WorldWideScience

Sample records for spinning particle starting

  1. Motion of spinning particles. Post-Newtonian approximation in the Einstein-Cartan theory

    Energy Technology Data Exchange (ETDEWEB)

    Boccaletti, D; Agostini, W; Festa, P [Rome Univ. (Italy). Ist. di Matematica

    1979-01-11

    The equations of motion of spinning particles are obtained in the post-Newtonian approximation of the Einstein-Cartan theory. The starting point of the calculation is the Hehl combined equation and a semi-classical model is assumed for the system of spinning particles. Comparison is made with an analogous quantum result obtained in the context of Gupta quantization of the linearized Einstein theory.

  2. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  3. Anyons as spin particles: from classical mechanics to field theory

    OpenAIRE

    Plyushchay, Mikhail S.

    1995-01-01

    (2+1)-dimensional relativistic fractional spin particles are considered within the framework of the group-theoretical approach to anyons starting from the level of classical mechanics and concluding by the construction of the minimal set of linear differential field equations.

  4. On the electrodynamics of spinning particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1990-01-01

    The electrodynamics of spinning point particles is considered. A modification of the Lorentz force law is introduced which can be interpreted as a classical limit of the Dirac-Klein-Gordon equation. An improved version of the inhomogeneous Maxwell equations is constructed to describe the classical fields of spinning particles. Both classical and quantum electrodynamics are shown to predict relativistic time-dilatation effects for spinning particles in an electromagnetic field, even in the limit of zero velocity. The life-time of unstable charged particles moving in a Coulomb field is computed for both spin-zero and spin-half particles. Comparison shows spin effects to be present but relatively small. The magnitude of further spin-dependent correction from hyperfine interactions is computed. A measurement of the life-time of muons in atomic bound states separated by such spin-dependent hyperfine interactions would provide a clean test for the effect predicted. Similar effects are shown to arise in non-abelian gauge theories such as QCD. (author). 18 refs

  5. General treatment of quantum and classical spinning particles in external fields

    Science.gov (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2017-11-01

    We develop the general theory of spinning particles with electric and magnetic dipole moments moving in arbitrary electromagnetic, inertial, and gravitational fields. Both the quantum-mechanical and classical dynamics is investigated. We start from the covariant Dirac equation extended to a spin-1/2 fermion with anomalous magnetic and electric dipole moments and then perform the relativistic Foldy-Wouthuysen transformation. This transformation allows us to obtain the quantum-mechanical equations of motion for the physical operators in the Schrödinger form and to establish the classical limit of relativistic quantum mechanics. The results obtained are then compared to the general classical description of the spinning particle interacting with electromagnetic, inertial and gravitational fields. The complete agreement between the quantum mechanics and the classical theory is proven in the general case. As an application of the results obtained, we consider the dynamics of a spinning particle in a gravitational wave and analyze the prospects of using the magnetic resonance setup to find possible manifestations of the gravitational wave on spin.

  6. Spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-02-01

    We study spinning self-dual particles in two dimensions. They are obtained from the chiral bosonic particle through the square root technique. We show that the resulting field theory can be either fermionic or bosonic and that the associated self-dual field reveals its Lorentz tensor structure which remains hidden in the usual formulations. We also calculate the spinning self-dual particle propagators using the BFV formalism. (author) [pt

  7. Master actions for massive spin-3 particles in D = 2 + 1

    Energy Technology Data Exchange (ETDEWEB)

    Leite Mendonca, Elias; Dalmazi, Denis [UNESP, Campus de Guaratingueta, DFQ, Guaratingueta, SP (Brazil)

    2016-04-15

    We present here a relationship between massive self-dual models for spin-3 particles in D = 2 + 1 via the master action procedure. Starting with a first-order model (in the derivatives) S{sub SD(1)} we have constructed a master action which interpolates between a sequence of four self-dual models S{sub SD(i)} where i = 1, 2, 3, 4. By analyzing the particle content of the mixing terms, we give additional arguments that explain why it is apparently impossible to jump from the fourth-order model to a higher-order model. We have also analyzed similarities and differences between the fourth-order K-term in the spin-2 case and the analogous fourth-order term in the spin-3 context. (orig.)

  8. Spin Hall effect and Berry phase of spinning particles

    International Nuclear Information System (INIS)

    Berard, Alain; Mohrbach, Herve

    2006-01-01

    We consider the adiabatic evolution of the Dirac equation in order to compute its Berry curvature in momentum space. It is found that the position operator acquires an anomalous contribution due to the non-Abelian Berry gauge connection making the quantum mechanical algebra noncommutative. A generalization to any known spinning particles is possible by using the Bargmann-Wigner equation of motions. The noncommutativity of the coordinates is responsible for the topological spin transport of spinning particles similarly to the spin Hall effect in spintronic physics or the Magnus effect in optics. As an application we predict new dynamics for nonrelativistic particles in an electric field and for photons in a gravitational field

  9. Collisional Penrose process with spinning particles

    Science.gov (United States)

    Mukherjee, Sajal

    2018-03-01

    In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

  10. Spin Start Line Effects on the J2X Gas Generator Chamber Acoustics

    Science.gov (United States)

    Kenny, R. Jeremy

    2011-01-01

    The J2X Gas Generator engine design has a spin start line connected near to the turbine inlet vanes. This line provides helium during engine startup to begin turbomachinery operation. The spin start line also acts as an acoustic side branch which alters the chamber's acoustic modes. The side branch effectively creates 'split modes' in the chamber longitudinal modes, in particular below the first longitudinal mode and within the frequency range associated with the injection-coupled response of the Gas Generator. Interaction between the spin start-modified chamber acoustics and the injection-driven response can create a higher system response than without the spin start attached to the chamber. This work reviews the acoustic effects of the spin start line as seen throughout the workhorse gas generator test program. A simple impedance model of the spin start line is reviewed. Tests were run with no initial spin start gas existing in the line, as well as being initially filled with nitrogen gas. Tests were also run with varying spin start line lengths from 0" to 40". Acoustic impedance changes due to different spin start gas constituents and line lengths are shown. Collected thermocouple and static pressure data in the spin start line was used to help estimate the fluid properties along the line length. The side branch impedance model was coupled to a chamber impedance model to show the effects on the overall chamber response. Predictions of the spin start acoustic behavior for helium operation are shown and compared against available data.

  11. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  12. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    Science.gov (United States)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  13. spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-01-01

    Self-dual particles in two-dimensions are presented. They were obtained from chiral boson particle by square root technique. The propagator of spinning self-dual particle is calculated using the BFV formalism. (M.C.K.)

  14. Galaxy bispectrum from massive spinning particles

    Science.gov (United States)

    Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora

    2018-05-01

    Massive spinning particles, if present during inflation, lead to a distinctive bispectrum of primordial perturbations, the shape and amplitude of which depend on the masses and spins of the extra particles. This signal, in turn, leaves an imprint in the statistical distribution of galaxies; in particular, as a non-vanishing galaxy bispectrum, which can be used to probe the masses and spins of these particles. In this paper, we present for the first time a new theoretical template for the bispectrum generated by massive spinning particles, valid for a general triangle configuration. We then proceed to perform a Fisher-matrix forecast to assess the potential of two next-generation spectroscopic galaxy surveys, EUCLID and DESI, to constrain the primordial non-Gaussianity sourced by these extra particles. We model the galaxy bispectrum using tree-level perturbation theory, accounting for redshift-space distortions and the Alcock-Paczynski effect, and forecast constraints on the primordial non-Gaussianity parameters marginalizing over all relevant biases and cosmological parameters. Our results suggest that these surveys would potentially be sensitive to any primordial non-Gaussianity with an amplitude larger than fNL≈ 1, for massive particles with spins 2, 3, and 4. Interestingly, if non-Gaussianities are present at that level, these surveys will be able to infer the masses of these spinning particles to within tens of percent. If detected, this would provide a very clear window into the particle content of our Universe during inflation.

  15. In search of elementary spin 0 particles

    International Nuclear Information System (INIS)

    Krasny, Mieczyslaw Witold; Płaczek, Wiesław

    2015-01-01

    The Standard Model of strong and electroweak interactions uses point-like spin 1/2 particles as the building bricks of matter and point-like spin 1 particles as the force carriers. One of the most important questions to be answered by the present and future particle physics experiments is whether the elementary spin 0 particles exist, and if they do, what are their interactions with the spin 1/2 and spin 1 particles. Spin 0 particles have been searched extensively over the last decades. Several initial claims of their discoveries were finally disproved in the final experimental scrutiny process. The recent observation of the excess of events at the LHC in the final states involving a pair of vector bosons, or photons, is commonly interpreted as the discovery of the first elementary scalar particle, the Higgs boson. In this paper we recall examples of claims and subsequent disillusions in precedent searches spin 0 particles. We address the question if the LHC Higgs discovery can already be taken for granted, or, as it turned out important in the past, whether it requires a further experimental scrutiny before the existence of the first ever found elementary scalar particle is proven beyond any doubt. An example of the Double Drell–Yan process for which such a scrutiny is indispensable is discussed in some detail. - Highlights: • We present a short history of searches of spin 0 particles. • We construct a model of the Double Drell–Yan Process (DDYP) at the LHC. • We investigate the contribution of the DDYP to the Higgs searches background

  16. Spin analysis of supersymmetric particles

    International Nuclear Information System (INIS)

    Choi, S.Y.; Martyn, H.U.

    2006-12-01

    The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)

  17. Motion of particles and spin in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2003-01-01

    The equations of the particle and spin motion in media with polarized electrons placed in external fields are found. The exchange interaction affects the motion of electrons and their spin, and the annihilation interaction affects the motion of positrons and their spin. The second-order terms in spin are taken into account for particles with spin S ≥ 1. The found equations can be used for the description of the particle and spin motion in both magnetic and nonmagnetic media [ru

  18. About the kinematics of spinning particles

    International Nuclear Information System (INIS)

    Salesi, G.; Recami, E.; Istituto Nazionale di Fisica Nucleare, Milan; Campinas State Univ., SP

    1995-06-01

    Inserting the correct Lorentz factor into the definition of the 4-velocity vμ for spinning particles entails new kinematical properties for v 2 . The well-know constraint (identically true for scalar particles, but entering also the Dirac theory, and assumed a priori in all spinning particle models) P μ v μ =m is here derived in a self-consistent way

  19. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  20. Resonance-sum model for Reggeization in the scattering of particles with arbitrary spin

    International Nuclear Information System (INIS)

    King, M.J.; Durand, L.; Wali, K.C.

    1976-01-01

    Using a field-theoretic description of nonzero-spin particles, center-of-mass helicity amplitudes have been obtained which correspond to pole terms in four-particle reactions with arbitrary-spin external particles. Construction of a van Hove-Durand--type model starting from these helicity amplitudes (which have a well specified kinematic structure in the field-theoretic description) is discussed. Special attention has been paid to boson-fermion scattering. Straightforward Reggeization of helicity amplitudes assuming linear trajectories is known to produce parity doubling. One cannot have a pure fermion Regge pole unaccompanied by cuts. This conclusion has important consequences on both fitting data using Regge formulas in, say, backward scattering in boson-fermion scattering and theoretical considerations such as dual bootstrap models

  1. Twistor Transform for Spinning Particle

    International Nuclear Information System (INIS)

    Fedoruk, S.

    2005-01-01

    Twistorial formulation of a particle of arbitrary spin has been constructed. The twistor formulation is deduced from a space-time formulation of the spinning particle by introducing pure gauge Lorentz harmonics in this system. Canonical transformations and gauge fixing conditions, excluding space-time variables, produce the fundamental conditions of twistor transform relating the space-time formulation and twistor one. Integral transformations, relating massive twistor fields with usual space-time fields, have been constructed

  2. Conformal description of spinning particles

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1986-01-01

    This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)

  3. About kinematics and hydrodynamics of spinning particles: some simple considerations

    International Nuclear Information System (INIS)

    Recami, Erasmo; Rodrigues Junior, Waldyr A.; Salesi, Giovanni

    1995-12-01

    In the first part (Sections 1 and 2) of this paper - starting from the Pauli current, in the ordinary tensorial language - we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: the classical part, that is the velocity w p/m of the center-of-mass (CM), and the so-called quantum part, that is, the velocity V of the motion in the CM frame (namely, the integral spin motion or Zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (Newtonian) Lagrangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is know, with the Madelueng fluid. This result carries further evidence that the quantum behaviour of micro-systems can be a direct consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total velocity vector v vector w + vector V, being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v μ for spinning particles has to be the proper time τ of the CM frame. Inserting the correct Lorentz factor into the definition of v μ leads to completely new kinematical properties for v 2 . The important constraint pμ v μ identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way. (author). 24 refs

  4. About kinematics and hydrodynamics of spinning particles: some simple considerations

    Energy Technology Data Exchange (ETDEWEB)

    Recami, Erasmo; Rodrigues Junior, Waldyr A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada; Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica

    1995-12-01

    In the first part (Sections 1 and 2) of this paper - starting from the Pauli current, in the ordinary tensorial language - we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: the classical part, that is the velocity w p/m of the center-of-mass (CM), and the so-called quantum part, that is, the velocity V of the motion in the CM frame (namely, the integral spin motion or Zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (Newtonian) Lagrangian, we straightforwardly get the appearance of the so-called quantum potential associated, as it is know, with the Madelueng fluid. This result carries further evidence that the quantum behaviour of micro-systems can be a direct consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total velocity vector v vector w + vector V, being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v{sup {mu}} for spinning particles has to be the proper time {tau} of the CM frame. Inserting the correct Lorentz factor into the definition of v{sup {mu}} leads to completely new kinematical properties for v{sup 2}. The important constraint p{mu} v{sup {mu}} identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way. (author). 24 refs.

  5. The spinning particle with extrinsic curvature

    International Nuclear Information System (INIS)

    Dhar, A.

    1988-01-01

    We construct and analyse an action for the spinning particle which contains an extrinsic curvature term. A possible generalization of this construction to the case of the spinning string is also discussed. (orig.)

  6. Spin correlations in the decays of two unstable particles

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.; Lyuboshitz, V.V.

    2004-01-01

    The general theory of angular correlations in the decays of two arbitrarily polarized particles (resonances), connected with the two-particle spin correlations, is constructed. In particular, the angular correlations between the flight directions of the decay, products of two identical particles with close momenta are considered in the model of independent particle sources emitting unpolarized particles with a nonzero spin. It is established that in this case the angular correlations reflect the spin correlations caused by the effects of quantum statistics and final-state interaction. (author)

  7. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  8. Electromagnetic deflection of spinning particles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.

    1992-01-01

    It is shown that it is possible to obtain self-consistent and physically acceptable relativistic classical equations of motion for a point-like spin-half particle possessing an electric charge and magnetic dipole moment, directly from a manifestly covariant Lagrangian, if the classical degrees of freedom are appropriately chosen. The equations obtained encompass the well-tested Lorentz force and Thomas-Bargmann-Michel-Telegdi spin equations, as well as providing a definite specification of the classical magnetic dipole force, whose exact form has been the subject of recent debate. Radiation reaction - the force and torque on an accelerated particle due to its self-interaction - is neglected at this stage. 18 refs

  9. Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field

    International Nuclear Information System (INIS)

    Khorrami, M.; Alimohammadi, M.; Shariati, A.

    2003-01-01

    The Klein-Gordon and Dirac equations in a semi-infinite lab (x>0), in the background metric ds 2 =u 2 (x)(-dt 2 +dx 2 )+dy 2 +dz 2 , are investigated. The resulting equations are studied for the special case u(x)=1+gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℎc. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other

  10. About the velocity operator for spinning particles in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Recami, Erasmo; Rodrigues Junior, Waldyr A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1995-12-01

    Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs.

  11. About the velocity operator for spinning particles in quantum mechanics

    International Nuclear Information System (INIS)

    Salesi, Giovanni; Recami, Erasmo; Rodrigues Junior, Waldyr A.

    1995-12-01

    Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs

  12. Charged spinning black holes as particle accelerators

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-01-01

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  13. Dirac equation of spin particles and tunneling radiation from a Kinnersly black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Feng, Zhong-Wen [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China)

    2017-04-15

    In curved space-time, the Hamilton-Jacobi equation is a semi-classical particle equation of motion, which plays an important role in the research of black hole physics. In this paper, starting from the Dirac equation of spin 1/2 fermions and the Rarita-Schwinger equation of spin 3/2 fermions, respectively, we derive a Hamilton-Jacobi equation for the non-stationary spherically symmetric gravitational field background. Furthermore, the quantum tunneling of a charged spherically symmetric Kinnersly black hole is investigated by using the Hamilton-Jacobi equation. The result shows that the Hamilton-Jacobi equation is helpful to understand the thermodynamic properties and the radiation characteristics of a black hole. (orig.)

  14. Quantum mechanical equations of particle and spin motion in polarised medium

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2003-01-01

    The quantum mechanical equations for the particles and spin motion in the media with polarized electrons by presence of the external fields are determined. The motion of the electrons and their spin are influenced by the exchange interaction whereas the motion of the positrons is the annihilation one. The second order summands by spin are accounted for the particles with the S≥1 spin. The obtained equations may applied for describing the particles and spin motion both in the magnetic and nonmagnetic media [ru

  15. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  16. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  17. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  18. Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles

    OpenAIRE

    Silenko, A. J.

    2014-01-01

    Effective electric and magnetic polarizabilities of pointlike spin-1/2 particles possesing an anomalous magnetic moment are calculated with the transformation of an initial Hamiltonian to the Foldy-Wouthuysen representation. Polarizabilities of spin-1/2 and spin-1 particles are compared.

  19. Quantum gravitational corrections for spinning particles

    International Nuclear Information System (INIS)

    Fröb, Markus B.

    2016-01-01

    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well known, and the same corrections due to massless minimally coupled scalars http://dx.doi.org/10.1088/0264-9381/27/24/245008, massless non-conformal scalars http://dx.doi.org/10.1103/PhysRevD.87.104027 and massive scalars, fermions and vector bosons http://dx.doi.org/10.1103/PhysRevD.91.064047 have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case.

  20. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  1. Hamiltonian action of spinning particle with gravimagnetic moment

    International Nuclear Information System (INIS)

    Deriglazov, Alexei A; Ramírez, W Guzmán

    2016-01-01

    We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)

  2. Remarks on a gauge theory for continuous spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Rivelles, Victor O. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2017-07-15

    We discuss in a systematic way the gauge theory for a continuous spin particle proposed by Schuster and Toro. We show that it is naturally formulated in a cotangent bundle over Minkowski spacetime where the gauge field depends on the spacetime coordinate x{sup μ} and on a covector η{sub μ}. We discuss how fields can be expanded in η{sub μ} in different ways and how these expansions are related to each other. The field equation has a derivative of a Dirac delta function with support on the η-hyperboloid η{sup 2} + 1 = 0 and we show how it restricts the dynamics of the gauge field to the η-hyperboloid and its first neighbourhood. We then show that on-shell the field carries one single irreducible unitary representation of the Poincare group for a continuous spin particle. We also show how the field can be used to build a set of covariant equations found by Wigner describing the wave function of one-particle states for a continuous spin particle. Finally we show that it is not possible to couple minimally a continuous spin particle to a background abelian gauge field, and we make some comments about the coupling to gravity. (orig.)

  3. Particle spin tune in a partially excited snake

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tepikian, S.; Courant, E.D.

    1985-01-01

    In this paper, we address the question on the effect of the particle spin when a snake is turned on adiabatically near a depolarization resonance while not accelerating. The spinor equation and its solution are reviewed briefly and the spin transfer matrix method in the presence of a snake are used to evaluate the spin tune and the precession axis

  4. Quantum electrodynamics of particles with arbitrary spin

    International Nuclear Information System (INIS)

    Green, H.S.

    1978-01-01

    A generalization of quantum electrodynamics is developed for particles of higher spin, with careful attention to the requirements of consistency, causality, unitarity and renormalizability. It is shown that field equations studied previously by the author are expressible in arbitrarily many different forms, which are equivalent in the absence of electromagnetic interactions, but not when electromagnetic coupling is introduced in a gauge-invariant way. A form is chosen which satisfies the requirements of casuality. It is shown how to define a particle density, which is positive-definite in the subspace spanned by solutions of the field equation, and satisifies a Lorentz-invariant conservation law. The quantization and renormalization of the resulting electrodynamics is studied, and is found to require only minor modifications of the existing theory for particles of spin 1/2

  5. Spinning test particles in the field of a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Tod, K P; de Felice, F [Padua Univ. (Italy); Calvani, M [Padua Univ. (Italy). Istituto di Astronomia

    1976-08-11

    It is studied the motion of spinning test bodies in the gravitational field of a rotating black hole, confining the examination of the pole-dipole approximation and of the special case of motion in the equatorial plane with the spin vector perpendicular to it. The study also provides the locus of the turning points for the equatorial orbits and also the exact limits of validity of the pole-dipole approximation for any given set of particle parameters. The innermost stable circular orbits are studied in details, and it is found that opposite spinning accreting particles are separated by the gravitational field of the black hole and that the fraction of energy ''at infinity'' which can be extracted when the particle spin is opposite to that of the black hole can be as high as 100%.

  6. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  7. Bell's Inequality for a System Composed of Particles with Different Spins

    International Nuclear Information System (INIS)

    Moradi, Shahpoor

    2009-01-01

    For two particles with different spins, we derive the Bell's inequality. The inequality is investigated for two systems combining spin-1 and spin-1/2; spin-1/2 and spin-3/2. We show that for these states Bell's inequality is violated.

  8. Two-spinor description of massive particles and relativistic spin projection operators

    Science.gov (United States)

    Isaev, A. P.; Podoinitsyn, M. A.

    2018-04-01

    On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.

  9. Covariant quantization of infinite spin particle models, and higher order gauge theories

    International Nuclear Information System (INIS)

    Edgren, Ludde; Marnelius, Robert

    2006-01-01

    Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized

  10. Two-spinor description of massive particles and relativistic spin projection operators

    Directory of Open Access Journals (Sweden)

    A.P. Isaev

    2018-04-01

    Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.

  11. Accurate and efficient spin integration for particle accelerators

    Directory of Open Access Journals (Sweden)

    Dan T. Abell

    2015-02-01

    Full Text Available Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  12. Accurate and efficient spin integration for particle accelerators

    International Nuclear Information System (INIS)

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; Barber, Desmond P.

    2015-01-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  13. Accurate and efficient spin integration for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Abell, Dan T.; Meiser, Dominic [Tech-X Corporation, Boulder, CO (United States); Ranjbar, Vahid H. [Brookhaven National Laboratory, Upton, NY (United States); Barber, Desmond P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-01-15

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.

  14. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  15. On the Construction of Scattering Amplitudes for Spinning Massless Particles

    CERN Document Server

    Berends, F A

    1997-01-01

    In this paper the general form of scattering amplitudes for massless particles with equal spins s ($s s \\to s s$) or unequal spins ($s_a s_b \\to s_a s_b$) are derived. The imposed conditions are that the amplitudes should have the lowest possible dimension, have propagators of dimension $m^{-2}$, and obey gauge invariance. It is shown that the number of momenta required for amplitudes involving particles with s > 2 is higher than the number implied by 3-vertices for higher spin particles derived in the literature. Therefore, the dimension of the coupling constants following from the latter 3-vertices has a smaller power of an inverse mass than our results imply. Consequently, the 3-vertices in the literature cannot be the first interaction terms of a gauge-invariant theory. When no spins s > 2 are present in the process the known QCD, QED or (super) gravity amplitudes are obtained from the above general amplitudes.

  16. Motion of a spinning test particle in Vaidya's radiating metric

    International Nuclear Information System (INIS)

    Carmeli, M.; Charach, C.; Kaye, M.

    1977-01-01

    The motion of a spinning test particle in Vaidya's gravitational field is considered in the framework of Papapetrou's equations of motion. Use is made of the supplementary condition S/sup μ//sup u/ = 0, where u is the retarded Schwarzschild time coordinate. We derive the equations for the dynamical variables, and consider the conservation laws, that follow from the equations of motion. Particular cases of motion are also discussed and additional first integrals corresponding to these cases are found. Some of the new extra integrals are related to the Casimir operators of the Poincare group. It is found that under special conditions on the spin tensor components the particle follows a geodesic. Motion of the spinning test particle in the Schwarzschild field is considered as one of the particular cases

  17. Suppression of tunneling by interference in half-integer--spin particles

    OpenAIRE

    Loss, Daniel; DiVincenzo, David P.; Grinstein, G.

    1992-01-01

    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.

  18. Studying Of Preparation Silver Nano-Particles Using Spinning Disc Reactor

    International Nuclear Information System (INIS)

    Hoang Van Duc; Nguyen Thanh Chung; Tran Ngoc Ha; Ho Minh Quang; Nguyen Thi Thuc Phuong

    2014-01-01

    Preparation of silver nano-particles using spinning disc reactor has been investigated. The effects of technological factors and experimental conditions such as: concentrations of AgNO 3 , glucose, PVP, spinning speed, ect. on quality of nano-silver particles have been studied. With experimental conditions: rotation speed of 2000 rpm, weight rate of m PVP :m AgNO 3 = 1, AgNO 3 concentration of 0.01 M, glucose concentration of 0.02 M, silver particles of about 12 nm were obtained and the nano-silver solution were stable for more than 40 days. (author)

  19. Spinning charged test particles and Cosmic Censorship

    Energy Technology Data Exchange (ETDEWEB)

    Caderni, N [Cambridge Univ. Inst. of Astronomy (UK); Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1979-04-16

    The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis.

  20. Dual descriptions of massive spin-2 particles in D=3+1

    International Nuclear Information System (INIS)

    Dalmazi, Denis

    2013-01-01

    Full text: Since the sixties (last century) one speculates on the effects of a possible (tiny) mass for the graviton. One expects a decrease in the gravitational interaction at large distances which comes handy regarding the experimental data of the last 15 years on the accelerated expansion of the universe. There has been a growing interest in massive quantum gravity in the last years. Almost all recent works are built up on the top of a free (quadratic) action for a massive spin-2 particle known as massive Fierz-Pauli (FP) theory which has first appeared in 1939. In this theory the basic field is a symmetric rank-2 tensor. It is a common belief in the massive gravity community that the massive FP theory is the unique self-consistent (ghost free, Poincare covariant, correct number of degrees of freedom) description of massive spin-2 particles in terms of a rank-2 tensor. We have shown recently that there are other possibilities if we start with a general (non-symmetric) rank-2 tensor. Here we show how our previous work is related with the well known massive FP theory via the introduction of spectators fields of rank-0 (scalar) and rank-1 (vector). We comment on the introduction of interacting vertices and how they affect the free duality with the massive FP theory (author)

  1. Imprints of spinning particles on primordial cosmological perturbations

    Science.gov (United States)

    Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio

    2018-02-01

    If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures using the dS/CFT3 correspondence and the operator product expansion techniques. In particular, we obtain generic results for the case of partially massless higher-spin states.

  2. Spinning charged test particles and Cosmic Censorship

    International Nuclear Information System (INIS)

    Caderni, N.; Calvani, M.

    1979-01-01

    The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis. (Auth.)

  3. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  4. Elimination of Power Divergences in Consistent Model for Spinless and High-Spin Particle Interactions

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2007-01-01

    The currents for the interaction of the massive high-spin boson (J≥1) with two spinless particles are derived. These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite self-energy operators of spinless-particle

  5. On spin-canting in maghemite particles

    DEFF Research Database (Denmark)

    Linderoth, Søren; Hendriksen, Peter Vang; Bødker, F.

    1994-01-01

    The degree of alignment of the magnetic moments of Fe3+ ions in ultrafine maghemite particles has been studied in samples with induced magnetic texture. The textured samples were prepared by freezing ferrofluids, containing 7.5 nm maghemite particles, in a magnetic field. Mössbauer spectroscopy...... studies of the textured samples in large magnetic fields demonstrate that the lack of full alignment is not an effect of large magnetic anisotropy, as suggested recently, but that the effect is rather due to canting of individual spins. Journal of Applied Physics is copyrighted by The American Institute...

  6. Strong interaction scattering of a spin-zero particle by a 1/2 spin particle

    International Nuclear Information System (INIS)

    Derem, Andre

    1969-03-01

    This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0 - + 1 + /2 → 0 - + 1 + /2 (in the notation S P , S being the spin and P the parity). The two particles 0 - will be two mesons M and M', the two particles 1 + /2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [fr

  7. Variational formalism for spin particles

    International Nuclear Information System (INIS)

    Horvathy, P.

    1977-11-01

    The geometrical formulation of Hamilton's principle presented in a previous paper has been related to the usual one in terms of Lagrangian functions. The exact conditions for their equivalence are obtained and a method is given for the construction of a Lagrangian function. The formalism is extended to spin particles and a local Lagrangian is constructed in this case, too. However, this function cannot be extended to a global one. (D.P.)

  8. Behaviour of a neutral particle with spin in an axial magnetic field

    International Nuclear Information System (INIS)

    Sorokin, S.V.; Ehpp, V.Ya.

    1982-01-01

    Proceeding from the Tamm-Good equation taking into account the spin influence on motion trajectory, the neutral particle motion tracjectory and vector turn of spin polarizition in axial magnetic field have been found. The behaviour of a neutral particle possessing its own magnetic moment in an axially-symmetric stationary magnetic field is considered

  9. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  10. Particle propagator of the spin Calogero–Sutherland model

    International Nuclear Information System (INIS)

    Nakai, Ryota; Kato, Yusuke

    2014-01-01

    Explicit-exact expressions for the particle propagator of the spin 1/2 Calogero–Sutherland model are derived for the system of a finite number of particles and for that in the thermodynamic limit. Derivation of the expression in the thermodynamic limit is also presented in detail. Combining this result with the hole propagator obtained in earlier studies, we calculate the spectral function of the single particle Green's function in the full range of the energy and momentum space. The resultant spectral function exhibits power-law singularity characteristic to correlated particle systems in one dimension. (paper)

  11. Pair production of arbitrary spin particles by electromagnetic fields

    International Nuclear Information System (INIS)

    Kruglov, S.I.

    2006-01-01

    The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied

  12. Violation of local realism by a system with N spin-(1/2) particles

    International Nuclear Information System (INIS)

    Wu, Xiao-Hua; Zong, Hong-Shi

    2003-01-01

    Recently, it was found that Mermin's inequalities may not always be optimal for the refutation of a local realistic description [Phys. Rev. Lett. 88, 210402 (2002)]. To complete this work, we derive an inequality for the Greenberger-Horne-Zeilinger-type pure state for a system with N spin-(1/2) particles and the violation of the inequality can be shown for all the non product pure states. Mermin's inequality for a system of N spin-(1/2) particles and Gisin's theorem for a system of two spin-(1/2) particles are both included in our inequality

  13. Possible signatures of the inflationary particle content: spin-2 fields

    Energy Technology Data Exchange (ETDEWEB)

    Biagetti, Matteo [Institute of Physics, Universiteit van Amsterdam, Science Park, Amsterdam, 1098XH The Netherlands (Netherlands); Dimastrogiovanni, Emanuela [CERCA and Department of Physics, Case Western Reserve University, Cleveland, OH, 44106 (United States); Fasiello, Matteo, E-mail: m.biagetti@uva.nl, E-mail: emanuela1573@gmail.com, E-mail: matteorf@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA, 94306 (United States)

    2017-10-01

    We study the imprints of a massive spin-2 field on inflationary observables, and in particular on the breaking of consistency relations. In this setup, the minimal inflationary field content interacts with the massive spin-2 field through dRGT interactions, thus guaranteeing the absence of Boulware-Deser ghostly degrees of freedom. The unitarity requirement on spinning particles, known as Higuchi bound, plays a crucial role for the size of the observable signal.

  14. Path integrals and pseudoclassical description for spinning particles in arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Sao Paulo Univ. (Brazil). Inst. de Fisica

    1997-03-17

    The propagator of a spinning particle in an external Abelian field and in arbitrary dimensions is presented by means of a path integral. The problem has distinct solutions in even and odd dimensions. In even dimensions the representation is just a generalization of the one in four dimensions (which is already known). In this case the gauge invariant part of the effective action in the path integral has the form of the standard (Berezin-Marinov) pseudoclassical action. In odd dimensions the solution is presented for the first time and, in particular, it turns out that the gauge invariant part of the effective action differs from the standard one. We propose this new action as a candidate to describe spinning particles in odd dimensions. Studying the Hamiltonization of the pseudoclassical theory with the new action we show that the operator quantization leads to an adequate minimal quantum theory of spinning particles in odd dimensions. Finally the consideration is generalized for the case of a particle with an anomalous magnetic moment. (orig.).

  15. Colored, spinning classical particle in an external non-Abelian gauge field

    International Nuclear Information System (INIS)

    Arodz, H.

    1982-04-01

    Classical non-relativistic equations of motion are derived for a colored, spinning point-like particle in an external SU(2) gauge field from Dirac equation. It is found that in addition to the classical spin and color spin vectors, S, I, it is necessary to introduce a new classical dynamical variable [Jsup(ab)], a,b = 1,2,3, describing a mixing of the spin and color. The constraint relations between [Jsup(ab)], S, I are also found. (Auth.)

  16. Particle accelerators inside spinning black holes.

    Science.gov (United States)

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  17. Magnetic monopole dynamics in spin ice.

    Science.gov (United States)

    Jaubert, L D C; Holdsworth, P C W

    2011-04-27

    One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

  18. A gauge field theory of fermionic continuous-spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, X., E-mail: xavier.bekaert@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science, Daejeon (Korea, Republic of); Najafizadeh, M., E-mail: mnajafizadeh@gmail.com [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of)

    2016-09-10

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  19. A gauge field theory of fermionic continuous-spin particles

    International Nuclear Information System (INIS)

    Bekaert, X.; Najafizadeh, M.; Setare, M.R.

    2016-01-01

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  20. Softness and amplitudes’ positivity for spinning particles

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, Brando [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,F-91191 Gif-sur-Yvette (France); Dipartimento di Fisica e Astronomia, Università di Padova,Via Marzolo 8, I-35131 Padova (Italy)

    2017-02-07

    We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than O(p{sup 4}) do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.

  1. Lagrangian dynamics of spinning particles and polarized media in general relativity

    International Nuclear Information System (INIS)

    Bailey, Ian.

    1980-01-01

    The dynamic laws governing spinning multipole test particles and polarized media with internal spin are derived from both variational principles and the multipole formalism of extended bodies. The general form of the Lagrangian equations of motion is derived for a spinning multipole particle in given external fields. The author then considers the dynamics of a continuous medium with internal spin and multipole structure. From a four-dimensional action integral the field equations relating to fields generated by the medium to its bulk properties are derived, together with the balance laws expressing conservation of total four-momentum and spin. A natural splitting of the total energy-momentum tensor into matter and field parts is adopted that leads to a generalized Minkowski electromagnetic energy tensor. In both the electromagnetic and the gravitational field equations the source terms contain polarization contributions. It is shown that the multipole formalism may be used to formulate the same equations of motion, balance laws and decomposition of total energy-momentum as those resulting from variational principles

  2. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  3. Particle Physics at the LHC Start

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    I present a concise review of the major issues and challenges in particle physics at the start of the LHC era. After a brief overview of the Standard Model and of QCD, I will focus on the electroweak symmetry breaking problem which plays a central role in particle physics today. The Higgs sector of the minimal Standard Model is so far just a mere conjecture that needs to be verified or discarded by the LHC. Probably the reality is more complicated. I will summarize the motivation for new physics that should accompany or even replace the Higgs discovery and a number of its possible forms that could be revealed by the LHC.

  4. A conformal invariant model of localized spinning test particles

    International Nuclear Information System (INIS)

    Duval, C.; Centre National de la Recherche Scientifique, 13 - Marseille; Fliche, H.H.; Centre National de la Recherche Scientifique, 13 - Marseille

    1977-02-01

    A purely classical model of massless test particle with spin s is introduced as the dynamical system defined by the 10 dimensional 0(4,2) co-adjoint orbit with Casimir numbers (s 2 ,0,0). The Mathisson Papapetrou et al. equations of motion in a gravitational field are recovered, and moreover the particle appears to travel on null geodesics. Several implications are discussed

  5. Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics

    International Nuclear Information System (INIS)

    Trukhanova, Mariya Iv.

    2015-01-01

    We have developed a method of quantum hydrodynamics (QHD) that describes particles with spin-up and with spin-down in separate. We have derived the equation of the spin current evolution as a part of the set of the quantum hydrodynamics equations that treat particles with different projection of spin on the preferable direction as two different species. We have studied orthogonal propagation of waves in the external magnetic field and determined the contribution of quantum corrections due to the Bohm potential and to magnetization energy of particles with different projections of spin in the spin-current wave dispersion. We have analyzed the limits of weak and strong magnetic fields. - Highlights: • We derive the spin current equation for particles with different projection of spin. • We predict the contribution of Bohm potential to the dynamics of spin current. • We derive the spin-current wave in the system of spin-polarized particles. • We study the propagation of spin-acoustic wave in magnetized dielectrics.

  6. A momentum-space formulation without partial wave decomposition for scattering of two spin-half particles

    Energy Technology Data Exchange (ETDEWEB)

    Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus [Departemen Fisika, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-03-11

    A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in two variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.

  7. Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-10

    A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

  8. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  9. BRST and anti-BRST symmetries for the spinning particle

    International Nuclear Information System (INIS)

    Gomis, J.; Paris, J.; Roca, J.; Rafanelli, K.

    1990-01-01

    We consider the open and closed gauge algebras for the spinning particle resulting from two different sets of gauge generators. Using the Batalin-Vilkovisky lagrangian formalism, the BRST and anti-BRST generators are constructed for both cases. (orig.)

  10. Relativistic fluid dynamics with spin

    Science.gov (United States)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  11. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  12. Twistor description of spinning particles in AdS

    Science.gov (United States)

    Arvanitakis, Alex S.; Barns-Graham, Alec E.; Townsend, Paul K.

    2018-01-01

    The two-twistor formulation of particle mechanics in D-dimensional anti-de Sitter space for D = 4 , 5 , 7, which linearises invariance under the AdS isometry group Sp(4; K ) for K=R,C,H, is generalized to the massless N -extended "spinning particle". The twistor variables are gauge invariant with respect to the initial N local worldline supersymmetries; this simplifies aspects of the quantum theory such as implications of global gauge anomalies. We also give details of the two-supertwistor form of the superparticle, in particular the massive superparticle on AdS5.

  13. Quasipotential approach to the Coulomb bound state problem for spin-0 and spin-/sup 1///sub 2/ particles

    CERN Document Server

    Rizov, V A; Todorov, I T

    1975-01-01

    A recently proposed local quasipotential equation is reviewed and applied to the electromagnetic interaction of a spin-0 and a spin-/sup 1///sub 2/ particle. The Dirac particle is treated in a covariant two- component formalism in the neighbourhood of the mass shell. The fine structure of the bound state energy levels and the main part of the Lamb shift (of order alpha /sup 5/In(1/ alpha ) are evaluated with full account of relativistic recoil effects (without using any inverse mass expansion). Possible relevance of the techniques developed in this paper to fine structure calculations for meso-atomic systems is pointed out. (14 refs).

  14. Behaviour of Charged Spinning Massless Particles

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2017-12-01

    Full Text Available We revisit the classical theory of a relativistic massless charged point particle with spin and interacting with an external electromagnetic field. In particular, we give a proper definition of its kinetic energy and its total energy, the latter being conserved when the external field is stationary. We also write the conservation laws for the linear and angular momenta. Finally, we find that the particle’s velocity may differ from c as a result of the spin—electromagnetic field interaction, without jeopardizing Lorentz invariance.

  15. D=1 supergravity and spinning particles

    International Nuclear Information System (INIS)

    Holten, J.W. van.

    1995-01-01

    In this paper I review the multiplet calculus of N-1, D=1 local supersymmetry with applications to the construction of models for spinning particles in background fields, and models with space-time supersymmetry. New features include a non-linear realization of the local supersymmetry algebra and the coupling to anti-symmetric tensor fields of both odd and even rank. The non-linear realization allows the construction of a D=1 cosmological-constant term, which provides a mass term in the equations of motion. (orig.)

  16. Classical relativistic equations for particles with spin moving in external fields

    NARCIS (Netherlands)

    Dam, H. van; Ruijgrok, Th.W.

    1980-01-01

    We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the

  17. Structures in elementary particles. An electromagnetic elementary-particle model

    International Nuclear Information System (INIS)

    Meyer, Carl-Friedrich

    2015-01-01

    A picture of matter is developed, which is suited to develope and to explain the experimentally determined properties of the elementary particles and the basing structures starting from few known physical conditions in a simple and understandable way. It explains illustratively the spin and the structure of the stable particles, symmetry properties resulting from the half-integerness of the spin, the nature of the electric charge and the third-integerness of the charges in hadrons resulting from this, the stability and the indivisibility f the proton, the conditions for the formation and stability of the particles, and the causes for the limited lifetime of unstable particles like the free neutron. It opens also the view on the cause for the quantization of all for us known processes in the range of the microcosm and creates so an illustrative picture of the matter surrounding us.

  18. General structure of a two-body operator for spin-(1/2) particles

    International Nuclear Information System (INIS)

    Ershov, S.N.

    2004-01-01

    A direct derivation of the operator structure for two spin-(1/2) particles is presented subject to invariance under basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions, valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum decomposition for general spin-dependent potentials are obtained

  19. Particle spin dynamics as the grassmann variant of classical mechanics

    International Nuclear Information System (INIS)

    Berezin, F.A.; Marinov, M.S.

    1976-01-01

    A generalization of the calssical mechanics is presented. The dynamical variables are assumed to be elements of an algebra with anticommuting generators (The Grassmann algebra). The action functional and the Poisson brackets are defined. The equations of motion are deduced from the variational principle. The dynamics is described also by means of the Liouville equation for the phase-space distribution. The canonical quantization lead phase-space path integral approach to the quantum theory is also formulated. The theory is applied to describe the particle spin. Classical description of the spin precession and of the spin-orbital forces is given. The phase-space distribution and the interaction with an external field are also considered

  20. Number concentrations of solid particles from the spinning top aerosol generator

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1983-02-01

    A spinning top aerosol generator has been used to generate monodisperse methylene blue particles in the size range from 0.6 to 6 μm. The number concentrations of these aerosols have been determined by means of an optical particle counter and compared with the equivalent measurements obtained by filter collection and microscopy. (author)

  1. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    International Nuclear Information System (INIS)

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states

  2. Quantization of (2 + 1)-spinning particles and bifermionic constraint problem

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, R [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gavrilov, S P [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Moshin, P Yu [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil)

    2004-03-21

    This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.

  3. The classical equations of motion for a spinning point particle with charge and magnetic moment

    International Nuclear Information System (INIS)

    Rowe, E.G.P.; Rowe, G.T.

    1987-01-01

    The classical, special relativistic equations of motion are derived for a spinning point particle interacting with the electromagnetic field through its charge and magnetic moment. Radiation reaction is included. The energy tensors for the particle and for the field are developed as well-defined distributions; consequently no infinities appear. The magnitude of spin and the rest mass are conserved. (orig.)

  4. A new frozen-spin target for 4π particle detection

    International Nuclear Information System (INIS)

    Bradtke, Ch.; Dutz, H.; Peschel, H.; Goertz, S.; Harmsen, J.; Hasegawa, S.; Horikawa, N.; Iwata, T.; Kageya, T.; Matsuda, T.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Rohlof, Ch.; Thomas, A.; Wakai, A.

    1999-01-01

    A new frozen-spin target has been developed, that allows the detection of emitted particles in an angular acceptance of almost 4π in the laboratory frame. The central part of this new target represents a 3 He/ 4 He dilution refrigerator that is installed horizontally along the beam axis. The refrigerator includes an internal superconducting holding coil to maintain the nucleon polarization in the frozen-spin mode longitudinally to the beam. The design of the dilution refrigerator and the use of an internal holding coil enabled for the first time the measurement of a spin-dependent total cross section in combination with a polarized solid state target. This new frozen-spin target was used successfully to measure the helicity asymmetry of the total photoabsorption cross-section at the Mainz accelerator facility MAMI. This experiment has been performed in order to verify for the first time the GDH sum rule

  5. Benchmark tests and spin adaptation for the particle-particle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Steinmann, Stephan N.; Peng, Degao [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van, E-mail: Helen.VanAggelen@UGent.be [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: Weitao.Yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2013-11-07

    The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal O(N{sup 6}) scaling, the pp-RPA is computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA algorithm, which reduces the computational cost by a substantial factor. We then perform benchmark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and four test sets for non-bonded interactions (HB6/04, CT7/04, DI6/04, and WI9/04). For the G2/97 database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the direct particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give accurate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded interactions. These results suggest that the pp-RPA gives reliable energies in chemical applications. The adiabatic connection formalism based on pairing matrix fluctuation is therefore expected to lead to widely applicable and accurate density functionals.

  6. Quantum corrections for spinning particles in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Fröb, Markus B. [Department of Mathematics, University of York, Heslington, York, YO10 5DD (United Kingdom); Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (UB), C/ Martí i Franquès 1, 08028 Barcelona (Spain)

    2017-04-01

    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.

  7. Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles

    International Nuclear Information System (INIS)

    Freidel, Laurent; Louapre, David

    2004-01-01

    We show how to properly gauge fix all the symmetries of the Ponzano-Regge model for 3D quantum gravity. This amounts to doing explicit finite computations for transition amplitudes. We give the construction of the transition amplitudes in the presence of interacting quantum spinning particles. We introduce a notion of operators whose expectation value gives rise to either gauge fixing, introduction of time, or insertion of particles, according to the choice. We give the link between the spin foam quantization and the Hamiltonian quantization. We finally show the link between the Ponzano-Regge model and the quantization of Chern-Simons theory based on the double quantum group of SU(2)

  8. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  9. Electromagnetic properties for arbitrary spin particles: Natural electromagnetic moments from light-cone arguments

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2009-01-01

    We revisit the old-standing problem of the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and Q 2 =0 should be conserved nontrivially by the electromagnetic interaction, we are able to derive all the natural electromagnetic moments for a pointlike particle of any spin. We provide here a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments and covariant vertex functions. The light-cone helicity conservation argument determines uniquely the values of all electromagnetic moments, which we refer to as the 'natural' ones. These specific values are in accordance with the standard model, and the prediction of universal g=2 gyromagnetic factor is naturally recovered. We provide a very simple and compact formula for these natural moments. As an application of our results, we generalize the discussion of quark transverse charge densities to particles with arbitrary spin, giving more physical support to the light-cone helicity conservation argument.

  10. A new frozen-spin target for 4 pi particle detection

    CERN Document Server

    Bradtke, C; Peschel, H; Görtz, S; Harmsen, J; Hasegawa, S; Horikawa, N; Iwata, T; Kageya, T; Matsuda, T; Meier, A; Meyer, Werner T; Radtke, E; Reicherz, G; Rohlof, C; Thomas, A; Wakai, A

    1999-01-01

    A new frozen-spin target has been developed, that allows the detection of emitted particles in an angular acceptance of almost 4 pi in the laboratory frame. The central part of this new target represents a sup 3 He/ sup 4 He dilution refrigerator that is installed horizontally along the beam axis. The refrigerator includes an internal superconducting holding coil to maintain the nucleon polarization in the frozen-spin mode longitudinally to the beam. The design of the dilution refrigerator and the use of an internal holding coil enabled for the first time the measurement of a spin-dependent total cross section in combination with a polarized solid state target. This new frozen-spin target was used successfully to measure the helicity asymmetry of the total photoabsorption cross-section at the Mainz accelerator facility MAMI. This experiment has been performed in order to verify for the first time the GDH sum rule.

  11. Supersymmetry and pseudoclassical dynamics of particle with any spin

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1976-12-01

    The use of anticommuting c-numbers in describing physical systems and their simmetries has recently drawn much interest. Supersymmetry among bosons and fermions can be given an adequate formulation using them. Applications to Hamiltonian dynamics of electron adapting Dirac's method of handling singular Lagrangians were quite successful. An extension to particle of any spin following the systematic treatment of Casalbuoni et al. is discussed here. Formulation of Bargmann and Wigner for relativistic particle is obtained on quantization in self-consistent manner. It may be remarked that some of the Dirac brackets between anticommuting variables are required to go to commutators instead of anticommutators

  12. Single-Particle Spin-Orbit Splittings in Nuclei

    OpenAIRE

    Kazuhiko, ANDO; Hiroharu, BANDO; Department of Physics, Kyoto University; Division of Mathematical Physics, Fukui University

    1981-01-01

    Single-particle spin-orbit splittings (Δ^) in ^O and ^Ca nuclei are evaluated within the framework of the effective interaction theory by employing the Reid soft-core potential and meson-exchange three-body forces (TBF). Among the two-body force contributions, the Pauli-rearrangement effect on Δ^ is studied with special care. The TBF contribution to Δ^ is found to be significant. The G-matrix, the second-order pauli-rearrangement and the TBF contribute to Δ^ by the amount of ~1/2, ~1/5 and ~1...

  13. On a model of a classical relativistic particle of constant and universal mass and spin

    Energy Technology Data Exchange (ETDEWEB)

    Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)

    2009-08-07

    The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.

  14. Higgs Spin Determination and Unitarity of Vector-boson Scattering at the LHC

    CERN Document Server

    Frank, Jessica

    After the discovery of a new particle at the Large Hadron Collider (LHC), it is crucial to definitely verify or disprove whether this new 125 − 126 GeV resonance is the Higgs boson of the Standard Model (SM). Thus, its features, including its spin, have to be determined. In order to distinguish the two most likely spin hypotheses, spin-0 or spin-2, the phenomenology of light spin-2 resonances produced in different gluon-fusion and vectorboson-fusion processes at the LHC is studied. Starting from an effective model for the interaction of a spin-2 particle with SM gauge bosons, cross sections and differential distributions are calculated within the Monte Carlo program Vbfnlo. Whereas with specific model parameters, such a spin-2 resonance can mimic rates and transverse-momentum distributions of a SM Higgs boson in the main decay channels γγ, WW and ZZ, several distributions allow to separate spin-2 from spin-0, almost independently of model parameters. Since the SM Higgs boson ensures the unitarity of the S...

  15. Covariant spinor representation of iosp(d,2/2) and quantization of the spinning relativistic particle

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P.D.; Corney, S.P.; Tsohantjis, I. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)

    1999-12-03

    A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra. (author)

  16. Analysis of the start-up and control of a particle bed reactor

    International Nuclear Information System (INIS)

    Lazareth, O.W.; Araj, K.J.; Horn, F.L.; Ludewig, H.; Powell, J.R.

    1987-01-01

    This study describes the modeling of start-up transients in Particle Bed Reactors (PBR) for burst electric power. Two computer programs have been developed to analyze the start-up process. The first program (named KINETIC) analyzes the entire fuel element, calculating time dependent solutions for power and the temperature distribution in the packed bed. The second program (named SPHEAT, for Spherical Heating) calculates time-dependent temperatures inside individual, cladded fuel particles. The two programs provide powerful analytical tools for evaluation of material and geometrical options, power and time constraints, and conditions that could lead to element failures

  17. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  18. Optimal control of two coupled spinning particles in the Euler–Lagrange picture

    International Nuclear Information System (INIS)

    Delgado-Téllez, M; Ibort, A; Peña, T Rodríguez de la; Salmoni, R

    2016-01-01

    A family of optimal control problems for a single and two coupled spinning particles in the Euler–Lagrange formalism is discussed. A characteristic of such problems is that the equations controlling the system are implicit and a reduction procedure to deal with them must be carried out. The reduction of the implicit control equations arising in these problems will be discussed in the slightly more general setting of implicit equations defined by invariant one-forms on Lie groups. As an example the first order differential equations describing the extremal solutions of an optimal control problem for a single spinning particle, obtained by using Pontryagin’s Maximum Principle (PMP), will be found and shown to be completely integrable. Then, again using PMP, solutions for the problem of two coupled spinning particles will be characterized as solutions of a system of coupled non-linear matrix differential equations. The reduction of the implicit system will show that the reduced space for them is the product of the space of states for the independent systems, implying the absence of ‘entanglement’ in this instance. Finally, it will be shown that, in the case of identical systems, the degree three matrix polynomial differential equations determined by the optimal feedback law, constitute a completely integrable Hamiltonian system and some of its solutions are described explicitly. (paper)

  19. Some exact identities connecting one- and two-particle Green's functions in spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Yang Huatong

    2007-01-01

    Some exact identities connecting one- and two-particle Green's functions in the presence of spin-orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin-orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory

  20. Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Albers, J.G.; German, A.L.

    1994-01-01

    Polybutadiene (I) latexes prepd. by emulsifier-free emulsion polymn. and having particle diam. 50-300 nm for both unimodal and bimodal particles size distributions were analyzed by the line-start (LIST) method in a Brookhaven disk centrifuge photosedimentometer. A special spin fluid was designed to

  1. A spin filter polarimeter and an α-particle D-state study

    International Nuclear Information System (INIS)

    Lemieux, S.K.

    1993-01-01

    A Spin Filter Polarimeter (SFP) which reveals populations of individual hyperfine states of nuclear spin-polarized H ± (or D ± ) beams has been tested. the SFP is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of the hydrogen (or deuterium) atoms, created when the polarized ion beams pick up electrons in cesium vapor. The SFP has potential for an absolute accuracy of better than 1.5%, thus it could be used for calibrating polarimeters absolutely for low energy experiments for which no nuclear polarization standard exists. Test results show that the SFP provides a quick and elegant measure of the relative hyperfine state populations in the beam. This α-particle study is a small part of a larger project studying the deuteron-deuteron configuration of the α-particle wave function. The differential cross section and tensor analyzing powers (TAP) were measured for the 50 Ti(bar d,α) 48 Sc reaction to the J π = 7 + state in 48 Sc at E x = 1.097 MeV and compared with exact finite-range distorted-wave Born approximation (DWBA) calculations. The DWBA calculations use realistic α-particle wave functions generated from variational Monte-Carlo calculations

  2. Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.

    Science.gov (United States)

    Felderhof, B U

    2012-04-28

    The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.

  3. Non-eikonal corrections for the scattering of spin-one particles

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, M.W.; Wilkin, C. [Department of Physics and Astronomy, University College London, WC1E 6BT, London (United Kingdom); Al-Khalili, J.S. [Department of Physics, University of Surrey, GU2 7XH, Guildford, Surrey (United Kingdom)

    2004-08-01

    The Wallace Fourier-Bessel expansion of the scattering amplitude is generalised to the case of the scattering of a spin-one particle from a potential with a single tensor coupling as well as central and spin-orbit terms. A generating function for the eikonal-phase (quantum) corrections is evaluated in closed form. For medium-energy deuteron-nucleus scattering, the first-order correction is dominant and is shown to be significant in the interpretation of analysing power measurements. This conclusion is supported by a numerical comparison of the eikonal observables, evaluated with and without corrections, with those obtained from a numerical resolution of the Schroedinger equation for d-{sup 58}Ni scattering at incident deuteron energies of 400 and 700 MeV. (orig.)

  4. Comparative Aspects of Spin-Dependent Interaction Potentials for Spin-1/2 and Spin-1 Matter Fields

    Directory of Open Access Journals (Sweden)

    P. C. Malta

    2016-01-01

    Full Text Available This paper sets out to establish a comparative study between classes of spin- and velocity-dependent potentials for spin-1/2 and spin-1 matter currents/sources in the nonrelativistic regime. Both (neutral massive scalar and vector particles are considered to mediate the interactions between (pseudo-scalar sources or (pseudo-vector currents. Though our discussion is more general, we contemplate specific cases in which our results may describe the electromagnetic interaction with a massive (Proca-type photon exchanged between two spin-1/2 or two spin-1 carriers. We highlight the similarities and peculiarities of the potentials for the two different types of charged matter and also focus our attention on the comparison between the particular aspects of two different field representations for spin-1 matter particles. We believe that our results may contribute to a further discussion of the relation between charge, spin, and extensibility of elementary particles.

  5. Study on ECH-assisted start-up using trapped particle configuration in KSTAR and application to ITER

    Science.gov (United States)

    Lee, Jeongwon; Kim, Jayhyun; An, YoungHwa; Yoo, Min-Gu; Hwang, Y. S.; Na, Yong-Su

    2017-12-01

    ECH-assisted start-up using trapped particle configuration (TPC) is firstly studied in a superconducting, conventional tokamak, KSTAR. First, improved and efficient start-up using TPC than conventional field null configuration (FNC) is achieved by enhanced pre-ionization plasma quality. TPC shows the broader operation window in terms of the poloidal field quality and the deuterium prefill pressure than that of FNC. Surprisingly the particle trapping enhances the plasma start-up performance even with much lower particle trapping ratio than that of spherical torus. Reliability of TPC with low trapping ratio is investigated by 0D plasma evolution code, TECHP0D. Second, the characteristics of TPC start-up are explored with experiments and modellings. Two kind of start-up failure conditions are identified by the magnetic pitch and prefill pressure scan experiments: (i) low ionization rate; and (ii) low density condition. These experimental observation has consistency with TECHP0D modeling result. Finally, reliable ITER-relevant low toroidal electric field start-up using TPC is achieved with drastically improved success rate of start-up in KSTAR. In this experiments, validity of the ITER-like toroidally inclined ECH/ECCD injection is also expected. Time dependent ITER start-up scenario using TPC is proposed and the superiority of it than FNC is discussed.

  6. Deposition of Fungal Particles in the Lung of Workers in a Spin Factory (Minia City/ Egypt)

    International Nuclear Information System (INIS)

    Moustafa, M.; Moustafa, M.; Hofmann, W.; Winkler-Heil, R.

    2010-01-01

    Elevated levels of particle air pollution have been associated with decreased lung function, increased respiratory symptoms such as cough, shortness of breath, wheezing and asthma attacks, as well as chronic obstructive pulmonary disease (COPD), cardiovascular diseases and lung cancer (World Health Organisation, 2002). Recently, characterization of biological particles has become an important issue because of the related health effects of exposure to bio aerosols in the indoor environment influencing the intensity of sick building syndrome symptoms, such as nasal and pharyngeal mucous membrane irritations, skin dryness, itchy eyes, breathlessness, wheezing, headache, concentration problems or fatigue. Dust particles often act as a carrier for biological particles either naturally occurring or artificially generated. In cotton-spinning mills cotton dust is the major carrier for biological particles that contribute to such respiratory problems and its effect on pulmonary function among workers employed in the factory. Therefore, the aim of our study was to determine the deposition of bio aerosol particles in the human respiratory tract applying a stochastic lung model using the standard breathing parameters (ICRP, 1994) for light exercise activity. We use the size distribution parameters of bio aerosols from our previous experimental study in a cotton spin factory in Minya city (Egypt). It was found that the number of deposited particles in the lung is higher in the carding and blowing department (high cotton dust exposure) than the predicted value for the spinning department (low cotton dust exposure). The results also reveal significant dependence of fungal deposition in the lung on their composition (genera and species), concentration and size where the number of deposited Aspergillus niger particles is higher than that of the Penicillium particles in both departments

  7. Spin-1/2 particles in non-inertial reference frames. Low- and high-energy approximations

    International Nuclear Information System (INIS)

    Singh, D.; Papini, G.

    2000-01-01

    Spin-1/2 particles can be used to study inertial and gravitational effects by means of interferometers, particle accelerators, and ultimately quantum systems. These studies require, in general, knowledge of the Hamiltonian and of the inertial and gravitational quantum phases. The procedure followed gives both in the low- and high-energy approximations. The latter affords a more consistent treatment of mass at high energies. The procedure is based on general relativity and on a solution of the Dirac equation that is exact to first-order in the metric deviation. Several previously known acceleration- and rotation-induced effects are rederived in a comprehensive, unified way. Several new effects involve spin, electromagnetic and inertial/gravitational fields in different combinations

  8. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  9. Notes on T-invariance and polarization effects in the elastic scattering of a particle with spin 1/2 on the unpolarized target

    International Nuclear Information System (INIS)

    Lyuboshits, V.V.; Lyuboshits, V.L.

    1998-01-01

    In the frames of T-invariance the analysis of the general dependence of the elastic scattering effective cross section of a particle with spin 1/2 on the unpolarized target with arbitrary spin upon the initial and final polarizations of the particle has been performed. On the base of the T-symmetry of the differential scattering cross section only, without traditional consideration of the spin structure of scattering amplitudes, a simple proof of the Wolfenstein theorem is obtained (this theorem states that the degree of transverse polarization, arising in the elastic scattering of an unpolarized particle on the unpolarized target, is equal to the coefficient of left-right asymmetry in the elastic scattering of the same but transversally polarized particle on the same target). Meantime, it is ascertained that in the case of P-parity violation (conserving T-invariance) there exists no analogous universal relation between the degree of longitudinal polarization and the coefficient of P-odd spin asymmetry in the scattering of longitudinally polarized particles. It is shown, further, that under T-invariance the amplitude and cross section of 'backward' scattering of neutrons on zero-spin nuclei do not depend on spin, and the observation of such a dependence would testify unambiguously to the T-invariance violation. However, according to the fulfilled estimates, the T-noninvariant spin asymmetry in the 'backward' scattering is very small (about 10 -8 - 10 -7 )

  10. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    Science.gov (United States)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-06-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.

  11. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    International Nuclear Information System (INIS)

    Nikolaev, M.A.; Klapdor-Kleingrothaus, H.V.

    1993-01-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from 123 Te and 131 Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucelon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in 123 Te to collective 2 + excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and quenching effect disappears. The shape of the nuclear form factor for the 131 Xe isotope differs from the one obtained using an oscillator basis. (orig.)

  12. General relativistic fields of an isolated spin-half charged particle near the spin axis with application to the rest-mass of the electron and positron

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    Using a lowest-order approximation, the field equations of a general relativistic spinor-connection theory are solved semi-analytically for the fields of a stable, spin-half changed particle near the spin axis. With the exception of the atomic fine-structure constant, all parameters arising in the solution, including the rest mass of the source particle, are found by imposing the standard junction conditions of general relativity and electromagnetism. Using the empirical value for the fine-structure constant, the value derived for the rest mass gives some reason to identify the source particle with the electron. Moreover, since the rest mass is independent of the sign of the electron charge carried by the source, the solution is equally applicable to the positron

  13. Quadrupole moments of high spin states in the trans lead region

    International Nuclear Information System (INIS)

    Neyens, G.; Hardeman, F.; Nouwen, R.; S'heeren, G.; Van Den Bergh, M.; Cousement, R.

    1990-01-01

    The last few years, a lot of attention has been paid to the trans lead region. A reason for this has to be found in the fact that 208 Pb is a double magic core: both its proton and neutron shell are closed. This means that all nuclei in the lead region can be described well by the shell model, using a spherical 208 Pb core (spherical symmetric potential) and some valence particles or holes around it. The question is whether this model is also correct for high spin states. In this region, isomers with high angular momenta can only be created by alignment of all the spins of the valence particles and holes. And in some cases, alignment is not enough: core excitations are necessary to build up the large spin value of the isomeric state (e.g. the 63/2-isomer in 211 Rn. This means that a neutron pair from the closed N = 126 shell is broken up and one or both neutrons are excited to a level with higher energy and spin. The alignment of the valence-particle-spins causes an increase of the interactions between the valence particles (holes) on one hand, and between the valence particles (holes) and the hard core on the other hand. The latter interaction can cause a deformation of the core. The two interactions are taken into account in two different models: The SERI model (Spherical shell model with Empirical Residual Interactions) and the DIPM (Deformed Independent Particle Model). This paper reports that the effect of alignment of the spins of the valence particles in an isomeric state has been taken into account in the shell model by using residual interactions between the valence particles. These interactions are introduced in the theory in an empirical way or are calculated. Another model, the DIPM, takes into account the effect of alignment in a natural way: it starts from a deformed core (e.g. an axial symmetric potential) in which the valence particles are moving independently from each other)

  14. Charged particle spin flip in a storage ring with HF-electromagnetic field

    International Nuclear Information System (INIS)

    Polunin, A.A.; Shatupov, Yu.M.

    1982-01-01

    An experiment for revealing a possibility of adiabatic electron spin flip in the VEPP-2M storage ring is described. High frequency longitudinal magnetic field up to 100 Gs at the length of 40 cm and frequency of 7.95 MHz was produced by a spiral of 10 coils supplied from HF-generator with 5 kW power. The control system permitted to vary generator frequency within +-3x10 - 3 f range during 10 - 3 -10 s. Determination of beam polarization degree was exercised by detection of electron elastic scattering inside the bunch. A possibility of changing the polarization sign at preservation of other beam parameters (dimensions, currents, energy, etc.) is of interest in experiments with polarized particles in storage rings. Spin flip can be exercised by effect on the beam of high frequency electromagnetic field, resonance with spin precession frequency around the leading field of the storage ring. The polarized 5 mA beam was produced due to radiation polarization at which electron spins are alinged along the direction of the magnetic field. Processing of the experimental results revealed good correspondence to analytical dependence. The depolarization value at the spin flip did not exceed 10%

  15. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    Science.gov (United States)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  16. Decay of the high-spin isomer in 160Re: Changing single-particle structure beyond the proton drip line

    International Nuclear Information System (INIS)

    Darby, I.G.; Page, R.D.; Joss, D.T.; Simpson, J.; Bianco, L.; Cooper, R.J.; Eeckhaudt, S.; Ertuerk, S.; Gall, B.; Grahn, T.; Greenlees, P.T.; Hadinia, B.; Jones, P.M.; Judson, D.S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Nyman, M.

    2011-01-01

    A new high-spin isomeric state (t 1/2 =2.8±0.1 μs) in 160 Re has been identified. This high-spin isomer is unique in that it only decays by γ-decay and not by proton or α-particle emission as is the case in every other proton emitter between Z=64 and 80. Shell model calculations indicate how the convergence of the h 9/2 and f 7/2 neutron levels in this region could open up a γ-decay path from the high-spin isomer to the low-spin ground state of 160 Re, providing a natural explanation for this anomalous absence of charged-particle emission. The consequences of these observations for future searches for proton emission from even more exotic nuclei and in-beam spectroscopic studies are considered.

  17. Effects of the particle spin polarisation on the unstable modes in the ...

    Indian Academy of Sciences (India)

    Hengameh Khanzadeh

    2017-12-20

    Dec 20, 2017 ... cross-section compared to the fusion interaction cross- section [10]. The impact of the particle spin polarisation on the electromagnetic instabilities present in the veloc- ity space depends on the electromagnetic instabilities. The basic theory will be introduced initially according to two different kinetic models ...

  18. Duffin-Kemmer formulation of spin one-half particle gauge theory

    International Nuclear Information System (INIS)

    Samiullah, M.; Mansour, H.M.M.

    1981-02-01

    We have gauge formulated the spin one-half particle equation in the Duffin-Kemmer formalism of Barut et al. The theory distinguishes between the left and the right chiral states and has a built in chirality. As an example the theory has been applied to the Weinberg Salam model reproducing all its essential features. In view of the built in chirality a lattice gauge version of such a theory is expected to be useful. (author)

  19. On the Hamiltonian and Lagrangian formulation of classical dynamics for particles with spin

    NARCIS (Netherlands)

    Ruijgrok, Th.W.; Vlist, H. van der

    The classical mechanics of nonrelativistic particles is generalized by also considering the spin components as canonical variables. Poisson-brackets and canonical transformations are discussed. The Lagrangian equations of motion are given and it is shown how rotational invariance leads to well known

  20. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  1. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  2. Strong interaction scattering of a spin-zero particle by a 1/2 spin particle; Diffusion par interaction forte d'une particule de spin zero par une particule de spin 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Derem, Andre [Commissariat a l' Energie Atomique - CEA, Centre d' Etudes Nucleaires de Saclay, Departement de Physique des Particules Elementaires (France)

    1969-03-15

    This paper gather kinematic formulas that are commonly used to describe the scattering, with conservation of parity, 0{sup -} + 1{sup +}/2 → 0{sup -} + 1{sup +}/2 (in the notation S{sup P}, S being the spin and P the parity). The two particles 0{sup -} will be two mesons M and M', the two particles 1{sup +}/2 two baryons B and B'. The authors assume that the masses of these four particles are all different. The notations and the definitions are introduced in chapter 1. Chapter 2 recalls essential notions concerning the Dirac equation. The relativistic invariant differential cross-section is calculated in chapter 3, as a function of the invariant amplitudes A'(s,t) and B(s,t). Pauli's usual formalism in the center of mass system is given in chapter 4, as well as the means of passing f(θ) and g(θ) amplitudes to A' and B amplitudes. Chapter 5 is concerned with elastic scattering [French] Nous rassemblons ici un certain nombre de formules cinematiques qui sont utilisees couramment lorsqu'on veut decrire la diffusion, avec conservation de la parite, 0{sup -} + 1{sup +}/2 → 0{sup -} + 1{sup +}/2 (dans la notation S{sup P}, S etant le spin et P la parite). Les deux particules 0{sup -} seront deux mesons M et M', les deux particules 1{sup +}/2 deux baryons B et B'. Nous supposerons que les masses de ces quatre particules sont toutes differentes. Les notations et les definitions sont introduites au chapitre 1. Dans le chapitre 2 sont reprises les notions essentielles concernant l'equation de Dirac. La section efficace differentielle, invariante relativiste, est calculee au chapitre 3 en fonction des amplitudes invariantes A'(s,t) et B(s,t). Le formalisme habituel de Pauli dans le systeme du centre de masse est donne au chapitre 4, de meme que le moyen de passer des amplitudes f(θ) et g(θ) aux amplitudes A' et B. Le chapitre 5 concerne la diffusion elastique. Les formules sont numerotees independamment dans chaque paragraphe. Lorsque les renvois se font d

  3. NLO predictions for the production of a (750 GeV) spin-two particle at the LHC

    CERN Document Server

    Das, Goutam; Hirschi, Valentin; Maltoni, Fabio; Shao, Hua-Sheng

    2017-07-10

    We obtain predictions accurate at the next-to-leading order in QCD for the production of a generic spin-two particle in the most relevant channels at the LHC: production in association with colored particles (inclusive, one jet, two jets and $t\\bar t$), with vector bosons ($Z,W^\\pm,\\gamma$) and with the Higgs boson. We present total and differential cross sections as well as branching ratios corresponding to a spin-2 particle of 750 GeV of mass, possibly with non-universal couplings to standard model particles, at 13 TeV of center-of-mass energy. We find that the next-to-leading order corrections give rise to sizeable $K$ factors for many channels, in some cases exposing the unitarity-violating behaviour of non-universal couplings scenarios, and in general greatly reduce the theoretical uncertainties. Our predictions are publicly available in the \\amc\\ framework and can, therefore, be directly used in experimental simulations for any value of the mass and couplings.

  4. Spin and Madelung fluid

    International Nuclear Information System (INIS)

    Salesi, G.

    1995-07-01

    Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung

  5. Light-cone gauge versus proper-time gauge for massless spinning particles

    International Nuclear Information System (INIS)

    Skagerstam, B.S.; Stern, A.

    1987-01-01

    Although the light-cone gauge is convenient for many applications in physics, it is known to distort topology. We show that as a consequence, some interesting, possibly physical, features of a quantum theory may be missed when working in the light-cone gauge. We shall illustrate this by examining the description of massless spinning particles in an arbitrary number of space-time dimensions. When quantizing such particles in four space-time dimensions (without introducing Grassmann degrees of freedom), the light-cone gauge yields a purely bosonic spectrum, i.e. the helicity λ is integer-valued. The problem is rectified by going to the proper-time gauge; there λ = 0, ±1/2, ±1, ... Upon using the proper-time gauge to quantize massless particle systems in more than four space-time dimensions, we find the following interesting features: Except for space-time dimension d equal to 5 and 9, (i) wave functions cannot be expressed as global functions of momentum (or position). (This is also true for d=4.) Further, for d ≠ 5 and 9, (ii) the helicity group spin (d-2) and (iii) canonical position operators do not exist, globally. (The result that helicity cannot be globally defined resembles a known property of nonabelian monopoles arising in grand unified theories. There, topological obstructions prevent one from defining the color group, globally.) All of the features (i)-(iii) are missed when working in the light-cone gauge. (orig.)

  6. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  7. Validity of the equivalent-photon approximation for the production of massive spin-1 particles

    International Nuclear Information System (INIS)

    Jayaraman, T.

    1986-01-01

    It is pointed out that the equivalent-photon approximation (EPA) for processes with massive spin-1 particles in the final state would have validity in a more restricted kinematic domain than for processes where it is commonly applied, viz., those with spin-1/2 or spin-0 particles in the final state. The criterion for the validity of EPA for the two-photon production of a pair of charged, massive, point-like spin-1 particles V ± , each of mass M and with a standard magnetic moment (k=1) is obtained. In a process in which one of the photons is real and the other virtual with four-momentum q, the condition for the validity of EPA is absolute value of q 2 2 , in addition to the usual condition absolute value of q 2 2 , W being the V + V - invariant mass. In a process in which both photons are virtual (with four-momenta q and q'), the condition is absolute value of q 2 absolute value of q' 2 W 4 8 , in addition to absolute value of q 2 2 , absolute value of q' 2 2 and absolute value of q 2 2 , absolute value of q' 2 2 . Even when these extra conditions permitting the use of EPA are not fulfilled, convenient approximate expressions may still be obtained assuming merely absolute value of q 2 2 and absolute value of q' 2 2 . It is also discussed how the extra conditions are altered when the vector bosons are incorporated in a spontaneously broken gauge theory. Examples of W boson production in Weinberg-Salam model are considered for which the condition absolute value of q 2 absolute value of q' 2 W 4 8 is shown to be removed. (author)

  8. Supersymmetries and constants of motion in spinning spaces

    International Nuclear Information System (INIS)

    Visinescu, Mihai

    1999-01-01

    The models of relativistic particles with spin have been proposed for a long time. The first published work concerning the Lagrangian description of the relativistic particle with spin was the paper by Frenkel which appeared in 1926. After that the literature on the particle with spin grew vast. The models involving only conventional coordinates are called the classical models while the models involving anticommuting (Grassmann) coordinates are generally called pseudo-classical. We shall confine ourselves to discuss the relativistic spin one half particle models involving anticommuting vectorial degrees of freedom which are usually called spinning particles. Spinning particles are in some sense the classical limit of the Dirac particles. After the first quantization these new anticommuting variables are mapped into the Dirac matrices and they disappear from the theory. We investigate the motion of pseudo-classical spinning point particles in curved spaces. The generalized Killing equations for the configuration space of spinning particles (spinning space) are analyzed and the solutions are expressed in terms of Killing-Yano tensors. The general results are applied to the case of the four-dimensional Euclidean Taub-NUT spinning space. (author)

  9. Einstein-aether theory: dynamics of relativistic particles with spin or polarization in a Gödel-type universe

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008 (Russian Federation)

    2017-04-01

    In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupled to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.

  10. The motion of a classical spinning point particle in a Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Amorim, R.

    1983-01-01

    A consistent set of equations of motion for classical charged point particles with spin and magnetic dipole moment in a Riemann-Cartan space-time is generated from a generalized Lagrangean formalism. The equations avoid the spurius free helicoidal solutions and at the same time conserve the canonical condition of normalization of the 4-velocity. The 4-velocity and the mechanical moment are paralell in this theory, where the condition of orthogonality between the spin and the 4-velocity is treated as a non-holonomic one. (Author) [pt

  11. Remarks on the motion of macroscopic and microscopic spinning particles in relativity; Remarques sur le mouvement des particules a spin macroscopiques et microscopiques en relativite

    Energy Technology Data Exchange (ETDEWEB)

    Micoulaut, R [Commissariat a l' Energie Atomique, Limeil-Brevannes (France). Centre d' Etudes

    1968-07-01

    The Papapetrou equations of motion of a spinning particle do not allow the unequivocal determination of the world-line described by the particle. The motion should be completely determined in adding a supplementary condition. For macroscopic particles, characterized by the conditions of Corinaldesi-Papapetrou and Tulczyjew, moving in a Schwarzschild field we obtain additional term in the expression for the advance of perihelion. For microscopic particles we summarize the results obtained using the conditions of Weyssenhoff, Nakano, Hoenl-Papapetrou and Wessel. (author) [French] Les equations de Papapetrou decrivant le mouvement d'une particule a spin ne permettent pas de fixer de maniere univoque la ligne d'univers que parcourt la particule. Le mouvement sera completement determine en imposant une condition supplementaire arbitraire. Pour des particules macroscopiques, caracterisees par les conditions de Corinaldesi-Papapetrou et Tulczyjew, se deplacant dans un champ de Schwarzschild on obtient un terme supplementaire dans l'expression de l'avance du perihelie. Pour les particules microscopiques on rappellera rapidement les resultats obtenus en utilisant les conditions simples de Weyssenhoff, Nakano, Hoenl-Papapetrou et Wessel. (auteur)

  12. Spectral Gaps of Spin-orbit Coupled Particles in Deformed Traps

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2013-01-01

    the spectrum. The effect of a Zeeman term is also considered. Our results demonstrate that variable spectral gaps occur as a function of strength of the Rashba interaction and deformation of the harmonic trapping potential. The single-particle density of states and the critical strength for superfluidity vary...... tremendously with the interaction parameter. The strong variations with Rashba coupling and deformation implies that the few- and many-body physics of spin-orbit coupled systems can be manipulated by variation of these parameters....

  13. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  14. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  15. Field theory of the spinning electron: I - Internal motions

    International Nuclear Information System (INIS)

    Salesi, Giovanni; Recami, Erasmo; Universidade Estadual de Campinas, SP

    1994-05-01

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v μ , which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs

  16. Field theory of the spinning electron: I - Internal motions

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1994-05-01

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.

  17. Electromagnetic spin–orbit interaction and giant spin-Hall effect in dielectric particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yineng [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics and Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, 100081, Beijing (China)

    2013-12-09

    We report a phenomenon that electromagnetic spin–orbit interactions can be tailored by dielectric nanoparticles, and self-similar giant spin-Hall effect has been observed in the dielectric particle cluster. The near-field phase singularities and phase vorticity in the longitudinal component of scattered field can also be controlled by such a dielectric structure. The origin of phenomena is believed to be due to the collective resonance excitation in the dielectric particle cluster. It is expected to find applications in optics information processing and designing new nanophotonic devices.

  18. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  19. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  20. Dixon-Souriau equations from a 5-dimensional spinning particle in a Kaluza-Klein framework

    International Nuclear Information System (INIS)

    Cianfrani, F.; Milillo, I.; Montani, G.

    2007-01-01

    The dimensional reduction of Papapetrou equations is performed in a 5-dimensional Kaluza-Klein background and Dixon-Souriau results for the motion of a charged spinning body are obtained. The splitting provides an electric dipole moment, and, for elementary particles, the induced parity and time-reversal violations are explained

  1. Pure spin-3/2 propagator for use in particle and nuclear physics

    Science.gov (United States)

    Kristiano, J.; Clymton, S.; Mart, T.

    2017-11-01

    We propose the use of a pure spin-3/2 propagator in the (3 /2 ,0 )⊕(0 ,3 /2 ) representation in particle and nuclear physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation and we consider the Δ resonance contribution to the elastic π N scattering as an example. We find that the use of a conventional gauge-invariant interaction Lagrangian leads to a problem: the obtained scattering amplitude does not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum dependence. As in the case of the Rarita-Schwinger formalism, we find that a perfect resonance description could be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.

  2. Single-particle spin-orbit potentials of the LAMBDA and SIGMA hyperons based on the quark-model G-matrix

    CERN Document Server

    Kohno, M; Fujita, T; Nakamoto, C; Suzuki, Y

    2000-01-01

    Using the SU sub 6 quark-model baryon-baryon interaction which was recently developed by the Kyoto-Niigata group, we calculate N N, LAMBDA N and SIGMA N G--matrices in ordinary nuclear matter. Following the Scheerbaum's prescription, the strength of the single-particle spin-orbit potential S sub B is quantitatively discussed. The S subLAMBDA becomes small because of the cancellation between spin-orbit and anti-symmetric spin-orbit components. The short-range correlation is found to further reduce S subLAMBDA.

  3. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  4. Proposed procedure for experimental determination of the spin-parity of the new particle X(3410)

    Energy Technology Data Exchange (ETDEWEB)

    Chao, P; Tseng, T; Chou, C

    1977-01-01

    A procedure is proposed for the experimental determination of the spin-parity of the new particle X(3410). It consists of choosing the events representing the radiative decay psi ..-->.. X(3410) + ..gamma.. from the psi-production experiment at ..sqrt..s = 6.84 GeV, and measuring the angular distribution of the ..gamma.. photon produced in the process, and also the energy distribution of two pseudo-scalar mesons from the subsequent decay of X. The result of calculation shows that the spin-parity of X(3410) can be determined with certainty and good sensitivity.

  5. The spin structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J.M

    2005-02-15

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)

  6. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Le Goff, J.M.

    2005-02-01

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*ΔΣ + Δg + L q + L g where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L q and L g are the orbital momentum of the quark and the gluon respectively. The ΔΣ contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization Δg/g and the so-called transversity. (A.C.)

  7. Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field

    OpenAIRE

    Silenko, Alexander J.

    2008-01-01

    The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.

  8. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    dependence of the magnetisation in certain nanoparticle systems, as welll bulk systems with spin canting due to defects. In accordance with this model magnetisation measurements on goethtie (a-FeOOH) nanoparticles are presented, showing a low temperature increase in the magnetisation. The spin orientation...... experimental data from unpolarised neutron diffraction. The spin orientation is found to be close to the particle plane, which is the (111) plane of the FCC structure of NiO for particles with thickness ranging from 2.2 nm to bulk (= 200 nm) particles. In the smallest particles, with a thickness of 2.0 nm, we...

  9. Spin state determination using Stern-Gerlach device

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1996-01-01

    The well-known Stern-Gerlach device is proposed here for determination of a particle spin state instead of using it for measurement of spin observables. It is shown that measurement of particle momentum distributions (before and after the action of the device magnetic field) allows one to determine the particle initial spin state in the case of an arbitrary spin value. It is demonstrated that one cannot use for this purpose the usual treatment of the Stern-Gerlach experiment based on the entanglement of spin and spatial states. 11 refs

  10. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  11. Out-of-equilibrium spin transport in mesoscopic superconductors.

    Science.gov (United States)

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  12. Quantization of 2 + 1-spinning particles and bifermionic constraint problem

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, R.; Gavrilov, S.P.; Gitman, D.M.; Moshin, P.Yu. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2004-07-01

    In this paper, we have quantized a P- and T-noninvariant pseudoclassical model of a massive relativistic spin-1=2 particle in 2 + 1 dimensions, on the background of an arbitrary U(1) gauge vector field. A peculiar feature of the model at the classical level is that it contains a bifermionic first-class constraint, which does not admit gauge-fixing. It is shown that this first-class constraint can be realized at the quantum level as a bounded operator, which is imposed as a condition on the state vectors (by analogy with the Dirac quantization method). This allows us to generalize the quantization scheme [?] in case there is a bifermionic first-class constraint.We present a detailed construction of the Hilbert space and verify that the constructed QM possesses the necessary symmetry properties. We show that the condition of preservation of the classical symmetries under the restricted Lorentz transformations and the U(1) transformations allows one to realize the operator algebra in an unambiguous way. Within the constructed relativistic QM, we select a physical subspace which describes the one-particle sector. The physical sector of the QM contains both particles and antiparticles with positive energy hat {omega} levels, and exactly reproduces the one-particle sector of the quantum theory of the 2 + 1 spinor field. (author)

  13. Spin Calogero Particles and Bispectral Solutions of the Matrix KP Hierarchy

    International Nuclear Information System (INIS)

    Bergvelt, Maarten; Gekhtman, Michael; Kasman, Alex

    2009-01-01

    Pairs of nxn matrices whose commutator differ from the identity by a matrix of rank r are used to construct bispectral differential operators with rxr matrix coefficients satisfying the Lax equations of the Matrix KP hierarchy. Moreover, the bispectral involution on these operators has dynamical significance for the spin Calogero particles system whose phase space such pairs represent. In the case r = 1, this reproduces well-known results of Wilson and others from the 1990's relating (spinless) Calogero-Moser systems to the bispectrality of (scalar) differential operators

  14. Matrix-assisted relaxation in Fe(phen)2(NCS)2 spin-crossover microparticles, experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Enachescu, Cristian; Stancu, Alexandru; Tanasa, Radu; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure

    2016-01-01

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen) 2 (NCS) 2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  15. A Beautiful Spin

    International Nuclear Information System (INIS)

    Ji Xiangdong

    2003-01-01

    Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin

  16. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  17. A possible interaction between spin-1/2 and spin-3/2 fields

    International Nuclear Information System (INIS)

    Fleury, N.; Lopes, J.L.

    1984-01-01

    A straighforward extension of the standard Weinberg-Salam model to Rarita-Schwinger formalism, is a heuristic way to obtain electroweak currents for spin-3/2 leptons. A new interaction between spin-1/2 and spin-3/2 particles that maintains the SU(2) x U(1) gauge invariance is postulated and a possible form for the interaction involving these two types of particles and the gauge fields is obtained. This takes place through a coupling which involves derivatives of the electromagnetic field and the corresponding coupling constant is inversely proportional to the mass of spin-3/2 particles. Several reactions are possible with this new interaction such as the radiative decay of a charged Rarita-Schwinger particle. Other reactions are corrections to well-known processes: for instance, in the usual Compton effect, the fermionic virtual line can be replaced by the corresponding spin-3/2 one. But, due to the large mass of the spin-3/2 lepton, these corrections are significantly non negligible only at ultra relativistic energies. On the other hand, in the low energy limit this correction gives fortunately no contribution to the Thomson cross section because the coupling 3/2 - 1/2 - γ is proportional to the photon's momentum. If it is considered all the possible couplings of these fields, one can combine them in diagrams of lowest orders whose theoretical predictions have to be submitted to experimental pressure. (Author) [pt

  18. A possible interaction between spin-1/2 and spin-3/2 fields

    International Nuclear Information System (INIS)

    Fleury, N.; Leite Lopes, J.

    1984-01-01

    A straightforward extension of the standard Weinberg-Salam model to Rarita-Schwinger formalism, is a heuristic way to obtain electroweak currents for spin-3/2 leptons. We postulate a new interaction between spin-1/2 and spin-3/2 particles that maintains the SU(2) x U(1) gauge invariance, and we obtain a possible form for the interaction involving these two types of particles and the gauge fields. This takes place through a coupling which involves derivatives of the electromagnetic field and the corresponding coupling constant is inversely proportional to the mass of spin-3/2 particles. Several reactions are possible with this new interaction such as the radiative decay of a charged Rarita-Schwinger particle. Other reactions are corrections to well-known processes: for instance, in the usual Compton effect, the fermionic virtual line can be replaced by the corresponding spin-3/2 one. But, due to the large mass of the spin-3/2 lepton, these corrections are significantly non negligible only at ultra relativistic energies. On the other hand, in the low energy limit this correction gives fortunately no contribution to the Thomson cross section because the coupling 3/2-1/2-γ is proportional to the photon's momentum. If one considers all the possible couplings of these fields, one can combine them in diagrams of lowest orders whose theoretical predictions have to be submitted to experimental pressure

  19. On the renormalization of the pion propagator and on the particle-hole in the spin-isospin channel

    International Nuclear Information System (INIS)

    Chanfray, G.; Delorme, J.; Ericson, M.

    1983-06-01

    The momentum behavior of the spin-isospin interaction was investigated. It is shown that in a model with meson exchange in presence of short range correlations the latter produce a natural cut-off of the interaction irrespective of form factor effects. This result is the equivalent for virtual particles of a theorem due to Beg on the scattering of real particles on a correlated medium

  20. Quantum Gelfand-Levitan equations for nonlinear Schroedinger model of spin-1/2 particles

    International Nuclear Information System (INIS)

    Pu, F.; Zhao, B.

    1984-01-01

    The quantum Gelfand-Levitan equations for the nonlinear Schroedinger model of spin-(1/2) particles are obtained. Two Izergin-Korepin relations are used in the derivation. A new type commutation relation of L operators is introduced to get the commutation relations which are needed for the study of S matrices and Green's functions. As examples, the four-point Green's functions and the two-body S matrices are given

  1. Nonlinear stability of spin-flip excitations

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1975-01-01

    A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented

  2. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier

    Directory of Open Access Journals (Sweden)

    Nanni Luca

    2017-11-01

    Full Text Available This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneling is always superluminal regardless the barrier width. Conversely, the second spinor components of particle and antiparticle states may be either subluminal or superluminal depending on the barrier width. These results derive from studying the tunneling time in terms of phase time. For the first spinor components of particle and antiparticle states, it is always negative while for the second spinor components of particle and antiparticle states, it is always positive, whatever the height and width of the barrier. In total, the tunneling time always remains positive for particle states while it becomes negative for antiparticle ones. Furthermore, the phase time tends to zero, increasing the potential barrier both for particle and antiparticle states. This agrees with the interpretation of quantum tunneling that the Heisenberg uncertainty principle provides. This study’s results are innovative with respect to those available in the literature. Moreover, they show that the superluminal behaviour of particles occurs in those processes with high-energy confinement.

  3. Elementary spin excitations in ultrathin itinerant magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, Khalil, E-mail: zakeri@mpi-halle.de

    2014-12-10

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  4. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  5. Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling

    Directory of Open Access Journals (Sweden)

    VIŠESLAVA RAJKOVIĆ

    2009-05-01

    Full Text Available The powder Cu– Al2O3 composites were produced by high-energy milling. Various combinations of particle size and mixtures and approximately constant amount of Al2O3 were used as the starting materials. These powders were separately milled in air for up to 20 h in a planetary ball mill. The copper matrix was reinforced by internal oxidation and mechanical alloying. During the milling, internal oxidation of pre-alloyed Cu-2 mass %-Al powder generated 3.7 mass % Al2O3 nano-sized particles finely dispersed in the copper matrix. The effect of different size of the starting copper and Al2O3 powder particles on the lattice parameter, lattice distortion and grain size, as well as on the size, morphology and microstructure of the Cu– Al2O3 composite powder particles was studied.

  6. SPIN PHYSICS: Lasers at work

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Lasers are now an everyday tool in particle physics, particularly for the spin polarization of beams, targets, and even short-lived particles. Development has been boosted in recent years by the availability of reliable multiwatt tunable lasers to select spin in an experimentally useful sample

  7. Spin 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Gisela

    1990-12-15

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  8. Fragility of the fractional quantum spin Hall effect in quantum gases

    International Nuclear Information System (INIS)

    Fialko, O; Brand, J; Zülicke, U

    2014-01-01

    We consider the effect of contact interaction in a prototypical quantum spin Hall system of pseudo-spin-1/2 particles. A strong effective magnetic field with opposite directions for the two spin states restricts two-dimensional particle motion to the lowest Landau level. While interaction between same-spin particles leads to incompressible correlated states at fractional filling factors as known from the fractional quantum Hall effect, these states are destabilized by interactions between opposite spin particles. Exact results for two particles with opposite spin reveal a quasi-continuous spectrum of extended states with a large density of states at low energy. This has implications for the prospects of realizing the fractional quantum spin Hall effect in electronic or ultra-cold atom systems. Numerical diagonalization is used to extend the two-particle results to many bosonic particles and trapped systems. The interplay between an external trapping potential and spin-dependent interactions is shown to open up new possibilities for engineering exotic correlated many-particle states with ultra-cold atoms. (paper)

  9. Spin 1990

    International Nuclear Information System (INIS)

    Anton, Gisela

    1990-01-01

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  10. Einstein-Podolsky-Rosen argument and Bell inequalities for Bose-Einstein spin condensates

    International Nuclear Information System (INIS)

    Laloee, F.; Mullin, W. J.

    2008-01-01

    We discuss the properties of two Bose-Einstein condensates in different spin states, represented quantum mechanically by a double Fock state. Individual measurements of the spins of the particles are performed in transverse directions (perpendicular to the spin quantization axis), giving access to the relative phase of the two macroscopically occupied states. Before the first spin measurement, the phase is completely undetermined; after a few measurements, a more and more precise knowledge of its value emerges under the effect of the quantum measurement process. This naturally leads to the usual notion of a quasiclassical phase (Anderson phase) and to an interesting transposition of the Einstein-Podolsky-Rosen argument to macroscopic physical quantities. The purpose of this paper is to discuss this transposition, as well as situations where the notion of a quasiclassical phase is no longer sufficient to account for the quantum results, and where significant violations of Bell-type inequalities are predicted. Quantum mechanically, the problem can be treated exactly: the probability for all sequences of results can be expressed in the form of a double integral, depending on all parameters that define the experiment (number of particles, number and angles of measurements). We discuss the differences between this case and the usual two-spin case. We discuss the effect of the many parameters that the experimenters can adjust for their measurements, starting with a discussion of the effect of the angles of measurement (the 'settings'), and then envisaging various choices of the functions that are used to obtain violation of Bell-Clauser-Horne-Shimony-Holt inequalities. We then discuss how the 'sample bias loophole' (often also called 'efficiency loophole') can be closed in this case, by introducing a preliminary sequence of measurements to localize the particles into 'measurement boxes'. We finally show that the same nonlocal effects can be observed with distinguishable

  11. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  12. Supersymmetries and constants of motion in Taub-NUT spinning space

    International Nuclear Information System (INIS)

    Vaman, D.; Visinescu, M.

    1998-01-01

    Models of relativistic particles with spin have been proposed for a long time. The models involving only conventional coordinates are called classical, while the models involving anticommuting coordinates are generally called pseudo-classical. In this paper, the relativistic spin one half particle models involving anticommuting vectorial degrees of freedom, which are usually called the spinning particles, are considered. Spinning particles are in some sense the classical limit of the Dirac particles. After the first quantization these new anticommuting variables are mapped into the Dirac matrices and they disappear from the theory. In the present paper, the motion of pseudo-classical spinning particles in curved spaces is investigated and the relevant equations of motion are investigated. The generalized Killing equations for the configuration space of spinning particles (spinning spaces) are discussed and the constants of motion are derived in terms of the solutions of these equations. We also analysed the motion of pseudo-classical spinning particles in the Euclidean Taub-NUT space. The generalized Killing equations for this spinning space are examined and derivation of the constants of motion in terms of the Killing-Yano tensors is described. The equations obtained for the special case of motion on cone are solved. This case represents an extension of the scalar particle motions in the usual Taub-NUT space in which the orbits are conic sections. An explicit exact solution is given. In spite of its simplicity, this solution occurs to be far from trivial. (authors)

  13. Spin-flip and spin orbit interactions in heavy ion systems

    International Nuclear Information System (INIS)

    Bybell, D.P.

    1983-01-01

    The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included

  14. Matrix-assisted relaxation in Fe(phen){sub 2}(NCS){sub 2} spin-crossover microparticles, experimental and theoretical investigations

    Energy Technology Data Exchange (ETDEWEB)

    Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, “Alexandru Ioan Cuza” University, 700506 Iasi (Romania); Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Tissot, Antoine [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France); Institut Lavoisier de Versailles, UMR 8180, CNRS, Université de Versailles-Saint Quentin en Yvelines, 78035 Versailles (France); Laisney, Jérôme; Boillot, Marie-Laure, E-mail: marie-laure.boillot@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d' Orsay, Université Paris Sud, Université Paris-Saclay, CNRS, 91405 Orsay (France)

    2016-07-18

    In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.

  15. Physics of energetic particle-driven instabilities in the START spherical tokamak

    International Nuclear Information System (INIS)

    McClements, K.G.; Gryaznevich, M.P.; Akers, R.J.; Appel, L.C.; Counsell, G.F.; Roach, C.M.; Sharapov, S.E.; Majeski, R.

    1999-01-01

    The recent use of neutral beam injection (NBI) in the UKAEA small tight aspect ratio tokamak (START) has provided the first opportunity to study experimentally the physics of energetic ions in spherical tokamak (ST) plasmas. In such devices the ratio of major radius to minor radius R 0 /a is of order unity. Several distinct classes of NBI-driven instability have been observed at frequencies up to 1 MHz during START discharges. These observations are described, and possible interpretations are given. Equilibrium data, corresponding to times of beam-driven wave activity, are used to compute continuous shear Alfven spectra: toroidicity and high plasma beta give rise to wide spectral gaps, extending up to frequencies of several times the Alfven gap frequency. In each of these gaps Alfvenic instabilities could, in principle, be driven by energetic ions. Chirping modes observed at high beta in this frequency range have bandwidths comparable to or greater than the gap widths. Instability drive in START is provided by beam ion pressure gradients (as in conventional tokamaks), and also by positive gradients in beam ion velocity distributions, which arise from velocity-dependent charge exchange losses. It is shown that fishbone-like bursts observed at a few tens of kHz can be attributed to internal kink mode excitation by passing beam ions, while narrow-band emission at several hundred kHz may be due to excitation of fast Alfven (magnetosonic) eigenmodes. In the light of our understanding of energetic particle-driven instabilities in START, the possible existence of such instabilities in larger STs is discussed. (author)

  16. The Technology Endowments of Spin-off Companies

    OpenAIRE

    E. VAN DE VELDE; B. CLARYSSE; M. WRIGHT

    2008-01-01

    Innovative start-ups, including spin-offs from universities and companies, play a vital role in the development and growth of emerging, high-technology industries. Research attention has traditionally focused on the links between demographic, educational, psychological and financial influences on start-up activity and growth. The extent to which the characteristics of technology inherited from the parent, important for spin-offs, helps explain post start-up performance has been neglected. We ...

  17. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    Science.gov (United States)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  18. Spin tomography

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)

    2003-02-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.

  19. Spin tomography

    International Nuclear Information System (INIS)

    D'Ariano, G M; Maccone, L; Paini, M

    2003-01-01

    We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique

  20. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  1. Spin-polarized hydrogen, deuterium, and tritium : I

    International Nuclear Information System (INIS)

    Haugen, M.; Ostgaard, E.

    1989-01-01

    The ground-state energy of spin-polarized hydrogen, deuterium and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D, however, we obtain theoretical results for the ground-state binding energy per particle from -0.4 K at an equilibrium particle density of 0.25 σ -3 or a molar volume of 121 cm 3 /mol to +0.32 K at an equilibrium particle density of 0.21 σ -3 or a molar volume of 142 cm 3 /mol, where σ = 3.69 A (1A = 10 -10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T, we obtain theoretical results for the ground-state binding energy per particle from -4.73 K at an equilibrium particle density of 0.41 σ -3 or a molar volume of 74 cm 3 /mol to -1.21 K at an equilibrium particle density of 0.28 σ -3 or a molar volume of 109 cm 3 /mol. (Author) 27 refs., 9 figs., tab

  2. Quantum nutation of the neutron spin

    International Nuclear Information System (INIS)

    Pleshanov, N.K.

    2000-01-01

    The possibility to prepare the spin particle in a state, which is a superposition of two states with different energies (in contrast to the classical particle, the energy of which is definite in any time and position) gives a purely quantum condition for the nutation behavior of its spin

  3. Spin, statistics, and geometry of random walks

    International Nuclear Information System (INIS)

    Jaroszewicz, T.; Kurzepa, P.S.

    1991-01-01

    The authors develop and unify two complementary descriptions of propagation of spinning particles: the directed random walk representation and the spin factor approach. Working in an arbitrary number of dimensions D, they first represent the Dirac propagator in terms of a directed random walk. They then derive the general and explicit form of the gauge connection describing parallel transport of spin and investigate the resulting quantum-mechanical problem of a particle moving on a sphere in the field of a nonabelian SO(D-1) monopole. This construction, generalizing Polyakov's results, enables them to prove the equivalence of the random walk and path-integral (spin factor) representation. As an alternative, they construct and discuss various Wess-Zumino-Witten forms of the spin factor. They clarify the role played by the coupling between the particle's spin and translational degrees of freedom in establishing the geometrical properties of particle's paths in spacetime. To this end, they carefully define and evaluate Hausdorff dimensions of bosonic and fermionic sample paths, in the covariant as well as nonrelativistic formulations. Finally, as an application of the developed formalism, they give an intuitive spacetime interpretation of chiral anomalies in terms of the geometry of fermion trajectories

  4. Spin-dependent potentials, axion-like particles and Lorentz-symmetry violation. Beyond the Standard Model phenomenology at the low-energy frontier of physics

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti Malta, Pedro

    2017-06-27

    It is well known that the Standard Model is not complete and many of the theories that seek to extend it predict new phenomena that may be accessible in low-energy settings. This thesis deals with some of these, namely, novel spin-dependent interparticle potentials, axion-like particles and Lorentz-symmetry violation. In Part I we discuss the spin-dependent potentials that arise due to the exchange of a topologically massive mediator, and also pursue a comparative study between spin-1/2 and spin-1 sources. In Part II we treat massive axion-like particles that may be copiously produced in core-collapse supernovae, thus leading to a non-standard flux of gamma rays. Using SN 1987A and the fact that after its observation no extra gamma-ray signal was detected, we are able to set robust limits on the parameter space of axion-like particles with masses in the 10 keV - 100 MeV range. Finally, in Part III we investigate the effects of Lorentz-breaking backgrounds in QED. We discuss two scenarios: a modification in the Maxwell sector via the Carroll-Field-Jackiw term and a new non-minimal coupling between electrons and photons. We are able to set upper limits on the coefficients of the backgrounds by using laboratory-based measurements.

  5. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  6. Quantum consistency of a gauge-invariant theory of a massive spin-3/2 particle interacting with external fields

    International Nuclear Information System (INIS)

    Rindani, S.D.

    1989-03-01

    A gauge-invariant theory of a massive spin-3/2 particle interaction with external electromagnetic and gravitational fields, obtained earlier by Kaluza-Klein reduction of a massless Rarita-Schwinger theory, is quantized using Dirac's procedure. The field anticommutators are found to be positive definite. The theory, which was earlier shown to be free from the classical Velo-Zwanziger problem of noncausal propagation modes, is thus also free from the problem of negative-norm states, a long-standing problem associated with massive spin-3/2 theories with external interaction. (author). 19 refs

  7. Some studies of the relativistic theories for spin-3/2 particles and its interactions with an uniforme magnetic field

    International Nuclear Information System (INIS)

    Oliveira, M.A.B. de.

    1984-01-01

    We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt

  8. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  9. Antigravity: Spin-gravity coupling in action

    Science.gov (United States)

    Plyatsko, Roman; Fenyk, Mykola

    2016-08-01

    The typical motions of a spinning test particle in Schwarzschild's background which show the strong repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-Papapetrou equations. An approximated approach to choice solutions of these equations which describe motions of the particle's proper center of mass is developed.

  10. Inequivalent solutions for Dirac spin-(1/2) particles under conservation of parity I

    International Nuclear Information System (INIS)

    Liu, C. J.

    2010-01-01

    Inequivalent invariance constraints upon solutions for Dirac spin-(1/2) particles under conservation of space inversion, time reversal, and charge conjugation have been established, respectively, from standard representation. For space inversion we explicitly show that the wave functions for zero mass neutrinos satisfy only one constraint. For free particles we show that the conventional plane wave solutions as well as Foldy-Wouthuysen representation conditionally comply with the inversion constraints. As a result, only two positive energy solutions and two negative energy solutions can be established. Instead, by law of conservation of parity one shall obtain four linearly independent plane wave solutions which hold not only for positive energies but also for negative energies. We explicitly point out why conventional approach fails to obtain such result. In contrast with free particles one expects intuitively that in a Coulomb field, one can establish twice as many as conventional solutions. Indeed, one shall find easily from inversion constraints that additional linearly independent degenerate bound states have to be established. We present the explicit result.

  11. A Key Experiment of Quantum Optics: The Transfer of Spin Angular Momentum from Photons to a Birefringent Particle

    Energy Technology Data Exchange (ETDEWEB)

    Frins, E [Universidad de la Republica, Montevideo (Uruguay); Dultz, W [J.W.v.Goethe Universitaet Frankfurt/Main (Germany); Schmitzer, H, E-mail: requalivahanus@t-online.de [Xavier University, Cincinnati (United States)

    2011-01-01

    Rotating small birefringent particles with the spin angular momentum of light is a key experiment of quantum optics. We derive the equation of motion of small retarders in viscose liquids, demonstrate their some times irregular rotation in polarized light, and discuss possible technical applications.

  12. FERMILAB: High energy spin effects

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-03-15

    While many physicists would agree that it is important to study interactions of different isospin states (for example comparing proton and neutron data), many of them also accept as normal data averaged or integrated over ordinary spin. However an ongoing programme at Brookhaven studying elastic scattering (where the incoming particles 'bounce' off each other) produced marked spin effects which are not well understood. Our understanding of particle interactions should not be influenced by which observables are easy to measure and which aren't, and until a clear understanding of spin effects emerges, it is important to continue and extend these studies.

  13. Angles and Daemons: Spin Correlations at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Nhan V. [Johns Hopkins Univ., Baltimore, MD (United States)

    2011-09-01

    The Large Hadron Collider has recently started collecting data, opening a new energy regime. This will allow us to probe further than ever before many of the current mysteries of the field. New physics beyond the Standard Model, the field's current paradigm, could manifest itself via new particles. In addition, the Higgs boson, hypothesized as a consequence of electroweak symmetry breaking, remains undiscovered. At the time of discovery, the properties of such particles will be unknown. In order to understand the nature of any new physics, it will be important to understand the properties of that new particle. Methods are presented for measuring its spin, parity and coupling to the Standard Model particles. These methods are implemented at the Compact Muon Solenoid experiment and an analysis is presented with the data collected during 2010 and 2011 running at the Large Hadron Collider. An application of these techniques is used to make a measurement of the weak mixing angle. A current status of the search for the Higgs boson is also presented.

  14. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  15. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  16. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  17. On spin 3 interacting with gravity

    International Nuclear Information System (INIS)

    Zinoviev, Yu M

    2009-01-01

    Recently Boulanger and Leclercq have constructed a cubic four derivative 3 - 3 - 2 vertex for the interaction of spin 3 and spin 2 particles. This vertex is trivially invariant under the gauge transformations of the spin 2 field, so it seemed that it could be expressed in terms of the (linearized) Riemann tensor. And indeed in this paper we managed to reproduce this vertex in the form R∂Φ∂Φ, where R is the linearized Riemann tensor and Φ is the completely symmetric third rank tensor. Then we consider the deformation of this vertex to (A)dS space and show that such deformation produces a 'standard' gravitational interaction for spin 3 particles (in the linear approximation) in agreement with general construction of Fradkin and Vasiliev. Then we turn to the massive case and show that the same higher derivative terms allow one to extend the gauge invariant description of a massive spin 3 particle from constant curvature spaces to arbitrary gravitational backgrounds satisfying R μν = 0.

  18. On the concept of spin

    International Nuclear Information System (INIS)

    Pestov, I.B.

    1997-01-01

    It is substantiated that spin is a notion associated with the group of internal symmetry that is tightly connected with the geometrical structure of spacetime. The wave equation for the description of a particle with spin one half is proposed. On this ground it is shown that the spin of electron is exhibited through the quantum number and accordingly the Dirac equation describes properties of particles with the projection of spin ±h/2. On the contrary, we put forward the conjecture that the spin of the quark cannot be considered as a quantum number, but only as an origin of a non-abelian gauge field. The reason is that the quark and electron from physical, geometrical and group-theoretical points of view differ from each other. It is a deep reason for understanding quark-lepton symmetry and such important phenomena as quark confinement

  19. Berry phase for spin-1/2 particles moving in a space-time with torsion

    International Nuclear Information System (INIS)

    Alimohammadi, M.; Shariati, A.

    2001-01-01

    Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks. (orig.)

  20. Berry phase for spin-1/2 particles moving in a space-time with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alimohammadi, M. [Dept. of Physics, Tehran Univ. (Iran); Shariati, A. [Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran); Inst. for Studies in Theoretical Physics and Mathematics, Tehran (Iran)

    2001-06-01

    Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks. (orig.)

  1. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  2. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  3. Spin in stationary gravitational fields and rotating frames

    International Nuclear Information System (INIS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-01-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  4. Quantum dynamics of a particle with a spin-dependent velocity

    International Nuclear Information System (INIS)

    Aslangul, Claude

    2005-01-01

    We study the dynamics of a particle in continuous time and space, the displacement of which is governed by an internal degree of freedom (spin). In one definite limit, the so-called quantum random walk is recovered but, although quite simple, the model possesses a rich variety of dynamics and goes far beyond this problem. Generally speaking, our framework can describe the motion of an electron in a magnetic sea near the Fermi level when linearization of the dispersion law is possible, coupled to a transverse magnetic field. Quite unexpected behaviours are obtained. In particular, we find that when the initial wave packet is fully localized in space, the J z angular momentum component is frozen; this is an interesting example of an observable which, although it is not a constant of motion, has a constant expectation value. For a non-completely localized wave packet, the effect still occurs although less pronounced, and the spin keeps for ever memory of its initial state. Generally speaking, as time goes on, the spatial density profile looks rather complex, as a consequence of the competition between drift and precession, and displays various shapes according to the ratio between the Larmor period and the characteristic time of flight. The density profile gradually changes from a multimodal quickly moving distribution when the scattering rate is small, to a unimodal standing but flattening distribution in the opposite case

  5. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  6. Universal spin-momentum locked optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.

  7. Neutralino spin measurement with ATLAS

    CERN Document Server

    Ventura, A

    2007-01-01

    One of the goals of the ATLAS experiment at the LHC is to search for evidence of Supersymmetry (SUSY) signals and to measure, if discovered, the main properties of the new particles, like the spin. Left-handed squark cascade decay to second lightest neutralino which further decays to slepton represents a good opportunity for SUSY particles' spin measurement. The observability of charge asymmetries in invariant mass distributions of some final products is investigated to prove that neutralino spin is 1/2. The criteria used to select signal events and to reject background are described, together with the applied cut efficiencies. Results on charge asymmetry are then shown and discussed.

  8. NNLO QCD corrections to production of a spin-2 particle with nonuniversal couplings in the Drell-Yan process

    Science.gov (United States)

    Banerjee, Pulak; Dhani, Prasanna K.; Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2018-05-01

    We study the phenomenological impact of the interaction of spin-2 fields with those of the Standard Model in a model independent framework up to next-to-next-to-leading order in perturbative quantum chromodynamics. We use the invariant mass distribution of the pair of leptons produced at the Large Hadron Collider to demonstrate this. A minimal scenario where the spin-2 fields couple to two gauge invariant operators with different coupling strengths has been considered. These operators not being conserved show very different ultraviolet behavior increasing the searches options of spin-2 particles at the colliders. We find that our results using the higher order quantum corrections stabilize the predictions with respect to renormalization and factorization scales. We also find that corrections are appreciable which need to be taken into account in such searches at the colliders.

  9. Spin-lattice relaxation of individual solid-state spins

    Science.gov (United States)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  10. Superparamagnetism and spin-glass like state for the MnFe2O4 nano-particles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Gao Ruorui; Zhang Yue; Yu Wei; Xiong Rui; Shi Jing

    2012-01-01

    MnFe 2 O 4 nano-particles with an average size of about 7 nm were synthesized by the thermal decomposition method. Based on the magnetic hysteresis loops measured at different temperatures the temperature-dependent saturation magnetization (M S ) and coercivity (H C ) are determined. It is shown that above 20 K the temperature-dependence of the M S and H C indicates the magnetic behaviors in the single-domain nano-particles, while below 20 K, the change of the M S and H C indicates the freezing of the spin-glass like state on the surfaces. By measuring the magnetization–temperature (M–T) curves under the zero-field-cooling (ZFC) and field-cooling procedures at different applied fields, superparamagnetism behavior is also studied. Even though in the ZFC M–T curves peaks can be observed below 160 K, superparamagnetism does not appear until the temperature goes above 300 K, which is related with the strong inter-particle interaction. - Highlights: ► MnFe 2 O 4 nano-particles with size of 7 nm were prepared. ► The surface spin-glass like state is frozen below 20 K. ► The peaks in ZFC magnetization–temperature curves are observed below 160 K. ► The inter-particle interaction inhibits the superparamagnetism at room temperature.

  11. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    Science.gov (United States)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  12. Massive spin-two particle in a gravitational field

    International Nuclear Information System (INIS)

    Tauber, G.

    1980-01-01

    The spin-two particle is described by a symmetric tensor hsub(μupsilon) subject to the subsidiary conditions hsub(α)sup(α) deltasub(α)hsup(αβ) = O. Their covariant generalization and the 'wave equation' have been obtained directly from the Eulerian variational equations by algebraic methods only. In addition to the tensor field hsub(μupsilon) a symmetric third-rank tensor suplambda)GAMMAsub(μupsilon) sup(lambda)GAMMAsub(upsilonμ) as well as a vector field Asub(μ) have been added, neither of which enter in the final result. The Lagrangian function is taken as a linear sum of all combinations which can be constructed from these functions, as well as terms involving the curvature and its two possible contractions. Variation with respect to hsup(μupsilon), sup(lambda)GAMMAsub(μupsilon) and Asub(μ) independently gives the Euler equations. Combining the various trace equations and choice of arbitrary constants yields the subsidiary conditions, while the Euler equations themselves give the connection between the auxiliary functions and the tensor hsub(μupsilon) Finally, variation with respect to gsup(μupsilon) yields the energy-momentum tensor. (author)

  13. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  14. On the structure of spin-isospin excitations in nuclei

    International Nuclear Information System (INIS)

    Haerting, A.

    1984-01-01

    In this thesis properties of spin-isospin operators in nuclei are studied. Corresponding excited states carry the quantum numbers of the pion and couple therefore strongly to the virtual meson fields existing in the nucleus. The main emphasis in this thesis lies on the 1 + states in 48 Ca at 10.23 MeV and in 88 Sr at 3.48 MeV, the (e,e') form factors of which were measured over a large range of momentum transfers. Many-particle calculations yield against the one-particle model an essential improvement of the description of these form factors. But in the first maximum always by about a factor 2 too large values are obtained. Also the dependence on the momentum transfer cannot be explained correctly. The model space of these many-particle calculations must therefore be extended. We start from a shell-model calculation which regards many-particle-many-hole correlations completely in a relatively small model space and study furthermore nucleonic and non-nucleonic degrees of freedom. (orig./HSI) [de

  15. Accurate Mapping of Multilevel Rydberg Atoms on Interacting Spin-1 /2 Particles for the Quantum Simulation of Ising Models

    Science.gov (United States)

    de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine

    2018-03-01

    We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.

  16. Spin interactions in InAs quantum dots

    Science.gov (United States)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  17. D term and the structure of pointlike and composed spin-0 particles

    Science.gov (United States)

    Hudson, Jonathan; Schweitzer, Peter

    2017-12-01

    This work deals with form factors of the energy-momentum tensor (EMT) of spin-0 particles and the unknown particle property D term related to the EMT, and it is divided into three parts. The first part explores free, weakly and strongly interacting theories to study EMT form factors with the following findings. (i) The free Klein-Gordon theory predicts for the D term D =-1 . (ii) Even infinitesimally small interactions can drastically impact D . (iii) In strongly interacting theories one can encounter large negative D though notable exceptions exist, which include Goldstone bosons of chiral symmetry breaking. (iv) Contrary to common belief one cannot arbitrarily add "total derivatives" to the EMT. Rather the EMT must be defined in an unambiguous way. The second part deals with the interpretation of the information content of EMT form factors in terms of 3D densities with the following results. (i) The 3D-density formalism is internally consistent. (ii) The description is subject to relativistic corrections but those are acceptably small in phenomenologically relevant situations including nucleons and nuclei. (iii) The free-field result D =-1 persists when a spin-0 boson is not pointlike but "heuristically given some internal structure." The third part investigates the question of whether such "giving of an extended structure" can be implemented dynamically, and it has the following insights. (i) We construct a consistent microscopic theory which, in a certain parametric limit, interpolates between extended and pointlike solutions. (ii) This theory is exactly solvable which is rare in 3 +1 dimensions, admits nontopological solitons of Q -ball type, and has a Gaussian field amplitude. (iii) The interaction of this theory belongs to a class of logarithmic potentials which were discussed in the literature, albeit in different contexts including beyond-standard-model phenomenology, cosmology, and Higgs physics.

  18. On the particle excitations in the XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, A.A., E-mail: ovch@ms2.inr.ac.ru

    2013-12-09

    We continue to study the excited states for the XXZ spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to π/2. We propose the particle–hole symmetry which relates the eigenstates build up from the two different pseudovacuum states. We find the XXX spin chain limit for the eigenstates with the complex roots. We also comment on the low-energy excited states for the XXZ spin chain.

  19. Spin with two snakes and overlapping resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.; Zhao, X.F.

    1987-01-01

    We study the effect of multiple spin depolarization resonances on the spin of the particles with two snakes. When two resonances are well separated, the polarization can be restored in passing through these resonances provided that the snake resonances are avoided. When two resonances are overlapping, the beam particles may be depolarized depending on the spacing between these two resonances. If the spacing between these two resonances is an odd number for two snakes, the beam particles may be depolarized depending on the strength of the resonance. When the spacing becomes an even number, the spin can tolerate a much larger resonance strength without depolarization. Numerical simulations can be shown to agree well with the analytic formula. However, the spin is susceptible to the combination of an intrinsic and an imperfection resonances even in the presence of the snakes. Numerical simulation indicates that the spin can be restored after the resonances provided that imperfection strength is less than 0.1 if intrinsic strength is fixed at 0.745

  20. Electron with arbitrary pseudo-spins in multilayer graphene

    Institute of Scientific and Technical Information of China (English)

    Worasak Prarokijjak; Bumned Soodchomshom

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (}/2), where N={1, 2, 3, . . .}. It is said that for N>1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers.

  1. Electron with arbitrary pseudo-spins in multilayer graphene

    International Nuclear Information System (INIS)

    Prarokijjak Worasak; Soodchomshom Bumned

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (ħ/2), where N = {1, 2, 3,…}. It is said that for N > 1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers. (paper)

  2. Spin correlations in decay chains involving W bosons

    International Nuclear Information System (INIS)

    Smillie, J.M.

    2007-01-01

    We study the extent to which spin assignments of new particles produced at the LHC can be deduced in the decay of a scalar or fermion C into a new stable (or quasi-stable) particle A through the chain C→B ± q, B ± →AW ± , W ± →l ± ν l where l=e,μ. All possible spin assignments of the particles A and B are considered. Explicit invariant mass distributions of the quark and lepton are given for each set of spins, valid for all masses. We also construct the asymmetry between the chains with a W - and those with a W + . The Kullback-Leibler distance between the distributions is then calculated to give a quantitative measure of our ability to distinguish the different spin assignments. (orig.)

  3. Spinor monopole harmonics and the Pauli spin equation

    International Nuclear Information System (INIS)

    Pereira, J.G.; Ferreira, P.L.

    1982-01-01

    In the framework of Wu and Yang theory of U(1) magnetic monopoles, two problems are revisited: (i) the binding of spin-0 monopole to a spin-1/2 particle possessing an arbitrary magnetic dipole moment, and (ii) the energy levels and properties of the electron-dyon system. In both problems, the spin-1/2 particle is assumed to obey the Pauli spin equation. Spin-orbit and other higher order terms are treated as a perturbation, in connection with the second mentioned problem. Wu and Yang's spinor monopole harmonics allow an elegant and simplified treatment of those problems. The results obtained are in good agreement with those obtained in older papers. (Author) [pt

  4. Bimodal Porous Scaffolds by Sequential Electro spinning of Poly(glycolic acid) with Sucrose Particles

    International Nuclear Information System (INIS)

    Wulkersdorfer, B.; Kao, K.K.; Agopian, V.G.; Ahn, A.; Dunn, J.C.; Wu, B.M.; Stelzner, M.; Kao, K.K.; Agopian, K.J.; Dunn, J.C.; Wu, B.M.; Stelzner, M.; Dunn, J.C.; Wu, B.M.

    2009-01-01

    Electro spinning is a method to produce fine, bio polymer mesh with a three-dimensional architecture that mimics native extra-cellular matrix. Due to the small fiber diameter created in this process, conventional electro spun scaffolds have pore sizes smaller than the diameter of most cells. These scaffolds have limited application in tissue engineering due to poor cell penetration. We developed a hybrid electro spinning/particulate leaching technique to create scaffolds with increased porosity and improved cellular ingrowth. Poly(glycolic acid) (PGA) and a sucrose-ethanol suspension were electro spun in equal, alternating sequences at intervals of one, two, and ten minutes each. The scaffolds revealed fiber mesh with micropores of 10 μm and uniformly distributed sucrose particles. Particulate leaching of sucrose from the one- or two-minute scaffolds revealed honeycomb structures with interconnected macro pores between 50 and 250 μm. Sucrose leaching from the ten-minute scaffolds resulted in laminated structures with isolated macro pores between 200 and 350 μm. Macro pore size was directly proportional to the duration of the sucrose spinning interval. After 24 hours of cell culture, conventionally spun scaffolds demonstrated no cellular penetration. Conversely, the PGA/sucrose scaffolds demonstrated deep cellular penetration. This hybrid technique represents a novel method of generating electro spun scaffolds with interconnected pores suitable for cellular ingrowth.

  5. Single spin asymmetries and the spin of the proton

    International Nuclear Information System (INIS)

    Dominguez Z, G.; Herrera C, G.

    2000-01-01

    We study the spin asymmetries of inclusive π + , π 0 , π - , η and γ production in the interaction of a polarized with a non polarized proton, in the frame of a two component model. Particle production in the model is assumed to consist of a conventional QCD fragmentation process plus a recombination mechanism. The presence of Thomas precession in the recombination process seems to be responsible for the production spin asymmetry. (Author) 12 refs., 8 figs

  6. Theoretical princi les of constructing the equations of motion for a spin color-charged particle in gauge and fermion fields

    Science.gov (United States)

    Markov, Yu. A.; Shishmarev, A. A.

    2010-11-01

    Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.

  7. Nuclear spin content and constraints on exotic spin-dependent couplings

    International Nuclear Information System (INIS)

    Kimball, D F Jackson

    2015-01-01

    There are numerous recent and ongoing experiments employing a variety of atomic species to search for couplings of atomic spins to exotic fields. In order to meaningfully compare these experimental results, the coupling of the exotic field to the atomic spin must be interpreted in terms of the coupling to electron, proton, and neutron spins. Traditionally, constraints from atomic experiments on exotic couplings to neutron and proton spins have been derived using the single-particle Schmidt model for nuclear spin. In this model, particular atomic species are sensitive to either neutron or proton spin couplings, but not both. More recently, semi-empirical models employing nuclear magnetic moment data have been used to derive new constraints for non-valence nucleons. However, comparison of such semi-empirical models to detailed large-scale nuclear shell model calculations and analysis of known physical effects in nuclei show that existing semi-empirical models cannot reliably be used to predict the spin polarization of non-valence nucleons. The results of our re-analysis of nuclear spin content are applied to searches for exotic long-range monopole–dipole and dipole–dipole couplings of nuclei leading to significant revisions of some published constraints. (paper)

  8. Spin Hall effect for anyons

    International Nuclear Information System (INIS)

    Dhar, S.; Basu, B.; Ghosh, Subir

    2007-01-01

    We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis

  9. Spin-orbit scattering in superconducting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)

    2017-06-15

    We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Particle size, spin wave and surface effects on magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Varvaro, G.; Peddis, D. [Istituto di Struttura della Materia, National Research Council, Monterotondo Scalo, Roma 00015 (Italy); Kameli, P. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-01-15

    Magnesium ferrite, MgFe{sub 2}O{sub 4}, nanoparticles with a mean diameter varying from ∼6 to ∼17 nm were successfully synthesized using a simple thermal decomposition method at different annealing temperatures ranging in between 400 and 600 °C. Pure spinel ferrite nanoparticles were obtained at temperatures lower than 500 °C, while the presence of hematite (α-Fe{sub 2}O{sub 3}) impurities was observed at higher temperatures. Single-phase samples show a superparamagnetic behavior at 300 K, the saturation magnetization (M{sub s}) becoming larger with the increase of particles size. The temperature dependence of M{sub s} was explained in terms of surface spin-canting as well as spin wave excitations in the core. Using a modified Bloch law, [M{sub s}(T)=M{sub s}(0)(1−βT{sup α})], we observed a size dependent behavior of the Bloch constant β and the exponent α, whose values increase and decrease, respectively, as the particle size reduces. - Highlights: • MgFe{sub 2}O{sub 4} nanoparticles were synthesized using a thermal decomposition method. • Pure ferrite nanoparticles were obtained at temperatures lower than 500 °C. • Samples show a superparamagnetic behavior at room temperatures. • Spin wave excitations were studied using a modified Bloch law.

  11. A two-component wave equation for particles of spin 1/2 and non-zero rest mass

    International Nuclear Information System (INIS)

    Srivastava, T.

    1981-11-01

    We have discussed here the qualifications of the equation (delta 0 +sigmasup(k)deltasub(k))psi = -kappaTpsi, where deltasub(μ) is identical to delta/deltaxsup(μ), sigmasup(k) are the Pauli spin matrices, T is the linear operator which changes the sign of t, kappa=m 0 c/(h/2π) and psi a function with two components, as a suitable wave equation for a spin 1/2 particle with non-zero rest mass. We have established that both components of all its solutions satisfy the Klein-Gordon equation and that a 1-1 correspondence can be set up between its solutions and the positive energy solutions of the Dirac equation which preserves inner products (suitably defined for our case). We have then gone on to show covariance under transformations of the proper Lorentz group as also under space and time inversions and translations. Eigenfunctions of energy-momentum and spin have been explicitly found and it is shown that causality is preserved and a Green's function exists. A list appears, at the end, of points to be discussed in Part II of this paper, points which, it is hoped, will complete the acceptability of the theory. (author)

  12. Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem

    Science.gov (United States)

    Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2017-07-01

    Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.

  13. Wiggler as spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.; Conte, M.

    1993-01-01

    The spin of a polarized particle in a circular accelerator can be rotated with an arrangement of dipoles with field mutually perpendicular and perpendicular to the orbit. To achieve spin rotation, a given field integral value is required. The device must be designed in a way that the particle orbit is distorted as little as possible. It is shown that wigglers with many periods are suitable to achieve spin rotation with minimum orbit distortions. Wigglers are also more compact than more established structures and will use less electric power. Additional advantages include their use for non distructive beam diagnostics. Results are given for the Relativistic Heavy Ion Collider (RHIC) in the polarized proton mode

  14. Theories of higher spin particles

    International Nuclear Information System (INIS)

    Akshay, Y.S.; Sudarshan, Ananth

    2015-01-01

    One of the aims of theoretical physics is to understand the fundamental constituents of Nature and the interactions between them. The Standard Model of particle physics is currently our best description of Nature. It has been phenomenally successful in describing physics upto energy scales of a few hundred GeV. The SM contains matter particles (fermions), force carriers or mediators and the Higgs (bosons). The fermionic particles that make up all the visible matter around us are the leptons (electron, muon, tau, their respective neutrinos) and quarks (up, down, top, bottom, charm and strange). The force carriers of the SM mediate three of the four fundamental forces in Nature. The photon (γ) mediates the electromagnetic force, the W+,W-,Z mediate the weak force and the gluons (g) mediate the strong force. The Higgs boson plays an important role in the generation of masses for various particles

  15. NUCLEON SPIN: Enigma confirmed

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy

  16. Spin formalism and applications to new physics searches

    Energy Technology Data Exchange (ETDEWEB)

    Haber, H.E. [Univ. of California, Santa Cruz, CA (United States)

    1994-12-01

    An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector, and new gauge bosons beyond the W{sup {+-}} and Z.

  17. Spin correlations in decay chains involving W bosons TH1"-->

    Science.gov (United States)

    Smillie, J. M.

    2007-08-01

    We study the extent to which spin assignments of new particles produced at the LHC can be deduced in the decay of a scalar or fermion C into a new stable (or quasi-stable) particle A through the chain C→B±q, B±→AW±, W±→ℓ±νℓ where ℓ=e,μ. All possible spin assignments of the particles A and B are considered. Explicit invariant mass distributions of the quark and lepton are given for each set of spins, valid for all masses. We also construct the asymmetry between the chains with a W- and those with a W+. The Kullback Leibler distance between the distributions is then calculated to give a quantitative measure of our ability to distinguish the different spin assignments.

  18. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    Science.gov (United States)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  19. On higher-spin supertranslations and superrotations

    Energy Technology Data Exchange (ETDEWEB)

    Campoleoni, Andrea [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Francia, Dario; Heissenberg, Carlo [Scuola Normale Superiore and INFN,Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2017-05-22

    We study the large gauge transformations of massless higher-spin fields in four-dimensional Minkowski space. Upon imposing suitable fall-off conditions, providing higher-spin counterparts of the Bondi gauge, we observe the existence of an infinite-dimensional asymptotic symmetry algebra. The corresponding Ward identities can be held responsible for Weinberg’s factorisation theorem for amplitudes involving soft particles of spin greater than two.

  20. Long-range interaction between spins

    International Nuclear Information System (INIS)

    Naik, P.C.; Pradhan, T.

    1981-01-01

    It is shown that invariance of Lagrangian field theory under a class of the coordinate-dependent Lorentz group of transformations requires the introduction of a massless axial vector gauge field which gives rise to a super-weak long-range spin-spin force between particles in vacuum. Recent experiments demonstrating repulsion and attraction between circularly polarised laser beams are interpreted to be due to such a force enhanced by spin polarisation of sodium vapour, through which these beams pass. (author)

  1. Curci-Ferrari-type condition in Hamiltonian formalism: A free spinning relativistic particle

    Science.gov (United States)

    Shukla, A.; Bhanja, T.; Malik, R. P.

    2013-03-01

    The Curci-Ferrari (CF)-type restriction emerges in the description of a free spinning relativistic particle within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism when the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations for this system are derived from the application of the horizontality condition (HC) and its supersymmetric generalization (SUSY-HC) within the framework of the superfield formalism. We show that the above CF condition, which turns out to be the secondary constraint of our present theory, remains time-evolution invariant within the framework of Hamiltonian formalism. This time-evolution invariance i) physically justifies the imposition of the (anti-)BRST invariant CF-type condition on this system, and ii) mathematically implies the linear independence of BRST and anti-BRST symmetries of our present theory.

  2. Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability

    International Nuclear Information System (INIS)

    Dr. Norbert Pietralla

    2006-01-01

    The research project ''Nuclear Gamma-Ray Spectroscopy at the Limit of Particle Stability'' with sponsor ID ''DE-FG02-04ER41334'' started late-summer 2004 and aims at the investigation of highly excited low-spin states of selected key-nuclei in the vicinity of the particle separation threshold by means of high-resolution gamma-ray spectroscopy in electromagnetic excitation reactions. This work addresses nuclear structures with excitation energies close to the binding energy or highly excited off-yrast states in accordance with the NSAC milestones. In 2005 the program was extended towards additional use of virtual photons and theoretical description of the low-lying collective excitations in the well deformed nuclei

  3. Spin precession of a particle with an electric dipole moment: contributions from classical electrodynamics and from the Thomas effect

    International Nuclear Information System (INIS)

    Silenko, Alexander J

    2015-01-01

    The new derivation of the equation of the spin precession is given for a particle possessing electric and magnetic dipole moments. Contributions from classical electrodynamics and from the Thomas effect are explicitly separated. A fully covariant approach is used. The final equation is expressed in a very simple form in terms of the fields in the instantaneously accompanying frame. The Lorentz transformations of the electric and magnetic dipole moments and of the spin are derived from basic equations of classical electrodynamics. For this purpose, the Maxwell equations in matter are used and the result is confirmed by other methods. An antisymmetric four-tensor is correctly constructed from the electric and magnetic dipole moments. (article)

  4. The Pauli equation with differential operators for the spin

    International Nuclear Information System (INIS)

    Kern, E.

    1978-01-01

    The spin operator s = (h/2) sigma in the Pauli equation fulfills the commutation relation of the angular momentum and leads to half-integer eigenvalues of the eigenfunctions for s. If one tries to express s by canonically conjugated operators PHI and π = ( /i)delta/deltaPHI the formal angular momentum term s = PHIxπ fails because it leads only to whole-integer eigenvalues. However, the modification of this term in the form s = 1/2(π+PHI(PHI π)+PHIxπ) leads to the required result. The eigenfunction system belonging to this differential operator s(PHI, π) consists of (2s + 1) spin eigenfunctions xim(PHI) which are given explicitly. They form a basis for the wave functions of a particle of spin s. Applying this formalism to particles with s = 1/2, agreement is reached with Pauli's spin theory. The function s(PHI, π) follows from the theory of rotating rigid bodies. The continuous spin-variable PHI = ( x, y, z) can be interpreted classically as a 'turning vector' which defines the orientation in space of a rigid body. PHI is the positioning coordinate of the rigid body or the spin coordinate of the particle in analogy to the cartesian coordinate x. The spin s is a vector fixed to the body. (orig.) [de

  5. Model independent spin determination at hadron colliders

    International Nuclear Information System (INIS)

    Edelhaeuser, Lisa

    2012-01-01

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s ff of the adjacent particles. In this thesis we

  6. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  7. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  8. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  9. Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors

    International Nuclear Information System (INIS)

    Krauss, Michael

    2010-01-01

    -spots'', which are an important characteristic of the spin-orbit interaction in the hole system. Based on the results for holes in GaAs, we have introduced a model for the laser-induced ultrafast demagnetization in the ferromagnetic transition metals cobalt and nickel. Our approach is based on an Elliott-Yafet-type mechanism, i.e., it describes spin-dependent dynamics due to (mainly electron-electron) scattering transitions between states including the spin-orbit interaction. By incorporating details of the optical excitation and scattering mechanisms as well as a sufficiently realistic single-particle band structure we obtain a good agreement with experimental results for the magnitude and time scale of the demagnetization in cobalt and nickel. The last part of this thesis is concerned with an attempt to include correlations of a magnetic type and to go beyond the scattering dynamics in single-particle band structures. We investigate model systems with parameters typical of ferromagnetic semiconductors. We examine correlated spin dynamics in a one-dimensional Kondo-lattice system, and explore the ground state properties by computing the relevant two-particle correlation functions starting from an uncorrelated initial state. (orig.)

  10. Connection of spin and statistics for charge--monopole composites

    International Nuclear Information System (INIS)

    Goldhaber, A.S.

    1976-01-01

    An object composed of a spinless electrically charged particle and a spinless magnetically charged particle may bear net half-integer spin, but the wave function of two such clusters must be symmetric under their interchange. Nevertheless, a careful study of the relative motion of the clusters shows that this symmetry condition implies the usual connection between spin and statistics

  11. Higher spin gauge theories in any dimension

    International Nuclear Information System (INIS)

    Vasiliev, M.A.

    2004-01-01

    Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system

  12. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  13. High-spin nuclear spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  14. Quantum separability of thermal spin one boson systems

    International Nuclear Information System (INIS)

    Lee, Jae-Weon; Oh, Sangchul; Kim, Jaewan

    2007-01-01

    Using the temperature Green's function approach we investigate entanglement between two non-interacting spin 1 bosons in thermal equilibrium. We show that, contrary to the fermion case, the entanglement is absent in the spin density matrix. Separability is demonstrated using the Peres-Horodecki criterion for massless particles such as photons in black body radiation. For massive particles, we show that the density matrix can be decomposed with separable states

  15. Comments on spin operators and spin-polarization states of 2+1 fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P.; Tomazelli, J.L. [Departamento Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil)

    2005-02-01

    In this brief article we discuss spin-polarization operators and spin-polarization states of 2+1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2+1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2+1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory. (orig.)

  16. Spinning out a star.

    Science.gov (United States)

    Lord, Michael D; Mandel, Stanley W; Wager, Jeffrey D

    2002-06-01

    Spinouts rarely take off; most, in fact, fall into one or more of four traps that doom them from the start. Some companies spin out ventures that are too close to the core of their businesses, in effect selling off their crown jewels. Sometimes, a parent company uses the spinout primarily to pawn off debt or expenses or to quickly raise external capital for itself. Other times, a company may try to spin out an area of its business that lacks one or more of the critical legs of a successful company--a coherent business model, say, or a solid financial base. And in many cases, parent companies can't bring themselves to sever their ownership ties and give up control of their spinouts. R.J. Reynolds, the tobacco giant, managed to avoid these traps when it successfully spun out a most unlikely venture, the pharmaceutical company Targacept. As the story illustrates, the problem with spinouts is similar to the problem of rich children. Their parents have the wherewithal to spoil them or shelter them or cling to them, but what they need is tough love and discipline--much the same discipline that characterizes successful start-ups. R.J. Reynolds recognized that it didn't know that much about the pharmaceutical business and couldn't merely try to spin out a small clone of itself. It had to treat the venture as if it were essentially starting from scratch, with a passionate entrepreneurial leader, a solid business plan, help from outside partners in the industry, and ultimately substantial venture backing. That these lessons are less obvious to executives contemplating spinning out ventures closer to their core businesses may be why so many spinouts fail.

  17. Reducing quantum control for spin-spin entanglement distribution

    International Nuclear Information System (INIS)

    Ciccarello, F; Zarcone, M; Paternostro, M; Palma, G M

    2009-01-01

    We present a protocol that sets maximum stationary entanglement between remote spins through scattering of mobile mediators without initialization, post-selection or feedback of the mediators' state. No time-resolved tuning is needed and, counterintuitively, the protocol generates two-qubit singlet states even when classical mediators are used. The mechanism responsible for this effect is resilient against non-optimal coupling strengths and dephasing affecting the spins. The scheme uses itinerant particles and scattering centres and can be implemented in various settings. When quantum dots and photons are used a striking result is found: injection of classical mediators, rather than quantum ones, improves the scheme efficiency.

  18. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  19. More spinoff from spin

    International Nuclear Information System (INIS)

    Masaike, Akira

    1993-01-01

    Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production

  20. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  1. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  2. Statistical mechanics of relativistic spin-1 bosons in a magnetic field

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.

    1993-01-01

    This paper investigates the statistical mechanics of a gas of spin-1 particles with pair creation in a homogeneous magnetic field. It is shown that expansions for the thermodynamic potential and magnetization in fields below the mass scale of the constituent particles are well behaved. However, when the field is at or above the mass scale, an intrinsic pathology of the single-particle energy spectrum manifests itself in the statistical mechanics of the system. Whilst for the spin-0 and spin-1/2 analog of this system there seemed to be no barrier ab initio to the field strength, the nature of the vacuum, and the role of interactions, were always borne in mind as matters to be considered in a high-order treatment, particularly when the field was at or above the mass scale. In the spin-1 case, the pathology in the single-particle energy spectrum heralds this from the beginning, and seems to be a warning that a single particle non-interacting picture of physics at high energies needs some reconsideration. 10 refs

  3. Spin effects in nonlinear Compton scattering in a plane-wave laser pulse

    International Nuclear Information System (INIS)

    Boca, Madalina; Dinu, Victor; Florescu, Viorica

    2012-01-01

    We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.

  4. Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds

    International Nuclear Information System (INIS)

    Alam, Todd M.

    2004-01-01

    Solid-state 13 C magic angle spinning (MAS) NMR spectroscopy has been used to quantify the different carbon species observed in synthetically produced nanodiamonds. Two different diamond-like carbon species were observed using 13 C MAS NMR, which have been attributed to a highly ordered crystalline diamond phase and a disordered crystalline diamond phase. The relative ratio of these different diamond phases was found to vary with the particle size of the nanodiamond materials

  5. Organising a conference? Think about what you can do for start-ups!

    CERN Multimedia

    David Mazur

    2016-01-01

    ICTR-PHE 2016 welcomed 16 exhibitors and sponsors as part of its industrial exhibition. If you have ever (co-)organised a large scientific conference, you almost certainly have your own list of major industrial actors who could be interested in becoming exhibitors or sponsors.   The six start-ups present at ICTR-PHE 2016 – Oncoradiomics, Colnec Health, Dixit Solutions, e-Learning4Health, I-See Computing and SmART Scientific Solutions (not pictured). (Image: Salvatore Fiore) ICTR-PHE has shown that scientific conferences can have a catalysing role in transforming young start-ups and spin-off companies into the key industrial players of tomorrow. A special start-up corner was provided in the industrial exhibition, where small stands were made available for a modest fee to start-ups and spin-off companies in fields relevant to the conference theme, together with a 5-minute timeslot for a pitch to the audience. Six start-ups, from the Netherlands, Italy and France...

  6. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel

    Energy Technology Data Exchange (ETDEWEB)

    Inam, A., E-mail: aqil.ceet@pu.edu.pk; Brydson, R., E-mail: mtlrmdb@leeds.ac.uk; Edmonds, D.V., E-mail: d.v.edmonds@leeds.ac.uk

    2015-08-15

    The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite–pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite–pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite–pearlite microstructures was less uniform than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions. - Highlights: • Metallography of formation of graphite particles in experimental carbon steel. • Potential for using graphite in steel as an internal lubricant during machining. • Microstructure features expected to influence improved machinability studied. • Influence of pre-anneal starting microstructure on graphite nucleation sites. • Influence of pre-anneal starting microstructure on graphite distribution. • Potential benefit is new free-cutting steel compositions without e.g. Pb alloying.

  7. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  8. Experimental status of high-spin states

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1975-09-01

    Changes occurring in high spin nuclear states are discussed. Experimental methods for studying reduction and eventual quenching of pairing interactions, changes in nuclear shapes, and alignment of individual particle angular momenta with increasing spin are reviewed. Emphasis is placed on the study of continuum gamma rays following heavy ion reactions. (12 figures)

  9. Particle acceleration during merging-compression plasma start-up in the Mega Amp Spherical Tokamak

    Science.gov (United States)

    McClements, K. G.; Allen, J. O.; Chapman, S. C.; Dendy, R. O.; Irvine, S. W. A.; Marshall, O.; Robb, D.; Turnyanskiy, M.; Vann, R. G. L.

    2018-02-01

    Magnetic reconnection occurred during merging-compression plasma start-up in the Mega Amp Spherical Tokamak (MAST), resulting in the prompt acceleration of substantial numbers of ions and electrons to highly suprathermal energies. Accelerated field-aligned ions (deuterons and protons) were detected using a neutral particle analyser at energies up to about 20 keV during merging in early MAST pulses, while nonthermal electrons have been detected indirectly in more recent pulses through microwave bursts. However no increase in soft x-ray emission was observed until later in the merging phase, by which time strong electron heating had been detected through Thomson scattering measurements. A test-particle code CUEBIT is used to model ion acceleration in the presence of an inductive toroidal electric field with a prescribed spatial profile and temporal evolution based on Hall-MHD simulations of the merging process. The simulations yield particle distributions with properties similar to those observed experimentally, including strong field alignment of the fast ions and the acceleration of protons to higher energies than deuterons. Particle-in-cell modelling of a plasma containing a dilute field-aligned suprathermal electron component suggests that at least some of the microwave bursts can be attributed to the anomalous Doppler instability driven by anisotropic fast electrons, which do not produce measurable enhancements in soft x-ray emission either because they are insufficiently energetic or because the nonthermal bremsstrahlung emissivity during this phase of the pulse is below the detection threshold. There is no evidence of runaway electron acceleration during merging, possibly due to the presence of three-dimensional field perturbations.

  10. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  11. Non-Abelian hydrodynamics and the flow of spin in spin-orbit coupled substances

    International Nuclear Information System (INIS)

    Leurs, B.W.A.; Nazario, Z.; Santiago, D.I.; Zaanen, J.

    2008-01-01

    Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a 'fixed frame', and it can be viewed as an 'analogous system' for non-Abelian transport in the same spirit as Volovik's identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the 'fixed frame' context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw's scheme: non-Abelian hydrodynamical currents can be factored in a 'non-coherent' classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The 'particle based hydrodynamics' of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non

  12. Superparamagnetism and spin-glass like state for the MnFe{sub 2}O{sub 4} nano-particles synthesized by the thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Gao Ruorui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Zhang Yue, E-mail: yue-zhang@mail.hust.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Electric Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu Wei [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Xiong Rui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Shi Jing [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); International Center for Material Physics, Shen Yang 110015 (China)

    2012-08-15

    MnFe{sub 2}O{sub 4} nano-particles with an average size of about 7 nm were synthesized by the thermal decomposition method. Based on the magnetic hysteresis loops measured at different temperatures the temperature-dependent saturation magnetization (M{sub S}) and coercivity (H{sub C}) are determined. It is shown that above 20 K the temperature-dependence of the M{sub S} and H{sub C} indicates the magnetic behaviors in the single-domain nano-particles, while below 20 K, the change of the M{sub S} and H{sub C} indicates the freezing of the spin-glass like state on the surfaces. By measuring the magnetization-temperature (M-T) curves under the zero-field-cooling (ZFC) and field-cooling procedures at different applied fields, superparamagnetism behavior is also studied. Even though in the ZFC M-T curves peaks can be observed below 160 K, superparamagnetism does not appear until the temperature goes above 300 K, which is related with the strong inter-particle interaction. - Highlights: Black-Right-Pointing-Pointer MnFe{sub 2}O{sub 4} nano-particles with size of 7 nm were prepared. Black-Right-Pointing-Pointer The surface spin-glass like state is frozen below 20 K. Black-Right-Pointing-Pointer The peaks in ZFC magnetization-temperature curves are observed below 160 K. Black-Right-Pointing-Pointer The inter-particle interaction inhibits the superparamagnetism at room temperature.

  13. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  14. Landau Levels of Majorana Fermions in a Spin Liquid.

    Science.gov (United States)

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  15. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  16. Next generation spin torque memories

    CERN Document Server

    Kaushik, Brajesh Kumar; Kulkarni, Anant Aravind; Prajapati, Sanjay

    2017-01-01

    This book offers detailed insights into spin transfer torque (STT) based devices, circuits and memories. Starting with the basic concepts and device physics, it then addresses advanced STT applications and discusses the outlook for this cutting-edge technology. It also describes the architectures, performance parameters, fabrication, and the prospects of STT based devices. Further, moving from the device to the system perspective it presents a non-volatile computing architecture composed of STT based magneto-resistive and all-spin logic devices and demonstrates that efficient STT based magneto-resistive and all-spin logic devices can turn the dream of instant on/off non-volatile computing into reality.

  17. Observation of Spin-Polarons in a strongly interacting Fermi liquid

    Science.gov (United States)

    Zwierlein, Martin

    2009-03-01

    We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.

  18. CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE

    International Nuclear Information System (INIS)

    Takahashi, Masaaki; Koyama, Hiroko

    2009-01-01

    The observational data from some black hole candidates suggest the importance of electromagnetic fields in the vicinity of a black hole. Highly magnetized disk accretion may play an importance rule, and large-scale magnetic field may be formed above the disk surface. Then, we expect that the nature of the black hole spacetime would be revealed by magnetic phenomena near the black hole. We will start investigating the motion of a charged test particle which depends on the initial parameter setting in the black hole dipole magnetic field, which is a test field on the Kerr spacetime. Particularly, we study the spin effects of a rotating black hole on the motion of the charged test particle trapped in magnetic field lines. We make detailed analysis for the particle's trajectories by using the Poincare map method, and show the chaotic properties that depend on the black hole spin. We find that the dragging effects of the spacetime by a rotating black hole weaken the chaotic properties and generate regular trajectories for some sets of initial parameters, while the chaotic properties dominate on the trajectories for slowly rotating black hole cases. The dragging effects can generate the fourth adiabatic invariant on the particle motion approximately.

  19. Projection operator and propagator for an arbitrary integral spin

    CERN Document Server

    Huang Shi Zhong; Wu Ning; Zheng Zhi Peng

    2002-01-01

    Based on the solution of the Bargmann-Wigner equation for an arbitrary integral spin, a direct derivation of the projection operator and propagator for an arbitrary integral spin is presented. The explicit form for the spin projection operators constructed by Behrends and Fronsdal is confirmed. The commutation rules and a general expression for the Feynman propagator for a free particle of arbitrary integral spin are deduced

  20. Massless representations and admissibility condition for higher spin superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Konstein, S E; Vasiliev, M A

    1989-01-16

    Massless particle representations of various infinite-dimensional higher spin superalgebras proposed previously are constructed. We analyse which of higher spin superalgebras obey the requirement (the admissibility condition) of possessing massless unitary representations with the same spectra of spins as predicted by the structure of gauge fields originating from these superalgebras. It is argued that those higher spin superalgebras, which obey the admissibility condition, can serve as rigid supersymmetries in nontrivial consistent gauge theories of massless fields of all spins.

  1. Spin currents in a normal two-dimensional electron gas in contact with a spin-orbit interaction region

    International Nuclear Information System (INIS)

    Sukhanov, Aleksei A; Sablikov, Vladimir A; Tkach, Yurii Ya

    2009-01-01

    Spin effects in a normal two-dimensional (2D) electron gas in lateral contact with a 2D region with spin-orbit interaction are studied. The peculiarity of this system is the presence of spin-dependent scattering of electrons from the interface. This results in an equilibrium edge spin current and nontrivial spin responses to a particle current. We investigate the spatial distribution of the spin currents and spin density under non-equilibrium conditions caused by a ballistic electron current flowing normal or parallel to the interface. The parallel electron current is found to generate a spin density near the interface and to change the edge spin current. The perpendicular electron current changes the edge spin current proportionally to the electron current and produces a bulk spin current penetrating deep into the normal region. This spin current has two components, one of which is directed normal to the interface and polarized parallel to it, and the second is parallel to the interface and is polarized in the plane perpendicular to the contact line. Both spin currents have a high degree of polarization (∼40-60%).

  2. Gravity and the Spin-2 Planar Schrödinger Equation

    Science.gov (United States)

    Bergshoeff, Eric A.; Rosseel, Jan; Townsend, Paul K.

    2018-04-01

    A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2 +1 dimensions, of the massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized Einstein field equations in 3 +1 dimensions, and in this context a uniform distribution of spin-2 particles implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic oscillator potential for the individual particles.

  3. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  4. Global positioning of spin GPS scheme for half-spin massive spinors

    CERN Document Server

    Jadach, Stanislaw; Was, Zbigniew

    2001-01-01

    We present a simple and flexible method of keeping track of the complex phases and spin quantisation axes for half-spin initial- and final-state Weyl spinors in scattering amplitudes of Standard Model high energy physics processes. Both cases of massless and massive spinors are discussed. The method is demonstrated and checked numerically for spin correlations in tau tau production and decay. Its application is in our work of combining effects due to multiple photon emission (exponentiation) and spin, embodied in the Monte Carlo event generators for production and decay of unstable fermions such as the, tau lepton, t-quark and hypothetical new heavy particles. In particular, the recurrent problem of combining, for such unstable fermions, one author's calculation of production and another author's calculation of decay, in the presence or absence of multiple photon effects, is there given a practical solution, both for Weyl spinor methods and for the traditional Jacob-Wick helicity methods. Moreover, for massiv...

  5. Pulse-based electron spin transient nutation measurement of BaTiO3 fine particle: Identification of controversial signal around g = 2.00

    Science.gov (United States)

    Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa

    2018-05-01

    Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.

  6. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  7. Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions

    International Nuclear Information System (INIS)

    Niţa, Marian; Ostahie, Bogdan; Marinescu, D C; Manolescu, Andrei; Gudmundsson, Vidar

    2012-01-01

    When subjected to a linearly polarized terahertz pulse, a mesoscopic ring endowed with spin-orbit interaction (SOI) of the Rashba-Dresselhaus type exhibits non-uniform azimuthal charge and spin distributions. Both types of SOI couplings are considered linear in the electron momentum. Our results are obtained within a formalism based on the equation of motion satisfied by the density operator which is solved numerically for different values of the angle φ, the angle determining the polarization direction of the laser pulse. Solutions thus obtained are later employed in determining the time-dependent charge and spin currents, whose values are calculated in the stationary limit. Both these currents exhibit an oscillatory behavior complicated in the case of the spin current by a beating pattern. We explain this occurrence on account of the two spin-orbit interactions which force the electron spin to oscillate between the two spin quantization axes corresponding to Rashba and Dresselhaus interactions. The oscillation frequencies are explained using the single particle spectrum.

  8. Towards the solution of the nucleon spin problem

    International Nuclear Information System (INIS)

    Moroz, Z.

    1994-01-01

    Experimental confirmation of the nucleon quark structure is usually identified with the results of MIT-SLAC inelastic scattering program. In particular, measurements of the cross-sections for the deep inelastic scattering (DIS) of electrons: e + p → e'+X allowed to study a matter granularity of the order of λ < 0.5 fermis. From very beginning DIS of polarized leptons off polarized protons was recognized as an excellent tool for studying of the internal spin structure of nucleons. Already the first studies of the deep inelastic scattering (DIS) of polarized leptons off polarized protons (EMC/CERN and SLAC/Stanford, 1987-88) have shown, that an amount of the proton spin carried by quarks is surprisingly small. This phenomenon was named ''the proton spin crisis''. In this lecture the present status of this subject is reviewed. After an introduction to the polarized DIS, the experimental aspects of the proton spin crisis are discussed. Then, some theoretical explanation of this phenomenon are listed. Recent progress in the obtaining polarized particles inside the storage rings as well as development of the polarized internal gas targets made possible to start new generation of experiments. Two such projects using polarized electrons, namely HERMES and SLAC E-143 as well as the proposed studies of polarized p + p DIS in the storage ring RHIC are presented. Some ideas about future extensions of such experiments are also discussed. Many facts concerning the subject were learned by the author during his participation in FILTEX/HERMES project in Heidelberg. Therefore, all members of this group are warmly acknowledged for many discussions of the problems raised in this lecture. (author). 31 refs, 1 fig., 1 tab

  9. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  10. Prima facie evidence against spin-two Higgs impostors

    OpenAIRE

    Ellis, John; Sanz, Veronica; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too s...

  11. Testing a spin-2 mediator by angular observables in b →s μ+μ-

    Science.gov (United States)

    Fajfer, Svjetlana; Melić, Blaženka; Patra, Monalisa

    2018-05-01

    We consider the effects of the spin-2 particle in the b →s μ+μ- transition assuming that the spin-2 particle couples in a flavor-nonuniversal way to b and s quarks and in the leptonic sector couples only to the muons, thereby only contributing to the process b →s μ+μ-. The Bs-B¯s transition gives the strong constraint on the coupling of the spin-2 mediator and b and s quarks, while the observed discrepancy from the standard model prediction for the muon anomalous magnetic moment (g -2 )μ serves to constrain the μ coupling to a spin-2 particle. We find that the spin-2 particle can modify the angular observables in the B →K μ+μ- and B →K*μ+μ- decays and produce effects that do not exist in the standard model. The generated forward-backward asymmetries in these processes can reach 15%, while other observables for these decays receive tiny effects.

  12. Rotating Wigner molecules and spin-related behaviors in quantum rings

    International Nuclear Information System (INIS)

    Yang Ning; Zhu Jialin; Dai Zhensheng

    2008-01-01

    The trial wavefunctions for few-electron quantum rings are presented to describe the spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the single-particle orbits which contain two variational parameters to describe the shape and size dependence of electron localization in the ring-like confinement. They can explicitly show the size dependence of single-particle orbital occupation to give an understanding of the spin rules of ground states without magnetic fields. They can also correctly describe the spin and angular momentum transitions in magnetic fields. By examining the von Neumann entropy, it is demonstrated that the wavefunctions can illustrate the entanglement between electrons in quantum rings, including the AB oscillations as well as the spin and size dependence of the entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors of a few electrons in quantum rings

  13. Systematics of higher-spin gauge fields

    International Nuclear Information System (INIS)

    de Wit, B.; Freedman, D.Z.

    1980-01-01

    Free-field theories for symmetric tensor and tensor-spinor gauge fields have recently been obtained which describe massless particles of arbitrary integer or half-integer spin. An independent discussion of these field theories is given here, based on a hierarchy of generalized Christoffel symbols with simple gauge transformation properties. The necessity of certain constraints on gauge fields and parameters is easily seen. Wave equations and Lagrangians are expressed in terms of the Christoffel symbols, and the independent modes of the system are counted in covariant gauges. Minimal-coupling inconsistency and a combined system of higher-spin boson gauge fields interacting with relativistic particles is discussed

  14. The Ising model in the scaling limit as model for the description of elementary particles

    International Nuclear Information System (INIS)

    Weinzierl, W.

    1981-01-01

    In this thesis a possible way is stepped over which starts from the derivation of a quantum field theory from simplest statistical degrees of freedom, as for instance in a two-level system. On a model theory, the Ising model in (1+1) dimensions the idea is explained. In this model theory two particle-interpretable quantum fields arise which can be constructed by a basic field which parametrizes the local dynamics in a simplest way. This so called proliferation is further examined. For the proliferation of the basic field a conserved quantity, a kind of parity is necessary. The stability of both particle fields is a consequence of this conservation law. For the identification of the ''particle-interpretable'' fields the propagators of the order and disorder parameter field are calculated and discussed. An effective Hamiltonian in this particle fields is calculated. As further aspect of this transition from the statistical system to quantum field theory the dimensional transmutation and the closely to this connected mass renormalization is examined. The relation between spin systems in the critical region and fermionic field theories is explained. Thereby it results that certain fermionic degrees of freedom of the spin system vanish in the scaling limit. The ''macroscopically'' relevant degrees of freedom constitute a relativistic Majorana field. (orig./HSI) [de

  15. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  16. Spin analysis of photoelectrons by using synchrotron radiation

    International Nuclear Information System (INIS)

    Yagishita, Akira

    1983-03-01

    This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)

  17. Geometrical treatment of Clifford algebras and spinors with applications to the dynamics of spin particles

    International Nuclear Information System (INIS)

    Dimakis, A.

    1983-01-01

    The algebraic structure of the real Clifford algebras (CA) of vector spaces with non-degenerated scalar product of arbitrary signature is studied, and a classification formula for this is obtained. The latter is based on three sequences of integer numbers from which one is the Radon-Harwitz sequence. A new representation method of real CA is constructed. This leads to a geometrical representation of real Clifford algebras in which the representation spaces are subspaces of the CA itself (''spinor spaces''). One of these spinor spaces is a subalgebra of the original CA. The relation between CA and external algebras is studied. Each external algebra with a scalar product possesses the structure of a CA. From the geometric representation developed here then follows that spinors are inhomogeneous external forms. The transformation behaviour of spinors under the orthogonal, as well as under the general linear group is studied. By means of these algebraic results the spinor connexion and the covariant Dirac operator on a differential manifold are introduced. In the geometrical representation a further in ternal SL(2,R) symmetry of the Dirac equation (DE) is shown. Furthermore other equivalent formulations of the DE can be obtained. Of special interest is the tetrade formulation of the DE. A generalization of the DE is introduced. The equations of motion of the classical relativistic spin particle are derived by means of spinors and CA from a variational principle. From this interesting formal analogies with the supersymmetric theories of the spin particle result. Finally the DE in the curved space-time is established and studied in the tetrade formulation. Using the methods developed here a new exact solution of the coupled Einstein-Curtan-Dirac theory was found (massice ''Ghost-Dirac fields''). (orig.) [de

  18. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date.

  19. Spacetime structure of massive Majorana particles and massive gravitino

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, D.V.; Kirchbach, M. [Theoretical Physics Group, Facultad de Fisica, Universidad Autonoma de Zacatecas, A.P. 600, 98062 Zacatecas (Mexico)

    2003-07-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear {gamma} {mu} p{sub {mu}}, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The latter is distributed uniformly, i.e. as 1/4, among the two spin-1/2+ and spin-1/2- states of opposite parities. From that we draw the conclusion that the massive gravitino should be interpreted as a particle of multiple spin. (Author)

  20. Structure of high-spin isomers in trans-lead nuclei

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1990-01-01

    The structure of core-excited high-spin isomers in the N ≤ 126 isotopes of At, Rn and Fr is reviewed. New results for high-spin states in 211 Rn and 212 Rn, approaching the limit of the available angular momentum from the valence particles, are presented. The recurring experimental feature is decay by very enhanced E3 transitions. These, and other properties are explained in a natural way by inclusion of particle-octupole vibration coupling, in a semi-empirical shell model. The deformed independent particle model is not successful in explaining these features. 40 refs., 4 tabs., 11 figs

  1. Coupled dynamics of interacting spin-1 bosons in a double-well potential

    Science.gov (United States)

    Carvalho, D. W. S.; Foerster, A.; Gusmão, M. A.

    2018-03-01

    We present a detailed analysis of dynamical processes involving two or three particles in a double-well potential. Motivated by experimental realizations of such a system with optically trapped cold atoms, we focus on spin-1 bosons with special attention on the effects of a spin-dependent interaction in addition to the usual Hubbard-like repulsive one. For a sufficiently weak tunneling amplitude in comparison to the dominant Hubbard coupling, particle motion is strongly correlated, occurring only under fine-tuned relationships between well-depth asymmetry and interactions. We highlight processes involving tunneling of coupled particle pairs and triads, emphasizing the role of the spin-dependent interaction in resonance conditions.

  2. Decay of heavy mesons into possible spin 3/2 leptons

    International Nuclear Information System (INIS)

    Carvalho, H.F. de; Antunes, A.C.B.

    1982-01-01

    The recent interest in the study of possible spin 3/2 leptons motivated our calculation of the decay rate of heavy mesons into these leptons. The mesons be upsilon UPSILON particles (bb sup(-) systems) or any other system of the qq sup(-) (quark-antiquark) kind with mass larger than those of the upsilon particles, for example, tt sup(-) bound states (not yet detected). The decay rate of these mesons is calculated as a function of the mass of the spin 3/2 leptons. The results obtained are compared with those of the spin 1/2 leptons. (Author) [pt

  3. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  4. Brownian motion of spins; generalized spin Langevin equation

    International Nuclear Information System (INIS)

    Jayannavar, A.M.

    1990-03-01

    We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concomitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature. (author). 16 refs

  5. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  6. Summary of spin physics sessions

    International Nuclear Information System (INIS)

    Roser, T.

    1988-01-01

    The list of topics in the many talks given during the Spin Physics sessions of this Intersections conference is nearly as long as the one of this conference: P and T Violation NN Interaction πp and πd Elastic Scattering Nuclear Matter Spin Effects Muon (g-2) Polarized Proton Beams Polarized Gas Targets This points to the almost trivial fact that spin is fundamental to our understanding of nuclear and particle physics. I will discuss in some detail only four of these topics. Needless to say this choice is very much personally biased and I apologize to all the speakers whose excellent contributions I did not include

  7. Size and field effect on mesoscopic spin glass

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)]. E-mail: komatsu@az.appi.keio.ac.jp; Maki, H. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Taniyama, T. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sato, T. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)

    2007-03-15

    Spin glass particles were prepared as the mesoscopic system in order to examine the space scale of spin glass domain (droplet). The peak temperature T {sub peak} in the temperature-dependent magnetization is systematically reduced with decreasing average particle size. This is due to the imitation of droplet growth to the particle diameter. The magnetic field H also decreases T {sub peak}, which is caused by the reduction of the barrier height by Zeeman energy. However, there appears different tendency in the relation between H and T {sub peak} below 100 Oe. This indicates the existence of crossover between the two regimes in which the free energy and Zeeman energy govern the droplet excitation.

  8. Persistent spin helices in 2D electron systems

    Science.gov (United States)

    Kozulin, A. S.; Malyshev, A. I.; Konakov, A. A.

    2017-03-01

    We present a theoretical investigation of persistent spin helices in two-dimensional electron systems with spin-orbit coupling. For this purpose, we consider a single-particle effective mass Hamiltonian with a generalized linear-in- k spin-orbit coupling term corresponding to a quantum well grown in an arbitrary crystallographic direction, and derive the general condition for the formation of the persistent spin helix. This condition applied for the Hamiltonians describing quantum wells with different growth directions indicates the possibility of existence of the persistent spin helix in a wide class of 2D systems apart from the [001] model with equal Rashba and Dresselhaus spin-orbit coupling strengths and the [110] Dresselhaus model.

  9. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  10. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun

    2015-11-21

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this paper, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  11. Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids

    International Nuclear Information System (INIS)

    Laflorencie, Nicolas; Rachel, Stephan

    2014-01-01

    Quantum critical chains are well-described and understood by virtue of conformal field theory. Still, the meaning of the real space entanglement spectrum—the eigenvalues of the reduced density matrix—of such systems remains elusive in general, even when there is an additional quantum number available such as the spin or particle number. In this paper, we explore in detail the properties and structure of the reduced density matrix of critical XXZ spin- (1/2) chains. We investigate the quantum/thermal correspondence between the reduced density matrix of a T = 0 pure quantum state and the thermal density matrix of an effective entanglement Hamiltonian. Using large scale DMRG and QMC simulations, we investigate the conformal structure of the spectra, the entanglement Hamiltonian, and temperature. We then introduce the notion of spin-resolved entanglement entropies, which display interesting scaling features. (paper)

  12. Resolution of Single Spin-Flips of a Single Proton

    CERN Document Server

    Mooser, A.; Blaum, K.; Bräuninger, S.A.; Franke, K.; Leiteritz, C.; Quint, W.; Rodegheri, C.C.; Ulmer, S.; Walz, J.

    2013-04-04

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.

  13. Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)

    2017-04-15

    By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.

  14. Quasi spin pairing and the structure of the Lipkin model

    International Nuclear Information System (INIS)

    Cambiaggio, M.C.; Plastino, A.

    1978-01-01

    By introducing the concepts of quasi-spin pairing and quasi-spin seniority, the Lipkin model is extended to a variable number of particles. The properties of quasi-spin pairing are seen to be quite similar to those of ordinary pairing. The quasi-spin seniority allows one to obtain a simple classification of excited multiplets. A 'pairing plus monopole' model is studied in connection with the Hartree-Fock theory. (orig.) [de

  15. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  16. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  17. The start-up processes of academic spin-offs and non-academic ventures

    OpenAIRE

    Roininen, Sari

    2006-01-01

    New and small firms are important for the national economic growth, and hence there is a growing interest among policy makers and researchers in understanding the start-up processes among new ventures in order to facilitate more new venture creations. Prior research addressing new ventures' start-up processes focus mainly on the individual behind the venture or different activities in the start-up process. The overall purpose of this study is to increase the understanding of new venture s...

  18. A simple method to extract information on anisotropy of particle fluxes from spin-modulated counting rates of cosmic ray telescopes

    International Nuclear Information System (INIS)

    Hsieh, K.C.; Lin, Y.C.; Sullivan, J.D.

    1975-01-01

    A simple method to extract information on anisotropy of particle fluxes from data collected by cosmic ray telescopes on spinning spacecraft but without sectored accumulators is presented. Application of this method to specific satellite data demonstrates that it requires no prior assumption on the form of angular distribution of the fluxes; furthermore, self-consistency ensures the validity of the results thus obtained. The examples show perfect agreement with the corresponding magnetic field directions

  19. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  20. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  1. Covariant introduction of quark spin into the dual resonance model

    International Nuclear Information System (INIS)

    Iroshnikov, G.S.

    1979-01-01

    A very simple method of insertion of a quark spin into the dual resonance model of hadron interaction is proposed. The method is suitable for amplitudes with an arbitrary number of particles. The amplitude of interaction of real particles is presented as a product of contribution of oscillatory excitations in the (q anti q) system and of a spin factor. The latter is equal to the trace of the product of the external particle wave functions constructed from structural quarks and satisfying the relativistic Bargman-Wigner equations. Two examples of calculating the meson interaction amplitudes are presented

  2. Flocking from a quantum analogy: spin-orbit coupling in an active fluid

    Science.gov (United States)

    Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.

    2018-01-01

    Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.

  3. Spin transport in non-inertial frame

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2014-09-01

    The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin–orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the k{sup →}.p{sup →} method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

  4. Quantum communication in spin star configuration

    International Nuclear Information System (INIS)

    Deng Hongliang; Fang Ximing

    2008-01-01

    This paper considers a generalized spin star system which can be solved exactly, with the central spin-½ system embedded in an outer ring of N spinparticles(denoted as spin bath). In this model, in addition to the central-outer interaction, each pair of nearest neighbour of the bath interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of the symmetries of system. It analyses the quantum state transfer and the dynamical behaviour of entanglement created during quantum communication. It also analyses the efficiency of the configuration regarded as quantum phase covariant clone or decoherence model. Some interesting results are discovered concerning the properties of quantum communication in this model

  5. Dual descriptions of spin-two massive particles in D=2+1 via master actions

    Science.gov (United States)

    Dalmazi, D.; Mendonça, Elias L.

    2009-02-01

    In the first part of this work we show the decoupling (up to contact terms) of redundant degrees of freedom which appear in the covariant description of spin-two massive particles in D=2+1. We make use of a master action which interpolates, without solving any constraints, between a first-, second-, and third-order (in derivatives) self-dual model. An explicit dual map between those models is derived. In our approach the absence of ghosts in the third-order self-dual model, which corresponds to a quadratic truncation of topologically massive gravity, is due to the triviality (no particle content) of the Einstein-Hilbert action in D=2+1. In the second part of the work, also in D=2+1, we prove the quantum equivalence of the gauge invariant sector of a couple of self-dual models of opposite helicities (+2 and -2) and masses m+ and m- to a generalized self-dual model which contains a quadratic Einstein-Hilbert action, a Chern-Simons term of first order, and a Fierz-Pauli mass term. The use of a first-order Chern-Simons term instead of a third-order one avoids conflicts with the sign of the Einstein-Hilbert action.

  6. Dual descriptions of spin-two massive particles in D=2+1 via master actions

    International Nuclear Information System (INIS)

    Dalmazi, D.; Mendonca, Elias L.

    2009-01-01

    In the first part of this work we show the decoupling (up to contact terms) of redundant degrees of freedom which appear in the covariant description of spin-two massive particles in D=2+1. We make use of a master action which interpolates, without solving any constraints, between a first-, second-, and third-order (in derivatives) self-dual model. An explicit dual map between those models is derived. In our approach the absence of ghosts in the third-order self-dual model, which corresponds to a quadratic truncation of topologically massive gravity, is due to the triviality (no particle content) of the Einstein-Hilbert action in D=2+1. In the second part of the work, also in D=2+1, we prove the quantum equivalence of the gauge invariant sector of a couple of self-dual models of opposite helicities (+2 and -2) and masses m + and m - to a generalized self-dual model which contains a quadratic Einstein-Hilbert action, a Chern-Simons term of first order, and a Fierz-Pauli mass term. The use of a first-order Chern-Simons term instead of a third-order one avoids conflicts with the sign of the Einstein-Hilbert action.

  7. Spin theory of the density functional: reduced matrices and density functions

    International Nuclear Information System (INIS)

    Pavlov, R.; Delchev, Y.; Pavlova, K.; Maruani, J.

    1993-01-01

    Expressions for the reduced matrices and density functions of N-fermion systems of arbitrary order s (1<=s<=N) are derived within the frame of rigorous spin approach to the density functional theory (DFT). Using the local-scale transformation method and taking into account the particle spin it is shown that the reduced matrices and density functions are functionals of the total one-fermion density. Similar dependence is found for the distribution density of s-particle aggregates. Generalization and applicability of DFT to the case of s-particle ensembles and aggregates is discussed. 14 refs

  8. Switching field of partially exchange-coupled particles

    International Nuclear Information System (INIS)

    Oliva, M.I.; Bertorello, H.R.; Bercoff, P.G.

    2004-01-01

    The magnetization reversal of partially exchange-coupled particles is studied in detail. The starting point is the observation of a complicated phenomenology in the irreversible susceptibility and FORC distribution functions of Ba hexaferrite samples obtained by means of different sintering conditions. Several peaks in the first-order reversal curve (FORC) distribution functions were identified and associated with clusters with different number of particles. The switching fields of these clusters were related to an effective anisotropy constant Keff that depends on the number of particles in the cluster. Keff is linked to the exchange-coupled volume between two neighboring particles and as a weighted mean between the anisotropy constants of the coupled and uncoupled volumes. By using the modified Brown's equation αex=0.322 is obtained.In order to interpret these results, the switching field of a two-particle system with partial exchange coupling is studied. It is assumed that the spins reorientation across the contact plane between the particles is like a Bloch wall. The energy of the system is written in terms of the fraction of volume affected by exchange coupling and the switching fields for both particles are calculated. At small interaction volume fraction each particle inverts its magnetization independently from the other. As the fraction of exchange-coupled volume increases, cooperative effects appear and the two particles invert their magnetization in a cooperative way.The proposed model allows to interpret for the first time the empirical factor αex in terms of physical arguments and also explain the details observed in the FORC distribution function

  9. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  10. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    Science.gov (United States)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  11. Department of Particle Theory - Overview

    International Nuclear Information System (INIS)

    Jezabek, M.

    1999-01-01

    Full text: Research performed at the Department of Particle Theory is devoted to fundamental particles and their interactions. These studies are closely related to the current and future high energy experiments at e + e - and hadron-hadron colliders: LEP, TESLA, Tevatron and LHC. The papers reported below cover a wide range of particle physics from neutrino masses and oscillations to processes involving heavy particles like gauge and Higgs bosons or the top quark. An evidence of neutrino oscillations observed by the SuperKamiokande Collaboration was the most spectacular discovery of the year 1998. In a theoretical investigation performed at our department a relation has been found between the so called see-saw mechanism and the bi-maximal neutrino mixing. Since many years a very important and labour-consuming part of the research activities is related to precision tests of the Standard Model. In the last year successful runs of LEP2 stimulated an impressive progress in theoretical description of processes with two- and four-fermion final states in electron-positron annihilation. It is worth stressing that the results of the calculations have been distributed in the form of the computer programs (Monte Carlo and other types) which serve as an indispensable tool in the analysis of the experimental data. Although the whole scientific program is a natural continuation of the activities started earlier a few results obtained in the last year should be mentioned: Publication of the four-fermion Monte Carlo program KORALW for high energy e + e - colliders; Development of the exponentiation scheme at the spin amplitude level and studies of the anomalous couplings for the e + e - → f (anti)f (nγ) processes; Relation between QCD static potentials in momentum and position spaces, and its consequences for bottom and top quark pair production and spectroscopy; Participation in the preparation of the physics program of the pp experiments on LHC collider particularly for Higgs

  12. Microscopic Stern-Gerlach effect and spin-orbit pendulum

    International Nuclear Information System (INIS)

    Rozmej, P.; Arvieu, R.

    1996-01-01

    The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs

  13. Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains

    Science.gov (United States)

    De Luca, Andrea; Collura, Mario; De Nardis, Jacopo

    2017-07-01

    We construct exact steady states of unitary nonequilibrium time evolution in the gapless XXZ spin-1/2 chain where integrability preserves ballistic spin transport at long times. We characterize the quasilocal conserved quantities responsible for this feature and introduce a computationally effective way to evaluate their expectation values on generic matrix product initial states. We employ this approach to reproduce the long-time limit of local observables in all quantum quenches which explicitly break particle-hole or time-reversal symmetry. We focus on a class of initial states supporting persistent spin currents and our predictions remarkably agree with numerical simulations at long times. Furthermore, we propose a protocol for this model where interactions, even when antiferromagnetic, are responsible for the unbounded growth of a macroscopic magnetic domain.

  14. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  15. Spin-off from particle detectors in the field of medicine and biology

    International Nuclear Information System (INIS)

    Lecoq, P.

    2007-01-01

    Since the discovery of X-rays by Roentgen in 1895 physicists have played a major role in the development of medical imaging instrumentation. More recently, the technological developments in several areas of applied physics, the new generation of particle physics detectors and the development of an information-based society all combine to enhance the performance of presently available imaging devices. This paper describes the critical parameters of modern medical imaging in the context of the spectacular development of in-vivo molecular imaging, which will soon allow to bridge post-genomics research activities with new diagnostics and therapeutic strategies for major diseases. In particular, the molecular profiling of tumors and gene expression open the way to tailored therapies and therapeutic monitoring of major diseases like cancer, degenerative and genetic disorders. Moreover, the repeatability of non-invasive approaches allows an evaluation of drug targeting and pharmacokinetics studies on small animals, as well as a precise screening and treatment follow-up of patients. The technical requirements on imaging devices are very challenging but are rather similar in many respects to the ones of modern particle detectors on high-luminosity accelerators. Examples will be given of active technology transfer areas from high-energy physics detectors, which can significantly improve the performance of future medical imaging devices. Special emphasis will be put on the need for a globalization of technology research and development as modern instrumentation in a vast range of applications has similar requirements and spin-off should be more and more understood as cross-fertilization between different disciplines

  16. Spin-off from particle detectors in the field of medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Lecoq, P. [CERN, 1211 Geneva (Switzerland)], E-mail: paul.lecoq@cern.ch

    2007-10-21

    Since the discovery of X-rays by Roentgen in 1895 physicists have played a major role in the development of medical imaging instrumentation. More recently, the technological developments in several areas of applied physics, the new generation of particle physics detectors and the development of an information-based society all combine to enhance the performance of presently available imaging devices. This paper describes the critical parameters of modern medical imaging in the context of the spectacular development of in-vivo molecular imaging, which will soon allow to bridge post-genomics research activities with new diagnostics and therapeutic strategies for major diseases. In particular, the molecular profiling of tumors and gene expression open the way to tailored therapies and therapeutic monitoring of major diseases like cancer, degenerative and genetic disorders. Moreover, the repeatability of non-invasive approaches allows an evaluation of drug targeting and pharmacokinetics studies on small animals, as well as a precise screening and treatment follow-up of patients. The technical requirements on imaging devices are very challenging but are rather similar in many respects to the ones of modern particle detectors on high-luminosity accelerators. Examples will be given of active technology transfer areas from high-energy physics detectors, which can significantly improve the performance of future medical imaging devices. Special emphasis will be put on the need for a globalization of technology research and development as modern instrumentation in a vast range of applications has similar requirements and spin-off should be more and more understood as cross-fertilization between different disciplines.

  17. Structure of three-twistor particles

    International Nuclear Information System (INIS)

    Lukacs, B.; Perjes, Z.; Sebestyen, A.; Newman, E.T.; Porter, J.

    1981-11-01

    The simplest physical system to have a non-trivial intrinsic structure in Minkowski space-time is a three-twistor particle. The authors investigate this structure and the two pictures of the particle as an extended object in space-time and as a point in unitary space. The effect of twistor translations on the mass triangle defined by the partial centre of mass points in space-time as well as the connections between twistor rotations and the spin are considered and the spin deficiency formula is established. (author)

  18. Collective motion with anticipation: flocking, spinning, and swarming.

    Science.gov (United States)

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.

  19. Observability of the probability current density using spin rotator as a quantum clock

    International Nuclear Information System (INIS)

    Home, D.; Alok Kumar Pan; Md Manirul Ali

    2005-01-01

    Full text: An experimentally realizable scheme is formulated which can test any quantum mechanical approach for calculating the arrival time distribution. This is specifically illustrated by using the modulus of the probability current density for calculating the arrival time distribution of spin-1/2 neutral particles at the exit point of a spin rotator (SR) which contains a constant magnetic field. Such a calculated time distribution is then used for evaluating the distribution of spin orientations along different directions for these particles emerging from the SR. Based on this, the result of spin measurement along any arbitrary direction for such an ensemble is predicted. (author)

  20. On the properties of nuclear matter with an excess of neutrons, spin-up neutrons and spin-up protons using effective nucleon-nucleon potential

    International Nuclear Information System (INIS)

    Hassan, M.Y.; Ramadan, S.

    1978-01-01

    The binding energy of nuclear matter with an excess of neutrons, with spin-up neutrons and spin-up protons (characterized by the corresponding parameters αsub(tau)=(N-Z)/A, αsub(n)=(N(up)-N(down))/A, and αsub(p)=(Z(up)-Z(down))/A) contains three symmetry energies: the isospin symmetry energy epsilon sub(tau), the spin symmetry energy epsilon sub(sigma) and the spin-isospin symmetry energy epsilon sub(sigma tau). These energies are calculated using velocity-dependent effective potential of s-wave interaction, which was developed by Dzhibuti and Mamasakhlisov. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the same effective nucleon-nucleon potentials. The spin-spin part of the optical model potential is estimated. (author)

  1. SOLVING THE PUZZLE OF SUBHALO SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Lin, Weipeng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030 (China); Pearce, Frazer R.; Lux, Hanni; Onions, Julian [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Muldrew, Stuart I., E-mail: wangyang@shao.ac.cn, E-mail: linwp@shao.ac.cn [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)

    2015-03-10

    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario.

  2. Studies of spin excitations with electromagnetic and hadronic probes

    International Nuclear Information System (INIS)

    Lindgren, R.A.; Petrovich, F.

    1982-01-01

    Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references

  3. Magnetic moment of a two-particle bound state in quantum electrodynamics

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    2002-01-01

    A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium

  4. Proof of the Spin Statistics Connection 2: Relativistic Theory

    Science.gov (United States)

    Santamato, Enrico; De Martini, Francesco

    2017-12-01

    The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.

  5. Multi-particle correlations in quaternionic quantum systems

    International Nuclear Information System (INIS)

    Brumby, S.P.; Joshi, G.C.

    1994-01-01

    The authors investigated the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. It was found that a multi particles interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components. 15 refs

  6. Geometrical theory of spin motion

    International Nuclear Information System (INIS)

    Halpern, L.

    1983-01-01

    A discussion of the fundamental interrelation of geometry and physical laws with Lie groups leads to a reformulation and heuristic modification of the principle of inertia and the principle of equivalence, which is based on the simple De Sitter group instead of the Poincare group. The resulting law of motion allows a unified formulation for structureless and spinning test particles. A metrical theory of gravitation is constructed with the modified principle, which is structured after the geometry of the manifold of the De Sitter group. The theory is equivalent to a particular Kaluza-Klein theory in ten dimensions with the Lorentz group as gauge group. A restricted version of this theory excludes torsion. It is shown by a reformulation of the energy momentum complex that this version is equivalent to general relativity with a cosmologic term quadratic in the curvature tensor and in which the existence of spinning particle fields is inherent from first principles. The equations of the general theory with torsion are presented and it is shown in a special case how the boundary conditions for the torsion degree of freedom have to be chosen such as to treat orbital and spin angular momenta on an equal footing. The possibility of verification of the resulting anomalous spin-spin interaction is mentioned and a model imposed by the group topology of SO(3, 2) is outlined in which the unexplained discrepancy between the magnitude of the discrete valued coupling constants and the gravitational constant in Kaluza-Klein theories is resolved by the identification of identical fermions as one orbit. The mathematical structure can be adapted to larger groups to include other degrees of freedom. 41 references

  7. Partially massless higher-spin theory

    Energy Technology Data Exchange (ETDEWEB)

    Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-16

    We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV complete, includes gravity, and can live on dS as well as AdS. The linearized spectrum includes three massive particles and an infinite tower of partially massless particles, in addition to the usual spectrum of particles present in the Vasiliev theory, in agreement with predictions from a putative dual CFT with the same symmetry algebra. We compute the masses of the particles which are not fixed by the massless or partially massless gauge symmetry, finding precise agreement with the CFT predictions. This involves computing several dozen of the lowest-lying terms in the expansion of the trilinear form of the enlarged higher-spin algebra. We also discuss nuances in the theory that occur in specific dimensions; in particular, the theory dramatically truncates in bulk dimensions D=3,5 and has non-diagonalizable mixings which occur in D=4,7.

  8. Partially massless higher-spin theory

    International Nuclear Information System (INIS)

    Brust, Christopher; Hinterbichler, Kurt

    2017-01-01

    We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV complete, includes gravity, and can live on dS as well as AdS. The linearized spectrum includes three massive particles and an infinite tower of partially massless particles, in addition to the usual spectrum of particles present in the Vasiliev theory, in agreement with predictions from a putative dual CFT with the same symmetry algebra. We compute the masses of the particles which are not fixed by the massless or partially massless gauge symmetry, finding precise agreement with the CFT predictions. This involves computing several dozen of the lowest-lying terms in the expansion of the trilinear form of the enlarged higher-spin algebra. We also discuss nuances in the theory that occur in specific dimensions; in particular, the theory dramatically truncates in bulk dimensions D=3,5 and has non-diagonalizable mixings which occur in D=4,7.

  9. Low spin models for higher-spin Lagrangians

    Czech Academy of Sciences Publication Activity Database

    Francia, Dario

    2011-01-01

    Roč. 2011, č. 188 (2011), s. 94-105 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : higher spin theories * Maxwell's equations * open string theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/94/

  10. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  11. Radiative detection of spin 3/2 particles in e+e- interactions

    International Nuclear Information System (INIS)

    Klimenko, K.G.; Tikhonin, F.F.

    1983-01-01

    Cross-section for the process e + e - → γgsub(3/2)gtidlesub(3/2) has been calculated all the spin projections being taken into account. Photon energy dependence differs greatly from that of process e + e - →γωω tidle. In the case of eXistence of spin 3/2 neutral fermions such processes give a good possibility for their signal detection

  12. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  13. Analysis of possibilities for a spin flip in high energy electron ring HERA

    International Nuclear Information System (INIS)

    Stres, S.; Pestotnik, R.

    2007-01-01

    In a high energy electron ring the spins of electrons become spontaneously polarized via the emission of spin-flip synchrotron radiation. By employing a radio frequency (RF) radial dipole field kicker, particle spin directions can be rotated slowly over many turns. A model which couples three dimensional spin motion and longitudinal particle motion was constructed to describe non-equilibrium spin dynamics in high energy electron storage rings. The effects of a stochastic synchrotron radiation on the orbital motion in the accelerator synchrotron plane and its influence on the spin motion are studied. The main contributions to the spin motion, the synchrotron oscillations and the stochastic synchrotron radiation, have different influence on the spin polarization reversal in different regions of the parameter space. The results indicate that polarization reversal might be obtained in high energy electron storage rings with a significant noise even with relatively small strengths of a perturbing magnetic field. The only experimental datum avaliable agrees with the model prediction, however further experimental data would be necessary to validate the model

  14. Heavy spin-2 Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, Eugeny [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay,91405 Orsay (France); UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Marzola, Luca; Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Schmidt-May, Angnis [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Urban, Federico; Veermäe, Hardi [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)

    2016-09-12

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  15. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  16. Instantons and magnetization tunneling: Beyond the giant-spin approximation

    International Nuclear Information System (INIS)

    Florez, J.M.; Vargas, P.; Nunez, Alvaro S.

    2009-01-01

    In this work we show that commonly neglected fluctuations of the net total spin of a molecular nanomagnet strongly modified its tunneling properties and provide a scenario to explain some discrepancies between theory and experiment. Starting off from an effective spin Hamiltonian, we study the quantum tunneling of the magnetization of molecular nanomagnets in the regime where the giant-spin approximation is breaking down. This study is done using an instanton description of the tunneling path. The instanton is calculated considering its coupling to quantum fluctuations.

  17. Unified treatment of complete orthonormal sets for wave functions, and Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces

    International Nuclear Information System (INIS)

    Guseinov, I.I.

    2007-01-01

    The new analytical relations of complete orthonormal sets for the tensor wave functions and the tensor Slater orbitals of particles with arbitrary spin in coordinate, momentum and four-dimensional spaces are derived using the properties of tensor spherical harmonics and complete orthonormal scalar basis sets of ψ α -exponential type orbitals, φ α -momentum space orbitals and z α -hyperspherical harmonics introduced by the author for particles with spin s=0, where the α=1,0,-1,-2,.... All of the tensor wave functions obtained are complete without the inclusion of the continuum and, therefore, their group of transformations is the four-dimensional rotation group O(4). The analytical formulas in coordinate space are also derived for the overlap integrals over tensor Slater orbitals with the same screening constant. We notice that the new idea presented in this work is the combination of tensor spherical harmonics of rank s with complete orthonormal scalar sets for radial parts of ψ α -, φ α - and z α -orbitals, where s=1/2,1,3/2,2,...

  18. Long-range spin deformations around quasiparticles

    International Nuclear Information System (INIS)

    Godfrey, M.; Gunn, M.

    1989-01-01

    The quasi-particle formed by a hole in a Heisenberg antiferromagnet has an associated long-range spin distortion whose amplitude increases with the velocity of the hole. The authors show that the existence and properties of this distortion follow from simple classical arguments based on the long-wavelength equations of motion for the spin system. A similar long-range distortion is found in the quantum-mechanical problem of an electron exchange coupled to a Heisenberg antiferromagnet

  19. Lifetime and spin measurements in 40Ar

    International Nuclear Information System (INIS)

    Southon, J.

    1976-01-01

    Lifetimes of levels in 40 Ar populated by the 40 Ar(p,p') reaction have been measured using the Doppler shift attenuation method with a p-γ coincidence technique. A solid argon target was used. The lifetimes determined were (in psec.): 1461 keV level, 1.95 +- 0.15; 2121 keV, >25; 2524 keV, 0.53 +- 0.06; 2893 keV, 4.4 [+2.6,-1.3]; 3208 keV, 0.27. A comprehensive set of branching ratios was also derived and the spins and parities of the 3208 and 4481 keV states were determined to be 2 + and 1 +- respectively. Some of these results suggest that 2 particle -2 hole and 4 particle - 4 hole components are strongly mixed in the low-lying positive parity states in a manner similar to the 2 particle and 4 particle - 2 hole mixing that occurs in 42 Ca. An additional lifetime measurement for the recently discovered high spin state at 3464 keV was carried out using direct electronic timing. The level was excited by the 37 Cl(α,p) reaction and was found to have a lifetime of 1.00 +- 0.03 nsec, which taken together with other evidence indicates that its spin and parity are 6 + . The E2 transition strengths of the 40 Ar 6 + - 4 + - 2 + - 0 + cascade can be simply interpreted in terms of a weak coupling model. (author)

  20. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  1. Effective particle magnetic moment of multi-core particles

    International Nuclear Information System (INIS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

  2. Effective particle magnetic moment of multi-core particles

    Science.gov (United States)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  3. Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties.

    Science.gov (United States)

    Forestier, Thibaut; Kaiba, Abdellah; Pechev, Stanislav; Denux, Dominique; Guionneau, Philippe; Etrillard, Céline; Daro, Nathalie; Freysz, Eric; Létard, Jean-François

    2009-06-15

    This paper describes the synthesis of iron(II) spin-crossover nanoparticles prepared by the reverse micelle technique by using the non-ionic surfactant Lauropal (Ifralan D0205) from the polyoxyethylenic family. By changing the surfactant/water ratio, the size of the particles of [Fe(NH2-trz)3]Br2.3H2O (with NH2trz=4-amino-1,2,4-triazole) can be controlled. On the macroscopic scale this complex exhibits cooperative thermal spin crossovers at 305 and 320 K. We find that when the size is reduced down to 50 nm, the spin transition becomes gradual and no hysteresis can be detected. For our data it seems that the critical size, for which the existence of a thermal hysteresis can be detected, is around 50 nm. Interestingly, the change of the particle size induces almost no change in the temperature of the thermal spin transition. A systematic determination of coherent domain size carried out on the nanoparticles by powder X-ray diffraction indicates that at approximately 30 nm individual particles consist of one coherent domain.

  4. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics

    2016-12-07

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  5. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)

    2017-03-15

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  6. Masses, magnetic moments, QCD and proton spin structure

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1990-10-01

    This talk is dedicated to the memory of Andrei D. Sakharov. In addition to his well-known contributions to society, Sakharov was also a pioneer in spin physics and the application of the basic ideas of QCD to spin structure of hadrons. He took quarks seriously at the time when the particle physicists ridiculed the quark model. Immediately after the quark proposal Sakharov asked: 'Why is M Λ ≠ M Σ ? They contain the same quarks' His answer was 'Spin Physics! A flavor-dependent hyperfine interaction'. (author)

  7. Semiconductors put spin in spintronics

    International Nuclear Information System (INIS)

    Weiss, Dieter

    2000-01-01

    Electrons and holes, which carry the current in semiconductor devices, are quantum-mechanical objects characterized by a set of quantum numbers - the band index, the wave-vector (which is closely related to the electron or hole velocity) and spin. The spin, however, is one of the strangest properties of particles. In simple terms, we can think of the spin as an internal rotation of the electron, but it has no classical counterpart. The spin is connected to a quantized magnetic moment and hence acts as a microscopic magnet. Thus the electron spin can adopt one of two directions (''up'' or ''down'') in a magnetic field. The spin plays no role in conventional electronics and the current in any semiconductor device is made up of a mixture of electrons with randomly oriented spins. However, a new range of electronic devices that transport the spin of the electrons, in addition to their charge, is being developed. But the biggest obstacle to making practical ''spin electronic'' or ''spintronic'' devices so far has been finding a way of injecting spin-polarized electrons or holes into the semiconductor and then detecting them. Recently a team of physicists from the University of Wuerzburg in Germany, and also a collaboration of researchers from Tohoku University in Japan and the University of California at Santa Barbara, have found a way round these problems using either semi-magnetic or ferromagnetic semiconductors as ''spin aligners'' (R Fiederling et al. 1999 Nature 402 787; Y Ohno et al. 1999 Nature 402 790). In this article the author presents the latest breakthrough in spintronics research. (UK)

  8. Extension of axiomatic analyticity properties for particles of arbitrary spin, and super convergent relations; Extension des proprietes d'analyticite axiomatiques pour des particules de spins quelconques, et relations de superconvergence

    Energy Technology Data Exchange (ETDEWEB)

    Mahoux, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-02-01

    It is shown that any regularized helicity amplitude, which is known from axiomatic local field theory to satisfy dispersion relations for -t{sub M} < t {<=} 0, is in fact analytic in the quasi-topological product ( |t| < R) product (s in the cut plane). This is the extension to the scattering of spin particles, of a result obtained by Martin in the scalar case. As a first consequence, the Froissart limits are extended to all helicity amplitudes. Furthermore, it is shown that for -t{sub M} < t < 0 and s going to infinity, the regularized helicity amplitudes in the t channel, with initial (resp. final) helicities {lambda}1 and {lambda}2 (resp. {mu}1 and {mu}2), are bounded by: C s{sup 1-Max} (|{lambda}|,|{lambda}|) log{sup 2}s if {lambda} + {mu} is even C s{sup 1-Max} (|{lambda}|,|{mu}|) log{sup 3}s if {lambda} + {mu} is odd where {lambda} = {lambda}1 - {lambda}2 and {mu} = {mu}1 - {mu}2. This gives super-convergent amplitudes as soon as one of the spins is larger than 1. The case of spin 0 - spin 1 scattering is marginal, and in the absence of any detailed dynamical information, one cannot obtain a super-convergent amplitude in that case. (author) [French] II est demontre que toute amplitude cinematiquement reguliere, qui decrit la diffusion elastique de deux particules de masses non nulles, et de spins quelconques, dont on sait par la theorie axiomatique des champs locaux, qu'elle satisfait des relations de dispersion en s a transfert t fixe (-t{sub M} < t {<=} 0), est en fait analytique dans le produit quasitopologique ( |t| < R) produit (s dans un plan coupe), ou R est une constante. Ce resultat etend aux particules de spins non nuls, le theoreme de Martin relatif au cas scalaire. Une premiere consequence est l'extension des bornes de Froissart a toute amplitude d'helicite. Puis il est montre que, pour t fixe (-t{sub M} < t {<=} 0) et s tendant vers l'infini, les amplitudes d'helicite regularisees dans la voie t, avec les helicites initiales {lambda}1 et {lambda

  9. Single transverse-spin asymmetric in hardronic collisions

    International Nuclear Information System (INIS)

    Qiu, J.

    1995-01-01

    We provide a consistent treatment of single transverse-spin asymmetriesin hadronic collisions in terms of the generalized factorization theorem in perturbative QCD. The asymmetries in different physical processes, such as direct photon, single particle production, can be expressed in terms of a calculable partonic hard-part convoluted with universal three-parton correlation functions. We show that the observed single transverse- spin asymmtries in hadronic pion production can be understood, and used to extract the information on these correlation functions. With these correlation functions, predictions on single spin asymmetries in other processes can be made, and consequently, the theory can be tested

  10. Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy

    Science.gov (United States)

    Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry

    2018-05-01

    Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

  11. Quasilinear theory of a spin-flip laser

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1973-09-01

    A discussion of the nonlinear electrodynamic behavior of a gas of spin 1/2 particles in a uniform external magnetic field is presented. In particular, the quasilinear time evolution of a spin-flip laser system is examined in detail both from the point of view of the thermodynamics of negative temperature systems and the quantum kinetic methods of nonequilibrium statistical mechanics. It is shown that the quasilinear steady state of a spin-flip laser system is that state at which the populations of the spin-up and the spin-down states are equal to each other, and this quasilinear steady state is the state of minimum entropy production. The maximum output power of the spin-flip laser predicted by the theory presented in this paper is shown to be in reasonably good agreement with experimental results. The method used here is based on the general principles of nonrelativistic quantum theory and takes account of the Doppler broadening, collisional broadening, and Compton recoil effects. 30 refs., 1 fig

  12. CONFERENCE: Muon spin rotation

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Erik

    1986-11-15

    An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

  13. High spin levels in 151Ho

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.

    1981-02-01

    We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units

  14. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four

  15. Spin-1 particles with light-front approach

    Directory of Open Access Journals (Sweden)

    de Melo J.P.B.C.

    2014-06-01

    Full Text Available For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0 → 0 one carries zero mode contributions.

  16. Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane

    Energy Technology Data Exchange (ETDEWEB)

    Bart, G.R.; Fenster, S.

    1976-06-01

    The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance.

  17. Free field theories of spin-mass trajectories and quantum electrodynamics in the null plane

    International Nuclear Information System (INIS)

    Bart, G.R.; Fenster, S.

    1976-06-01

    The ten generators of the Poincare algebra for quantum electrodynamics and other gauge theories are given in the null plane. The explicit correspondence of their field-theoretic form to the Bacry-Chang group-theoretic form in the free case is pointed out. It is then noticed that the forms are independent of the spin and allow inclusion of charge quantum numbers at will, which indicates that they represent an advantageous free-particle starting point for a hadron theory with positive spin-mass trajectories (SMT) and with interaction. The internal oscillator content is extracted for both gauge theories and dual resonance models. Interactions are cubic and quartic in the fields. In the dual model they encompass the SMT, whereas no straightforward extension to SMT is possible for the manifestly covariant theories. The requirements of a field-theoretic SMT interaction are spelled out in an algebraic form which guarantees Poincare invariance; however no such interaction is yet known. The approach indicates how a realistic spectrum might be achieved without composite hadrons and incorporating full Poincare invariance

  18. Dark matter spin determination with directional direct detection experiments

    Science.gov (United States)

    Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.

    2018-01-01

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  19. Radioactive starting aids for electrodeless light sources

    International Nuclear Information System (INIS)

    Proud, J.M.; Regan, R.J.; Haugsjaa, P.O.; Baird, D.H.

    1980-01-01

    The use of radioactive sources of α particles, β particles or γ rays as aids in starting a discharge in an electrodeless light source is discussed. The advantages of siting the sources at various positions in the device are discussed. Preferred materials are 85 Kr and 241 Am. (U.K.)

  20. Spin and pseudospin symmetric Dirac particles in the field of Tietz—Hua potential including Coulomb tensor interaction

    International Nuclear Information System (INIS)

    Ikhdair, Sameer M.; Hamzavi, Majid

    2013-01-01

    Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r −2 . Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated. (general)

  1. Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Raedt, H. De

    1997-01-01

    We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spinparticles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated

  2. Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.

    1983-01-01

    Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50

  3. Particles and quantum fields

    CERN Document Server

    Kleinert, Hagen

    2016-01-01

    This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...

  4. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  5. Zeta Function Expression of Spin Partition Functions on Thermal AdS3

    Directory of Open Access Journals (Sweden)

    Floyd L.Williams

    2015-07-01

    Full Text Available We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.

  6. Thermoelectric effects and spin injection into superconductors with exchange field

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, Tero [Dept. Phys., Univ. Jyvaeskylae (Finland); Silaev, Mihail [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Dept. Theor. Physics, KTH, Stockholm (Sweden); Virtanen, Pauli [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Giazotto, Francesco [NEST CNR-INFM and SNS Pisa (Italy); Ozaeta, Asier; Bergeret, Sebastian [CFM-CSIC and DIPC, San Sebastian (Spain)

    2015-07-01

    When a thin superconducting film is exposed to a longitudinal magnetic field or is in proximity to a ferromagnet, an exchange field separating the spin bands emerges in it. For low enough exchange fields superconductivity survives, but its response to external driving is strongly modified. In my talk I will show how at linear response such systems exhibit very strong thermoelectric response with an almost ideal efficiency. For strong driving, this effect creates a spin accumulation that can only relax via thermalization, and therefore at low temperatures has a very long range. Therefore our work explains recent observations of the long-range spin accumulation in spin-split superconductors. When injecting spin from injectors with non-collinear magnetization compared to the exchange field, the spins start to rotate around the latter. I will describe how superconductivity modifies this spin Hanle effect so that the resulting nonlocal magnetoresistance depends on the details of spin relaxation, therefore allowing for probing them.

  7. Simplified parent-child formalism for spin-0 and spin-1/2 parents

    Science.gov (United States)

    Butcher, J. B.; Jones, H. F.; Milani, P.

    1980-06-01

    We develop further the parent-child relation, that is the calculation of the cross-sections and correlations of observed particles, typically charged leptons, arising from the decay of long-lived primarily produced “parent” particles. In the high-momentum regime, when the momenta of parent and child are closely aligned, we show how, for spinless parents, the relation can be simplified by the introduction of “fragmentation” functions derived from the invariant inclusive decay distributions. We extend the formalism to the case of spin-1/2 parents and advocate its application to charm production and decay at the quark level.

  8. Simplified parent-child formalism for spin-0 and spin- 1/2 parents

    International Nuclear Information System (INIS)

    Butcher, J.B.; Jones, H.F.; Milani, P.

    1980-01-01

    We develop further the parent-child relation, that is the calculation of the cross-sections and correlations of observed particles, typically charged leptons, arising from the decay of long-lived primarily produced 'parent' particles. In the high-momentum regime, when the momenta of parent and child are closely aligned we show how, for spinless parents, the relation can be simplified by the introduction of 'fragmentation' functions derived from the invariant inclusive decay distributions. We extend the formalism to the case of spin-1/2 parents and advocate its application to charm production and decay at the quark level. (orig.)

  9. On the quantization of free fields of spin 1 and 2

    International Nuclear Information System (INIS)

    Grigore, D.R.

    2000-01-01

    The second quantization of an 'elementary' particle, that is a projective unitary irreducible representation of the Poincare group (H,U) (here the first entry is the Hilbert space where the representation U acts) is a prescription of constructing an associated Hilbert space (called Fock space) H phys ≡ F ± (H), where the sign indicates the statistics. For particles of higher spin, appearing in electromagnetism, Yang-Mills theories or gravitation it is convenient to extend the Fock space by adding fictitious particles (called ghosts). If the extended Hilbert space is H gh then one tries to determine an operator Q, called supercharge which verifies Q 2 = 0 and such that the physical Hilbert space is H phys = Ker(Q) Im(Q). The rigorous proof of this equivalence seems to be missing from the literature. Although, no general theorem of this type seems to be available, this is a proof for the case of the massless particle, of helicity 1 (photon), the massive particle of spin 1, (heavy Bosons) and massless spin 2 particle (the graviton). As a consequence, we argue that the condition of gauge invariance which is generally postulated in these theories, is in fact not an independent axiom but the rather natural condition that the S-matrix factorizes to the physical Hilbert space. (author)

  10. On the possible types of elementary particles compatible with the canonical formulation

    International Nuclear Information System (INIS)

    Cheng Kaijia

    1988-12-01

    In a paper D erivation of Dirac's Equation for a Free Particle , it was shown by the author that Dirac's equation can be deduced from a canonical formulation on the ground of relativity and quantum mechanics only. This idea will be further developed to a criterion on the possible forms of particles compatible with these formalism. It is shown in the text that only two types can exist in conformity with the criterion, namely fermions with spin 1/2 and scalars with spin zero. An example is given for a particle with spin unity to show that they do not fall into the present category. Particles that play roles in vector fields belong to different categories. Discussions are made for particles coupled with an external electronmagnetic field, preliminary results show that the essential features for the free particles still retain

  11. Symmetry, Wigner functions and particle reactions

    International Nuclear Information System (INIS)

    Chavlejshvili, M.P.

    1994-01-01

    We consider the great principle of physics - symmetry - and some ideas, connected with it, suggested by a great physicist Eugene Wigner. We will discuss the concept of symmetry and spin, study the problem of separation of kinematics and dynamics in particle reactions. Using Wigner rotation functions (reflecting symmetry properties) in helicity amplitude decomposition and crossing-symmetry between helicity amplitudes (which contains the same Wigner functions) we get convenient general formalism for description of reactions between particles with any masses and spins. We also consider some applications of the formalism. 17 refs., 1 tab

  12. New technique for levitating solid particles using a proton beam

    International Nuclear Information System (INIS)

    Misconi, N.Y.

    1996-01-01

    A new technique for levitating solid particles inside a vacuum chamber is developed using a proton beam. This new technique differs from the classical laser-levitation technique invented by Ashkin in that it does not heat up light-absorbing levitated particles to vaporization. This unique property of the method will make it possible to levitate real interplanetary dust particles in a vacuum chamber and study their spin-up dynamics in a ground-based laboratory. It is found that a flux of protons from a proton gun of ∼ 10 15 cm -2 sec -1 is needed to levitate a 10-mm particle. Confinement of the levitated particle can be achieved by a Z or θ pinch to create a gravity well, or by making the beam profile doughnut in shape. In levitating real interplanetary particles, two spin-up mechanisms can be investigated using this technique: one is the Paddack Effect and the other is a spin-up mechanism by the interaction of F-coronal dust with CMEs (Coronal Mass Ejections). The real interplanetary particles were collected by Brownie and associates (also known as the Brownie Particles) from the earth's upper atmosphere. (author)

  13. The particle interpretation of N = 1 supersymmetric spin foams

    Energy Technology Data Exchange (ETDEWEB)

    Baccetti, Valentina [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Livine, Etera R [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69007 Lyon (France); Ryan, James P, E-mail: baccetti@neve.fis.uniroma3.i, E-mail: etera.livine@ens-lyon.f, E-mail: james.ryan@aei.mpg.d [MPI fuer Gravitationsphysik, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Potsdam (Germany)

    2010-11-21

    We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.

  14. The particle interpretation of N = 1 supersymmetric spin foams

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Livine, Etera R; Ryan, James P

    2010-01-01

    We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.

  15. Spin caloritronics, origin and outlook

    International Nuclear Information System (INIS)

    Yu, Haiming; Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2017-01-01

    Spin caloritronics refers to research efforts in spintronics when a heat current plays a role. In this review, we start out by reviewing the predictions that can be drawn from the thermodynamics of irreversible processes. This serves as a conceptual framework in which to analyze the interplay of charge, spin and heat transport. This formalism predicts tensorial relations between vectorial quantities such as currents and gradients of chemical potentials or of temperature. Transverse effects such as the Nernst or Hall effects are predicted on the basis that these tensors can include an anti-symmetric contribution, which can be written with a vectorial cross-product. The local symmetry of the system may determine the direction of the vector defining such transverse effects, such as the surface of an isotropic medium. By including magnetization as state field in the thermodynamic description, spin currents appear naturally from the continuity equation for the magnetization, and dissipative spin torques are derived, which are charge-driven or heat-driven. Thermodynamics does not give the strength of these effects, but may provide relationships between them. Based on this framework, the review proceeds by showing how these effects have been observed in various systems. Spintronics has become a vast field of research, and the experiments highlighted in this review pertain only to heat effects on transport and magnetization dynamics, such as magneto-thermoelectric power, or the spin-dependence of the Seebeck effect, the spin-dependence of the Peltier effect, the spin Seebeck effect, the magnetic Seebeck effect, or the Nernst effect. The review concludes by pointing out predicted effects that are yet to be verified experimentally, and in what novel materials the standard thermal spin effects could be investigated. - Highlights: • Thermodynamic description of transport: three-current model. • Magneto-thermoelectric power and spin-dependent Peltier effects. • Thermal

  16. Spin caloritronics, origin and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haiming, E-mail: haiming.yu@buaa.edu.cn [Fert Beijing Institute, School of Electronic and Information Engineering, BDBC, Beihang University (China); Brechet, Sylvain D. [Institute of Physics, station 3, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne-EPFL (Switzerland); Ansermet, Jean-Philippe, E-mail: jean-philippe.ansermet@epfl.ch [Institute of Physics, station 3, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne-EPFL (Switzerland)

    2017-03-03

    Spin caloritronics refers to research efforts in spintronics when a heat current plays a role. In this review, we start out by reviewing the predictions that can be drawn from the thermodynamics of irreversible processes. This serves as a conceptual framework in which to analyze the interplay of charge, spin and heat transport. This formalism predicts tensorial relations between vectorial quantities such as currents and gradients of chemical potentials or of temperature. Transverse effects such as the Nernst or Hall effects are predicted on the basis that these tensors can include an anti-symmetric contribution, which can be written with a vectorial cross-product. The local symmetry of the system may determine the direction of the vector defining such transverse effects, such as the surface of an isotropic medium. By including magnetization as state field in the thermodynamic description, spin currents appear naturally from the continuity equation for the magnetization, and dissipative spin torques are derived, which are charge-driven or heat-driven. Thermodynamics does not give the strength of these effects, but may provide relationships between them. Based on this framework, the review proceeds by showing how these effects have been observed in various systems. Spintronics has become a vast field of research, and the experiments highlighted in this review pertain only to heat effects on transport and magnetization dynamics, such as magneto-thermoelectric power, or the spin-dependence of the Seebeck effect, the spin-dependence of the Peltier effect, the spin Seebeck effect, the magnetic Seebeck effect, or the Nernst effect. The review concludes by pointing out predicted effects that are yet to be verified experimentally, and in what novel materials the standard thermal spin effects could be investigated. - Highlights: • Thermodynamic description of transport: three-current model. • Magneto-thermoelectric power and spin-dependent Peltier effects. • Thermal

  17. Macroscopic spin-orbit coupling in non-uniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tabat, N.; Edelman, H. S.; Song, D. [Semaphore Scientific, Inc., St. Cloud, Minnesota 56301 (United States); Vogt, T. [Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, Minnesota 56301 (United States)

    2015-03-02

    Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values.

  18. Macroscopic spin-orbit coupling in non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Tabat, N.; Edelman, H. S.; Song, D.; Vogt, T.

    2015-01-01

    Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values

  19. Spin entanglement, decoherence and Bohm's EPR paradox

    OpenAIRE

    Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.

    2007-01-01

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...

  20. The nuclear deformation versus the spin-flip like excitations and the suppression of the 2νββ decay amplitude

    International Nuclear Information System (INIS)

    Raduta, A.A.; Delion, D.S.; Faessler, A.

    1997-01-01

    The suppression mechanism of the Gamow-Teller double beta decay amplitude M GT is studied using a many body Hamiltonian which describes a composite system of protons and neutrons moving in a projected spherical single particle basis. Alike nucleons interact through pairing while protons and neutrons by a separable dipole-dipole force both in the particle-hole (ph) and particle-particle (pp) channels. The spin-flip and non-spin-flip components of the QRPA phonons have a differents contribution to the M GT values. The relative magnitudes and phases depend both on the strength of the particle-particle interaction (g pp ) and on the nuclear deformation. The deformation yields a fragmentation of the M GT value on one hand and washes out the separation of states of pure spin-flip and non-spin-flip structures. Due to this effect M GT has only one fragmented resonance structure in the low part of the spectrum. (orig.)

  1. Effects of Rashba and Dresselhaus spin-orbit interactions on the ground state of two-dimensional localized spins.

    Science.gov (United States)

    Oh, J H; Lee, K-J; Lee, Hyun-Woo; Shin, M

    2014-05-14

    Starting with the indirect exchange model influenced by the Rashba and the Dresselhaus spin-orbit interactions, we derive the Dzyaloshinskii-Moriya interaction of localized spins. The strength of the Dzyaloshinskii-Moriya interaction is compared with that of the Heisenberg exchange term as a function of atomic distance. Using the calculated interaction strengths, we discuss the formation of various atomic ground states as a function of temperature and external magnetic field. By plotting the magnetic field-temperature phase diagram, we present approximate phase boundaries between the spiral, Skyrmion and ferromagnetic states of the two-dimensional weak ferromagnetic system.

  2. A new and unifying approach to spin dynamics and beam polarization in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.; Ellison, J.A.

    2014-09-01

    With this paper we extend our studies on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.

  3. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  4. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  5. Spin tracking for a deuteron EDM storage ring

    International Nuclear Information System (INIS)

    Skawran, A; Lehrach, A

    2017-01-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity. (paper)

  6. Charge and spin separation in one-dimensional systems

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Jagla, E.A.; Hallberg, K.

    1995-01-01

    In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)

  7. Nuclear spin-orbit splitting from an intermediate Δ excitation

    International Nuclear Information System (INIS)

    Ohta, K.; Terasawa, T.; Tohyama, M.

    1980-01-01

    The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings

  8. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  9. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  10. Position-based dynamic of a particle system: a configurable algorithm to describe complex behaviour of continuum material starting from swarm robotics

    Science.gov (United States)

    dell'Erba, Ramiro

    2018-04-01

    In a previous work, we considered a two-dimensional lattice of particles and calculated its time evolution by using an interaction law based on the spatial position of the particles themselves. The model reproduced the behaviour of deformable bodies both according to the standard Cauchy model and second gradient theory; this success led us to use this method in more complex cases. This work is intended as the natural evolution of the previous one in which we shall consider both energy aspects, coherence with the principle of Saint Venant and we start to manage a more general tool that can be adapted to different physical phenomena, supporting complex effects like lateral contraction, anisotropy or elastoplasticity.

  11. Effects of spin on the cyclotron frequency for a Dirac electron

    International Nuclear Information System (INIS)

    Salesi, G.; Recami, E.

    1998-07-01

    The Barut-Zanghi (BZ) theory - that constitutes a natural ''classical limit's'' of the Dirac equation and can be regarded as a satisfactory picture of a classical spinning electron - has been analytically studied, in some of our previous papers, in the case of free particles. By contrast, in this letter we consider the case of external fields, and a previously found equation of the motion is generalized for a non-free spin-1/2 particle. In the important case of a spinning charge in a uniform magnetic field, we find that its angular frequency (around the magnetic field direction) is slightly different from the classical ''cyclotron frequency'' ω class ≡eH/m expected for spinless charges. As a matter of fact, the angular frequency does depend on the spin orientation. As a consequence, the electrons with magnetic moment μ parallel to the magnetic field do rotate with a frequency greater than that of electrons endowed with a μ antiparallel to H. (author)

  12. Quantum computing with acceptor spins in silicon.

    Science.gov (United States)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  13. On the properties of nuclear matter with an excess of neutrons, of spin-up neutrons and of spin-up protons using the Skyrme interaction

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-11-01

    The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)

  14. A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles

    International Nuclear Information System (INIS)

    Heinemann, K.; Ellison, J.A.

    2015-01-01

    We return to our study (2001) of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in this study, we now employ a discrete-time formalism, beginning with the Poincare maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. The particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Thus the group theoretical notion is exhibited. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory.

  15. A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, K.; Ellison, J.A. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Barber, D.P.; Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-01-15

    We return to our study (2001) of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in this study, we now employ a discrete-time formalism, beginning with the Poincare maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an SO(3)-gauge transformation rule. We then apply the theory to the dynamics of spin-1/2 and spin-1 particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. The particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Thus the group theoretical notion is exhibited. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product form so that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaning of our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory.

  16. Distinguishing 'Higgs' spin hypotheses using γγ and WW* decays

    International Nuclear Information System (INIS)

    Ellis, John; Fok, Ricky; Hwang, Dae Sung; Sanz, Veronica; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations in searches for the Higgs boson has been observed to decay into γγ, ZZ * and WW * , but its spin and parity, J P , remain a mystery, with J P = 0 + and 2 + being open possibilities. We use PYTHIA and Delphes to simulate an analysis of the angular distribution of gg → X → γγ decays in a full 2012 data set, including realistic background levels. We show that this angular distribution should provide strong discrimination between the possibilities of spin zero and spin two with graviton-like couplings: ∝3 σ if a conservative symmetric interpretation of the log-likelihood ratio (LLR) test statistic is used, and ∝6 σ if a less conservative asymmetric interpretation is used. The WW and ZZ couplings of the Standard Model Higgs boson and of a 2 + particle with graviton-like couplings are both expected to exhibit custodial symmetry. We simulate the present ATLAS and CMS search strategies for X → WW * using PYTHIA and Delphes, and show that their efficiencies in the case of a spin-2 particle with graviton-like couplings are a factor ≅ 1.9 smaller than in the spin-0 case. On the other hand, the ratio of X 2 + → WW * and ZZ * branching ratios is larger than that in the 0 + case by a factor ≅ 1.3. We find that the current ATLAS and CMS results for X → WW * and X → ZZ * decays are compatible with custodial symmetry under both the spin-0 and -2 hypotheses, and that the data expected to become available during 2012 are unlikely to discriminate significantly between these possibilities. (orig.)

  17. Simultaneous time-optimal control of the inversion of two spin-(1/2) particles

    International Nuclear Information System (INIS)

    Assemat, E.; Lapert, M.; Sugny, D.; Zhang, Y.; Braun, M.; Glaser, S. J.

    2010-01-01

    We analyze the simultaneous time-optimal control of two-spin systems. The two noncoupled spins, which differ in the value of their chemical offsets, are controlled by the same magnetic fields. Using an appropriate rotating frame, we restrict the study to the case of opposite shifts. We then show that the optimal solution of the inversion problem in a rotating frame is composed of a pulse sequence of maximum intensity and is similar to the optimal solution for inverting only one spin by using a nonresonant control field in the laboratory frame. An example is implemented experimentally using nuclear magnetic resonance techniques.

  18. Electron spin from self interaction

    International Nuclear Information System (INIS)

    Spavieri, G.

    1992-01-01

    The author explores the possibility that the electron self-interaction is the origin of the spin and of the radiative effects of QED. The electron is conceived as a charged, massless, point particle with a quantum or stochastic, internal motion about its center of mass and bound by a self-interaction potential. The hydrodynamic equations of motion describing the electron in its center of mass frame are related to non-Markovian stochastic equations recently used to derive the Schroedinger equation. By averaging over this stochastic internal motion and identifying the energy with the rest mass energy, the angular momentum exhibits properties characteristic of spin. The electromagnetic self-interactions added to the Hamiltonian of the particle correct the g factor to yield the anomalous value (g-2)/2 ∼ 1159.7(2.3) X 10 -6 in agreement with experiment. Calculations of other open-quotes radiativeclose quotes effects including the Lamb shift are presented. The results obtained are finite and suggest that the QED corrections attributed to radiative effects could be obtained classically, i.e., without second quantization and renormalization, by complementing the Dirac theory with this self-interaction mechanism. The g factor dependence on the external magnetic field of this and other spin models is compared with that of QED, showing that these theories can be tested by the present precision measurements of the g factor. 33 refs., 2 tabs

  19. EVENT GENERATOR FOR RHIC SPIN PHYSICS

    International Nuclear Information System (INIS)

    SAITO, N.; SCHAEFER, A.

    1999-01-01

    This volume archives the reports from the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics II'' held during the week March 15, 1999 at Brookhaven National Laboratory. It was the second meeting on the subject following a first one in last September. This workshop has been initiated to establish a firm collaboration between theorists and experimentalists involved in RHIC spin physics with the aim of developing a reliable, high-precision event generator for RHIC spin physics. Needless to say, adequate event generators are indispensable tools for high energy physics programs in general, especially in the process of: planning the experimental programs; developing algorithms to extract the physics signals of interest; estimating the background in the extracted results, and connecting the final particle kinematics to the fundamental i.e. partonic level processes. Since RHIC is the first polarized collider, dedicated efforts are required to obtain a full-fledged event generator which describes spin dependent reactions in great detail

  20. Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1983-01-01

    A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)

  1. The nuclear deformation versus the spin-flip like excitations and the suppression of the 2 νββ decay amplitude

    International Nuclear Information System (INIS)

    Raduta, A. A.; Delion, D. S.; Faessler, A.

    1998-01-01

    The suppression mechanism of the Gamow-Teller double beta decay amplitude M GT is studied using a many body Hamiltonian which describes a composite system of protons and neutrons moving in a projected spherical single particle basis. Alike nucleons interact through pairing, while protons and neutrons by a separable dipole-dipole force both in the particle-hole (ph) and particle-particle (pp) channels. The spin-flip and non-spin-flip components of the QRPA phonons have different contributions to the M GT value. The relative magnitudes and phases depend on both the strength of the particle-particle interaction (g pp ) and nuclear deformation. The deformation yields a fragmentation of the M GT value on one hand and washes out the separation of states of pure spin-flip and non spin-flip structures. Due to this effect, M GT has only one fragmented resonance structure in the low part of the spectrum. The mechanism of M GT suppression is different for spherical and deformed nuclei. While for spherical situation the resonances of pure spin-flip and non spin-flip character are separated in energy, for deformed case the two resonances coincide. In both cases, approaching the critical value of g pp , where the Random Phase Approximation (RPA) breaks down, a lot of strength is accumulated in the lowest RPA state. The difference is that, while in the spherical case this has a non spin-flip nature, in the deformed case the state is a mixture of both types of configurations. (authors)

  2. New weak boson decays and possible spin 3/2 leptons

    International Nuclear Information System (INIS)

    Fleury, N.; Lopes, J.L.; Simoes, J.A.M.

    1984-01-01

    It is discussed the possibility that new spin 3/2 leptons can occur in nature as a manifestation of a leptonic structure and in multiplets in supersymmetric theories. A new interaction between spin 1/2 and spin 3/2 particles that maintains the standard SU(2) sub(L) x U(1) local gauge invariance is postulated. A comparison with the anomalous Z 0 → e + e - γ events is made and new decays for the weak bosons are studied. (Author) [pt

  3. Spinning and tumbling of micron-sized triangles in a micro-channel shear flow

    Science.gov (United States)

    Fries, J.; Kumar, M. Vijay; Mihiretie, B. Mekonnen; Hanstorp, D.; Mehlig, B.

    2018-03-01

    We report on measurements of the angular dynamics of micron-sized equilaterally triangular platelets suspended in a micro-channel shear flow. Our measurements confirm that such particles spin and tumble like a spheroid in a simple shear. Since the triangle has corners, we can observe the spinning directly. In general, the spinning frequency is different from the tumbling frequency and the spinning is affected by tumbling. This gives rise to doubly periodic angular dynamics.

  4. Relay entanglement and clusters of correlated spins

    Science.gov (United States)

    Doronin, S. I.; Zenchuk, A. I.

    2018-06-01

    Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.

  5. Isoscalar spin response in 40Ca and 12C

    International Nuclear Information System (INIS)

    Tomasi-Gustafsson, E.; Morlet, M.; Bimbot, L.; Guillot, J.; Jourdan, F.; Langevin-Joliot, H.; Marty, N.; Rosier, L.; Van de Wiele, J.; Willis, A.; Johnson, B.N.; Glashausser, C.; Djalali, C.

    1994-01-01

    A method founded on the measure of an approximated spin-flip probability, in the inelastic diffusion (d,d') at 400 MeV (incident energy) has been applied to the research of isoscalar spin strengths in calcium 40 and carbon 12. In calcium 40 the spin excitations have been revealed towards an excitation energy of 9 MeV and in the continuum a strength concentration appears about 15 MeV. In carbon 12 spin structures appear up to an excitation energy of 30 MeV; beyond 35 MeV the isoscalar spin response, as in calcium 40, is compatible with the expected value for a Fermi gas of particles without interactions. Microscopic calculations DWIA are in good agreement with the data of carbon 12. (O.L.). 30 refs., 5 figs

  6. Prima facie evidence against spin-two Higgs impostors

    Science.gov (United States)

    Ellis, John; Sanz, Verónica; You, Tevong

    2013-10-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models.

  7. Prima Facie Evidence against Spin-Two Higgs Impostors

    CERN Document Server

    Ellis, John; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models.

  8. Prima facie evidence against spin-two Higgs impostors

    International Nuclear Information System (INIS)

    Ellis, John; Sanz, Verónica; You, Tevong

    2013-01-01

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models

  9. Prima facie evidence against spin-two Higgs impostors

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom); TH Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Sanz, Verónica, E-mail: vsanz@yorku.ca [TH Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); You, Tevong [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom)

    2013-10-07

    The new particle X recently discovered by the ATLAS and CMS Collaborations is widely expected to have spin zero, but this remains to be determined. The leading alternative is that X has spin two, presumably with graviton-like couplings. We show that measurements of the X particle to pairs of vector bosons constrain such scenarios. In particular, a graviton-like Higgs impostor in scenarios with a warped extra dimension of AdS type is prima facie excluded, principally because they predict too small a ratio between the X couplings to WW and ZZ, compared with that to photons. The data also disfavour universal couplings to pairs of photons and gluons, which would be predicted in a large class of graviton-like models.

  10. Summary of the 8th international symposium on high energy spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1988-01-01

    The series of conferences on high energy spin physics dates back to Argonne, 1974, and the first use of the polarized proton beam at the ZGS. This conference is unique in that it is concerned both with the technology of spin and with particle physics: particle physicists need to know what experiments might be possible and target/beam/source physicists want to know what their work will lead to, and get new ideas. In many cases, and I believe that this is central to the success of spin physics and of this conference series, these are the same people. This summary will have three basic parts: where we are now relative to Argonne in 1974; a discussion of new experiments and theory---there were many new and intriguing results presented here; and new ideas for polarized sources, beams, and targets which point toward an exciting future program of particle physics. 13 refs., 2 figs., 4 tabs

  11. Isotopic spin effect in three-pion Bose-Einstein correlations

    International Nuclear Information System (INIS)

    Suzuki, N.

    1998-01-01

    Bose-Einstein (BE) correlations of identical particles in multiple production processes are extensively studied last years because they give an information on the space-time region of interaction. The basic effect is analogous to Hanbury-Brown - Twiss (HBT) interferometry in optics and suggests statistical production of the particles (mainly π mesons). The possible presence of coherent pionic component (for example, in the case of disoriented chiral condensate formation) modifies the HBT effect. On the other hand, the pions (contrary to photons) are subject to isotopic spin (and electric charge) conservation and so they can not be emitted independently. While the corresponding change of the statistical part is not essential for large multiplicities, the coherent part changes substantially when isotopic spin conservation is taken into account. BE correlations of the pions in the presence of both statistical and coherent components are reconsidered taking into account isotopic spin conservation in the coherent part. That will result in appearance of additional contribution to pionic correlation function. (author)

  12. The Bertlmann-Martin Inequality and Spin Degrees of Freedom

    International Nuclear Information System (INIS)

    Boufas, S.; Ighezou, F.-Z.; Lombard, R. J.

    2012-01-01

    The Bertlmann-Martin inequality based on the dipole sum rule is revisited taking into account the spin degrees of freedom. We consider 1 and 2 particles of spin 1/2 in a mean field, adding a spin dependent interaction. The derivation of the inequality relies on the closure relation. We discuss the effect of the Pauli principle, and the restrictions it imposes on the use of the closure relation. The problem is exemplified by a simple model based on harmonic forces. Moreover, in the 2 particle case, the model we use is separable in the relative and centre of mass coordinates. In this case, we show that for operators connecting only singlet states, their sum rule can be calculated in the usual way, i. e. via the double commutator of this operator with the Hamiltonian. An upper bound can also be obtained by using the Bertlmann-Martin technique. This is not possible for operators involving a transition between singlet and triplet states. (author)

  13. Challenging the weak cosmic censorship conjecture with charged quantum particles

    International Nuclear Information System (INIS)

    Richartz, Mauricio; Saa, Alberto

    2011-01-01

    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstroem black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-(1/2) particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-(1/2) fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-(1/2) charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.

  14. Kinematics of semiclassical spin and spin fiber bundle associated with so(n) Lie-Poisson manifold

    International Nuclear Information System (INIS)

    Deriglazov, A A

    2013-01-01

    We describe geometric construction underlying the Lagrangian actions for non-Grassmann spinning particles proposed in our recent works. If we discard the spatial variables (the case of frozen spin), the problem reduces to formulation of a variational problem for Hamiltonian system on a manifold with so(n) Lie-Poisson bracket. To achieve this, we identify dynamical variables of the problem with coordinates of the base of a properly constructed fiber bundle. In turn, the fiber bundle is embedded as a surface into the phase space equipped with canonical Poisson bracket. This allows us to formulate the variational problem using the standard methods of Dirac theory for constrained systems.

  15. Solution of problem of determining spin properties of molecules in unitary formalism of quantum chemistry

    International Nuclear Information System (INIS)

    Klimko, G.T.; Luzanov, A.V.

    1988-01-01

    An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism

  16. Small angle particle-particle correlation measurements in the reactions 280 MeV 40Ar+27Al and 670 MeV 55Mn+12C

    International Nuclear Information System (INIS)

    Milosevich, Zoran; Vardaci, Emanuele; DeYoung, Paul A.; Brown, Craig M.; Kaplan, Morton; Whitfield, James P.; Peterson, Donald; Dykstra, Christopher; Barton, Matthew; Karol, Paul J.; McMahan, Margaret A.

    2001-01-01

    Small-angle particle-particle correlations were measured in the two matching reactions 280 MeV 40 Ar+ 27 Al and 670 MeV 55 Mn+ 12 C. These two reactions were used to produce the composite nucleus, 67 Ga*, at the same initial excitation energy of 127 MeV, but with different entrance channel angular momentum distributions. A simple trajectory model was used to compute the average emission times between various particle pairs, and comparisons with the data show that there is a significant difference in the deexcitation of the composite nucleus formed from the two reactions. Statistical model calculations were compared to the experimental observations with the added constraint that the model input parameters were consistent with those derived from observed charged-particle energy spectra and angular distributions. It was found that the calculated correlation functions were insensitive to the input spin distributions, but agreed fairly well with the data from the lower-spin system. The higher-spin reaction data were poorly reproduced by the calculations

  17. High spin study and lifetime measurements of neutron rich Co isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, P H; Arrison, J W; Huttmeier, U J; Balamuth, D P [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1992-08-01

    The neutron rich nuclei {sup 61,63}Co have been studied using the reactions {sup 16}O({sup 48}Ca,p2n){sup 61}Co at 110 MeV and {sup 18}O({sup 48}Ca,p2n){sup 63}Co at 110 MeV respectively. Discrete lines from the channels of interest were investigated using pre-scaled {gamma} singles, charged-particle-{gamma}, neutron-charged-particle-{gamma} and charged particle-{gamma}-{gamma} data. Decay schemes, with level spins deduced from angular distribution data are presented together with preliminary information on the lifetimes of some higher excitation states. These data represent the first study on the medium to high spin states in these nuclei. (author). 9 refs., 1 tab., 4 figs.

  18. Physics in a spin. CERN Courier, Jan-Feb 1985, v. 25(1)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    About two hundred physicists travelled to Marseille in September to attend the 6th International Symposium on High Energy Spin Physics, it gathered specialists in polarization physics from all over the world. The meeting reflected optimism about the future of spin physics, an optimism clearly driven by the successful start-up of many new polarized beam projects and by the discovery of several new spin effects. The topics covered included spin effects at large transverse momentum, hyperon polarization, analysing power in elastic processes, and experiments at intermediate energies including dibaryon resonances. There were reports on new polarized beam developments at many Laboratories and on perspectives, plans, and theoretical predictions for the spin physics in future machines

  19. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin-Orbitronics.

    Science.gov (United States)

    Kepenekian, Mikaël; Even, Jacky

    2017-07-20

    In halide hybrid organic-inorganic perovskites (HOPs), spin-orbit coupling (SOC) presents a well-documented large influence on band structure. However, SOC may also present more exotic effects, such as Rashba and Dresselhaus couplings. In this Perspective, we start by recalling the main features of this effect and what makes HOP materials ideal candidates for the generation and tuning of spin-states. Then, we detail the main spectroscopy techniques able to characterize these effects and their application to HOPs. Finally, we discuss potential applications in spintronics and in spin-orbitronics in those nonmagnetic systems, which would complete the skill set of HOPs and perpetuate their ride on the crest of the wave of popularity started with optoelectronics and photovoltaics.

  20. Pseudoclassical supersymmetrical model for 2+1 Dirac particle

    OpenAIRE

    Gitman, D. M.; Gonçalves, A. E.; Tyutin, I. V.

    1996-01-01

    A new pseudoclassical supersymmetrical model of a spinning particle in 2+1 dimensions is proposed. Different ways of its quantization are discussed. They all reproduce the minimal quantum theory of the particle.

  1. The Low Energy Antiproton Ring (LEAR) some months before the start of its particle physics programme

    CERN Multimedia

    1983-01-01

    LEAR*)and its enclosure in the PS South Hall in Jan, 1983, 4 months before the start of its particle physics programme. Visible (in red) are the 90 degree bending magnets consisting of 6 blocks each. Separated from the magnets by short straight sections are the quadrupole doublets (blue with read end-plates). The 4 long straight sections house large equipment like septa for injection/ejection, RF-cavities and later (since 1986) electron cooling and an internal target and its associated detector (JETSET experiment). Two small copper tubes spanning across the ring are coaxial lines transmitting the stochastic cooling signals from pickup to kicker. (see also photos 8205747X, 8207133, 8207541X, 8309026) *)see e.g.: H.Koziol and D. Möhl, Phys. Rep. 403-404 (2004), p.271 and references therein

  2. Spin diffusion from an inhomogeneous quench in an integrable system.

    Science.gov (United States)

    Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž

    2017-07-13

    Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

  3. SPIN AND RELATIVITY: A SEMICLASSICAL MODEL FOR ELECTRON SPIN ESPÍN Y RELATIVIDAD: UN MODELO SEMICLASICO PARA EL ESPÍN DEL ELECTRÓN

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available The quantum relationship may be regarded as the equivalence between two expressions for the rest energy of the particle, if is considered as the spin angular velocity of the particle in its rest frame. The invariance of the relativistic space-time interval to such a spin motion (space isotropy leads to the spin momentum for all structureless particles irrespective of their mass values. The inertia is an intrinsic property due to the spin motion of the particles. The signs of the mass values occurring in the solutions of the Dirac equation might be related to the orientation of the spin motion, as suggested by the fundamental relationship . Besides it deals with the electron, and more specifically with two key properties: its complex wavefunction, and its intrinsic spin. In the standard interpretation, there is no clear real-space picture of what is oscillating in the wave, or what is rotating in the spin. Indeed, it is generally believed that no simple model of rotation can account for the spin of the electron. On the contrary, the present paper shows that a crude mechanical model of coherently rotating vortices can account quantitatively not only for spin, but also for the wavefunction itself. The implications of this are discussed in this paper.La relación cuántica puede ser considerada como la equivalencia entre dos expresiones para la energía en reposo de la partícula, si se considera la velocidad angular de giro de partículas en su marco en reposo. La invariancia del intervalo relativista espacio- tiempo para tal movimiento de espín (isotropía espacial conduce al impulso de espín para todas las partículas sin estructura, independientemente de sus valores de masa. La inercia es una propiedad intrínseca debido al movimiento de spin de las partículas. Los signos de los valores de masa que se producen en las soluciones de la ecuación de Dirac podrían estar relacionados con la orientación del espín, según lo sugerido por la

  4. SpinX: incredible idea, incredible luck

    CERN Multimedia

    2007-01-01

    "True innovation may be defined as a knock-out idea that is so beautifully simple everyone wonders why he didn't think of it. Sometimes, it takes a determined outsider with expertise in a totally different field to put the pieces together. The Geneva-based start-up SpinX Technologies is a case study..." (2 pages)

  5. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  6. Increasing the number of spin-outs from Danish universities

    DEFF Research Database (Denmark)

    Andersen, Lars-Ulrik Aaen

    2011-01-01

    In this paper I describe some of the barriers and motivations involved in the process of creating spin-out companies from Danish universities – based on a study carried out at the Technical University of Denmark (DTU). Even if procedures are established to support the spin-out process...... in the spin-out process the study reveals some of the barriers of the employees at the universities but also the other stakeholders view on the process. The investigation also reveals the various motivations for starting up a spin-out company and input to what the university/department can do to facilitate......, there are still barriers that hinder the process. In this paper I investigate these barriers and the possible motivations that could increase the number of spin-outs. I also discuss some of the processes and tools that could be implemented to support the process. Based on interviews with a number of stakeholders...

  7. Quantum description of spin tunneling in magnetic molecules

    Science.gov (United States)

    Galetti, D.

    2007-01-01

    Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones.

  8. Puzzle of the particles and the universe. The inner life of the elementary particles IX d

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2013-01-01

    The series The Inner Life of the Elementary Particles attempts to develop the elementary particles along of a genealogical tree, which begins before the ''big bang''. The simple presentation without mathematics opens also for the interested layman a plastic understanding. Volume IX discusses the known puzzles of particle physics and cosmology and offers for many of them explanation models. Explanation approaches are among others the ''DNA'' of the elementary particles and the interpretation of the quanta and the spin.

  9. Percolation and spin glass transition

    International Nuclear Information System (INIS)

    Sadiq, A.; Tahir-Kheli, R.A.; Wortis, M.; Bhatti, N.A.

    1980-10-01

    The behaviour of clusters of curved and normal plaquette particles in a bond random, +-J, Ising model is studied in finite square and triangular lattices. Computer results for the concentration of antiferromagnetic bonds when percolating clusters first appears are found to be close to those reported for the occurrence and disappearance of spin glass phases in these systems. (author)

  10. Magnetized particle motion and acceleration around a Schwarzschild black hole in a magnetic field

    International Nuclear Information System (INIS)

    Abdujabbarov, Ahmadjon; Bobomurat Ahmedov; Rahimov, Ozodbek; Salikhbaev, Umar

    2014-01-01

    The capture cross section of magnetized particles with nonvanishing magnetic moment by a Schwarzschild black hole immersed in an asymptotically uniform magnetic field has been studied as an extension of the approach developed in Zakharov (1994 Class. Quantum Grav. 11 1027) for neutral unmagnetized particles in the Reissner–Nordström spacetime. The magnetic moment of the particle is chosen as in de Felice and Sorge (2003 Class. Quantum Grav. 20 469). It is shown that the spin of the particle sustains the stability of particles circularly orbiting around the black hole immersed in a magnetic field, i.e., a spinning particle's motion near the Schwarzschild black hole horizon is more stable than that of a particle with zero spin. It is shown that the magnetic parameter essentially changes the value of the critical angular momentum and affects the process of capture of the particles by the central black hole. Furthermore, the interaction between the magnetic moment of the particle and the magnetic field forces stable circular orbits to shift to the central object, and this effect should be taken into account in astrophysical scenarios related to the accretion discs and in measuring the spin of the black holes. The magnetized particle's acceleration mechanism near the black hole in an external magnetic field is studied. It is shown that due to the presence of a magnetic field, magnetized particles can accelerate to unlimited high energies. (paper)

  11. Four different animated sub-particles as the origins of the life and creator of different angular momentums of elementary particles

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Zeinab

    2015-04-01

    Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.

  12. Spin waves in quantum crystals

    International Nuclear Information System (INIS)

    Kondratenko, P.S.

    1975-01-01

    The paper considers the spectrum of spin waves of a quantum magnetic crystal. It has been assumed that the crystal is characterized by gapless Fermi excitations. The properties of a single-particle Green function for a magnetic crystal are briefly outlined. The dispersion equation system describing the spin wave spectrum has been derived. The spectrum described by the equation system comprises a group of Goldstone modes and a family of spin waves of the zero sound type, associated with the group by an interaction. The maximum number of Goldstone modes in an antiferromagnet is three, whereas in a ferromagnet it is two. At frequencies higher than the characteristic frequencies of magnetic interactions, in an antiferromagnet all three modes have a linear spectrum, whereas in a ferromagnet the longitudinal mode is represented by a linear spectrum and the transverse mode, by a quadratic one. The dynamical susceptibility of a magnetically ordered crystal has been calculated. The thermodynamical potential of the crystal has been proved to vary as a function of the angular crystal orientation in a spin subspace. The results have been obtained by methods of the quantum field theory for the case of zero temperature

  13. Spin dynamics of electron beams in circular accelerators; Spindynamik von Elektronenstrahlen in Kreisbeschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Oliver

    2014-04-15

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  14. Gauge field theory approach to spin transport in a 2D electron gas

    Directory of Open Access Journals (Sweden)

    B. Berche

    2009-01-01

    Full Text Available We discuss the Pauli Hamiltonian including the spin-orbit interaction within an U(1×SU(2 gauge theory interpretation, where the gauge symmetry appears to be broken. This interpretation offers new insight into the problem of spin currents in the condensed matter environment, and can be extended to Rashba and Dresselhaus spin-orbit interactions. We present a few outcomes of the present formulation: i it automatically leads to zero spin conductivity, in contrast to predictions of Gauge symmetric treatments, ii a topological quantization condition leading to voltage quantization follows, and iii spin interferometers can be conceived in which, starting from an arbitrary incoming unpolarized spinor, it is always possible to construct a perfect spin filtering condition.

  15. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  16. Start-up simulations of the PULSAR pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1993-01-01

    Start-up conditions are examined for a pulsed tokamak reactor that uses only inductively driven plasma current (and bootstrap current). A zero-dimensional (profile-averaged) model containing plasma power and particle balance equations is used to study several aspects of plasma start-up, including: (1) optimization of the start-up pathway; (2) tradeoffs of auxiliary start-up heating power versus start-up time; (3) volt-second consumption; (4) thermal stability of the operating point; (5) estimates of the diverter heat flux and temperature during the start-up transient; (6) the sensitivity of the available operating space to allowed values of the H confinement factor; and (7) partial-power operations

  17. Degenerate quantum gases with spin-orbit coupling: a review.

    Science.gov (United States)

    Zhai, Hui

    2015-02-01

    This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.

  18. Nonlinear spin-up in a circular cylinder

    NARCIS (Netherlands)

    van de Konijnenberg, J.A.; Heijst, van G.J.F.

    1995-01-01

    Nonlinear spin-up in a circular cylindrical tank is investigated experimentally and compared with the Wedemeyer model. The experiments were performed with water, using tracer particles floating at the free surface in order to visualize the flow field. The experimentally determined vorticity profiles

  19. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field

    International Nuclear Information System (INIS)

    Casado-Pascual, Jesus

    2010-01-01

    Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  20. High-spin states in 66Zn

    International Nuclear Information System (INIS)

    Bruandet, J.F.; Agard, M.; Giorni, A.; Longequeue, J.P.; Morand, C.; Tsan Ung Chan.

    1975-01-01

    The structure of 66 Zn has been investigated by studying the yield functions, angular distributions and coincidence relationships of the γ-rays emitted during bombardment of an enriched 64 Ni foil by α particles of medium energy 27MeV. Spins up to 10 h were assigned to observed states [fr

  1. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  2. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    International Nuclear Information System (INIS)

    Delord, T; Nicolas, L; Schwab, L; Hétet, G

    2017-01-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects. (paper)

  3. Mode coupling in spin torque oscillators

    International Nuclear Information System (INIS)

    Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle

    2016-01-01

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  4. Mode coupling in spin torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.

  5. Higher spins tunneling from a time dependent and spherically symmetric black hole

    International Nuclear Information System (INIS)

    Siahaan, Haryanto M.

    2016-01-01

    The discussions of Hawking radiation via tunneling method have been performed extensively in the case of scalar particles. Moreover, there are also several works in discussing the tunneling method for Hawking radiation by using higher spins, e.g. neutrino, photon, and gravitino, in the background of static black holes. Interestingly, it is found that the Hawking temperature for static black holes using the higher spins particles has no difference compared to the one computed using scalars. In this paper, we study the Hawking radiation for a spherically symmetric and time dependent black holes using the tunneling of Dirac particles, photon, and gravitino. We find that the obtained Hawking temperature is similar to the one derived in the tunneling method by using scalars. (orig.)

  6. Higher spins tunneling from a time dependent and spherically symmetric black hole

    Energy Technology Data Exchange (ETDEWEB)

    Siahaan, Haryanto M. [Parahyangan Catholic University, Physics Department, Bandung (Indonesia)

    2016-03-15

    The discussions of Hawking radiation via tunneling method have been performed extensively in the case of scalar particles. Moreover, there are also several works in discussing the tunneling method for Hawking radiation by using higher spins, e.g. neutrino, photon, and gravitino, in the background of static black holes. Interestingly, it is found that the Hawking temperature for static black holes using the higher spins particles has no difference compared to the one computed using scalars. In this paper, we study the Hawking radiation for a spherically symmetric and time dependent black holes using the tunneling of Dirac particles, photon, and gravitino. We find that the obtained Hawking temperature is similar to the one derived in the tunneling method by using scalars. (orig.)

  7. The Low Energy Antiproton Ring (LEAR) some months before the start of its particle physics programme

    CERN Multimedia

    1983-01-01

    LEAR [see e.g.: H.Koziol and D. Möhl, Phys. Rep. 403-404 (2004), p.271 and references therein] and its enclosure in the PS South Hall in Jan, 1983, 4 months before the start of its particle physics programme. Visible (in red) are the 90 degree bending magnets consisting of 6 blocks each. Separated from the magnets by short straight sections are the quadrupole doublets (blue with read end-plates). The 4 long straight sections house large equipment like septa for injection/ejection, RF-cavities and later (since 1986) electron cooling and an internal target and its associated detector (JETSET experiment). Two small copper tubes spanning across the ring are coaxial lines transmitting the stochastic cooling signals from pick up to kicker. (see also photos 8205747X, 8207133, 8207541X, 8301550X,8309026X)

  8. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  9. Particle searches in e+e- experiments at PEP and PETRA

    International Nuclear Information System (INIS)

    Lau, K.H.

    1982-10-01

    This talk reviews recent results in new particle searches performed by experiments at the high energy e + e - storage rings PEP and PETRA. It concentrates on recent searches for: hadrons with a new quark flavor, spin-1/2 charged heavy leptons, spin-0 charged leptons, spin-0 point-like scalars or pseudoscalars, and neutral heavy leptons

  10. Software package for modeling spin-orbit motion in storage rings

    Science.gov (United States)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  11. Stability of a dual-spin satellite with two dampers

    Science.gov (United States)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  12. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  13. The topological B model as a twisted spinning particle

    International Nuclear Information System (INIS)

    Marcus, Neil; Yankielowicz, Shimon

    1994-01-01

    The B-twisted topological sigma model coupled to topological gravity is supposed to be described by an ordinary field theory: a type of holomorphic Chern-Simons theory for the open string, and the Kodaira-Spencer theory for the closed string. We show that the B model can be represented as a particle theory, obtained by reducing the sigma model to one dimension, and replacing the coupling to topological gravity by a coupling to a twisted one-dimensional supergravity. The particle can be defined on any Kaehler manifold - it does not require the Calabi-Yau condition - so it may provide a more generalized setting for the B model than the topological sigma model.The one-loop partition function of the particle can be written in terms of the Ray-Singer torsion of the manifold, and agrees with that of the original B model. After showing how to deform the Kaehler and complex structures in the particle, we prove the independence of this partition function on the Kaehler structure, and investigate the origin of the holomorphic anomaly. To define other amplitudes, one needs to introduce interactions into the particle. The particle will then define a field theory, which may or may not be the Chern-Simons or Kodaira-Spencer theories. ((orig.))

  14. The unitary space of particle internal states

    International Nuclear Information System (INIS)

    Perjes, Z.

    1978-09-01

    A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)

  15. The classical limit of quantum theories: Particles in external metrics and with spin

    International Nuclear Information System (INIS)

    Hogreve, J.J.

    1983-01-01

    The intention of this work is to provide some further steps in this program, particullary the clarification of certain aspects of the classical limit of quantum theory. Here the classical limit is understood in the sense that we consider a family of quantum theories parametrized by (h/2π) > 0, and then take the limit (h/2π) -> 0. From a mathematical point of view we are thus in the area calles 'asymptotic perturbation theory'. In detail, we examine the canonical partition function Tr [esup(-x)] with x=tH((h/2π)) for Hamiltonians H ((h/2π)) involving the Laplace-Beltrami operator on manifolds, and show that after scaling it by (h/2π)sup(N) it converges to its corresponding classical counterpart. This is done in chapter I. In chapter II we prove the convergence to its classical limit of the partition function for Hamiltonians including spin degrees of freedom, i.e. Hamiltonians of Pauli type. In this case taking the classical limit includes also manipulation on the spin space in the sense that the weight of the representation of the spin operators has to tend to infinity simultanously as (h/2π) approaches zero. Under this procedure the spin space itself, that is the representation space of the spin operators, turn into certain coadjoint orbits of the respective Lie group. The main result of chapter III is a generalized Ehrenfest theorem; as (h/2π) -> 0 the quantum mechanical time evolution generated by Hamiltonians including external metrics and vector potentials becomes a solution of the corresponding classical canonical Hamiltonian equations. (orig./HSI) [de

  16. Spin and Pseudospin Symmetries with Trigonometric Pöschl-Teller Potential including Tensor Coupling

    Directory of Open Access Journals (Sweden)

    M. Hamzavi

    2013-01-01

    Full Text Available We study approximate analytical solutions of the Dirac equation with the trigonometric Pöschl-Teller (tPT potential and a Coulomb-like tensor potential for arbitrary spin-orbit quantum number κ under the presence of exact spin and pseudospin ( p -spin symmetries. The bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle are obtained using the parametric generalization of the Nikiforov-Uvarov (NU method. We show that tensor interaction removes degeneracies between spin and pseudospin doublets. The case of nonrelativistic limit is studied too.

  17. New particle-hole symmetries and the extended interacting boson model

    CERN Document Server

    De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M

    1998-01-01

    We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.

  18. In Situ AFM Imaging of Microstructural Changes Associated with The Spin Transition in [Fe(Htrz)₂(Trz)](Bf₄) Nanoparticles.

    Science.gov (United States)

    Manrique-Juárez, María D; Suleimanov, Iurii; Hernández, Edna M; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-06-30

    Topographic images of [Fe(Htrz)₂(trz)](BF₄) nanoparticles were acquired across the first-order spin transition using variable-temperature atomic force microscopy (AFM) in amplitude modulation mode. These studies revealed a complex morphology of the particles consisting of aggregates of small nanocrystals, which expand, separate and re-aggregate due to the mechanical stress during the spin-state switching events. Both reversible (prompt or slow recovery) and irreversible effects (fatigue) on the particle morphology were evidenced and correlated with the spin crossover properties.

  19. Large-amplitude superexchange of high-spin fermions in optical lattices

    International Nuclear Information System (INIS)

    Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören

    2013-01-01

    We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)

  20. External meeting - Geneva University: Precision measurements in spin physics

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél: 022 379 62 73 - Fax: 022 379 69 92 Wednesday 28 March 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Precision measurements in spin physics by Dr. Steven Bass / CERN - Innsbruck The proton spin problem has been challenging experimentalists and theorists alike for the last 20 years. Polarized deep inelastic scattering experiments at CERN, DESY and SLAC have told us that quark partons contribute only about 30% of the proton's spin whereas relativistic quark models predict 60%. Where is the missing spin and why is the quark spin contribution so small? In this talk I will give an overview of the proton spin problem and what it may be telling us about QCD, the vacuum and dynamical symmetry breaking. A precise measurement of neutrino-proton elastic scattering would make a vital contribution to resolving many of the outstanding issues. Information: http://dpnc...