new precession expressions (denoted LC solution in this paper) are compared with the IAU 2006 model by using the most accurate VLBI observations up to 2015. Results: For the precession of the ecliptic, the changes in the new solutions with respect to the IAU 2006 are about several tens of microarcseconds in the linear terms of PA and QA. The upgraded precession of the equator is such that the quadratic and cubic terms in the quantity ψA differ significantly from IAU 2006 due to the revised J2 model. The statistics of the VLBI celestial pole offsets (1979-2015) and least squares fits with different empirical models, show that the LC precession is slightly more consistent with the VLBI observations, but the improvement relative to the IAU 2006 model is not definitely convincing at present
Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt
2018-03-01
Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).
Development of a nuclear precession magnetometer
International Nuclear Information System (INIS)
Virgens Alves, J.G. das.
1983-12-01
The objective of this thesis was to develop a proton precession magnetometer for geophysical prospecting and base stations. The proton procession magnetometer measures the total magnetic fields intensity. It operates on the basis of nuclear magnetic resonance by determining the processing frequency of protons of a non viscous liquid in the terrestrial magnetic fields. The instrument was tested in field to evaluate signal/noise ratio, supportable gradient and battery consumption. Application test was carried out to take diurnal variation data and, reconnaissance and detail surveys data on an archaeological site in the Marajo Island-Pa. The test results were confronted with two commercial magnetometers-GP-70, McPhar e G-816, Geometric - and, with data from Observatorio Magnetico Ilha de Tatuoca as well. For all cases, the data comparison showed a good performance of the magnetometer tested. (author)
A QSO with precessing jets: 2300 - 189
International Nuclear Information System (INIS)
Hunstead, R.W.; Murdoch, H.S.; Phillips, M.M.
1984-01-01
The QSO 2300-189 (z = 0.1287) is found to have a faint companion galaxy at the same redshift. The separation is 6.8 arcsec on the sky. A spectrum of the fuzz around the QSO shows absorption features typical of late-type stars, which argues for its occurence in a normal disc or E galaxy. Radio maps obtained with the VLA at 1465 MHz and 4885 MHz show inversion (or S-shaped) symmetry, which is explained as due to the ejection of jets along an axis which is precessing, probably due to the tidal influence of the nearby galaxy. Several kinematic parameters are deduced including an upper limit for the jet velocity. Further support for tidal interaction comes from the detection of extensive region of low-brightness optical emission in the vicinity of the QSO. (author)
Thomas precession: correct and incorrect solutions
International Nuclear Information System (INIS)
Malykin, Grigorii B
2006-01-01
A wealth of different expressions for the frequency of the Thomas precession (TP) can be found in the literature, with the consequence that this issue has been discussed over a long period of time. It is shown that the correct result was obtained in the works of several authors, which were published more than forty years ago but remained unnoticed against the background of numerous erroneous works. Several TP-related physical paradoxes formulated primarily to disprove the special relativity theory are shown to be fallacious. Different techniques for deriving the correct expression are considered and the reasons for the emergence of the main incorrect expressions for the TP frequency are analyzed. (from the history of physics)
Simultaneous tracking of spin angle and amplitude beyond classical limits
Colangelo, Giorgio; Ciurana, Ferran Martin; Bianchet, Lorena C.; Sewell, Robert J.; Mitchell, Morgan W.
2017-03-01
Measurement of spin precession is central to extreme sensing in physics, geophysics, chemistry, nanotechnology and neuroscience, and underlies magnetic resonance spectroscopy. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action—the random change in a quantum state due to measurement—necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2—the classical limit for N spins—by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state that, because spins obey non-Heisenberg uncertainty relations, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing and spectroscopy.
Massive Black Hole Binary Evolution
Directory of Open Access Journals (Sweden)
Merritt David
2005-11-01
Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.
Unified description of bulk and interface-enhanced spin pumping
Watts, SM; Grollier, J; van der Wal, CH; van Wees, BJ
2006-01-01
We describe a mechanism for generating nonequilibrium electron-spin accumulation in semiconductors or metals by rf magnetic field pumping. With a semiclassical model we show that a rotating applied magnetic field (or the precessing magnetization inside a weak ferromagnet) generates a dc spin
Slow Manifold and Hannay Angle in the Spinning Top
Berry, M. V.; Shukla, P.
2011-01-01
The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…
Directory of Open Access Journals (Sweden)
Alexander W. Chao
2007-01-01
Full Text Available As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δν_{spin} of the beam (particularly due to its energy spread is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δν_{spin} is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging way to experimentally test the intricate spin dynamics in a synchrotron
Numerical simulation of a precessing vortex breakdown
International Nuclear Information System (INIS)
Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.
2006-01-01
The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow
Energy Technology Data Exchange (ETDEWEB)
Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)
2015-08-31
Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.
New precession expressions, valid for long time intervals
Vondrák, J.; Capitaine, N.; Wallace, P.
2011-10-01
Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the
Electronic spin transport and spin precession in single graphene layers at room temperature
Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.
2007-01-01
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic
Perihelion precession, polar ice and global warming
Steel, Duncan
2013-03-01
The increase in mean global temperature over the past 150 years is generally ascribed to human activities, in particular the rises in the atmospheric mixing ratios of carbon dioxide and other greenhouse gases since the Industrial Revolution began. Whilst it is thought that ice ages and interglacial periods are mainly initiated by multi-millennial variations in Earth's heliocentric orbit and obliquity, shorter-term orbital variations and consequent observable climatic effects over decadal/centurial timescales have not been considered significant causes of contemporary climate change compared to anthropogenic influences. Here it is shown that the precession of perihelion occurring over a century substantially affects the intra-annual variation of solar radiation influx at different locations, especially higher latitudes, with northern and southern hemispheres being subject to contrasting insolation changes. This north/south asymmetry has grown since perihelion was aligned with the winter solstice seven to eight centuries ago, and must cause enhanced year-on-year springtime melting of Arctic (but not Antarctic) ice and therefore feedback warming because increasing amounts of land and open sea are denuded of high-albedo ice and snow across boreal summer and into autumn. The accelerating sequence of insolation change now occurring as perihelion moves further into boreal winter has not occurred previously during the Holocene and so would not have been observed before by past or present civilisations. Reasons are given for the significance of this process having been overlooked until now. This mechanism represents a supplementary - natural - contribution to climate change in the present epoch and may even be the dominant fundamental cause of global warming, although anthropogenic effects surely play a role too.
Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce
Energy Technology Data Exchange (ETDEWEB)
Arun, K G [LAL, Univ. Paris-Sud, IN2P3/CNRS, Orsay (France); Babak, Stas; Porter, Edward K; Sintes, Alicia M [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Am Muehlenberg 1, D-14476 Golm bei Potsdam (Germany); Berti, Emanuele; Cutler, Curt [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Cornish, Neil [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Gair, Jonathan [Institute of Astronomy, University of Cambridge, Cambridge, CB30HA (United Kingdom); Hughes, Scott A; Lang, Ryan N [Department of Physics and Kavli Institute for Astrophysics and Space Research, MIT, Cambridge, MA 02139 (United States); Iyer, Bala R; Sinha, Siddhartha [Raman Research Institute, Bangalore, 560 080 (India); Mandel, Ilya [Department of Physics and Astronomy, Northwestern Univ., Evanston, IL (United States); Sathyaprakash, Bangalore S; Van Den Broeck, Chris [School of Physics and Astronomy, Cardiff University, 5, The Parade, Cardiff, CF24 3YB (United Kingdom); Trias, Miquel [Departament de Fisica, Universitat de les Illes Balears, Cra. Valldemossa Km. 7.5, E-07122 Palma de Mallorca (Spain); Volonteri, Marta [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)
2009-05-07
The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
Magnonic Charge Pumping via Spin-Orbit Coupling
Ciccarelli, Chiara; Hals, Kjetil; Irvine, Andrew; Novak, Vit; Tserkovnyak, Yaroslav; Kurebayashi, Hidekazu; Brataas, Arne; Ferguson, Andrew
2015-03-01
The interplay between spin, charge and orbital degrees of freedom has led to the development of spintronic devices such as spin-torque oscillators and spin-transfer torque MRAM. In this development, spin pumping represents a convenient way to electrically detect magnetization dynamics. The effect originates from direct conversion of low-energy quantized spin waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent leads. In this case, a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle or multilayer layouts, is required to convert the spin current into a charge signal. Here, we report the observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via spin-orbit interaction. The generated electric current, unlike spin currents generated by spin-pumping, can be directly detected without the need of any additional spin-charge conversion mechanism. The charge-pumping phenomenon is generic and gives a deeper understanding of its reciprocal effect, the spin orbit torque, which is currently attracting interest for their potential in manipulating magnetic information.
Development of spin echo small angle neutron scattering
International Nuclear Information System (INIS)
Bouwman, W.G.; Uca, O.; Van Oossanen, M.; Kraan, W.H.; Rekveldt, M.T.
1999-01-01
A novel kind of small angle neutron scattering (SANS) instrument is being built, based on the Larmor precession of polarised neutrons in a magnetic field. A spin echo of the polarised neutrons is used to detect the scattering. The basis of this instrument is a symmetric set-up with a spin flipper in the centre, which creates a spin echo, even with a divergent beam. The precession regions on either side of the spin flipper are shaped such to produce a very sensitive relation between the vertical angle of the neutron path and the total precession angle on one side. Any SANS of a sample placed in the instrument changes the symmetry of the neutron path and therefore decreases the echo. This amounts to measuring only the difference of the incoming and outgoing angle. This gives a huge increase in intensity of the signal with respect to conventional SANS in which both incoming and outgoing angle are defined. Magnetised foils, which rotate the neutron spin between being parallel to the magnetic field and perpendicular to the field are used to start or terminate the precession. With a preliminary set-up the first spin echo SANS signal have been measured. A full correlation function in samples over distances from 5 to 1000 nm is expected to be measured in some minutes. (author)
A rapid spin exchange tightly bound alkali metal hybrid optical pumping system
Wang, Xulin; Chen, Yao; Quan, Wei; Fan, Wenfeng; Fang, Jiancheng
2018-02-01
We study effects of rapid spin exchange interaction between K and Cs spins in a K–Cs spin exchange hybrid optical pumping system. The behaviour of the atom spins directly pumped by laser light is investigated. The results show that the electron spins of the K atoms are coupled to the electron spins of the Cs atoms through spin exchange interaction. The K and Cs spins are aligned in the optical pumping system. In the experiment, we measured the Larmor precession frequency of the K atoms and found it to be approximately equal to that of the Cs atoms.
Directory of Open Access Journals (Sweden)
Roger Guilard
2011-12-01
Full Text Available X-ray Detected Magnetic Resonance (XDMR is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR. Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence.
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
Numerical simulations of bistable flows in precessing spheroidal shells
Vormann, J.; Hansen, U.
2018-05-01
Precession of the rotation axis is an often neglected mechanical driving mechanism for flows in planetary interiors, through viscous coupling at the boundaries and topographic forcing in non-spherical geometries. We investigate precession-driven flows in spheroidal shells over a wide range of parameters and test the results against theoretical predictions. For Ekman numbers down to 8.0 × 10-7, we see a good accordance with the work of Busse, who assumed the precession-driven flow to be dominated by a rigid rotation component that is tilted to the main rotation axis. The velocity fields show localized small-scale structures for lower Ekman numbers and clear signals of inertial waves for some parameters. For the case of moderate viscosity and strong deformation, we report the realization of multiple solutions at the same parameter combination, depending on the initial condition.
4963 Kanroku: Asteroid with a possible precession of rotation axis
Sokova, Iraida A.; Marchini, Alessandro; Franco, Lorenzo; Papini, Riccardo; Salvaggio, Fabio; Palmas, Teodora; Sokov, Eugene N.; Garlitz, Joe; Knight, Carl R.; Bretton, Marc
2018-04-01
Based on photometric observations of 4963 Kanroku as part of a campaign to measure its light-curve, changes of the light-curve profile have been detected. These changes are of a periodic nature, i.e. the profiles change with a detected period P = 16.4032 h. Based on simulations of the shape of the asteroid and using observational data, we make the assumption that such changes of the light-curve of the asteroid could be caused by the existence of a precession force acting on the axis of rotation of the asteroid. Simulations of the 4963 Kanroku light-curve, taking into account the detected precession, and the parameters for the shape of the asteroid, the modeled light-curves are in good agreement with the light-curves obtained from the observation campaign. Thus, the detected precession force may indicate a possible satellite of the asteroid 4963 Kanroku.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Precessive sand ripples in intense steady shear flows
Restrepo, Juan M.; Moulton, Derek E.; Uys, Hermann
2011-03-01
We describe experimental observations of fully developed, large-amplitude bars under the action of a shearing fluid. The experiments were performed in an annular tank filled with water and sheared above by a steady motor source. The same steady shearing flow can produce a variety of different erodible bed manifestations: advective or precessive bars, which refer to bar structures with global regularity and a near-steady precession velocity; interactive bars, the structure of which depends on local rearrangements, which are in turn a response to complex background topography; and dispersive bars, which are created when an initially isolated mound of sand evolves into a train of sand ripples. Of these, the most amenable to analysis are the precessive bars. For precession bars, we find that the skin depth, which is the nondimensionalized mean-field transport rate, grows exponentially as a function of the shear velocity. From this, we arrive at an analytical expression that approximates the precession speed of the bars as a function of shear velocity. We use this to obtain a formula for sediment transport rate. However, in intense flows, the bars can get large engendering boundary layer separation, leading to a different dynamic for bar formation and evolution. Numerical flow calculations over an experimentally obtained set of precessive bars are presented and show that classical parametrizations of mass flux in terms of bottom gradients have shortcomings. Within the range of shear rates considered, a quantity that does not change appreciably in time is the aspect ratio, which is defined as the ratio of the average bar amplitude, with respect to a mean depth, to the average bar length.
Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature
Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi
2014-09-01
Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.
Spin transfer and spin pumping in disordered normal metal-antiferromagnetic insulator systems
Gulbrandsen, Sverre A.; Brataas, Arne
2018-02-01
We consider an antiferromagnetic insulator that is in contact with a metal. Spin accumulation in the metal can induce spin-transfer torques on the staggered field and on the magnetization in the antiferromagnet. These torques relate to spin pumping: the emission of spin currents into the metal by a precessing antiferromagnet. We investigate how the various components of the spin-transfer torque are affected by spin-independent disorder and spin-flip scattering in the metal. Spin-conserving disorder reduces the coupling between the spins in the antiferromagnet and the itinerant spins in the metal in a manner similar to Ohm's law. Spin-flip scattering leads to spin-memory loss with a reduced spin-transfer torque. We discuss the concept of a staggered spin current and argue that it is not a conserved quantity. Away from the interface, the staggered spin current varies around a 0 mean in an irregular manner. A network model explains the rapid decay of the staggered spin current.
Precession relaxation of viscoelastic oblate rotators
Frouard, Julien; Efroimsky, Michael
2018-01-01
Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.
Bounce Precession Fishbones in the National Spherical Tokamak Experiment
International Nuclear Information System (INIS)
Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Liu Chen; Roscoe White
2003-01-01
Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population
Bounce Precession Fishbones in the National Spherical Tokamak Experiment
Energy Technology Data Exchange (ETDEWEB)
Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Roscoe White
2003-06-27
Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population.
Precession Driven Instabilities and Dynamos in the Early Moon
Cebron, D.; Laguerre, R.; Noir, J.; Vidal, J.; Schaeffer, N.
2017-12-01
The Early Moon magnetic fields are probably due to a strong temporary dynamo, which may be due to lunar precession [1]. However, precession driven dynamos remain badly known, with only few studied cases [2,3,4]. Given the uncertainties of the early Moon precession, wider ranges of parameters need to be explored in order to assess if such lunar dynamos are possible. Using the efficient dynamo code XSHELLS, we have thus performed many simulations of precessing spherical shells, varying the parameters in a systematic way. This allows us to characterize the various excited instabilities, and to propose scaling laws. We also obtain that precession driven dynamos seem scarce and weak in our simulations, which makes difficult and uncertain the extrapolation of these dynamos to the Moon. However, our dynamo simulations, as every other in the literature, neglect the topographic torque effect on instabilities in order to use fast spectral codes [5]. By contrast, the topographic torque is dominant for the lunar core. Before exploring this effect numerically, which is a real challenge, we choose to study it theoretically. To do so, we have developed a novel global linear stability analysis of mechanically-driven flows in triaxial ellipsoids, with leading order viscous effects. Internal dissipation is obtained for the first time by extending the Greenspan's theory (1968) of geostrophic and inertial modes. By contrast with pioneering theories [6], we propose a new linear viscous model valid in arbitrary ellipsoid and for any precessing forcing. Then we perform the linear stability analysis by considering ellipsoidal perturbations of unprecedented spatial complexity with a self-consistent model of viscous damping. We show that forced precession-driven basic flows are bistable in triaxial ellipsoids. Then, we present the first stability analysis of precessing-flows in triaxial ellipsoids. [1] Dwyer et al. (2011), Nature, 479, 212-214.[2] Tilgner (2005), Phy. Fluids, 17, 034104
A Relativistic Long-term Precession of the Earth
Tang, K.
2016-05-01
A long-term precession represents a secular motion of the ecliptic and th equator in a long time interval. With Vondrák et al. (2011), we assume that precession covers all periods longer than 100 centuries, while the shorter ones are included in the nutation. This thesis deals with the long-term precession in a relativistic framework. Compared with the P03 precession theory which is only valid for several centuries around the epoch J2000.0, the new theory better reflects the realistic long-term behavior of precession. All previous works are not fully consistent with General Relativity. They only consider the dominant relativistic corrections: the first-order post-Newtonian corrections due to the Sun and the geodetic precession. Their standard way to account for the geodetic precession is to solve the purely Newtonian equations of rotational motion and add the geodetic precession as a correction to the solution. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. Recently, Klioner, Gerlach, and Soffel (2010) have constructed a relativistic theory of Earth's rotation. According to the post-Newtonian equations of rotational motion given by Klioner
Dephasing of optically generated electron spins in semiconductors
International Nuclear Information System (INIS)
Idrish Miah, M.
2010-01-01
Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.
Dephasing of optically generated electron spins in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)
2010-09-13
Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-{mu}s and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.
Kunihashi, Yoji; Sanada, Haruki; Tanaka, Yusuke; Gotoh, Hideki; Onomitsu, Koji; Nakagawara, Keita; Kohda, Makoto; Nitta, Junsaku; Sogawa, Tetsuomi
2017-11-01
We investigated the effect of an in-plane electric field on drifting spins in a GaAs quantum well. Kerr rotation images of the drifting spins revealed that the spin precession wavelength increases with increasing drift velocity regardless of the transport direction. A model developed for drifting spins with a heated electron distribution suggests that the in-plane electric field enhances the effective magnetic field component originating from the cubic Dresselhaus spin-orbit interaction.
Shore, S N; van den Heuvel, EPJ
1994-01-01
This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.
Spin interference of neutrons tunneling through magnetic thin films
International Nuclear Information System (INIS)
Hino, Masahiro; Achiwa, Norio; Tasaki, Seiji; Ebisawa, Toru; Akiyoshi, Tsunekazu; Kawai, Takeshi.
1996-01-01
Larmor precession of a neutron spin is represented as the superposition of the wave functions of the two Stern-Gerlach states ↑ and ↓. A transverse neutron spin echo (NSE) spectrometer can hence be used as a neutron spin interferometer (NSI) by setting a magnetic film, such as iron and permalloy45 (Fe 55 Ni 45 ), thin enough to permit tunneling at an incident angle above and below the critical angle of the total reflection in the Larmor precession field. The NSI can be used to study spin coherent superposition and rotation of the Larmor precession through a magnetic thin film for a tunneling ↑ spin neutron and a non-tunneling ↓ spin neutron and to get the tunneling time using Larmor clock. The NSI experiments were carried out to measure the shifts of NSE signals transmitted through magnetic iron films with thicknesses of 200 and 400 A and those magnetic permalloy45 films with thicknesses of 200 and 400 A, respectively, as a function of the incident angle. Then even in tunneling ↑ spin neutron and non-tunneling ↓ spin neutron, NSE signal was observed. The phase delay was measured in iron and permalloy45 films with thickness of 200 A, and the tunneling time using Larmor clock was estimated to be 4 ± 0.6 x 10 -9 sec. (author)
Cross, Rod
2018-03-01
Experimental and theoretical results are presented concerning the rise of a spinning egg. It was found that an egg rises quickly while it is sliding and then more slowly when it starts rolling. The angular momentum of the egg projected in the XZ plane changed in the same direction as the friction torque, as expected, by rotating away from the vertical Z axis. The latter result does not explain the rise. However, an even larger effect arises from the Y component of the angular momentum vector. As the egg rises, the egg rotates about the Y axis, an effect that is closely analogous to rotation of the egg about the Z axis. Both effects can be described in terms of precession about the respective axes. Steady precession about the Z axis arises from the normal reaction force in the Z direction, while precession about the Y axis arises from the friction force in the Y direction. Precession about the Z axis ceases if the normal reaction force decreases to zero, and precession about the Y axis ceases if the friction force decreases to zero.
Pulsation and precession of the resonant swinging spring
Lynch, Peter; Houghton, Conor
2004-03-01
When the frequencies of the elastic and pendular oscillations of an elastic pendulum or swinging spring are in the ratio 2:1, there is a regular exchange of energy between the two modes of oscillation. We refer to this phenomenon as pulsation. Between the horizontal excursions, or pulses, the spring undergoes a change of azimuth which we call the precession angle. The pulsation and stepwise precession are the characteristic features of the dynamics of the swinging spring. The modulation equations for the small-amplitude resonant motion of the system are the well-known three-wave equations. We use Hamiltonian reduction to determine a complete analytical solution. The amplitudes and phases are expressed in terms of both Weierstrass and Jacobi elliptic functions. The strength of the pulsation may be computed from the invariants of the equations. Several analytical formulas are found for the precession angle. We deduce simplified approximate expressions, in terms of elementary functions, for the pulsation amplitude and precession angle and demonstrate their high accuracy by numerical experiments. Thus, for given initial conditions, we can describe the envelope dynamics without solving the equations. Conversely, given the parameters which determine the envelope, we can specify initial conditions which, to a high level of accuracy, yield this envelope.
Spin heat accumulation induced by tunneling from a ferromagnet.
Vera-Marun, I J; van Wees, B J; Jansen, R
2014-02-07
An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexisting electrical spin accumulation and can give a different Hanle spin precession signature. The effect is governed by the spin polarization of the Peltier coefficient of the tunnel contact, its Seebeck coefficient, and the spin heat resistance of the nonmagnetic material, which is related to the electrical spin resistance by a spin-Wiedemann-Franz law. Moreover, spin heat injection is subject to a heat conductivity mismatch that is overcome if the tunnel interface has a sufficiently large resistance.
Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers
Directory of Open Access Journals (Sweden)
Walid Amamou
2016-03-01
Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.
Spin currents in metallic nanostructures
Energy Technology Data Exchange (ETDEWEB)
Czeschka, Franz Dominik
2011-09-05
A pure spin current, i.e., a flow of angular momentum without accompanying net charge current, is a key ingredient in the field of spintronics. In this thesis, we experimentally investigated two different concepts for pure spin current sources suggested by theory. The first is based on a time-dependent magnetization precession which ''pumps'' a pure spin current into an adjacent non-magnetic conductor. Our experiments quantitatively corroborated important predictions expected theoretically for this approach, including the dependence of the spin current on the sample geometry and the microwave power. Even more important, we could show for the first time that the spin pumping concept is viable in a large variety of ferromagnetic materials and that it only depends on the magnetization damping. Therefore, our experiments established spin pumping as generic phenomenon and demonstrated that it is a powerful way to generate pure spin currents. The second theoretical concept is based on the conversion of charge currents into spin currents in non-magnetic nanostructures via the spin Hall effect. We experimentally investigated this approach in H-shaped, metallic nanodevices, and found that the predictions are linked to requirements not realizable with the present experimental techniques, neither in sample fabrication nor in measurement technique. Indeed, our experimental data could be consistently understood by a spin-independent transport model describing the transition from diffusive to ballistic transport. In addition, the implementation of advanced fabrication and measurement techniques allowed to discover a new non-local phenomenon, the non-local anisotropic magnetoresistance. Finally, we also studied spin-polarized supercurrents carried by spin-triplet Cooper pairs. We found that low resistance interfaces are a key requirement for further experiments in this direction. (orig.)
Inclination evolution of protoplanetary discs around eccentric binaries
Zanazzi, J. J.; Lai, Dong
2018-01-01
It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.
Rieger, Samantha
2015-05-01
Recent observations have found that some contact binaries are oriented such that the secondary impacts with the primary at a high inclination. This research investigates the evolution of how such contact binaries came to exist. This process begins with an asteroid pair, where the secondary lies on the Laplace plane. The Laplace plane is a plane normal to the axis about which the pole of a satellites orbit precesses, causing a near constant inclination for such an orbit. For the study of the classical Laplace plane, the secondary asteroid is in circular orbit around an oblate primary with axial tilt. This system is also orbiting the Sun. Thus, there are two perturbations on the secondarys orbit: J2 and third body Sun perturbations. The Laplace surface is defined as the group of orbits that lie on the Laplace plane at varying distances from the primary. If the secondary is very close to the primary, the inclination of the Laplace plane will be near the equator of the asteroid, while further from the primary the inclination will be similar to the asteroid-Sun plane. The secondary will lie on the Laplace plane because near the asteroid the Laplace plane is stable to large deviations in motion, causing the asteroid to come to rest in this orbit. Assuming the secondary is asymmetrical in shape and the bodys rotation is synchronous with its orbit, the secondary will experience the BYORP effect. BYORP can cause secular motion such as the semi-major axis of the secondary expanding or contracting. Assuming the secondary expands due to BYORP, the secondary will eventually reach the unstable region of the Laplace plane. The unstable region exists if the primary has an obliquity of 68.875 degrees or greater. The unstable region exists at 0.9 Laplace radius to 1.25 Laplace radius, where the Laplace radius is defined as the distance from the central body where the inclination of the Laplace plane orbit is half the obliquity. In the unstable region, the eccentricity of the orbit
Unitarity of scattering and edge spin accumulation in a ballistic and quasiballistic regimes
Khaetskii, Alexander; Sukhorukov, Eugene
2011-03-01
We consider a 2D ballistic structure with spin-orbit-related splitting of the electron spectrum. We calculated the edge spin density which appears in the presence of a charge current through the structure. Combined effect of the boundary scattering and spin precession leads to oscillations of the edge polarization. The problem is solved with the use of the method of scattering states. We clarified the important role of the unitarity of scattering for the problem of edge spin accumulation. For Rashba Hamiltonian, which is linear in momentum, and in the case of a straight boundary it leads to exact cancellation of long-wave oscillations of the spin density with a period order of spin precession length. However, this appears to be rather exceptional case. In general, the smooth spin oscillations recover, as it happens, e.g., for the wiggly boundary. For qubic Hamiltonian (2D holes) the unitarity scattering conditions are different, as a result, even in the case of a straight boundary the cancellation of the smooth oscillations in spin density does not occur. Similar problem is considered for the case when the sample size is large compared to the mean free path which in its turn is much larger than the spin precession length. For example, for the cubic Hamiltonian the ``edge'' contribution to the spin density can be larger than the ``bulk'' one which appears as a result of the spin flux from the bulk. This demands the reinterpretation of the experimental results.
Nonequilibrium ensembles. 3. Spin 1/2 paramagnets
International Nuclear Information System (INIS)
Sobouti, Y.; Khajeh-Pour, M.R.H.
1990-07-01
The thermodynamic state of a paramagnetic substance in which the spin vectors precess coherently is investigated. The state is a time dependent one. The corresponding density matrix and the thermodynamics emerging from it is worked out. A laboratory preparation of such a system is discussed. (author). 3 refs
Matter in compact binary mergers
Read, Jocelyn; LIGO Scientific Collaboration, Virgo Scientific Collaboration
2018-01-01
Mergers of binary neutron stars or neutron-star/black-hole systems are promising targets for gravitational-wave detection. The dynamics of merging compact objects, and thus their gravitational-wave signatures, are primarily determined by the mass and spin of the components. However, the presence of matter can make an imprint on the final orbits and merger of a binary system. I will outline efforts to understand the impact of neutron-star matter on gravitational waves, using both theoretical and computational input, so that gravitational-wave observations can be used to measure the properties of source systems with neutron-star components.
Frequency Modulation of Spin-Transfer Oscillators
Pufall, M. R.; Rippard, W. H.; Kaka, S.; Silva, T. J.; Russek, S. E.
2004-01-01
Spin-polarized dc electric current flowing into a magnetic layer can induce precession of the magnetization at a frequency that depends on current. We show that addition of an ac current to this dc bias current results in a frequency modulated (FM) spectral output, generating sidebands spaced at the modulation frequency. The sideband amplitudes and shift of the center frequency with drive amplitude are in good agreement with a nonlinear FM model that takes into account the nonlinear frequency...
Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions
Manchon, Aurelien
2011-05-17
Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.
Spin diffusion in bulk GaN measured with MnAs spin injector
Jahangir, Shafat
2012-07-16
Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.
Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor
Directory of Open Access Journals (Sweden)
Zein W. A.
2008-01-01
Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic/superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.
Spin Transport in Mesoscopic Superconducting-Ferromagnetic Hybrid Conductor
Directory of Open Access Journals (Sweden)
Zein W. A.
2008-01-01
Full Text Available The spin polarization and the corresponding tunneling magnetoresistance (TMR for a hybrid ferromagnetic / superconductor junction are calculated. The results show that these parameters are strongly depends on the exchange field energy and the bias voltage. The dependence of the polarization on the angle of precession is due to the spin flip through tunneling process. Our results could be interpreted as due to spin imbalance of carriers resulting in suppression of gap energy of the superconductor. The present investigation is valuable for manufacturing magnetic recording devices and nonvolatile memories which imply a very high spin coherent transport for such junction.
Steady flow in a rotating sphere with strong precession
Kida, Shigeo
2018-04-01
The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.
Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral
Kulkarni, Girish; Loeb, Abraham
2016-03-01
We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.
On the dynamics of binary galaxies
International Nuclear Information System (INIS)
Verner, D.A.; Chernin, A.D.
1987-01-01
The dynamics of close noncontact binary galaxies is investigated. It is demonsrated that the tidal interaction is ineffective for circularization of galaxy orbits. Nonsphericity of galaxies develops a torque in a binary system. For a pair of elliptical galaxies this torque leads to swinging of the galaxies with respect to the orbital plane (which can be observed as a rotation about the minor axis) and to the excitation of internal degrees of freedom. Besides, this pendulum effect may be effective for elliptical galaxies in clusters due to the presence of the torque produced by a cluster as a whole. In the case of spiral galaxies the torque leads to the precession of their rotational axes. However this effect seems to be too weak to be observable
International Nuclear Information System (INIS)
Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien
2014-01-01
We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern
Wu, Mingzhong
2014-03-01
If a magnetic field is applied to a magnetic material, the field produces a torque on the magnetization of the material and drives it to precess. This precession is similar to the motion of a spinning top where the gravitational field produces a torque, instead of the magnetic field. It turns out that magnetization precession in yttrium iron garnets (YIG) decays slower than in any other known magnetic materials. This fact gives rise to the recent birth of a new paradigm in the discipline of spintronics - ``spintronics using YIG.'' This talk will touch on several topics related to YIG spintronics. The first part will demonstrate the feasibility of the use of pulsed laser deposition and magnetron sputtering to grow low-damping, nanometer-thick YIG films. The second part will address the efficiency of spin angular momentum transfer across YIG/normal metal interfaces. The last part will report on the use of YIG thin films to produce pure spin currents; Detailed discussions will be provided on the comparison between spin current generations using traveling spin waves and uniform ferromagnetic resonance modes, the field dependence of spin current generation, and spin current enhancement in YIG/Pt structures via the use of a thin Cu spacer. This work was supported in part by U.S. National Science Foundation (No. ECCS-1231598), the U.S. Army Research Office (No. W911NF-12-1-0518, No. W911NF-11-C-0075), and the U.S. National Institute of Standards and Technology (No. 60NANB10D011).
ETEAPOT: symplectic orbit/spin tracking code for all-electric storage rings
Talman, Richard M.; Talman, John D.
2015-01-01
Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the ...
Analytical study of synchronization in spin-transfer-driven magnetization dynamics
Energy Technology Data Exchange (ETDEWEB)
Bonin, Roberto [Politecnico di Torino - sede di Verres, via Luigi Barone 8, I-11029 Verres (Italy); Bertotti, Giorgio; Bortolotti, Paolo [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino (Italy); Serpico, Claudio [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , via Claudio 21, I-80125 Napoli (Italy); D' Aquino, Massimiliano [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , via Medina 40, I-80133 Napoli (Italy); Mayergoyz, Isaak D, E-mail: p.bortolotti@inrim.i [Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park MD 20742 (United States)
2010-01-01
An analytical study of the synchronization effects in spin-transfer-driven nanomagnets subjected to either microwave magnetic fields or microwave electrical currents is discussed. Appropriate stability diagrams are constructed and the conditions under which the current-induced magnetization precession is synchronized by the microwave external excitation are derived and discussed. Analytical predictions are given for the existence of phase-locking effects in current-induced magnetization precessions and for the occurrence of hysteresis in phase-locking as a function of the spin-polarized current.
Antiferromagnetism of La2CuO(4-y) studied by muon-spin rotation
Uemura, Y. J.; Kossler, W. J.; Yu, X. H.; Kempton, J. R.; Schone, H. E.
1987-01-01
Zero-field spin precession of positive muons has been observed in the antiferromagnetic state of La2CuO(4-y). Sharp onsets of the sublattice magnetization are found at temperatures close to those of the susceptibility maxima of different specimens. The long-lived precession signal indicates a microscopically homogeneous distribution of spin density at each Cu atom below the Neel temperature. A combination of the present results and neutron-scattering studies indicates the ordered moment per Cu atom to be significantly less than 1 mu(B).
Pluto and Charon: A Case of Precession-Orbit Resonance?
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2000-01-01
Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.
Possible evidence for spin-transfer torque induced by spin-triplet supercurrent
Li, Lailai
2017-10-04
Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.
Type-I superconductivity and neutron star precession
International Nuclear Information System (INIS)
Sedrakian, Armen
2005-01-01
Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the nonsuperconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the nonsuperconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession of neutron stars
Neutron Larmor diffraction with double and single precession arm
van Well, A. A.; Rekveldt, M. T.
2017-06-01
A review is given of double and single arm Larmor diffraction. With the former a lattice-spacing resolution down to 10-6 can be obtained. The latter is a good high-resolution alternative if the sample or sample environment disturbs the magnetic field, e.g. ferromagnetic samples or applied magnetic fields. By choosing the tilt angle of the precession fields the optimum resolution can be set at a scattering angle at choice. The resolution for both single-crystal and polycrystalline samples is discussed in depth and is compared with conventional neutron-diffraction techniques.
J-NSE: Neutron spin echo spectrometer
Directory of Open Access Journals (Sweden)
Olaf Holderer
2015-08-01
Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.
Spin Relaxation Time in InAlAs/AlGaAs Quantum Dots
Directory of Open Access Journals (Sweden)
N. Sellami
2014-05-01
Full Text Available We report systematic temperature dependent measurements of spin relaxation time in self-assembled In0.72Al0.28As/Al0.28Ga0.72As quantum dots by continuous-wave photoluminescence. The degree of circular polarization decreases as a function of temperature. The spin relaxation time tS is deduced from the circular polarization degree using a three dimensional pseudo- spin precession model. The spin relaxation time decreases rapidly from few hundred picoseconds at 10 K to few tens picoseconds at 85 K. This large change of the spin relaxation time is explained in terms of acoustic phonon emission mechanism.
Accretion-disc precession in UX Ursae Majoris
de Miguel, E.; Patterson, J.; Cejudo, D.; Ulowetz, J.; Jones, J. L.; Boardman, J.; Barret, D.; Koff, R.; Stein, W.; Campbell, T.; Vanmunster, T.; Menzies, K.; Slauson, D.; Goff, W.; Roberts, G.; Morelle, E.; Dvorak, S.; Hambsch, F.-J.; Starkey, D.; Collins, D.; Costello, M.; Cook, M. J.; Oksanen, A.; Lemay, D.; Cook, L. M.; Ogmen, Y.; Richmond, M.; Kemp, J.
2016-04-01
We report the results of a long campaign of time series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ˜ 1800 h of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V = 13, with slow waves in the light curve and eclipses every 4.72 h. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 ± 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a ±33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies ωorb + N and 2ωorb + N, where ωorb and N are, respectively, the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 yr of previous photometric studies.
Foucault's Pendulum, Analog for an Electron Spin State
Linck, Rebecca
2012-11-01
The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
Magnetic pseudo-fields in a rotating electron-nuclear spin system
Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.
2017-11-01
Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.
ANGULAR-MOMENTUM IN BINARY SPIRAL GALAXIES
OOSTERLOO, T
In order to investigate the relative orientations of spiral galaxies in pairs, the distribution of the angle between the spin-vectors for a new sample of 40 binary spiral galaxies is determined. From this distribution it is found, contrary to an earlier result obtained by Helou (1984), that there is
Designing magnetic droplet soliton nucleation employing spin polarizer
Mohseni, Morteza; Mohseni, Majid
2018-04-01
We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.
The Precession Index, A Nonlinear Energy Balance Model, And Seversmith Psychroterms
Rubincam, David Parry
2004-01-01
An important component of Milankovitch's astronomical theory of climate change is the precession index. The precession index, along with the Earth's tilt and orbital eccentricity, are believed to be the major controlling factors of climate change in the last few million years. The precession index is e sin omega(sub s) where e is the Earth's orbital eccentricity and omega(sub s) measures how close the Sun is to the Earth at midsummer. When omega(sub s) = 90deg the Sun is close to the Earth during northern summer, and at 270deg it is far from the Earth during northern summer. The precession index varies with time, because both the eccentricity e and the parameter omega(sub s) are constantly changing due to disturbances in the Earth's orbit by other planets, and due to the precession of the Earth, The change is largely periodic, with a period of about 23,000 years.
Depolarization of neutron spin echo by magnetic fluid
International Nuclear Information System (INIS)
Achiwa, N.; Sirozu, G.; Nishioka, T.; Ebisawa, T.; Hino, M.; Tasaki, S.; Kawai, T.; Yamazaki, D.
2001-01-01
A new method to study the fluctuations of magnetization in magnetic fluids by measuring relations between the phase shift of Larmor precession and the visibility of the neutron spin echo caused by the change of flight path length is studied. Magnetic fluid in which fine particles of magnetite of about 10 nm diameters coated with oleic acid and suspended in water was used. Thickness of the sample was 2 mm. In the dynamics of magnetic fluids, Brownian motions of colloids and the thermal fluctuations of magnetization known as the superparamagnetism are dominant. Isolated ferromagnetic particles of the present size are superparamagnetic but they aggregate to form clusters in a weak magnetic field in the sample of 40% weight density. When neutrons pass the sample, spins process in the magnetic flux density of the clusters fluctuating in time and space. Consequently the Larmor precession phases become distributed and the quantization axes are fluctuated. The result is observed as a decrease of the visibility of the spin echo signals. The change of magnetic flux density in the magnetic fluid is measured from the change of echo visibility of the neutrons, vice versa. In the present experiment, echo was measured at q=0. It is observed that the phase shift changes as a quadratic function of the sample angle reflecting the change of the path length through the sample. Since the number of Larmor precession is proportional to the product of the magnetic field and the length of the flight path, mean flux density in the magnetic fluid is calculated from the phase shift. On the other hand, the decrease of the spin echo amplitude as the function of the sample angle reflects the time and space fluctuations of the flux density in the sample. If the direction of the magnetic flux density vector (quantization axis) changes slowly enough compared to the Larmor precession period while a neutron passes one magnetic domain, the neutron spin rotation in the domain is given by the spin
Slow modes in spin hydrodynamics of 3He-B
International Nuclear Information System (INIS)
Golo, V.L.; Kats, E.I.
1986-01-01
We study nonlinear interaction between sound and spin modes with the view of finding a means for detecting second sound pumped in a sample of 3 He-B. We find that the interaction could be tangible for second sound and spin-textual waves which are long wavelength spatial modulations of the WP mode of magnetic ringing. We show that within a thin layer close to the loudspeaker second sound generates the dephasing delta psi of the spin precession. We suggest that the mode of the w-oscillations could be detected with the technique for the propagating magnetic disturbance. Our numerical estimates indicate that in te temperature and pressure region 1 - T/Tsub(c) approximately equal to 0.01 and p=21.7 bar, and the frequency and power of second sound of order 100 Hz and 10 -3 erg/s, the dephasing of the spin precession may amount to 0.1 rad, and result in a swinging of the precession axis w
A radio pulsar/X-ray binary link
Archibald, A.M.; Stairs, I.H.; Ransom, S.M.; Kaspi, V.M.; Kondratiev, V.I.; Lorimer, D.R.; McLaughlin, M.A.; Boyles, J.; Hessels, J.W.T.; Lynch, R.; van Leeuwen, J.; Roberts, M.S.E.; Jenet, F.; Champion, D.J.; Rosen, R.; Barlow, B.N.; Dunlap, B.H.; Remillard, R.A.
2009-01-01
Radio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray-emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be
A computational predictor of human episodic memory based on a theta phase precession network.
Directory of Open Access Journals (Sweden)
Naoyuki Sato
Full Text Available In the rodent hippocampus, a phase precession phenomena of place cell firing with the local field potential (LFP theta is called "theta phase precession" and is considered to contribute to memory formation with spike time dependent plasticity (STDP. On the other hand, in the primate hippocampus, the existence of theta phase precession is unclear. Our computational studies have demonstrated that theta phase precession dynamics could contribute to primate-hippocampal dependent memory formation, such as object-place association memory. In this paper, we evaluate human theta phase precession by using a theory-experiment combined analysis. Human memory recall of object-place associations was analyzed by an individual hippocampal network simulated by theta phase precession dynamics of human eye movement and EEG data during memory encoding. It was found that the computational recall of the resultant network is significantly correlated with human memory recall performance, while other computational predictors without theta phase precession are not significantly correlated with subsequent memory recall. Moreover the correlation is larger than the correlation between human recall and traditional experimental predictors. These results indicate that theta phase precession dynamics are necessary for the better prediction of human recall performance with eye movement and EEG data. In this analysis, theta phase precession dynamics appear useful for the extraction of memory-dependent components from the spatio-temporal pattern of eye movement and EEG data as an associative network. Theta phase precession may be a common neural dynamic between rodents and humans for the formation of environmental memories.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Calibrating the energy of a 50x50 GeV muon collider using spin precession
International Nuclear Information System (INIS)
Raja, Rajendran; Tollestrup, Alvin
1998-01-01
The neutral Higgs boson is expected to have a mass in the region 90-150 GeV/c 2 in various schemes within the Minimal Supersymmetric extension to the Standard Model. A first generation Muon Collider is uniquely suited to investigate the mass, width and decay modes of the Higgs boson, since the coupling of the Higgs to muons is expected to be strong enough for it to be produced in the s channel mode in the muon collider. Due to the narrow width of the Higgs, it is necessary to measure and control the energy of the individual muon bunches to a precision of a few parts in a million. We investigate the feasibility of determining the energy scale of a muon collider ring with circulating muon beams of 50 GeV energy by measuring the turn by turn variation of the energy deposited by electrons produced by the decay of the muons. This variation is caused by the existence of an average initial polarization of the muon beam and a non-zero value of g-2 for the muon. We demonstrate that it is feasible to determine the energy scale of the machine with this method to a few parts per million using data collected during 1000 turns
Calibrating the energy of a 50x50 GeV muon collider using spin precession
International Nuclear Information System (INIS)
Raja, R.; Tollestrup, A.
1998-01-01
The neutral Higgs boson is expected to have a mass in the region 90 endash 150thinspGeV /c 2 in various schemes within the minimal supersymmetric extension of the standard model. A first generation muon collider is uniquely suited to investigate the mass, width, and decay modes of the Higgs boson, since the coupling of the Higgs boson to muons is expected to be strong enough for it to be produced in the s channel mode in the muon collider. Because of the narrow width of the Higgs boson, it is necessary to measure and control the energy of the individual muon bunches to a precision of a few parts in a million. We investigate the feasibility of determining the energy scale of a muon collider ring with circulating muon beams of 50thinspGeV energy by measuring the turn by turn variation of the energy deposited by electrons produced by the decay of the muons. This variation is caused by the existence of an average initial polarization of the muon beam and a nonzero value of g-2 for the muon. We demonstrate that it is feasible to determine the energy scale of the machine with this method to a few parts per million using data collected during 1000 turns. copyright 1998 The American Physical Society
Directory of Open Access Journals (Sweden)
Franz Konstantin Fuss
2018-02-01
Full Text Available In the off-spin bowling grip, the ball is clamped between index and middle fingers. Spin bowlers attempt to select a spread angle between these two fingers that achieves comfort and optimises performance. The aim of this paper was to investigate whether the standard grip is superior to narrow and wide grips. The bowling performance parameters were obtained from a smart cricket ball. Smart ball data revealed that the performance parameters varied with grip type. The following parameters were optimum at the standard grip: spin rate, resultant torque, spin torque, peak angular acceleration, and peak power. The following parameters were optimum at standard and wide grips: efficiency. The following parameters were optimum at standard and narrow grips: pitch angle of spin axis. The following parameters were optimum at the wide grip: precession and the precession torque. In general, the data tended to show that the standard grip is most effective for spin bowling. However, more research is needed to confirm this result, because the precession and precession torque were optimum at the wide grip, suggesting that this may have a superior performance over the standard and narrow grips.
International Nuclear Information System (INIS)
Senba, Masayoshi; British Columbia Univ., Vancouver, BC
1991-01-01
The spin dynamics of the positive muon in a muonium-like radical has been investigated in the case where the unpaired electron of the radical undergoes rapid spin flip collisions. If the spin flip rate λ SF is much faster than the hyperfine frequency of the radical, the behaviour of the muon spin is very similar to that of a positive muon in diamagnetic environments. It has been shown that in a transverse field, the relaxation rate and precession frequency of the apparent diamagnetic muon are related to the time evolution function of the muon spin in muonium. The relaxation rate of such an apparent diamagnetic signal has a characteristic field dependence which is very sensitive to the hyperfine frequency of the radical. The fractional frequency shift with respect to the positive muon precession frequency (ω D -ω μ )/ω μ is shown to be field-dependent, in contrast to the case of Knight shifts in metals. The field dependence of the relaxation and frequency shift will provide a tool to distinguish experimentally the muon in a radical which behaves like a free positive muon from a genuine diamagnetic muon. This work can be applied to a variety of fields involving muonium and hydrogen, such as spin dynamic in the gas phase and the muonium-like (hydrogen-like) states in semiconductors. The case where the muon undergoes both spin flip and charge transfer collisions is also discussed. (author)
Spin-drift transport in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong-4331 (Bangladesh)
2008-02-07
We present a study on spin transport in semiconductors under applied electric fields. Our experiments detect photoinjected electron spins and their relaxation during drift transport in intrinsic and moderately n-doped GaAs, based on the extraordinary Hall (eH) effect. For relatively low electric field (E), the optically spin-induced eH effect in n-doped GaAs is found to be enhanced with increasing doping density and not to depend much on E, indicating that a substantial amount of optical spin polarization is preserved during the drift transport in these extrinsic semiconductors. However, when the spin-oriented electrons are injected with a high E, a very significant decrease is observed in the eH voltage (V{sub eH}) due to an increase in the spin precession frequency of the hot electrons. Spin relaxation by the D'yakonov-Perel' mechanism is calculated, and is suggested to be the reason for such a rapid spin relaxation for hot electrons under a high E. However, in an intrinsic GaAs (i-GaAs), a much weaker V{sub eH} is observed and, as the electron spins scattered by holes due to the Coulomb interaction in i-GaAs, the spin relaxation by the Bir-Aronov-Pikus mechanism is considered. Skew scattering and side jump as possible mechanisms of the optically spin-induced transverse Hall currents are discussed. Based on a spin drift-diffusion model, drift and diffusion contributions to the V{sub eH} are examined. The results are also discussed in comparison with theoretical investigations.
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
Independent gate control of injected and detected spin currents in CVD graphene nonlocal spin valves
Anugrah, Yoska; Hu, Jiaxi; Stecklein, Gordon; Crowell, Paul A.; Koester, Steven J.
2018-01-01
Graphene is an ideal material for spintronic devices due to its low spin-orbit coupling and high mobility. One of the most important potential applications of graphene spintronics is for use in neuromorphic computing systems, where the tunable spin resistance of graphene can be used to apply analog weighting factors. A key capability needed to achieve spin-based neuromorphic computing systems is to achieve distinct regions of control, where injected and detected spin currents can be tuned independently. Here, we demonstrate the ability to achieve such independent control using a graphene spin valve geometry where the injector and detector regions are modulated by two separate bottom gate electrodes. The spin transport parameters and their dependence on each gate voltage are extracted from Hanle precession measurements. From this analysis, local spin transport parameters and their dependence on the local gate voltage are found, which provide a basis for a spatially-resolved spin resistance network that simulates the device. The data and model are used to calculate the spin currents flowing into, through, and out of the graphene channel. We show that the spin current flowing through the graphene channel can be modulated by 30% using one gate and that the spin current absorbed by the detector can be modulated by 50% using the other gate. This result demonstrates that spin currents can be controlled by locally tuning the spin resistance of graphene. The integration of chemical vapor deposition (CVD) grown graphene with local gates allows for the implementation of large-scale integrated spin-based circuits.
Explaining LIGO's observations via isolated binary evolution with natal kicks
Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.
2018-02-01
We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.
Slow manifold and Hannay angle in the spinning top
Energy Technology Data Exchange (ETDEWEB)
Berry, M V [H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shukla, P [Department of Physics, Indian Institute of Technology, Kharagpur (India)
2011-01-15
The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at graduate-student level, of the general dynamical concept of the slow manifold. For this case, the slow manifold can be calculated exactly, and expanded as a series of reaction forces (of magnetic type) in powers of slowness, corresponding to a modified precession frequency. The forces correspond to a series for the Hannay angle for the fast motion, describing the location of a point on the top.
Spin-torque switching and control using chirped AC currents
Klughertz, Guillaume; Friedland, Lazar; Hervieux, Paul-Antoine; Manfredi, Giovanni
2017-10-01
We propose to use oscillating spin currents with slowly varying frequency (chirp) to manipulate and control the magnetization dynamics in a nanomagnet. By recasting the Landau-Lifshitz-Slonczewski equation in a quantum-like two-level formalism, we show that a chirped spin current polarized in the direction normal to the anisotropy axis can induce a stable precession of the magnetic moment at any angle (up to 90^\\circ ) with respect to the anisotropy axis. The drive current can be modest (10^6~A~cm-2 or lower) provided the chirp rate is sufficiently slow. The induced precession is stable against thermal noise, even for small nano-objects at room temperature. Complete reversal of the magnetization can be achieved by adding a small external magnetic field antiparallel to the easy axis. Alternatively, a combination of chirped ac and dc currents with different polarization directions can also be used to trigger the reversal.
TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering
Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.
2012-01-01
We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Energy Technology Data Exchange (ETDEWEB)
Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-05-15
We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
Directory of Open Access Journals (Sweden)
Yuan-Yuan Guo
2015-05-01
Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.
Pulsar precession: a nod is not as good as a wink
International Nuclear Information System (INIS)
Heintzmann, H.
1986-01-01
The question of the reality of pulsar precession is reassessed and the relevant precession periods and amplitudes are reestimated. It is argued that the pulsar timing data provide evidence for the viewpoint that pulsars do indeed precess and that they turn off after some 10 4 precessional turns because they align their magnetic fields with their rotation axis due to viscous damping. Chances for an actual detection in the long known pulsars are small but PSR 1510-59 and some more recently dicovered young pulsars are promising candidates. (Author) [pt
Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects
International Nuclear Information System (INIS)
Yedra, Ll.; Estradé, S.; Torruella, P.; Eljarrat, A.; Peiró, F.; Darbal, A. D.; Weiss, J. K.
2014-01-01
The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio
Inferences about binary stellar populations using gravitational wave observations
Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel
2018-01-01
With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.
Spin Transport in a Unitary Fermi Gas
Thywissen, Joseph
2015-03-01
We study spin transport in a quantum degenerate Fermi gas of 40K near an s-wave interaction resonance. The starting point of our measurements is a transversely spin-polarized gas, where each atom is in a superposition of the lowest two Zeeman eigenstates. In the presence of an external gradient, a spin texture develops across the cloud, which drives diffusive spin currents. Spin transport is described with two coefficients: D0⊥, the transverse spin diffusivity, and γ, the Leggett-Rice parameter. Diffusion is a dissipative effect that increases the entropy of the gas, eventually creating a mixture of spin states. γ parameterizes the rate at which spin current precesses around the local magnetization. Using a spin-echo sequence, we measure these transport parameters for a range of interaction strengths and temperatures. At unitarity, for a normal-state gas initially at one fifth of the Fermi temperature, we find D0⊥ = 2 . 3 (4) ℏ / m and γ = 1 . 08 (9) , where m is the atomic mass. In the limit of zero temperature, γ and D0⊥ are scale-invariant universal parameters of the unitary Fermi gas. The value of D0⊥ reveals strong scattering and is near its proposed quantum limit, such that the inferred value of the transport lifetime τ⊥ is comparable to ℏ /ɛF . This raises the possibility that incoherent transport may play a role. The nonzero value of γ tells us that spin waves in unitary Fermi gas are dispersive, or in other words, that the gas has a spin stiffness in the long-wavelength limit. Time permitting, we will also discuss a time-resolved measurement of the contact, through which we observe the microscopic transformation of the gas from ideal to strongly correlated.
Search for electric dipole moment in 129Xe atom using active nuclear spin maser
Directory of Open Access Journals (Sweden)
Ichikawa Y.
2014-03-01
Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.
Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface
International Nuclear Information System (INIS)
Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del; Cherian, C. T.; Özyilmaz, B.
2015-01-01
We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures
Foucault's pendulum, a classical analog for the electron spin state
Linck, Rebecca A.
Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.
The Precession Index and a Nonlinear Energy Balance Climate Model
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold
Neutron resonance spin echo with longitudinal DC fields
Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang
2016-12-01
We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.
Black Hole Spin Measurement Uncertainty
Salvesen, Greg; Begelman, Mitchell C.
2018-01-01
Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.
Physics and application of persistent spin helix state in semiconductor heterostructures
Kohda, Makoto; Salis, Gian
2017-07-01
In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.
Precession and recession of the rock'n'roller
International Nuclear Information System (INIS)
Lynch, Peter; Bustamante, Miguel D
2009-01-01
We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gravity. The distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre. The symmetric case, with moments of inertia I 1 = I 2 3 , is integrable and the motion is completely regular. Three known conservation laws are the total energy E, Jellett's quantity Q J and Routh's quantity Q R . When the inertial symmetry I 1 = I 2 is broken, even slightly, the character of the solutions is profoundly changed and new types of motion become possible. We derive the equations governing the general motion and present analytical and numerical evidence of the recession, or reversal of precession, that has been observed in physical experiments. We present an analysis of recession in terms of critical lines dividing the (Q R , Q J ) plane into four dynamically disjoint zones. We prove that recession implies the lack of conservation of Jellett's and Routh's quantities, by identifying individual reversals as crossings of the orbit (Q R (t), Q J (t)) through the critical lines. Consequently, a method is found to produce a large number of initial conditions so that the system will exhibit recession.
Local Magnetic Fields in Ferromagnetics Studied by Positive Muon Precession
2002-01-01
Positive muons are used to study local magnetic fields in different materials. A polarized muon beam is employed with energies of 30-50 MeV, and the muons are stopped in the target being studied. During its lifetime the muon will precess in the magnetic fields present, and after the decay of the muon the emitted positron is detected in plastic scintillators. The time and angle of the detected positron is used to calculate the magnetic field at the position of the muon in the sample. \\\\ \\\\ The detector system consists of plastic scintillators. Most of the measurements are made in an applied magnetic field. A dilution cryostat is used to produce temperatures down to well below $ 1 ^0 $ K. \\\\ \\\\ The present line of experiments concern mainly: \\item a)~~~~Local magnetism in the paramagnetic state of the Lave's phase type REAl$_{2} $ and RENi$_{2} $ systems ~~~where RE is a rare-earth ion. \\item b)~~~~Local magnetic fields and critical behaviour of the magnetism in Gd metal. \\item c)~~~~Investigation of flux exclu...
Precession and recession of the rock'n'roller
Lynch, Peter; Bustamante, Miguel D.
2009-10-01
We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gravity. The distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre. The symmetric case, with moments of inertia I1 = I2 < I3, is integrable and the motion is completely regular. Three known conservation laws are the total energy E, Jellett's quantity QJ and Routh's quantity QR. When the inertial symmetry I1 = I2 is broken, even slightly, the character of the solutions is profoundly changed and new types of motion become possible. We derive the equations governing the general motion and present analytical and numerical evidence of the recession, or reversal of precession, that has been observed in physical experiments. We present an analysis of recession in terms of critical lines dividing the (QR, QJ) plane into four dynamically disjoint zones. We prove that recession implies the lack of conservation of Jellett's and Routh's quantities, by identifying individual reversals as crossings of the orbit (QR(t), QJ(t)) through the critical lines. Consequently, a method is found to produce a large number of initial conditions so that the system will exhibit recession.
On the perihelion precession as a Machian effect
Eby, P. B.
1977-01-01
A Lagrangian is constructed which gives Newtonian gravity in the lowest-order approximation in an isotropic universe and also predicts the correct advance of the perihelion with the proper choice of a constant governing the ratio of inertial to gravitational mass. The situation considered is that of a test particle orbiting a central body with external mass at rest and distributed isotropically at large distances from the central body. In the theory developed, the perihelion advance is due to a small contribution to the test-particle inertial mass by the central attracting body rather than to a failure of the inverse-square law of attraction. Some interesting Machian features of this theory are that: (1) the local value of the gravitational constant is determined by the mass distribution of the external matter; (2) the orbits are fixed, and the perihelion advances unambiguously with respect to the external-mass distribution; (3) there are no vestiges of absolute space; (4) the perihelion precession arises from the inertial interaction of the test particle with the central mass; (5) the local rest mass is really determined by the mass distribution of the rest of the universe; and (6) a limited form of the equivalence principle is inherent in one of the equations.
Exploring the Birth of Binary Stars
Kohler, Susanna
2016-08-01
More than half of all stars are thought to be in binary or multiple star systems. But how do these systems form? The misaligned spins of some binary protostars might provide a clue.Two Formation ModelsIts hard to tell how multiple-star systems form, since these systems are difficult to observe in their early stages. But based on numerical simulations, there are two proposed models for the formation of stellar binaries:Turbulent fragmentationTurbulence within a single core leads to multiple dense clumps. These clumps independently collapse to form stars that orbit each other.Disk fragmentationGravitational instabilities in a massive accretion disk cause the formation of a smaller, secondary disk within the first, resulting in two stars that orbit each other.Log column density for one of the authors simulated binary systems, just after the formation of two protostars. Diamonds indicate the protostar positions. [Adapted from Offner et al. 2016]Outflows as CluesHow can we differentiate between these formation mechanisms? Led by Stella Offner (University of Massachusetts), a team of scientists has suggested that the key isto examine the alignment of the stars protostellar outflows jets that are often emitted from the poles of young, newly forming stars.Naively, wed expect that disk fragmentation would produce binary stars with common angular momentum. As the stars spins would be aligned, they would therefore also launch protostellar jets that were aligned with each other. Turbulent fragmentation, on the other hand, would cause the stars to have independent angular momentum. This would lead to randomly oriented spins, so the protostellar jets would be misaligned.Snapshots from the authors simulations. Left panel of each pair: column density; green arrows giveprotostellar spin directions. Right panel: synthetic observations produced from the simulations; cyan arrows giveprotostellar outflow directions. [Offner et al. 2016]Simulations of FragmentationIn order to better
Spin Depolarization due to Beam-Beam Interaction in NLC
Energy Technology Data Exchange (ETDEWEB)
Thompson, Kathleen A
2001-01-04
Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions. We also study the effects of transverse offsets and beamstrahlung-induced energy spread.
Noisy Spins and the Richardson-Gaudin Model
Rowlands, Daniel A.; Lamacraft, Austen
2018-03-01
We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.
Hamiltonian action of spinning particle with gravimagnetic moment
International Nuclear Information System (INIS)
Deriglazov, Alexei A; Ramírez, W Guzmán
2016-01-01
We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.
Miah, M Idrish
2009-01-17
We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.
Photo-Induced Spin Dynamics in Semiconductor Quantum Wells
Directory of Open Access Journals (Sweden)
Miah M
2009-01-01
Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.
Rf Depolarizing Resonances In The Presence Of A Full Siberian Snake And Full Snake Spin-flipping
Blinov, B B
2000-01-01
Frequent polarization reversals, or spin-flips, of a stored polarized beam in high energy scattering asymmetry experiments may greatly reduce systematic errors of spin asymmetry measurements. A spin-flipping technique is being developed by using rf magnets running at a frequency close to the spin precession frequency, thereby creating spin-depolarizing resonances; the spin can then be flipped by ramping the rf magnet's frequency through the resonance. We studied, at the Indiana University Cyclotron Facility Cooler Ring, properties of such rf depolarizing resonances in the presence of a nearly-full Siberian snake and their possible application for spin- flipping. By using an rf-solenoid magnet, we reached a 98.7 Â± 1% efficiency of spin-flipping. However, an rf-dipole magnet is more practical at high energies; hence, studies of spin-flipping by an rf-dipole are underway at IUCF.
Energy Technology Data Exchange (ETDEWEB)
Baur, A.; Huber, A.; Nikolaou, K.; Staebler, A.; Reiser, M. [Inst. fuer Klinische Radiologie, Ludwigs-Maximilians-Universitaet Muenchen, Muenchen (Germany); Duerr, H.R. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany). Abt. fuer Orthopaedie; Deimling, M. [Siemens Medizinsysteme, Erlangen (Germany)
2002-01-01
Purpose: To evaluate the diagnosic accuracy of a diffusion-weigthed, steady-state free precession (SSFP) sequence for the differentiation of acute benign osteoporotic and neoplastic vertebral compression fractures. Methods: 85 patients with 102 vertebral compression fractures were examined with MR imaging using a spine array surface coil (Siemens, Vision, 1.5 Tesla). The following sequences were performed in sagittal orientation: T{sub 1}-weighted spin echo (SE), short-tau inversion recovery (STIR) and a diffusion-weighted SSFP sequence (TR=25 msec, diffusion pulse length {delta}=3 msec). The SSFP images were evaluated qualitatively on a 5-grade scale from strongly hypointense to strongly hyperintense. Quantitative analysis was performed with region of interest measurements (ROI) and calculation of a bone marrow ratio. Results: 60 fractures were due to osteoporosis and 42 fractures were caused by malignancy. 'Hyperintensity' in a vertebral fracture on a SSFP sequence provided a sensitivity of 100% and a specificity of 93%. The positive predictive value was 91%, the negative predictive value was 100%. Quantitative analysis of the bone marrow ratio showed a statistically significant difference between the osteoporosis and the tumor group (p<0.001). The mean value for the osteoporotic fractures was -0.32 (SD 0.33) and +2.07 (SD 1.37) for the tumor group. Conclusion: The SSFP sequence provides a high accuracy in the differentiation of benign osteoporotic and neoplastic vertebral compression fractures. (orig.) [German] Ziel: Ziel war die Ermittlung der diagnostischen Genauigkeit einer diffusionsgestuetzten steady-state free precession(SSFP)-sequenz fuer die Differenzierung von akuten osteoporotischen und tumoroesen Wirbelkoerperfrakturen. Methode: 85 Patienten mit 102 akuten Wirbelkoerperfrakturen wurden prospektiv mit der Magnetresonanztomographie (MRT) untersucht. Angewendet wurden eine T{sub 1}-gewichtete Spin Echo Sequenz, eine Short-tau inversion recovery
Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... ... period of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity or the inclination of the satellite's orbit. I do not assume any preferential orientation for the body's spin axis k ^ because in many cases of potential interest (exoplanets, neutron stars, black holes) it ...
Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Jan Felix
2017-07-14
Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.
Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes
Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.
2015-10-01
Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.
Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes.
Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G
2015-10-28
Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.
Book Review: Precession, Nutation, and Wobble of the Earth
Sterken, Christiaan; Dehant, V.; Mathews, P. M.
2016-10-01
This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle
P.H. Utomo (Putranto); R.H. Makarim (Rusydi)
2017-01-01
textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Eclipsing binaries in open clusters
DEFF Research Database (Denmark)
Southworth, John; Clausen, J.V.
2006-01-01
Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...
Energy Technology Data Exchange (ETDEWEB)
Kohda, M. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Department of Materials Science, Tohoku University, 980-8579 Sendai (Japan); Altmann, P.; Salis, G. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Schuh, D.; Ganichev, S. D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland)
2015-10-26
A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.
Spin-flip induced magnetoresistance in positionally disordered organic solids.
Harmon, N J; Flatté, M E
2012-05-04
A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.
Vozková, Markéta
2011-01-01
1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...
SS 433: Total Coverage of 162-Day Precession Phase in Four Years
Band, David L.
1997-01-01
The observations prior to AO-4 covered a number of precession phases, leaving a gap at phase 0.8. In addition, ASCA and previous observations of SS 433 did not observe the spectrum above approx. 10 keV, and consequently the continuum underlying the spectral lines was poorly constrained. Therefore RXTE observations were scheduled for April 1997 to extend the observed spectrum to higher energies; these observations were planned to sample the X-ray lightcurve during the 13.08 day binary period, concentrating on the eclipse of the compact object which emits the jets. We proposed and were awarded ASCA observations simultaneous with the RXTE observations; the purpose of the ASCA observations was to provide greater spectral resolution at the low end of the spectrum observed by RXTE, and to complete the phase coverage of SS 433. As a result of scheduling difficulties early in the mission the RXTE observations were confined to a much shorter time range than originally planned, April 18-91 1997. Optical observations of SS 433 were performed at a number of observatories. The ASCA observations occurred from April 18 13:10 (UT) to April 21 13:20 (UT) for a total effective exposure of 120 ks. The continuum X-ray light curve shows that the ASCA observations started shortly before the ingress into the X-ray partial eclipse, and ended approximately at the time of the egress. Light curves were also obtained for the prominent Fe emission lines in the blue-shifted frame (approaching jet), red-shifted frame (receding jet), and the stationary frame (fluorescent line from the ambient matter). Through the eclipse mapping technique using the light curves, the parameters of the jet emission model were constrained, showing that the kinetic power in the jet exceeds 104? erg s-l. If the energy source is gravitational accretion, as is commonly believed, the derived l;inetic power implies extremely supercritical accretion even for a black; hole with 10M. These results will be described more
International Nuclear Information System (INIS)
Rebled, J.M.; Yedra, Ll.; Estrade, S.; Portillo, J.; Peiro, F.
2011-01-01
The successful combination of electron beam precession and bright field electron tomography for 3D reconstruction is reported. Beam precession is demonstrated to be a powerful technique to reduce the contrast artifacts due to diffraction and curvature in thin foils. Taking advantage of these benefits, Precession assisted electron tomography has been applied to reconstruct the morphology of Sn precipitates embedded in an Al matrix, from a tilt series acquired in a range from +49 o to -61 o at intervals of 2 o and with a precession angle of 0.6 o in bright field mode. The combination of electron tomography and beam precession in conventional TEM mode is proposed as an alternative procedure to obtain 3D reconstructions of nano-objects without a scanning system or a high angle annular dark field detector. -- Highlights: → Electron beam precession reduces spurious diffraction contrast in bright field mode. → Bend contour related contrast depends on precession angle. → Electron beam precession is combined with bright field electron tomography. → Precession assisted BF tomography allowed 3D reconstruction of a Sn precipitate.
Numerical studies of Siberian snakes and spin rotators for RHIC
International Nuclear Information System (INIS)
Luccio, A.
1995-01-01
For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis
GRAVITATIONAL MEMORY IN BINARY BLACK HOLE MERGERS
International Nuclear Information System (INIS)
Pollney, Denis; Reisswig, Christian
2011-01-01
In addition to the dominant oscillatory gravitational wave signals produced during binary inspirals, a non-oscillatory component arises from the nonlinear 'memory' effect, sourced by the emitted gravitational radiation. The memory grows significantly during the late-inspiral and merger, modifying the signal by an almost step-function profile, and making it difficult to model by approximate methods. We use numerical evolutions of binary black holes (BHs) to evaluate the nonlinear memory during late-inspiral, merger, and ringdown. We identify two main components of the signal: the monotonically growing portion corresponding to the memory, and an oscillatory part which sets in roughly at the time of merger and is due to the BH ringdown. Counterintuitively, the ringdown is most prominent for models with the lowest total spin. Thus, the case of maximally spinning BHs anti-aligned to the orbital angular momentum exhibits the highest signal-to-noise ratio (S/N) for interferometric detectors. The largest memory offset, however, occurs for highly spinning BHs, with an estimated value of h tot 20 ≅ 0.24 in the maximally spinning case. These results are central to determining the detectability of nonlinear memory through pulsar timing array measurements.
International Nuclear Information System (INIS)
Chronopoulos, Andreas E.; Apostolatos, Theocharis A.
2001-01-01
for detecting gravitational waves from inspiraling, compact, nonspinning, binaries. Apart from this useful quantitative result, this study constitutes an application of the template-numbering technique, introduced by Owen, for families of templates that are not described by the same mathematical expression as the assumed signals. For example, this analysis will be very useful when constructing sufficiently simple templates for detecting precessing spinning binaries
Energy Technology Data Exchange (ETDEWEB)
Chronopoulos, Andreas E.; Apostolatos, Theocharis A.
2001-08-15
templates more favorable for detecting gravitational waves from inspiraling, compact, nonspinning, binaries. Apart from this useful quantitative result, this study constitutes an application of the template-numbering technique, introduced by Owen, for families of templates that are not described by the same mathematical expression as the assumed signals. For example, this analysis will be very useful when constructing sufficiently simple templates for detecting precessing spinning binaries.
Middleton, M. J.; Fragile, P. C.; Bachetti, M.; Brightman, M.; Jiang, Y.-F.; Ho, W. C. G.; Roberts, T. P.; Ingram, A. R.; Dauser, T.; Pinto, C.; Walton, D. J.; Fuerst, F.; Fabian, A. C.; Gehrels, N.
2018-03-01
The presence of neutron stars in at least three ultraluminous X-ray sources is now firmly established and offers an unambiguous view of super-critical accretion. All three systems show long-time-scale periods (60-80 d) in the X-rays and/or optical, two of which are known to be super-orbital in nature. Should the flow be classically super critical, i.e. the Eddington limit is reached locally in the disc (implying surface dipole fields that are sub-magnetar in strength), then the large scale-height flow can precess through the Lense-Thirring effect which could provide an explanation for the observed super-orbital periods. By connecting the details of the Lense-Thirring effect with the observed pulsar spin period, we are able to infer the moment of inertia and therefore equation of state of the neutron star without relying on the inclination of or distance to the system. We apply our technique to the case of NGC 7793 P13 and demonstrate that stronger magnetic fields imply stiffer equations of state. We discuss the caveats and uncertainties, many of which can be addressed through forthcoming radiative magnetohydrodynamic (RMHD) simulations and their connection to observation.
International Nuclear Information System (INIS)
Baur, A.; Huber, A.; Nikolaou, K.; Staebler, A.; Reiser, M.; Duerr, H.R.
2002-01-01
Purpose: To evaluate the diagnosic accuracy of a diffusion-weigthed, steady-state free precession (SSFP) sequence for the differentiation of acute benign osteoporotic and neoplastic vertebral compression fractures. Methods: 85 patients with 102 vertebral compression fractures were examined with MR imaging using a spine array surface coil (Siemens, Vision, 1.5 Tesla). The following sequences were performed in sagittal orientation: T 1 -weighted spin echo (SE), short-tau inversion recovery (STIR) and a diffusion-weighted SSFP sequence (TR=25 msec, diffusion pulse length δ=3 msec). The SSFP images were evaluated qualitatively on a 5-grade scale from strongly hypointense to strongly hyperintense. Quantitative analysis was performed with region of interest measurements (ROI) and calculation of a bone marrow ratio. Results: 60 fractures were due to osteoporosis and 42 fractures were caused by malignancy. 'Hyperintensity' in a vertebral fracture on a SSFP sequence provided a sensitivity of 100% and a specificity of 93%. The positive predictive value was 91%, the negative predictive value was 100%. Quantitative analysis of the bone marrow ratio showed a statistically significant difference between the osteoporosis and the tumor group (p [de
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
EELS signal enhancement by means of beam precession in the TEM
International Nuclear Information System (INIS)
Estradé, Sonia; Portillo, Joaquim; Yedra, Lluís; Rebled, José Manuel; Peiró, Francesca
2012-01-01
EELS is nowadays a most relevant characterization tool as it provides chemical and electronic information with an extraordinary spatial resolution. When a crystal is viewed in zone axis in the TEM, there is channelling of the electrons along the atom columns, which strongly reduce the EELS signal, so that it is generally advised to work slightly off the zone axis to collect EELS data, which may not always be possible or advantageous. In the present work, we demonstrate the use of precession to compensate for the reduction of EELS signal when in the zone axis. -- Highlights: ► Channelling compromises EELS signal in zone axis. ► Precession can be used to get rid of channelling effects. ► Use of precession to enhance EELS signal in the zone axis is demonstrated.
Statistical constraints on binary black hole inspiral dynamics
Energy Technology Data Exchange (ETDEWEB)
Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)
2010-12-21
We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.
Statistical constraints on binary black hole inspiral dynamics
International Nuclear Information System (INIS)
Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel; Guerberoff, Gustavo
2010-01-01
We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex 1 ·S-circumflex 2 + (S-circumflex 1 ·L-circumflex) (S-circumflex 2 ·L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.
Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot
Bechtold, Alexander; Rauch, Dominik; Li, Fuxiang; Simmet, Tobias; Ardelt, Per-Lennart; Regler, Armin; Müller, Kai; Sinitsyn, Nikolai A.; Finley, Jonathan J.
2015-12-01
The control of solid-state qubits requires a detailed understanding of the decoherence mechanisms. Despite considerable progress in uncovering the qubit dynamics in strong magnetic fields, decoherence at very low magnetic fields remains puzzling, and the role of quadrupole coupling of nuclear spins is poorly understood. For spin qubits in semiconductor quantum dots, phenomenological models of decoherence include two basic types of spin relaxation: fast dephasing due to static but randomly distributed hyperfine fields (~2 ns) and a much slower process (>1 μs) of irreversible monotonic relaxation due either to nuclear spin co-flips or other complex many-body interaction effects. Here we show that this is an oversimplification; the spin qubit relaxation is determined by three rather than two distinct stages. The additional stage corresponds to the effect of coherent precession processes that occur in the nuclear spin bath itself, leading to a relatively fast but incomplete non-monotonic relaxation at intermediate timescales (~750 ns).
On the precession of the optical star in the Cyg X-1 system
International Nuclear Information System (INIS)
Kopylov, I.M.; Sokolov, V.V.
1984-01-01
Some results are analysed of previoUs spectroscopic investigation of the supergiant HDE 226868 (based on six-year observations at the 6-m telescope) with the puspose of searching for possible variations in the spectrum connected with the precession of the rotation axis of the star upper layers. It is noted that spectral type and HeI lambda 4471 line halfwidth show a coordinated behaviour with the phase of the 39-day period in the frame of the precession hypothesis. Nonuniform distribution of CNO anomalies over the star latitude seems to be possible
Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems
Energy Technology Data Exchange (ETDEWEB)
Lueffe, Matthias Clemens
2012-02-10
The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid
Determining the population properties of spinning black holes
Talbot, Colm; Thrane, Eric
2017-07-01
There are at least two formation scenarios consistent with the first gravitational-wave observations of binary black hole mergers. In field models, black hole binaries are formed from stellar binaries that may undergo common envelope evolution. In dynamic models, black hole binaries are formed through capture events in globular clusters. Both classes of models are subject to significant theoretical uncertainties. Nonetheless, the conventional wisdom holds that the distribution of spin orientations of dynamically merging black holes is nearly isotropic while field-model black holes prefer to spin in alignment with the orbital angular momentum. We present a framework in which observations of black hole mergers can be used to measure ensemble properties of black hole spin such as the typical black hole spin misalignment. We show how to obtain constraints on population hyperparameters using minimal assumptions so that the results are not strongly dependent on the uncertain physics of formation models. These data-driven constraints will facilitate tests of theoretical models and help determine the formation history of binary black holes using information encoded in their observed spins. We demonstrate that the ensemble properties of binary detections can be used to search for and characterize the properties of two distinct populations of black hole mergers.
Sahade, Jorge; Ter Haar, D
1978-01-01
Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied
Binary Masking & Speech Intelligibility
DEFF Research Database (Denmark)
Boldt, Jesper
The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...
TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect
Directory of Open Access Journals (Sweden)
Saburo Takahashi and Sadamichi Maekawa
2008-01-01
Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
International Nuclear Information System (INIS)
Fischer, K.H.; Hertz, J.A.
1993-01-01
Spin glasses, simply defined by the authors as a collection of spins (i.e., magnetic moments) whose low-temperature state is a frozen disordered one, represent one of the fascinating new fields of study in condensed matter physics, and this book is the first to offer a comprehensive account of the subject. Included are discussions of the most important developments in theory, experimental work, and computer modeling of spin glasses, all of which have taken place essentially within the last two decades. The first part of the book gives a general introduction to the basic concepts and a discussion of mean field theory, while the second half concentrates on experimental results, scaling theory, and computer simulation of the structure of spin glasses
New inclination changing eclipsing binaries in the Magellanic Clouds
Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.
2018-01-01
Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our
Czech Academy of Sciences Publication Activity Database
Hilton, J. L.; Capitaine, N.; Chapront, J.; Ferrandiz, J.M.; Fienga, A.; Fukushima, T.; Getino, J.; Mathews, P. M.; Simon, J.-C.; Soffel, M.; Vondrák, Jan; Wallace, P.; Williams, J.
2006-01-01
Roč. 94, č. 3 (2006), s. 351-367 ISSN 0923-2958 Institutional research plan: CEZ:AV0Z10030501 Keywords : precession and the ecliptic * reference systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.175, year: 2006
Analysis on common faults in G856 AX proton precession magnetometer
International Nuclear Information System (INIS)
Zhang Yungui; Zhang Biao; Wang Meili
1995-01-01
The authors mainly introduce common faults in G856 AX proton precession magnetometer in operation and their analysis so that the users can eliminate them, avoiding to repair blindly. In the mean time, it is a beneficial reference material for geophysicists and instrument designers
Spectrally selective imaging with wideband balanced steady-state free precession MRI.
Çukur, Tolga
2016-03-01
Unwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. The proposed method combines binomial-pattern excitation pulses with a wideband balanced steady-state free precession sequence kernel. It thereby increases the frequency separation between the centers of pass and stopbands by π radians, enabling improved water-fat contrast. Simulations were performed to find the optimal flip angles and subpulse spacing for the binomial pulses that maximize contrast and signal efficiency. Comparisons with a conventional binomial balanced steady-state free precession sequence were performed in simulations as well as phantom and in vivo experiments at 1.5 T and 3 T. Enhanced fat suppression is demonstrated in vivo with an average improvement of 58% in blood-fat and 68% in muscle-fat contrast (P steady-state free precession method is a promising candidate for spectrally selective imaging with enhanced reliability against field inhomogeneities. © 2015 Wiley Periodicals, Inc.
Free precession of neutron stars: some plain truths, cautionary remarks, and assorted speculations
International Nuclear Information System (INIS)
Pines, D.; Shaham, J.
1974-01-01
A brief summary is presented of present understanding of free precession in neutron stars. Attention is called to some truths concerning such wobble motion and then one describes some current efforts to devise mechanisms for exciting neutron star wobble with particular attention to the Crab and Vela pulsars and to Her X-1. (U.S.)
DEFF Research Database (Denmark)
Keiding, Hans; Peleg, Bezalel
2006-01-01
effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...
Christova-Zdravkova, C.G.
2005-01-01
Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal
Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
Arrachea, Liliana; von Oppen, Felix
2015-11-01
The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.
Reprint of : Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
Arrachea, Liliana; von Oppen, Felix
2016-08-01
The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.
Binary black holes on a budget: simulations using workstations
International Nuclear Information System (INIS)
Marronetti, Pedro; Tichy, Wolfgang; Bruegmann, Bernd; Gonzalez, Jose; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich
2007-01-01
Binary black hole simulations have traditionally been computationally very expensive: current simulations are performed in supercomputers involving dozens if not hundreds of processors, thus systematic studies of the parameter space of binary black hole encounters still seem prohibitive with current technology. Here we show how the multi-layered refinement level code BAM can be used on dual processor workstations to simulate certain binary black hole systems. BAM, based on the moving punctures method, provides grid structures composed of boxes of increasing resolution near the centre of the grid. In the case of binaries, the highest resolution boxes are placed around each black hole and they track them in their orbits until the final merger when a single set of levels surrounds the black hole remnant. This is particularly useful when simulating spinning black holes since the gravitational fields gradients are larger. We present simulations of binaries with equal mass black holes with spins parallel to the binary axis and intrinsic magnitude of S/m 2 = 0.75. Our results compare favourably to those of previous simulations of this particular system. We show that the moving punctures method produces stable simulations at maximum spatial resolutions up to M/160 and for durations of up to the equivalent of 20 orbital periods
Spin-orbit torques and charge pumping in crystalline magnets
Ciccarelli, Chiara
In magnetic crystals with an inversion asymmetric unit cell a non-zero global spin-polarization is generated by an electrical current, which acts with a torque on the magnetisation exciting magnetic dynamics. This relativistic non-equilibrium spin phenomenon also has a reciprocal effect in which the excitation of magnons results in the pumping of a charge current. The possibility to manipulate/read magnetism with electrical currents is highly relevant for magnetic memories and other spintronic devices. I will start by reviewing our recent research on spin-orbit torques (SOTs) in crystalline magnets, in particular our very recent measurements of the crystalline SOT at room temperature in half-Heusler NiMnSb thin films. With this experiment we are able to fully characterise magnitude and symmetry of the SOTs. I will then talk about the first demonstration of magnonic charge pumping in crystal magnet GaMnAs. In this effect, which is the reciprocal effect of SOTs, the precessing ferromagnet pumps a charge current. Differently from spin pumping, which is commonly used to electrically detect magnetization dynamics, in charge pumping magnons are converted within the ferromagnet into high-frequency currents via the relativistic spin-orbit interaction, without the need of a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle.
Long distance spin communication in chemical vapour deposited graphene
Kamalakar, M. Venkata; Groenveld, Christiaan; Dankert, André; Dash, Saroj P.
2015-04-01
Graphene is an ideal medium for long-distance spin communication in future spintronic technologies. So far, the prospect is limited by the smaller sizes of exfoliated graphene flakes and lower spin transport properties of large-area chemical vapour-deposited (CVD) graphene. Here we demonstrate a high spintronic performance in CVD graphene on SiO2/Si substrate at room temperature. We show pure spin transport and precession over long channel lengths extending up to 16 μm with a spin lifetime of 1.2 ns and a spin diffusion length ~6 μm at room temperature. These spin parameters are up to six times higher than previous reports and highest at room temperature for any form of pristine graphene on industrial standard SiO2/Si substrates. Our detailed investigation reinforces the observed performance in CVD graphene over wafer scale and opens up new prospects for the development of lateral spin-based memory and logic applications.
rf Wien filter in an electric dipole moment storage ring: The ``partially frozen spin'' effect
Morse, William M.; Orlov, Yuri F.; Semertzidis, Yannis K.
2013-11-01
An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment (EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.
Magnetic design of a spin-echo small-angle neutron-scattering instrument
Uca, O; Rekveldt, M T
2003-01-01
In a spin-echo small-angle neutron scattering instrument dipole magnets and guide field coils are used. The homogeneity of the fields should be sufficient to have linear labeling of the height with precession. Furthermore, the instrument must have a homogenous line integral over the beam cross-section. It is shown that line integral inhomogeneities are directly connected to field components perpendicular to the main field. The design parameters of these magnetic units of the setup are calculated.
Spin Superfluidity and Magnone BEC in He-3
Bunkov, Yury
2011-03-01
The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).
International Nuclear Information System (INIS)
Nikolić, Branislav K; Dragomirova, Ralitsa L
2009-01-01
We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by the intrinsic Rashba spin–orbit (SO) coupling and/or extrinsic SO scattering off impurities in two-dimensional electron gas (2DEG) based devices. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering electrode, we show how decoherence and dephasing in the course of spin precession can lead to the substantial enhancement of the Fano factor (noise-to-current ratio) of spin-polarized charge currents. These processes are suppressed by decreasing the width of the diffusive Rashba wire, so that purely electrical measurement of the shot noise in a ferromagnet|SO-coupled-diffusive-wire|paramagnet setup can quantify the degree of quantum coherence of transported spin through a remarkable one-to-one correspondence between the purity of the spin state and the Fano factor. In four-terminal SO-coupled nanostructures, injection of unpolarized charge current through the longitudinal leads is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. The analysis of the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively, reveals a unique experimental tool to differentiate between the intrinsic Rashba and extrinsic SO mechanisms underlying the spin Hall effect in 2DEG devices. When the intrinsic mechanisms responsible for spin precession start to dominate the spin Hall effect, they also enhance the shot noise of transverse spin and charge transport in multiterminal geometries. Finally, we discuss the shot noise of transverse spin and zero charge
Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry
Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.
2017-11-01
We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.
The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors
International Nuclear Information System (INIS)
Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang
2012-01-01
We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Ligare, Martin
2016-05-01
Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.
DEFF Research Database (Denmark)
Popovski, Petar; Simeone, Osvaldo; Nielsen, Jimmy Jessen
2015-01-01
on traffic load and interference condition leads to performance gains. In this letter, a general network of multiple interfering two-way links is studied under the assumption of a balanced load in the two directions for each link. Using the notion of interference spin, we introduce an algebraic framework...
Schwarz, H.
2017-01-01
The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1
National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...
International Nuclear Information System (INIS)
Larsson-Leander, G.
1979-01-01
Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)
International Nuclear Information System (INIS)
Petrov, D.A.
1986-01-01
Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced
Binary and Millisecond Pulsars
Lorimer, D. R.
2005-01-01
We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...
Coherent spin manipulation in molecular semiconductors: getting a handle on organic spintronics.
Lupton, John M; McCamey, Dane R; Boehme, Christoph
2010-10-04
Organic semiconductors offer expansive grounds to explore fundamental questions of spin physics in condensed matter systems. With the emergence of organic spintronics and renewed interest in magnetoresistive effects, which exploit the electron spin degree of freedom to encode and transmit information, there is much need to illuminate the underlying properties of spins in molecular electronic materials. For example, one may wish to identify over what length of time a spin maintains its orientation with respect to an external reference field. In addition, it is crucial to understand how adjacent spins arising, for example, in electrostatically coupled charge-carrier pairs, interact with each other. A periodic perturbation of the field may cause the spins to precess or oscillate, akin to a spinning top experiencing a torque. The quantum mechanical characteristic of the spin is then defined as the coherence time, the time over which an oscillating spin, or spin pair, maintains a fixed phase with respect to the driving field. Electron spins in organic semiconductors provide a remarkable route to performing "hands-on" quantum mechanics since permutation symmetries are controlled directly. Herein, we review some of the recent advances in organic spintronics and organic magnetoresistance, and offer an introductory description of the concept of pulsed, electrically detected magnetic resonance as a technique to manipulate and thus characterize the fundamental properties of electron spins. Spin-dependent dissociation and recombination allow the observation of coherent spin motion in a working device, such as an organic light-emitting diode. Remarkably, it is possible to distinguish between electron and hole spin resonances. The ubiquitous presence of hydrogen nuclei gives rise to strong hyperfine interactions, which appear to provide the basis for many of the magnetoresistive effects observed in these materials. Since hyperfine coupling causes quantum spin beating in electron
Nuclear spin polarization of targets
International Nuclear Information System (INIS)
Happer, W.
1990-01-01
Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases
Astrophysics of white dwarf binaries
Nelemans, G.A.
2006-01-01
White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using
Evolution of cataclysmic binaries
International Nuclear Information System (INIS)
Paczynski, B.
1981-01-01
Cataclysmic binaries with short orbital periods have low mass secondary components. Their nuclear time scale is too long to be of evolutionary significance. Angular momentum loss from the binary drives the mass transfer between the two components. As long as the characteristic time scale is compared with the Kelvin-Helmholtz time scale of the mass losing secondary the star remains close to the main sequence, and the binary period decreases with time. If angular momentum loss is due to gravitational radiation then the mass transfer time scale becomes comparable to the Kelvin-Helmoltz time scale when the secondary's mass decreases to 0.12 Msub(sun), and the binary period is reduced to 80 minutes. Later, the mass losing secondary departs from the main sequence and gradually becomes degenerate. Now the orbital period increases with time. The observed lower limit to the orbital periods of hydrogen rich cataclysmic binaries implies that gravitational radiation is the main driving force for the evolution of those systems. It is shown that binaries emerging from a common envelope phase of evolution are well detached. They have to lose additional angular momentum to become semidetached cataclysmic variables. (author)
Palatinus, Lukáš; Corrêa, Cinthia Antunes; Steciuk, Gwladys; Jacob, Damien; Roussel, Pascal; Boullay, Philippe; Klementová, Mariana; Gemmi, Mauro; Kopeček, Jaromír; Domeneghetti, M Chiara; Cámara, Fernando; Petříček, Václav
2015-12-01
The recently published method for the structure refinement from three-dimensional precession electron diffraction data using dynamical diffraction theory [Palatinus et al. (2015). Acta Cryst. A71, 235-244] has been applied to a set of experimental data sets from five different samples - Ni2Si, PrVO3, kaolinite, orthopyroxene and mayenite. The data were measured on different instruments and with variable precession angles. For each sample a reliable reference structure was available. A large series of tests revealed that the method provides structure models with an average error in atomic positions typically between 0.01 and 0.02 Å. The obtained structure models are significantly more accurate than models obtained by refinement using kinematical approximation for the calculation of model intensities. The method also allows a reliable determination of site occupancies and determination of absolute structure. Based on the extensive tests, an optimal set of the parameters for the method is proposed.
Momentum and spin dynamics of Dirac particles at effective dimensional reduction
Silenko, Alexander J.; Teryaev, Oleg V.
2012-11-01
We consider the dynamics of Dirac particles moving in the curved spaces of variable dimension interpolating smoothly between 3- and 2-dimensional spaces and considered as a toy model for 2-dimensional structures in solid state physics. Performing the Foldy-Wouthuysen (FW) transformation of Dirac equation and passing to the classical limit, we derive the equations of motion of momentum and spin. The spin precesses with the variable angular velocity and may "flick" appearing in the remnant 2-dimensional space twice during the period.
Shirazi A.; Ceberio J.; Lozano J.A.
2017-01-01
In space environment, perturbations make the spacecraft lose its predefined orbit in space. One of these undesirable changes is the in-plane rotation of space orbit, denominated as orbital precession. To overcome this problem, one option is to correct the orbit direction by employing low-thrust trajectories. However, in addition to the orbital perturbation acting on the spacecraft, a number of parameters related to the spacecraft and its propulsion system must be optimized. This article lays ...
Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession
Escapa, A.; Getino, J.; Ferrándiz, J. M.; Baenas, T.
2017-08-01
The adoption of International Astronomical Union (IAU) 2006 precession model, IAU 2006 precession, requires IAU 2000A nutation to be adjusted to ensure compatibility between both theories. This consists of adding small terms to some nutation amplitudes relevant at the microarcsecond level. Those contributions were derived in previously published articles and are incorporated into current astronomical standards. They are due to the estimation process of nutation amplitudes by Very Long Baseline Interferometry (VLBI) and to the changes induced by the J2 rate present in the precession theory. We focus on the second kind of those adjustments, and develop a simple model of the Earth nutation capable of determining all the changes arising in the theoretical construction of the nutation series in a dynamical consistent way. This entails the consideration of three main classes of effects: the J2 rate, the orbital coefficients rate, and the variations induced by the update of some IAU 2006 precession quantities. With this aim, we construct a first order model for the nutations of the angular momentum axis of the non-rigid Earth. Our treatment is based on a Hamiltonian formalism and leads to analytical formulae for the nutation amplitudes in the form of in-phase, out-of-phase, and mixed secular terms. They allow numerical evaluation of the contributions of the former effects. We conclude that the accepted corrections associated with the J2 rate must be supplemented with new, hitherto unconsidered terms of the same order of magnitude, and that these should be incorporated into present standards.
Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra
2017-08-01
Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infraredchannel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration
Scarino, Benjamin; Doelling, David R.; Haney, Conor; Bedka, Kristopher; Minnis, Patrick; Gopalan, Arun; Bhatt, Rajendra
2017-01-01
Accurate characterization of the Earth's radiant energy is critical for many climate monitoring and weather forecasting applications. For example, groups at the NASA Langley Research Center rely on stable visible- and infrared-channel calibrations in order to understand the temporal/spatial distribution of hazardous storms, as determined from an automated overshooting convective top detection algorithm. Therefore, in order to facilitate reliable, climate-quality retrievals, it is important that consistent calibration coefficients across satellite platforms are made available to the remote sensing community, and that calibration anomalies are recognized and mitigated. One such anomaly is the infrared imager brightness temperature (BT) drift that occurs for some Geostationary Earth Orbit satellite (GEOsat) instruments near local midnight. Currently the Global Space-Based Inter-Calibration System (GSICS) community uses the hyperspectral Infrared Atmospheric Sounding Interferometer (IASI) sensor as a common reference to uniformly calibrate GEOsat IR imagers. However, the combination of IASI, which has a 21:30 local equator crossing time (LECT), and hyperspectral Atmospheric Infrared Sounder (AIRS; 01:30 LECT) observations are unable to completely resolve the GEOsat midnight BT bias. The precessing orbit of the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS), however, allows sampling of all local hours every 46 days. Thus, VIRS has the capability to quantify the BT midnight effect observed in concurrent GEOsat imagers. First, the VIRS IR measurements are evaluated for long-term temporal stability between 2002 and 2012 by inter-calibrating with Aqua-MODIS. Second, the VIRS IR measurements are assessed for diurnal stability by inter-calibrating with Meteosat-9 (Met-9), a spin-stabilized GEOsat imager that does not manifest any diurnal dependency. In this case, the Met-9 IR imager is first adjusted with the official GSICS calibration
A curious ringlet that shares Prometheus' orbit but precesses like the F ring
Hedman, M. M.; Carter, B. J.
2017-01-01
Images obtained by the Cassini spacecraft of the region just beyond Saturn's main rings reveal a previously unreported narrow and dusty ringlet that has dynamical connections with both Saturn's small satellite Prometheus and the F ring. The radial position of this ringlet is observed to vary with time and longitude, indicating that it is eccentric with an eccentricity of 0.0012 and that its mean orbital radius varies between 139,300 km and 139,400 km. These mean radii are consistent with material trapped in a co-orbital 1:1 resonance with Prometheus. However, the apsidal precession rate of this ringlet is not that expected for material close to Prometheus' orbit (2.76°/day). Instead, the ringlet appears to be precessing at the same rate as the F ring (2.70°/day). This ringlet therefore appears to consist of material co-rotating with Prometheus whose apsidal precession rates have been modified by interactions with F-ring material. This ringlet may therefore provide new insights into how rings can maintain organized eccentric structures over a range of semi-major axes.
Spin–Orbit Misalignment and Precession in the Kepler-13Ab Planetary System
Herman, Miranda K.; de Mooij, Ernst J. W.; Huang, Chelsea X.; Jayawardhana, Ray
2018-01-01
Gravity darkening induced by rapid stellar rotation provides us with a unique opportunity to characterize the spin–orbit misalignment of a planetary system through analysis of its photometric transit. We use the gravity-darkened transit modeling code simuTrans to reproduce the transit light curve of Kepler-13Ab by separately analyzing phase-folded transits for 12 short-cadence Kepler quarters. We verify the temporal change in impact parameter indicative of spin–orbit precession identified by Szabó et al. and Masuda, reporting a rate of change {db}/{dt}=(-4.1+/- 0.2)× {10}-5 day‑1. We further investigate the effect of light dilution on the fitted impact parameter and find that less than 1% of additional light is sufficient to explain the seasonal variation seen in the Kepler quarter data. We then extend our precession analysis to the phase curve data from which we report a rate of change {db}/{dt}=(-3.2+/- 1.3)× {10}-5 day‑1. This value is consistent with that of the transit data at a lower significance and provides the first evidence of spin–orbit precession based solely on the temporal variation of the secondary eclipse.
Directory of Open Access Journals (Sweden)
Zhao Shuang
2017-02-01
Full Text Available Micro-motion is a crucial feature used in ballistic target recognition. To address the problem that single-view observations cannot extract true micro-motion parameters, we propose a novel algorithm based on the narrowband radar network to extract three-dimensional precession features. First, we construct a precession model of the cone-shaped target, and as a precondition, we consider the invisible problem of scattering centers. We then analyze in detail the micro-Doppler modulation trait caused by the precession. Then, we match each scattering center in different perspectives based on the ratio of the top scattering center’s micro-Doppler frequency modulation coefficient and extract the 3D coning vector of the target by establishing associated multi-aspect equation systems. In addition, we estimate feature parameters by utilizing the correlation of the micro-Doppler frequency modulation coefficient of the three scattering centers combined with the frequency compensation method. We then calculate the coordinates of the conical point in each moment and reconstruct the 3D spatial portion. Finally, we provide simulation results to validate the proposed algorithm.
International Nuclear Information System (INIS)
Montgomery, M. M.
2012-01-01
Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.
International Nuclear Information System (INIS)
Weisberg, J. M.; Everett, J. E.; Morgan, J. J.; Brisbin, D. G.; Cordes, J. M.
2010-01-01
In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle are usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3σ level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of ∼(200-1300) days and amplitudes of ∼(1-12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar and relate these to limits on precession and interstellar magnetic field variations.
Energy Technology Data Exchange (ETDEWEB)
Iorio, Lorenzo [Ministero dell' Istruzione, Universita e della Ricerca (M.I.U.R.)-Istruzione, Bari, BA (Italy)
2017-03-15
In the framework of the emergent gravity scenario by Verlinde, it was recently observed by Liu and Prokopec that, among other things, an anomalous pericenter precession would affect the orbital motion of a test particle orbiting an isolated central body. Here, it is shown that, if it were real, its expected magnitude for the inner planets of the Solar System would be at the same level of the present-day accuracy in constraining any possible deviations from their standard perihelion precessions as inferred from long data records spanning about the last century. The most favorable situation for testing the Verlinde-type precession seems to occur for Mars. Indeed, according to recent versions of the EPM and INPOP planetary ephemerides, non-standard perihelion precessions, of whatsoever physical origin, which are larger than some ∼ 0.02-0.11 milliarcseconds per century are not admissible, while the putative precession predicted by Liu and Prokopec amounts to 0.09 milliarcseconds per century. Other potentially interesting astronomical and astrophysical scenarios like, e.g., the Earth's LAGEOS II artificial satellite, the double pulsar system PSR J0737-3039A/B and the S-stars orbiting the Supermassive Black Hole in Sgr A* are, instead, not viable because of the excessive smallness of the predicted precessions for them. (orig.)
Formation and Evolution of X-ray Binaries
Shao, Y.
2017-07-01
-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by
Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)
2017-06-15
Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).
In a spin at Brookhaven spin physics
Makdisi, Y I
2003-01-01
The mysterious quantity that is spin took centre stage at Brookhaven for the SPIN2002 meeting last September. The 15th biennial International Spin Physics Symposium (SPIN2002) was held at Brookhaven National Laboratory on 9-14 September 2002. Some 250 spin enthusiasts attended, including experimenters and theorists in both nuclear and high-energy physics, as well as accelerator physicists and polarized target and polarized source experts. The six-day symposium included 23 plenary talks and 150 parallel talks. SPIN2002 was preceded by a one-day spin physics tutorial for students, postdocs, and anyone else who felt the need for a refresher course. (2 refs).
Acoustically induced spin transport in (110)GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Couto, Odilon D.D. Jr.
2008-09-29
In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)
Spin-Circuit Representation of Spin Pumping
Roy, Kuntal
2017-07-01
Circuit theory has been tremendously successful in translating physical equations into circuit elements in an organized form for further analysis and proposing creative designs for applications. With the advent of new materials and phenomena in the field of spintronics and nanomagnetics, it is imperative to construct the spin-circuit representations for different materials and phenomena. Spin pumping is a phenomenon by which a pure spin current can be injected into the adjacent layers. If the adjacent layer is a material with a high spin-orbit coupling, a considerable amount of charge voltage can be generated via the inverse spin Hall effect allowing spin detection. Here we develop the spin-circuit representation of spin pumping. We then combine it with the spin-circuit representation for the materials having spin Hall effect to show that it reproduces the standard results as in the literature. We further show how complex multilayers can be analyzed by simply writing a netlist.
Spin Coherence in Semiconductor Nanostructures
National Research Council Canada - National Science Library
Flatte, Michael E
2006-01-01
... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.
2017-07-01
The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α =β , the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a helical spin-density wave excitation with constant pitch P =2 π /Q , Q =4 m α /ℏ2, has already been experimentally realized at this singular point α =β , enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage VT and back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α =β ; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs," i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α =β , thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so that
Stretchable Persistent Spin Helices in GaAs Quantum Wells
Directory of Open Access Journals (Sweden)
Florian Dettwiler
2017-07-01
Full Text Available The Rashba and Dresselhaus spin-orbit (SO interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α=β, the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH, i.e., a helical spin-density wave excitation with constant pitch P=2π/Q, Q=4mα/ℏ^{2}, has already been experimentally realized at this singular point α=β, enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage V_{T} and back gate voltage V_{B} to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α=β; i.e., we are able to vary both α and β controllably and continuously with V_{T} and V_{B}, while keeping them locked at equal strengths. This makes possible a new concept: “stretchable PSHs,” i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α=β, thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be
Directory of Open Access Journals (Sweden)
Joshua A. Faber
2012-07-01
Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Moruz, Gabriel
2006-01-01
It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...
About the velocity operator for spinning particles in quantum mechanics
International Nuclear Information System (INIS)
Salesi, Giovanni; Recami, Erasmo; Rodrigues Junior, Waldyr A.
1995-12-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs
Energy Technology Data Exchange (ETDEWEB)
Halm, Simon
2009-05-19
In this thesis it is demonstrated that fringe fields of nanostructured ferromagnets provide the opportunity to manipulate both incoherent and coherent spin ensembles in a dilute magnetic semiconductor (DMS). Fringe fields of Fe/Tb ferromagnets with a remanent out-of-plane magnetization induce a local magnetization in a (Zn,Cd,Mn)Se DMS. Due to the sp-d exchange interaction, optically generated electron-hole pairs align their spin along the DMS magnetization. One obtains a local, remanent spin polarization which was probed by spatially resolved, polarization sensitive photoluminescence spectroscopy. Fringe fields from in-plane magnetized Co ferromagnets allow to locally modify the precession frequency of the Manganese magnetic moments of the DMS in an external magnetic field. This was probed by time-resolved Kerr rotation technique. The inhomogeneity of the fringe field leads to a shortening of the ensemble decoherence time and to the effect of a time-dependent ensemble precession frequency. (orig.)
Collett, David
2002-01-01
INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...
International Nuclear Information System (INIS)
Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.
1982-01-01
The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru
International Nuclear Information System (INIS)
Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.
1982-01-01
The circumstances of mass exchange in close binary systems whose components have a mass < or approx. =1 M/sub sun/ are analyzed for the case where the system is losing orbital angular momentum by radiation of gravitational waves. The mass exchange rate will depend on the mass ratio of the components and on the mass of the component that is overfilling its critical Roche lobe. A comparison of the observed orbital periods, masses of the components losing material, and mass exchange rates against the theoretical values for cataclysmic binaries indicates that the evolution of the close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G61-29 may be driven by the emission of gravitational waves
Effects of rolling friction on a spinning coin or disk
Cross, Rod
2018-05-01
Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.
Vanbeveren, D., Van Rensbergen, W., De Loore, C.
Massive stars are distributed all over the upper part of the Hertzsprung-Russell diagram according to their subsequent phases of stellar evolution from main sequence to supernova. Massive stars may either be single or they may be a component of a close binary. The observed single star/binary frequency is known only in a small part of the Galaxy. Whether this holds for the whole galaxy or for the whole cosmos is questionable and needs many more high quality observations. Massive star evolution depends critically on mass loss by stellar wind and this stellar wind mass loss may change dramatically when stars evolve from one phase to another. We start the book with a critical discussion of observations of the different types of massive stars, observations that are of fundamental importance in relation to stellar evolution, with special emphasis on mass loss by stellar wind. We update our knowledge of the physics that models the structure and evolution of massive single stars and we present new calculations. The conclusions resulting from a comparison between these calculations and observations are then used to study the evolution of massive binaries. This book provides our current knowledge of a great variety of massive binaries, and hence of a great variety of evolutionary phases. A large number of case studies illustrates the existence of these phases. Finally, we present the results of massive star population number synthesis, including the effect of binaries. The results indicate that neglecting them leads to a conclusion which may be far from reality. This book is written for researchers in massive star evolution. We hope that, after reading this book, university-level astrophysics students will become fascinated by the exciting world of the `Brightest Binaries'.
An accessible echelle pipeline and its application to a binary star
Carmichael, Theron; Johnson, John Asher
2018-01-01
Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.
Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling.
Schoonus, J J H M; Lumens, P G E; Wagemans, W; Kohlhepp, J T; Bobbert, P A; Swagten, H J M; Koopmans, B
2009-10-02
By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.
Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization
Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.
2018-05-01
Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.
Radiation damping in ferromagnetic resonance induced by a conducting spin sink
Qaid, Mohammad M.; Richter, Tim; Müller, Alexander; Hauser, Christoph; Ballani, Camillo; Schmidt, Georg
2017-11-01
We have investigated the damping in the ferromagnetic resonance (FMR) of yttrium iron garnet (YIG) caused by spin pumping into adjacent conducting materials, namely, Pt and the conducting polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS). By a systematic study which also includes multilayers in which the conducting layer is separated from YIG by an insulator, we can show that a considerable part of the damping can be attributed to the so-called radiation damping which originates from the interaction of the magnetic fields caused by the precessing magnetization with the conducting layer. Especially, when PEDOT:PSS is used as a spin sink, the observed damping must be attributed completely to radiation damping, and no contribution from spin pumping can be identified. These results demonstrate that the Gilbert damping as a measure of spin pumping can only be used when careful control experiments accompany the investigation.
International Nuclear Information System (INIS)
Mikkola, S.
1983-01-01
Gravitational encounters of pairs of binaries have been studied numerically. Various cross-sections have been calculated for qualitative final results of the interaction and for energy transfer between the binding energy and the centre of mass kinetic energy. The distribution of the kinetic energies, resulting from the gravitational collision, were found to be virtually independent of the impact velocity in the case of collision of hard binaries. It was found that one out of five collisions, which are not simple fly-by's, leads to the formation of a stable three-body system. (author)
Binary and Millisecond Pulsars
Directory of Open Access Journals (Sweden)
Duncan R. Lorimer
1998-09-01
Full Text Available Our knowledge of binary and millisecond pulsars has greatly increased in recent years. This is largely due to the success of large-area surveys which have brought the known population of such systems in the Galactic disk to around 50. As well as being interesting as a population of astronomical sources, many pulsars turn out to be superb celestial clocks. In this review we summarise the main properties of binary and millisecond pulsars and highlight some of their applications to relativistic astrophysics.
Binary and Millisecond Pulsars
Directory of Open Access Journals (Sweden)
Lorimer Duncan R.
2005-11-01
Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.
A radio pulsar/x-ray binary link.
Archibald, Anne M; Stairs, Ingrid H; Ransom, Scott M; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; McLaughlin, Maura A; Boyles, Jason; Hessels, Jason W T; Lynch, Ryan; van Leeuwen, Joeri; Roberts, Mallory S E; Jenet, Frederick; Champion, David J; Rosen, Rachel; Barlow, Brad N; Dunlap, Bart H; Remillard, Ronald A
2009-06-12
Radio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray-emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the past decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.
Spin-dependent shot noise in semiconductor and graphene nanostructures
Dragomirova, Ralitsa L.
Shot noise is the name given to the time-dependent non-equilibrium current (or voltage) fluctuations which persist down to zero temperature and are fundamentally related to the discrete nature of the electron charge. Over the past two decades it has become a major tool for gathering information about microscopic mechanisms of transport and correlations between charges which cannot be extracted from traditional conductance measurements. Recently a handful of theoretical and experimental studies have suggested that shot noise in systems with spin-dependent interactions provides a sensitive probe to differentiate between scattering from magnetic impurities, spin-flip scattering, and continuous spin precession effects on semiclassical or quantum transport of injected spin-polarized currents. This is due to the fact that any spin flip converts spin-↑ subsystem particle into a spin-↓ subsystem particle, where the two subsystems differ when spin degeneracy is lifted. Thus, the nonconservation of the number of particles in each subsystem generates additional source of current fluctuations. Here we generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons. This formalism yields the spin-resolved shot noise power applicable for a generic spintronic device where partially polarized charge current or even pure spin current is injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by arbitrary spin-dependent interactions. The developed formalism [2, 5] is applied in Chapter 5 to diffusive multichannel quantum wires with the Rashba spin-orbit (SO) coupling sandwiched between ferromagnetic source and ferromagnetic or normal drain electrodes. The crucial role played by the SO interactions in all-electrical control of spin in semiconductor nanostructures has ignited recent studies of their signatures on the shot noise. We investigate what is the effect of the Rahsba SO coupling
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
Energy Technology Data Exchange (ETDEWEB)
Yang, Luyi [Univ. of California, Berkeley, CA (United States)
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly
International Nuclear Information System (INIS)
Pringle, J.E.; Wade, R.A.
1985-01-01
This book reviews the theoretical and observational knowledge of interacting binary stars. The topics discussed embrace the following features of these objects: their orbits, evolution, mass transfer, angular momentum losses, X-ray emission, eclipses, variability, and other related phenomena. (U.K.)
Equational binary decision diagrams
J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)
2000-01-01
textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and
Tcheng, Ping
1989-01-01
Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Response of the North-African summer monsoon to precession and obliquity forcing in EC-Earth
Bosmans, Joyce; Drijfhout, Sybren; Tuenter, Erik; Lourens, Lucas; Hilgen, Frederik
2013-04-01
We have used a high-resolution coupled climate model, EC-Earth, to investigate the response of the North-African summer monsoon to separate precession and obliquity forcing. Four experiments were performed: minimum and maximum precession, both with fixed minimum obliquity, and maximum and minimum obliquity, both with a circular orbit in order to exclude precession. We compare our results to previous model results (Tuenter et al. 2003, The response of the African summer monsoon to remote and local forcing due to precession and obliquity, Global and Planetary Change 36: 219-235), in which the same experimental set-up was used for an intermediate complexity model. In our EC-Earth experiments, strongly increased summer insolation during a precession minimum compared to a precession maximum results in more intense and more northward heat lows over the Sahara, drawing in stronger south-westerly winds. A stronger South Atlantic high pressure area further enhances the meridional pressure gradient across the equator. Precipitation over the tropical Atlantic is decreased and more moisture is transported landwards from both the northern and southern tropical Atlantic. The African Easterly Jet and Inter Tropical Convergence Zone are located further north, in agreement with the strengthening and northward extension of monsoonal precipitation. Obliquity-induced summer insolation changes over the tropics are very small, but nonetheless they result in notable changes in precipitation and monsoonal circulation over North-Africa. During high obliquity monsoonal precipitation is slightly increased and extends further north, in relation to stronger and more northward heat lows over the Sahara. The precipitation increase originates mostly from the tropical Atlantic. Our results provide an explanation for the precession and obliquity signals preserved in the sedimentary record of North-Africa, but the mechanisms are very different than suggested in a previous model study (Tuenter et al
Energy Technology Data Exchange (ETDEWEB)
O' Donnell, Kane; Visser, Matt, E-mail: kco61@uclive.ac.nz, E-mail: matt.visser@msor.vuw.ac.nz [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, Wellington (New Zealand)
2011-07-15
The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary, which will suit a first course in relativity; (2) intermediate, to suit a second course; and (3) advanced, to suit higher level students. We then give a summary of useful results and suggest further reading in this often obscure field.
Czech Academy of Sciences Publication Activity Database
Palatinus, Lukáš; Correa, Cinthia Antunes; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, Mariana; Gemmi, M.; Kopeček, Jaromír; Domeneghetti, C.; Cámara, F.; Petříček, Václav
2015-01-01
Roč. 71, č. 6 (2015), 740-751 ISSN 2052-5206 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GA13-25747S; GA MŠk LO1409 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132; FUNBIO(XE) CZ.2.16/3.1.00/21568 Keywords : XRD * structure refinement * precession electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.892, year: 2015
Wijers, R.A.M.J.
1996-01-01
Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges
CERN. Geneva
2010-01-01
(LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).
Accessing the dark exciton spin in deterministic quantum-dot microlenses
Directory of Open Access Journals (Sweden)
Tobias Heindel
2017-12-01
Full Text Available The dark exciton state in semiconductor quantum dots (QDs constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01 ns corresponding to a fine-structure splitting of (5.0 ± 0.7 μeV between its eigenstates ↑⇑±↓⇓. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.
Accessing the dark exciton spin in deterministic quantum-dot microlenses
Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan
2017-12-01
The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.
Flare Activity of Wide Binary Stars with Kepler
Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph
2018-01-01
We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.
Sosenko, Evan Boyd
Recent focus on two dimensional materials and spin-coupled phenomena holds future potential for fast, efficient, flexible, and transparent devices. The fundamental operation of a spintronic device depends on the injection, transmission, and detection of spins in a conducting channel. Long spin lifetimes during transit are critical for realizing this technology. An attractive platform for this purpose is graphene, which has high mobilities and low spin-orbit coupling. Unfortunately, measured spin lifetimes are orders of magnitude smaller than theoretically expected. A source of spin loss is the resistance mismatch between the ferromagnetic electrodes and graphene. While this has been studied numerically, here we provide a closed form expression for Hanle spin precession which is the standard method of measuring spin lifetimes. This allows for a detailed characterization of the nonlocal spin valve device. Strong spin-orbit interaction has the potential to engender unconventional superconducting states. A cousin to graphene, two dimensional transition metal dichalcogenides entwine interaction, spin-orbit coupling, and topology. The noninteracting electronic states have multiple valleys in the energy dispersion and are topologically nontrivial. We report on the possible superconducting states of hole-doped systems, and analyze to what extent the correlated phase inherits the topological aspects of the parent crystal. We find that local attractive interactions or proximal coupling to s-wave superconductors lead to a pairing which is an equal mixture of a spin singlet and the m = 0 spin triplet. Its topology allows quasiparticle excitations of net nonzero Berry curvature via pair-breaking by circularly polarized light. The valley contrasting optical response, where oppositely circularly polarized light couples to different valleys, is present even in the superconducting state, though with smaller magnitude.
COMPACT BINARY PROGENITORS OF SHORT GAMMA-RAY BURSTS
Energy Technology Data Exchange (ETDEWEB)
Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309 (United States); Perna, Rosalba [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Rezzolla, Luciano [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Potsdam D-14476 (Germany); Troja, Eleonora [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States)
2013-01-10
In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy, {epsilon}{sub jet} = 10%, we find that most of the tori have masses smaller than 0.01 M{sub Sun }, favoring 'high-mass' binary NSs mergers, i.e., binaries with total masses {approx}> 1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since 'high-mass' systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of {approx}0.9 or higher.
Nuclear spin pumping and electron spin susceptibilities
Danon, J.; Nazarov, Y.V.
2011-01-01
In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.
Testing Models of Circum-Binary-AGN Accretion for PSO J334.2028+01.4075
Foord, Adi; Gultekin, Kayhan; Reynolds, Mark
2017-08-01
We present analysis of new Chandra data of PSO J334.2028+01.4075 (PSO J334 hereafter), a strong binary AGN candidate discovered by Liu et al. (2015) based on periodic variation of the optical flux. Recent radio coverage presented in Mooley et al. (2017) further supports that PSO J334 is a binary black hole system, as the quasar was found to be lobe-dominated with a twisted radio structure, possibly due to a precessing jet. With no prior X-ray coverage for PSO J334, our new 50 ksec Chandra observation allows for the unique opportunity to differentiate between a single or binary-AGN system, and if a binary, can characterize the mode of accretion. The two most basic sets of predictions via simulations of circum-binary accretion model are a “cavity”, where the inner region of the accretion disk is mostly empty and emission is truncated blueward of the wavelength associated with the temperature of the innermost ring, or “minidisks”, where there is substantial accretion onto one or both of the members of the binary, each with their own shock-heated thin-disk accretion system. We find the X-ray emission to be well-fit with a heavily absorbed power-law, incompatible with the cavity scenario. Further, we construct an SED of PSO J334 by combining radio through X-ray observations and compare it to standard QSO SEDs. We discuss the implications of the comparison between the SED of PSO J334 and that of a single AGN, and assess the likelihood of the binary model for PSO J334.
Laser-induced precession of magnetization in ferrimagnetic GdFe thin films with low power excitation
Directory of Open Access Journals (Sweden)
K. Nishibayashi
2013-03-01
Full Text Available We have investigated thermal effects on the dynamics of laser-induced precession of magnetization in ferrimagnetic GdFe thin films under low-excitation conditions (6-60 μJ/cm2. An increase in quasi-equilibrium temperature by laser heating causes a shift in precession frequency, which is explained analytically by the alteration of the magnetic anisotropy field by 2.2 [Oe] at a pulse fluence of 1 μJ/cm2. We have also demonstrated coherent control of the precession amplitude using a sequence of two laser pulses, each with a fluence of 18 μJ/cm2, and point out the importance of low-power excitation for precise control of the dynamic states.
Compressing Binary Decision Diagrams
DEFF Research Database (Denmark)
Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter
2008-01-01
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
Compressing Binary Decision Diagrams
DEFF Research Database (Denmark)
Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...
High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations
Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.
2011-05-01
We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.
Internal Field of Homogeneously Magnetized Toroid Sensor for Proton Free Precession Magnetometer
DEFF Research Database (Denmark)
Primdahl, Fritz; Merayo, José M.G.; Brauer, Peter
2005-01-01
The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis of the to......The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis...... of the toroid. The theoretical shift is estimated for water by computing the additional magnetic field from the magnetization of the liquid and comparing it to the theoretical field in a spherical container. Along the axis the estimated average shift is -0.08 nT and perpendicular to the axis the shift is +0.......08 nT relative to that of a spherical sensor. The field inhomogeneity introduced by the toroid shape amounts to 0.32 nT over the volume of the sensor and is not expected to significantly affect the signal decay time, when considering the typical water line width of about 2.5 InT....
Energy Technology Data Exchange (ETDEWEB)
Nunes, Luiza M.S. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Moraes, Tiago B. [Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590 (Brazil); Barbosa, Lucio L. [Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari 514, Vitória, Espírito Santo 29075-910 (Brazil); Mazo, Luiz H. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); and others
2014-11-19
Highlights: • Analysis of electrochemical reaction in situ by 13C NMR spectroscopy was demonstrated. • {sup 13}C NMR signals are obtained in few minutes, using steady-state free precession (SSFP) pulse sequence. • The analysis is performed in standard NMR spectrometer. • KBDM can be an alternative to Fourier Transform to process SSFP signal. - Abstract: All attempts to use in situ{sup 13}C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of {sup 13}C NMR signals by more than one order of magnitude. The results showed that each {sup 13}C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM)
Evidence for Precession due to Supercritical Accretion in Ultraluminous X-Ray Sources
Weng, Shan-Shan; Feng, Hua
2018-02-01
Most ultraluminous X-ray sources (ULXs) are thought to be supercritical accreting compact objects, where massive outflows are inevitable. Using the long-term monitoring data with the Swift X-ray Telescope, we identified a common feature in bright, hard ULXs: they display a quasi-periodic modulation in their hard X-ray band but not in their soft band. As a result, some sources show a bimodal distribution on the hardness intensity map. We argue that these model-independent results can be well interpreted in a picture that involves supercritical accretion with precession, where the hard X-ray emission from the central funnel is more or less beamed, while the soft X-rays may arise from the photosphere of the massive outflow and be nearly isotropic. It implies that precession may be ubiquitous in supercritical systems, such as the Galactic microquasar SS 433. How the hard X-rays are modulated can be used to constrain the angular distribution of the hard X-ray emission and the geometry of the accretion flow. We also find that two ULX pulsars (NGC 5907 ULX-1 and NGC 7793 P13) show similar behaviors but no bimodal distribution, which may imply that they have a different beaming shape or mechanism.
Constraints on Non-Standard Gravitomagnetism by the Anomalous Perihelion Precession of the Planets
Directory of Open Access Journals (Sweden)
Luis Acedo
2014-09-01
Full Text Available In 2008, a team of astronomers reported an anomalous retrograde precession of the perihelion of Saturn amounting to \\(\\Delta \\dot{\\omega}_{\\mathrm{SATURN}}=-0.006(2\\ arcsec per century (arcsec cy\\(^{-1}\\. This unexplained precession was obtained after taking into account all classical and relativistic effects in the context of the highly refined EPM2008 ephemerides. More recent analyzes have not confirmed this effect, but they have found similar discrepancies in other planets. Our objective in this paper is to discuss a non-standard model involving transversal gravitomagnetism generated by the Sun as a possible source of these potential anomalies, to be confirmed by further data analyses. In order to compute the Lense–Thirring perturbations induced by the suggested interaction, we should consider the orientation of the Sun's rotational axis in Carrington elements and the inclination of the planetary orbits with respect to the ecliptic plane. We find that an extra component of the gravitomagnetic field not predicted by General Relativity could explain the reported anomalies without conflicting with the Gravity Probe B experiment and the orbits of the geodynamics satellites.
Transport theory for femtosecond laser-induced spin-transfer torques
Baláž, Pavel; Žonda, Martin; Carva, Karel; Maldonado, Pablo; Oppeneer, Peter M.
2018-03-01
Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizations. To this end, we introduce an extended model of superdiffusive spin transport that enables the treatment of noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau–Lifshitz–Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.
Transport theory for femtosecond laser-induced spin-transfer torques.
Baláž, Pavel; Žonda, Martin; Carva, Karel; Maldonado, Pablo; Oppeneer, Peter M
2018-03-21
Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizations. To this end, we introduce an extended model of superdiffusive spin transport that enables the treatment of noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau-Lifshitz-Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.
Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling
Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas
2017-12-01
We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.
Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets
Akosa, Collins Ashu
2015-03-12
Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.
Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers
van't Erve, O. M. J.; Friedman, A. L.; Li, C. H.; Robinson, J. T.; Connell, J.; Lauhon, L. J.; Jonker, B. T.
2015-06-01
Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.
Directory of Open Access Journals (Sweden)
Alexei A. Deriglazov
2017-01-01
Full Text Available We review the recent results on development of vector models of spin and apply them to study the influence of spin-field interaction on the trajectory and precession of a spinning particle in external gravitational and electromagnetic fields. The formalism is developed starting from the Lagrangian variational problem, which implies both equations of motion and constraints which should be presented in a model of spinning particle. We present a detailed analysis of the resulting theory and show that it has reasonable properties on both classical and quantum level. We describe a number of applications and show how the vector model clarifies some issues presented in theoretical description of a relativistic spin: (A one-particle relativistic quantum mechanics with positive energies and its relation with the Dirac equation and with relativistic Zitterbewegung; (B spin-induced noncommutativity and the problem of covariant formalism; (C three-dimensional acceleration consistent with coordinate-independence of the speed of light in general relativity and rainbow geometry seen by spinning particle; (D paradoxical behavior of the Mathisson-Papapetrou-Tulczyjew-Dixon equations of a rotating body in ultrarelativistic limit, and equations with improved behavior.
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Binary Masking & Speech Intelligibility
Boldt, Jesper
2010-01-01
The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dunham, Michael M., E-mail: soffner@astro.umass.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
2016-08-10
The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce {sup 12}CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.
THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS
International Nuclear Information System (INIS)
Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B.; Dunham, Michael M.
2016-01-01
The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce 12 CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.
Gjønnes, J.; Hansen, V.; Kverneland, A.
2004-02-01
Crystal structure of nano-scale precipitates in age-hardening aluminum alloys is a challenge to crystallography. The utility of selected area electron diffraction intensities from embedded precipitates is limited by double scattering via matrix reflections. This effect can be signally reduced by the precession technique, which we have used to collect extensive intensity data from the semicoherent, metastable [eta][prime prime or minute]-precipitate in the Al-Zn-Mg alloy system. A structure model in the space group P-62c is proposed from high-resolution microscopy and electron diffraction intensities. The advantages of using the precession technique for quantitative electron diffraction is discussed.
Coherent and correlated spin transport in nanoscale superconductors
Energy Technology Data Exchange (ETDEWEB)
Morten, Jan Petter
2008-03-15
Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in
Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments
Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group
2018-01-01
We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.
Dual jets from binary black holes.
Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L
2010-08-20
The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.
LIGO Finds Lightest Black-Hole Binary
Kohler, Susanna
2017-11-01
of the components have all been estimated at 20 solar masses or more. This has made it difficult to compare these black holes to those detected by electromagnetic means which are mostly under 10 solar masses in size.GW170608 is the lowest-mass of the LIGO/Virgo black-hole mergers shown in blue. The primary mass is comparable to the masses of black holes we have measured by electromagnetic means (purple detections). [LIGO-Virgo/Frank Elavsky/Northwestern]One type of electromagnetically detected black hole are those in low-mass X-ray binaries (LMXBs). LMXBs consist of a black hole and a non-compact companion: a low-mass donor star that overflows its Roche lobe, feeding material onto the black hole. It is thought that these black holes form without significant spin, and are later spun up as a result of the mass accretion. Before LIGO, however, we didnt have any non-accreting black holes of this size to observe for comparison.Now, detections like GW170608 and the Boxing Day event (which was also on the low end of the mass scale) are allowing us to start exploring spin distributions of non-accreting black holes to determine if were right in our understanding of black-hole spins. We dont yet have a large enough comparison sample to make a definitive statement, but GW170608 is indicative of a wealth of more discoveries we can hope to find in LIGOs next observing run, after a series of further design upgrades scheduled to conclude in 2018. The future of gravitational wave astronomy continues to look promising!CitationLIGO collaboration, submitted to ApJL. https://arxiv.org/abs/1711.05578
International Nuclear Information System (INIS)
Babak, S; Balasubramanian, R; Churches, D; Cokelaer, T; Sathyaprakash, B S
2006-01-01
Gravitational waves from coalescing compact binaries are searched for using the matched filtering technique. As the model waveform depends on a number of parameters, it is necessary to filter the data through a template bank covering the astrophysically interesting region of the parameter space. The choice of templates is defined by the maximum allowed drop in signal-to-noise ratio due to the discreteness of the template bank. In this paper we describe the template-bank algorithm that was used in the analysis of data from the Laser Interferometer Gravitational Wave Observatory (LIGO) and GEO 600 detectors to search for signals from binaries consisting of non-spinning compact objects. Using Monte Carlo simulations, we study the efficiency of the bank and show that its performance is satisfactory for the design sensitivity curves of ground-based interferometric gravitational wave detectors GEO 600, initial LIGO, advanced LIGO and Virgo. The bank is efficient in searching for various compact binaries such as binary primordial black holes, binary neutron stars, binary black holes, as well as a mixed binary consisting of a non-spinning black hole and a neutron star
Decoherence dynamics of a single spin versus spin ensemble
Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.
2008-01-01
We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian
Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.
Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua
2017-07-13
The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.
Spin-polarized spin excitation spectroscopy
International Nuclear Information System (INIS)
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2010-01-01
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
Magnons, Spin Current and Spin Seebeck Effect
Maekawa, Sadamichi
2012-02-01
When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).
THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES
Energy Technology Data Exchange (ETDEWEB)
Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)
2011-12-10
Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.
International Nuclear Information System (INIS)
Papp, E.; Micu, C.; Racolta, D.
2013-01-01
In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumber k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis
TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES
International Nuclear Information System (INIS)
Piro, Anthony L.
2011-01-01
The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q 1 ∼ 7 x 10 10 and Q 2 ∼ 2 x 10 7 , for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q 1 for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.
A radio-pulsing white dwarf binary star.
Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J
2016-09-15
White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.
The Fate of Neutron Star Binary Mergers
Energy Technology Data Exchange (ETDEWEB)
Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: piro@carnegiescience.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2017-08-01
Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.
Bosmans, J.H.C.; Drijfhout, S.S.; Tuenter, E.; Hilgen, F.J.; Lourens, L.J.
2015-01-01
We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing
Czech Academy of Sciences Publication Activity Database
Plášil, J.; Palatinus, L.; Rohlíček, J.; Houdková, L.; Klementová, Mariana; Goliáš, V.; Škácha, P.
2014-01-01
Roč. 99, 2-3 (2014), s. 276-282 ISSN 0003-004X Institutional support: RVO:61388980 Keywords : Widenmannite * uranyl bicarbonate * crystal structure * precession electron diffraction * synchrotron powder diffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.964, year: 2014
DEFF Research Database (Denmark)
Johnson, Thorsten R C; Bayrhof, Nicole; Huber, Armin
2007-01-01
Our aim was to determine the diagnostic value of myocardial tagging sequences with regard to the evaluable share of the cardiac cycle. Thirty-three patients were examined at 1.5 T using tagging sequences with gradient-echo (GRE) readout, 18 patients at 1.5 T with steady-state free precession (SSF...
Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction
International Nuclear Information System (INIS)
Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.
2013-01-01
The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)
Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor.
Matsunaga, Ryusuke; Tsuji, Naoto; Fujita, Hiroyuki; Sugioka, Arata; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Aoki, Hideo; Shimano, Ryo
2014-09-05
Superconductors host collective modes that can be manipulated with light. We show that a strong terahertz light field can induce oscillations of the superconducting order parameter in NbN with twice the frequency of the terahertz field. The result can be captured as a collective precession of Anderson's pseudospins in ac driving fields. A resonance between the field and the Higgs amplitude mode of the superconductor then results in large terahertz third-harmonic generation. The method we present here paves a way toward nonlinear quantum optics in superconductors with driving the pseudospins collectively and can be potentially extended to exotic superconductors for shedding light on the character of order parameters and their coupling to other degrees of freedom. Copyright © 2014, American Association for the Advancement of Science.
Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity
International Nuclear Information System (INIS)
Charbonneau, James; Zhitnitsky, Ariel
2010-01-01
The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation
A comment on the calculation of periastron precession in general relativity
Crawford, James
2013-04-01
Periastron precession is one of the three classical tests of General Relativity, and as such its calculation appears in virtually all text books on the subject. In almost all of these texts the calculation proceeds perturbatively from the Kepler solution to the Newtonian formulation. This calculation is rather cumbersome, typically taking a few pages of text to complete. In fact, the calculation can be completed in one line if the Kepler solution is not taken as the starting point. As far as I have been able to determine, this procedure has explicitly appeared in only one text, published in 2010. In this talk I review the perturbative procedure and compare it to the alternative. This material should be of interest to anyone who teaches a course in general relativity.
Energy Technology Data Exchange (ETDEWEB)
Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)
2012-08-15
Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.
Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
Determining the orientation and spin period of TOPEX/Poseidon satellite by a photometric method
Kudak, V. I.; Epishev, V. P.; Perig, V. M.; Neybauer, I. F.
2017-07-01
We present the results of photometric observations of the TOPEX/Poseidon satellite performed during 2008-2016. The satellite become space debris after a failure in January, 2006, in a low Earth orbit. In the Laboratory of Space Research of Uzhhorod National University 73 light curves of the spacecraft were obtained. Standardization of photometric light curves is briefly explained. We have calculated the color indices of reflecting surfaces and the spin rate change. The general tendency of the latter is described by an exponential decay function. The satellite spin periods based on 126 light curves (including 53 light curves from the MMT-9 project operating since 2014) were taken into account. In 2016 the period of its own rotation reached its minimum of 10.6 s. A method to derive the direction of the spin axis of an artificial satellite and the angles of the light scattered by its surface has been developed in the Laboratory of Space Research of Uzhhorod National University. We briefly describe the "Orientation" program used for these purposes. The orientation of the TOPEX/Poseidon satellite in mid-2016 is given. The angle of precession β = 45°-50° and period of precession P pr = 141.5 s have been defined. The reasons for the identified nature of the satellite's own rotation have been found. They amount to the perturbation caused by a deviation of the Earth gravity field from a central-symmetric shape and the presence of moving parts on the satellite.
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
First all-sky search for continuous gravitational waves from unknown sources in binary systems
Aasi, J.; Agathos, M.; Beker, M.G.; Bertolini, A.; Blom, M.R.; Bulten, H.J.; Del Pozzo, W.; Jonker, R.; Li, T.G.F.; Meidam, J.; van den Brand, J.F.J.; van der Putten, S.; LIGO-Virgo Sci, Collaboration
2014-01-01
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science
Massive binaries as the source of abundance anomalies in globular clusters
de Mink, S.E.|info:eu-repo/dai/nl/304833231; Pols, O.R.|info:eu-repo/dai/nl/111811155; Langer, N.|info:eu-repo/dai/nl/304829498; Izzard, R.G.|info:eu-repo/dai/nl/304836052
2009-01-01
Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch (AGB) stars and massive stars rotating near the break-up limit (spin stars). We propose massive binaries as an
RESPECT: Neutron resonance spin-echo spectrometer for extreme studies
Energy Technology Data Exchange (ETDEWEB)
Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Kindervater, J. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218 (United States); Pfleiderer, C.; Böni, P. [Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)
2016-11-21
We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.
Properties of the Binary Black Hole Merger GW150914
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.
2016-01-01
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/-0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/-4) solar mass and spin 0.67(+0.05/-0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
Properties of the Binary Black Hole Merger GW150914.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y
2016-06-17
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160} Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610 deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
Two-dimensional spin diffusion in multiterminal lateral spin valves
Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.
2008-01-01
The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys
Energy Technology Data Exchange (ETDEWEB)
Heers, Swantje
2011-09-21
bulk in the first part of the thesis. In the third part, we investigate spin-orbit induced effects on thin (001) and (111) copper and gold films with focus on spin-relaxation mechanisms. We consider both symmetric and asymmetric systems, where the asymmetry of the latter ones is created by covering one side of the film with one layer of Zn. For the symmetric films, spin-mixing parameters and momentum- and spin-relaxation times due to scattering at self-adatoms are calculated. Whereas the largest spin-mixing in (111) films has been obtained for the surface states, on the Fermi surfaces of the (001) films spin hot spots occur, which are caused by anticrossings of bands and lead to locally very high spin mixing. In the asymmetric films, the situation is qualitatively different, as the spin-orbit coupling results in a splitting of all bands and the formation of local effective magnetic fields, the so-called spin-orbit fields. The precession of the electron spin around these axes together with momentum scattering, resulting in a change of the precession axis after each scattering event, is known to lead to spin dephasing. Spin-orbit fields for (001) and (111) copper and gold films are presented. Large fields have been obtained for both surface orientations especially for bulk-like states at the outer boundaries of the Brillouin zone. Furthermore, for the (111) surface states, we find a Rashba-splitting which agrees with experiment and previous calculations. (orig.)
Spectral properties of binary asteroids
Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme
2018-04-01
We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.
Planets in Binary Star Systems
Haghighipour, Nader
2010-01-01
The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...
Magnetic anisotropy and quantized spin waves in hematite nanoparticles
DEFF Research Database (Denmark)
Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker
2004-01-01
We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...... the temperature dependence of the magnetic anisotropy, which is strongly related to the suppression of the Morin transition in nanoparticles of hematite. Further, the localization of the signal in both energy and momentum transfer brings evidence for finite-size quantization of spin waves in the system....
BINARY ASTROMETRIC MICROLENSING WITH GAIA
Energy Technology Data Exchange (ETDEWEB)
Sajadian, Sedighe, E-mail: sajadian@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)
2015-04-15
We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.
The gravitational-wave memory from eccentric binaries
International Nuclear Information System (INIS)
Favata, Marc
2011-01-01
The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.
International Nuclear Information System (INIS)
Anon.
1980-01-01
From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible
Bauer, G.E.W.; Brataas, A.; Tserkovnyak, Y.; Van Wees, B.J.
2003-01-01
A magnetoelectronic thin-film transistor is proposed that can display negative differential resistance and gain. The working principle is the modulation of the soure–drain current in a spin valve by the magnetization of a third electrode, which is rotated by the spin-torque created by a control spin
Precessão do jato de 3C120: simulações hidrodinâmicas 3D
Caproni, A.; de Gouveia dal Pino, E. M.; Abraham, Z.; Raga, A. C.
2003-08-01
Observações com técnicas de interferometria com longa linha de base têm mostrado a existência de um jato relativístico com componentes superluminais na região central de 3C 120. Estas componentes são ejetadas em distintas direções no plano do céu e com diferentes velocidades aparentes. Estas características foram interpretadas em trabalhos anteriores como efeitos da precessão do jato relativístico. Neste trabalho, realizamos simulações tri-dimensionais do jato de 3C 120 utilizando os parâmetros de precessão determinados em trabalhos anteriores e variando as características iniciais do jato e meio ambiente, tais como densidade numérica e temperatura. Todas as simulações foram feitas com o código hidrodinâmico YGUAZÚ-A, assumindo-se um jato adiabático descrito por uma equação de estado relativística. Pelo fato de estarmos utilizando um código hidrodinâmico, nós assumimos que a intensidade do campo magnético e a distribuição de partículas, necessários para se calcular a emissão sincrotron, são proporcionais à pressão hidrodinâmica. Comparação entre dois cenários distintos, nos quais o material do jato é ejetado com velocidade constante (jato contínuo) e com velocidade modulada por um padrão sinusoidal no tempo (jato intermitente), é apresentada e discutida. Para jatos que apresentam fenômenos de precessão e intermitência, com amplitude de variação na velocidade de injeção maior que dez por cento da velocidade média de injeção, a hipótese balística, controlada pela intermitencia, é mais provável. Por outro lado, para jatos com precessão mas sem intermitência (ou com amplitude de variabilidade em velocidade mais baixa que no caso anterior), o efeito da precessão na morfologia do jato não é desprezível. Portanto, de um modo geral, ambos efeitos (precessão e movimentos balísticos) devem estar concorrendo para afetar a morfologia dos jatos superluminais.
The X-Ray Binary KS 1731{260: Possible Analogy with Her X-1
Directory of Open Access Journals (Sweden)
Vojtěch Šimon
2014-12-01
Full Text Available The X-ray binary with the neutron star (NS, KS 1731-260, displays superorbital cycle similar to that in Her X-1. The accretion disk had the memory of the cycle-length even when this modulation sometimes disappeared in the main outburst of KS 1731-260, and during anomalous low state in Her X-1. The disk still existed during such seasons. Although irradiation of the disk by X-rays is a viable explanation for the disk precession and warping (see model of Foulkes et al., the mechanisms which give rise to the observed X-ray modulation are quite dierent for each of these systems. Variable absorption can explain this cycle only in Her X-1. We propose a variable mass accretion rate onto the NS in KS 1731-260 due to a highly variable impact of the inflowing mass stream with the changing phase of the cycle.
MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION
Directory of Open Access Journals (Sweden)
M. Martini
2013-12-01
Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the
The first muon spin rotation experiment
Garwin, Richard L
2003-01-01
The February 15, 1957 issue of Physical Review Letters shows the first muon precession curve resulting from the stopping of `85 MeV' muons in graphite, and the resulting counting rate in a gate of fixed delay, duration, and orientation, as a function of an applied vertical magnetic field. The purpose of the four-day experiment was to test the conservation of parity in the weak interactions. It involved the sudden recognition that existing muon beams would be polarized if parity were not conserved, together with the appreciation that the angular distribution of decay electrons from the population of stopped muons could be observed (much more reliably and sensitively) by the variation with time or current of the detections in a fixed counter telescope than by the measurement of the decay asymmetry of nominally fixed muon spins. This retrospective paper explains the context, the state of the art at the time, and what we expected as a consequence of this experiment. We went on to study more accurately the magneti...
Probing Planckian Corrections at the Horizon Scale with LISA Binaries
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-01
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
Bilayer formation in thin films of a binary solution
International Nuclear Information System (INIS)
Govor, L.V.; Reiter, G.; Bauer, G.H.; Parisi, J.
2006-01-01
We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation
Bilayer formation in thin films of a binary solution
Govor, L. V.; Reiter, G.; Bauer, G. H.; Parisi, J.
2006-04-01
We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation.
Bilayer formation in thin films of a binary solution
Energy Technology Data Exchange (ETDEWEB)
Govor, L.V. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)]. E-mail: leonid.govor@uni-oldenburg.de; Reiter, G. [Institut de Chimie des Surfaces et Interfaces, CNRS-UHA, F-8057 Mulhouse cedex (France); Bauer, G.H. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany); Parisi, J. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)
2006-04-24
We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation.
Compact Planetary Systems Perturbed by an Inclined Companion. II. Stellar Spin-Orbit Evolution
Boué, Gwenaël; Fabrycky, Daniel C.
2014-07-01
The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only ~= 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.
Continuously observing a dynamically decoupled spin-1 quantum gas
Anderson, R. P.; Kewming, M. J.; Turner, L. D.
2018-01-01
We continuously observe dynamical decoupling in a spin-1 quantum gas using a weak optical measurement of spin precession. Continuous dynamical decoupling modifies the character and energy spectrum of spin states to render them insensitive to parasitic fluctuations. Continuous observation measures this new spectrum in a single preparation of the quantum gas. The measured time series contains seven tones, which spectrogram analysis parses as splittings, coherences, and coupling strengths between the decoupled states in real time. With this we locate a regime where a transition between two states is decoupled from magnetic-field instabilities up to fourth order, complementary to a parallel work at higher fields [D. Trypogeorgos et al., preceding paper, Phys. Rev. A 97, 013407 (2018), 10.1103/PhysRevA.97.013407]. The decoupled microscale quantum gas offers magnetic sensitivity in a tunable band, persistent over many milliseconds: the length scales, frequencies, and durations relevant to many applications, including sensing biomagnetic phenomena such as neural spike trains.
The magnetic top as a model of quantum spin
International Nuclear Information System (INIS)
Barut, A.O.; Bozic, M.; Maric, Z.
1990-12-01
The magnetic top is defined by the property that the external magnetic field B couples to the angular velocity ω-vector, as distinct from the top whose magnetic moment is independent of angular velocity. This allows one to construct a ''gauge'' theory of the top where the canonical angular momentum s is analogous to the canonical momentum of the point particle and the B field plays the role of the gauge potential. Magnetic top has four constants of motion so that Lagrange equations for Euler angles, θ, φ, χ (which define the orientation of the top) are solvable, and are solved here. Although the Euler angles have complicated motion, the canonical angular momentum s, interpreted as spin, obeys precisely a simple precession equation. The Poisson brackets of s 1 allow us further to make an unambiguous quantization of spin, leading to the Pauli spin Hamiltonian. The use of canonical angular momentum alleviates the ambiguity in the ordering of the variables θ, φ, χ, p θ , p φ , p χ in the Hamiltonian. A detailed gauge theory of the asymmetric magnetic top is also given. (author). 33 refs, 2 figs
Spin physics in semiconductors
2017-01-01
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel
International Nuclear Information System (INIS)
Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.
2016-01-01
Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data
Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride
Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.
2014-01-01
The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685
Spin Transport in a Rashba Ring-Quantum Dot System Pumped by Microwave Fields
International Nuclear Information System (INIS)
Zhang Lin; Wang Jun
2011-01-01
We report a theoretical study on producing electrically spin-polarized current in the Rashba ring with parallel double dots embedded, which are subject to two time-dependent microwave fields. By means of the Keldysh Green's function method, we present an analytic result of the pumped current at adiabatic limit and demonstrate that the interplay between the quantum pumping effect and spin-dependent quantum interference can lead to an arbitrarily controllable spin-polarized current in the device. The magnitude and direction of the charge and spin current can be effectively modulated by system parameters such as the pumping phase difference, Rashba precession phase, and the dynamic phase difference of electron traveling in two arms of ring; moreover, the spin-polarization degree of the charge current can also be tuned in the range [-∞, +∞]. Our findings may shed light on the all-electric way to produce the controllable spin-polarized charge current in the field of spintronics. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Estimating the spin axis orientation of the Echostar-2 box-wing geosynchronous satellite
Earl, Michael A.; Somers, Philip W.; Kabin, Konstantin; Bédard, Donald; Wade, Gregg A.
2018-04-01
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2's specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2's equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2's spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2's spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite's angular momentum vector.
Content identification: binary content fingerprinting versus binary content encoding
Ferdowsi, Sohrab; Voloshynovskiy, Svyatoslav; Kostadinov, Dimche
2014-02-01
In this work, we address the problem of content identification. We consider content identification as a special case of multiclass classification. The conventional approach towards identification is based on content fingerprinting where a short binary content description known as a fingerprint is extracted from the content. We propose an alternative solution based on elements of machine learning theory and digital communications. Similar to binary content fingerprinting, binary content representation is generated based on a set of trained binary classifiers. We consider several training/encoding strategies and demonstrate that the proposed system can achieve the upper theoretical performance limits of content identification. The experimental results were carried out both on a synthetic dataset with different parameters and the FAMOS dataset of microstructures from consumer packages.
Optimally cloned binary coherent states
Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.
2017-10-01
Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.
Fan, B. L.; Wang, S. G.; Xu, C.; Wang, L. J.
2018-02-01
We demonstrate an atomic magnetic gradiometer based on self-sustaining Larmor precession. By coherent optical pumping, we measure the phase of the Larmor precession directly and observe that the gradiometer shows a 1/τ improvement in magnetic field gradient uncertainty over time τ. Since the measurement gives frequency signals, the gradiometer can be easily implemented by mixing and filtering the different frequency signals from two adjacent magnetometers. A gradient sensitivity of 186 fT/√{H z }/cm-1) is realized, which is close to the shot-noise limit. In a noisy environment, the gradiometer can still maintain its 1/τ behavior by suppressing 90% of the common-mode noise. This method should be widely applicable to the measurement of magnetic field gradients owing to its simplicity and outstanding performance.
Modulation of ice ages via precession and dust-albedo feedbacks
Directory of Open Access Journals (Sweden)
Ralph Ellis
2016-11-01
Full Text Available We present here a simple and novel proposal for the modulation and rhythm of ice-ages and interglacials during the late Pleistocene. While the standard Milankovitch-precession theory fails to explain the long intervals between interglacials, these can be accounted for by a novel forcing and feedback system involving CO2, dust and albedo. During the glacial period, the high albedo of the northern ice sheets drives down global temperatures and CO2 concentrations, despite subsequent precessional forcing maxima. Over the following millennia more CO2 is sequestered in the oceans and atmospheric concentrations eventually reach a critical minima of about 200 ppm, which combined with arid conditions, causes a die-back of temperate and boreal forests and grasslands, especially at high altitude. The ensuing soil erosion generates dust storms, resulting in increased dust deposition and lower albedo on the northern ice sheets. As northern hemisphere insolation increases during the next Milankovitch cycle, the dust-laden ice-sheets absorb considerably more insolation and undergo rapid melting, which forces the climate into an interglacial period. The proposed mechanism is simple, robust, and comprehensive in its scope, and its key elements are well supported by empirical evidence.
Klatt, Dieter; Asbach, Patrick; Rump, Jens; Papazoglou, Sebastian; Somasundaram, Rajan; Modrow, Jens; Braun, Jürgen; Sack, Ingolf
2006-12-01
The objective of this study was to introduce an magnetic resonance elastography (MRE) protocol based on fractional motion encoding and planar wave acquisition for rapid measurements of in vivo human liver stiffness. Vibrations of a remote actuator membrane were fed by a rigid rod to the patient's surface beneath the right costal arch resulting in axial shear deflections of the liver. Data acquisition was performed using a balanced steady-state free precession (bSSFP) sequence incorporating oscillating gradients for motion sensitization. Tissue vibrations of frequency fv = 51 Hz were tuned by twice the sequence repetition time (1/fv = 2TR). Twenty axial images acquired by time-resolved through-plane wave encoding were used for planar elasticity reconstruction. The MRE data acquisition was achieved within 4 breathholds of 17 seconds each. The method was applied to 12 healthy volunteers and 2 patients with diffuse liver disease (fibrosis grade 3). MRE data acquisition was successful in all volunteers and patients. The elastic moduli were measured with values between 1.99 +/- 0.16 and 5.77 +/- 0.88 kPa. Follow-up studies demonstrated the reproducibility of the method and revealed a difference of 0.74 +/- 0.47 kPa (P analysis of the strain wave field captured by axial wave images. The measured data indicate individual variations of hepatic stiffness in healthy volunteers.
Precession and recession of the rock'n'roller
Energy Technology Data Exchange (ETDEWEB)
Lynch, Peter; Bustamante, Miguel D [School of Mathematical Sciences, UCD, Belfield, Dublin 4 (Ireland)], E-mail: Peter.Lynch@ucd.ie, E-mail: Miguel.Bustamante@ucd.ie
2009-10-23
We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gravity. The distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre. The symmetric case, with moments of inertia I{sub 1} = I{sub 2} < I{sub 3}, is integrable and the motion is completely regular. Three known conservation laws are the total energy E, Jellett's quantity Q{sub J} and Routh's quantity Q{sub R}. When the inertial symmetry I{sub 1} = I{sub 2} is broken, even slightly, the character of the solutions is profoundly changed and new types of motion become possible. We derive the equations governing the general motion and present analytical and numerical evidence of the recession, or reversal of precession, that has been observed in physical experiments. We present an analysis of recession in terms of critical lines dividing the (Q{sub R}, Q{sub J}) plane into four dynamically disjoint zones. We prove that recession implies the lack of conservation of Jellett's and Routh's quantities, by identifying individual reversals as crossings of the orbit (Q{sub R}(t), Q{sub J}(t)) through the critical lines. Consequently, a method is found to produce a large number of initial conditions so that the system will exhibit recession.
Using ERP Systems to Transform Business Processes: A Case Study at a Precession Engineering Company
Directory of Open Access Journals (Sweden)
C.K.M.Lee
2009-10-01
Full Text Available Enterprises nowadays strive to keep transforming their business processes in accordance with the fastchanging customer demands so as to survive the intense global competition. In an attempt to provide practitioners with an insight into ERP implementation and the resulting business performances, this paper investigate how a successful ERP implementation can help transform enterprises processes. Case based research which is based on an in-depth observation under managerial and practitioner situation. A case study at a precession engineering company is conducted to evaluate the feasibility of the proposed strategic enterprise information model. This paper focuses on the implementation of Sales & Marketing and Warehouse modules of an ERP system. The key performance indicators are used to evaluate how the ERP implementation can improve the business processes. It is found that ERP helps to improve data visibility and improve on-time delivery but less effective on improving employee productivity. This research proposes an enterprise information model to exploit what strategy should be formulate and how ERP tactic can be implemented in company to enhance enterprise competitive advantages. The strategic enterprise information model is formulated based on our in-depth case study and ERP consultant's experience.
The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism
Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.
2017-05-01
Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.
The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism
International Nuclear Information System (INIS)
Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.
2017-01-01
Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.
Deformation-Induced Precession of a Robot Moving on Curved Space
Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel
Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.
Measuring Quasar Spin via X-ray Continuum Fitting
Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack
2018-01-01
We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Binary typing of staphylococcus aureus
W.B. van Leeuwen (Willem)
2002-01-01
textabstractThis thesis describes the development. application and validation of straindifferentiating DNA probes for the characterization of Staphylococcus aureus strains in a system. that yields a binary output. By comparing the differential hybridization of these DNA probes to staphylococcal
Mesoscopic model for binary fluids
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
Galactic nuclei evolution with spinning black holes: method and implementation
Fiacconi, Davide; Sijacki, Debora; Pringle, J. E.
2018-04-01
Supermassive black holes at the centre of galactic nuclei mostly grow in mass through gas accretion over cosmic time. This process also modifies the angular momentum (or spin) of black holes, both in magnitude and in orientation. Despite being often neglected in galaxy formation simulations, spin plays a crucial role in modulating accretion power, driving jet feedback, and determining recoil velocity of coalescing black hole binaries. We present a new accretion model for the moving-mesh code AREPO that incorporates (i) mass accretion through a thin α-disc, and (ii) spin evolution through the Bardeen-Petterson effect. We use a diverse suite of idealised simulations to explore the physical connection between spin evolution and larger scale environment. We find that black holes with mass ≲ 107 M⊙ experience quick alignment with the accretion disc. This favours prolonged phases of spin-up, and the spin direction evolves according to the gas inflow on timescales as short as ≲ 100 Myr, which might explain the observed jet direction distribution in Seyfert galaxies. Heavier black holes (≳ 108 M⊙) are instead more sensitive to the local gas kinematic. Here we find a wider distribution in spin magnitudes: spin-ups are favoured if gas inflow maintains a preferential direction, and spin-downs occur for nearly isotropic infall, while the spin direction does not change much over short timescales ˜100 Myr. We therefore conclude that supermassive black holes with masses ≳ 5 × 108 M⊙ may be the ideal testbed to determine the main mode of black hole fuelling over cosmic time.
Symplectic orbit and spin tracking code for all-electric storage rings
Talman, Richard M.; Talman, John D.
2015-07-01
Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Spin caloritronics in graphene
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)
2015-06-14
Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.
Spin caloritronics in graphene
Frota, H. O.; Ghosh, Angsula
2014-08-01
Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.
Models for the formation of binary and millisecond radio pulsars
International Nuclear Information System (INIS)
van den Heuvel, E.P.J.
1984-01-01
The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of: (i) decay of the surface dipole component of neutron star magnetic fields on a timescale of (2-5).10 6 yrs, in combination with: (ii) spin up of the rotation of the neutron star during a subsequent mass-transfer phase. The two observed classes of binary radio pulsars (very close and very wide systems, respectively) are expected to have been formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a fairly massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (approx. 0.3 Msub solar) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains why PSR 1953+29 has a millisecond rotation period and why PSR 0820+02 has not. Binary coalescence models for the formation of the 1.5 millisecond pulsar appear to be viable. The companion to the neutron star may have been a low-mass red dwarf, a neutron star, or a massive (> 0.7 Msub solar) white dwarf. In the red-dwarf case the progenitor system probably was a CV binary in which the white dwarf collapsed by accretion. 66 references, 6 figures, 1 table
Using Spin to Understand the Formation of LIGO and Virgo’s Black Holes
Farr, Ben; Holz, Daniel E.; Farr, Will M.
2018-02-01
With the growing number of binary black hole (BBH) mergers detected by the Advanced LIGO and Virgo detectors, it is becoming possible to constrain the properties of the underlying population and better understand the formation of these systems. Black hole (BH) spin orientations are one of the cleanest discriminators of formation history, with BHs in dynamically formed binaries in dense stellar environments expected to have spins distributed isotropically, in contrast to isolated populations where stellar evolution is expected to induce spins preferentially aligned with the orbital angular momentum. In this work, we propose a simple, model-agnostic approach to characterizing the spin properties of LIGO/Virgo’s BBH population. Using measurements of the effective spin of the binaries, we introduce a simple parameter to quantify the fraction of the population that is isotropically distributed, regardless of the spin magnitude distribution of the population. Once the orientation characteristics of the population have been determined, we show how measurements of effective spin can be used to directly constrain the BH spin magnitude distribution. We find that most effective spin measurements are too small to be informative, with the first four events showing a slight preference for a population with alignment, with an odds ratio of 1.2. We argue that it will be possible to distinguish symmetric and anti-symmetric populations at high confidence with tens of additional detections, although mixed populations may take significantly longer to disentangle. We also derive BH spin magnitude distributions from LIGO’s first four BBHs under the assumption of aligned or isotropic populations.
Basic mode of nonlinear spin-wave resonance in normally magnetized ferrite films
International Nuclear Information System (INIS)
Gulyaev, Yu.V.; Zil'berman, P.E.; Timiryazev, A.G.; Tikhomirova, M.P.
2000-01-01
Modes of nonlinear and spin-wave resonance (SWR) in the normally magnetized ferrite films were studied both theoretically and experimentally. The particular emphasis was placed on the basic mode of SWR. One showed theoretically that with the growth of the precession amplitude the profile of the basic mode changed. The nonlinear shift of the resonance field depends on the parameters of fixing of the surface spins. Films of ferroyttrium garnet (FYG) with strong gradient of the single-axis anisotropy field along the film thickness, as well as, FYG films of the submicron thickness where investigated experimentally. With the intensification of Uhf-power one observed the sublinear shift of the basic mode resonance field following by the superlinear growth of the absorbed power. That kind of behaviour is explained by variation of the profile of the varying magnetization space distribution [ru
Observation of a spinning top in a Bose-Einstein condensate
Bisset, R. N.; Serafini, S.; Iseni, E.; Barbiero, M.; Bienaimé, T.; Lamporesi, G.; Ferrari, G.; Dalfovo, F.
2017-11-01
Boundaries strongly affect the behavior of quantized vortices in Bose-Einstein condensates, a phenomenon particularly evident in elongated cigar-shaped traps where vortices tend to orient along a short direction to minimize energy. Remarkably, contributions to the angular momentum of these vortices are tightly confined to the region surrounding the core, in stark contrast to untrapped condensates where all atoms contribute ℏ . We develop a theoretical model and use this, in combination with numerical simulations, to show that such localized vortices precess in a manner analogous to that of a classical spinning top. We experimentally verify this spinning-top behavior with our real-time imaging technique that allows for the tracking of position and orientation of vortices as they dynamically evolve. Finally, we perform an in-depth numerical investigation of our real-time expansion and imaging method, with the aim of guiding future experimental implementation as well as outlining directions for its improvement.
Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron
International Nuclear Information System (INIS)
Chui, C. P.; Zhou, Yan
2014-01-01
Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD) simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence
Directory of Open Access Journals (Sweden)
Giorgio Papini
2017-12-01
Full Text Available We study the spin current tensor of a Dirac particle at accelerations close to the upper limit introduced by Caianiello. Continual interchange between particle spin and angular momentum is possible only when the acceleration is time-dependent. This represents a stringent limit on the effect that maximal acceleration may have on spin physics in astrophysical applications. We also investigate some dynamical consequences of maximal acceleration.
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; Wunderlich, Joerg; Olejník, Kamil
2012-01-01
Roč. 11, č. 5 (2012), s. 382-390 ISSN 1476-1122 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.749, year: 2012
Torczynski, John R.
2000-01-01
A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.
International Nuclear Information System (INIS)
Hakioglu, T
2009-01-01
Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.