WorldWideScience

Sample records for spine body radiotherapy

  1. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  2. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Winnie; Sahgal, Arjun [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Foote, Matthew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Millar, Barbara-Ann; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel, E-mail: Daniel.letourneau@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2012-10-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image

  3. Impact of Immobilization on Intrafraction Motion for Spine Stereotactic Body Radiotherapy Using Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    Li, Winnie; Sahgal, Arjun; Foote, Matthew; Millar, Barbara-Ann; Jaffray, David A.; Letourneau, Daniel

    2012-01-01

    Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1–T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins ± 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9° to 1.6°, respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup

  4. SU-F-J-128: Dosimetric Impact of Esophagus Motion in Spine Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J; Wang, X; Zhao, Z; Yang, J; Zhang, Y; Court, L; Li, J; Brown, P; Ghia, A [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Acute esophageal toxicity is a common side effect in spine stereotactic body radiotherapy (SBRT). The respiratory motion may alter esophageal position from the planning scan resulting in excessive esophageal dose. Here we assessed the dosimetric impact resulting from the esophageal motion using 4DCT. Methods: Nine patients treated to their thoracic spines in one fraction of 24 Gy were identified for this study. The original plan on a free breathing CT was copied to each phase image of a 4DCT scan, recalculated, scaled, and accumulated to the free breathing CT using deformable image registration. A segment of esophagus was contoured in the vicinity of treatment target. Esophagus dose volume histogram (DVH) was generated for both the original planned dose and the accumulated 4D dose for comparison. In parallel, we performed a chained deformable registration of 4DCT phase images to estimate the motion magnitude of the esophagus in a breathing cycle. We examined the correlation between the motion magnitude and the dosimetric deviation. Results: The esophageal motion mostly exhibited in the superior-inferior direction. The cross-sectional motion was small. Esophagus motion at T1 vertebra level (0.7 mm) is much smaller than that at T11 vertebra level (6.5 mm). The difference of Dmax between the original and 4D dose distributions ranged from 9.1 cGy (esophagus motion: 5.6 mm) to 231.1 cGy (esophagus motion: 3.1 mm). The difference of D(5cc) ranged from 5 cGy (esophagus motion: 3.1 mm) to 85 cGy (esophagus motion: 3.3 mm). There was no correlation between the dosimetric deviation and the motion magnitude. The V(11.9Gy)<5cc constraint was met for each patient when examining the DVH calculated from the 4D dose. Conclusion: Respiratory motion did not result in substantial dose increase to esophagus in spine SBRT. 4DCT simulation may not be necessary with regards to esophageal dose assessment.

  5. Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance With a Robotic Couch: Intrafraction Motion Analysis Accounting for all Six Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Derek [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); British Columbia Cancer Agency, The Sindi Hawkins Cancer Centre for the Southern Interior, Kelowna (Canada); Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Sahgal, Arjun, E-mail: Arjun.sahgal@rmp.uhn.on.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto (Canada)

    2012-03-01

    Purpose: To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Methods and Materials: Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1 Degree-Sign tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1 Degree-Sign degree after the first 10 patients. Results: Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1 Degree-Sign . In analyzing the impact of the time interval for verification imaging (10 {+-} 3 min) and subsequent image acquisitions (17 {+-} 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis ({+-} SD) were 0.7 {+-} 0.5 mm and 0.5 {+-} 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1 Degree-Sign correction threshold, the target was localized to within 1.2 mm and 0.9 Degree-Sign with 95% confidence. Conclusion: Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion

  6. Skeletal changes in growing spine following radiotherapy of tumors

    International Nuclear Information System (INIS)

    Spissak, L.; Horniakova, M.

    1987-01-01

    An analysis is given of a group of 20 children after nephrectomy and radiotherapy of Wilms' tumor and of one child following ovariectomy and radiotherapy of a dysgermanoma more than 5 years after the termination of the therapy. Morphological and structural changes were evaluated in the vertebrae as well as axial alterations of the spine. Interrelationships were found between the radiation dose, the patient's age and the degree of the skeletal changes in the spine. The most pronounced morphological, structural and axial changes occurred in children below 4 years treated with radiation doses above 20.0 Gy. (author). 1 tab., 5 figs., 3 refs

  7. SU-C-BRA-01: 18F-NaF PET/CT-Directed Dose Escalation in Stereotactic Body Radiotherapy for Spine Oligometastases From Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China); University of Nevada, Las Vegas, Las Vegas, NV (United States); Zhang, W; Li, M; Peng, X; Xie, L; Lin, Z [Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China); Kwee, S [The Queen’s Medical Center, Honolulu, HI (United States); Wang, H; Kuang, Y [University of Nevada, Las Vegas, Las Vegas, NV (United States)

    2015-06-15

    Purpose: To investigate the technical feasibility of SBRT dose painting using {sup 18}F-NaF positron emission tomography (PET) scans guidance in patients with spine oligometastases from prostate cancer. Methods: As a proof of concept, six patients with 14 spine oligometastatic lesions from prostate cancer who had {sup 18}F-NaF PET/CT scan prior to treatment were retrospectively included. GTV{sub reg} was delineated according to the regular tumor boundary shown on PET and/or CT images; and GTV{sub MATV} was contoured based on a net metabolically active tumor volume (MATV) defined by 60% of the SUV{sub max} values on {sup 18}F-NaF PET images. The PTVs (PTV{sub reg} and PTV{sub MATV}) were defined as respective GTVs (plus involved entire vertebral body for PTV{sub reg}) with a 3-mm isotropic expansion margin. Three 1-fraction SBRT plans using VMAT technique along with 10 MV FFF beams (Plan{sub 24Gy}, Plan{sub 24–27Gy}, and Plan{sub 24–30Gy}) were generated for each patient. All plans included a dose of 24 Gy prescribed to PTV{sub reg}. The Plan{sub 24–27Gy} and Plan{sub 24–30Gy} also included a simultaneous boost dose of 27 Gy or 30 Gy prescribed to the PTV{sub MATV}, respectively. The feasibility of 18F-NaF PET-guided SBRT dose escalation was evaluated by its ability to achieve the prescription dose objectives while adhering to organ-at-risk (OAR) dose constraints. The normal tissue complication probabilities (NTCP) calculated by radiological models were also compared between the plans. Results: In all 33 SBRT plans generated, the planning objectives and dose constraints were met without exception. Plan{sub 24–27Gy} and Plan{sub 24–30Gy} had a significantly higher dose in PTV{sub MATV} than Plan{sub 24Gy} (p < 0.05), respectively, while maintaining a similar OAR sparing profile and NTCP values. Conclusion: Using VMAT with FFF beams to incorporate a simultaneous {sup 18}F-NaF PET-guided radiation boost dose up to 30 Gy into a SBRT plan is technically

  8. Digital tomosynthesis for verifying spine position during radiotherapy: a phantom study

    International Nuclear Information System (INIS)

    Gurney-Champion, Oliver J; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R; Mostafavi, Hassan

    2013-01-01

    Monitoring the stability of patient position is essential during high-precision radiotherapy such as spine stereotactic body radiotherapy (SBRT). We evaluated the combination of digital tomosynthesis (DTS) and triangulation for spine position detection, using non-clinical DTS software and an anthropomorphic pelvic phantom that includes a bone-like spine structure. Kilovoltage cone beam CT projection images over 2–16° gantry rotation were used to generate single slice DTS images. Each DTS slice was registered to a digitally reconstructed DTS derived from the planning CT scan to determine 2D shifts between actual phantom and treatment plan position. Two or more DTS registrations, central axes 4–22° apart, were triangulated to determine the 3D phantom position. Using sequentially generated DTS images, the phantom position can be updated every degree with a small latency of DTS and triangulation angle. The precision of position determination was investigated as function of DTS and triangulation angle. To mimic the scenario of spine SBRT, the effect on the standard deviation of megavoltage radiation delivery during kV image acquisition was tested. In addition, the ability of the system to detect different types of movement was investigated for a variety of small sudden and gradual movements during kV image acquisition. (paper)

  9. Design and development of spine phantom to verify dosimetric accuracy of stereotactic body radiation therapy using 3D prnter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seu Ran; Lee, Min Young; Kim, Min Joo; Park, So Hyun; Song Ji Hye; Suh, Tae Suk [Dept. of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Sohn, Jason W. [Dept. of Radiation Oncology, College of Medicine, Case Western Reserve University, Cleveland (United States)

    2015-10-15

    The purpose of this study is to verify dosimetric accuracy of delivered dose in spine SBRT as highly precise radiotherapy depending on cancer position using dedicated spine phantom based on 3D printer. Radiation therapy oncology group (RTOG) 0631 suggest different planning method in spine stereotactic body radiation therapy (SBRT) according to location of cancer owing to its distinct shape. The developed phantom especially using DLP method can be utilized as spine SBRT dosimetry research. Our study was able to confirm that the phantom was indeed similar with HU value of human spine as well as its shape.

  10. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    International Nuclear Information System (INIS)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade; Laufer, Ilya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  11. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Taunk, Neil Kanth; Yamada, Yoshiya [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Laufer, Ilya, E-mail: fymoraes@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Neurosurgery, New York, NY (United States)

    2016-02-15

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  12. Emerging technologies in stereotactic body radiotherapy.

    Science.gov (United States)

    Ma, Lijun; Wang, Lei; Tseng, Chia-Lin; Sahgal, Arjun

    2017-09-01

    Stereotactic body radiation therapy (SBRT) stems from the initial developments of intra-cranial stereotactic radiosurgery (SRS). Despite similarity in their names and clinical goals of delivering a sufficiently high tumoricidal dose, maximal sparing of the surrounding normal tissues and a short treatment course, SBRT technologies have transformed from the early days of body frame-based treatments with X-ray verification to primarily image-guided procedures with cone-beam CT or stereoscopic X-ray systems and non-rigid body immo-bilization. As a result of the incorporation of image-guidance systems and multi-leaf col-limators into mainstream linac systems, and treatment planning systems that have also evolved to allow for routine dose calculations to permit intensity modulated radiotherapy and volumetric modulated arc therapy (VMAT), SBRT has disseminated rapidly in the community to manage many disease sites that include oligometastases, spine lesions, lung, prostate, liver, renal cell, pelvic tumors, and head and neck tumors etc. In this article, we review the physical principles and paradigms that led to the widespread adoption of SBRT practice as well as technical caveats specific to individual SBRT technologies. From the perspective of treatment delivery, we categorically described (I) C-arm linac-based SBRT technologies; (II) robotically manipulated X-band CyberKnife® technology; and (III) emerging specialized systems for SBRT that include integrated MRI-linear accelerators and the imaged-guided Gamma Knife Perfexion Icon system with expanded multi-isocenter treatments of skull-based tumors, head-and-neck and cervical-spine lesions.

  13. Stereotactic Body Radiotherapy Reirradiation for Recurrent Epidural Spinal Metastases

    International Nuclear Information System (INIS)

    Mahadevan, Anand; Floyd, Scott; Wong, Eric; Jeyapalan, Suriya; Groff, Michael; Kasper, Ekkehard

    2011-01-01

    Purpose: When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. Methods and Materials: SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy × 3 = 24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gy x 5 = 25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. Results: The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. Conclusions: SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients.

  14. Stereotactic Body Radiotherapy Reirradiation for Recurrent Epidural Spinal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Anand, E-mail: amahadev@bidmc.harvard.edu [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel); Floyd, Scott [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel); Wong, Eric; Jeyapalan, Suriya [Department of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel); Groff, Michael; Kasper, Ekkehard [Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts and Harvard Medical School (Israel)

    2011-12-01

    Purpose: When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. Methods and Materials: SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy Multiplication-Sign 3 = 24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gy x 5 = 25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. Results: The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. Conclusions: SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients.

  15. Stereotactic body radiotherapy reirradiation for recurrent epidural spinal metastases.

    Science.gov (United States)

    Mahadevan, Anand; Floyd, Scott; Wong, Eric; Jeyapalan, Suriya; Groff, Michael; Kasper, Ekkehard

    2011-12-01

    When patients show progression after conventional fractionated radiation for spine metastasis, further radiation and surgery may not be options. Stereotactic body radiotherapy (SBRT) has been successfully used in treatment of the spine and may be applicable in these cases. We report the use of SBRT for 60 consecutive patients (81 lesions) who had radiological progressive spine metastasis with epidural involvement after previous radiation for spine metastasis. SBRT was used with fiducial and vertebral anatomy-based targeting. The radiation dose was prescribed based on the extent of spinal canal involvement; the dose was 8 Gy×3=24 Gy when the tumor did not touch the spinal cord and 5 to 6 Gyx5=25 to 30 Gy when the tumor abutted the cord. The cord surface received up to the prescription dose with no hot spots in the cord. The median overall survival was 11 months, and the median progression-free survival was 9 months. Overall, 93% of patients had stable or improved disease while 7% of patients showed disease progression; 65% of patients had pain relief. There was no significant toxicity other than fatigue. SBRT is feasible and appears to be an effective treatment modality for reirradiation after conventional palliative radiation fails for spine metastasis patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Metastatic tumor of thoracic and lumbar spine: prospective study comparing the surgery and radiotherapy vs external immobilization with radiotherapy

    International Nuclear Information System (INIS)

    Falavigna, Asdrubal; Ioppi, Ana Elisa Empinotti; Grasselli, Juliana

    2007-01-01

    Bone metastases at the thoracic and lumbar segment of the spine are usually presented with painful sensation and medullar compression. The treatment is based on the clinical and neurological conditions of the patient and the degree of tumor invasion. In the present study, 32 patients with spinal metastasis of thoracic and lumbar segment were prospectively analyzed. These patients were treated by decompression and internal stabilization followed by radiotherapy or irradiation with external immobilization. The election of the groups was in accordance with the tumor radiotherapy sensitivity, clinical conditions, spinal stability, medullar or nerve compression and patient's decision. The Frankel scale and pain visual test were applied at the moment of diagnosis and after 1 and 6 months. The surgical group had better results with preserving the ambulation longer and significant reduction of pain.(author)

  17. Results of radiotherapy for metastatic extradural tumors of the spine

    International Nuclear Information System (INIS)

    Akagi, Yukio; Hirokawa, Yutaka; Kashiwado, Kouzo

    1991-01-01

    From April 1984 through March 1989, 30 patients were treated with radiation therapy for metastatic extradural tumors of the spine associated with spinal cord compression. This is a retrospective analysis of therapeutic results in the 30 patients followed up for two months or more. The total dose was 25.0-52.5 Gy with an average dose of 42.5 Gy. The intervals between the occurrence of paralysis symptoms to the beginning of radiation therapy varied widely from 5 days to 70 days with an average of 38.2 days; it took a long time in spite of emergency candidates for radiation therapy. Therapeutic results were classified as extremely improved (++) when transverse paralysis was completely resolved, as improved (+) when subjective or objective paralysis symptoms were improved, and as unchanged (-). Five patients were evaluated as (++), 8 as (+), and unchanged (-); the effective rate was 43% (13/30). According to primary cancer, (++) was seen in one patient each with cancer of the liver, lung, prostate, and nasopharynx, and one patient with cancer of unknown origin. In addition, (+) was seen in two each with lung and breast cancer, and in single patients with lung cancer, malignant lymphoma, prostatic cancer, and multiple myeloma. The effective rate was lower as prolonging the time after the occurrence of paralysis symptoms. The effective rate was not significantly related to the severity of paralysis; 39% for complete paralysis (7/18) vs 50% for incomplete paralysis (6/12). It is important to determine the method and candidates of palliative radiation therapy to maintain the quality of life in terminal cancer. (N.K.)

  18. Radiotherapy in metastatic diseases of the cervical spine and the craniospinal region

    International Nuclear Information System (INIS)

    Mende, U.; Braun, A.; Reiden, K.; Voth, D.; Glees, P.

    1987-01-01

    The results of large autopsy studies indicate that 20 to 30% of all patients with carcinoma will develop sooner or later bone metastases. According to the incidence of the primary tumor itself as well as to its tendency to metastasize into the skeletal system more than 80% of all bone metastases are due to neoplasms of the breast, prostate, bronchus, kidney and thyroid. Most of the metastases are found in the red marrow with an unequivocal preference to the axial skeleton. This article discusses radiotherapy in metastatic diseases of the cervical spine and the craniospinal region

  19. MR examination of bone marrow variations in the spine after radiotherapy

    International Nuclear Information System (INIS)

    Starz, I.; Einspieler, R.; Poschauko, H.; Ebner, F.; Arian-Schad, K.; Justich, E.

    1990-01-01

    MR examinations of bone marrow variations in the spine after radiotherapy were performed on 24 patients in the thoracic and lumbar vertebral column. The actinically affected bone marrow showed a characteristic increase of signal intensity in T 1 -weighted sequences in the sagital plane, due to conversion of red marrow to fatty marrow. The dose in the well-defined radiation areas was between 28 and 70 Gray (Gy). The lowest dose, applied to the bone-marrow bordering on the defined radiation areas, where we still could find an increase of signal intensity, was below 2,8 to 5 Gy. MR imaging was performed between 6 and 9 month after radiotherapy. (orig.) [de

  20. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kim

    Full Text Available Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP and Polyjet has been purposed to utilize in patient-specific quality assurance (QA of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed

  1. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.

    Science.gov (United States)

    Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA

  2. Epithelioid hemangioendothelioma of the spine treated with RapidArc volumetric-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste; Trone, Jane-Chloé [Department of Radiotherapy, Institut de Cancérologie de la Loire, St Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, HIA du Val de Grâce, Paris (France); Falk, Alexander Tuan [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Khodri, Mustapha [Department of Physics, Institut de Cancérologie de la Loire, St Priest en Jarez (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiotherapy, Institut de Cancérologie de la Loire, St Priest en Jarez (France)

    2014-10-01

    Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity was reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.

  3. A Study of Pseudoprogression After Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bahig, Houda; Simard, Dany [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Létourneau, Laurent [Department of Radiology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Wong, Philip; Roberge, David; Filion, Edith; Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Sahgal, Arjun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Masucci, Laura, E-mail: g.laura.masucci.chum@ssss.gouv.qc.ca [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada)

    2016-11-15

    Purpose: To determine the incidence of pseudoprogression (PP) after spine stereotactic body radiation therapy based on a detailed and quantitative assessment of magnetic resonance imaging (MRI) morphologic tumor alterations, and to identify predictive factors distinguishing PP from local recurrence (LR). Methods and Materials: A retrospective analysis of 35 patients with 49 spinal segments treated with spine stereotactic body radiation therapy, from 2009 to 2014, was conducted. The median number of follow-up MRI studies was 4 (range, 2-7). The gross tumor volumes (GTVs) within each of the 49 spinal segments were contoured on the pretreatment and each subsequent follow-up T1- and T2-weighted MRI sagittal sequence. T2 signal intensity was reported as the mean intensity of voxels constituting each volume. LR was defined as persistent GTV enlargement on ≥2 serial MRI studies for ≥6 months or on pathologic confirmation. PP was defined as a GTV enlargement followed by stability or regression on subsequent imaging within 6 months. Kaplan-Meier analysis was used for estimation of actuarial local control, disease-free survival, and overall survival. Results: The median follow-up was 23 months (range, 1-39 months). PP was identified in 18% of treated segments (9 of 49) and LR in 29% (14 of 49). Earlier volume enlargement (5 months for PP vs 15 months for LR, P=.005), greater GTV to reference nonirradiated vertebral body T2 intensity ratio (+30% for PP vs −10% for LR, P=.005), and growth confined to 80% of the prescription isodose line (80% IDL) (8 of 9 PP cases vs 1 of 14 LR cases, P=.002) were associated with PP on univariate analysis. Multivariate analysis confirmed an earlier time to volume enlargement and growth within the 80% IDL as significant predictors of PP. LR involved the epidural space in all but 1 lesion, whereas PP was confined to the vertebral body in 7 of 9 cases. Conclusions: PP was observed in 18% of treated spinal segments. Tumor growth

  4. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors

    International Nuclear Information System (INIS)

    Norihisa, Yoshiki; Nagata, Yasushi; Takayama, Kenji; Matsuo, Yukinori; Sakamoto, Takashi; Sakamoto, Masato; Mizowaki, Takashi; Yano, Shinsuke; Hiraoka, Masahiro

    2008-01-01

    Purpose: Since 1998, we have treated primary and oligometastatic lung tumors with stereotactic body radiotherapy (SBRT). The term 'oligometastasis' is used to indicate a small number of metastases limited to an organ. We evaluated our clinical experience of SBRT for oligometastatic lung tumors. Methods and Materials: A total of 34 patients with oligometastatic lung tumors were included in this study. The primary involved organs were the lung (n = 15), colorectum (n = 9), head and neck (n = 5), kidney (n = 3), breast (n = 1), and bone (n = 1). Five to seven, noncoplanar, static 6-MV photon beams were used to deliver 48 Gy (n = 18) or 60 Gy (n = 16) at the isocenter, with 12 Gy/fraction within 4-18 days (median, 12 days). Results: The overall survival rate, local relapse-free rate, and progression-free rate at 2 years was 84.3%, 90.0%, and 34.8%, respectively. No local progression was observed in tumors irradiated with 60 Gy. SBRT-related pulmonary toxicities were observed in 4 (12%) Grade 2 cases and 1 (3%) Grade 3 case. Patients with a longer disease-free interval had a greater overall survival rate. Conclusion: The clinical result of SBRT for oligometastatic lung tumors in our institute was comparable to that after surgical metastasectomy; thus, SBRT could be an effective treatment of pulmonary oligometastases

  5. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint

    OpenAIRE

    Etier, Brian E.; Norte, Grant E.; Gleason, Megan M.; Richter, Dustin L.; Pugh, Kelli F.; Thomson, Keith B.; Slater, Lindsay V.; Hart, Joe M.; Brockmeier, Stephen F.; Diduch, David R.

    2017-01-01

    Background: The National Athletic Trainers’ Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. Purpose: To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulde...

  6. Rib fracture following stereotactic body radiotherapy: a potential pitfall.

    Science.gov (United States)

    Stanic, Sinisa; Boike, Thomas P; Rule, William G; Timmerman, Robert D

    2011-11-01

    Although the incidence of rib fractures after conventional radiotherapy is generally low (rib fractures are a relatively common complication of stereotactic body radiotherapy. For malignancy adjacent to the chest wall, the incidence of rib fractures after stereotactic body radiotherapy is as high as 10%. Unrecognized bone fractures can mimic bone metastases on bone scintigraphy, can lead to extensive workup, and can even lead to consideration of unnecessary systemic chemotherapy, as treatment decisions can be based on imaging findings alone. Nuclear medicine physicians and diagnostic radiologists should always consider rib fracture in the differential diagnosis.

  7. Stereotactic body radiotherapy a practical guide

    CERN Document Server

    Gaya, Andrew

    2015-01-01

    Collecting the key information in this burgeoning field into a single volume, this handbook for clinical oncology trainees and consultants covers all of the basic aspects of stereotactic radiotherapy systems and treatment and includes plenty of case studies.

  8. Hypopharyngeal and upper esophageal ulceration after cervical spine radiotherapy concurrent with crizotinib

    International Nuclear Information System (INIS)

    Zimmermann, Marcus H.; Beckmann, Gabriele; Flentje, Michael; Jung, Pius

    2017-01-01

    Herein, the authors describe the case of a 31-year-old female patient with primary metastatic adenocarcinoma of the lung referred for radiation therapy of newly diagnosed intramedullary spinal cord metastasis at C4/5 and an adjacent osteolytic lesion. Radiotherapy of the cervical spine level C3 to C5, including the whole vertebra, was performed with 30 Gy in 10 fractions. The patient's systemic therapy with crizotinib 250 mg twice daily was continued. After 8 fractions of radiation the patient developed increasing dysphagia. Ulceration of the hypopharynx and the upper esophagus were obvious in esophagoscopy and CT. Hospitalization for analgesia and percutaneous endoscopic gastrostomy (PEG) was required. First oral intake was possible 3 weeks after the onset of symptoms. The early onset, severity, and duration of mucositis seemed highly unusual in this case. A review of the literature failed to identify any reference to increased mucositis after radiation therapy concurrent with crizotinib, although references to such an effect with other tyrosine kinase inhibitors (TKI) were found. Nevertheless, the authors presume that a considerable risk of unexpected interactions exists. When crizotinib and radiotherapy are combined, heightened attention toward intensified reactions seems to be warranted. (orig.) [de

  9. Stereotactic body radiotherapy in lung cancer: an update

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Carlos Eduardo Cintra Vita; Ferreira, Paula Pratti Rodrigues; Moraes, Fabio Ynoe de; Neves Junior, Wellington Furtado Pimenta; Carvalho, Heloisa de Andrade, E-mail: heloisa.carvalho@hc.fm.usp.br [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Gadia, Rafael [Hospital Sirio-Libanes, Brasilia, DF (Brazil). Departamento de Radioterapia; Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Radiologia e Oncologia. Servico de Radioterapia

    2015-07-15

    For early-stage lung cancer, the treatment of choice is surgery. In patients who are not surgical candidates or are unwilling to undergo surgery, radiotherapy is the principal treatment option. Here, we review stereotactic body radiotherapy, a technique that has produced quite promising results in such patients and should be the treatment of choice, if available. We also present the major indications, technical aspects, results, and special situations related to the technique. (author)

  10. Random Positional Variation Among the Skull, Mandible, and Cervical Spine With Treatment Progression During Head-and-Neck Radiotherapy

    International Nuclear Information System (INIS)

    Ahn, Peter H.; Ahn, Andrew I.; Lee, C. Joe; Shen Jin; Miller, Ekeni; Lukaj, Alex; Milan, Elissa; Yaparpalvi, Ravindra; Kalnicki, Shalom; Garg, Madhur K.

    2009-01-01

    Purpose: With 54 o of freedom from the skull to mandible to C7, ensuring adequate immobilization for head-and-neck radiotherapy (RT) is complex. We quantify variations in skull, mandible, and cervical spine movement between RT sessions. Methods and Materials: Twenty-three sequential head-and-neck RT patients underwent serial computed tomography. Patients underwent planned rescanning at 11, 22, and 33 fractions for a total of 93 scans. Coordinates of multiple bony elements of the skull, mandible, and cervical spine were used to calculate rotational and translational changes of bony anatomy compared with the original planning scan. Results: Mean translational and rotational variations on rescanning were negligible, but showed a wide range. Changes in scoliosis and lordosis of the cervical spine between fractions showed similar variability. There was no correlation between positional variation and fraction number and no strong correlation with weight loss or skin separation. Semi-independent rotational and translation movement of the skull in relation to the lower cervical spine was shown. Positioning variability measured by means of vector displacement was largest in the mandible and lower cervical spine. Conclusions: Although only small overall variations in position between head-and-neck RT sessions exist on average, there is significant random variation in patient positioning of the skull, mandible, and cervical spine elements. Such variation is accentuated in the mandible and lower cervical spine. These random semirigid variations in positioning of the skull and spine point to a need for improved immobilization and/or confirmation of patient positioning in RT of the head and neck

  11. Random Positional Variation Among the Skull, Mandible, and Cervical Spine With Treatment Progression During Head-and-Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Peter H. [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States)], E-mail: phahn@mdanderson.org; Ahn, Andrew I [Albert Einstein College of Medicine of Yeshiva University, Bronx, NY (United States); Lee, C Joe; Jin, Shen; Miller, Ekeni; Lukaj, Alex; Milan, Elissa; Yaparpalvi, Ravindra; Kalnicki, Shalom; Garg, Madhur K [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States)

    2009-02-01

    Purpose: With 54{sup o} of freedom from the skull to mandible to C7, ensuring adequate immobilization for head-and-neck radiotherapy (RT) is complex. We quantify variations in skull, mandible, and cervical spine movement between RT sessions. Methods and Materials: Twenty-three sequential head-and-neck RT patients underwent serial computed tomography. Patients underwent planned rescanning at 11, 22, and 33 fractions for a total of 93 scans. Coordinates of multiple bony elements of the skull, mandible, and cervical spine were used to calculate rotational and translational changes of bony anatomy compared with the original planning scan. Results: Mean translational and rotational variations on rescanning were negligible, but showed a wide range. Changes in scoliosis and lordosis of the cervical spine between fractions showed similar variability. There was no correlation between positional variation and fraction number and no strong correlation with weight loss or skin separation. Semi-independent rotational and translation movement of the skull in relation to the lower cervical spine was shown. Positioning variability measured by means of vector displacement was largest in the mandible and lower cervical spine. Conclusions: Although only small overall variations in position between head-and-neck RT sessions exist on average, there is significant random variation in patient positioning of the skull, mandible, and cervical spine elements. Such variation is accentuated in the mandible and lower cervical spine. These random semirigid variations in positioning of the skull and spine point to a need for improved immobilization and/or confirmation of patient positioning in RT of the head and neck.

  12. Hypopharyngeal and upper esophageal ulceration after cervical spine radiotherapy concurrent with crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Marcus H.; Beckmann, Gabriele; Flentje, Michael [University Hospital of Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany); Jung, Pius [University Hospital of Wuerzburg, Department of Pneumonology, Medical Clinic I, Wuerzburg (Germany)

    2017-07-15

    Herein, the authors describe the case of a 31-year-old female patient with primary metastatic adenocarcinoma of the lung referred for radiation therapy of newly diagnosed intramedullary spinal cord metastasis at C4/5 and an adjacent osteolytic lesion. Radiotherapy of the cervical spine level C3 to C5, including the whole vertebra, was performed with 30 Gy in 10 fractions. The patient's systemic therapy with crizotinib 250 mg twice daily was continued. After 8 fractions of radiation the patient developed increasing dysphagia. Ulceration of the hypopharynx and the upper esophagus were obvious in esophagoscopy and CT. Hospitalization for analgesia and percutaneous endoscopic gastrostomy (PEG) was required. First oral intake was possible 3 weeks after the onset of symptoms. The early onset, severity, and duration of mucositis seemed highly unusual in this case. A review of the literature failed to identify any reference to increased mucositis after radiation therapy concurrent with crizotinib, although references to such an effect with other tyrosine kinase inhibitors (TKI) were found. Nevertheless, the authors presume that a considerable risk of unexpected interactions exists. When crizotinib and radiotherapy are combined, heightened attention toward intensified reactions seems to be warranted. (orig.) [German] Die Autoren berichten ueber eine 31-jaehrige Patientin mit primaer metastasiertem Adenokarzinom der Lunge, die ihnen zur Bestrahlung einer neu aufgetretenen intraspinal-intramedullaeren Metastase auf Hoehe der Bandscheibe C 4/5 sowie einer benachbarten osteolytischen Laesion zugewiesen wurde. Es erfolgte eine Bestrahlung der Halswirbelsaeule von C 3 bis C 5 mit 30 Gy in 10 Fraktionen. Die bestehende Systemtherapie mit 250 mg Crizotinib 2-mal taeglich wurde fortgesetzt. Nach 8 Fraktionen entwickelte die Patientin eine zunehmende Dysphagie. In der Oesophagoskopie sowie computertomographisch zeigte sich eine Ulzeration des Hypopharynx und des oberen

  13. Emerging radiotherapy technology in a developing country: A single Brazilian institution assessment of stereotactic body radiotherapy application

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe; Bonifacio, Lorine Arias; Neves-Junior, Wellington Pimenta; Hanna, Samir Abdallah; Abreu, Carlos Eduardo Cintra Vita; Arruda, Fernando Freire; Silva, Joao Luis Fernandes; Carvalho, Heloisa Andrade, E-mail: fymoraes@gmail.com [Hospital Sirio-Libanes, Sao Paulo, SP(Brazil)

    2016-11-15

    Objective: To provide a quantitative profile of the indications and use of stereotactic body radiotherapy (SBRT) in a developing country oncology-based institution. In addition, to describe the patient and treatment characteristics, and to provide a temporal analysis. Method: SBRT patients treated from 2007 to 2015 were retrospectively evaluated by two independently investigators. Data were stratified and compared in two periods: first experience (FE) (May 2007 to April 2011), and following experience (FollowE) (May 2011 to April 2015). The following parameters were compared between the groups: total number of treated patients and lesions, treatment site, additional image fusion used, formal protocol adoption, and SBRT planning technique. Results: One hundred and seventy-six (176) patients with 191 lesions were treated: 34 (18%) lesions in the FE and 157 (82%) lesions in FollowE. The majority of lesions were metastases (60.3%), and lung (60.2%) was the most common treatment site, followed by spine (31%), and others (8.8%). An average of 1.4 (±0.6) additional imaging exams for delineation was performed. Conformal 3D radiotherapy planning technique was used in 64.4%, and intensity modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT) in the remaining 35.6% (p=0.0001). Higher rates of curative treatments were observed in FE, as well as more lung lesions, patients ≥ 70 years, 3D conformal, number of additional images and ECOG 0, and all presented p<0.05. The global rate of protocol statement was 79%, lung treatment being the most stated. Conclusion: SBRT application is rapidly increasing in our setting. Treatment sites and planning techniques are becoming more diversified and complex. (author)

  14. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Tailor, Ramesh C. [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Isa, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Princess Margaret Cancer Center, University Health Network, Toronto, Ontario (Canada); Afzal, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Chow, James [Princess Margaret Cancer Center, University Health Network, Toronto, Ontario (Canada); Ibbott, Geoffrey S. [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetime risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.

  15. Correlation between TMD and Cervical Spine Pain and Mobility: Is the Whole Body Balance TMJ Related?

    Directory of Open Access Journals (Sweden)

    Karolina Walczyńska-Dragon

    2014-01-01

    Full Text Available Temporomandibular dysfunction (TMD is considered to be associated with imbalance of the whole body. This study aimed to evaluate the influence of TMD therapy on cervical spine range of movement (ROM and reduction of spinal pain. The study group consisted of 60 patients with TMD, cervical spine pain, and limited cervical spine range of movements. Subjects were interviewed by a questionnaire about symptoms of TMD and neck pain and had also masticatory motor system physically examined (according to RDC-TMD and analysed by JMA ultrasound device. The cervical spine motion was analysed using an MCS device. Subjects were randomly admitted to two groups, treated and control. Patients from the treated group were treated with an occlusal splint. Patients from control group were ordered to self-control parafunctional habits. Subsequent examinations were planned in both groups 3 weeks and 3 months after treatment was introduced. The results of tests performed 3 months after the beginning of occlusal splint therapy showed a significant improvement in TMJ function (P>0.05, cervical spine ROM, and a reduction of spinal pain. The conclusion is that there is a significant association between TMD treatment and reduction of cervical spine pain, as far as improvement of cervical spine mobility.

  16. Correlation between TMD and Cervical Spine Pain and Mobility: Is the Whole Body Balance TMJ Related?

    Science.gov (United States)

    Walczyńska-Dragon, Karolina; Baron, Stefan; Nitecka-Buchta, Aleksandra; Tkacz, Ewaryst

    2014-01-01

    Temporomandibular dysfunction (TMD) is considered to be associated with imbalance of the whole body. This study aimed to evaluate the influence of TMD therapy on cervical spine range of movement (ROM) and reduction of spinal pain. The study group consisted of 60 patients with TMD, cervical spine pain, and limited cervical spine range of movements. Subjects were interviewed by a questionnaire about symptoms of TMD and neck pain and had also masticatory motor system physically examined (according to RDC-TMD) and analysed by JMA ultrasound device. The cervical spine motion was analysed using an MCS device. Subjects were randomly admitted to two groups, treated and control. Patients from the treated group were treated with an occlusal splint. Patients from control group were ordered to self-control parafunctional habits. Subsequent examinations were planned in both groups 3 weeks and 3 months after treatment was introduced. The results of tests performed 3 months after the beginning of occlusal splint therapy showed a significant improvement in TMJ function (P > 0.05), cervical spine ROM, and a reduction of spinal pain. The conclusion is that there is a significant association between TMD treatment and reduction of cervical spine pain, as far as improvement of cervical spine mobility. PMID:25050363

  17. Whole spine MRI in the assessment of acute vertebral body trauma

    International Nuclear Information System (INIS)

    Green, R.A.R.; Saifuddin, A.

    2004-01-01

    To determine the incidence and types of multilevel vertebral body injury in association with acute spinal trauma as assessed by whole spine MRI. All acute admissions to a regional spinal injury unit had whole spine MRI carried out, to detect occult vertebral body injury. Two radiologists assessed 127 cases prospectively, over a period of 3 years. All cases had T2-weighted sagittal imaging of the whole spine (where possible using a T2-weighted fat-suppressed sequence), with T1-weighted imaging in both sagittal and axial planes covering the primary injury. The incidence of secondary injury (defined as either bone bruising, wedge compression fracture or burst fracture) was determined and defined by type, site and relationship to the primary injury. Seventy-seven per cent of cases had a secondary injury level. Of these, bone bruising was the commonest but often occurred in combination with secondary wedge compression fracture or burst fracture. MRI detected 27 non-contiguous wedge compression fractures and 16 non-contiguous burst fractures, giving an incidence of secondary level, non-contiguous fracture of approximately 34%. A higher frequency of secondary vertebral body injury may be defined by MRI than has been described in previous studies based on radiographic evaluation of the whole spine. Whole spine MRI in assessment for occult vertebral body fracture enables increased confidence in the conservative or surgical management of patients with severe spinal injury. (orig.)

  18. Implantation of total body irradiation in radiotherapy

    International Nuclear Information System (INIS)

    Habitzreuter, Angela Beatriz

    2010-01-01

    Before implementing a treatment technique, the characteristics of the beam under irradiation conditions must be well acknowledged and studied. Each one of the parameters used to calculate the dose has to be measured and validated before its utilization in clinical practice. This is particularly necessary when dealing with special techniques. In this work, all necessary parameters and measurements are described for the total body irradiation implementation in facilities designed for conventional treatments that make use of unconventional geometries to generate desired enlarged field sizes. Furthermore, this work presents commissioning data of this modality at Hospital das Clinicas of Sao Paulo using comparison of three detectors types for measurements of entrance dose during total body irradiation treatment. (author)

  19. Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Amoush, Ahmad, E-mail: aamoush@augusta.edu [Augusta University, 1120 15th St, Augusta, GA 30912 (United States); Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 (United States); Long, Huang [University of Utah, 1950 Circle of Hope, Salt Lake City, UT 84112 (United States); Subedi, Laxmi [Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115 (United States); Qi, Peng; Djemil, Toufik; Xia, Ping [Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 (United States)

    2017-07-01

    This work aimed to study the dosimetric effect of multileaf collimator (MLC) leaf widths in treatment plans for patients receiving volumetric modulated arc therapy (VMAT) for spine stereotactic body radiation therapy (SBRT). Thirteen patients treated with spine SBRT were retrospectively selected for this study. The patients were treated following the protocol of the Radiation Therapy Oncology Group 0631 (RTOG 0631) for spine metastasis. The prescription dose was 16 Gy in 1 fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the spinal cord receiving < 10 Gy (V10) were the acceptable tolerance doses. For the purpose of this study, 2 dual-arc VMAT plans were created for each patient using 3 different MLC leaf widths: 2.5 mm, 4 mm, and 5 mm. The compliance with the RTOG 0631 protocol, conformity index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. The average V16Gy of the targets was 91.8 ± 1.2%, 92.2 ± 2.1%, and 91.7 ± 2.3% for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively (p = 0.78). Accordingly, the average CI was 1.45 ± 0.4, 1.47 ± 0.29, and 1.47 ± 0.31 (p = 0.98), respectively. The average DGI was 0.22 ± 0.04, 0.20 ± 0.06, and 0.22 ± 0.05, respectively (p = 0.77). The average maximum dose to the spinal cord was 12.45 ± 1.0 Gy, 12.80 ± 1.0 Gy, and 12.48 ± 1.1 (p = 0.62) and V10% of the spinal cord was 3.6 ± 2.1%, 5.6 ± 2.8%, and 5.5 ± 3.0% (p = 0.11) for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively. Accordingly, the average number of MUs was 4341 ± 500 MU, 5019 ± 834 MU, and 4606 ± 691 MU, respectively (p = 0.053). The use of 2.5-mm, 4-mm, and 5-mm MLCs achieved similar VMAT plan quality as recommended by the RTOG 0631. The dosimetric parameters were also comparable for the 3 MLCs. In general, any of these leaf widths can be used for spine

  20. A study on uncertainty by passage of time of stereotactic body radiation therapy for spine metastasis cancer

    International Nuclear Information System (INIS)

    Cho, Yong Wan; Kim, Joo Ho; Ahn, Seung Kwon; Lee, Sang Kyoo; Cho, Jeong Hee

    2015-01-01

    The purpose of this study was to determine the proper treatment time of stereotactic body radiation therapy for spine metastasis cancer by using the image guidance system of CyberKnife(Accuracy Incorporated, USA) which is able to correct movements of patients during the treatment. Fifty seven spine metastasis cancer patients who have stereotactic body radiation therapy of CyberKnife participate, 8 of them with cervical spine cancer, 26 of them with thoracic spine cancer, and 23 of them with lumbar spine cancer. X-ray images acquired during the treatment were classified by treatment site. From the starting point of treatment, motion tendency of patients is analyzed in each section which is divided into every 5 minutes. In case of cervical spine, there is sudden increase of variation in 15 minutes after the treatment starts in rotational direction. In case of thoracic spine, there is no significantly variable section. However, variation increases gradually with the passage of time so that it is assumed that noticeable value comes up in approximately 40 minutes. In case of lumbar spine, sharp increase of variation is seen in 20 minutes in translational and rotational direction. Without having corrections during the treatment, proper treatment time is considered as less than 15 minutes for cervical spine, 40 minutes for thoracic spine, and 20 minutes for lumbar spine. If treatment time is longer than these duration, additional patient alignments are required or PTV margin should be enlarged

  1. A study on uncertainty by passage of time of stereotactic body radiation therapy for spine metastasis cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Wan; Kim, Joo Ho; Ahn, Seung Kwon; Lee, Sang Kyoo; Cho, Jeong Hee [Dept. of Radiation Oncology, Yonsei Cancer Center, Seoul (Korea, Republic of)

    2015-06-15

    The purpose of this study was to determine the proper treatment time of stereotactic body radiation therapy for spine metastasis cancer by using the image guidance system of CyberKnife(Accuracy Incorporated, USA) which is able to correct movements of patients during the treatment. Fifty seven spine metastasis cancer patients who have stereotactic body radiation therapy of CyberKnife participate, 8 of them with cervical spine cancer, 26 of them with thoracic spine cancer, and 23 of them with lumbar spine cancer. X-ray images acquired during the treatment were classified by treatment site. From the starting point of treatment, motion tendency of patients is analyzed in each section which is divided into every 5 minutes. In case of cervical spine, there is sudden increase of variation in 15 minutes after the treatment starts in rotational direction. In case of thoracic spine, there is no significantly variable section. However, variation increases gradually with the passage of time so that it is assumed that noticeable value comes up in approximately 40 minutes. In case of lumbar spine, sharp increase of variation is seen in 20 minutes in translational and rotational direction. Without having corrections during the treatment, proper treatment time is considered as less than 15 minutes for cervical spine, 40 minutes for thoracic spine, and 20 minutes for lumbar spine. If treatment time is longer than these duration, additional patient alignments are required or PTV margin should be enlarged.

  2. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  3. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  4. Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator

    Energy Technology Data Exchange (ETDEWEB)

    Malzacher, Matthias; Kalayciyan, Raffi; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Haneder, Stefan [Heidelberg Univ., Mannheim (Germany). Clinical Radiology and Nuclear Medicine; University Hospital of Cologne, Koeln (Germany). Dept. of Radiology

    2016-05-01

    Sodium magnetic resonance imaging ({sup 23}Na MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for {sup 23}Na MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The {sup 23}Na MRI technique can also be integrated as a potential monitoring instrument after radiotherapy or chemotherapy. The main contribution in this work was the adaptation of {sup 23}Na MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using {sup 23}Na MRI and increase the receive sensitivity. The resonator system consisted of an already presented {sup 23}Na whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (∝7 cm) over the whole-body resonator was achieved using the spine array. {sup 23}Na MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10 minutes. A density adapted 3D radial sequence was chosen with 6 mm isotropic resolution, 49 ms repetition time and a short echo time of 540 μs. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120 ms repetition time) using this setup.

  5. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy.

    Science.gov (United States)

    Zach, Leor; Tsvang, Lev; Alezra, Dror; Ben Ayun, Maoz; Harel, Ran

    2016-01-01

    Spine stereotactic radiosurgery (SRS) delivers an accurate and efficient high radiation dose to vertebral metastases in 1-5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT) to static beam intensity modulated radiotherapy (IMRT) for spine SRS. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV). The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose). All evaluated parameters favored the VMAT plan over the IMRT plans. D min in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p DSC) was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value < 0.01), and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p < 0.001). In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  6. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Leor Zach

    2016-01-01

    Full Text Available Purpose. Spine stereotactic radiosurgery (SRS delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT to static beam intensity modulated radiotherapy (IMRT for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV. The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose. Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p<0.001, the Dice Similarity Coefficient (DSC was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value<0.01, and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p<0.001. Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  7. Management of Spinal Metastases From Renal Cell Carcinoma Using Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Nguyen, Quynh-Nhu; Shiu, Almon S.; Rhines, Laurence D.; Wang He; Allen, Pamela K.; Wang, Xin Shelley; Chang, Eric L.

    2010-01-01

    Purpose: To evaluate the outcomes associated with stereotactic body radiotherapy (SBRT) in the management of spinal metastases from renal cell carcinoma (RCC). Methods and Materials: SBRT was used in the treatment of patients with spinal metastases from RCC. Patients received either 24 Gy in a single fraction, 27 Gy in three fractions, or 30 Gy delivered in five fractions. Effectiveness of SBRT with respect to tumor control and palliation of pain was assessed using patient-reported outcomes. Results: A total of 48 patients with 55 spinal metastases were treated with SBRT with a median follow-up time of 13.1 months (range, 3.3-54.5 months). The actuarial 1-year spine tumor progression free survival was 82.1%. At pretreatment baseline, 23% patients were pain free; at 1 month and 12 months post-SBRT, 44% and 52% patients were pain free, respectively. No Grade 3-4 neurologic toxicity was observed. Conclusions: The data support SBRT as a safe and effective treatment modality that can be used to achieve good tumor control and palliation of pain associated with RCC spinal metastases. Further evaluation with randomized trials comparing SBRT to conventional radiotherapy may be warranted.

  8. Stereotactic body radiotherapy: current strategies and future development

    Science.gov (United States)

    2016-01-01

    Stereotactic body radiotherapy (SBRT) has emerged as the standard treatment for medically inoperable early-staged non-small cell lung cancer (NSCLC). The local control rate after SBRT is over 90%. Some forms of tumour motion management and image-guided radiation delivery techniques are the prerequisites for fulfilment of its goal to deliver a high radiation dose to the tumour target without overdosing surrounding normal tissues. In this review, the current strategies of tumour motion management will be discussed, followed by an overview of various image-guided radiotherapy (RT) systems and devices available for clinical practice. Besides medically inoperable stage I NSCLC, SBRT has also been widely adopted for treatment of oligometastasis involving the lungs. Its possible applications in various other cancer illnesses are under extensive exploration. The progress of SBRT is critically technology-dependent. With advancement of technology, the ideal of personalised, effective and yet safe SBRT is already on the horizon. PMID:27606082

  9. Utility Estimation of the Manufactured Stereotactic Body Radiotherapy Immobilization

    International Nuclear Information System (INIS)

    Lee, Dong Hoon; Ahn, Jong Ho; Seo, Jeong Min; Shin, Eun Hyeak; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Immobilizations used in order to maintain the reproducibility of a patient set-up and the stable posture for a long period are important more than anything else for the accurate treatment when the stereotactic body radiotherapy is underway. So the purpose of this study is to adapt the optimum immobilizations for the stereotactic body radiotherapy by comparing two commercial immobilizations with the self-manufactured immobilizations. Five people were selected for the experiment and three different immobilizations (A: Wing-board, B: BodyFix system, C: Arm up holder with vac-lock) were used to each target. After deciding on the target's most stable respiratory cycles, the targets were asked to wear a goggle monitor and maintain their respiration regularly for thirty minutes to obtain the respiratory signals. To analyze the respiratory signal, the standard deviation and the variation value of the peak value and the valley value of the respiratory signal were separated by time zone with the self-developed program at the hospital and each tie-downs were compared for the estimation by calculating a comparative index using the above. The stability of each immobilizations were measured in consideration of deviation changes studied in each respiratory time lapse. Comparative indexes of each immobilizations of each experimenter are shown to be A: 11.20, B: 4.87, C: 1.63 / A: 3.94, B: 0.67, C: 0.13 / A: 2.41, B: 0.29, C: 0.04 / A: 0.16, B: 0.19, C: 0.007 / A: 35.70, B: 2.37, C: 1.86. And when all five experimenters wore the immobilizations C, the test proved the most stable value while four people wearing A and one man wearing D expressed relatively the most unstable respiratory outcomes. The self-developed immobilizations, so called the arm up holder vac-lock for the stereotactic body radiotherapy is expected to improve the effect of the treatment by decreasing the intra-fraction organ motions because it keeps the respiration more stable than other two immobilizations

  10. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    International Nuclear Information System (INIS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-01-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T 2 -weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  11. Analysis of structure of lumbar spine dorsopathy morbidity in able-bodied age patients

    Directory of Open Access Journals (Sweden)

    Manin M.V.

    2015-06-01

    Full Text Available The analysis of structure of lumbar spine dorsopathy morbidity among able-bodied population of the Dnepropetrovsk area for substantiation of differentiated approach to the choice of exercise therapy methods was a research objective. The structure of dorsopathy morbidity in 371 patients in 2009-2013 period is analysed in the work. The paper presents analysis of the most frequent morphological changes in the structures of the spine, their localization and clinical course. Link of clinical manifestations of dorsopathy with structural changes of the backbone, the disease experience is revealed, efficiency of rehabilitation by means of physiotherapy exercises depending on qualitative and quantitative signs of disease is defined. Results of the research specify that more than 40% of patients were on repeated treatment, clinical manifestation in 62% of patients was observed at the most able-bodied age (from 30 to 50 years, according to the disease experience number of aggravations per a year increased, in 57,5% of cases administration of medical physical culture was limited due to development of an accompanying pathology, in 40% of cases against positive dynamics of painful syndrome insufficient changes in volume of movements of the spine segments throughout treatment were marked. It testifies to necessity of working out algorithm of differentiated approach to the choice of means medical physical culture in treatment of lumbar spine dorsopathy.

  12. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A [Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Vic. (Australia)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  13. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    International Nuclear Information System (INIS)

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes

  14. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    Science.gov (United States)

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good BMD and BMC agreement, did not detect

  15. Postoperative re-irradiation using stereotactic body radiotherapy for metastatic epidural spinal cord compression.

    Science.gov (United States)

    Ito, Kei; Nihei, Keiji; Shimizuguchi, Takuya; Ogawa, Hiroaki; Furuya, Tomohisa; Sugita, Shurei; Hozumi, Takahiro; Keisuke Sasai; Karasawa, Katsuyuki

    2018-06-15

    OBJECTIVE This study aimed to clarify the outcomes of postoperative re-irradiation using stereotactic body radiotherapy (SBRT) for metastatic epidural spinal cord compression (MESCC) in the authors' institution and to identify factors correlated with local control. METHODS Cases in which patients with previously irradiated MESCC underwent decompression surgery followed by spine SBRT as re-irradiation between April 2013 and May 2017 were retrospectively reviewed. The surgical procedures were mainly performed by the posterior approach and included decompression and fixation. The prescribed dose for spine SBRT was 24 Gy in 2 fractions. The primary outcome was local control, which was defined as elimination, shrinkage, or no change of the tumor on CT or MRI obtained approximately every 3 months after SBRT. In addition, various patient-, treatment-, and tumor-specific factors were evaluated to determine their predictive value for local control. RESULTS Twenty-eight cases were identified in the authors' institutional databases as meeting the inclusion criteria. The histology of the primary disease was thyroid cancer in 7 cases, lung cancer in 6, renal cancer in 3, colorectal cancer in 3, and other cancers in 9. The most common previous radiation dose was 30 Gy in 10 fractions (15 cases). The mean interval since the most recent irradiation was 16 months (range 5-132 months). The median duration of follow-up after SBRT was 13 months (range 4-38 months). The 1-year local control rate was 70%. In the analysis of factors related to local control, Bilsky grade, number of vertebral levels in the treatment target, the interval between the latest radiotherapy and SBRT, recursive partitioning analysis (RPA), the prognostic index for spinal metastases (PRISM), and the revised Tokuhashi score were not significantly correlated with local control. The favorable group classified by the Rades prognostic score achieved a significantly higher 1-year local control rate than the unfavorable

  16. Sequential hemi-body radiotherapy in advanced multiple myeloma

    International Nuclear Information System (INIS)

    Jaffe, J.P.; Bosch, A.; Raich, P.C.

    1979-01-01

    Eleven patients with advanced multiple myeloma refractory to standard chemotherapy were treated with a regimen of sequential hemi-body radiotherapy consisting of 800 rad midplane in a single dose to each half. 9/10 patients experienced significant relief of skeletal pain and there were 5/11 objective tumor responses with one complete remission. Treatment-related morbidity was significant and consisted primarily of nausea and emesis, bone marrow suppression, and pneumonitis. This therapy is helpful in the management of advanced myeloma, and should be studied earlier in the course of the disease

  17. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    International Nuclear Information System (INIS)

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R 50% ); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D 2cm ) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ 2 test was used to examine the difference in parameters between groups. The PTV V 100% PD ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V 90% PD ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D 2cm , 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives

  18. Radiotherapy.

    Science.gov (United States)

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  19. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint.

    Science.gov (United States)

    Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R

    2017-12-01

    The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the

  20. Whole Body Vibration Training is Osteogenic at the Spine in College-Age Men and Women.

    Science.gov (United States)

    Ligouri, Gianna C; Shoepe, Todd C; Almstedt, Hawley C

    2012-03-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass which is currently challenging the American health care system. Maximizing peak bone mass early in life is a cost-effective method for preventing osteoporosis. Whole body vibration (WBV) is a novel exercise method with the potential to increase bone mass, therefore optimizing peak bone and decreasing the risk for osteoporotic fracture. The aim of this investigation was to evaluate changes in bone mineral density at the hip, spine, and whole body in college-age men and women who underwent a WBV training protocol. Active men (n=6) and women (n=4), ages 18-22 participated in the WBV training; while an additional 14 volunteers (1 male, 13 female) served as controls. All participants completed baseline and follow-up questionnaires to assess health history, physical activity, dietary intake, and menstrual history. The WBV training program, using a Vibraflex 550, incorporated squats, stiff-leg dead lifts, stationary lunges, push-up holds, bent-over rows, and jumps performed on the platform, and occurred 3 times a week, for 12 weeks. Dual energy x-ray absorptiometry (Hologic Explorer, Waltham, MA, USA) was used to assess bone mineral density (BMD, g/cm(2)). A two-tailed, t-test identified significantly different changes in BMD between the WBV and control groups at the lateral spine (average change of 0.022 vs. -0.015 g/cm(2)). The WBV group experienced a 2.7% and 1.0% increase in BMD in the lateral spine and posterior-anterior spine while the control group decreased 1.9% and 0.9%, respectively. Results indicate that 12 weeks of WBV training was osteogenic at the spine in college-age men and women.

  1. Reconstruction of the cervical spine with two osteocutaneous fibular flap after radiotherapy and resection of osteoclastoma

    DEFF Research Database (Denmark)

    Kaltoft, Britta; Kruse, Anders; Jensen, Lisa Toft

    2012-01-01

    to C3. Two months later, rupture of the pharyngeal wall was noted with exposure of the anterior cage. A few days later, the posterior scar ruptured. The anterior cage was removed and the pharyngeal wall was sutured. Revision of the posterior wound was performed, leaving the implants in place. To secure...... stability of the spine, the patient was treated with a HALO. Once again, the pharyngeal wall ruptured. Reconstruction of the posterior pharyngeal wall and the anterior column of the spine was performed with an osteocutaneous fibular flap from the skull base to C3. Five months later, a computed tomography...

  2. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  3. Treatment of Sarcoma Lung Metastases with Stereotactic Body Radiotherapy

    Directory of Open Access Journals (Sweden)

    Adam D. Lindsay

    2018-01-01

    Full Text Available Background. The most common site of sarcoma metastasis is the lung. Surgical resection of pulmonary metastases and chemotherapy are treatment options that have been employed, but many patients are poor candidates for these treatments for multiple host or tumor-related reasons. In this group of patients, radiation might provide a less morbid treatment alternative. We sought to evaluate the efficacy of radiotherapy in the treatment of metastatic sarcoma to the lung. Methods. Stereotactic body radiotherapy (SBRT was used to treat 117 pulmonary metastases in 44 patients. Patients were followed with serial computed tomography imaging of the chest. The primary endpoint was failure of control of a pulmonary lesion as measured by continued growth. Radiation-associated complications were recorded. Results. The majority of patients (84% received a total dose of 50 Gy per metastatic nodule utilizing an image-guided SBRT technique. The median interval follow-up was 14.2 months (range 1.6–98.6 months. Overall survival was 82% at two years and 50% at five years. Of 117 metastatic nodules treated, six nodules showed failure of treatment (95% control rate. Twenty patients (27% developed new metastatic lesions and underwent further SBRT. The side effects of SBRT included transient radiation pneumonitis n=6, cough n=2, rib fracture n=1, chronic pain n=1, dermatitis n=1, and dyspnea n=1. Conclusion. Stereotactic body radiotherapy is an effective and safe treatment for the ablation of pulmonary metastasis from sarcoma. Further work is needed to evaluate the optimal role of SBRT relative to surgery or chemotherapy for treatment of metastatic sarcoma.

  4. Consensus Contouring Guidelines for Postoperative Stereotactic Body Radiation Therapy for Metastatic Solid Tumor Malignancies to the Spine

    International Nuclear Information System (INIS)

    Redmond, Kristin J.; Robertson, Scott; Lo, Simon S.; Soltys, Scott G.; Ryu, Samuel; McNutt, Todd; Chao, Samuel T.; Yamada, Yoshiya; Ghia, Amol; Chang, Eric L.; Sheehan, Jason; Sahgal, Arjun

    2017-01-01

    Purpose: To develop consensus contouring guidelines for postoperative stereotactic body radiation therapy (SBRT) for spinal metastases. Methods and Materials: Ten spine SBRT specialists representing 10 international centers independently contoured the clinical target volume (CTV), planning target volume (PTV), spinal cord, and spinal cord planning organ at risk volume (PRV) for 10 representative clinical scenarios in postoperative spine SBRT for metastatic solid tumor malignancies. Contours were imported into the Computational Environment for Radiotherapy Research. Agreement between physicians was calculated with an expectation minimization algorithm using simultaneous truth and performance level estimation with κ statistics. Target volume definition guidelines were established by finding optimized confidence level consensus contours using histogram agreement analyses. Results: Nine expert radiation oncologists and 1 neurosurgeon completed contours for all 10 cases. The mean sensitivity and specificity were 0.79 (range, 0.71-0.89) and 0.94 (range, 0.90-0.99) for the CTV and 0.79 (range, 0.70-0.95) and 0.92 (range, 0.87-0.99) for the PTV), respectively. Mean κ agreement, which demonstrates the probability that contours agree by chance alone, was 0.58 (range, 0.43-0.70) for CTV and 0.58 (range, 0.37-0.76) for PTV (P<.001 for all cases). Optimized consensus contours were established for all patients with 80% confidence interval. Recommendations for CTV include treatment of the entire preoperative extent of bony and epidural disease, plus immediately adjacent bony anatomic compartments at risk of microscopic disease extension. In particular, a “donut-shaped” CTV was consistently applied in cases of preoperative circumferential epidural extension, regardless of extent of residual epidural extension. Otherwise more conformal anatomic-based CTVs were determined and described. Spinal instrumentation was consistently excluded from the CTV. Conclusions: We provide

  5. Phase II study on stereotactic body radiotherapy of colorectal metastases

    DEFF Research Database (Denmark)

    Høyer, Morten; Roed, Henrik; Traberg Hansen, Anders

    2006-01-01

    Surgical resection provides long term survival in approximately 30% of patients with colorectal carcinoma (CRC) liver metastases. However, only a limited number of patients with CRC-metastases are amendable for surgery. We have tested the effect of stereotactic body radiotherapy (SBRT) in the tre......Surgical resection provides long term survival in approximately 30% of patients with colorectal carcinoma (CRC) liver metastases. However, only a limited number of patients with CRC-metastases are amendable for surgery. We have tested the effect of stereotactic body radiotherapy (SBRT......) in the treatment of inoperable patients with CRC-metastases. Sixty-four patients with a total number of 141 CRC-metastases in the liver (n = 44), lung (n = 12), lymph nodes (n = 3), suprarenal gland (n = 1) or two organs (n = 4) were treated with SBRT with a central dose of 15 Gy x 3 within 5-8 days. Median follow...... due to hepatic failure, one patient was operated for a colonic perforation and two patients were conservatively treated for duodenal ulcerations. Beside these, only moderate toxicities such as nausea, diarrhoea and skin reactions were observed. SBRT in patients with inoperable CRC-metastases resulted...

  6. Impact of body mass index on adjacent segment disease after lumbar fusion for degenerative spine disease.

    Science.gov (United States)

    Ou, Chien-Yu; Lee, Tao-Chen; Lee, Tsung-Han; Huang, Yu-Hua

    2015-04-01

    Adjacent segment disease is an important complication after fusion of degenerative lumbar spines. However, the role of body mass index (BMI) in adjacent segment disease has been addressed less. To examine the relationship between BMI and adjacent segment disease after lumbar fusion for degenerative spine diseases. For this retrospective study, we enrolled 190 patients undergoing lumbar fusion surgery for degeneration. BMI at admission was documented. Adjacent segment disease was defined by integration of the clinical presentations and radiographic criteria based on the morphology of the dural sac on magnetic resonance images. Adjacent segment disease was identified in 13 of the 190 patients, accounting for 6.8%. The interval between surgery and diagnosis as adjacent segment disease ranged from 21 to 66 months. Five of the 13 patients required subsequent surgical intervention for clinically relevant adjacent segment disease. In the logistic regression model, BMI was a risk factor for adjacent segment disease after lumbar fusion for degenerative spine diseases (odds ratio, 1.68; 95% confidence interval, 1.27-2.21; P disease rate by 67.6%. The patients were subdivided into 2 groups based on BMI, and up to 11.9% of patients with BMI ≥ 25 kg/m were diagnosed as having adjacent segment disease at the last follow-up. BMI is a risk factor for adjacent segment disease in patients undergoing lumbar fusion for degenerative spine diseases. Because BMI is clinically objective and modifiable, controlling body weight before or after surgery may provide opportunities to reduce the rate of adjacent segment disease and to improve the outcome of fusion surgery.

  7. Complications from Stereotactic Body Radiotherapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kylie H. [School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Okoye, Christian C.; Patel, Ravi B. [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 (United States); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002 (Australia); Biswas, Tithi; Ellis, Rodney J.; Yao, Min; Machtay, Mitchell; Lo, Simon S., E-mail: Simon.Lo@uhhospitals.org [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC) in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta), lung parenchyma (e.g., radiation pneumonitis), and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve). We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.

  8. Complications from Stereotactic Body Radiotherapy for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kylie H. Kang

    2015-06-01

    Full Text Available Stereotactic body radiotherapy (SBRT has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta, lung parenchyma (e.g., radiation pneumonitis, and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve. We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.

  9. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  10. Stereotactic body radiotherapy for lung cancer: how much does it really cost?

    Science.gov (United States)

    Lievens, Yolande; Obyn, Caroline; Mertens, Anne-Sophie; Van Halewyck, Dries; Hulstaert, Frank

    2015-03-01

    Despite the lack of randomized evidence, stereotactic body radiotherapy (SBRT) is being accepted as superior to conventional radiotherapy for patients with T1-2N0 non-small-cell lung cancer in the periphery of the lung and unfit or unwilling to undergo surgery. To introduce SBRT in a system of coverage with evidence development, a correct financing had to be determined. A time-driven activity-based costing model for radiotherapy was developed. Resource cost calculation of all radiotherapy treatments, standard and innovative, was conducted in 10 Belgian radiotherapy centers in the second half of 2012. The average cost of lung SBRT across the 10 centers (6221&OV0556;) is in the range of the average costs of standard fractionated 3D-conformal radiotherapy (5919&OV0556;) and intensity-modulated radiotherapy (7379&OV0556;) for lung cancer. Hypofractionated 3D-conformal radiotherapy and intensity-modulated radiotherapy schemes are less costly (3993&OV0556; respectively 4730&OV0556;). The SBRT cost increases with the number of fractions and is highly dependent of personnel and equipment use. SBRT cost varies more by centre than conventional radiotherapy cost, reflecting different technologies, stages in the learning curve and a lack of clear guidance in this field. Time-driven activity-based costing of radiotherapy is feasible in a multicentre setup, resulting in real-life resource costs that can form the basis for correct reimbursement schemes, supporting an early yet controlled introduction of innovative radiotherapy techniques in clinical practice.

  11. Analysis of radiological characteristics distribution in the vertebral bodies of the lumbosacral spine of competitive rowers

    Directory of Open Access Journals (Sweden)

    M.B. Ogurkowska

    2010-09-01

    Full Text Available Unfavorable biomechanical situations, usually related to the performance of a profession and competitive sports practice, promote formation of overloads. This problem may be particularly perceptible among sportsmen that practice strength and stamina sports. The present study deals with rowing. The purpose of this study is to evaluate the degree of degenerative changes of the lumbosacral spine in competitive rowers, on the basis of an analysis of changes in the cancellous structure of vertebral bodies. This has been achieved on the basis of radiological density acquired from a CT test.

  12. Stereotactic body radiotherapy for primary prostate cancer: a systematic review

    International Nuclear Information System (INIS)

    Tan, Tze-Jian; Foroudi, Farsgad; Gill, Suki; Siva, Shankar

    2014-01-01

    Stereotactic body radiotherapy (SBRT) for prostate cancer allows overall treatment times to be reduced to as little as 1 week while maintaining a non-invasive approach. This study provides a comprehensive summary of the literature relating to SBRT in prostate cancer. A systematic review of the relevant literature was performed using structured search terms. Fourteen phase I–II trials and retrospective studies using SBRT for the treatment of prostate cancer were used. Three studies were identified which addressed cost. Dose fractionation, radiotherapy procedures, biochemical progression-free survival, toxicity, cost and quality of life were critically appraised. A total of 1472 patients were examined across studies. Median follow-up ranged from 11 to 60 months. The most common dose fractionation was 35–36.25Gy in five fractions, used in nine out of 14 studies. Ten of 14 studies used CyberKnife. The overall biochemical progression-free survival ranged 81–100%. Acute grade 2 urinary and rectal toxicities were reported in 5–42% and 0–27% of patients, respectively. Acute grade 3 or more urinary and rectal toxicity were 0.5% and 0%, respectively. Late grade 2 urinary toxicity was reported in 0–29% of patients, while 1.3% had a late grade 3 urinary toxicity. There were no late grade 4 urinary toxicities seen. Late grade 2 rectal toxicity was reported in 0–11%, while 0.5% had a late grade 3 rectal toxicity. Late grade 4 rectal toxicity was reported in 0.2% of patients.

  13. Preliminary study into the skeletal injuries sustained to the spine from posterior non-perforating ballistic impacts into body armour.

    Science.gov (United States)

    Jennings, Rosalind M; Malbon, C; Brock, F; Harrisson, S E; Carr, D J

    2018-05-21

    The aim of this paper was to examine any injuries from posterior behind armour blunt trauma ballistic impacts directly over the spine onto typical hard body armours. Due to the spine being close to the surface of the skin and a lack of any previous specific research into this topic, this study was designed to gain preliminary insight into the mechanisms involved and injuries caused. Pigs were chosen as the closest representative of human spine, tissue and skin, although their spines are deeper under the surface than humans. Baseline spine and ribs shots were conducted to ensure that the study was effective. This study used a 65 kg cadaveric pig eviscerated torso and 7.62 NATO ammunition (7.62×51; L2A2; mean velocity=838 m/s, SD=4 m/s) impacting hard body armour plates over the spine. Injuries were inspected, and sections were removed for X-ray and micro-CT assessment. There was no visible soft tissue damage under the impact point on the armour over the spine, and no bony injuries were reported. Baseline rib shots resulted in multiple rib fractures; some showed minimal displacement of the bone. Baseline spine shot resulted in damage across the spine involving spinal cord and bone. No injuries were noted from the spinal impacts, and the rib shots resulted in injuries consistent with those previously reported. The anatomical differences between pigs and humans does not preclude that bony injuries could occur in a human from these types of spinal ballistic impacts. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Stereotactic Radiosurgery (SRS) / Stereotactic body radiotherapy (SBRT): Benefit to Irish patients and Irish Healthcare Economy

    LENUS (Irish Health Repository)

    Cagney, DN

    2017-01-01

    Cancer incidence across Europe is projected to rise rapidly over the next decade. This rising cancer incidence is mirrored by increasing use of and indications for stereotactic radiation. This paper seeks to summarize the exponential increase in indications for stereotactic radiotherapy as well as the evolving economic advantages of stereotactic radiosurgery and stereotactic body radiotherapy

  15. Radiotherapy of uterine body cancer with preliminary cryodestruction of the tumor

    International Nuclear Information System (INIS)

    Myikhanovs'kij, O.A.

    2001-01-01

    The study involved 57 patients, of them 28 with cryodestruction of the tumor before radiotherapy and 29 patients with uterine body cancer treated with radiotherapy without cryotherapy (control). In 28 patients of the study group, 3-year survival was 25. In the control unsatisfactory results were observed in 12 of the patients

  16. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures.

    Science.gov (United States)

    Dong, Rui-Chun; Guo, Li-Xin

    2017-11-01

    The aim of this study is to model the computational model of seated whole human body including skeleton, muscle, viscera, ligament, intervertebral disc, and skin to predict effect of the factors (sitting postures, muscle and skin, buttocks, viscera, arms, gravity, and boundary conditions) on the biodynamic characteristics of spine. Two finite element models of seated whole body and a large number of finite element models of different ligamentous motion segments were developed and validated. Static, modal, and transient dynamic analyses were performed. The predicted vertical resonant frequency of seated body model was in the range of vertical natural frequency of 4 to 7 Hz. Muscle, buttocks, viscera, and the boundary conditions of buttocks have influence on the vertical resonant frequency of spine. Muscle played a very important role in biodynamic response of spine. Compared with the vertical posture, the posture of lean forward or backward led to an increase in stress on anterior or lateral posterior of lumbar intervertebral discs. This indicated that keeping correct posture could reduce the injury of vibration on lumbar intervertebral disc under whole-body vibration. The driving posture not only reduced the load of spine but also increased the resonant frequency of spine. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Role of stereotactic body radiotherapy for oligometastasis from colorectal cancer.

    Science.gov (United States)

    Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo

    2014-04-21

    Systemic chemotherapy has enabled prolongation of survival in patients with stage IV colorectal cancer. This has subsequently increased the relative significance of local therapy for patients with oligometastases because they can be cured by removal of oligometastatic lesions. One of the most frequently reported tumor histologies for oligometastases is colorectal cancer. Resection is the standard therapy in most settings of oligometastases. Recently, studies have shown that stereotactic body radiotherapy (SBRT) may become a treatment option that provides high local control with minimal morbidity. Two-year local control rates following SBRT for hepatic and pulmonary oligometastases are almost over 80% and are even higher for patients treated with high-dose regimens. The indications of SBRT for other metastatic sites or conditions include isolated lymph nodes, spinal and adrenal metastasis, and post-surgical pelvic recurrence. Many retrospective studies have indicated that SBRT for various lesions results in good outcomes with low morbidity, both in the curative and palliative setting. However, few reports with a high level of evidence have indicated the efficacy of SBRT compared to standard therapy. Hereafter, the optimal indication of SBRT needs to be prospectively investigated to obtain convincing evidence.

  18. Toxicity after reirradiation of pulmonary tumours with stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Peulen, Heike; Karlsson, Kristin; Lindberg, Karin; Tullgren, Owe; Baumann, Pia; Lax, Ingmar; Lewensohn, Rolf; Wersäll, Peter

    2011-01-01

    Purpose: To assess toxicity and feasibility of reirradiation with stereotactic body radiotherapy (SBRT) after prior lung SBRT for primary lung cancer or lung metastases. Patients and materials: Twenty-nine patients reirradiated with SBRT on 32 lung lesions (11 central, 21 peripheral) were retrospectively reviewed. Median follow-up time was 12 months (range 1–97). The primary endpoint was toxicity, secondary endpoints were local control and overall survival time. Toxicity was scored according to the NCI-CTCAE version 3. Results: Grade 3–4 toxicity was scored 14 times in eight patients. Three patients died because of massive bleeding (grade 5). Larger clinical target volumes (CTV) and central tumour localization were associated with more severe toxicity. There was no correlation between mean lung dose (MLD) and lung toxicity. Local control at 5 months after reirradiation was 52%, as assessed by CT-scan (n = 12) or X-thorax (n = 3). A larger CTV was associated with poorer local control. Kaplan–Meier estimated 1- and 2-year survival rates were 59% and 43%, respectively. Conclusions: Reirradiation with SBRT is feasible although increased risk of toxicity was reported in centrally located tumours. Further research is warranted for more accurate selection of patients suitable for reirradiation with SBRT.

  19. Stereotactic body radiotherapy for liver tumors. Principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Sterzing, Florian; Brunner, Thomas B.; Ernst, Iris; Greve, Burkhard; Baus, Wolfgang W.; Herfarth, Klaus; Guckenberger, Matthias

    2014-01-01

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a practical guideline for safe and effective stereotactic body radiotherapy (SBRT) of liver tumors. The literature on the clinical evidence of SBRT for both primary liver tumors and liver metastases was reviewed and analyzed focusing on both physical requirements and special biological characteristics. Recommendations were developed for patient selection, imaging, planning, treatment delivery, motion management, dose reporting, and follow-up. Radiation dose constraints to critical organs at risk are provided. SBRT is a well-established treatment option for primary and secondary liver tumors associated with low morbidity. (orig.) [de

  20. Dosimetric analysis of varying cord planning organ at risk volume in spine stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Dawn Owen, MD, PhD

    2016-01-01

    Conclusion: Current guidelines may overestimate the risk of myelopathy from spine SBRT. The current study's population included both radiation-naïve and retreatment cases, but no myelopathy was observed despite exceeding recommended spine limits.

  1. Muscle activity and spine load during anterior chain whole body linkage exercises: the body saw, hanging leg raise and walkout from a push-up.

    Science.gov (United States)

    McGill, Stuart; Andersen, Jordan; Cannon, Jordan

    2015-01-01

    This study examined anterior chain whole body linkage exercises, namely the body saw, hanging leg raise and walkout from a push-up. Investigation of these exercises focused on which particular muscles were challenged and the magnitude of the resulting spine load. Fourteen males performed the exercises while muscle activity, external force and 3D body segment motion were recorded. A sophisticated and anatomically detailed 3D model used muscle activity and body segment kinematics to estimate muscle force, and thus sensitivity to each individual's choice of motor control for each task. Gradations of muscle activity and spine load characteristics were observed across tasks. On average, the hanging straight leg raise created approximately 3000 N of spine compression while the body saw created less than 2500 N. The hanging straight leg raise created the highest challenge to the abdominal wall (>130% MVC in rectus abdominis, 88% MVC in external oblique). The body saw resulted in almost 140% MVC activation of the serratus anterior. All other exercises produced substantial abdominal challenge, although the body saw did so in the most spine conserving way. These findings, along with consideration of an individual's injury history, training goals and current fitness level, should assist in exercise choice and programme design.

  2. Definitive Stereotactic Body Radiotherapy (SBRT) for Extracranial Oligometastases: An International Survey of >1000 Radiation Oncologists.

    Science.gov (United States)

    Lewis, Stephen L; Porceddu, Sandro; Nakamura, Naoki; Palma, David A; Lo, Simon S; Hoskin, Peter; Moghanaki, Drew; Chmura, Steven J; Salama, Joseph K

    2017-08-01

    Stereotactic body radiotherapy (SBRT) is often used to treat patients with oligometastases (OM). Yet, patterns of SBRT practice for OM are unknown. Therefore, we surveyed radiation oncologists internationally, to understand how and when SBRT is used for OM. A 25-question survey was distributed to radiation oncologists. Respondents using SBRT for OM were asked how long they have been treating OM, number of patients treated, organs treated, primary reason for use, doses used, and future intentions. Respondents not using SBRT for OM were asked reasons why SBRT was not used and intentions for future adoption. Data were analyzed anonymously. We received 1007 surveys from 43 countries. Eighty-three percent began using SBRT after 2005 and greater than one third after 2010. Eighty-four percent cited perceived treatment response/durability as the primary reason for using SBRT in OM patients. Commonly treated organs were lung (90%), liver (75%), and spine (70%). SBRT dose/fractionation schemes varied widely. Most would offer a second course to new OM. Nearly all (99%) planned to continue and 66% planned to increase SBRT for OM. Of those not using SBRT, 59% plan to start soon. The most common reason for not using SBRT was lack of clinical efficacy (48%) or lack of necessary image guidance equipment (34%). Radiation oncologists are increasingly using SBRT for OM. The main reason for not using SBRT for OM is a perceived lack of evidence demonstrating clinical advantages. These data strengthen the need for robust prospective clinical trials (ongoing and in development) to demonstrate clinical efficacy given the widespread adoption of SBRT for OM.

  3. Treatment of osteoid osteoma in the vertebral body of the lumbar spine by radiofrequency ablation

    International Nuclear Information System (INIS)

    Cristante, Alexandre Fogaca; Barros Filho, Tarcisio; Oliveira, Reginaldo Perilo de; Babrabrini, Almir F.; Teixeira, William G.J.

    2007-01-01

    A case of Osteoid osteoma, a rare bone tumor, is studied in a 44-year-old female patient. Scintigraphy using Tc 99m demonstrated increased uptake on the left side of the vertebral body of the fourth vertebra. Computed tomography of the lumbar spine revealed an area of hypoattenuation surrounded by an area of hyperattenuation (bone sclerosis), suggestive of an osteogenic tumor . Complementary examination using MRI demonstrated a signal alteration of 1 cm diameter in the vertebral body of the fourth lumbar vertebra, surrounded by an area of signal compatible with bone edema. The anamnesis data, physical evaluation, and complementary examinations suggested the presence of osteoid osteoma in the vertical body of the fourth lumbar vertebra. A tomography-guided biopsy was performed, and material was collected for cultures, pathological studies in paraffin, and fast freezing (in print). Pathological study of frozen sections ruled out the presence of neoplastic cells. At the same time, minimally invasive destruction of the tumor was performed through a pedicullar approach, via a radiofrequency probe. One year after the procedure, computed tomography did not demonstrate any tumor, and the patient did not report any lumbar pain. (MAC)

  4. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  5. Stereotactic Robotic Body Radiotherapy for Patients With Unresectable Hepatic Oligorecurrence.

    Science.gov (United States)

    Berkovic, Patrick; Gulyban, Akos; Nguyen, Paul Viet; Dechambre, David; Martinive, Philippe; Jansen, Nicolas; Lakosi, Ferenc; Janvary, Levente; Coucke, Philippe A

    2017-12-01

    The purpose of this study was to analyze local control (LC), liver progression-free survival (PFS), and distant PFS (DFS), overall survival (OS), and toxicity in a cohort of patients treated with stereotactic body radiotherapy (SBRT) with fiducial tracking for oligorecurrent liver lesions; and to evaluate the potential influence of lesion size, systemic treatment, physical and biologically effective dose (BED), treatment calculation algorithms and other parameters on the obtained results. Unoperable patients with sufficient liver function had [18F]-fluorodeoxyglucose-positron emission tomography-computed tomography and liver magnetic resonance imaging to confirm the oligorecurrent nature of the disease and to further delineate the gross tumor volume (GTV). An intended dose of 45 Gy in 3 fractions was prescribed on the 80% isodose and adapted if risk-related. Treatment was executed with the CyberKnife system (Accuray Inc) platform using fiducials tracking. Initial plans were recalculated using the Monte Carlo algorithm. Patient and treatment data were processed using the Kaplan-Meier method and log rank test for survival analysis. Between 2010 and 2015, 42 patients (55 lesions) were irradiated. The mean GTV and planning target volume (PTV) were 30.5 cc and 96.8 cc, respectively. Treatments were delivered 3 times per week in a median of 3 fractions to a PTV median dose of 54.6 Gy. The mean GTV and PTV D98% were 51.6 Gy and 51.2 Gy, respectively. Heterogeneity corrections did not influence dose parameters. After a median follow-up of 18.9 months, the 1- and 2-year LC/liver PFS/DFS/OS were 81.3%/55%/62.4%/86.9%, and 76.3%/42.3%/52%/78.3%, respectively. Performance status and histology had a significant effect on LC, whereas age (older than 65 years) marginally influenced liver PFS. Clinical target volume physical dose V45 Gy > 95%, generalized equivalent uniform dose (a = -30) > 45 Gy and a BED (α/β = 10) V105 Gy > 96% showed statistically significant effect on

  6. Pulmonary Function Testing After Stereotactic Body Radiotherapy to the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Bishawi, Muath [Division of Cardiothoracic Surgery, Stony Brook University Medical Center, Stony Brook, NY (United States); Kim, Bong [Division of Radiology, Stony Brook University Medical Center, Stony Brook, NY (United States); Moore, William H. [Division of Radiation Oncology, Stony Brook University, Stony Brook, NY (United States); Bilfinger, Thomas V., E-mail: Thomas.bilfinger@stonybrook.edu [Division of Cardiothoracic Surgery, Stony Brook University Medical Center, Stony Brook, NY (United States)

    2012-01-01

    Purpose: Surgical resection remains the standard of care for operable early-stage non-small-cell lung cancer (NSCLC). However, some patients are not fit for surgery because of comorbidites such as chronic obstructive pulmonary disease (COPD) and other medical conditions. We aimed to evaluate pulmonary function and tumor volume before and after stereotactic body radiotherapy (SBRT) for patients with and without COPD in early-stage lung cancer. Methods and Materials: A review of prospectively collected data of Stage I and II lung cancers, all treated with SBRT, was performed. The total SBRT treatment was 60 Gy administered in three 20 Gy fractions. The patients were analyzed based on their COPD status, using their pretreatment pulmonary function test cutoffs as established by the American Thoracic Society guidelines (forced expiratory volume [FEV]% {<=}50% predicted, FEV%/forced vital capacity [FVC]% {<=}70%). Changes in tumor volume were also assessed by computed tomography. Results: Of a total of 30 patients with Stage I and II lung cancer, there were 7 patients in the COPD group (4 men, 3 women), and 23 in t he No-COPD group (9 men, 14 women). At a mean follow-up time of 4 months, for the COPD and No-COPD patients, pretreatment and posttreatment FEV% was similar: 39 {+-} 5 vs. 40 {+-} 9 (p = 0.4) and 77 {+-} 0.5 vs. 73 {+-} 24 (p = 0.9), respectively. The diffusing capacity of the lungs for carbon monoxide (DL{sub CO}) did significantly increase for the No-COPD group after SBRT treatment: 60 {+-} 24 vs. 69 {+-} 22 (p = 0.022); however, DL{sub CO} was unchanged for the COPD group: 49 {+-} 13 vs. 50 {+-} 14 (p = 0.8). Although pretreatment tumor volume was comparable for both groups, tumor volume significantly shrank in the No-COPD group from 19 {+-} 24 to 9 {+-} 16 (p < 0.001), and there was a trend in the COPD patients from 12 {+-} 9 to 6 {+-} 5 (p = 0.06). Conclusion: SBRT did not seem to have an effect on FEV{sub 1} and FVC, but it shrank tumor volume and

  7. Pulmonary Function Testing After Stereotactic Body Radiotherapy to the Lung

    International Nuclear Information System (INIS)

    Bishawi, Muath; Kim, Bong; Moore, William H.; Bilfinger, Thomas V.

    2012-01-01

    Purpose: Surgical resection remains the standard of care for operable early-stage non–small-cell lung cancer (NSCLC). However, some patients are not fit for surgery because of comorbidites such as chronic obstructive pulmonary disease (COPD) and other medical conditions. We aimed to evaluate pulmonary function and tumor volume before and after stereotactic body radiotherapy (SBRT) for patients with and without COPD in early-stage lung cancer. Methods and Materials: A review of prospectively collected data of Stage I and II lung cancers, all treated with SBRT, was performed. The total SBRT treatment was 60 Gy administered in three 20 Gy fractions. The patients were analyzed based on their COPD status, using their pretreatment pulmonary function test cutoffs as established by the American Thoracic Society guidelines (forced expiratory volume [FEV]% ≤50% predicted, FEV%/forced vital capacity [FVC]% ≤70%). Changes in tumor volume were also assessed by computed tomography. Results: Of a total of 30 patients with Stage I and II lung cancer, there were 7 patients in the COPD group (4 men, 3 women), and 23 in t he No-COPD group (9 men, 14 women). At a mean follow-up time of 4 months, for the COPD and No-COPD patients, pretreatment and posttreatment FEV% was similar: 39 ± 5 vs. 40 ± 9 (p = 0.4) and 77 ± 0.5 vs. 73 ± 24 (p = 0.9), respectively. The diffusing capacity of the lungs for carbon monoxide (DL CO ) did significantly increase for the No-COPD group after SBRT treatment: 60 ± 24 vs. 69 ± 22 (p = 0.022); however, DL CO was unchanged for the COPD group: 49 ± 13 vs. 50 ± 14 (p = 0.8). Although pretreatment tumor volume was comparable for both groups, tumor volume significantly shrank in the No-COPD group from 19 ± 24 to 9 ± 16 (p 1 and FVC, but it shrank tumor volume and improved DL CO for patients without COPD.

  8. Stereotactic radiotherapy for patients with metallic implants on vertebral body: A dosimetric comparison

    OpenAIRE

    Guzle Adas, Yasemin; Yazici, Omer; Kekilli, Esra; Kiran, Ferat

    2018-01-01

    Objective: Metallic implants have impacts on dose distribution of radiotherapy. Our purpose is evaluating impact of metallic implants with different dose calculation algorithms on dose distribution. Material and Methods: Two patients with metallic implants on vertebral body were included in this study. They were treated with stereotactic radiotherapy. The data of the patients were retrospectively re-calculated with different TPSs and calculation algorithms. Ray-Tracing (Ry-Tc), Mont...

  9. Percutaneous fiducial marker placement prior to stereotactic body radiotherapy for malignant liver tumors: an initial experience

    International Nuclear Information System (INIS)

    Ohta, Kengo; Shimohira, Masashi; Murai, Taro; Nishimura, Junichi; Iwata, Hiromitsu; Ogino, Hiroyuki; Hashizume, Takuya; Shibamoto, Yuta

    2016-01-01

    The aim of this study was to describe our initial experience with a gold flexible linear fiducial marker and to evaluate the safety and technical and clinical efficacy of stereotactic body radiotherapy using this marker for malignant liver tumors. Between July 2012 and February 2015, 18 patients underwent percutaneous fiducial marker placement before stereotactic body radiotherapy for malignant liver tumors. We evaluated the technical and clinical success rates of the procedure and the associated complications. Technical success was defined as successful placement of the fiducial marker at the target site, and clinical success was defined as the completion of stereotactic body radiotherapy without the marker dropping out of position. All 18 fiducial markers were placed successfully, so the technical success rate was 100% (18/18). All 18 patients were able to undergo stereotactic body radiotherapy without marker migration. Thus, the clinical success rate was 100% (18/18). Slight pneumothorax occurred as a minor complication in one case. No major complications such as coil migration or bleeding were observed. The examined percutaneous fiducial marker was safely placed in the liver and appeared to be useful for stereotactic body radiotherapy for malignant liver tumors

  10. Normal values of the sagittal diameter of the lumbar spine (vertebral body and dural sac) in children measured by MRI

    International Nuclear Information System (INIS)

    Knirsch, Walter; Kurtz, Claudia; Langer, Mathias; Haeffner, Nicole; Kececioglu, Deniz

    2005-01-01

    The definition of normal values is a prerequisite for the reliable evaluation of abnormality in the lumbar spine, such as spinal canal stenosis or dural ectasia in patients with Marfan syndrome. Values for vertebral body diameter (VBD) and dural sac diameter (DSD) for the lumbar spine have been published in adults. In children, normal values have been established using conventional radiography or myelography, but not by MRI. To define normal values for the sagittal diameter of the vertebral body and dural sac, and to calculate a dural sac ratio (DSR) in the lumbosacral spine (L1-S1) in healthy children using MRI. A total of 75 healthy children between 6 years and 17 years of age were examined using a sagittal T2-weighted sequence. Sagittal VBD and DSD were measured and a DSR was calculated. This was a retrospective and cross-sectional study. With increasing age there is a significant increase of VBD, a slight increase of DSD, and a slight decrease of DSR. There is no significant sex difference. DSR in healthy children is higher than in healthy adults. MRI is a reliable method demonstrating the natural shape of the lumbosacral spine and its absolute values. These normal values compare well with those established by conventional radiological techniques. Our data may serve as a reference for defining dural ectasia in children with Marfan syndrome. (orig.)

  11. Normal values of the sagittal diameter of the lumbar spine (vertebral body and dural sac) in children measured by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Walter [University Children' s Hospital Freiburg, Department of Pediatric Cardiology, Freiburg (Germany); University Children' s Hospital Zurich, Division of Paediatric Cardiology, Zurich (Switzerland); Kurtz, Claudia; Langer, Mathias [University Hospital Freiburg, Department of Radiology, Freiburg (Germany); Haeffner, Nicole; Kececioglu, Deniz [University Children' s Hospital Freiburg, Department of Pediatric Cardiology, Freiburg (Germany)

    2005-04-01

    The definition of normal values is a prerequisite for the reliable evaluation of abnormality in the lumbar spine, such as spinal canal stenosis or dural ectasia in patients with Marfan syndrome. Values for vertebral body diameter (VBD) and dural sac diameter (DSD) for the lumbar spine have been published in adults. In children, normal values have been established using conventional radiography or myelography, but not by MRI. To define normal values for the sagittal diameter of the vertebral body and dural sac, and to calculate a dural sac ratio (DSR) in the lumbosacral spine (L1-S1) in healthy children using MRI. A total of 75 healthy children between 6 years and 17 years of age were examined using a sagittal T2-weighted sequence. Sagittal VBD and DSD were measured and a DSR was calculated. This was a retrospective and cross-sectional study. With increasing age there is a significant increase of VBD, a slight increase of DSD, and a slight decrease of DSR. There is no significant sex difference. DSR in healthy children is higher than in healthy adults. MRI is a reliable method demonstrating the natural shape of the lumbosacral spine and its absolute values. These normal values compare well with those established by conventional radiological techniques. Our data may serve as a reference for defining dural ectasia in children with Marfan syndrome. (orig.)

  12. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  13. Whole-body muscle MRI to detect myopathies in non-extrapyramidal bent spine syndrome

    International Nuclear Information System (INIS)

    Ohana, Mickael; Durand, Marie-Christine; Marty, Catherine; Lazareth, Jean-Philippe; Maisonobe, Thierry; Mompoint, Dominique; Carlier, Robert-Yves

    2014-01-01

    Bent spine syndrome (BSS), defined as an abnormal forward flexion of the trunk resolving in supine position, is usually related to parkinsonism, but can also be encountered in myopathies. This study evaluates whole-body muscle MRI (WB-mMRI) as a tool for detecting underlying myopathy in non-extrapyramidal BSS. Forty-three patients (90 % women; 53-86 years old) with a non-extrapyramidal BSS were prospectively included. All underwent a 1.5-T WB-mMRI and a nerve conduction study. Muscle biopsy was performed if a myopathy could not be eliminated based on clinical examination and all tests. Systematic MRI interpretation focused on peripheral and axial muscle injury; spinal posture and incidental findings were also reported. WB-mMRI was completed for all patients, with 13 muscle biopsies ultimately needed and myopathy revealed as the final etiological diagnosis in five cases (12 %). All biopsy-proven myopathies were detected by the WB-mMRI. Relevant incidental MRI findings were made in seven patients. This study supports WB-mMRI as a sensitive and feasible tool for detecting myopathy in BSS patients. Associated with electroneuromyography, it can better indicate when a muscle biopsy is needed and guide it when required. Rigorous radiological interpretation is mandatory, so as not to miss incidental findings of clinical consequence. (orig.)

  14. Whole-body muscle MRI to detect myopathies in non-extrapyramidal bent spine syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ohana, Mickael [Nouvel Hopital Civil - Hopitaux Universitaires de Strasbourg, Service de Radiologie B, Strasbourg (France); Durand, Marie-Christine [AP-HP - Hopital Raymond Poincare, Service de Neurologie, Garches (France); Marty, Catherine; Lazareth, Jean-Philippe [AP-HP - Hopital Raymond Poincare, Service de Rhumatologie, Garches (France); Maisonobe, Thierry [APH-HP - Hopital de la Pitie-Salpetriere, Service de Neuropathologie, Paris (France); Mompoint, Dominique; Carlier, Robert-Yves [AP-HP - Hopital Raymond Poincare, Service de Radiologie, Garches (France)

    2014-08-15

    Bent spine syndrome (BSS), defined as an abnormal forward flexion of the trunk resolving in supine position, is usually related to parkinsonism, but can also be encountered in myopathies. This study evaluates whole-body muscle MRI (WB-mMRI) as a tool for detecting underlying myopathy in non-extrapyramidal BSS. Forty-three patients (90 % women; 53-86 years old) with a non-extrapyramidal BSS were prospectively included. All underwent a 1.5-T WB-mMRI and a nerve conduction study. Muscle biopsy was performed if a myopathy could not be eliminated based on clinical examination and all tests. Systematic MRI interpretation focused on peripheral and axial muscle injury; spinal posture and incidental findings were also reported. WB-mMRI was completed for all patients, with 13 muscle biopsies ultimately needed and myopathy revealed as the final etiological diagnosis in five cases (12 %). All biopsy-proven myopathies were detected by the WB-mMRI. Relevant incidental MRI findings were made in seven patients. This study supports WB-mMRI as a sensitive and feasible tool for detecting myopathy in BSS patients. Associated with electroneuromyography, it can better indicate when a muscle biopsy is needed and guide it when required. Rigorous radiological interpretation is mandatory, so as not to miss incidental findings of clinical consequence. (orig.)

  15. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.

    Science.gov (United States)

    Stolworthy, Dean K; Zirbel, Shannon A; Howell, Larry L; Samuels, Marina; Bowden, Anton E

    2014-05-01

    The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified

  16. Acute cytologic changes of adenocarcinoma of uterine body by radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kahori; Katoh, Tomoyasu; Teshima, Hideo; Arai, Yuji; Satoh, Hisashi; Hirai, Yasuo; Tsuzuku, Masafumi; Yamauchi, Kazuhiro; Hasumi, Katsuhiko [Cancer Institute Hospital, Tokyo (Japan)

    1998-11-01

    Initial radiotherapy for patients with endometrial cancer with complications is rare. The purpose of this study was to identify the acute cytologic changes in endometrial cancer induced by irradiation. From 1985 to 1997, 21 patients with endometrial cancer received initial radiotherapy. We reviewed ten cases of them cytologically from which we were able to estimate the acute changes in cancer cells. As the dose of irradiation increased, wrinkled edge of nuclei, cytoplasmic vacuolation, and coarse granular chromatin were diffusely observed. Nuclear swelling and giant cell formation appeared in a scattered manner. Compared with histologic specimens, we could observe intra-nuclear changes more clearly on the endometrial smear. We could also observe a decrease in large clusters and a significant increase in small clusters with degeneration when cancer nests collapse in histologic specimens. We found that the cellular changes of endometrial cancer by irradiation generally resemble that of squamous cell cancer. We recommend complete full dose irradiation before assessing the prognosis of patients with endometrial cancer because radiosensitivity can be very variable. (author)

  17. Acute cytologic changes of adenocarcinoma of uterine body by radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Kahori; Katoh, Tomoyasu; Teshima, Hideo; Arai, Yuji; Satoh, Hisashi; Hirai, Yasuo; Tsuzuku, Masafumi; Yamauchi, Kazuhiro; Hasumi, Katsuhiko

    1998-01-01

    Initial radiotherapy for patients with endometrial cancer with complications is rare. The purpose of this study was to identify the acute cytologic changes in endometrial cancer induced by irradiation. From 1985 to 1997, 21 patients with endometrial cancer received initial radiotherapy. We reviewed ten cases of them cytologically from which we were able to estimate the acute changes in cancer cells. As the dose of irradiation increased, wrinkled edge of nuclei, cytoplasmic vacuolation, and coarse granular chromatin were diffusely observed. Nuclear swelling and giant cell formation appeared in a scattered manner. Compared with histologic specimens, we could observe intra-nuclear changes more clearly on the endometrial smear. We could also observe a decrease in large clusters and a significant increase in small clusters with degeneration when cancer nests collapse in histologic specimens. We found that the cellular changes of endometrial cancer by irradiation generally resemble that of squamous cell cancer. We recommend complete full dose irradiation before assessing the prognosis of patients with endometrial cancer because radiosensitivity can be very variable. (author)

  18. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    International Nuclear Information System (INIS)

    Bishop, Andrew J.; Tao, Randa; Rebueno, Neal C.; Christensen, Eva N.; Allen, Pamela K.; Wang, Xin A.; Amini, Behrang; Tannir, Nizar M.; Tatsui, Claudio E.; Rhines, Laurence D.; Li, Jing; Chang, Eric L.; Brown, Paul D.; Ghia, Amol J.

    2015-01-01

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared with patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized the

  19. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Andrew J.; Tao, Randa [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rebueno, Neal C. [Department of Radiation Dosimetry, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Christensen, Eva N.; Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Xin A. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Amini, Behrang [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tannir, Nizar M. [Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tatsui, Claudio E.; Rhines, Laurence D. [Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Jing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Eric L. [Department of Radiation Oncology, USC Norris Cancer Hospital, Keck School of Medicine of USC, Los Angeles, California (United States); Brown, Paul D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ghia, Amol J., E-mail: ajghia@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-08-01

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared with patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized the

  20. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  1. Postoperative Stereotactic Body Radiation Therapy (SBRT) for Spine Metastases: A Critical Review to Guide Practice

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, Kristin J., E-mail: kjanson3@jhmi.edu [Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland (United States); Lo, Simon S. [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, Ohio (United States); Fisher, Charles [Department of Surgery, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia (Canada); Sahgal, Arjun [Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario (Canada)

    2016-08-01

    Postoperative stereotactic body radiation therapy (SBRT) for metastatic spinal tumors is increasingly being performed in clinical practice. Whereas the fundamentals of SBRT practice for intact spinal metastases are established, there are as yet no comprehensive practice guidelines for the postoperative indications. In particular, there are unique considerations for patient selection and treatment planning specific to postoperative spine SBRT that are critical for safe and effective management. The purpose of this critical review is to discuss the rationale for treatment, describe those factors affecting surgical decision making, introduce modern surgical trends, and summarize treatment outcomes for both conventional postoperative external beam radiation therapy and postoperative spine SBRT. Lastly, an in-depth practical discussion with respect to treatment planning and delivery considerations is provided to help guide optimal practice.

  2. Target migration from re-inflation of adjacent atelectasis during lung stereotactic body radiotherapy.

    Science.gov (United States)

    Mao, Bijing; Verma, Vivek; Zheng, Dandan; Zhu, Xiaofeng; Bennion, Nathan R; Bhirud, Abhijeet R; Poole, Maria A; Zhen, Weining

    2017-06-10

    Stereotactic body radiotherapy (SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer (NSCLC). Herein, we highlight the importance of interfraction image guidance during SBRT. We describe a case of early-stage NSCLC associated with segmental atelectasis that translocated 15 mm anteroinferiorly due to re-expansion of the adjacent segmental atelectasis following the first fraction. The case exemplifies the importance of cross-sectional image-guided radiotherapy that shows the intended target, as opposed to aligning based on rigid anatomy alone, especially in cases associated with potentially "volatile" anatomic areas.

  3. Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: Experience with the ESTRO FALCON programme and EduCase™ training tool.

    Science.gov (United States)

    De Bari, Berardino; Dahele, Max; Palmu, Miika; Kaylor, Scott; Schiappacasse, Luis; Guckenberger, Matthias

    2017-11-20

    We report the results of 4, 2-h contouring workshops on target volume definition for spinal stereotactic radiotherapy. They combined traditional teaching methods with a web-based contouring/contour-analysis platform and led to a significant reduction in delineation variability. Short, interactive workshops can reduce interobserver variability in spine SBRT target volume delineation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Different behaviour-body length correlations in two populations of juvenile three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    De Winter, Gunnar; Martins, Henrique Ramalho; Trovo, Rafael Arnoni; Chapman, Ben B

    2016-01-01

    Behavioural variation among individuals has received a lot of attention by behavioural ecologists in the past few years. Its causes and consequences are becoming vast areas of research. The origin and maintenance of individual variation in behaviour within and among populations is affected by many facets of the biotic and abiotic environment. Here, two populations of lab-reared juvenile three-spined sticklebacks (Gasterosteus aculeatus) are tested for three behaviours (boldness, exploration, and sociability). Given the identical rearing conditions, the only difference between these populations is the parental habitat. In both populations, correlations between behaviour and body length are found. Interestingly, these differ between the populations. In one population body length was negatively correlated with exploratory behaviour, while in the other one body length correlated negatively with sociability. Considering the identical environment these juvenile fish were exposed to, these findings suggest a potential (epi)genetic foundation for these correlations and shows that, in three-spined sticklebacks, the proximate basis for correlations between body length and behaviour appears quite malleable. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Stereotactic body radiotherapy for liver tumors. Principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sterzing, Florian [Deutsches Krebsforschungszentrum (DKFZ), Klinische Kooperationseinheit Strahlentherapie, Heidelberg (Germany); Radiologische Universitaetsklinik, Abteilung fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Brunner, Thomas B. [Universitaetsklinikum Freiburg, Klinik fuer Strahlenheilkunde, Radiologische Klinik, Freiburg (Germany); Ernst, Iris; Greve, Burkhard [Universitaetsklinikum Muenster, Klinik fuer Strahlentherapie - Radioonkologie, Muenster (Germany); Baus, Wolfgang W. [Universitaetsklinikum Koeln, Klinik und Poliklinik fuer Strahlentherapie, Koeln (Germany); Herfarth, Klaus [Radiologische Universitaetsklinik, Abteilung fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Guckenberger, Matthias [UniversitaetsSpital Zuerich, Klinik fuer Radio-Onkologie, Zuerich (Switzerland)

    2014-10-15

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a practical guideline for safe and effective stereotactic body radiotherapy (SBRT) of liver tumors. The literature on the clinical evidence of SBRT for both primary liver tumors and liver metastases was reviewed and analyzed focusing on both physical requirements and special biological characteristics. Recommendations were developed for patient selection, imaging, planning, treatment delivery, motion management, dose reporting, and follow-up. Radiation dose constraints to critical organs at risk are provided. SBRT is a well-established treatment option for primary and secondary liver tumors associated with low morbidity. (orig.) [German] Die Arbeitsgruppe Stereotaxie der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) legt hier eine Empfehlung zur sicheren und effektiven Durchfuehrung der SBRT von Lebertumoren vor. Eine Literaturrecherche zur Untersuchung der Evidenz der SBRT sowohl fuer primaere Lebertumore als auch fuer Lebermetastasen wurde durchgefuehrt. Auf dieser Basis werden Empfehlungen fuer technisch-physikalische Voraussetzungen wie auch fuer die taegliche Praxis der Leber-SBRT gegeben. Weiterhin werden radiobiologische Besonderheiten dieses Verfahrens dargestellt. Praktische Vorgaben werden fuer Patientenselektion, Bildgebung, Planung, Applikation, Bewegungsmanagement, Dosisdokumentation und Follow-up gegeben. Dosisempfehlungen fuer die kritischen Risikoorgane werden dargestellt. Die SBRT stellt eine etablierte Behandlungsmethode fuer primaere und sekundaere Lebertumore dar und ist mit niedriger Morbiditaet assoziiert. (orig.)

  6. Risk management in radiotherapy: analysis for total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Banguero, Y., E-mail: ybanguero@cin.edu.uy [Universidad de la República, Montevideo (Uruguay); Píriz, G.; Guerrero, L.; Cardozo, L.; Quarneti, A. [Centro Hospital Pereira Rossell, Montevideo (Uruguay); Nader, A. [Autoridad Reguladora Nacional de Radioprotección, Montevideo (Uruguay)

    2017-07-01

    Introduction: Management of risk in any technique that is using radiation energy is very important to prevent incidents and accidents. Pretending evaluate the risk in the all process of Total Body Irradiation (TBI), this work present a risk matrix with different possible events than could occur. Methods: SEVRRA-R platform that run in windows is using to build a risk matrix separating the process of TBI in commissioning, prescription, planning and delivering dose. Any stage has a procedure with different errors associated. We build a matrix using all this information to evaluate the kind of risk we have in the technique. Results: It was obtained a template that describes in general the process of TBI with principles events, barriers and consequences. Conclusion: Analyzing the risk in any stage of the process in Total Body irradiation is a useful tool to understand the key points to work in safety for this technique. (author)

  7. Cervical Spine Injuries: A Whole-Body Musculoskeletal Model for the Analysis of Spinal Loading.

    Directory of Open Access Journals (Sweden)

    Dario Cazzola

    Full Text Available Cervical spine trauma from sport or traffic collisions can have devastating consequences for individuals and a high societal cost. The precise mechanisms of such injuries are still unknown as investigation is hampered by the difficulty in experimentally replicating the conditions under which these injuries occur. We harness the benefits of computer simulation to report on the creation and validation of i a generic musculoskeletal model (MASI for the analyses of cervical spine loading in healthy subjects, and ii a population-specific version of the model (Rugby Model, for investigating cervical spine injury mechanisms during rugby activities. The musculoskeletal models were created in OpenSim, and validated against in vivo data of a healthy subject and a rugby player performing neck and upper limb movements. The novel aspects of the Rugby Model comprise i population-specific inertial properties and muscle parameters representing rugby forward players, and ii a custom scapula-clavicular joint that allows the application of multiple external loads. We confirm the utility of the developed generic and population-specific models via verification steps and validation of kinematics, joint moments and neuromuscular activations during rugby scrummaging and neck functional movements, which achieve results comparable with in vivo and in vitro data. The Rugby Model was validated and used for the first time to provide insight into anatomical loading and cervical spine injury mechanisms related to rugby, whilst the MASI introduces a new computational tool to allow investigation of spinal injuries arising from other sporting activities, transport, and ergonomic applications. The models used in this study are freely available at simtk.org and allow to integrate in silico analyses with experimental approaches in injury prevention.

  8. Stereotactic Body Radiotherapy for the Treatment of Renal Tumors

    Directory of Open Access Journals (Sweden)

    Michael Hanzly

    2014-09-01

    Full Text Available The purpose of this study was to evaluate the response of actively growing renal masses to stereotactic body radiation therapy (SBRT. We retrospectively reviewed our institutional review board–approved kidney database and identified 4 patients who underwent SBRT, 15 Gy dose, for their rapidly growing renal masses. Three patients had a decreased tumor size after radiation treatment by 20.8%, 38.1%, and 20%. The other patient had a size gain of 5.6%. This patient maintained a similar tumor growth rate before and after SBRT. Mean follow-up time was 13.8 months. SBRT represents an effective management option in select patients with larger rapidly growing kidney masses.

  9. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.

    Science.gov (United States)

    Välimäki, Kaisa; Herczeg, Gábor

    2012-07-01

    1. Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2. Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3. We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4. The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  10. Radiotherapy

    International Nuclear Information System (INIS)

    Pistenma, D.A.

    1980-01-01

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  11. Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Directory of Open Access Journals (Sweden)

    Kim Hak-Jun

    2008-08-01

    Full Text Available Abstract Background Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter and conversely, reduced pressure accelerates the growth (Volkmann. Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body. Methods This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve 30° to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae. Results In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation. Conclusion From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the

  12. A preliminary study into injuries due to non-perforating ballistic impacts into soft body armour over the spine.

    Science.gov (United States)

    Jennings, Rosalind M; Malbon, Chris; Brock, Fiona; Harrisson, Stuart; Carr, Debra J

    2018-05-22

    The UK Home Office test method for ballistic protective police body armours considers anterior torso impacts to be the worst-case scenario and tests rear armour panels to the same standards as front panels. The aim of this paper was to examine the injuries from spinal behind armour blunt trauma (BABT) impacts. This study used a cadaveric 65 kg, female pig barrel and 9 mm Luger ammunition (9 × 19 mm, FMJ Nammo Lapur Oy) into HG1/A + KR1 soft armour panels over the spine. Injuries were inspected and sections removed for x-radiography and micro-CT assessment. All shots over the spine resulted in deep soft tissue injuries from pencilling of the armour and the shirt worn under the armour. The wounds had embedded fabric debris which would require surgery to remove resulting in increased recovery time over injuries usually seen in anterior torso BABT impacts, which are typically haematoma and fractured ribs. The shot with the deepest soft tissue wound (41 mm) also resulted in a fractured spinous process. Shots were also fired at the posterior and anterior rib area of the pig barrel, for comparison to the spine. Similar wounds were seen on the shots to the posterior rib area while shallower, smaller wounds were seen on the anterior and one anterior rib shot resulted in a single, un-displaced rib fracture. The anatomical differences between pigs and humans would most likely mean that injury to a human from these impacts would be more serious. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  13. Stereotactic body radiotherapy for primary renal cell carcinoma and adrenal metastases.

    Science.gov (United States)

    Kothari, Gargi; Louie, Alexander V; Pryor, David; Vela, Ian; Lo, Simon S; Teh, Bin S; Siva, Shankar

    2017-09-01

    The incidence of renal cell carcinoma (RCC) and metastatic adrenal lesions continues to rise and present evolving complexities in terms of management. Technical challenges in treatment delivery are compounded by the setting of an ageing patient population with multiple medical co-morbidities. While the standard of care treatment for both primary RCC and oligometastatic adrenal lesions has typically been surgery, a number of patients may be medically or surgically inoperable, and for whom alternative options require consideration. Additionally, in metastatic disease, surgery presents an invasive option, sometimes with unacceptable risks of perioperative morbidity and therefore is considered a less desirable option to some. Stereotactic body radiotherapy (SBRT) is an established radiotherapy technique that is rapidly being incorporated into many radiotherapy departments, particu-larly with the increasing availability and capabilities of modern linear accelerators to deliver precise image guided treatment. There are considerable advantages of SBRT including its ability to provide a non-invasive ablative treatment with very few treatment sessions, with emerging evidence showing promising rates of local control (LC) and low associated mor-bidity. This review details the use of SBRT for primary RCC as well as adrenal metastases, focusing on issues including patient selection, technical considerations, and patient out-comes. Furthermore, this review explores some recent insights into the radiobiology of RCC, the immunomodulatory effects of SBRT, and the use of systemic agents with SBRT.

  14. The Early Result of Whole Pelvic Radiotherapy and Stereotactic Body Radiotherapy Boost for High Risk Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Yu-Wei eLin

    2014-10-01

    Full Text Available PurposeThe rationale for hypofractionated radiotherapy in the treatment of prostate cancer is based on the modern understanding of radiobiology and advances in stereotactic body radiotherapy (SBRT techniques. Whole-pelvis irradiation combined with SBRT boost for high-risk prostate cancer might escalate biologically effective dose without increasing toxicity. Here, we report our 4-year results of SBRT boost for high-risk localized prostate cancer.Methods and MaterialsFrom October 2009 to August 2012, 41 patients of newly diagnosed, high-risk or very high-risk (NCCN definition localized prostate cancer patients were treated with whole-pelvis irradiation and SBRT boost. The whole pelvis dose was 45Gy (25 fractions of 1.8Gy. The SBRT boost dose was 21 Gy (three fractions of 7 Gy. Ninety percent of these patients received hormone therapy. The toxicities of gastrointestinal (GI and genitourinary (GU tracts were scored by Common Toxicity Criteria Adverse Effect (CTCAE v3.0. Biochemical failure was defined by Phoenix definition.ResultsMedian follow-up was 42 months. Mean PSA before treatment was 44.18 ng/ml. Mean PSA level at 3, 6, 12, 18, and 24 months was 0.94, 0.44, 0.13, 0.12, and 0.05 ng/ml, respectively. The estimated 4-year biochemical failure-free survival was 91.9%. Three biochemical failures were observed. GI and GU tract toxicities were minimal. No grade 3 acute GU or GI toxicity was noted. During radiation therapy, 27% of the patient had grade 2 acute GU toxicity and 12% had grade 2 acute GI toxicity. At 3 months, most toxicity scores had returned to baseline. At the last follow up, there was no grade 3 late GU or GI toxicity.ConclusionsWhole-pelvis irradiation combined with SBRT boost for high-risk localized prostate cancer is feasible with minimal toxicity and encouraging biochemical failure-free survival. Continued accrual and follow-up would be necessary to confirm the biochemical control rate and the toxicity profiles.

  15. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial

    International Nuclear Information System (INIS)

    Wiegner, Ellen A.; King, Christopher R.

    2010-01-01

    Purpose: To study the sexual quality of life for prostate cancer patients after stereotactic body radiotherapy (SBRT). Methods and Materials: Using the Expanded Prostate Cancer Index Composite (EPIC)-validated quality-of-life questionnaire, the sexual function of 32 consecutive patients who received prostate SBRT in a prospective Phase II clinical trial were analyzed at baseline, and at median times of 4, 12, 20, and 50 months after treatment. SBRT consisted of 36.25 Gy in five fractions of 7.25 Gy using the Cyberknife. No androgen deprivation therapy was given. The use of erectile dysfunction (ED) medications was monitored. A comprehensive literature review for radiotherapy-alone modalities based on patient self-reported questionnaires served as historical comparison. Results: Median age at treatment was 67.5 years, and median follow-up was 35.5 months (minimum 12 months). The mean EPIC sexual domain summary score, sexual function score, and sexual bother score decreased by 45%, 49%, and 25% respectively at 50 months follow-up. These differences reached clinical relevance by 20 months after treatment. Baseline ED rate was 38% and increased to 71% after treatment (p = 0.024). Use of ED medications was 3% at baseline and progressed to 25%. For patients aged <70 years at follow-up, 60% maintained satisfactory erectile function after treatment compared with only 12% aged ≥70 years (p = 0.008). Penile bulb dose was not associated with ED. Conclusions: The rates of ED after treatment appear comparable to those reported for other modalities of radiotherapy. Given the modest size of this study and the uncertainties in the physiology of radiotherapy-related ED, these results merit further investigations.

  16. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability.

    Science.gov (United States)

    Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo

    2014-01-01

    We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; psimulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.

  17. Stereotactic Body Radiotherapy for Centrally Located Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuming WAN

    2018-05-01

    Full Text Available A few study has proven that about 90% of local control rates might be benefit from stereotactic body radiotherapy (SBRT for patients with medically inoperable stage I non-small cell lung cancer (NSCLC, it is reported SBRT associated overall survival and tumor specific survival is comparable with those treated with surgery. SBRT has been accepted as the first line treatment for inoperable patients with peripheral located stage I NSCLC. However, the role of SBRT in centrally located lesions is controversial for potential toxic effects from the adjacent anatomical structure. This paper will review the definition, indication, dose regimens, dose-volume constraints for organs at risk, radiation technology, treatment side effect of centrally located NSCLC treated with SBRT and stereotactic body proton therapy.

  18. Clinical applicability of biologically effective dose calculation for spinal cord in fractionated spine stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jinho; Ahn, So Hyun; Lee, Seok Ho; Sung, Ki Hoon; Kil, Se Hee

    2015-01-01

    The aim of the study was to investigate whether biologically effective dose (BED) based on linear-quadratic model can be used to estimate spinal cord tolerance dose in spine stereotactic body radiation therapy (SBRT) delivered in 4 or more fractions. Sixty-three metastatic spinal lesions in 47 patients were retrospectively evaluated. The most frequently prescribed dose was 36 Gy in 4 fractions. In planning, we tried to limit the maximum dose to the spinal cord or cauda equina less than 50% of prescription or 45 Gy 2/2 . BED was calculated using maximum point dose of spinal cord. Maximum spinal cord dose per fraction ranged from 2.6 to 6.0 Gy (median 4.3 Gy). Except 4 patients with 52.7, 56.4, 62.4, and 67.9 Gy 2/2 , equivalent total dose in 2-Gy fraction of the patients was not more than 50 Gy 2/2 (12.1–67.9, median 32.0). The ratio of maximum spinal cord dose to prescription dose increased up to 82.2% of prescription dose as epidural spinal cord compression grade increased. No patient developed grade 2 or higher radiation-induced spinal cord toxicity during follow-up period of 0.5 to 53.9 months. In fractionated spine SBRT, BED can be used to estimate spinal cord tolerance dose, provided that the dose per fraction to the spinal cord is moderate, e.g. < 6.0 Gy. It appears that a maximum dose of up to 45–50 Gy 2/2 to the spinal cord is tolerable in 4 or more fractionation regimen

  19. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose.

  20. SU-E-T-394: The Use of Jaw Tracking in Intensity Modulated and Volumetric Modulated Arc Radiotherapy for Spine Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Chin, K; Wen, N; Huang, Y; Kim, J; Zhao, B; Siddiqui, S; Chetty, I; Ryu, S

    2014-01-01

    Purpose: To evaluate the potential advantages of jaw tracking for intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in spine radiosurgery. Methods: VMAT and IMRT plans were retrospectively generated for ten patients. Six plans for each patient were created in the Eclipse treatment planning system for a Varian Truebeam equipped with a Millennium 120 MLC. Plans were created to study IMRT and VMAT plans with and without jaw tracking, as well as IMRT plans of different flattening filter free (FFF) energies. Plans were prescribed to the 90% isodose line to 16 or 18 Gy in one fraction to cover 95% of the target. Planning target volume (PTV) coverage, conformity index (CI), dose to spinal cord, distance to fall off from the 90% to 50% isodose line (DTF), as well as delivery time were evaluated. Ion chamber and film measurements were performed to verify calculated and measured dose distributions. Results: Jaw tracking decreased the spinal cord dose for both IMRT and VMAT plans, but a larger decrease was seen with the IMRT plans (p=0.004 vs p=0.04). The average D10% for the spinal cord was least for the 6MV FFF IMRT plan with jaw tracking and was greatest for the 10MV FFF plan without jaw tracking. Treatment times between IMRT and VMAT plans with or without jaw tracking were not significantly different. Measured plans showed greater than 98.5% agreement for planar dose gamma analysis (3%/2 mm) and less than 2.5% for point dose analysis compared to calculated plans. Conclusion: Jaw tracking can be used to help decrease spinal cord dose without any change in treatment delivery or calculation accuracy. Lower dose to the spinal cord was achieved using 6 MV beams compared to 10 MV beams, though 10 MV may be justified in some cases to decrease skin dose

  1. Dose discrepancy between planning system estimation and measurement in spine stereotactic body radiation therapy: A case report

    International Nuclear Information System (INIS)

    Arumugam, Sankar; Xing, Aitang; Vial Philip; Berry Megan; Ochoa, Cesar; Beeksma, Bradley

    2017-01-01

    Stereotactic body radiation therapy (SBRT) to treat spinal metastases has shown excellent clinical outcomes for local control. High dose gradients wrapping around spinal cord make this treatment technically challenging. In this work, we present a spine SBRT case where a dosimetric error was identified during pre-treatment dosimetric quality assurance (QA). A patient with metastasis in T7 vertebral body consented to undergo SBRT. A dual arc volumetric modulated arc therapy plan was generated on the Pinnacle treatment planning system (TPS) with a 6 MV Elekta machine using gantry control point spacing of 4°. Standard pre-treatment QA measurements were performed, including ArcCHECK, ion chamber in CTV and spinal cord (SC) region and film measurements in multiple planes. While the dose measured at CTV region showed good agreement with TPS, the dose measured to the SC was significantly higher than reported by TPS in the original and repeat plans. Acceptable agreement was only achieved when the gantry control point spacing was reduced to 3°. A potentially harmful dose error was identified by pre-treatment QA. TPS parameter settings used safely in conventional treatments should be re-assessed for complex treatments.

  2. Definition of stereotactic body radiotherapy. Principles and practice for the treatment of stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Guckenberger, M.; Sauer, O.; Andratschke, N.; Alheit, H.; Holy, R.; Moustakis, C.; Nestle, U.

    2014-01-01

    This report from the Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (Deutschen Gesellschaft fuer Radioonkologie, DEGRO) provides a definition of stereotactic body radiotherapy (SBRT) that agrees with that of other international societies. SBRT is defined as a method of external beam radiotherapy (EBRT) that accurately delivers a high irradiation dose to an extracranial target in one or few treatment fractions. Detailed recommendations concerning the principles and practice of SBRT for early stage non-small cell lung cancer (NSCLC) are given. These cover the entire treatment process; from patient selection, staging, treatment planning and delivery to follow-up. SBRT was identified as the method of choice when compared to best supportive care (BSC), conventionally fractionated radiotherapy and radiofrequency ablation. Based on current evidence, SBRT appears to be on a par with sublobar resection and is an effective treatment option in operable patients who refuse lobectomy. (orig.) [de

  3. Stereotactic body radiotherapy (SBRT): Technological innovation and application in gynecologic oncology.

    Science.gov (United States)

    Higginson, Daniel S; Morris, David E; Jones, Ellen L; Clarke-Pearson, Daniel; Varia, Mahesh A

    2011-03-01

    Stereotactic body radiotherapy (SBRT) is a novel form of noninvasive, highly conformal radiation treatment that delivers a high dose to tumor. The advantage of the technique resides in its ability to provide a high dose to tumor but spare normal tissues to an extent not previously possible. In this paper we will provide an introduction and review of this technology with regard to its use in gynecologic malignancies. Preliminary results from our experience are presented for the purpose of illustrating the range of SBRT applications in gynecologic oncology. A comprehensive literature review was conducted and our experience from the past three years was reviewed. Six case series are published that report results of SBRT for gynecologic malignancies. Sixteen gynecologic patients have been treated with SBRT at our institution. Treatment sites include pelvic and periaortic nodes (9 patients), oligometastatic disease (2), and cervical or endometrial primary tumors when other conventional external radiation or brachytherapy techniques were unsuitable (5). Preliminary follow-up at a median of 11 months (range, 0.3-33 months) demonstrates 79% locoregional control, 43% distant failure, and 50% overall survival. SBRT boosts to macroscopic periaortic node recurrences and other sites seem to provide local control and a possibility of long-term disease-free survival in carefully selected patients. Previously this had been difficult to achieve with conventional radiotherapy because of the proximity of periaortic nodes to small bowel. SBRT also offers a novel approach for minimally invasive treatment in the management of gynecological cancer where current surgical and radiotherapy techniques are unsuitable. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Lai CL

    2013-12-01

    Full Text Available Chung-Liang Lai,1,2 Shiuan-Yu Tseng,1,2 Chung-Nan Chen,3 Wan-Chun Liao,2 Chun-Hou Wang,4 Meng-Chih Lee,1,5,* Pi-Shan Hsu5,* 1Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; 2Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan; 3Department of Radiology, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan; 4School of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan; 5Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan*These authors contributed equally to this workBackground: The issue of osteoporosis-induced fractures has attracted the world's attention. Postmenopausal women are particularly at risk for this type of fracture. The nonmedicinal intervention for postmenopausal women is mainly exercise. Whole body vibration (WBV is a simple and convenient exercise. There have been some studies investigating the effect of WBV on osteoporosis; however, the intervention models and results are different. This study mainly investigated the effect of high-frequency and high-magnitude WBV on the bone mineral density (BMD of the lumbar spine in postmenopausal women.Methods: This study randomized 28 postmenopausal women into either the WBV group or the control group for a 6-month trial. The WBV group received an intervention of high-frequency (30 Hz and high-magnitude (3.2 g WBV in a natural full-standing posture for 5 minutes, three times per week, at a sports center. Dual-energy X-ray absorptiometry was used to measure the lumbar BMD of the two groups before and after the intervention.Results: Six months later, the BMD of the WBV group had significantly increased by 2.032% (P=0.047, while that of the control group had decreased by 0.046% (P=0.188. The comparison between the two groups showed that the BMD of the WBV group had increased significantly (P=0.016.Conclusion: This study found

  5. Salvage Reirradiaton With Stereotactic Body Radiotherapy for Locally Recurrent Head-and-Neck Tumors

    International Nuclear Information System (INIS)

    Cengiz, Mustafa; Ozyigit, Goekhan; Yazici, Goezde; Dogan, Ali; Yildiz, Ferah; Zorlu, Faruk; Guerkaynak, Murat; Gullu, Ibrahim H.; Hosal, Sefik; Akyol, Fadil

    2011-01-01

    Purpose: In this study, we present our results of reirradiation of locally recurrent head-and-neck cancer with image-guided, fractionated, frameless stereotactic body radiotherapy technique. Methods and Materials: From July 2007 to February 2009, 46 patients were treated using the CyberKnife (Accuray, Sunnyvale, CA) at the Department of Radiation Oncology, Hacettepe University, Ankara, Turkey. All patients had recurrent, unresectable, and previously irradiated head-and-neck cancer. The most prominent site was the nasopharynx (32.6%), and the most common histopathology was epidermoid carcinoma. The planning target volume was defined as the gross tumor volume identified on magnetic resonance imaging and computed tomography. There were 22 female and 24 male patients. Median age was 53 years (range, 19-87 years). The median tumor dose with stereotactic body radiotherapy was 30 Gy (range, 18-35 Gy) in a median of five (range, one to five) fractions. Results: Of 37 patients whose response to therapy was evaluated, 10 patients (27%) had complete tumor regression, 11 (29.8%) had partial response, and 10 (27%) had stable disease. Ultimate local disease control was achieved in 31 patients (83.8%). The overall survival was 11.93 months in median (ranged, 11.4 - 17.4 months), and the median progression free survival was 10.5 months. One-year progression-free survival and overall survival were 41% and 46%, respectively. Grade II or greater long-term complications were observed in 6 (13.3%) patients. On follow-up, 8 (17.3%) patients had carotid blow-out syndrome, and 7 (15.2%) patients died of bleeding from carotid arteries. We discovered that this fatal syndrome occurred only in patients with tumor surrounding carotid arteries and carotid arteries receiving all prescribed dose. Conclusions: Stereotactic body radiotherapy is an appealing treatment option for patients with recurrent head-and-neck cancer previously treated with radiation to high doses. Good local control with

  6. Stereotactic Body Radiotherapy for Metastatic and Recurrent Ewing Sarcoma and Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Lindsay C. Brown

    2014-01-01

    Full Text Available Background. Radiotherapy has been utilized for metastatic and recurrent osteosarcoma and Ewing sarcoma (ES, in order to provide palliation and possibly prolong overall or progression-free survival. Stereotactic body radiotherapy (SBRT is convenient for patients and offers the possibility of increased efficacy. We report our early institutional experience using SBRT for recurrent and metastatic osteosarcoma and Ewing sarcoma. Methods. We reviewed all cases of osteosarcoma or ES treated with SBRT between 2008 and 2012. Results. We identified 14 patients with a total of 27 lesions from osteosarcoma (n=19 or ES (n=8. The median total curative/definitive SBRT dose delivered was 40 Gy in 5 fractions (range, 30–60 Gy in 3–10 fractions. The median total palliative SBRT dose delivered was 40 Gy in 5 fractions (range, 16–50 Gy in 1–10 fractions. Two grade 2 and 1 grade 3 late toxicities occurred, consisting of myonecrosis, avascular necrosis with pathologic fracture, and sacral plexopathy. Toxicity was seen in the settings of concurrent chemotherapy and reirradiation. Conclusions. This descriptive report suggests that SBRT may be a feasible local treatment option for patients with osteosarcoma and ES. However, significant toxicity can result, and thus systematic study is warranted to clarify efficacy and characterize long-term toxicity.

  7. Whole Body Vibration Training is Osteogenic at the Spine in College-Age Men and Women

    OpenAIRE

    Ligouri, Gianna C.; Shoepe, Todd C.; Almstedt, Hawley C.

    2012-01-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass which is currently challenging the American health care system. Maximizing peak bone mass early in life is a cost-effective method for preventing osteoporosis. Whole body vibration (WBV) is a novel exercise method with the potential to increase bone mass, therefore optimizing peak bone and decreasing the risk for osteoporotic fracture. The aim of this investigation was to evaluate changes in bone mineral density at the ...

  8. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years

    Energy Technology Data Exchange (ETDEWEB)

    Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    We measured areal bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) at the lumbar spine and the proximal femur and for the total body in 179 subjects (91 girls and 88 boys) with no known disorders that might affect calcium metabolism. Results are also reported for lumbar spine bone mineral content (BMC) and for the derived variable, bone mineral apparent density (BMAD). Expected-for-age values for each variable were derived for boys and girls by using an expression that represented the sum of a steady increase due to growth plus a rapid increase associated with puberty. Normal ranges were derived by assuming that at least 95% of children would be included within 1.96 population standard deviations (SD) of the expected-for-age value. The normal range for lumbar spine BMD derived from our population of children was compared with previously published normal ranges based on results obtained from different bone densitometers in diverse geographic locations. The extent of agreement between the various normal ranges indicates that the derived expressions can be used for reporting routine spine, femur, and whole-body BMD measurements in children and adolescents. The greatest difference in expected-for-age values among the various studies was that arising from intermanufacturer variability. The application of published conversion factors derived from DXA measurements in adults did not account fully for these differences, especially in younger children. (author)

  9. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years

    International Nuclear Information System (INIS)

    Webber, C.E.; Beaumont, L.F.; Morrison, J.; Sala, A.; Barr, R.D.

    2007-01-01

    We measured areal bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) at the lumbar spine and the proximal femur and for the total body in 179 subjects (91 girls and 88 boys) with no known disorders that might affect calcium metabolism. Results are also reported for lumbar spine bone mineral content (BMC) and for the derived variable, bone mineral apparent density (BMAD). Expected-for-age values for each variable were derived for boys and girls by using an expression that represented the sum of a steady increase due to growth plus a rapid increase associated with puberty. Normal ranges were derived by assuming that at least 95% of children would be included within 1.96 population standard deviations (SD) of the expected-for-age value. The normal range for lumbar spine BMD derived from our population of children was compared with previously published normal ranges based on results obtained from different bone densitometers in diverse geographic locations. The extent of agreement between the various normal ranges indicates that the derived expressions can be used for reporting routine spine, femur, and whole-body BMD measurements in children and adolescents. The greatest difference in expected-for-age values among the various studies was that arising from intermanufacturer variability. The application of published conversion factors derived from DXA measurements in adults did not account fully for these differences, especially in younger children. (author)

  10. Safety and efficacy of stereotactic body radiotherapy as primary treatment for vertebral metastases: a multi-institutional analysis

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Mantel, Frederick; Gerszten, Peter C; Flickinger, John C; Sahgal, Arjun; Létourneau, Daniel; Grills, Inga S; Jawad, Maha; Fahim, Daniel K; Shin, John H; Winey, Brian; Sheehan, Jason; Kersh, Ron

    2014-01-01

    To evaluate patient selection criteria, methodology, safety and clinical outcomes of stereotactic body radiotherapy (SBRT) for treatment of vertebral metastases. Eight centers from the United States (n = 5), Canada (n = 2) and Germany (n = 1) participated in the retrospective study and analyzed 301 patients with 387 vertebral metastases. No patient had been exposed to prior radiation at the treatment site. All patients were treated with linac-based SBRT using cone-beam CT image-guidance and online correction of set-up errors in six degrees of freedom. 387 spinal metastases were treated and the median follow-up was 11.8 months. The median number of consecutive vertebrae treated in a single volume was one (range, 1-6), and the median total dose was 24 Gy (range 8-60 Gy) in 3 fractions (range 1-20). The median EQD2 10 was 38 Gy (range 12-81 Gy). Median overall survival (OS) was 19.5 months and local tumor control (LC) at two years was 83.9%. On multivariate analysis for OS, male sex (p < 0.001; HR = 0.44), performance status <90 (p < 0.001; HR = 0.46), presence of visceral metastases (p = 0.007; HR = 0.50), uncontrolled systemic disease (p = 0.007; HR = 0.45), >1 vertebra treated with SBRT (p = 0.04; HR = 0.62) were correlated with worse outcomes. For LC, an interval between primary diagnosis of cancer and SBRT of ≤30 months (p = 0.01; HR = 0.27) and histology of primary disease (NSCLC, renal cell cancer, melanoma, other) (p = 0.01; HR = 0.21) were correlated with worse LC. Vertebral compression fractures progressed and developed de novo in 4.1% and 3.6%, respectively. Other adverse events were rare and no radiation induced myelopathy reported. This multi-institutional cohort study reports high rates of efficacy with spine SBRT. At this time the optimal fractionation within high dose practice is unknown

  11. Anatomy of the Spine

    Science.gov (United States)

    ... curve of the neck is described as a lordosis or lordotic curve, and looks like a “C” ... like the cervical spine, creating a normal lumbar lordosis. The five lumbar vertebral bodies are the weight- ...

  12. Nomogram based overall survival prediction in stereotactic body radiotherapy for oligo-metastatic lung disease

    DEFF Research Database (Denmark)

    Tanadini-Lang, S; Rieber, J; Filippi, A R

    2017-01-01

    BACKGROUND: Radical local treatment of pulmonary metastases is practiced with increasing frequency due to acknowledgment and better understanding of oligo-metastatic disease. This study aimed to develop a nomogram predicting overall survival (OS) after stereotactic body radiotherapy (SBRT......) for pulmonary metastases. PATIENTS AND METHODS: A multi-institutional database of 670 patients treated with SBRT for pulmonary metastases was used as training cohort. Cox regression analysis with bidirectional variable elimination was performed to identify factors to be included into the nomogram model...... to predict 2-year OS. The calibration rate of the nomogram was assessed by plotting the actual Kaplan-Meier 2-year OS against the nomogram predicted survival. The nomogram was externally validated using two separate monocentric databases of 145 and 92 patients treated with SBRT for pulmonary metastases...

  13. Stereotactic Body Radiotherapy for Localized Ureter Transitional Cell Carcinoma: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Yoshiyasu Maehata

    2015-01-01

    Full Text Available The gold standard management for ureter transitional cell carcinoma (UTCC is radical nephroureterectomy with excision of the bladder cuff. However, some patients cannot undergo this procedure for several reasons. In the case reports described herein, we performed stereotactic body radiotherapy (SBRT on three patients with inoperable or surgery-rejected localized UTCC. Two out of the three patients did not develop local recurrence or distant metastasis during the observation period. However, recurrence was detected in the bladder of one patient 22 months after the treatment. No acute or late adverse events occurred in any of the three patients. SBRT may become one of the treatment options for inoperable or surgery-rejected UTCC patients.

  14. Tri-spine horseshoe crab, Tachypleus tridentatus (L. in Sabah, Malaysia: the adult body sizes and population estimate

    Directory of Open Access Journals (Sweden)

    Azwarfarid Manca

    2017-09-01

    Full Text Available The dwindling number of the tri-spine horseshoe crab, Tachypleus tridentatus has been reported globally and its status in Malaysia is not much known. Study on dimorphism in adult body sizes and population size estimation were conducted using capture–mark–recapture method of adult T. tridentatus in Tawau, Sabah. Camry the estimated population sizes of T. tridentatus ranged from 182 to 1095 with 95% confident limits of 56–42,942 individuals (Schnabel formula. The multivariate discriminant Hotelling’s T2 test verifies the sexual size dimorphism among the adult T. tridentatus with 97.7% separation among sexes (Hotelling’s T2 = 778.49, F = 152.85, p < 0.001 with females being larger and heavier than the male individuals. The number estimated from the study is the first reported for T. tridentatus in Malaysia, particularly in Sabah. Even though this number may slightly overestimate the actual population size in the area owing to the low number of individuals recaptured, for now it could serve as baseline data for horseshoe crab management purpose.

  15. Body Composition Early Identifies Cancer Patients With Radiotherapy at Risk for Malnutrition.

    Science.gov (United States)

    Tang, Pei-Ling; Wang, Hsiu-Hung; Lin, Huey-Shyan; Liu, Wen-Shan; Chen, Lih-Mih; Chou, Fan-Hao

    2018-03-01

    The side effects of radiotherapy (RT) and the occurrence of comorbidity often result in appetite loss in patients, which leads to serious nutritional problems, significantly affecting the patients' treatment results and disease prognosis. We aimed to investigate changes in the body composition of patients with cancer from the time they received RT to three months after completion of RT. A total of 101 cancer patients who received RT, which included head or neck cancer, chest or breast cancer, and abdominal or pelvic cancer patients, were recruited. A longitudinal study design was adopted, in which the body composition analyzer In Body3.0 was used to obtain patient data at six different time points. The data were analyzed through generalized estimating equation. All patients with cancer had the lowest body mass index at the end of RT. For head or neck cancer patients, their total body water and muscle mass decreased significantly in the fourth week of RT and at the end of RT. For chest or breast cancer patients, their body fat mass changed significantly in the second and fourth weeks of RT (β = -0.57, P = 0.0233; β = -3.23, P = 0.0254). For abdominal or pelvic cancer patients, their total body weight and muscle mass decreased significantly in the second week of RT and at the end of RT (β = -1.07, P = 0.0248; β = -5.13, P = 0.0017; β = -1.37, P = 0.0245; β = -6.50, P = 0.0016); their body fat mass increased significantly in the third month after RT (β = 4.61, P = 0.0072). Body composition analysis can be used to promptly and effectively monitor changes in the nutritional status of patients with cancer during the cancer treatment period; changes in the body composition at different repetitions differ between patients with dissimilar cancers. Copyright © 2017 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  16. Superior target delineation for stereotactic body radiotherapy of bone metastases from renal cell carcinoma on MRI compared to CT

    NARCIS (Netherlands)

    Prins, Fieke M.; Van Der Velden, Joanne M.; Gerlich, Anne S.; Kotte, Alexis N.T.J.; Eppinga, Wietse S.C.; Kasperts, Nicolien; Verlaan, Jorrit J.; Pameijer, Frank A.; Kerkmeijer, Linda G.W.

    2017-01-01

    Background: In metastatic renal cell carcinoma (mRCC) there has been a treatment shift towards targeted therapy, which has resulted in improved overall survival. Therefore, there is a need for better local control of the tumor and its metastases. Image-guided stereotactic body radiotherapy (SBRT) in

  17. (18)F-FDG PET during stereotactic body radiotherapy for stage I lung tumours cannot predict outcome : a pilot study

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Pruim, Jan; Ubbels, Jan F.; Groen, Harry J. M.; Langendijk, Johannes A.; Widder, Joachim

    (18)F-Fluorodeoxyglucose positron emission tomography (FDG PET) has been used to assess metabolic response several months after stereotactic body radiotherapy (SBRT) for early-stage non-small cell lung cancer. However, whether a metabolic response can be observed already during treatment and thus

  18. Reproductive success in a natural population of male three-spined stickleback Gasterosteus aculeatus: effects of nuptial colour, parasites and body size.

    Science.gov (United States)

    Sparkes, T C; Rush, V; Kopp, D A; Foster, S A

    2013-05-01

    The effects of nuptial colour, parasites and body size on reproductive success were examined in a natural population of three-spined stickleback Gasterosteus aculeatus. Reproductive males were collected, with the contents of their nests, during the embryo-guarding stage from Lynne Lake (Cook Inlet, Alaska, U.S.A.), and nuptial colour, infection status and body size were recorded. Regression analysis revealed that male body size was the only predictor, of those measured, of reproductive success in nature. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  19. 2nd Tuebingen radiotherapy symposium: Whole body, large field and whole skin irradiation. Introduction

    International Nuclear Information System (INIS)

    Huebener, K.H.; Frommhold, W.

    1987-01-01

    The symposium which took place on the 11th and 12th April 1986 set itself the task of discussing three different groups of radiotherapy topics. The chief issue was whole-body irradiation prior to bone marrow transplants, in which all the therapy centres in West Germany, Austria, East Germany and German-speaking Switzerland made clinical and radiophysical contributions. The second part of the Symposium consisted mainly of talks and discussions on large-field irradiation, more precisely half-body and sequential partial body irradiation. This topic was chosen because this type of therapy is scarcely practised at all, particularly in West Germany, whereas in the United States, East Germany, Switzerland and a number of other countries it has long since become one of the established methods. The last talk at the Symposium explained clinical and radiophysical aspects of whole-skin irradiation. Here too, one was impressed by the wide diversity of the equipment and methods of irradiation used which, nevertheless, all demonstrated satisfactory practical solutions in their common aim of distributing the dose as homogeneously as possible. (orig./MG) [de

  20. TH-EF-BRB-03: Significant Cord and Esophagus Dose Reduction by 4π Non-Coplanar Spine Stereotactic Body Radiation Therapy and Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, V; Tran, A; Nguyen, D; Woods, K; Cao, M; Kaprealian, T; Chin, R; Low, D; Sheng, K [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To demonstrate significant organ-at-risk (OAR) sparing achievable with 4π non-coplanar radiotherapy on spine SBRT and SRS patients. Methods: Twenty-five stereotactic spine cases previously treated with VMAT (n = 23) or IMRT (n = 2) were included in this study. A computer-aided-design model of a Linac with a 3D-scanned human surface was utilized to determine the feasible beam space throughout the 4π steradian and beam specific source-to-target-distances (STD) required for collision avoidance. 4π radiotherapy plans integrating beam orientation and fluence map optimization were then created using a column-generation algorithm. Twenty optimal beams were selected for each case. To evaluate the tradeoff between dosimetric benefit and treatment complexity, 4π plans including only isocentrically deliverable beams were also created. Beam angles of all standard and isocentric 4π plans were imported into Eclipse to recalculate the dose using the same calculation engine as the clinical plans for unbiased comparison. OAR and PTV dose statistics for the clinical, standard-4π, and isocentric-4π plans were compared. Results: Comparing standard-4π to clinical plans, particularly significant average percent reduction in the [mean, maximum] dose of the cord and esophagus of [41%, 21.7%], and [38.7%, 36.4%] was observed, along with global decrease in all other OAR dose statistics. The average cord volume receiving more than 50% prescription dose was substantially decreased by 76%. In addition, improved PTV coverage was demonstrated with a maximum dose reduction of 0.93% and 1.66% increase in homogeneity index (D95/D5). All isocentric-4π plans achieved dosimetric performance equivalent to that of the standard-4π plans with higher delivery complexity. Conclusion: 4π radiotherapy significantly improves stereotactic spine treatment dosimetry. With the substantial OAR dose sparing, PTV dose escalation is considerably safer. Isocentric-4π is sufficient to achieve the

  1. Inter- and Intrafraction Variability in Liver Position in Non-Breath-Hold Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Case, Robert B.; Sonke, Jan-Jakob; Moseley, Douglas J.; Kim, John; Brock, Kristy K.; Dawson, Laura A.

    2009-01-01

    Purpose: The inter- and intrafraction variability of liver position was assessed in patients with liver cancer treated with kilovoltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy. Methods and Materials: A total of 314 CBCT scans obtained in the treatment position immediately before and after each fraction were evaluated from 29 patients undergoing six-fraction, non-breath-hold stereotactic body radiotherapy for unresectable liver cancer. Off-line, the CBCT scans were sorted into 10 bins, according to the phase of respiration. The liver position (relative to the vertebral bodies) was measured using rigid alignment of the exhale CBCT liver with the exhale planning CT liver, following the alignment of the vertebrae. The interfraction liver position change was measured by comparing the pretreatment CBCT scans, and the intrafraction change was measured from the CBCT scans obtained immediately before and after each fraction. Results: The mean amplitude of liver motion for all patients was 1.8 mm (range, 0.1-5.7), 8.0 mm (range, 0.1-18.8), and 4.3 mm (range 0.1-12.1) in the medial-lateral (ML), craniocaudal (CC), and anteroposterior (AP) directions, respectively. The mean absolute ML, CC, and AP interfraction changes in liver position were 2.0 mm (90th percentile, 4.2), 3.5 mm (90th percentile, 7.3), and 2.3 mm (90th percentile, 4.7). The mean absolute intrafraction ML, CC, and AP changes were 1.3 mm (90th percentile, 2.9), 1.6 mm (90th percentile, 3.6), and 1.5 mm (90th percentile, 3.1), respectively. The interfraction changes were significantly larger than the intrafraction changes, with a CC systematic error of 2.9 and 1.1 mm, respectively. The intraobserver reproducibility (σ, n = 29 fractions) was 1.3 mm in the ML, 1.4 mm in the CC, and 1.6 mm in the AP direction. Conclusion: Interfraction liver position changes relative to the vertebral bodies are an important source of geometric uncertainty, providing a rationale for prefraction

  2. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT.

    Science.gov (United States)

    Burns, Joseph E; Yao, Jianhua; Muñoz, Hector; Summers, Ronald M

    2016-01-01

    To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14-88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). The fully automated computer system detects and anatomically localizes vertebral body fractures in the thoracic and lumbar spine on CT images with a

  3. Cardiac embolization of an implanted fiducial marker for hepatic stereotactic body radiotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Hennessey Hooman

    2009-11-01

    Full Text Available Abstract Introduction In liver stereotactic body radiotherapy, reduction of normal tissue irradiation requires daily image guidance. This is typically accomplished by imaging a surrogate to the tumor. The surrogate is often an implanted metal fiducial marker. There are few reports addressing the specific risks of hepatic fiducial marker implantation. These risks are assumed to be similar to percutaneous liver biopsies which are associated with a 1-4% complication rate - almost always pain or bleeding. To the best of our knowledge, we present the first case of such a fiducial marker migrating to the heart. Case presentation An 81-year-old Caucasian man (5 years post-gastrectomy for a gastric adenocarcinoma was referred post-second line palliative chemotherapy for radiotherapy of an isolated liver metastasis. It was decided to proceed with treatment and platinum fiducials were chosen for radiation targeting. Under local anesthesia, three Nester embolization coils (Cook Medical Inc., Bloomington, IN, USA were implanted under computed tomography guidance. Before the placement of each coil, the location of the tip of the delivery needle was confirmed by computed tomography imaging. During the procedure, the third coil unexpectedly migrated through the hepatic vein to the inferior vena cava and lodged at the junction of the vena cava and the right atrium. The patient remained asymptomatic. He was immediately referred to angiography for extraction of the coil. Using fluoroscopic guidance, an EN Snare Retrieval System (Hatch Medical L.L.C., Snellville, GA, USA was introduced through a jugular catheter; it successfully grasped the coil and the coil was removed. The patient was kept overnight for observation and no immediate or delayed complications were encountered due to the migration or retrieval of the coil. He subsequently went on to be treated using the remaining fiducials. Conclusion Implanted fiducial markers are increasingly used for stereotactic

  4. SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffar, I; Balik, S; Zhuang, T; Chao, S; Xia, P [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To investigate the feasibility of using TMR ratio correction factors for a fast online adaptive plan to compensate for anatomical changes in stereotactic radiosurgery (SRS) of L-spine tumors. Methods: Three coplanar treatment plans were made for 11 patients: Uniform (9 IMRT beams equally distributed around the patient); Posterior (IMRT with 9 posterior beams every 20 degree) and VMAT (2 360° arcs). For each patient, the external body and bowel gas were contoured on the planning CT and pre-treatment CBCT. After registering CBCT and the planning CT by aligning to the tumor, the CBCT contours were transferred to the planning CT. To estimate the actual delivered dose while considering patient’s anatomy of the treatment day, a hybrid CT was created by overriding densities in planning CT using the differences between CT and CBCT external and bowel gas contours. Correction factors (CF) were calculated using the effective depth information obtained from the planning system using the hybrid CT: CF = TMR (delivery)/TMR (planning). The adaptive plan was generated by multiplying the planned Monitor Units with the CFs. Results: The mean absolute difference (MAD) in V16Gy of the target between planned and estimated delivery with and without TMR correction was 0.8 ± 0.7% vs. 2.4 ± 1.3% for Uniform and 1.0 ± 0.9% vs. 2.6 ± 1.3% for VMAT plans(p<0.05), respectively. For V12Gy of cauda-equina with and without TMR correction, MAD was 0.24 ± 0.19% vs. 1.2 ± 1.02% for Uniform and 0.23 ± 0.20% vs. 0.78 ± 0.79% for VMAT plans(p<0.05), respectively. The differences between adaptive and original plans were not significant for posterior plans. Conclusion: The online adaptive strategy using TMR ratios and pre-treatment CBCT information was feasible strategy to compensate for anatomical changes for the patients treated for L-spine tumors, particularly for equally spaced IMRT and VMAT plans.

  5. Gemcitabine Chemotherapy and Single-Fraction Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer

    International Nuclear Information System (INIS)

    Schellenberg, Devin; Goodman, Karyn A.; Lee, Florence; Chang, Stephanie; Kuo, Timothy; Ford, James M.; Fisher, George A.; Quon, Andrew; Desser, Terry S.; Norton, Jeffrey; Greco, Ralph; Yang, George P.; Koong, Albert C.

    2008-01-01

    Purpose: Fractionated radiotherapy and chemotherapy for locally advanced pancreatic cancer achieves only modest local control. This prospective trial evaluated the efficacy of a single fraction of 25 Gy stereotactic body radiotherapy (SBRT) delivered between Cycle 1 and 2 of gemcitabine chemotherapy. Methods and Materials: A total of 16 patients with locally advanced, nonmetastatic, pancreatic adenocarcinoma received gemcitabine with SBRT delivered 2 weeks after completion of the first cycle. Gemcitabine was resumed 2 weeks after SBRT and was continued until progression or dose-limiting toxicity. The gross tumor volume, with a 2-3-mm margin, was treated in a single 25-Gy fraction by Cyberknife. Patients were evaluated at 4-6 weeks, 10-12 weeks, and every 3 months after SBRT. Results: All 16 patients completed SBRT. A median of four cycles (range one to nine) of chemotherapy was delivered. Three patients (19%) developed local disease progression at 14, 16, and 21 months after SBRT. The median survival was 11.4 months, with 50% of patients alive at 1 year. Patients with normal carbohydrate antigen (CA)19-9 levels either at diagnosis or after Cyberknife SBRT had longer survival (p <0.01). Acute gastrointestinal toxicity was mild, with 2 cases of Grade 2 (13%) and 1 of Grade 3 (6%) toxicity. Late gastrointestinal toxicity was more common, with five ulcers (Grade 2), one duodenal stenosis (Grade 3), and one duodenal perforation (Grade 4). A trend toward increased duodenal volumes radiated was observed in those experiencing late effects (p = 0.13). Conclusion: SBRT with gemcitabine resulted in comparable survival to conventional chemoradiotherapy and good local control. However, the rate of duodenal ulcer development was significant

  6. IMRT with Stereotactic Body Radiotherapy Boost for High Risk Malignant Salivary Gland Malignancies : A Case Series

    Directory of Open Access Journals (Sweden)

    Sana D Karam

    2014-10-01

    Full Text Available Patients with high risk salivary gland malignancies are at increased risk of local failure. We present our institutional experience with dose escalation using hypofractionated Stereotactic Body Radiotherapy (SBRT in a subset of this rare disease. Over the course of 9 years, 10 patients presenting with skull base invasion, gross disease with one or more adverse features, or those treated with adjuvant radiation with three or more pathologic features were treated with intensity modulated radiation therapy followed by hypofractionated SBRT boost. Patients presented with variable tumor histologies, and in all but one, the tumors were classified as poorly differentiated high grade. Four patients had gross disease, 3 had gross residual disease, 3 had skull base invasion, and 2 patients had rapidly recurrent disease (≤ 6 months that had been previously treated with surgical resection. The median Stereotactic Radiosurgery boost dose was 17.5 Gy (range 10-30 Gy given in a median of 5 fractions (range 3-6 fractions for a total median cumulative dose of 81.2 Gy (range 73.2-95.6 Gy. The majority of the patients received platinum based concurrent chemotherapy with their radiation. At a median follow-up of 32 months (range 12-120 for all patients and 43 months for surviving patients (range 12-120, actuarial 3-year locoregional control, distant control, progression free survival, and overall survival were 88%, 81%, 68%, and 79%, respectively. Only one patient failed locally and two failed distantly. Serious late toxicity included graft ulceration in 1 patient and osteoradionecrosis in another patient, both of which underwent surgical reconstruction. Six patients developed fibrosis. In a subset of patients with salivary gland malignancies with skull base invasion, gross disease, or those treated adjuvantly with three or more adverse pathologic features, hypofractionated SBRT boost to Intensity Modulated Radiotherapy yields good local control rates and

  7. Outcomes of Stereotactic Body Radiotherapy (SBRT) treatment of multiple synchronous and recurrent lung nodules

    International Nuclear Information System (INIS)

    Owen, Dawn; Olivier, Kenneth R; Mayo, Charles S; Miller, Robert C; Nelson, Kathryn; Bauer, Heather; Brown, Paul D; Park, Sean S; Ma, Daniel J; Garces, Yolanda I

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is evolving into a standard of care for unresectable lung nodules. Local control has been shown to be in excess of 90% at 3 years. However, some patients present with synchronous lung nodules in the ipsilateral or contralateral lobe or metasynchronous disease. In these cases, patients may receive multiple courses of lung SBRT or a single course for synchronous nodules. The toxicity of such treatment is currently unknown. Between 2006 and 2012, 63 subjects with 128 metasynchronous and synchronous lung nodules were treated at the Mayo Clinic with SBRT. Demographic patient data and dosimetric data regarding SBRT treatments were collected. Acute toxicity (defined as toxicity < 90 days) and late toxicity (defined as toxicity > = 90 days) were reported and graded as per standardized CTCAE 4.0 criteria. Local control, progression free survival and overall survival were also described. The median age of patients treated was 73 years. Sixty five percent were primary or recurrent lung cancers with the remainder metastatic lung nodules of varying histologies. Of 63 patients, 18 had prior high dose external beam radiation to the mediastinum or chest. Dose and fractionation varied but the most common prescriptions were 48 Gy/4 fractions, 54 Gy/3 fractions, and 50 Gy/5 fractions. Only 6 patients demonstrated local recurrence. With a median follow up of 12.6 months, median SBRT specific overall survival and progression free survival were 35.7 months and 10.7 months respectively. Fifty one percent (32/63 patients) experienced acute toxicity, predominantly grade 1 and 2 fatigue. One patient developed acute grade 3 radiation pneumonitis at 75 days. Forty six percent (29/63 patients) developed late effects. Most were grade 1 dyspnea. There was one patient with grade 5 pneumonitis. Multiple courses of SBRT and SBRT delivery after external beam radiotherapy appear to be feasible and safe. Most toxicity was grade 1 and 2 but the risk was

  8. Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours

    International Nuclear Information System (INIS)

    Petersen, Joergen B. B.; Hansen, Anders T.; Lassen, Yasmin; Grau, Cai; Hoeyer, Morten; Muren, Ludvig P.

    2011-01-01

    Background. Stereotactic body radiotherapy (SBRT) is often the preferred treatment for the advanced liver tumours which owing to tumour distribution, size and multi-focality are out of range of surgical resection or radiofrequency ablation. However, only a minority of patients with liver tumours may be candidates for conventional SBRT because of the limited radiation tolerance of normal liver, intestine and other normal tissues. Due to the favourable depth-dose characteristics of protons, intensity-modulated proton therapy (IMPT) may be a superior alternative to photon-based SBRT. The purpose of this treatment planning study was therefore to investigate the potential sparing of normal liver by IMPT compared to photon-based intensity-modulated radiotherapy (IMRT) for solitary liver tumours. Material and methods. Ten patients with solitary liver metastasis treated at our institution with multi-field SBRT were retrospectively re-planned with IMRT and proton pencil beam scanning techniques. For the proton plans, two to three coplanar fields were used in contrast to five to six coplanar and non-coplanar photon fields. The same planning objectives were used for both techniques. A risk adapted dose prescription to the PTV surface of 12.5-16.75 Gy x 3 was used. Results. The spared liver volume for IMPT was higher compared to IMRT in all 10 patients. At the highest prescription dose level, the median liver volume receiving less than 15 Gy was 1411 cm 3 for IMPT and 955 cm 3 for IMRT (p D 15 Gy > 700 cm 3 constraint. For the D mean = 15 Gy constraint, nine of 10 cases could be treated at the highest dose level using IMPT whereas with IMRT, only two cases met this constraint at the highest dose level and six at the lowest dose level. Conclusion. A considerable sparing of normal liver tissue can be obtained using proton-based SBRT for solitary liver tumours

  9. Immune Responses following Stereotactic Body Radiotherapy for Stage I Primary Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yoshiyasu Maehata

    2013-01-01

    Full Text Available Purpose. Immune responses following stereotactic body radiotherapy (SBRT for stage I non-small cell lung cancer (NSCLC were examined from the point of view of lymphocyte subset counts and natural killer cell activity (NKA. Patients and Methods. Peripheral blood samples were collected from 62 patients at 4 time points between pretreatment and 4 weeks post-treatment for analysis of the change of total lymphocyte counts (TLC and lymphocyte subset counts of CD3+, CD4+, CD8+, CD19+, CD56+, and NKA. In addition, the changes of lymphocyte subset counts were compared between patients with or without relapse. Further, the correlations between SBRT-related parameters and immune response were analyzed for the purpose of revealing the mechanisms of the immune response. Results. All lymphocyte subset counts and NKA at post-treatment and 1 week post-treatment were significantly lower than pre-treatment (P<0.01. No significant differences in the changes of lymphocyte subset counts were observed among patients with or without relapse. The volume of the vertebral body receiving radiation doses of 3 Gy or more (VV3 significantly correlated with the changes of nearly all lymphocyte subset counts. Conclusions. SBRT for stage I NSCLC induced significant immune suppression, and the decrease of lymphocyte subset counts may be associated with exposure of the vertebral bone marrow.

  10. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  11. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography–Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Centre Hospitalier de L' Universite de Québec–Université Laval, Quebec, Quebec (Canada); Whyne, Cari M. [Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Department of Surgery, University of Toronto, Toronto, Ontario (Canada); Zhou, Stephanie; Campbell, Mikki [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Myrehaug, Sten; Soliman, Hany; Lee, Young K. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Ebrahimi, Hamid [Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Department of Surgery, University of Toronto, Toronto, Ontario (Canada); Yee, Albert J.M. [Division of Orthopaedic Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2017-01-01

    Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range, 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.

  12. [Frequency of diagnosis of postmenopausal osteoporosis of the spine, distant radius and extravertebral fractures in women with normal body mass, overweight and obesity].

    Science.gov (United States)

    Popov, A A; Izmozherova, N V; Fominykh, M I; Tagil'tseva, N V; Kozulina, E V; Gavrilova, E I

    2008-01-01

    To assess features and peculiarities of postmenopausal osteoporosis (OP) in women with normal body mass, overweight and obesity. Dual energy X-ray absorptiometry of the lumbal spine (Lunar DPX) and distal radius X-ray absorptiometry (DTX 200) were performed during cross-section study of 730 symptomatic postmenopausal women. OP was diagnosed in 253 (34.7%) women, 30.5% of them had normal body mass, 43.2% had overweight and 26.3% were obese. Among them 227 had atraumatic fractures at the age over 50 years. Obese OP patients had significantly higher frequency of arterial hypertension, chronic heart failure, osteoarthritis and glucose metabolism disorders than osteoporotic patients with normal body mass. Fracture frequency did not differ between groups with normal body mass, overweight and obesity. Excessive body mass did not decrease fracture risk in women with postmenopausal OP.

  13. Effect of stereotactic body radiotherapy versus intensity-modulated radiotherapy in primary liver cancer patients with secondary malignant tumor of vertebra

    Directory of Open Access Journals (Sweden)

    SUN Jing

    2016-06-01

    Full Text Available ObjectiveTo investigate the effect of stereotactic body radiotherapy (SBRT versus intensity-modulated radiotherapy (IMRT in primary liver cancer (PLC patients with secondary malignant tumor of vertebra. MethodsA total of 49 PLC patients with secondary metastatic tumor of vertebra, who were treated in our hospital from December 2011 to January 2014, were enrolled and divided into group A (20 patients treated with SBRT and group B (29 patients treated with IMRT. The prescribed dose was 35 Gy in 5 fractions in group A and 35 Gy in 10 fractions in group B. The time to pain relief, imaging findings, and survival analysis were used to evaluate pain-relieving effect, the condition of lesions, and survival time. The t-test was used to compare continuous data between groups, and the chi-square test was used to compare categorical data between groups. The K-M method was used to plot survival curves for both groups, and the log-rank test was used for survival difference analysis. ResultsThe proportion of patients who achieved complete or partial remission and stable disease shown by radiological examination after radiotherapy showed no significant difference between group A and group B (P=0.873. The pain relief rate also showed no significant difference between group A and group B (P=0.908. The time of pain relief showed a significant difference between group A and group B (t=-3.353, P<0.01. The overall survival showed no significant difference between the two groups (P=0.346. ConclusionRadiotherapy has a definite therapeutic effect in PLC patients with secondary malignant tumor of vertebra. SBRT and IMRT have similar pain-relieving effects. However, with the same prescribed dose, SBRT has a short time to pain relief and does not lead to serious intolerable acute or late toxic and side effects in surrounding fast-response tissues.

  14. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  15. Enable dosimetric of the Stereotactic Body Frame from Elekta in treatment planning systems for Radiotherapy

    International Nuclear Information System (INIS)

    Gonzalez Perez, Y.; Caballero Pinelo, R.; Alfonso Laguardia, R.

    2015-01-01

    The purpose of this study is to evaluate the commissioning of a stereotactic body frame (SBF ® , Elekta) professional treatment planning systems (TPS) model Elekta's PrecisePlan ® and ERGO++®, for highly foxused delivery of megavoltage photon beams intended for treating tumors located in the thorax and abdominal region. For this purpose we applicated a dedicate stereotactic body frame (SBF ® , Elekta) intended for high precision radiotherapy in extra-cranial located tumors was studied. Issues associated with their implementation in the TPSs were evaluated comparing the dose calculations in two studies of CT under different conditions. an anthropomorphic thorax phantom, model CIRS Thorax IMRT ® , was used in designing several test cases. Ion chamber measurement was permormed in selected points in the phantom, for comparison purposes with dose calculated by the treatment planning systems. The commissioning of the stereotactic body frame (SBF ® , Elekta) and the stereotactic localization was verified, including the dose calculation verification in presence the SBF. The attenuation factors measured for the SBF were obtained and corrected in the TPS PrecisePlan ® , the biggest discrepancies obtained were ∼5% for the oblique sectors (inferior corners), because the minimum permissible value for the software is 0.95 while the real value measured was 0.898. It was studied the SBF, their components and their interference in depth with the photon beams and their implementation in the TPS. The introduction of the correction factors demonstrated to be effective to reduce the eventual errors of dose calculation in the TPS . (Author)

  16. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Inaniwa, T., E-mail: taku@nirs.go.jp; Kanematsu, N. [Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555 (Japan); Tsuji, H.; Kamada, T. [Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  17. Single Fraction Stereotactic Ablative Body Radiotherapy for Oligometastasis: Outcomes from 132 Consecutive Patients.

    Science.gov (United States)

    Gandhidasan, S; Ball, D; Kron, T; Bressel, M; Shaw, M; Chu, J; Chander, S; Wheeler, G; Plumridge, N; Chesson, B; David, S; Siva, S

    2018-03-01

    Stereotactic ablative body radiotherapy (SABR) is currently used to treat oligometastases, but the optimum dose/fractionation schedule is unknown. In this study, we evaluated outcomes after single fraction SABR in patients with oligometastatic disease. Single institutional retrospective review of patients treated with single fraction SABR for one to three oligometastases between 2010 and 2015. The primary outcome was freedom from widespread disease defined as distant recurrence not amenable to surgery or SABR; or recurrence with four or more metastases. In total, 186 treatments were delivered in 132 patients. The two most common target sites were lung (51%) and bone (40%). The most frequent single fraction prescription dose was 26 Gy (47%). The most common primary malignancy was genitourinary (n = 46 patients). Freedom from widespread disease was 75% at 1 year (95% confidence interval 67-83%) and 52% at 2 years (95% confidence interval 42-63%). Freedom from local progression at 1 year was 90% (95% confidence interval 85-95%) and at 2 years was 84% (95% confidence interval 77-91%). A compression fracture of the lumbar vertebra was the only grade 3+ treatment-related toxicity. Single fraction SABR is associated with a high rate of freedom from widespread disease, favourable local control and low toxicity comparable with historic multi-fraction SABR reports. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Stereotactic Body Radiotherapy for Oligometastasis: Opportunities for Biology to Guide Clinical Management.

    Science.gov (United States)

    Correa, Rohann J M; Salama, Joseph K; Milano, Michael T; Palma, David A

    2016-01-01

    Oligometastasis refers to a state of limited metastatic disease burden, in which surgical or ablative treatment to all known visible metastases holds promise to extend survival or even effect cure. Stereotactic body radiotherapy is a form of radiation treatment capable of delivering a high biologically effective dose of radiation in a highly conformal manner, with a favorable toxicity profile. Enthusiasm for oligometastasis ablation, however, should be counterbalanced against the limited supporting evidence. It remains unknown to what extent (if any) ablation influences survival or quality of life. Rising clinical equipoise necessitates the completion of randomized controlled trials to assess this, several of which are underway. However, a lack of clear identification criteria or biomarkers to define the oligometastatic state hampers optimal patient selection.This narrative review explores the evolutionary origins of oligometastasis, the steps of the metastatic process at which oligometastases may arise, and the biomolecular mediators of this state. It discusses clinical outcomes with treatment of oligometastases, ongoing trials, and areas of basic and translational research that may lead to novel biomarkers. These efforts should provide a clearer, biomolecular definition of oligometastatic disease and aid in the accurate selection of patients for ablative therapies.

  19. Evaluation of a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Imae, Toshikazu; Takenaka, Shigeharu; Saotome, Naoya

    2016-01-01

    The purpose of this study was to evaluate a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT). VMAT is capable of acquiring respiratory signals derived from projection images and machine parameters based on machine logs during VMAT delivery. Dose distributions were reconstructed from the respiratory signals and machine parameters in the condition where respiratory signals were without division, divided into 4 and 10 phases. The dose distribution of each respiratory phase was calculated on the planned four-dimensional CT (4DCT). Summation of the dose distributions was carried out using deformable image registration (DIR), and cumulative dose distributions were compared with those of the corresponding plans. Without division, dose differences between cumulative distribution and plan were not significant. In the condition Where respiratory signals were divided, dose differences were observed over dose in cranial region and under dose in caudal region of planning target volume (PTV). Differences between 4 and 10 phases were not significant. The present method Was feasible for evaluating cumulative dose distribution in VMAT-SBRT using 4DCT and DIR. (author)

  20. Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes

    Directory of Open Access Journals (Sweden)

    King Christopher R

    2011-01-01

    Full Text Available Abstract Purpose Hypofractionated, stereotactic body radiotherapy (SBRT is an emerging treatment approach for prostate cancer. We present the outcomes for low-risk prostate cancer patients with a median follow-up of 5 years after SBRT. Method and Materials Between Dec. 2003 and Dec. 2005, a pooled cohort of 41 consecutive patients from Stanford, CA and Naples, FL received SBRT with CyberKnife for clinically localized, low-risk prostate cancer. Prescribed dose was 35-36.25 Gy in five fractions. No patient received hormone therapy. Kaplan-Meier biochemical progression-free survival (defined using the Phoenix method and RTOG toxicity outcomes were assessed. Results At a median follow-up of 5 years, the biochemical progression-free survival was 93% (95% CI = 84.7% to 100%. Acute side effects resolved within 1-3 months of treatment completion. There were no grade 4 toxicities. No late grade 3 rectal toxicity occurred, and only one late grade 3 genitourinary toxicity occurred following repeated urologic instrumentation. Conclusion Five-year results of SBRT for localized prostate cancer demonstrate the efficacy and safety of shorter courses of high dose per fraction radiation delivered with SBRT technique. Ongoing clinical trials are underway to further explore this treatment approach.

  1. Similar-Case-Based Optimization of Beam Arrangements in Stereotactic Body Radiotherapy for Assisting Treatment Planners

    Directory of Open Access Journals (Sweden)

    Taiki Magome

    2013-01-01

    Full Text Available Objective. To develop a similar-case-based optimization method for beam arrangements in lung stereotactic body radiotherapy (SBRT to assist treatment planners. Methods. First, cases that are similar to an objective case were automatically selected based on geometrical features related to a planning target volume (PTV location, PTV shape, lung size, and spinal cord position. Second, initial beam arrangements were determined by registration of similar cases with the objective case using a linear registration technique. Finally, beam directions of the objective case were locally optimized based on the cost function, which takes into account the radiation absorption in normal tissues and organs at risk. The proposed method was evaluated with 10 test cases and a treatment planning database including 81 cases, by using 11 planning evaluation indices such as tumor control probability and normal tissue complication probability (NTCP. Results. The procedure for the local optimization of beam arrangements improved the quality of treatment plans with significant differences (P<0.05 in the homogeneity index and conformity index for the PTV, V10, V20, mean dose, and NTCP for the lung. Conclusion. The proposed method could be usable as a computer-aided treatment planning tool for the determination of beam arrangements in SBRT.

  2. Chest Wall Toxicity After Stereotactic Body Radiotherapy for Malignant Lesions of the Lung and Liver

    International Nuclear Information System (INIS)

    Andolino, David L.; Forquer, Jeffrey A.; Henderson, Mark A.; Barriger, Robert B.; Shapiro, Ronald H.; Brabham, Jeffrey G.; Johnstone, Peter A.S.; Cardenes, Higinia R.; Fakiris, Achilles J.

    2011-01-01

    Purpose: To quantify the frequency of rib fracture and chest wall (CW) pain and identify the dose-volume parameters that predict CW toxicity after stereotactic body radiotherapy (SBRT). Methods and Materials: The records of patients treated with SBRT between 2000 and 2008 were reviewed, and toxicity was scored according to Common Terminology Criteria for Adverse Events v3.0 for pain and rib fracture. Dosimetric data for CW and rib were analyzed and related to the frequency of toxicity. The risks of CW toxicity were then further characterized according to the median effective concentration (EC 50 ) dose-response model. Results: A total of 347 lesions were treated with a median follow-up of 19 months. Frequency of Grade I and higher CW pain and/or fracture for CW vs. non-CW lesions was 21% vs. 4%, respectively (p 2 > 0.9). According to the EC 50 model, 5 cc and 15 cc of CW receiving 40 Gy predict a 10% and 30% risk of CW toxicity, respectively. Conclusion: Adequate tumor coverage remains the primary objective when treating lung or liver lesions with SBRT. To minimize toxicity when treating lesions in close proximity to the CW, Dmax of the CW and/or ribs should remain <50 Gy, and <5 cc of CW should receive ≥40 Gy.

  3. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-01-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1–2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85–6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins.

  4. Clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy for lung tumors.

    Science.gov (United States)

    Asai, Kaori; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Sasaki, Tomonari; Matsuo, Yoshio; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Shinoto, Makoto; Matsumoto, Keiji; Hirata, Hidenari; Honda, Hiroshi

    2015-12-01

    We retrospectively investigated the clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy (SBRT) for lung tumors. Between April 2003 and July 2012, 473 patients with lung tumors were treated with SBRT. We identified 12 patients (2.5 %) with pneumothorax caused by SBRT, and evaluated the clinical features of pneumothorax. All of the tumors were primary lung cancers. The severity of radiation pneumonitis was grade 1 in 10 patients and grade 2 in two patients. Nine patients had emphysema. The planning target volume and pleura overlapped in 11 patients, and the tumors were attached to the pleura in 7 patients. Rib fractures were observed in three patients before or at the same time as the diagnosis of pneumothorax. The median time to onset of pneumothorax after SBRT was 18.5 months (4-84 months). The severity of pneumothorax was grade 1 in 11 patients and grade 3 in one patient. Although pneumothorax was a relatively rare late adverse effect after SBRT, some patients demonstrated pneumothorax after SBRT for peripheral lung tumors. Although most pneumothorax was generally tolerable and self-limiting, careful follow-up is needed.

  5. Stereotactic Body Radiotherapy for Metastatic Lung Cancer as Oligo-Recurrence: An Analysis of 42 Cases

    Directory of Open Access Journals (Sweden)

    Wataru Takahashi

    2012-01-01

    Full Text Available Purpose. To investigate the outcome and toxicity of stereotactic body radiotherapy (SBRT in patients with oligo-recurrence cancer in the lung (ORCL. Methods and Materials. A retrospective review of 42 patients with ORCL who underwent SBRT in our two hospitals was conducted. We evaluated the outcome and adverse effects after SBRT for ORCL. Results. All patients finished their SBRT course without interruptions of toxicity reasons. The median follow-up period was 20 months (range, 1–90 months. The 2-year local control rate and overall survival were 87% (95% CI, 75–99% and 65% (95% CI, 48–82%. As for prognostic factor, the OS of patients with a short disease-free interval (DFI months, between the initial therapy and SBRT for ORCL, was significantly worse than the OS of long DFI months (. The most commonly observed late effect was radiation pneumonitis. One patient had grade 4 gastrointestinal toxicity (perforation of gastric tube. No other ≧ grade 3 acute and late adverse events occurred. There were no treatment-related deaths during this study. Conclusions. In patients with ORCL, radical treatment with SBRT is safe and provides a chance for long-term survival by offering favorable local control.

  6. Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongbao [Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing (China); Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Hoisak, Jeremy D.P.; Li, Nan; Jiang, Carrie [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Tian, Zhen [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Gautier, Quentin; Zarepisheh, Masoud [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Wu, Zhaoxia; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing (China); Jia, Xun [Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of California San Diego, La Jolla, CA (United States); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); and others

    2015-01-01

    Stereotactic body radiotherapy (SBRT) shows promise in unresectable pancreatic cancer, though this treatment modality has high rates of normal tissue toxicity. This study explores the dosimetric utility of daily adaptive re-planning with pancreas SBRT. We used a previously developed supercomputing online re-planning environment (SCORE) to re-plan 10 patients with pancreas SBRT. Tumor and normal tissue contours were deformed from treatment planning computed tomographies (CTs) and transferred to daily cone-beam CT (CBCT) scans before re-optimizing each daily treatment plan. We compared the intended radiation dose, the actual radiation dose, and the optimized radiation dose for the pancreas tumor planning target volume (PTV) and the duodenum. Treatment re-optimization improved coverage of the PTV and reduced dose to the duodenum. Within the PTV, the actual hot spot (volume receiving 110% of the prescription dose) decreased from 4.5% to 0.5% after daily adaptive re-planning. Within the duodenum, the volume receiving the prescription dose decreased from 0.9% to 0.3% after re-planning. It is noteworthy that variation in the amount of air within a patient's stomach substantially changed dose to the PTV. Adaptive re-planning with pancreas SBRT has the ability to improve dose to the tumor and decrease dose to the nearby duodenum, thereby reducing the risk of toxicity.

  7. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    International Nuclear Information System (INIS)

    Welsh, James; Amini, Arya; Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt; Soh, Hendrick; Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing; Bluett, Jaques; Mohan, Radhe; Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y.

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V 20 , V 30 , or V 40 ) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within 20 was 364.0 cm 3 and 160.0 cm 3 (p 30 was 144.6 cm 3 vs 77.0 cm 3 (p = 0.0012), V 35 was 93.9 cm 3 vs 57.9 cm 3 (p = 0.005), V 40 was 66.5 cm 3 vs 45.4 cm 3 (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures

  8. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    Science.gov (United States)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes

  9. Metastatic tumor of thoracic and lumbar spine: prospective study comparing the surgery and radiotherapy vs external immobilization with radiotherapy; Metastases do segmento toracico e lombar da coluna vertebral: estudo prospectivo comparativo entre o tratamento cirurgico e radioterapico com a imobilizacao externa e radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Falavigna, Asdrubal; Ioppi, Ana Elisa Empinotti; Grasselli, Juliana [Universidade de Caxias do Sul, RS (Brazil). Faculdade de Medicina]. E-mail: asdrubal@doctor.com; Righesso Neto, Orlando [Faculdade Federal de Ciencias Medicas da Santa Casa de Sao Paulo, SP (Brazil)

    2007-09-15

    Bone metastases at the thoracic and lumbar segment of the spine are usually presented with painful sensation and medullar compression. The treatment is based on the clinical and neurological conditions of the patient and the degree of tumor invasion. In the present study, 32 patients with spinal metastasis of thoracic and lumbar segment were prospectively analyzed. These patients were treated by decompression and internal stabilization followed by radiotherapy or irradiation with external immobilization. The election of the groups was in accordance with the tumor radiotherapy sensitivity, clinical conditions, spinal stability, medullar or nerve compression and patient's decision. The Frankel scale and pain visual test were applied at the moment of diagnosis and after 1 and 6 months. The surgical group had better results with preserving the ambulation longer and significant reduction of pain.(author)

  10. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  11. Pattern of Progression after Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Nodal Recurrences.

    Science.gov (United States)

    Ost, P; Jereczek-Fossa, B A; Van As, N; Zilli, T; Tree, A; Henderson, D; Orecchia, R; Casamassima, F; Surgo, A; Miralbell, R; De Meerleer, G

    2016-09-01

    To report the relapse pattern of stereotactic body radiotherapy (SBRT) for oligorecurrent nodal prostate cancer (PCa). PCa patients with ≤3 lymph nodes (N1/M1a) at the time of recurrence were treated with SBRT. SBRT was defined as a radiotherapy dose of at least 5 Gy per fraction to a biological effective dose of at least 80 Gy to all metastatic sites. Distant progression-free survival was defined as the time interval between the first day of SBRT and appearance of new metastatic lesions, outside the high-dose region. Relapses after SBRT were recorded and compared with the initially treated site. Secondary end points were local control, time to palliative androgen deprivation therapy and toxicity scored using the Common Terminology Criteria for Adverse Events v4.0. Overall, 89 metastases were treated in 72 patients. The median distant progression-free survival was 21 months (95% confidence interval 16-25 months) with 88% of patients having ≤3 metastases at the time of progression. The median time from first SBRT to the start of palliative androgen deprivation therapy was 44 months (95% confidence interval 17-70 months). Most relapses (68%) occurred in nodal regions. Relapses after pelvic nodal SBRT (n = 36) were located in the pelvis (n = 14), retroperitoneum (n = 1), pelvis and retroperitoneum (n = 8) or in non-nodal regions (n = 13). Relapses after SBRT for extrapelvic nodes (n = 5) were located in the pelvis (n = 1) or the pelvis and retroperitoneum (n = 4). Late grade 1 and 2 toxicity was observed in 17% (n = 12) and 4% of patients (n = 3). SBRT for oligometastatic PCa nodal recurrences is safe. Most subsequent relapses are again nodal and oligometastatic. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  13. Case report 357: Chordoma of the fourth lumbar vertebra metastasizing to the thoracic spine and ribs

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahab, I.F.; Zwass, A.; O' Leary, P.F.; Steiner, G.C.

    1986-03-01

    In summary a fascinating case is presented in a 54-year-old man who developed a chordoma of the fourth lumbar vertebra which was treated by radiotherapy, with good results. The man remained asymptomatic relatively for several years and then presented with recurrence of back pain and neurological deficits. Plain films, CT and myelography showed considerable destruction of the body of L4 with a sclerotic pattern suggesting the effects of previous radiotherapy. A large paraspinal tissue mass extending into the spinal canal was present. Most interestingly the patient developed metastatic disease in the thoracic spine and ribs but no metastases other than in the skeleton. (orig./SHA).

  14. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Panje, Cedric; Andratschke, Nikolaus; Guckenberger, Matthias; Brunner, Thomas B.; Niyazi, Maximilian

    2016-01-01

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer. A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation. Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities. SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT. (orig.) [de

  15. Stereotactic body radiotherapy for lung metastases as oligo-recurrence: a single institutional study.

    Science.gov (United States)

    Aoki, Masahiko; Hatayama, Yoshiomi; Kawaguchi, Hideo; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Miura, Hiroyuki; Ono, Shuichi; Takai, Yoshihiro

    2016-01-01

    The purpose of this study was to investigate clinical outcomes following stereotactic body radiotherapy (SBRT) for lung metastases as oligo-recurrence. From May 2003 to June 2014, records for 66 patients with 76 oligo-recurrences in the lungs treated with SBRT were retrospectively reviewed. Oligo-recurrence primary sites and patient numbers were as follows: lungs, 31; colorectal, 13; head and neck, 10; esophagus, 3; uterus, 3; and others, 6. The median SBRT dose was 50 Gy (range, 45-60 Gy) administered in a median of 5 (range, 5-9) fractions. All patients received SBRT, with no acute toxicity. Surviving patients had a median follow-up time of 36.5 months. The 3-year rates of local control, overall survival and disease-free survival were 90.6%, 76.0% and 53.7%, respectively. Longer disease-free interval from initial treatment to SBRT, and non-colorectal cancer were both associated with favorable outcomes. Disease progression after SBRT occurred in 31 patients, most with distant metastases (n = 24) [among whom, 87.5% (n = 21) had new lung metastases]. Among these 21 patients, 12 were judged as having a second oligo-recurrence. Additional SBRT was performed for these 12 patients, and all 12 tumors were controlled without disease progression. Three patients (4.5%) developed Grade 2 radiation pneumonitis. No other late adverse events of Grade ≥2 were identified. Thus, SBRT for oligo-recurrence achieved acceptable tumor control, with additional SBRT also effective for selected patients with a second oligo-recurrence after primary SBRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. Hypofractionated stereotactic body radiotherapy in low- and intermediate-risk prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hun Jung; Phak, Jeong Hoon; Kim, Woo Chul [Dept. of Radiation Oncology, Inha University Hospital, Inha University School of Medicine, Incheon (Korea, Republic of)

    2016-12-15

    Stereotactic body radiotherapy (SBRT) takes advantage of low α/β ratio of prostate cancer to deliver a large dose in few fractions. We examined clinical outcomes of SBRT using CyberKnife for the treatment of low- and intermediate-risk prostate cancer. This study was based on a retrospective analysis of the 33 patients treated with SBRT using CyberKnife for localized prostate cancer (27.3% in low-risk and 72.7% in intermediate-risk). Total dose of 36.25 Gy in 5 fractions of 7.25 Gy were administered. The acute and late toxicities were recorded using the Radiation Therapy Oncology Group scale. Prostate-specific antigen (PSA) response was monitored. Thirty-three patients with a median 51 months (range, 6 to 71 months) follow-up were analyzed. There was no biochemical failure. Median PSA nadir was 0.27 ng/mL at median 33 months and PSA bounce occurred in 30.3% (n = 10) of patients at median at median 10.5 months after SBRT. No grade 3 acute toxicity was noted. The 18.2% of the patients had acute grade 2 genitourinary (GU) toxicities and 21.2% had acute grade 2 gastrointestinal (GI) toxicities. After follow-up of 2 months, most complications had returned to baseline. There was no grade 3 late GU and GI toxicity. Our experience with SBRT using CyberKnife in low- and intermediate-risk prostate cancer demonstrates favorable efficacy and toxicity. Further studies with more patients and longer follow-up duration are required.

  17. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy.

    Science.gov (United States)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-06-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1-2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85-6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins. © 2016 The Royal Australian and New Zealand College of Radiologists.

  18. Surgery or stereotactic body radiotherapy for elderly stage I lung cancer? A propensity score matching analysis.

    Science.gov (United States)

    Miyazaki, Takuro; Yamazaki, Takuya; Nakamura, Daisuke; Sato, Shuntaro; Yamasaki, Naoya; Tsuchiya, Tomoshi; Matsumoto, Keitaro; Kamohara, Ryotaro; Hatachi, Go; Nagayasu, Takeshi

    2017-12-01

    The aim of this study was to compare the outcomes of surgery and stereotactic body radiotherapy (SBRT) for elderly clinical stage I non-small cell lung cancer (NSCLC) patients. Patients ≥80 years of age with clinical stage I NSCLC between August 2008 and December 2014 were treated either surgery or SBRT. Propensity score matching was performed to reduce bias in various clinicopathological factors. Surgery was performed in 57 cases and SBRT in 41 cases. In the surgery group, the operations included 34 lobectomies and 23 sublobar resections. In the SBRT group, 27 cases were given 48 Gy in 4 fractions, and 14 were given 60 Gy in 10 fractions. Similar characteristics were identified in age (82 years), gender (male:female ratio 2:1), tumor size (2.2 cm), carcinoembryonic antigen (3.6 ng/ml), Charlson comorbidity index (1), Glasgow prognostic scale (0), and forced expiratory volume in 1 s (1.7 L) after matching. Before matching, the 5-year overall survival (OS) in surgery (68.3%) was significantly better than that in SBRT (47.4%, p = 0.02), and the 5-year disease-specific survival (DSS) (94.1%, 78.2%, p = 0.17) was not significantly different between the groups. The difference in the 5-year OS became non-significant between the matched pairs (57.0%, 49.1%, p = 0.56). The outcomes of surgery and SBRT for elderly patients with the early stage NSCLC were roughly the same.

  19. Adverse effect of excess body weight on survival in cervical cancer patients after surgery and radiotherapy

    International Nuclear Information System (INIS)

    Choi, Yunseon; Ahn, Ki Jung; Park, Sung Kwang; Cho, Heung Lae; Lee, Ji Young

    2017-01-01

    This study aimed to assess the effects of body mass index (BMI) on survival in cervical cancer patients who had undergone surgery and radiotherapy (RT). We retrospectively reviewed the medical records of 70 cervical cancer patients who underwent surgery and RT from 2007 to 2012. Among them, 40 patients (57.1%) had pelvic lymph node metastases at the time of diagnosis. Sixty-seven patients (95.7%) had received chemotherapy. All patients had undergone surgery and postoperative RT. Median BMI of patients was 22.8 kg/m2 (range, 17.7 to 35.9 kg/m2). The median duration of follow-up was 52.3 months (range, 16 to 107 months). Twenty-four patients (34.3%) showed recurrence. Local failure, regional lymph nodal failure, and distant failure occurred in 4 (5.7%), 6 (8.6%), and 17 (24.3%) patients, respectively. The 5-year actuarial pelvic control rate was 83.4%. The 5-year cancer-specific survival (CSS) and disease-free survival (DFS) rates were 85.1% and 65.0%, respectively. The presence of pelvic lymph node metastases (n = 30) and being overweight or obese (n = 34, BMI ≥ 23 kg/m2) were poor prognostic factors for CSS (p = 0.003 and p = 0.045, respectively). Of these, pelvic lymph node metastasis was an independent prognostic factor (p = 0.030) for CSS. Overweight or obese cervical cancer patients showed poorer survival outcomes than normal weight or underweight patients. Weight control seems to be important in cervical cancer patients to improve clinical outcomes

  20. Multicenter results of stereotactic body radiotherapy (SBRT) for non-resectable primary liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Rafael A.; Rojas, Daniel; Sanabria, Juan R. [Dept. of Surgery, Univ. Hospitals-Case Medical Center, Cleveland, OH (United States)], email: juan.sanabria@uhhospitals.org [and others

    2012-05-15

    Background. An excess of 100 000 individuals are diagnosed with primary liver tumors every year in USA but less than 20% of those patients are amenable to definitive surgical management due to advanced local disease or comorbidities. Local therapies to arrest tumor growth have limited response and have shown no improvement on patient survival. Stereotactic body radiotherapy (SBRT) has emerged as an alternative local ablative therapy. The purpose of this study was to evaluate the tumor response to SBRT in a combined multicenter database. Study design. Patients with advanced hepatocellular carcinoma (HCC, n = 21) or intrahepatic cholangiocarcinoma (ICC, n = 11) treated with SBRT from four Academic Medical Centers were entered into a common database. Statistical analyses were performed for freedom from local progression (FFLP) and patient survival. Results. The overall FFLP for advanced HCC was 63% at a median follow-up of 12.9 months. Median tumor volume decreased from 334.2 to 135 cm{sup 3} (p < 0.004). The median time to local progression was 6.3 months. The 1- and 2-years overall survival rates were 87% and 55%, respectively. Patients with ICC had an overall FFLP of 55.5% at a median follow-up of 7.8 months. The median time to local progression was 4.2 months and the six-month and one-year overall survival rates were 75% and 45%, respectively. The incidence of grade 1-2 toxicities, mostly nausea and fatigue, was 39.5%. Grade 3 and 4 toxicities were present in two and one patients, respectively. Conclusion. Higher rates of FFLP were achieved by SBRT in the treatment of primary liver malignancies with low toxicity.

  1. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    Science.gov (United States)

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  2. Stereotactic body radiotherapy in the treatment of Pancreatic Adenocarcinoma in elderly patients

    International Nuclear Information System (INIS)

    Kim, Carolyn H; Ling, Diane C; Wegner, Rodney E; Flickinger, John C; Heron, Dwight E; Zeh, Herbert; Moser, Arthur J; Burton, Steven A

    2013-01-01

    Treatment of pancreatic adenocarcinoma in the elderly is often complicated by comorbidities that preclude surgery, chemotherapy and/or conventional external beam radiation therapy (EBRT). Stereotactic body radiotherapy (SBRT) has thus garnered interest in this setting. A retrospective review of 26 patients of age ≥ 80 with pancreatic adenocarcinoma treated with definitive SBRT+/-chemotherapy from 2007–2011 was performed. Twenty-seven percent of patients were stage I, 38% were stage II, 27% were stage III and 8% were stage IV. Patients most commonly received 24 Gy/1 fraction or 30-36 Gy/3 fractions. Kaplan-Meier was used to estimate overall survival (OS), local control (LC), cause specific survival (CSS) and freedom-from-metastatic disease (FFMD). The median age was 86 (range 80–91), and median follow-up was 11.6 months (3.5-24.6). The median planning target volume was 21.48 cm 3 (6.1-85.09). Median OS was 7.6 months with 6/12 month OS rates of 65.4%/34.6%, respectively. Median LC was 11.5 months, 6-month and 12-month actuarial LC rates were 60.1% and 41.2%, respectively. There were no independent predictors for LC, but there was a trend for improved LC with prescription dose greater than 20 Gy (p = 0.063). Median CSS was 6.3 months, and 6-month and 12-month actuarial CSS were 53.8% and 23.1%, respectively. Median FFMD was 8.4 months, and 6-month and 12-month actuarial rates were 62.0% and 41.4%, respectively. Nine patients (47%) had local failures, 11 (58%) had distant metastasis, and 7 (37%) had both. There were no acute or late grade 3+ toxicities. Definitive SBRT is feasible, safe and effective in elderly patients who have unresectable disease, have comorbidities precluding surgery or decline surgery

  3. Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney

    International Nuclear Information System (INIS)

    Svedman, Christer; Sandstroem, P.; Wersaell, Peter; Karlsson, Kristin; Rutkowska, Eva; Lax, Ingmar; Blomgren, H.

    2008-01-01

    Background. About 2% of patients with a carcinoma in one kidney develop either metastases or a new primary tumor in the contralateral kidney. Often, renal cancers progress rapidly at peripheral sites and a metastasis to the second kidney may not be the patient's main problem. However, when an initial renal cancer is more indolent yet spreads to the formerly unaffected kidney or a new primary tumor forms there, local treatment may be needed. Stereotactic body radiotherapy (SBRT) has been demonstrated as a valuable treatment option for tumors that cause local symptoms. Presented here is a retrospective analysis of patients in whom SBRT was used to control primary or metastatic renal disease. Patients and methods. Seven patients with a mean age of 64 (44-76) were treated for metastases from a malignant kidney to its contralateral counterpart. Dose/fractionation schedules varied between 10 Gyx3 and 10 Gyx4 depending on target location and size, given within one week. Follow-up times for patients who remained alive were 12, 52 and 66 months and for those who subsequently died were 10, 16, 49 and 70 months. Results. Local control, defined as radiologically stable disease or partial/complete response, was obtained in six of these seven patients and regained after retreatment in the one patient whose lesion progressed. Side effects were generally mild, and in five of the seven patients, kidney function remained unaffected after treatment. In two patients, the creatinine levels remained moderately elevated at approximately 160 μmol/L post treatment. At no time was dialysis required. Conclusion. These results indicate that SBRT is a valuable alternative to surgery and other options for patients with metastases from a cancer-bearing kidney to the remaining kidney and provides local tumor control with satisfactory kidney function

  4. Optimization of stereotactic body radiotherapy treatment planning using a multicriteria optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ghandour, Sarah; Cosinschi, Adrien; Mazouni, Zohra; Pachoud, Marc; Matzinger, Oscar [Riviera-Chablais Hospital, Vevey (Switzerland). Cancer Center, Radiotherapy Dept.

    2016-07-01

    To provide high-quality and efficient dosimetric planning for various types of stereotactic body radiotherapy (SBRT) for tumor treatment using a multicriteria optimization (MCO) technique fine-tuned with direct machine parameter optimization (DMPO). Eighteen patients with lung (n = 11), liver (n = 5) or adrenal cell cancer (n = 2) were treated using SBRT in our clinic between December 2014 and June 2015. Plans were generated using the RayStation trademark Treatment Planning System (TPS) with the VMAT technique. Optimal deliverable SBRT plans were first generated using an MCO algorithm to find a well-balanced tradeoff between tumor control and normal tissue sparing in an efficient treatment planning time. Then, the deliverable plan was post-processed using the MCO solution as the starting point for the DMPO algorithm to improve the dose gradient around the planning target volume (PTV) while maintaining the clinician's priorities. The dosimetric quality of the plans was evaluated using dose-volume histogram (DVH) parameters, which account for target coverage and the sparing of healthy tissue, as well as the CI100 and CI50 conformity indexes. Using a combination of the MCO and DMPO algorithms showed that the treatment plans were clinically optimal and conformed to all organ risk dose volume constraints reported in the literature, with a computation time of approximately one hour. The coverage of the PTV (D99% and D95%) and sparing of organs at risk (OAR) were similar between the MCO and MCO + DMPO plans, with no significant differences (p > 0.05) for all the SBRT plans. The average CI100 and CI50 values using MCO + DMPO were significantly better than those with MCO alone (p < 0.05). The MCO technique allows for convergence on an optimal solution for SBRT within an efficient planning time. The combination of the MCO and DMPO techniques yields a better dose gradient, especially for lung tumors.

  5. Adverse effect of excess body weight on survival in cervical cancer patients after surgery and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunseon; Ahn, Ki Jung; Park, Sung Kwang; Cho, Heung Lae; Lee, Ji Young [Inje University Busan Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2017-03-15

    This study aimed to assess the effects of body mass index (BMI) on survival in cervical cancer patients who had undergone surgery and radiotherapy (RT). We retrospectively reviewed the medical records of 70 cervical cancer patients who underwent surgery and RT from 2007 to 2012. Among them, 40 patients (57.1%) had pelvic lymph node metastases at the time of diagnosis. Sixty-seven patients (95.7%) had received chemotherapy. All patients had undergone surgery and postoperative RT. Median BMI of patients was 22.8 kg/m2 (range, 17.7 to 35.9 kg/m2). The median duration of follow-up was 52.3 months (range, 16 to 107 months). Twenty-four patients (34.3%) showed recurrence. Local failure, regional lymph nodal failure, and distant failure occurred in 4 (5.7%), 6 (8.6%), and 17 (24.3%) patients, respectively. The 5-year actuarial pelvic control rate was 83.4%. The 5-year cancer-specific survival (CSS) and disease-free survival (DFS) rates were 85.1% and 65.0%, respectively. The presence of pelvic lymph node metastases (n = 30) and being overweight or obese (n = 34, BMI ≥ 23 kg/m2) were poor prognostic factors for CSS (p = 0.003 and p = 0.045, respectively). Of these, pelvic lymph node metastasis was an independent prognostic factor (p = 0.030) for CSS. Overweight or obese cervical cancer patients showed poorer survival outcomes than normal weight or underweight patients. Weight control seems to be important in cervical cancer patients to improve clinical outcomes.

  6. The observation about the change of the body weight for tumor patients and the bearing tumor mice in radiotherapy

    International Nuclear Information System (INIS)

    Wu Dijun; Ju Yongjian; Ning Liyan; Wu Hong; Wang Gaoren; Gao Xuan; Tang Yahong

    2010-01-01

    Objective: To observe the change of the body weight for tumor patients and the bearing tumor mice in radiotherapy. Methods: For 63 tumor patients, the body weight (BW) were measured before and after radiotherapy respectively, and then the change of BW were compared and analyzed with that of 23 healthy volunteers at the median treatment period. Also 45 mice bearing human galactophore tumor cells SK-BR-3 were divided into irradiation and non-irradiation groups, and the change of BW for these two groups were measured and analyzed. Results: The average BW decreases in the irradiation groups' mice but increase in the non-irradiation groups' mice, and the change of BW in these two groups has the statistical significance respectively, also the difference between these two groups has the statistical significance. For the four groups' tumor patients including 63 tumor patients as a whole, the nasopharynx cancer, esophagus cancer and lung cancer, the average BW decreases, but only in nasopharynx cancer and lung cancer groups the statistical significance are found. And at the same period, the BW of healthy volunteers are maintained. Compared change of BW in the four tumor groups with that in the healthy volunteers respectively, except the esophagus cancer group, the statistical significance are found in the other three groups. Conclusion: For tumor patients,perhaps the BW will lose in the period of radiotherapy, so the effect of lose of BW must be cared about. (authors)

  7. Definition of stereotactic body radiotherapy. Principles and practice for the treatment of stage I non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guckenberger, M.; Sauer, O. [University of Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany); Andratschke, N. [University of Rostock, Department of Radiotherapy and Radiation Oncology, Rostock (Germany); Alheit, H. [Distler Radiation Oncology, Bautzen/Pirna (Germany); Holy, R. [RWTH Aachen University, Department of Radiation Oncology, Aachen (Germany); Moustakis, C. [University of Muenster, Department of Radiation Oncology, Muenster (Germany); Nestle, U. [University of Freiburg, Department of Radiation Oncology, Freiburg (Germany)

    2014-01-15

    This report from the Stereotactic Radiotherapy Working Group of the German Society of Radiation Oncology (Deutschen Gesellschaft fuer Radioonkologie, DEGRO) provides a definition of stereotactic body radiotherapy (SBRT) that agrees with that of other international societies. SBRT is defined as a method of external beam radiotherapy (EBRT) that accurately delivers a high irradiation dose to an extracranial target in one or few treatment fractions. Detailed recommendations concerning the principles and practice of SBRT for early stage non-small cell lung cancer (NSCLC) are given. These cover the entire treatment process; from patient selection, staging, treatment planning and delivery to follow-up. SBRT was identified as the method of choice when compared to best supportive care (BSC), conventionally fractionated radiotherapy and radiofrequency ablation. Based on current evidence, SBRT appears to be on a par with sublobar resection and is an effective treatment option in operable patients who refuse lobectomy. (orig.) [German] Die Arbeitsgruppe ''Stereotaktische Radiotherapie'' der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) erarbeitete eine Definition der Koerperstereotaxie (SBRT), die sich an vorhandene internationale Definitionen anlehnt: Die SBRT ist eine Form der perkutanen Strahlentherapie, die mit hoher Praezision eine hohe Bestrahlungsdosis in einer oder wenigen Bestrahlungsfraktionen in einem extrakraniellen Zielvolumen appliziert. Zur Praxis der SBRT beim nichtkleinzelligen Bronchialkarzinom (NSCLC) im fruehen Stadium werden detaillierte Empfehlungen gegeben, die den gesamten Ablauf der Behandlung von der Indikationsstellung, Staging, Behandlungsplanung und Applikation sowie Nachsorge umfassen. Die Koerperstereotaxie wurde als Methode der Wahl im Vergleich zu Best Supportive Care, zur konventionell fraktionierten Strahlentherapie sowie zur Radiofrequenzablation identifiziert. Die Ergebnisse nach SBRT und sublobaerer Resektion

  8. Inspection of the brazilian nuclear regulatory body in the area of radiotherapy. A critical analysis

    International Nuclear Information System (INIS)

    Brito, Ricardo Roberto de Azevedo

    2005-01-01

    The National Commission of Nuclear Energy (CNEN) is responsible in Brazil for the activities of licensing and control of radioactive installations in the radiotherapy medical area. The majority of these activities are developed by CNEN Co-ordination of Radioactive Installations (CORAD). One of the necessary stages for the development of licensing and control activities is the inspection of radiotherapy services (clinics and hospitals). Almost all of these inspections are carried out by CNEN Inst. of Radiation Protection and Dosimetry (IRD), through its Service of Medical Physics in Radiotherapy and Nuclear Medicine (SEFME). This work makes a survey of the main nonconformities found during ten years of inspections in radiotherapy services (1995 - 2004) and analyses the efficiency of these inspections in making the radiotherapy services develop their activities according to the norms in vigour in the country and adopt corrective actions against, at least, the nonconformities evidenced by CNEN inspectors. Additionally, it analyses the possibility of improvement and / or the optimisation of the process, through a procedure able to be unified and controlled, aiming a prompt communication to those involved in the licensing process (SEFME and CORAD) about the attendance by the radiotherapy services to the non-conformity items observed during the inspection. (author)

  9. SU-E-T-97: An Analysis of Knowledge Based Planning for Stereotactic Body Radiation Therapy of the Spine

    International Nuclear Information System (INIS)

    Foy, J; Marsh, R; Owen, D; Matuszak, M

    2015-01-01

    Purpose: Creating high quality SBRT treatment plans for the spine is often tedious and time consuming. In addition, the quality of treatment plans can vary greatly between treatment facilities due to inconsistencies in planning methods. This study investigates the performance of knowledge-based planning (KBP) for spine SBRT. Methods: Treatment plans were created for 28 spine SBRT patients. Each case was planned to meet strict dose objectives and guidelines. After physician and physicist approval, the plans were added to a custom model in a KBP system (RapidPlan, Varian Eclipse v13.5). The model was then trained to be able to predict estimated DVHs and provide starting objective functions for future patients based on both generated and manual objectives. To validate the model, ten additional spine SBRT cases were planned manually as well as using the model objectives. Plans were compared based on planning time and quality (ability to meet the plan objectives, including dose metrics and conformity). Results: The average dose to the spinal cord and the cord PRV differed between the validation and control plans by <0.25% demonstrating iso-toxicity. Six out of 10 validation plans met all dose objectives without the need for modifications, and overall, target dose coverage was increased by about 4.8%. If the validation plans did not meet the dose requirements initially, only 1–2 iterations of modifying the planning parameters were required before an acceptable plan was achieved. While manually created plans usually required 30 minutes to 3 hours to create, KBP can be used to create similar quality plans in 15–20 minutes. Conclusion: KBP for spinal tumors has shown to greatly decrease the amount of time required to achieve high quality treatment plans with minimal human intervention and could feasibly be used to standardize plan quality between institutions. Supported by Varian Medical Systems

  10. Prediction of Chest Wall Toxicity From Lung Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Stephans, Kevin L., E-mail: stephak@ccf.org [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH (United States); Djemil, Toufik; Tendulkar, Rahul D. [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH (United States); Robinson, Cliff G. [Department of Radiation Oncology, Siteman Cancer Center, Washington University, St Louis, MO (United States); Reddy, Chandana A.; Videtic, Gregory M.M. [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH (United States)

    2012-02-01

    Purpose: To determine patient, tumor, and treatment factors related to the development of late chest wall toxicity after lung stereotactic body radiotherapy (SBRT). Methods and Materials: We reviewed a registry of 134 patients treated with lung SBRT to 60 Gy in 3 fractions who had greater than 1 year of clinical follow-up and no history of multiple treatments to the same lobe (n = 48). Patients were treated as per Radiation Therapy Oncology Group Protocol 0236 without specific chest wall avoidance criteria. The chest wall was retrospectively contoured. Thirty-two lesions measured less than 3 cm, and sixteen measured 3 to 5 cm. The median planning target volume was 29 cm{sup 3}. Results: With a median follow-up of 18.8 months, 10 patients had late symptomatic chest wall toxicity (4 Grade 1 and 6 Grade 2) at a median of 8.8 months after SBRT. No patient characteristics (age, diabetes, hypertension, peripheral vascular disease, or body mass index) were predictive for toxicity, whereas there was a trend for continued smoking (p = 0.066; odds ratio [OR], 4.4). Greatest single tumor dimension (p = 0.047; OR, 2.63) and planning target volume (p = 0.040; OR, 1.04) were correlated with toxicity, whereas distance from tumor edge to chest wall and gross tumor volume did not reach statistical significance. Volumes of chest wall receiving 30 Gy (V30) through 70 Gy (V70) were all highly significant, although this correlation weakened for V65 and V70 and maximum chest wall point dose only trended to significance (p = 0.06). On multivariate analysis, tumor volume was no longer correlated with toxicity and only V30 through V60 remained statistically significant. Conclusions: Tumor size and chest wall dosimetry are correlated to late chest wall toxicity. Only chest wall V30 through V60 remained significant on multivariate analysis. Restricting V30 to 30 cm{sup 3} or less and V60 to 3 cm{sup 3} or less should result in a 10% to 15% risk of late chest wall toxicity or lower.

  11. Salvage Stereotactic Body Radiotherapy (SBRT) Following In-Field Failure of Initial SBRT for Spinal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Isabelle; Campbell, Mikki [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Chia-Lin [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Yu, Eugene [Department of Radiology, University Health Network, University of Toronto, Toronto, Ontario (Canada); Cho, B.C. John [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Lee, Young K. [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Fehlings, Michael G. [Department of Radiology, University Health Network, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2015-10-01

    Purpose: We report our experience in salvaging spinal metastases initially irradiated with stereotactic body radiation therapy (SBRT), who subsequently progressed with imaging-confirmed local tumor progression, and were re-irradiated with a salvage second SBRT course to the same level. Methods and Materials: From a prospective database, 56 metastatic spinal segments in 40 patients were identified as having been irradiated with a salvage second SBRT course to the same level. In addition, 24 of 56 (42.9%) segments had initially been irradiated with conventional external beam radiation therapy before the first course of SBRT. Local control (LC) was defined as no progression on magnetic resonance imaging at the treated segment, and calculated according to the competing risk model. Overall survival (OS) was evaluated for each patient treated by use of the Kaplan-Meier method. Results: The median salvage second SBRT total dose and number of fractions was 30 Gy in 4 fractions (range, 20-35 Gy in 2-5 fractions), and for the first course of SBRT was 24 Gy in 2 fractions (range, 20-35 Gy in 1-5 fractions). The median follow-up time after salvage second SBRT was 6.8 months (range, 0.9-39 months), the median OS was 10.0 months, and the 1-year OS rate was 48%. A longer time interval between the first and second SBRT courses predicted for better OS (P=.02). The crude LC was 77% (43/56), the 1-year LC rate was 81%, and the median time to local failure was 3.0 months (range, 2.7-16.7 months). Of the 13 local failures, 85% (11/13) and 46% (6/13) showed progression within the epidural space and paraspinal soft tissues, respectively. Absence of baseline paraspinal disease predicted for better LC (P<.01). No radiation-induced vertebral compression fractures or cases of myelopathy were observed. Conclusion: A second course of spine SBRT, most often with 30 Gy in 4 fractions, for spinal metastases that failed initial SBRT is a feasible and efficacious salvage treatment option.

  12. TH-A-9A-03: Dosimetric Effect of Rotational Errors for Lung Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Lee, J; Kim, H; Park, J; Kim, J; Kim, H; Ye, S

    2014-01-01

    Purpose: To evaluate the dosimetric effects on target volume and organs at risk (OARs) due to roll rotational errors in treatment setup of stereotactic body radiation therapy (SBRT) for lung cancer. Methods: There were a total of 23 volumetric modulated arc therapy (VMAT) plans for lung SBRT examined in this retrospective study. Each CT image of VMAT plans was intentionally rotated by ±1°, ±2°, and ±3° to simulate roll rotational setup errors. The axis of rotation was set at the center of T-spine. The target volume and OARs in the rotated CT images were re-defined by deformable registration of original contours. The dose distributions on each set of rotated images were re-calculated to cover the planning target volume (PTV) with the prescription dose before and after the couch translational correction. The dose-volumetric changes of PTVs and spinal cords were analyzed. Results: The differences in D95% of PTVs by −3°, −2°, −1°, 1°, 2°, and 3° roll rotations before the couch translational correction were on average −11.3±11.4%, −5.46±7.24%, −1.11±1.38% −3.34±3.97%, −9.64±10.3%, and −16.3±14.7%, respectively. After the couch translational correction, those values were −0.195±0.544%, −0.159±0.391%, −0.188±0.262%, −0.310±0.270%, −0.407±0.331%, and −0.433±0.401%, respectively. The maximum dose difference of spinal cord among the 23 plans even after the couch translational correction was 25.9% at −3° rotation. Conclusions: Roll rotational setup errors in lung SBRT significantly influenced the coverage of target volume using VMAT technique. This could be in part compensated by the translational couch correction. However, in spite of the translational correction, the delivered doses to the spinal cord could be more than the calculated doses. Therefore if rotational setup errors exist during lung SBRT using VMAT technique, the rotational correction would rather be considered to prevent over-irradiation of normal

  13. The Association of Fat and Lean Tissue With Whole Body and Spine Bone Mineral Density Is Modified by HIV Status and Sex in Children and Youth.

    Science.gov (United States)

    Jacobson, Denise L; Lindsey, Jane C; Coull, Brent A; Mulligan, Kathleen; Bhagwat, Priya; Aldrovandi, Grace M

    2018-01-01

    HIV-infected (HIV-pos) male children/youth showed lower bone mineral density at sexual maturity than HIV-uninfected (HIV-neg) females. It is not known whether complications of HIV disease, including abnormal body fat distribution, contribute to lower bone accrual in male HIV-pos adolescents. In a cross-sectional study, we evaluated the relationship between body composition (fat and lean mass) and bone mass in HIV-pos and HIV-neg children/youth and determined if it is modified by HIV status and sex. We used generalized estimating equations to simultaneously model the effect of fat/lean mass on multiple bone outcomes, including total body bone mineral density and bone mineral content and spine bone mineral density. We evaluated effect modification by HIV and sex. The analysis cohort consisted of 143 HIV-neg and 236 HIV-pos, of whom 55% were black non-Hispanic and 53% were male. Ages ranged from 7 to children/youth were at Tanner stage 1 and 20% at Tanner 5. Fat mass was more strongly positively correlated with bone mass in HIV-neg than HIV-pos children/youth and these relationships were more evident for total body bone than spine outcomes. Within HIV strata, fat mass and bone were more correlated in female than male children/youth. The relationship between lean mass and bone varied by sex, but not by HIV status. HIV disease diminishes the positive relationship of greater fat mass on bone mass in children/youth. Disruptions in body fat distribution, which are common in HIV disease, may have an impact on bone accretion during pubertal development.

  14. Stereotactic body radiotherapy for centrally located stage I NSCLC. A multicenter analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schanne, Daniel H.; Nestle, Ursula; Grosu, Anca L. [Universitaetsklinik Freiburg, Klinik fuer Strahlenheilkunde, Freiburg (Germany); Allgaeuer, Michael [Barmherzige Brueder, Klinik fuer Strahlentherapie, Regensburg (Germany); Andratschke, Nicolaus; Molls, Michael [TU Muenchen, Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Muenchen (Germany); Appold, Steffen [Universitaetsklinikum Dresden, Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Dresden (Germany); Dieckmann, Ute [Allgemeines Krankenhaus Wien, Univ. Klinik fuer Strahlentherapie, Wien (Austria); Ernst, Iris [Universitaetsklinikum Muenster, Klinik fuer Strahlentherapie, Muenster (Germany); Ganswindt, Ute [LMU Muenchen, Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie, Muenchen (Germany); Holy, Richard [Universitaetsklinikum Aachen, Klinik fuer Strahlentherapie, Aachen (Germany); Nevinny-Stickel, Meinhard [Medizinischen Universitaet Innsbruck, Univ. Klinik fuer Strahlentherapie und Radioonkologie, Innsbruck (Austria); Semrau, Sabine [Universitaetsklinikum Erlangen, Strahlenklinik Erlangen, Erlangen (Germany); Sterzing, Florian [Universitaetsklinikum Heidelberg, Klinik fuer Radioonkologie und Strahlentherapie, Heidelberg (Germany); Wittig, Andrea [Philipps-Universitaet Marburg, Klinik fuer Strahlentherapie und Radioonkologie, Marburg (Germany); Guckenberger, Matthias [Universitaet Wuerzburg, Klinik und Poliklinik fuer Strahlentherapie, Wuerzburg (Germany)

    2014-08-27

    The purpose of this work is to analyze patterns of care and outcome after stereotactic body radiotherapy (SBRT) for centrally located, early-stage, non-small cell lung cancer (NSCLC) and to address the question of potential risk for increased toxicity in this entity. A total of 90 patients with centrally located NSCLC were identified among 613 cases in a database of 13 German and Austrian academic radiotherapy centers. The outcome of centrally located NSCLC was compared to that of cases with peripheral tumor location from the same database. Patients with central tumors most commonly presented with UICC stage IB (50 %), while the majority of peripheral lesions were stage IA (56 %). Average tumor diameters were 3.3 cm (central) and 2.8 cm (peripheral). Staging PET/CT was available for 73 and 74 % of peripheral and central tumors, respectively. Biopsy was performed in 84 % (peripheral) and 88 % (central) of cases. Doses varied significantly between central and peripheral lesions with a median BED{sub 10} of 72 Gy and 84 Gy, respectively (p < 0.001). Fractionation differed as well with medians of 5 (central) and 3 (peripheral) fractions (p < 0.001). In the Kaplan-Meier analysis, 3-year actuarial overall survival was 29 % (central) and 51 % (peripheral; p = 0.004) and freedom from local progression was 52 % (central) and 84 % (peripheral; p < 0.001). Toxicity after treatment of central tumors was low with no grade III/IV and one grade V event. Mortality rates were 0 and 1 % after 30 and 60 days, respectively. Local tumor control in patients treated with SBRT for centrally located, early-stage NSCLC was favorable, provided ablative radiation doses were prescribed. This was, however, not the case in the majority of patients, possibly due to concerns about treatment-related toxicity. Reported toxicity was low, but prospective trials are needed to resolve the existing uncertainties and to establish safe high-dose regimens for this cohort of patients. (orig.) [German] Ziel

  15. The dosimetric impact of implants on the spinal cord dose during stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yazici, Gozde; Sari, Sezin Yuce; Yedekci, Fazli Yagiz; Yucekul, Altug; Birgi, Sumerya Duru; Demirkiran, Gokhan; Gultekin, Melis; Hurmuz, Pervin; Yazici, Muharrem; Ozyigit, Gokhan; Cengiz, Mustafa

    2016-01-01

    The effects of spinal implants on dose distribution have been studied for conformal treatment plans. However, the dosimetric impact of spinal implants in stereotactic body radiotherapy (SBRT) treatments has not been studied in spatial orientation. In this study we evaluated the effect of spinal implants placed in sawbone vertebra models implanted as in vivo instrumentations. Four different spinal implant reconstruction techniques were performed using the standard sawbone lumbar vertebrae model; 1. L2-L4 posterior instrumentation without anterior column reconstruction (PI); 2. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (AIAC); 3. L2-L4 posterior instrumentation, L3 corpectomy, and anterior column reconstruction with a titanium cage (PIAC); 4. L2-L4 anterior instrumentation, L3 corpectomy, and anterior column reconstruction with chest tubes filled with bone cement (AIABc). The target was defined as the spinous process and lamina of the lumbar (L) 3 vertebra. A thermoluminescent dosimeter (TLD, LiF:Mg,Ti) was located on the measurement point anterior to the spinal cord. The prescription dose was 8 Gy and the treatment was administered in a single fraction using a CyberKnife® (Accuray Inc., Sunnyvale, CA, USA). We performed two different treatment plans. In Plan A beam interaction with the rod was not limited. In plan B the rod was considered a structure of avoidance, and interaction between the rod and beam was prevented. TLD measurements were compared with the point dose calculated by the treatment planning system (TPS). In plan A, the difference between TLD measurement and the dose calculated by the TPS was 1.7 %, 2.8 %, and 2.7 % for the sawbone with no implant, PI, and PIAC models, respectively. For the AIAC model the TLD dose was 13.8 % higher than the TPS dose; the difference was 18.6 % for the AIABc model. In plan B for the AIAC and AIABc models, TLD measurement was 2.5 % and 0.9 % higher than the

  16. Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Amini, Arya [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); UC Irvine School of Medicine, Irvine, CA (United States); Ciura, Katherine; Nguyen, Ngoc; Palmer, Matt [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Soh, Hendrick [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Allen, Pamela K.; Paolini, Michael; Liao, Zhongxing [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques; Mohan, Radhe [Department of Radiation Physics, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Cox, James D.; Komaki, Ritsuko; Chang, Joe Y. [Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States)

    2013-01-01

    Stereotactic body radiotherapy (SBRT) can produce excellent local control of several types of solid tumor; however, toxicity to nearby critical structures is a concern. We found previously that in SBRT for lung cancer, the chest wall (CW) volume receiving 20, 30, or 40 Gy (V{sub 20}, V{sub 30}, or V{sub 40}) was linked with the development of neuropathy. Here we sought to determine whether the dosimetric advantages of protons could produce lower CW doses than traditional photon-based SBRT. We searched an institutional database to identify patients treated with photon SBRT for lung cancer with tumors within < 2.5 cm of the CW. We found 260 cases; of these, chronic grade ≥ 2 CW pain was identified in 23 patients. We then selected 10 representative patients from this group and generated proton SBRT treatment plans, using the identical dose of 50 Gy in 4 fractions, and assessed potential differences in CW dose between the 2 plans. The proton SBRT plans reduced the CW doses at all dose levels measured. The median CW V{sub 20} was 364.0 cm{sup 3} and 160.0 cm{sup 3} (p < 0.0001), V{sub 30} was 144.6 cm{sup 3}vs 77.0 cm{sup 3} (p = 0.0012), V{sub 35} was 93.9 cm{sup 3}vs 57.9 cm{sup 3} (p = 0.005), V{sub 40} was 66.5 cm{sup 3}vs 45.4 cm{sup 3} (p = 0.0112), and mean lung dose was 5.9 Gy vs 3.8 Gy (p = 0.0001) for photons and protons, respectively. Coverage of the planning target volume (PTV) was comparable between the 2 sets of plans (96.4% for photons and 97% for protons). From a dosimetric standpoint, proton SBRT can achieve the same coverage of the PTV while significantly reducing the dose to the CW and lung relative to photon SBRT and therefore may be beneficial for the treatment of lesions closer to critical structures.

  17. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer.

    Science.gov (United States)

    Tsuruta, Yusuke; Nakata, Manabu; Nakamura, Mitsuhiro; Matsuo, Yukinori; Higashimura, Kyoji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-01

    To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. The results from AXB and XVMC agreed with measurements within ± 3.0% for the lung-equivalent phantom with a 6 × 6 cm(2) field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ± 3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124-358 s), 66.1 ± 16.0 s (range, 42-94 s), and 6.7 ± 1.1 s (range, 5-9 s) for XVMC, AXB, and AAA, respectively. In the phantom evaluations, AXB and XVMC agreed better with

  18. Stereotactic body radiotherapy for localized prostate cancer: disease control and quality of life at 6 years

    International Nuclear Information System (INIS)

    Katz, Alan J; Santoro, Michael; Diblasio, Fred; Ashley, Richard

    2013-01-01

    Stereotactic body radiotherapy (SBRT) may yield disease control for prostate cancer in a brief, hypofractionated treatment regimen without increasing treatment toxicity. Our report presents a 6-year update from 304 low- (n = 211), intermediate- (n = 81), and high-risk (n = 12) prostate cancer patients who received CyberKnife SBRT. The median PSA at presentation was 5.8 ng/ml. Fifty-seven patients received neoadjuvant hormonal therapy for up to one year. The first 50 patients received a total dose of 35 Gy in 5 fractions of 7 Gy. The subsequent 254 patients received a total dose of 36.25 Gy in 5 fractions of 7.25 Gy. Toxicity was assessed with the Expanded Prostate Cancer Index Composite questionnaire and the Radiation Therapy Oncology Group urinary and rectal toxicity scale. Biochemical failure was assessed using the nadir + 2 definition. No patients experienced Grade III or IV acute complications. Fewer than 5% of patients experienced any acute Grade II urinary or rectal toxicities. Late urinary Grade II complications were observed in 4% of patients treated to 35 Gy and 9% of patients treated to 36.25 Gy. Five (2%) late Grade III urinary toxicities occurred in patients who were treated with 36.25 Gy. Late Grade II rectal complications were observed in 2% of patients treated to 35 Gy and 5% of patients treated to 36.25 Gy. Bowel and urinary quality of life (QOL) scores initially decreased, but later returned to baseline values. An overall decrease of 20% in the sexual QOL score was observed. QOL in each domain was not differentially affected by dose. For patients that were potent prior to treatment, 75% stated that they remained sexually potent. Actuarial 5-year biochemical recurrence-free survival was 97% for low-risk, 90.7% for intermediate-risk, and 74.1% for high-risk patients. PSA fell to a median of 0.12 ng/ml at 5 years; dose did not influence median PSA levels. In this large series with long-term follow-up, we found excellent biochemical control rates and

  19. Sequential hemi-body radiotherapy in advanced multiple myeloma. [Side effects of indicated x-ray therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, J.P.; Bosch, A.; Raich, P.C.

    1979-01-01

    Eleven patients with advanced multiple myeloma refractory to standard chemotherapy were treated with a regimen of sequential hemi-body radiotherapy consisting of 800 rad midplane in a single dose to each half. 9/10 patients experienced significant relief of skeletal pain and there were 5/11 objective tumor responses with one complete remission. Treatment-related morbidity was significant and consisted primarily of nausea and emesis, bone marrow suppression, and pneumonitis. This therapy is helpful in the management of advanced myeloma, and should be studied earlier in the course of the disease.

  20. Incidence and Predictive Factors of Pain Flare After Spine Stereotactic Body Radiation Therapy: Secondary Analysis of Phase 1/2 Trials

    International Nuclear Information System (INIS)

    Pan, Hubert Y.; Allen, Pamela K.; Wang, Xin S.; Chang, Eric L.; Rhines, Laurence D.; Tatsui, Claudio E.; Amini, Behrang; Wang, Xin A.; Tannir, Nizar M.; Brown, Paul D.; Ghia, Amol J.

    2014-01-01

    Purpose/Objective(s): To perform a secondary analysis of institutional prospective spine stereotactic body radiation therapy (SBRT) trials to investigate posttreatment acute pain flare. Methods and Materials: Medical records for enrolled patients were reviewed. Study protocol included baseline and follow-up surveys with pain assessment by Brief Pain Inventory and documentation of pain medications. Patients were considered evaluable for pain flare if clinical note or follow-up survey was completed within 2 weeks of SBRT. Pain flare was defined as a clinical note indicating increased pain at the treated site or survey showing a 2-point increase in worst pain score, a 25% increase in analgesic intake, or the initiation of steroids. Binary logistic regression was used to determine predictive factors for pain flare occurrence. Results: Of the 210 enrolled patients, 195 (93%) were evaluable for pain flare, including 172 (88%) clinically, 135 (69%) by survey, and 112 (57%) by both methods. Of evaluable patients, 61 (31%) had undergone prior surgery, 57 (29%) had received prior radiation, and 34 (17%) took steroids during treatment, mostly for prior conditions. Pain flare was observed in 44 patients (23%). Median time to pain flare was 5 days (range, 0-20 days) after the start of treatment. On multivariate analysis, the only independent factor associated with pain flare was the number of treatment fractions (odds ratio = 0.66, P=.004). Age, sex, performance status, spine location, number of treated vertebrae, prior radiation, prior surgery, primary tumor histology, baseline pain score, and steroid use were not significant. Conclusions: Acute pain flare after spine SBRT is a relatively common event, for which patients should be counseled. Additional study is needed to determine whether prophylactic or symptomatic intervention is preferred

  1. Incidence and Predictive Factors of Pain Flare After Spine Stereotactic Body Radiation Therapy: Secondary Analysis of Phase 1/2 Trials

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hubert Y.; Allen, Pamela K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Wang, Xin S. [Department of Symptom Research, University of Texas MD Anderson Cancer, Houston, Texas (United States); Chang, Eric L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Department of Radiation Oncology, USC Norris Cancer Center, Los Angeles, California (United States); Rhines, Laurence D.; Tatsui, Claudio E. [Department of Neurosurgery, University of Texas MD Anderson Cancer, Houston, Texas (United States); Amini, Behrang [Department of Diagnostic Radiology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Wang, Xin A. [Department of Radiation Physics, University of Texas MD Anderson Cancer, Houston, Texas (United States); Tannir, Nizar M. [Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States); Ghia, Amol J., E-mail: AJGhia@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer, Houston, Texas (United States)

    2014-11-15

    Purpose/Objective(s): To perform a secondary analysis of institutional prospective spine stereotactic body radiation therapy (SBRT) trials to investigate posttreatment acute pain flare. Methods and Materials: Medical records for enrolled patients were reviewed. Study protocol included baseline and follow-up surveys with pain assessment by Brief Pain Inventory and documentation of pain medications. Patients were considered evaluable for pain flare if clinical note or follow-up survey was completed within 2 weeks of SBRT. Pain flare was defined as a clinical note indicating increased pain at the treated site or survey showing a 2-point increase in worst pain score, a 25% increase in analgesic intake, or the initiation of steroids. Binary logistic regression was used to determine predictive factors for pain flare occurrence. Results: Of the 210 enrolled patients, 195 (93%) were evaluable for pain flare, including 172 (88%) clinically, 135 (69%) by survey, and 112 (57%) by both methods. Of evaluable patients, 61 (31%) had undergone prior surgery, 57 (29%) had received prior radiation, and 34 (17%) took steroids during treatment, mostly for prior conditions. Pain flare was observed in 44 patients (23%). Median time to pain flare was 5 days (range, 0-20 days) after the start of treatment. On multivariate analysis, the only independent factor associated with pain flare was the number of treatment fractions (odds ratio = 0.66, P=.004). Age, sex, performance status, spine location, number of treated vertebrae, prior radiation, prior surgery, primary tumor histology, baseline pain score, and steroid use were not significant. Conclusions: Acute pain flare after spine SBRT is a relatively common event, for which patients should be counseled. Additional study is needed to determine whether prophylactic or symptomatic intervention is preferred.

  2. Pain Flare Is a Common Adverse Event in Steroid-Naïve Patients After Spine Stereotactic Body Radiation Therapy: A Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Andrew [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Zeng, Liang; Zhang, Liying; Lochray, Fiona; Korol, Renee; Loblaw, Andrew; Chow, Edward [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada)

    2013-07-15

    Purpose: To determine the incidence of pain flare after spine stereotactic body radiation therapy (SBRT) in steroid-naïve patients and identify predictive factors. Methods and Materials: Forty-one patients were treated with spine SBRT between February 2010 and April 2012. All patients had their pain assessed at baseline, during, and for 10 days after SBRT using the Brief Pain Inventory. All pain medications were recorded daily and narcotics converted to an oral morphine equivalent dose. Pain flare was defined as a 2-point increase in worst pain score as compared with baseline with no decrease in analgesic intake, a 25% increase in analgesic intake as compared with baseline with no decrease in worst pain score, or if corticosteroids were initiated at any point during or after SBRT because of pain. Results: The median age and Karnofsky performance status were 57.5 years (range, 27-80 years) and 80 (range, 50-100), respectively. Eighteen patients were treated with 20-24 Gy in a single fraction, whereas 23 patients were treated with 24-35 Gy in 2-5 fractions. Pain flare was observed in 68.3% of patients (28 of 41), most commonly on day 1 after SBRT (29%, 8 of 28). Multivariate analysis identified a higher Karnofsky performance status (P=.02) and cervical (P=.049) or lumbar (P=.02) locations as significant predictors of pain flare. In those rescued with dexamethasone, a significant decrease in pain scores over time was subsequently observed (P<.0001). Conclusions: Pain flare is a common adverse event after spine SBRT and occurs most commonly the day after treatment completion. Patients should be appropriately consented for this adverse event.

  3. A multi-national report on methods for institutional credentialing for spine radiosurgery

    International Nuclear Information System (INIS)

    Gerszten, Peter C; Shin, John H; Winey, Brian; Oh, Kevin; Sweeney, Reinhart A; Guckenberger, Matthias; Sahgal, Arjun; Sheehan, Jason P; Kersh, Ronald; Chen, Stephanie; Flickinger, John C; Quader, Mubina; Fahim, Daniel; Grills, Inga

    2013-01-01

    Stereotactic body radiotherapy and radiosurgery are rapidly emerging treatment options for both malignant and benign spine tumors. Proper institutional credentialing by physicians and medical physicists as well as other personnel is important for the safe and effective adoption of spine radiosurgery. This article describes the methods for institutional credentialing for spine radiosurgery at seven highly experienced international institutions. All institutions (n = 7) are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided spine radiosurgery. A questionnaire consisting of 24 items covering various aspects of institutional credentialing for spine radiosurgery was completed by all seven institutions. Close agreement was observed in most aspects of spine radiosurgery credentialing at each institution. A formal credentialing process was believed to be important for the implementation of a new spine radiosurgery program, for patient safety and clinical outcomes. One institution has a written policy specific for spine radiosurgery credentialing, but all have an undocumented credentialing system in place. All institutions rely upon an in-house proctoring system for the training of both physicians and medical physicists. Four institutions require physicians and medical physicists to attend corporate sponsored training. Two of these 4 institutions also require attendance at a non-corporate sponsored academic society radiosurgery course. Corporate as well as non-corporate sponsored training were believed to be complimentary and both important for training. In 5 centers, all cases must be reviewed at a multidisciplinary conference prior to radiosurgery treatment. At 3 centers, neurosurgeons are not required to be involved in all cases if there is no evidence for instability or spinal cord compression. Backup physicians and physicists are required at only 1 institution, but all institutions have more

  4. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Panje, Cedric; Andratschke, Nikolaus; Guckenberger, Matthias [Zurich University Hospital, Department of Radiation Oncology, Zurich (Switzerland); Brunner, Thomas B. [Freiburg University Hospital, Department of Radiation Oncology, Freiburg (Germany); Niyazi, Maximilian [University of Munich, Department of Radiation Oncology, Munich (Germany)

    2016-12-15

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer. A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation. Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities. SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT. (orig.) [German] Die Arbeitsgruppe ''Stereotaktische Radiotherapie'' der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) legt eine Zusammenfassung der aktuellen Literatur und daraus resultierende Empfehlungen zur Durchfuehrung der stereotaktischen Strahlentherapie (SBRT) beim Nierenzellkarzinom und beim Pankreaskarzinom vor. Es erfolgte eine Literaturrecherche zur Evidenz der SBRT beim Nierenzell- und Pankreaskarzinom, wobei der Schwerpunkt auf prospektive Studien und technische Aspekte fuer die klinische Umsetzung gelegt wurde. Fuer die SBRT beim Pankreaskarzinom und Nierenzellkarzinom sind bisher nur wenige Studien veroeffentlicht worden, die jedoch konsistent eine hohe Rate an lokaler Tumorkontrolle

  5. Treatment outcome, body image, and sexual functioning after orchiectomy and radiotherapy for Stage I-II testicular seminoma

    International Nuclear Information System (INIS)

    Incrocci, Luca; Hop, Wim C.J.; Wijnmaalen, Arendjan; Slob, A. Koos

    2002-01-01

    Purpose: Orchiectomy followed by infradiaphragmatic irradiation is the standard treatment for Stage I-II testicular seminoma in The Netherlands. Because body image and sexual functioning can be affected by treatment, a retrospective study was carried out to assess treatment outcome, body image, and changes in sexuality after orchiectomy and radiotherapy. Methods and Materials: The medical charts of 166 patients with Stage I-II testicular seminoma were reviewed. A questionnaire on body image and current sexual functioning regarding the frequency and quality of erections, sexual activity, significance of sex, and changes in sexuality was sent to 157 patients (at a mean of 51 months after treatment). Results: Seventy-eight percent (n=123, mean age 42 years) completed the questionnaire. During irradiation, almost half of patients experienced nausea and 19% nausea and vomiting. Only 3 patients had disease relapse. After treatment, about 20% reported less interest and pleasure in sex and less sexual activity. Interest in sex, erectile difficulties, and satisfaction with sexual life did not differ from age-matched healthy controls. At the time of the survey, 17% of patients had erectile difficulties, a figure that was significantly higher than before treatment, but which correlated also with age. Twenty percent expressed concerns about fertility, and 52% found their body had changed after treatment. Cancer treatment had negatively influenced sexual life in 32% of the patients. Conclusions: Orchiectomy with radiotherapy is an effective and well-tolerated treatment for Stage I-II testicular seminoma. Treatment-induced changes in body image and concerns about fertility were detected, but the sexual problems encountered did not seem to differ from those of healthy controls, although baseline data are lacking

  6. Prospective comparison of whole-body {sup 18}F-FDG PET/CT and MRI of the spine in the diagnosis of haematogenous spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Fuster, David; Mayoral, Maria; Manchon, Francisco; Granados, Ulises; Pons, Francesca [Hospital Clinic, Nuclear Medicine Department, Barcelona (Spain); Tomas, Xavier; Cardenal, Carles [Hospital Clinic, Radiology Department, Barcelona (Spain); Soriano, Alex [Hospital Clinic, Infectious Diseases Department, Barcelona (Spain); Monegal, Anna [Hospital Clinic, Rheumatology Department, Barcelona (Spain); Garcia, Sebastia [Hospital Clinic, Orthopedic Surgery and Traumatology Department, Barcelona (Spain)

    2014-09-04

    To prospectively compare {sup 18}F-FDG PET/CT and MRI in the diagnosis of haematogenous spondylodiscitis The study included 26 patients (12 women, 14 men; mean age 59 ± 17 years) with clinical symptoms of infection of the spine. Patients who had had prior spinal surgery or any type of antibiotic therapy in the previous 3 months were excluded from the study. Whole-body PET/CT 60 min after injection of 4.07 MBq/kg of {sup 18}F-FDG and an MRI scan of the spine was performed in all patients. SUVmax in an area surrounding the lesions with the suspicion of infection as well as a background SUVmean in a preserved area of the spine were calculated for quantification. Infection was diagnosed by microbiological documentation in cultures of image-guided spinal puncture fluid or blood. Infection was excluded if symptoms were absent without antimicrobial therapy during a follow-up of at least 6 months. Spondylodiscitis was confirmed in 18 of the 26 patients. Staphylococcus aureus was found in 8 patients, Mycobacterium tuberculosis in 4, Escherichia coli in 2 and other pathogens in 4. Of the remaining 8 patients, the diagnoses were degenerative spondyloarthropathy in 5 and vertebral fracture in 3. The sensitivity, specificity, and positive and negative predictive value were 83 %, 88 %, 94 % and 70 % for {sup 18}F-FDG PET/CT, and 94 %, 38 %, 77 % and 75 % for MRI, respectively. The accuracies of {sup 18}F-FDG PET/CT and MRI were similar (84 % and 81 %, respectively). The combination of {sup 18}F-FDG PET/CT and MRI detected the infection in 100 % of the patients with spondylodiscitis. {sup 18}F-FDG uptake, quantified in terms of SUVmax corrected by the background SUVmean, was significantly higher in patients with spondylodiscitis than in those without infection (p < 0.001). Due to its high specificity, {sup 18}F-FDG PET/CT should be considered as a first-line imaging procedure in the diagnosis of spondylodiscitis. Quantification of uptake in terms of SUVmax was able to

  7. Long-Term Outcomes From a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    King, Christopher R.; Brooks, James D.; Gill, Harcharan; Presti, Joseph C.

    2012-01-01

    Purpose: Hypofractionated radiotherapy has an intrinsically different normal tissue and tumor radiobiology. The results of a prospective trial of stereotactic body radiotherapy (SBRT) for prostate cancer with long-term patient-reported toxicity and tumor control rates are presented. Methods and Materials: From 2003 through 2009, 67 patients with clinically localized low-risk prostate cancer were enrolled. Treatment consisted of 36.25 Gy in 5 fractions using SBRT with the CyberKnife as the delivery technology. No patient received hormone therapy. Patient self-reported bladder and rectal toxicities were graded on the Radiation Therapy Oncology Group scale (RTOG). Results: Median follow-up was 2.7 years. There were no grade 4 toxicities. Radiation Therapy Oncology Group Grade 3, 2, and 1 bladder toxicities were seen in 3% (2 patients), 5% (3 patients), and 23% (13 patients) respectively. Dysuria exacerbated by urologic instrumentation accounted for both patients with Grade 3 toxicity. Urinary incontinence, complete obstruction, or persistent hematuria was not observed. Rectal Grade 3, 2, and 1 toxicities were seen in 0, 2% (1 patient), and 12.5% (7 patients), respectively. Persistent rectal bleeding was not observed. Low-grade toxicities were substantially less frequent with QOD vs. QD dose regimen (p = 0.001 for gastrointestinal and p = 0.007 for genitourinary). There were two prostate-specific antigen (PSA), biopsy-proven failures with negative metastatic workup. Median PSA at follow-up was 0.5 ± 0.72 ng/mL. The 4-year Kaplan-Meier PSA relapse-free survival was 94% (95% confidence interval, 85%–102%). Conclusion: Significant late bladder and rectal toxicities from SBRT for prostate cancer are infrequent. PSA relapse-free survival compares favorably with other definitive treatments. The current evidence supports consideration of stereotactic body radiotherapy among the therapeutic options for localized prostate cancer.

  8. Long-Term Outcomes From a Prospective Trial of Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, Christopher R., E-mail: crking@mednet.ucla.edu [Departments of Radiation Oncology and Urology, University of California Los Angeles School of Medicine, Los Angeles, CA (United States); Brooks, James D.; Gill, Harcharan; Presti, Joseph C. [Department of Urology, Stanford University School of Medicine, Stanford, CA (United States)

    2012-02-01

    Purpose: Hypofractionated radiotherapy has an intrinsically different normal tissue and tumor radiobiology. The results of a prospective trial of stereotactic body radiotherapy (SBRT) for prostate cancer with long-term patient-reported toxicity and tumor control rates are presented. Methods and Materials: From 2003 through 2009, 67 patients with clinically localized low-risk prostate cancer were enrolled. Treatment consisted of 36.25 Gy in 5 fractions using SBRT with the CyberKnife as the delivery technology. No patient received hormone therapy. Patient self-reported bladder and rectal toxicities were graded on the Radiation Therapy Oncology Group scale (RTOG). Results: Median follow-up was 2.7 years. There were no grade 4 toxicities. Radiation Therapy Oncology Group Grade 3, 2, and 1 bladder toxicities were seen in 3% (2 patients), 5% (3 patients), and 23% (13 patients) respectively. Dysuria exacerbated by urologic instrumentation accounted for both patients with Grade 3 toxicity. Urinary incontinence, complete obstruction, or persistent hematuria was not observed. Rectal Grade 3, 2, and 1 toxicities were seen in 0, 2% (1 patient), and 12.5% (7 patients), respectively. Persistent rectal bleeding was not observed. Low-grade toxicities were substantially less frequent with QOD vs. QD dose regimen (p = 0.001 for gastrointestinal and p = 0.007 for genitourinary). There were two prostate-specific antigen (PSA), biopsy-proven failures with negative metastatic workup. Median PSA at follow-up was 0.5 {+-} 0.72 ng/mL. The 4-year Kaplan-Meier PSA relapse-free survival was 94% (95% confidence interval, 85%-102%). Conclusion: Significant late bladder and rectal toxicities from SBRT for prostate cancer are infrequent. PSA relapse-free survival compares favorably with other definitive treatments. The current evidence supports consideration of stereotactic body radiotherapy among the therapeutic options for localized prostate cancer.

  9. Stereotactic Body Radiotherapy (SBRT) for Operable Stage I Non-Small-Cell Lung Cancer: Can SBRT Be Comparable to Surgery?

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroshi, E-mail: honishi@yamanashi.ac.jp [School of Medicine, Yamanashi University, Yamanashi (Japan); Shirato, Hiroki [School of Medicine, Hokkaido University, Sapporo (Japan); Nagata, Yasushi [School of Medicine, Hiroshima University, Hiroshima (Japan); Hiraoka, Masahiro [School of Medicine, Kyoto University, Kyoto (Japan); Fujino, Masaharu [School of Medicine, Hokkaido University, Sapporo (Japan); School of Medicine, Yamanashi University, Yamanashi (Japan); Gomi, Kotaro [Cancer Institute Suwa Red-Cross Hospital, Suwa (Japan); Karasawa, Katsuyuki [Tokyo Metropolitan Komagome Hospital, Tokyo (Japan); Hayakawa, Kazushige; Niibe, Yuzuru [Kitasato University, Kanagawa (Japan); Takai, Yoshihiro [School of Medicine, Hirosaki University, Hirosaki (Japan); Kimura, Tomoki [School of Medicine, Kagawa University, Hiroshima (Japan); Takeda, Atsuya [Ofuna Chuo Hospital, Kanagawa (Japan); Ouchi, Atsushi [Keijinkai Hospital, Sapporo (Japan); Hareyama, Masato [Sapporo Medical University, Sapporo (Japan); Kokubo, Masaki [Institute of Biomedical Research and Innovation, Kobe (Japan); Kozuka, Takuyo [School of Cancer Institute Ariake Hospital, Tokyo (Japan); Arimoto, Takuro [Kitami Red Cross Hospital, Kitami (Japan); Hara, Ryusuke [National Institute of Radiological Science, Chiba (Japan); Itami, Jun [National Cancer Center, Tokyo (Japan); Araki, Tsutomu [School of Medicine, Yamanashi University, Yamanashi (Japan)

    2011-12-01

    Purpose: To review treatment outcomes for stereotactic body radiotherapy (SBRT) in medically operable patients with Stage I non-small-cell lung cancer (NSCLC), using a Japanese multi-institutional database. Patients and Methods: Between 1995 and 2004, a total of 87 patients with Stage I NSCLC (median age, 74 years; T1N0M0, n = 65; T2N0M0, n = 22) who were medically operable but refused surgery were treated using SBRT alone in 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. Total dose was 45-72.5 Gy at the isocenter, administered in 3-10 fractions. Median calculated biological effective dose was 116 Gy (range, 100-141 Gy). Data were collected and analyzed retrospectively. Results: During follow-up (median, 55 months), cumulative local control rates for T1 and T2 tumors at 5 years after SBRT were 92% and 73%, respectively. Pulmonary complications above Grade 2 arose in 1 patient (1.1%). Five-year overall survival rates for Stage IA and IB subgroups were 72% and 62%, respectively. One patient who developed local recurrences safely underwent salvage surgery. Conclusion: Stereotactic body radiotherapy is safe and promising as a radical treatment for operable Stage I NSCLC. The survival rate for SBRT is potentially comparable to that for surgery.

  10. Stereotactic Body Radiotherapy (SBRT) for Operable Stage I Non–Small-Cell Lung Cancer: Can SBRT Be Comparable to Surgery?

    International Nuclear Information System (INIS)

    Onishi, Hiroshi; Shirato, Hiroki; Nagata, Yasushi; Hiraoka, Masahiro; Fujino, Masaharu; Gomi, Kotaro; Karasawa, Katsuyuki; Hayakawa, Kazushige; Niibe, Yuzuru; Takai, Yoshihiro; Kimura, Tomoki; Takeda, Atsuya; Ouchi, Atsushi; Hareyama, Masato; Kokubo, Masaki; Kozuka, Takuyo; Arimoto, Takuro; Hara, Ryusuke; Itami, Jun; Araki, Tsutomu

    2011-01-01

    Purpose: To review treatment outcomes for stereotactic body radiotherapy (SBRT) in medically operable patients with Stage I non–small-cell lung cancer (NSCLC), using a Japanese multi-institutional database. Patients and Methods: Between 1995 and 2004, a total of 87 patients with Stage I NSCLC (median age, 74 years; T1N0M0, n = 65; T2N0M0, n = 22) who were medically operable but refused surgery were treated using SBRT alone in 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. Total dose was 45–72.5 Gy at the isocenter, administered in 3–10 fractions. Median calculated biological effective dose was 116 Gy (range, 100–141 Gy). Data were collected and analyzed retrospectively. Results: During follow-up (median, 55 months), cumulative local control rates for T1 and T2 tumors at 5 years after SBRT were 92% and 73%, respectively. Pulmonary complications above Grade 2 arose in 1 patient (1.1%). Five-year overall survival rates for Stage IA and IB subgroups were 72% and 62%, respectively. One patient who developed local recurrences safely underwent salvage surgery. Conclusion: Stereotactic body radiotherapy is safe and promising as a radical treatment for operable Stage I NSCLC. The survival rate for SBRT is potentially comparable to that for surgery.

  11. A multi-institutional study to assess adherence to lung stereotactic body radiotherapy planning goals

    Energy Technology Data Exchange (ETDEWEB)

    Woerner, Andrew; Roeske, John C.; Harkenrider, Matthew M.; Campana, Maria; Surucu, Murat, E-mail: msurucu@lumc.edu [Loyola University Medical Center, Maywood, Illinois 60153 (United States); Fan, John [Edward Cancer Center, Naperville, Illinois 60540 (United States); Aydogan, Bulent; Koshy, Matthew [Department of Radiation Oncology, University of Illinois at Chicago, Chicago, Illinois 60612 (United States); Laureckas, Robert; Vali, Faisal [Advocate Christ Medical Center, Oak Lawn, Illinois 60453 (United States)

    2015-08-15

    Purpose: A multi-institutional planning study was performed to evaluate the frequency that current guidelines established by Radiation Therapy Oncology Group (RTOG) protocols and other literature for lung stereotactic body radiotherapy (SBRT) treatments are followed. Methods: A total of 300 patients receiving lung SBRT treatments in four different institutions were retrospectively reviewed. The treatments were delivered using Linac based SBRT (160 patients) or image guided robotic radiosurgery (140). Most tumors were located peripherally (250/300). Median fractional doses and ranges were 18 Gy (8–20 Gy), 12 Gy (6–15 Gy), and 10 Gy (5–12 Gy) for three, four, and five fraction treatments, respectively. The following planning criteria derived from RTOG trials and the literature were used to evaluate the treatment plans: planning target volumes, PTV{sub V} {sub 100} ≥ 95% and PTV{sub V} {sub 95} ≥ 99%; conformality indices, CI{sub 100%} < 1.2 and CI{sub 50%} range of 2.9–5.9 dependent on PTV; total lung-ITV: V{sub 20Gy} < 10%, V{sub 12.5Gy} < 15%, and V{sub 5Gy} < 37%; contralateral lung V{sub 5Gy} < 26%; and maximum doses for spinal cord, esophagus, trachea/bronchus, and heart and great vessels. Populations were grouped by number of fractions, and dosimetric criteria satisfaction rates (CSRs) were reported. Results: Five fraction regimens were the most common lung SBRT fractionation (46%). The median PTV was 27.2 cm{sup 3} (range: 3.8–419.5 cm{sup 3}). For all plans: mean PTV{sub V} {sub 100} was 94.5% (±5.6%, planning CSR: 69.8%), mean PTV{sub V} {sub 95} was 98.1% (±4.1%, CSR: 69.5%), mean CI{sub 100%} was 1.14 (±0.21, CSR: 79.1%, and 16.5% within minor deviation), and mean CI{sub 50%} was 5.63 (±2.8, CSR: 33.0%, and 28.0% within minor deviation). When comparing plans based on location, peripherally located tumors displayed higher PTV{sub V} {sub 100} and PTV{sub V} {sub 95} CSR (71.5% and 71.9%, respectively) than centrally located tumors (61

  12. A multi-institutional study to assess adherence to lung stereotactic body radiotherapy planning goals

    International Nuclear Information System (INIS)

    Woerner, Andrew; Roeske, John C.; Harkenrider, Matthew M.; Campana, Maria; Surucu, Murat; Fan, John; Aydogan, Bulent; Koshy, Matthew; Laureckas, Robert; Vali, Faisal

    2015-01-01

    Purpose: A multi-institutional planning study was performed to evaluate the frequency that current guidelines established by Radiation Therapy Oncology Group (RTOG) protocols and other literature for lung stereotactic body radiotherapy (SBRT) treatments are followed. Methods: A total of 300 patients receiving lung SBRT treatments in four different institutions were retrospectively reviewed. The treatments were delivered using Linac based SBRT (160 patients) or image guided robotic radiosurgery (140). Most tumors were located peripherally (250/300). Median fractional doses and ranges were 18 Gy (8–20 Gy), 12 Gy (6–15 Gy), and 10 Gy (5–12 Gy) for three, four, and five fraction treatments, respectively. The following planning criteria derived from RTOG trials and the literature were used to evaluate the treatment plans: planning target volumes, PTV_V _1_0_0 ≥ 95% and PTV_V _9_5 ≥ 99%; conformality indices, CI_1_0_0_% < 1.2 and CI_5_0_% range of 2.9–5.9 dependent on PTV; total lung-ITV: V_2_0_G_y < 10%, V_1_2_._5_G_y < 15%, and V_5_G_y < 37%; contralateral lung V_5_G_y < 26%; and maximum doses for spinal cord, esophagus, trachea/bronchus, and heart and great vessels. Populations were grouped by number of fractions, and dosimetric criteria satisfaction rates (CSRs) were reported. Results: Five fraction regimens were the most common lung SBRT fractionation (46%). The median PTV was 27.2 cm"3 (range: 3.8–419.5 cm"3). For all plans: mean PTV_V _1_0_0 was 94.5% (±5.6%, planning CSR: 69.8%), mean PTV_V _9_5 was 98.1% (±4.1%, CSR: 69.5%), mean CI_1_0_0_% was 1.14 (±0.21, CSR: 79.1%, and 16.5% within minor deviation), and mean CI_5_0_% was 5.63 (±2.8, CSR: 33.0%, and 28.0% within minor deviation). When comparing plans based on location, peripherally located tumors displayed higher PTV_V _1_0_0 and PTV_V _9_5 CSR (71.5% and 71.9%, respectively) than centrally located tumors (61.2% and 57.1%, respectively). Overall, the planning criteria were met for all the

  13. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro; Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-01-01

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm 2 field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the phantom

  14. Radiotherapy as adjunct to surgery for malignant carotid body paragangliomas presenting with lymph node metastases

    International Nuclear Information System (INIS)

    Mayer, R.; Poschauko, J.; Fruhwirth, J.; Beham, A.; Groell, R.

    2000-01-01

    Between 1985 and 1994, 3 female patients (51 to 65 years of age) were referred for postoperative radiotherapy after complete (2) or incomplete (1) surgical excision of a malignant carotid paraganglioma (Shamblin III). Preoperative angiographic embolization of the tumor-supplying arteries was performed in all cases. In 2 patients resection of the internal carotid artery and reconstruction by saphenous vein graft was necessary. Continuous course radiotherapy of the tumor bed (50 to 56 Gy/2 Gy) and regional lymph nodes (50 Gy) using photon beams was delivered in 2 patients. The third patient having had incomplete resection cancelled radiotherapy after 4 Gy. Results: Within an observation time of 110 and 119 months no evidence of recurrence was obtained in both patients irradiated postoperatively. The third patient died of progressive disease. Twelve months after the withdrawn irradiation she presented with a tumor progression into the brain and an ulcerated mass on the right side of the neck and was irradiated consecutively for palliation. In none of the patients severe acute or late radiation-induced complications were observed. (orig.) [de

  15. MO-FG-CAMPUS-JeP3-02: A Novel Setup Approach to Improve C-Spine Curvature Reproducibility for Head and Neck Radiotherapy Using Optical Surface Imaging with Two Regions of Interest

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, K; Gil, M; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Della Biancia, C [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel approach to improve cervical spine (c-spine) curvature reproducibility for head and neck (HN) patients using optical surface imaging (OSI) with two regions of interests (ROIs). Methods: The OSI-guided, two-step setup procedure requires two ROIs: ROI-1 of the shoulders and ROI-2 of the face. The neck can be stretched or squeezed in superior-inferior (SI) direction using a specially-designed sliding head support. We hypothesize that when these two ROIs are aligned, the c-spine should fall into a naturally reproducible position under same setup conditions. An anthropomorphous phantom test was performed to examine neck pitch angles comparing with the calculated angles. Three volunteers participated in the experiments, which start with conventional HN setup using skin markers and room lasers. An OSI image and lateral photo-picture were acquired as the references. In each of the three replicate tests, conventional setup was first applied after volunteers got on the couch. ROI-1 was aligned by moving the body, followed by ROI-2 alignment via adjusting head position and orientation under real-time OSI guidance. A final static OSI image and lateral picture were taken to evaluate both anterior and posterior surface alignments. Three degrees of freedom can be adjusted if an open-face mask was applied, including head SI shift using the sliding head support and pitch-and-roll rotations using a commercial couch extension. Surface alignment was analyzed comparing with conventional setup. Results: The neck pitch angle measured by OSI is consistent with the calculated (0.2±0.6°). Volunteer study illustrated improved c-spine setup reproducibility using OSI comparing with conventional setup. ROI alignments with 2mm/1° tolerance are achieved within 3 minutes. Identical knee support is important to achieve ROI-1 pitch alignment. Conclusion: The feasibility of this novel approach has been demonstrated for c-spine curvature setup reproducibility. Further

  16. Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame

    International Nuclear Information System (INIS)

    Nagata, Yasushi; Takayama, Kenji; Matsuo, Yukinori; Norihisa, Yoshiki; Mizowaki, Takashi; Sakamoto, Takashi; Sakamoto, Masato; Mitsumori, Michihide; Shibuya, Keiko; Araki, Norio; Yano, Shinsuke; Hiraoka, Masahiro

    2005-01-01

    Purpose: To evaluate the clinical outcomes of 48 Gy of three-dimensional stereotactic radiotherapy in four fractions for treating Stage I lung cancer using a stereotactic body frame. Methods and Materials: Forty-five patients who were treated between September 1998 and February 2004 were included in this study. Thirty-two patients had Stage IA lung cancer, and the other 13 had Stage IB lung cancer where tumor size was less than 4 cm in diameter. Three-dimensional treatment planning using 6-10 noncoplanar beams was performed to maintain the target dose homogeneity and to decrease the irradiated lung volume >20 Gy. All patients were irradiated using a stereotactic body frame and received four single 12 Gy high doses of radiation at the isocenter over 5-13 (median = 12) days. Results: Seven tumors (16%) completely disappeared after treatment (CR) and 38 tumors (84%) decreased in size by 30% or more (PR). Therefore, all tumors showed local response. During the follow-up of 6-71 (median = 30) months, no pulmonary complications greater than an National Cancer Institute-Common Toxicity Criteria of Grade 3 were noted. No other vascular, cardiac, esophageal, or neurologic toxicities were encountered. Forty-four (98%) of 45 tumors were locally controlled during the follow-up period. However, regional recurrences and distant metastases occurred in 3 and 5 of T1 patients and zero and 4 of T2 patients, respectively. For Stage IA lung cancer, the disease-free survival and overall survival rates after 1 and 3 years were 80% and 72%, and 92% and 83%, respectively, whereas for Stage IB lung cancer, the disease-free survival and overall survival rates were 92% and 71%, and 82% and 72%, respectively. Conclusion: Forty-eight Gy of 3D stereotactic radiotherapy in 4 fractions using a stereotactic body frame is useful for the treatment of Stage I lung tumors

  17. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  18. Impact of a ketogenic diet intervention during radiotherapy on body composition: II. Protocol of a randomised phase I study (KETOCOMP).

    Science.gov (United States)

    Klement, Rainer J; Sweeney, Reinhart A

    2016-04-01

    We have found that a ketogenic diet (KD) during the course of radiotherapy (RT) was feasible and led to a preservation or favorable changes of body composition. Based on these observations and theoretical considerations, we initiated a study to investigate the impact of a KD or a ketogenic breakfast intervention in patients undergoing RT. All patients presenting for curative RT with age between 18 and 75, body mass index between 18 and 34 kg/m 2 and a histologically confirmed cancer of the breast, colorectum or head and neck region are considered for inclusion. Exclusion criteria are Karnofsky index radiotherapy fraction after an overnight fast and subsequently ingest a ketogenic breakfast consisting of (i) 50-250 ml of a medium-chain triglyceride drink (betaquick ® , vitaflo, Bad Homburg, Germany) plus (ii) 5-15 g amino acids (MAP, dr. reinwald healthcare gmbh+co kg, Schwarzenbruck, Germany). If willing to undertake a complete KD for the duration of RT, patients are entered into intervention group 2. Intervention group 2 does not have to fast prior to RT fractions but will be supplemented with MAP analogous to intervention group 1. The control group will not receive dietary advice to follow a KD or reduce carbohydrate intake. The objective is twofold: (i) to test whether the ketogenic interventions are feasibly, as measured by the number of dropouts; (ii) to see whether intervention groups 1 and 2 attain a better preservation of BIA phase angle than the control group. Primary endpoints are the feasibility of the interventions (measured through dropout rates), and changes in body weight and composition (measured through BIA). Secondary endpoints are changes in quality of life (EORTC questionnaires) and blood parameters as well as the occurrence and grade of toxicities and grade of regression after surgery in case of colorectal carcinomas. Copyright © 2015 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  19. Dynamics of change of both pathological focus and state of body during a radiotherapy course

    International Nuclear Information System (INIS)

    Stavitskij, R.V.; Vasil'ev, R.V.; Lebedenko, V.N.; Burdina, I.M.; Guslistyj, I.I.; Beridze, V.P.; Sergeev, A.D.; Lebedev, I.E.

    1997-01-01

    The ways of an estimation of change of the pathological center and condition of organism during realization of radiotherapy of neoplasms are given. The analysis of the tomography image of the pathological center allows to receive the data about reaction of tumour on the treatment. The research of change of a condition of organism takes possibility to account individual reaction of each patient to realization of a standard method of treatment and to carry out updating of therapy. 11 refs., 2 tabs., 10 figs. in appendix

  20. Effectiveness of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombosis.

    Directory of Open Access Journals (Sweden)

    Mian Xi

    Full Text Available BACKGROUND: To report the feasibility, efficacy, and toxicity of stereotactic body radiotherapy (SBRT for the treatment of portal vein tumor thrombosis (PVTT and/or inferior vena cava tumor thrombosis (IVCTT in patients with advanced hepatocellular carcinoma (HCC. MATERIALS AND METHODS: Forty-one patients treated with SBRT using volumetric modulated arc therapy (VMAT for HCC with PVTT/IVCTT between July 2010 and May 2012 were analyzed. Of these, 33 had PVTT and 8 had IVCTT. SBRT was designed to target the tumor thrombosis and deliver a median total dose of 36 Gy (range, 30-48 Gy in six fractions during two weeks. RESULTS: The median follow-up was 10.0 months. At the time of analysis, 15 (36.6% achieved complete response, 16 (39.0% achieved partial response, 7 (17.1% patients were stable, and three (7.3% patients showed progressive disease. No treatment-related Grade 4/5 toxicity was seen within three months after SBRT. One patient had Grade 3 elevation of bilirubin. The one-year overall survival rate was 50.3%, with a median survival of 13.0 months. The only independent predictive factor associated with better survival was response to radiotherapy. CONCLUSIONS: VMAT-based SBRT is a safe and effective treatment option for PVTT/IVCTT in HCC. Prospective randomized controlled trials are warranted to validate the role of SBRT in these patients.

  1. SU-F-T-622: Comparative Analysis of Pencil Beam and Anisotropic Analytical Algorithm (AAA) for Stereotactic Body Radiation Therapy (SBRT) of Thoracic Spine

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Nicolai, W; Pokhrel, D; Jiang, H; Wang, F; Lominskac, C [University of Kansas Medical Center, Kansas City, KS (United States); Ramanjappa, T [S. K. University, Anantapur, AP (India)

    2016-06-15

    Purpose: To compare the impact of Pencil Beam(PB) and Anisotropic Analytic Algorithm(AAA) dose calculation algorithms on OARs and planning target volume (PTV) in thoracic spine stereotactic body radiation therapy (SBRT). Methods: Ten Spine SBRT patients were planned on Brainlab iPlan system using hybrid plan consisting of 1–2 non-coplanar conformal-dynamic arcs and few IMRT beams treated on NovalisTx with 6MV photon. Dose prescription varied from 20Gy to 30Gy in 5 fractions depending on the situation of the patient. PB plans were retrospectively recalculated using the Varian Eclipse with AAA algorithm using same MUs, MLC pattern and grid size(3mm).Differences in dose volume parameters for PTV, spinal cord, lung, and esophagus were analyzed and compared for PB and AAA algorithms. OAR constrains were followed per RTOG-0631. Results: Since patients were treated using PB calculation, we compared all the AAA DVH values with respect to PB plan values as standard, although AAA predicts the dose more accurately than PB. PTV(min), PTV(Max), PTV(mean), PTV(D99%), PTV(D90%) were overestimated with AAA calculation on average by 3.5%, 1.84%, 0.95%, 3.98% and 1.55% respectively as compared to PB. All lung DVH parameters were underestimated with AAA algorithm mean deviation of lung V20, V10, V5, and 1000cc were 42.81%,19.83%, 18.79%, and 18.35% respectively. AAA overestimated Cord(0.35cc) by mean of 17.3%; cord (0.03cc) by 12.19% and cord(max) by 10.5% as compared to PB. Esophagus max dose were overestimated by 4.4% and 5cc by 3.26% for AAA algorithm as compared to PB. Conclusion: AAA overestimated the PTV dose values by up to 4%.The lung DVH had the greatest underestimation of dose by AAA versus PB. Spinal cord dose was overestimated by AAA versus PB. Given the critical importance of accuracy of OAR and PTV dose calculation for SBRT spine, more accurate algorithms and validation of calculated doses in phantom models are indicated.

  2. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D. [Duke University Medical Physics Graduate Program, Durham, North Carolina 27705 (United States); Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark, E-mail: mark.oldham@duke.edu [Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Rider University, Lawrenceville, New Jersey 08648 (United States)

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  3. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    International Nuclear Information System (INIS)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John

    2015-01-01

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm 3 ) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  4. A retrospective review of Cyberknife Stereotactic Body Radiotherapy for Adrenal Tumors (Primary and Metastatic: Winthrop University Hospital experience

    Directory of Open Access Journals (Sweden)

    Amishi eDesai

    2015-08-01

    Full Text Available The adrenal gland is a common site of cancer metastasis. Surgery remains a mainstay of treatment for solitary adrenal metastasis. For patients who cannot undergo surgery, radiation is an alternative option. Stereotactic body radiotherapy (SBRT is an ablative treatment option allowing larger doses to be delivered over a shorter period of time. In this study, we report on our experience with the use of SBRT to treat adrenal metastases using Cyberknife technology. We retrospectively reviewed, the Winthrop-University radiation oncology data base to identify 14 patients for whom SBRT was administered to treat malignant adrenal disease. Of the factors examined, the biologic equivalent dose (BED of radiation delivered was found to be the most important predictor of local adrenal tumor control. We conclude that CyberKnife-based SBRT is a safe, non-invasive modality that has broadened the therapeutic options for the treatment of isolated adrenal metastases.

  5. Body armour and lateral-plate reduction in freshwater three-spined stickleback Gasterosteus aculeatus: adaptations to a different buoyancy regime?

    Science.gov (United States)

    Myhre, F; Klepaker, T

    2009-11-01

    Several factors related to buoyancy were compared between one marine and two freshwater populations of three-spined stickleback Gasterosteus aculeatus. Fish from all three populations had buoyancy near to neutral to the ambient water. This showed that neither marine nor freshwater G. aculeatus used swimming and hydrodynamic lift to prevent sinking. Comparing the swimbladder volumes showed that freshwater completely plated G. aculeatus had a significantly larger swimbladder volume than both completely plated marine and low-plated freshwater G. aculeatus. Furthermore, body tissue density was lower in low-plated G. aculeatus than in the completely plated marine and freshwater fish. The results show that G. aculeatus either reduce tissue density or increase swimbladder volume to adapt to lower water density. Mass measurements of lateral plates and pelvis showed that loss of body armour in low-plated G. aculeatus could explain the tissue density difference between low-plated and completely plated G. aculeatus. This suggests that the common occurrence of plate and armour reduction in freshwater G. aculeatus populations can be an adaptation to a lower water density.

  6. Stereotactic body radiotherapy: a promising treatment option for the boost of oropharyngeal cancers not suitable for brachytherapy: a single-institutional experience.

    NARCIS (Netherlands)

    Al-Mamgani, A.; Tans, L.; Teguh, D.N.; Rooij, P. van; Zwijnenburg, E.M.; Levendag, P.C.

    2012-01-01

    PURPOSE: To prospectively assess the outcome and toxicity of frameless stereotactic body radiotherapy (SBRT) as a treatment option for boosting primary oropharyngeal cancers (OPC) in patients who not suitable for the standard brachytherapy boost (BTB). METHODS AND MATERIALS: Between 2005 and 2010,

  7. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Fredberg; Logadottir, Ashildur

    2012-01-01

    Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate...

  8. Comparative analysis of thermoplastic masks versus vacuum cushions in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Navarro-Martin, Arturo; Cacicedo, Jon; Leaman, Olwen; Sancho, Ismael; García, Elvira; Navarro, Valentin; Guedea, Ferran

    2015-01-01

    To compare thermoplastic masks (TMP) and vacuum cushion system (VCS) to assess differences in interfraction set up accuracy in patients treated with stereotactic radiotherapy (SBRT) for oligometastatic lung cancer. Secondarily, to survey radiotherapy technologists to assess their satisfaction with the two systems. Retrospective study of patients treated with lung SBRT between 2008 to 2012 at our institution. Immobilization was performed for 73 treatment sessions (VCS = 40; TMP = 33). A total of 246 cone-beams were analysed. Patients considered ineligible for surgery with a life expectancy ≥6 months and performance status > 1 were included. Target lesion location was verified by cone beam computed tomography (CBCT) prior to each session, with displacements assessed by CBCT simulation prior to each treatment session. Couch shifts were registered prospectively in vertical, longitudinal, and latero-lateral directions to obtain Kernel coordinates (3D representation). Technologists were surveyed to assess their satisfaction with indexing, positioning, and learning curve of the two systems. Setup displacements were obtained in all patients for each treatment plan and for each session. To assess differences between the immobilization systems, a t-test (Welch) was performed. Mean displacements for the TMP and VC systems, respectively, were as follows: session one, 0.64 cm vs 1.05 cm (p = 0.0002); session two, 0.49 cm vs 1.02 cm (p < 0.0001), and session three, 0.56 vs 0.97 cm (p = 0.0011). TMP resulted in significantly smaller shifts vs. VCS in all three treatment sessions. Technologists rated the learning curve, set up, and positioning more highly for TMP versus VCS. Due to the high doses and steep gradients in lung SBRT, accurate and reproducible inter-fraction set up is essential. We found that thermoplastic masks offers better reproducibility with significantly less interfractional set up displacement than vacuum cushions. Moreover, radiotherapy technologists rated

  9. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    Science.gov (United States)

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  10. Effects of vertebral-body-sparing proton craniospinal irradiation on the spine of young pediatric patients with medulloblastoma

    Directory of Open Access Journals (Sweden)

    Iain MacEwan, MD

    2017-04-01

    Conclusion: Vertebral-body-sparing CSI with proton beam did not appear to cause increased severe spinal abnormalities in patients treated at our institution. This approach could be considered in future clinical trials in an effort to reduce toxicity and the risk of secondary malignancy and to improve adult height.

  11. Half-body radiotherapy. Evaluation of the technique in normal dogs

    International Nuclear Information System (INIS)

    Laing, E.J.; Fitzpatrick, P.J.; Norris, A.M.; Mosseri, A.; Rider, W.D.; Binnington, A.G.; Baur, A.; Valli, V.E.

    1989-01-01

    Eight healthy mongrel dogs were treated with half-body irradiation (HBI) in a pilot study to evaluate the technique and radiotolerance of different organs. Cranial and caudal half-body fields were established using the 13th thoracic vertebra as the dividing point. Under general anesthesia, either 7 or 8 Gray (Gy) were delivered to one half of the body using opposing radiation portals. The other half of the body was similarly treated 28 days later. The dogs were monitored for 12 months. Significant radiation effects included transient bone marrow suppression and radiation sickness. There were no serious or life-threatening problems, but the 8 Gy group consistently showed more severe clinical signs and histologic changes than the 7 Gy group. Total body irradiation in two fractions of 7 or 8 Gy given 1 month apart appears to be a safe treatment that can be developed for therapy in veterinary oncology

  12. Aquatic antagonists: cutaneous sea urchin spine injury.

    Science.gov (United States)

    Hsieh, Clifford; Aronson, Erica R; Ruiz de Luzuriaga, Arlene M

    2016-11-01

    Injuries from sea urchin spines are commonly seen in coastal regions with high levels of participation in water activities. Although these injuries may seem minor, the consequences vary based on the location of the injury. Sea urchin spine injuries may cause arthritis and synovitis from spines in the joints. Nonjoint injuries have been reported, and dermatologic aspects of sea urchin spine injuries rarely have been discussed. We present a case of a patient with sea urchin spines embedded in the thigh who subsequently developed painful skin nodules. Tissue from the site of the injury demonstrated foreign-body type granulomas. Following the removal of the spines and granulomatous tissue, the patient experienced resolution of the nodules and associated pain. Extraction of sea urchin spines can attenuate the pain and decrease the likelihood of granuloma formation, infection, and long-term sequelae.

  13. Noninvasive patient fixation for extracranial stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lohr, Frank; Debus, Juergen; Frank, Claudia; Herfarth, Klaus; Pastyr, Otto; Rhein, Bernhard; Bahner, Malte L.; Schlegel, Wolfgang; Wannenmacher, Michael

    1999-01-01

    Purpose: To evaluate the setup accuracy that can be achieved with a novel noninvasive patient fixation technique based on a body cast attached to a recently developed stereotactic body frame during fractionated extracranial stereotactic radiotherapy. Methods and Materials: Thirty-one CT studies (≥ 20 slices, thickness: 3 mm) from 5 patients who were immobilized in a body cast attached to a stereotactic body frame for treatment of para medullary tumors in the thoracic or lumbar spine were evaluated with respect to setup accuracy. The immobilization device consisted of a custom-made wrap-around body cast that extended from the neck to the thighs and a separate head mask, both made from Scotchcast. Each CT study was performed immediately before or after every second or third actual treatment fraction without repositioning the patient between CT and treatment. The stereotactic localization system was mounted and the isocenter as initially located stereo tactically was marked with fiducials for each CT study. Deviation of the treated isocenter as compared to the planned position was measured in all three dimensions. Results: The immobilization device can be easily handled, attached to and removed from the stereotactic frame and thus enables treatment of multiple patients with the same stereotactic frame each day. Mean patient movements of 1.6 mm ± 1.2 mm (laterolateral [LL]), 1.4 mm ± 1.0 mm (anterior-posterior [AP]), 2.3 mm ± 1.3 mm (transversal vectorial error [VE]) and < slice thickness = 3 mm (cranio caudal [CC]) were recorded for the targets in the thoracic spine and 1.4 mm ± 1.0 mm (LL), 1.2 mm ± 0.7 mm (AP), 1.8 mm ± 1.2 mm (VE), and < 3 mm (CC) for the lumbar spine. The worst case deviation was 3.9 mm for the first patient with the target in the thoracic spine (in the LL direction). Combining those numbers (mean transversal VE for both locations and maximum CC error of 3 mm), the mean three-dimensional vectorial patient movement and thus the mean overall

  14. The Effects of Compliance with Nutritional Counselling on Body Composition Parameters in Head and Neck Cancer Patients under Radiotherapy

    Directory of Open Access Journals (Sweden)

    D. Hopanci Bicakli

    2017-01-01

    Full Text Available Background. Radiotherapy (RT has been associated with increased risk of malnutrition in cancer patients, particularly in those with head and neck cancer (HNC. The aim of this prospective study was to evaluate the effects of compliance of patients with individual dietary counselling on body composition parameters in HNC patients under RT. Material and Methods. Sixty-nine consecutive patients (mean age: 61.0±13.8 were prospectively followed. Bioelectrical impedance analysis (BIA was performed to determine body composition parameters before, in the middle of, and at the end of RT. All patients received nutritional counselling and majority of them (94.6% received oral nutritional supplement (ONS during RT or chemoradiotherapy. If a patient consumed ≥75% of the recommended energy and protein intake via ONS and regular food, he/she was considered to be “compliant” (n=18, while those who failed to meet this criteria were considered to be “noncompliant” (n=30. Results. Body mass index, weight, fat percentage, fat mass, fat free mass, and muscle mass did not decrease significantly over time in compliant patients, but in noncompliant patients, all of these indices decreased significantly from baseline compared to the end of treatment (p<0.001. Hand grip strength did not differ significantly between the two groups at baseline and over time in each group. When retrospectively evaluated, heavy mucositis was less commonly observed in compliant than noncompliant patients (11.1% versus 88.9%, resp. (p<0.009. Conclusion. We conclude that body composition parameters were better in head and neck cancer patients considered as compliant with nutritional counselling than noncompliant ones during RT period.

  15. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    International Nuclear Information System (INIS)

    Nagata, Yasushi; Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-01-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  16. Magnetic resonance imaging findings of the lumbar spine in elite horseback riders: correlations with back pain, body mass index, trunk/leg-length coefficient, and riding discipline.

    Science.gov (United States)

    Kraft, Clayton N; Pennekamp, Peter H; Becker, Ute; Young, Mei; Diedrich, Oliver; Lüring, Christian; von Falkenhausen, Makus

    2009-11-01

    Most orthopaedic problems experienced by competitive horseback riders are related to pain in the lower back, hip joint, and hamstring muscles. Riders-especially, show jumpers-are frequently hampered in their performance because of lumbar pain. To date, there has been no research into lumbar disk degeneration in elite competitive riders. Competitive horseback riding accelerates lumbar disk degeneration. Cross-sectional study; Level of evidence, 3. Fifty-eight elite riders (18 men, 40 women; mean age, 32.4 years) and a control group of 30 nonriding volunteers (17 men, 13 women; mean age, 28.7 years) were evaluated for lumbar disk degeneration, cross-sectional area of paraspinal muscles, spondylolysis, and spondylolisthesis, using magnetic resonance imaging (MRI). The prevalence of disk degeneration between the 2 groups was compared, and the relationship was investigated between low back pain (LBP), riding discipline, body mass index (BMI), trunk/leg-length coefficient, and MRI results. Eighty-eight percent of elite riders (n = 51) had a history of LBP, versus 33% of the controls (P back pain. Although riders have a high prevalence of LBP, there is no conclusive MRI evidence to suggest that the cause lies in undue disk degeneration, spondylolysis, spondylolisthesis, or pathologic changes of the paraspinal muscles of the lumbar spine.

  17. Progressive resistance training rebuilds lean body mass in head and neck cancer patients after radiotherapy – Results from the randomized DAHANCA 25B trial

    International Nuclear Information System (INIS)

    Lønbro, Simon; Dalgas, Ulrik; Primdahl, Hanne; Johansen, Jørgen; Nielsen, Jakob Lindberg; Aagaard, Per; Hermann, Anne Pernille; Overgaard, Jens; Overgaard, Kristian

    2013-01-01

    Purpose: The critical weight loss observed in head and neck squamous cell carcinoma (HNSCC) patients following radiotherapy is mainly due to loss of lean body mass. This is associated with decreases in muscle strength, functional performance and Quality of Life (QoL). The present study investigated the effect of progressive resistance training (PRT) on lean body mass, muscle strength and functional performance in HNSCC patients following radiotherapy. Patients and methods: Following radiotherapy HNSCC patients were randomized into two groups: Early Exercise (EE, n = 20) initiated 12 weeks of PRT followed by 12 weeks of self-chosen physical activity. Delayed Exercise (DE, n = 21) initiated 12 weeks of self-chosen physical activity followed by 12 weeks of PRT. Lean body mass, muscle strength, functional performance and QoL were evaluated at baseline and after week 12 and 24. Results: In the first 12 weeks lean body mass increased by 4.3% in EE after PRT and in the last 12 weeks by 4.2% in DE after PRT. These increases were significantly larger than the changes after self-chosen physical activity (p ⩽ 0.005). Regardless of PRT start-up time, the odds ratio of increasing lean body mass by more than 4% after PRT was 6.26 (p < 0.05). PRT significantly increased muscle strength, whereas functional performance increased significantly more than after self-chosen physical activity only after delayed onset of PRT. Overall QoL improved significantly more in EE than DE from baseline to week 12. Conclusion: PRT effectively increased lean body mass and muscle strength in HNSCC patients following radiotherapy, irrespectively of early or delayed start-up

  18. The extent of environmental and body contamination through aerosols by hydro-surgical debridement in the lumbar spine.

    Science.gov (United States)

    Putzer, David; Lechner, Ricarda; Coraca-Huber, Debora; Mayr, Astrid; Nogler, Michael; Thaler, Martin

    2017-06-01

    Surgical site infections occur in 1-6% of spinal surgeries. Effective treatment includes early diagnosis, parenteral antibiotics and early surgical debridement of the wound surface. On a human cadaver, we executed a complete hydro-surgery debridement including a full surgical setup such as draping. The irrigation fluid was artificially contaminated with Staphylococcus aureus (ATCC 6538). Surveillance cultures were used to detect environmental and body contamination of the surgical team. For both test setups, environmental contamination was observed in an area of 6 × 8 m. Both test setups caused contamination of all personnel present during the procedure and of the whole operating theatre. However, the concentration of contamination for the surgical staff and the environment was lower when an additional disposable draping device was used. The study showed that during hydro-surgery debridement, contaminated aerosols spread over the whole surgical room and contaminate the theatre and all personnel.

  19. Stereotactic body radiotherapy (sbrt) in lung oligometastatic patients: role of local treatments

    International Nuclear Information System (INIS)

    Navarria, Pierina; Tozzi, Angelo; Reggiori, Giacomo; Fogliata, Antonella; Scorsetti, Marta; Ascolese, Anna Maria; Tomatis, Stefano; Cozzi, Luca; De Rose, Fiorenza; Mancosu, Pietro; Alongi, Filippo; Clerici, Elena; Lobefalo, Francesca

    2014-01-01

    Data in the literature suggest the existence of oligometastatic disease, a state in which metastases are limited in number and site. Different kinds of local therapies have been used for the treatment of limited metastases and in the recent years reports on the use of Stereotactic Ablative radiotherapy (SABR) are emerging and the early results on local control are promising. From October 2010 to February 2012, 76 consecutive patients for 118 lung lesions were treated. SABR was performed in case of controlled primary tumor, long-term of progression disease, exclusion of surgery, and number of metastatic sites ≤ 5. Different kinds of primary tumors were treated, the most common were lung and colon-rectal cancer. The total dose prescribed varied according to tumor site and maximum diameter. Dose prescription was 48 Gy in 4 fractions for peripheral lesions, 60 Gy in 8 fractions for central lesions and 60 Gy in 3 fractions for peripheral lesions with diameter ≤ 2 cm. Dosimetric planning objectives were met for the cohort of patients with in particular V98% = 98.1 ± 3.4% for the CTV and mean lung dose of 3.7 ± 3.8 Gy. Radiological response was obtained in the vast majority of patients. The local control at 1, 2 and 3 years was 95%, 89% and 89% respectively. No major pulmonary toxicity, chest pain or rib fracture occurred. The median follow up was 20 months (range 6–45 months). Overall Survival (OS) at 1, 2 and 3 years was 84.1%, 73% and 73% respectively. SABR is feasible with limited morbidity and promising results in terms of local contro, survival and toxicity

  20. Carotid body paragangliomas : a systematic study on management with surgery and radiotherapy

    NARCIS (Netherlands)

    Suarez, Carlos; Rodrigo, Juan P.; Mendenhall, William M.; Hamoir, Marc; Silver, Carl E.; Gregoire, Vincent; Strojan, Primoz; Neumann, Hartmut P. H.; Obholzer, Rupert; Offergeld, Christian; Langendijk, Johannes A.; Rinaldo, Alessandra; Ferlito, Alfio

    The definitive universally accepted treatment for carotid body tumors (CBT) is surgery. The impact of surgery on cranial nerves and the carotid artery has often been underestimated. Alternatively, a few CBTs have been followed without treatment or irradiation. The goal of this study is to summarize

  1. Radiotherapy; Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Debus, J. [Univ. Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie; Wenz, F. (eds.) [Universitaetsklinikum Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2006-07-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy.

  2. Safety and Efficacy of Intensity-Modulated Stereotactic Body Radiotherapy Using Helical Tomotherapy for Lung Cancer and Lung Metastasis

    Directory of Open Access Journals (Sweden)

    Aiko Nagai

    2014-01-01

    Full Text Available Stereotactic body radiotherapy (SBRT proved to be an effective treatment with acceptable toxicity for lung tumors. However, the use of helical intensity-modulated (IM SBRT is controversial. We investigated the outcome of lung tumor patients treated by IMSBRT using helical tomotherapy with a Japanese standard fractionation schedule of 48 Gy in 4 fractions (n=37 or modified protocols of 50–60 Gy in 5–8 fractions (n=35. Median patient’s age was 76 years and median follow-up period for living patients was 20 months (range, 6–46. The median PTV was 6.9 cc in the 4-fraction group and 14 cc in the 5- to 8-fraction group (P=0.001. Grade 2 radiation pneumonitis was seen in 2 of 37 patients in the 4-fraction group and in 2 of 35 patients in the 5- to 8-fraction group (log-rank P=0.92. Other major complications were not observed. The LC rates at 2 years were 87% in the 4-fraction group and 83% in the 5- to 8-fraction group. Helical IMSBRT for lung tumors is safe and effective. Patients with a high risk of developing severe complications may also be safely treated using 5–8 fractions. The results of the current study warrant further studies of helical IMSBRT.

  3. Outcomes following definitive stereotactic body radiotherapy for patients with Child-Pugh B or C hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Culleton, Shaelyn; Jiang, Haiyan; Haddad, Carol R.; Kim, John; Brierley, Jim; Brade, Anthony; Ringash, Jolie; Dawson, Laura A.

    2014-01-01

    Purpose: To report outcomes in patients with Child-Pugh B or C (CP B/C) hepatocellular carcinoma (HCC) treated with stereotactic body radiotherapy (SBRT). Methods and materials: A prospective study of SBRT was developed for patients with CP B7 or B8 unresectable HCC, <10 cm. Selected ineligible patients (e.g. CP > B8, >10 cm) treated off-study from 2004 to July 2012 were also reviewed. Patients were excluded if they were treated as a bridge-to-liver-transplant. Results: 29 patients with CP B/C HCC were treated with SBRT (median dose 30 Gy in 6 fractions) from 2004 to December 2012. The majority had CP B7 liver function (69%) and portal vein tumor thrombosis (76%). The median survival was 7.9 months (95% CI: 2.8–15.1). Survival was significantly better in patients with CP = B7 and AFP ⩽ 4491 ng/mL. Of 16 evaluable patients, 63% had a decline in CP score by ⩾2 points at 3 months. Conclusion: SBRT is a treatment option for selected HCC patients with small HCCs and modestly impaired (CP B7) liver function

  4. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro

    2012-01-01

    The purpose of this study was to identify factors affecting local control of stereotactic body radiotherapy (SBRT) for lung tumors including primary lung cancer and metastatic lung tumors. Between June 2006 and June 2009, 159 lung tumors in 144 patients (primary lung cancer, 128; metastatic lung tumor, 31) were treated with SBRT with 48-60 Gy (mean 50.1 Gy) in 4-5 fractions. Higher doses were given to larger tumors and metastatic tumors in principle. Assessed factors were age, gender, tumor origin (primary vs. metastatic), histological subtype, tumor size, tumor appearance (solid vs. ground glass opacity), maximum standardized uptake value of positron emission tomography using 18 F-fluoro-2-deoxy-D-glucose, and SBRT doses. Follow-up time was 1-60 months (median 18 months). The 1-, 2-, and 3-year local failure-free rates of all lesions were 90, 80, and 77%, respectively. On univariate analysis, metastatic tumors (p<0.0001), solid tumors (p=0.0246), and higher SBRT doses (p=0.0334) were the statistically significant unfavorable factors for local control. On multivariate analysis, only tumor origin was statistically significant (p=0.0027). The 2-year local failure-free rates of primary lung cancer and metastatic lung tumors were 87 and 50%, respectively. A metastatic tumor was the only independently significant unfavorable factor for local control after SBRT. (author)

  5. Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform

    Science.gov (United States)

    Cai, Jing; Wang, Ziheng; Yin, Fang-Fang

    2011-01-01

    The objective of this study is to investigate accuracy of motion tracking of cine magnetic resonance imaging (MRI) for image-guided stereotactic body radiotherapy. A phantom platform was developed in this work to fulfill the goal. The motion phantom consisted of a platform, a solid thread, a motor and a control system that can simulate motion in various modes. To validate its reproducibility, the phantom platform was setup three times and imaged with fluoroscopy using an electronic portal imaging device (EPID) for the same motion profile. After the validation test, the phantom platform was evaluated using cine MRI at 2.5 frames/second on a 1.5T GE scanner using five different artificial profiles and five patient profiles. The above profiles were again measured with EPID fluoroscopy and used as references. Discrepancies between measured profiles from cine MRI and EPID were quantified using root-mean-square (RMS) and standard deviation (SD). Pearson’s product moment correlational analysis was used to test correlation. The standard deviation for the reproducibility test was 0.28 mm. The discrepancies (RMS) between all profiles measured by cine MRI and EPID fluoroscopy ranged from 0.30 to 0.49 mm for artificial profiles and ranged from 0.75 to 0.91 mm for five patient profiles. The cine MRI sequence could precisely track phantom motion and the proposed motion phantom was feasible to evaluate cine MRI accuracy. PMID:29296304

  6. EPID-based in vivo dosimetry for stereotactic body radiotherapy of non-small cell lung tumors: Initial clinical experience.

    Science.gov (United States)

    Consorti, R; Fidanzio, A; Brainovich, V; Mangiacotti, F; De Spirito, M; Mirri, M A; Petrucci, A

    2017-10-01

    EPID-based in vivo dosimetry (IVD) has been implemented for stereotactic body radiotherapy treatments of non-small cell lung cancer to check both isocenter dose and the treatment reproducibility comparing EPID portal images. 15 patients with lung tumors of small dimensions and treated with volumetric modulated arc therapy were enrolled for this initial experience. IVD tests supplied ratios R between in vivo reconstructed and planned isocenter doses. Moreover a γ-like analysis between daily EPID portal images and a reference one, in terms of percentage of points with γ-value smaller than 1, P γlevels of 5% for R ratio, P γlevel, and an average P γ90%. Paradigmatic discrepancies were observed in three patients: a set-up error and a patient morphological change were identified thanks to CBCT image analysis whereas the third discrepancy was not fully justified. This procedure can provide improved patient safety as well as a first step to integrate IVD and CBCT dose recalculation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. An estimate of the radiation-induced cancer risk from the whole-body stray radiation exposure in neutron radiotherapy

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1982-01-01

    1980 BEIR III risk factors have been used to estimate the secondary cancer risks from the whole-body stray radiation exposures occurring in neutron radiotherapy. Risks were calculated using linear, linear-quadratic and quadratic dose-response models for the gamma component of the stray radiation. The linear dose-response model was used to calculate risk for the neutron component of the stray radiation. These estimates take into consideration for the first time the age and sex distribution of patients undergoing neutron therapy. Changes in risk as a function of the RBE (10-100) assigned to the stray neutron radiation component have also been assessed. Excess risks in neutron-treated patients have been compared with excess risks for photon-treated patients and with the expected incidence of cancer in a normal population having the same age and sex distribution. Results indicate that it will be necessary to tolerate a higher incidence of secondary cancers in patients undergoing fast neutron therapy than is the case with conventional photon therapy. For neutron RBEs of less than 50 the increased risk is only a fraction of the normal expected incidence of cancer in this population. Comparison of the radiation-induced risk with reported normal tissue complication rates in the treatment volume indicates that the excess cancer risk is substantially lower than the risk from other late normal tissue effects. (author)

  8. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  9. Chondrosarcoma of the Mobile Spine and Sacrum

    Directory of Open Access Journals (Sweden)

    Ryan M. Stuckey

    2011-01-01

    Full Text Available Chondrosarcoma is a rare malignant tumor of bone. This family of tumors can be primary malignant tumors or a secondary malignant transformation of an underlying benign cartilage tumor. Pain is often the initial presenting complaint when chondrosarcoma involves the spine. In the mobile spine, chondrosarcoma commonly presents within the vertebral body and shows a predilection for the thoracic spine. Due to the resistance of chondrosarcoma to both radiation and chemotherapy, treatment is focused on surgery. With en bloc excision of chondrosarcoma of the mobile spine and sacrum patients can have local recurrence rates as low as 20%.

  10. Hypofractionated stereotactic body radiotherapy (SBRT) for liver metastases. A retrospective analysis of 74 patients treated in the Klinikum rechts der Isar Munich

    International Nuclear Information System (INIS)

    Heppt, Franz Johannes

    2013-01-01

    Purpose of this study was to evaluate the outcome of stereotactic body radiotherapy (SBRT) of liver metastases and prognostic factors for local control and overall survival. From 2000 to 2009 74 patients with 91 metastases were treated at the Department for Radiation Therapy and Oncology (TU Muenchen). With an observed local control rate of 75% after 1 year, SBRT proved as an effective local treatment option. Unfortunately, systemic tumor progression still dominates long term survival in many patients.

  11. Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral Body in Adolescent with T9 Primary Bone Tumor.

    Science.gov (United States)

    Choy, Wen Jie; Mobbs, Ralph J; Wilcox, Ben; Phan, Steven; Phan, Kevin; Sutterlin, Chester E

    2017-09-01

    Neurosurgery and spine surgery have the potential to benefit from the use of 3-dimensional printing (3DP) technology due to complex anatomic considerations and the delicate nature of surrounding structures. We report a procedure that uses a 3D-printed titanium T9 vertebral body implant post T9 vertebrectomy for a primary bone tumor. A 14-year-old female presented with progressive kyphoscoliosis and a pathologic fracture of the T9 vertebra with sagittal and coronal deformity due to a destructive primary bone tumor. Surgical resection and reconstruction was performed in combination with a 3D-printed, patient-specific implant. Custom design features included porous titanium end plates, corrective angulation of the implant to restore sagittal balance, and pedicle screw holes in the 3D implant to assist with insertion of the device. In addition, attachment of the anterior column construct to the posterior pedicle screw construct was possible due to the customized features of the patient-specific implant. An advantage of 3DP is the ability to manufacture patient-specific implants, as in the current case example. Additionally, the use of 3DP has been able to reduce operative time significantly. Surgical procedures can be preplanned using 3DP patient-specific models. Surgeons can train before performing complex procedures, which enhances their presurgical planning in order to maximize patient outcomes. When considering implants and prostheses, the use of 3DP allows a superior anatomic fit for the patient, with the potential to improve restoration of anatomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Magnetic resonance imaging of the spine in multiple myeloma

    International Nuclear Information System (INIS)

    Tanaka, Masato; Nakahara, Shinnosuke; Koura, Hiroshi; Kai, Nobuo; Asaumi, Koji; Tanaka, Shunsuke; Sezaki, Tatsuo; Fukuda, Shunichi; Sunami, Kazutaka

    2000-01-01

    The characteristics of diagnostic imaging of the spine in multiple myeloma were examined. Twenty-one patients with stage II-III multiple myeloma (male=12, female=9, mean age=64) underwent MRI of the spine. Other diagnostic imaging modalities used in these patients included, CT bone scintigraphy, and radiography. All images of the spine were assessed and compared with the MRI images. The type of progression was evaluated based on the tumor distribution classification established by Sezaki. T1-weighted images of all 21 patients showed low signals in vertebral bodies, including 14 cases with a focal low signal intensity and 7 cases with diffuse low signal intensity. On the T2-weighted images, 15 of the 21 cases (71%) showed equivalent signals, while T2*-weighted images obtained by the field-echo method yielded high signals in 10 out of 11 cases. It was difficult to differentiate between senile osteoporosis and multiple myeloma by MRI, but CT images clearly distinguished between them. The results suggested that fat-suppressive T1-contrast images and T2*-weighted images are useful in detecting lesions, especially focal low signal intensity lesions. Patients with the multiple-lesion-tumor type of disease were more likely to develop paralysis more than those with the diffuse myeloproliferative type. Thus, the tumor distribution classification established by Sezaki was useful in considering radiotherapy for the treatment of patients at risk of paralysis. Bone scintigraphy revealed accumulation only in spinal lesions caused by compression fractures, while CT appeared to be useful in localizing the diffuse myeloproliferative type of lesions. The problems associated with diagnosis by MRI are differentiation of multiple myeloma from senile osteoporosis and metastatic bone tumors of the spine. There are few specific findings in multiple myeloma. (K.H.)

  13. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kuenzler, Thomas [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Grezdo, Jozef [Department of Radiotherapy, St Elisabeth Institute of Oncology, Bratislava (Slovakia); Bogner, Joachim [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Birkfellner, Wolfgang [Center for Biomedical Engineering and Physics, Medical University Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria)

    2007-04-21

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm{sup 3} tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm{sup 3} were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical

  14. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    International Nuclear Information System (INIS)

    Kuenzler, Thomas; Grezdo, Jozef; Bogner, Joachim; Birkfellner, Wolfgang; Georg, Dietmar

    2007-01-01

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm 3 tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm 3 were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target

  15. Influence of rotational setup error on tumor shift in bony anatomy matching measured with pulmonary point registration in stereotactic body radiotherapy for early lung cancer

    International Nuclear Information System (INIS)

    Suzuki, Osamu; Nishiyama, Kinji; Ueda, Yoshihiro; Miyazaki, Masayoshi; Tsujii, Katsutomo

    2012-01-01

    The objective of this study was to examine the correlation between the patient rotational error measured with pulmonary point registration and tumor shift after bony anatomy matching in stereotactic body radiotherapy for lung cancer. Twenty-six patients with lung cancer who underwent stereotactic body radiotherapy were the subjects. On 104 cone-beam computed tomography measurements performed prior to radiation delivery, rotational setup errors were measured with point registration using pulmonary structures. Translational registration using bony anatomy matching was done and the three-dimensional vector of tumor displacement was measured retrospectively. Correlation among the three-dimensional vector and rotational error and vertebra-tumor distance was investigated quantitatively. The median and maximum rotational errors of the roll, pitch and yaw were 0.8, 0.9 and 0.5, and 6.0, 4.5 and 2.5, respectively. Bony anatomy matching resulted in a 0.2-1.6 cm three-dimensional vector of tumor shift. The shift became larger as the vertebra-tumor distance increased. Multiple regression analysis for the three-dimensional vector indicated that in the case of bony anatomy matching, tumor shifts of 5 and 10 mm were expected for vertebra-tumor distances of 4.46 and 14.1 cm, respectively. Using pulmonary point registration, it was found that the rotational setup error influences the tumor shift. Bony anatomy matching is not appropriate for hypofractionated stereotactic body radiotherapy with a tight margin. (author)

  16. Radiotherapy for the medulloblastoma

    International Nuclear Information System (INIS)

    Gose, Kyuhei; Imajo, Yoshinari; Imanaka, Kazufumi

    1983-01-01

    Eighteen patients with medulloblastoma, treated between 1972 and 1981, at Kobe University School of Medicine, were retrospectively studied. Of those completing post operative irradiation, 50% have survived for 2 years, 15% for 5 years and mean survival periods was 22.2 months. 13 out of 18 patients developed local recurrence and spinal dissemination. The mean time from the initial radiotherapy to recurrence was 8.5 months. It was suggested that posterior fossa should recieve 5,000 rad, the spine should 2,000 rad and recurrences should be treated by the combination of radiotherapy and chemotherapy. (author)

  17. Radiotherapy and subsequent thyroid cancer in German childhood cancer survivors: a nested case–control study

    International Nuclear Information System (INIS)

    Finke, Isabelle; Scholz-Kreisel, Peter; Hennewig, Ulrike; Blettner, Maria; Spix, Claudia

    2015-01-01

    Radiotherapy is associated with a risk of subsequent neoplasms (SN) in childhood cancer survivors. It has been shown that children’s thyroid glands are especially susceptible. The aim is to quantify the risk of a second neck neoplasm after primary cancer radiotherapy with emphasis on thyroid cancer. We performed a nested case–control study: 29 individuals, diagnosed with a solid SN in the neck region, including 17 with thyroid cancer, in 1980–2002 and 57 matched controls with single neoplasms were selected from the database of the German Childhood Cancer Registry. We investigated the risk associated with radiotherapy exposure given per body region, adjusted for chemotherapy. 16/17 (94.1 %) thyroid SN cases, 9/12 (75 %) other neck SN cases and 34/57 (59.6 %) controls received radiotherapy, with median doses of 27.8, 25 and 24 Gy, respectively. Radiotherapy exposure to the neck region increased the risk of the other neck SNs by 4.2 % (OR = 1.042/Gy (95 %-CI 0.980-1.109)) and of thyroid SN by 5.1 % (OR = 1.051/Gy (95 %-CI 0.984-1.123)), and radiotherapy to the neck or spine region increased the thyroid risk by 6.6 % (OR = 1.066/Gy (95 %-CI 1.010-1.125)). Chemotherapy was not a confounder. Exposure to other body regions was not associated with increased risk. Radiotherapy in the neck or spine region increases the risk of thyroid cancer, while neck exposure increases the risk of any other solid SN to a similar extent. Other studies showed a decreasing risk of subsequent thyroid cancer for very high doses; we cannot confirm this

  18. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M; Mescioglu, I

    2016-01-01

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  19. Salvage Stereotactic Body Radiotherapy (SBRT) Following In-Field Failure of Initial SBRT for Spinal Metastases.

    Science.gov (United States)

    Thibault, Isabelle; Campbell, Mikki; Tseng, Chia-Lin; Atenafu, Eshetu G; Letourneau, Daniel; Yu, Eugene; Cho, B C John; Lee, Young K; Fehlings, Michael G; Sahgal, Arjun

    2015-10-01

    We report our experience in salvaging spinal metastases initially irradiated with stereotactic body radiation therapy (SBRT), who subsequently progressed with imaging-confirmed local tumor progression, and were re-irradiated with a salvage second SBRT course to the same level. From a prospective database, 56 metastatic spinal segments in 40 patients were identified as having been irradiated with a salvage second SBRT course to the same level. In addition, 24 of 56 (42.9%) segments had initially been irradiated with conventional external beam radiation therapy before the first course of SBRT. Local control (LC) was defined as no progression on magnetic resonance imaging at the treated segment, and calculated according to the competing risk model. Overall survival (OS) was evaluated for each patient treated by use of the Kaplan-Meier method. The median salvage second SBRT total dose and number of fractions was 30 Gy in 4 fractions (range, 20-35 Gy in 2-5 fractions), and for the first course of SBRT was 24 Gy in 2 fractions (range, 20-35 Gy in 1-5 fractions). The median follow-up time after salvage second SBRT was 6.8 months (range, 0.9-39 months), the median OS was 10.0 months, and the 1-year OS rate was 48%. A longer time interval between the first and second SBRT courses predicted for better OS (P=.02). The crude LC was 77% (43/56), the 1-year LC rate was 81%, and the median time to local failure was 3.0 months (range, 2.7-16.7 months). Of the 13 local failures, 85% (11/13) and 46% (6/13) showed progression within the epidural space and paraspinal soft tissues, respectively. Absence of baseline paraspinal disease predicted for better LC (Pinitial SBRT is a feasible and efficacious salvage treatment option. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. WE-H-BRC-02: Failure Mode and Effect Analysis of Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusu, I; Thomas, T; Roeske, J; Price, J; Perino, C; Surucu, M [Loyola University Chicago, Maywood, IL (United States); Mescioglu, I [Lewis University, Romeoville, IL (United States)

    2016-06-15

    Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined as the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.

  1. Importance of contouring the cervical spine levels in initial intensity-modulated radiation therapy radiation for head and neck cancers: Implications for re-irradiation

    Directory of Open Access Journals (Sweden)

    Parashar Bhupesh

    2009-01-01

    Full Text Available Aim: To evaluate the maximum differential cervical spinal (C-spine cord dose in intensity-modulated radiation therapy (IMRT plans of patients undergoing radiotherapy for treatment of head and neck cancer. Materials and Methods: The C-spine of ten head and neck cancer patients that were planned using IMRT and each cervical vertebral body and the right and left sides was contoured by splitting the cord in the center. Dose-volume histograms (DVH and maximum point doses were obtained for each contour and compared. Results: The dose to the cord varied with the location of the primary tumor but such variation was not consistently seen. This report provides information that is critical for planning reirradiation treatments. We recommend that contouring of the C-spine cord with IMRT should include outlining of each cervical cord level and identification of the right and the left sides of the cord on each plan.

  2. Stereotactic body radiotherapy in oligometastatic prostate cancer patients with isolated lymph nodes involvement: a two-institution experience.

    Science.gov (United States)

    Ingrosso, Gianluca; Trippa, Fabio; Maranzano, Ernesto; Carosi, Alessandra; Ponti, Elisabetta; Arcidiacono, Fabio; Draghini, Lorena; Di Murro, Luana; Lancia, Andrea; Santoni, Riccardo

    2017-01-01

    Stereotactic body radiotherapy (SBRT) is emerging as a treatment option in oligometastatic cancer patients. This retrospective study aimed to analyze local control, biochemical progression-free survival (b-PFS), and toxicity in patients affected by isolated prostate cancer lymph node metastases. Finally, we evaluated androgen deprivation therapy-free survival (ADT-FS). Forty patients with 47 isolated lymph nodes of recurrent prostate cancer were treated with SBRT. Mostly, two different fractionation schemes were used: 5 × 7 Gy in 23 (48.9 %) lesions and 5 × 8 Gy in 13 (27.7 %) lesions. Response to treatment was assessed with periodical PSA evaluation. Toxicity was registered according to RTOG/EORTC criteria. With a mean follow-up of 30.18 months, local control was achieved in 98 % of the cases, with a median b-PFS of 24 months. We obtained a 2-year b-PFS of 44 % with 40 % of the patients ADT-free at last follow-up (mean value 26.18 months; range 3.96-59.46), whereas 12.5 % had a mean ADT-FS of 13.58 months (range 2.06-37.13). Late toxicity was observed in one (2.5 %) patient who manifested a grade 3 gastrointestinal toxicity 11.76 months after the end of SBRT. Our study demonstrates that SBRT is safe, effective, and minimally invasive in the eradication of limited nodal metastases, yielding an important delay in prescribing ADT.

  3. Lung stereotactic body radiotherapy using a coplanar versus a non-coplanar beam technique: a comparison of clinical outcomes

    Science.gov (United States)

    Stauder, Michael C.; Miller, Robert C.; Garces, Yolanda I.; Foote, Robert L.; Sarkaria, Jann N.; Bauer, Heather J.; Mayo, Charles S.; Olivier, Kenneth R.

    2013-01-01

    Objectives To determine if lung stereotactic body radiotherapy (SBRT) using a coplanar beam technique was associated with similar outcomes as lung SBRT using a non-coplanar beam technique. Methods A retrospective review was performed of patients undergoing lung SBRT between January 2008 and April 2011. SBRT was initially delivered with multiple non-coplanar, non-overlapping beams; however, starting in December 2009, SBRT was delivered predominantly with all coplanar beams in order to reduce treatment time and complexity. Results This analysis included 149 patients; the median follow-up was 21 months. SBRT was delivered for primary (n = 90) or recurrent (n = 17) non-small cell lung cancer, or lung oligometastasis (n = 42). The most common dose (Gy)/fraction (fx) regimens were 48 Gy/4 fx (39%), 54 Gy/3 fx (37%), and 50 Gy/5 fx (17%). The beam arrangement was coplanar in 61 patients (41%) and non-coplanar in 88 patients (59%). In patients treated with 54 Gy/3 fx, the mean treatment times per fraction for the coplanar and non-coplanar cohorts were 10 and 14 minutes (p < 0.0001). Kaplan-Meier 2-year estimates of overall survival (OS), progression-free survival, and local control (LC) for the coplanar and non-coplanar cohorts were 65% vs. 56% (p = 0.30), 47% vs. 39% (p = 0.71), and 92% and 92% (p = 0.94), respectively. The 1-year estimates of grade 2-5 pulmonary toxicity for the coplanar and non-coplanar cohorts were 11% and 17%, respectively (p = 0.30). On multivariate analysis, beam arrangement was not significantly associated with OS, LC or pulmonary toxicity. Conclusions Patients treated with lung SBRT using a coplanar technique had similar outcomes as those treated with a non-coplanar technique. PMID:29296365

  4. Phantom-to-clinic development of hypofractionated stereotactic body radiotherapy for early-stage glottic laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chuxiong [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Chun, Stephen G. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Sumer, Baran D. [Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Nedzi, Lucien A.; Abdulrahman, Ramzi E. [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Yordy, John S. [Valley Radiation Therapy Center, Anchorage, AK (United States); Lee, Pam; Hrycushko, Brian [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Solberg, Timothy D. [Department of Radiation Oncology, Abramson Comprehensive Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (United States); Ahn, Chul [Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX (United States); Timmerman, Robert D. [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States); Schwartz, David L., E-mail: david.schwartz214@gmail.com [Department of Radiation Oncology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX (United States)

    2017-07-01

    The purpose of this study was to commission and clinically test a robotic stereotactic delivery system (CyberKnife, Sunnyvale, CA) to treat early-stage glottic laryngeal cancer. We enrolled 15 patients with cTis-T2N0M0 carcinoma of the glottic larynx onto an institutional review board (IRB)-approved clinical trial. Stereotactic body radiotherapy (SBRT) plans prescribed 45 Gy/10 fractions to the involved hemilarynx. SBRT dosimetry was compared with (1) standard carotid-sparing laryngeal intensity-modulated radiation therapy (IMRT) and (2) selective hemilaryngeal IMRT. Our results demonstrate that SBRT plans improved sparing of the contralateral arytenoid (mean 20.0 Gy reduction, p <0.001), ipsilateral carotid D{sub max} (mean 20.6 Gy reduction, p <0.001), contralateral carotid D{sub max} (mean 28.1 Gy reduction, p <0.001), and thyroid D{sub mean} (mean 15.0 Gy reduction, p <0.001) relative to carotid-sparing IMRT. SBRT also modestly improved dose sparing to the contralateral arytenoid (mean 4.8 Gy reduction, p = 0.13) and spinal cord D{sub max} (mean 4.9 Gy reduction, p = 0.015) relative to selective hemilaryngeal IMRT plans. This “phantom-to-clinic” feasibility study confirmed that hypofractionated SBRT treatment for early-stage laryngeal cancer can potentially spare dose to adjacent normal tissues relative to current IMRT standards. Clinical efficacy and toxicity correlates continue to be collected through an ongoing prospective trial.

  5. Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters

    International Nuclear Information System (INIS)

    Jung, Jinhong; Choi, Eun Kyung; Kim, Jong Hoon; Yoon, Sang Min; Kim, So Yeon; Cho, Byungchul; Park, Jin-hong; Kim, Su Ssan; Song, Si Yeol; Lee, Sang-wook; Ahn, Seung Do

    2013-01-01

    To investigate the clinical and dose–volumetric parameters that predict the risk of radiation-induced liver disease (RILD) for patients with small, unresectable hepatocellular carcinoma (HCC) treated with stereotactic body radiotherapy (SBRT). Between March 2007 and December 2009, 92 patients with HCC treated with SBRT were reviewed for RILD within 3 months of completing treatment. RILD was evaluated according to the Common Terminology Criteria for Adverse Events, version 3.0. A dose of 10–20 Gy (median, 15 Gy) per fraction was given over 3–4 consecutive days for a total dose of 30–60 Gy (median, 45 Gy). The following clinical and dose–volumetric parameters were examined: age, gender, Child-Pugh class, presence of hepatitis B virus, gross tumor volume, normal liver volume, radiation dose, fraction size, mean dose to the normal liver, and normal liver volumes receiving from < 5 Gy to < 60 Gy (in increments of 5 Gy). Seventeen (18.5%) of the 92 patients developed grade 2 or worse RILD after SBRT (49 patients in grade 1, 11 in grade 2, and 6 in ≥ grade 3). On univariate analysis, Child-Pugh class was identified as a significant clinical parameter, while normal liver volume and normal liver volumes receiving from < 15 Gy to < 60 Gy were the significant dose–volumetric parameters. Upon multivariate analysis, only Child-Pugh class was a significant parameter for predicting grade 2 or worse RILD. The Child-Pugh B cirrhosis was found to have a significantly greater susceptibility to the development of grade 2 or worse RILD after SBRT in patients with small, unresectable HCC. Additional efforts aimed at testing other models to predict the risk of RILD in a large series of HCC patients treated with SBRT are needed

  6. Clinical evaluation of an endorectal immobilization system for use in prostate hypofractionated Stereotactic Ablative Body Radiotherapy (SABR)

    International Nuclear Information System (INIS)

    Nicolae, Alexandru; Davidson, Melanie; Easton, Harry; Helou, Joelle; Musunuru, Hima; Loblaw, Andrew; Ravi, Ananth

    2015-01-01

    The objective of this study was to evaluate a novel prostate endorectal immobilization system (EIS) for improving the delivery of hypofractionated Stereotactic Ablative Body Radiotherapy (SABR) for prostate cancer. Twenty patients (n = 20) with low- or intermediate-risk prostate cancer (T1-T2b, Gleason Score < 7, PSA ≤ 20 ng/mL), were treated with an EIS in place using Volumetric Modulated Arc Therapy (VMAT), to a prescription dose of 26 Gy delivered in 2 fractions once per week; the intent of the institutional clinical trial was an attempt to replicate brachytherapy-like dosimetry using SABR. EBT3 radiochromic film embedded within the EIS was used as a quality assurance measure of the delivered dose; additionally, prostate intrafraction motion captured using pre- and post-treatment conebeam computed tomography (CBCT) scans was evaluated. Treatment plans were generated for patients with- and without the EIS to evaluate its effects on target and rectal dosimetry. None of the observed 3-dimensional prostate displacements were ≥ 3 mm over the elapsed treatment time. A Gamma passing rate of 95.64 ± 4.28 % was observed between planned and delivered dose profiles on EBT3 film analysis in the low-dose region. No statistically significant differences between treatment plans with- and without-EIS were observed for rectal, bladder, clinical target volume (CTV), and PTV contours (p = 0.477, 0.484, 0.487, and 0.487, respectively). A mean rectal V80% of 1.07 cc was achieved for plans using the EIS. The EIS enables the safe delivery of brachytherapy-like SABR plans to the prostate while having minimal impact on treatment planning and rectal dosimetry. Consistent and reproducible immobilization of the prostate is possible throughout the duration of these treatments using such a device

  7. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  8. Positioning accuracy for lung stereotactic body radiotherapy patients determined by on-treatment cone-beam CT imaging

    Science.gov (United States)

    Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P

    2012-01-01

    Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927

  9. Dose–Response for Stereotactic Body Radiotherapy in Early-Stage Non–Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Olsen, Jeffrey R.; Robinson, Clifford G.; El Naqa, Issam; Creach, Kimberly M.; Drzymala, Robert E.; Bloch, Charles; Parikh, Parag J.; Bradley, Jeffrey D.

    2011-01-01

    Purpose: To compare the efficacy of three lung stereotactic body radiotherapy (SBRT) regimens in a large institutional cohort. Methods: Between 2004 and 2009, 130 patients underwent definitive lung cancer SBRT to a single lesion at the Mallinckrodt Institute of Radiology. We delivered 18 Gy × 3 fractions for peripheral tumors (n = 111) and either 9 Gy × 5 fractions (n = 8) or 10 Gy × 5 fractions (n = 11) for tumors that were central or near critical structures. Univariate and multivariate analysis of prognostic factors was performed using the Cox proportional hazard model. Results: Median follow-up was 11, 16, and 13 months for the 9 Gy × 5, 10 Gy × 5, and 18 Gy × 3 groups, respectively. Local control statistics for Years 1 and 2 were, respectively, 75% and 50% for 9 Gy × 5, 100% and 100% for 10 Gy × 5, and 99% and 91% for 18 Gy × 3. Median overall survival was 14 months, not reached, and 34 months for the 9 Gy × 5, 10 Gy × 5, and 18 Gy × 3 treatments, respectively. No difference in local control or overall survival was found between the 10 Gy × 5 and 18 Gy × 3 groups on log–rank test, but both groups had improved local control and overall survival compared with 9 Gy × 5. Treatment with 9 Gy × 5 was the only independent prognostic factor for reduced local control on multivariate analysis, and increasing age, increasing tumor volume, and poor performance status predicted independently for reduced overall survival. Conclusion: Treatment regimens of 10 Gy × 5 and 18 Gy × 3 seem to be efficacious for lung cancer SBRT and provide superior local control and overall survival compared with 9 Gy × 5.

  10. Clinical results of stereotactic body radiotherapy for Stage I small-cell lung cancer. A single institutional experience

    International Nuclear Information System (INIS)

    Shioyama, Yoshiyuki; Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Nonoshita, Takeshi; Asai, Kaori; Terashima, Koutarou; Matsumoto, Keiji; Hirata, Hideki; Honda, Hiroshi

    2013-01-01

    The purpose of this study was to evaluate the treatment outcomes of stereotactic body radiotherapy (SBRT) for Stage I small-cell lung cancer (SCLC). From April 2003 to September 2009, a total of eight patients with Stage I SCLC were treated with SBRT in our institution. In all patients, the lung tumors were proven as SCLC pathologically. The patients' ages were 58-84 years (median: 74). The T-stage of the primary tumor was T1a in two, T1b in two and T2a in four patients. Six of the patients were inoperable because of poor cardiac and/or pulmonary function, and two patients refused surgery. SBRT was given using 7-8 non-coplanar beams with 48 Gy in four fractions. Six of the eight patients received 3-4 cycles of chemotherapy using carboplatin (CBDCA) + etoposide (VP-16) or cisplatin (CDDP) + irinotecan (CPT-11). The follow-up period for all patients was 6-60 months (median: 32). Six patients were still alive without any recurrence. One patient died from this disease and one died from another disease. The overall and disease-specific survival rate at three years was 72% and 86%, respectively. There were no patients with local progression of the lesion targeted by SBRT. Only one patient had nodal recurrence in the mediastinum at 12 months after treatment. The progression-free survival rate was 71%. No Grade 2 or higher SBRT-related toxicities were observed. SBRT plus chemotherapy could be an alternative to surgery with chemotherapy for inoperable patients with Stage I small-cell lung cancer. However, further investigation is needed using a large series of patients. (author)

  11. Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Pyo; Lee, Jeong Shim; Cho, Yeona; Chung, Seung Yeun; Lee, Jason Joon Bock; Lee, Chang Geol; Cho, Jae Ho [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Although stereotactic ablative body radiotherapy (SABR) is widely used therapeutic technique, predictive factors of radiation pneumonitis (RP) after SABR remain undefined. We aimed to investigate the predictive factors affecting RP in patients with primary or metastatic lung tumors who received SABR. From 2012 to 2015, we reviewed 59 patients with 72 primary or metastatic lung tumors treated with SABR, and performed analyses of clinical and dosimetric variables related to symptomatic RP. SABR was delivered as 45–60 Gy in 3–4 fractions, which were over 100 Gy in BED when the α/β value was assumed to be 10. Tumor volume and other various dose volume factors were analyzed using median value as a cutoff value. RP was graded per the Common Terminology Criteria for Adverse Events v4.03. At the median follow-up period of 11 months, symptomatic RP was observed in 13 lesions (12 patients, 18.1%), including grade 2 RP in 11 lesions and grade 3 in 2 lesions. Patients with planning target volume (PTV) of ≤14.35 mL had significantly lower rates of symptomatic RP when compared to others (8.6% vs. 27%; p = 0.048). Rates of symptomatic RP in patients with internal gross tumor volume (iGTV) >4.21 mL were higher than with ≤4.21 mL (29.7% vs. 6.1%; p = 0.017). The incidence of symptomatic RP following treatment with SABR was acceptable with grade 2 RP being observed in most patients. iGTV over 4.21 mL and PTV of over 14.35 mL were significant predictive factors related to symptomatic RP.

  12. Progression-free Survival Following Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Treatment-naive Recurrence: A Multi-institutional Analysis.

    Science.gov (United States)

    Ost, Piet; Jereczek-Fossa, Barbara Alicja; As, Nicholas Van; Zilli, Thomas; Muacevic, Alexander; Olivier, Kenneth; Henderson, Daniel; Casamassima, Franco; Orecchia, Roberto; Surgo, Alessia; Brown, Lindsay; Tree, Alison; Miralbell, Raymond; De Meerleer, Gert

    2016-01-01

    The literature on metastasis-directed therapy for oligometastatic prostate cancer (PCa) recurrence consists of small heterogeneous studies. This study aimed to reduce the heterogeneity by pooling individual patient data from different institutions treating oligometastatic PCa recurrence with stereotactic body radiotherapy (SBRT). We focussed on patients who were treatment naive, with the aim of determining if SBRT could delay disease progression. We included patients with three or fewer metastases. The Kaplan-Meier method was used to estimate distant progression-free survival (DPFS) and local progression-free survival (LPFS). Toxicity was scored using the Common Terminology Criteria for Adverse Events. In total, 163 metastases were treated in 119 patients. The median DPFS was 21 mo (95% confidence interval, 15-26 mo). A lower radiotherapy dose predicted a higher local recurrence rate with a 3-yr LPFS of 79% for patients treated with a biologically effective dose ≤100Gy versus 99% for patients treated with >100Gy (p=0.01). Seventeen patients (14%) developed toxicity classified as grade 1, and three patients (3%) developed grade 2 toxicity. No grade ≥3 toxicity occurred. These results should serve as a benchmark for future prospective trials. This multi-institutional study pools all of the available data on the use of stereotactic body radiotherapy for limited prostate cancer metastases. We concluded that this approach is safe and associated with a prolonged treatment progression-free survival. Copyright © 2015. Published by Elsevier B.V.

  13. Degenerative disorders of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, Massimo; Puglielli, Edoardo; Splendiani, Alessandra [University of L' Aquila, Department of Radiology, L' Aquila (Italy); Pistoia, Francesca; Spacca, Giorgio [S. Salvatore Hospital, Department of Neuroscience, L' Aquila (Italy)

    2005-03-01

    Patients with back pain and degenerative disorders of the spine have a significant impact on health care costs. Some authors estimate that up to 80% of all adults experience back pain at some point in their lives. Disk herniation represents one of the most frequent causes. Nevertheless, other degenerative diseases have to be considered. In this paper, pathology and imaging of degenerative spine diseases will be discussed, starting from pathophysiology of normal age-related changes of the intervertebral disk and vertebral body. (orig.)

  14. Degenerative disorders of the spine

    International Nuclear Information System (INIS)

    Gallucci, Massimo; Puglielli, Edoardo; Splendiani, Alessandra; Pistoia, Francesca; Spacca, Giorgio

    2005-01-01

    Patients with back pain and degenerative disorders of the spine have a significant impact on health care costs. Some authors estimate that up to 80% of all adults experience back pain at some point in their lives. Disk herniation represents one of the most frequent causes. Nevertheless, other degenerative diseases have to be considered. In this paper, pathology and imaging of degenerative spine diseases will be discussed, starting from pathophysiology of normal age-related changes of the intervertebral disk and vertebral body. (orig.)

  15. Intrafraction Variation of Mean Tumor Position During Image-Guided Hypofractionated Stereotactic Body Radiotherapy for Lung Cancer

    International Nuclear Information System (INIS)

    Shah, Chirag; Grills, Inga S.; Kestin, Larry L.; McGrath, Samuel; Ye Hong; Martin, Shannon K.; Yan Di

    2012-01-01

    Purpose: Prolonged delivery times during daily cone-beam computed tomography (CBCT)-guided lung stereotactic body radiotherapy (SBRT) introduce concerns regarding intrafraction variation (IFV) of the mean target position (MTP). The purpose of this study was to evaluate the magnitude of the IFV-MTP and to assess target margins required to compensate for IFV and postonline CBCT correction residuals. Patient, treatment, and tumor characteristics were analyzed with respect to their impact on IFV-MTP. Methods and Materials: A total of 126 patients with 140 tumors underwent 659 fractions of lung SBRT. Dose prescribed was 48 or 60 Gy in 12 Gy fractions. Translational target position correction of the MTP was performed via onboard CBCT. IFV-MTP was measured as the difference in MTP between the postcorrection CBCT and the posttreatment CBCT excluding residual error. Results: IFV-MTP was 0.2 ± 1.8 mm, 0.1 ± 1.9 mm, and 0.01 ± 1.5 mm in the craniocaudal, anteroposterior, and mediolateral dimensions and the IFV-MTP vector was 2.3 ± 2.1 mm. Treatment time and excursion were found to be significant predictors of IFV-MTP. An IFV-MTP vector greater than 2 and 5 mm was seen in 40.8% and 7.2% of fractions, respectively. IFV-MTP greater than 2 mm was seen in heavier patients with larger excursions and longer treatment times. Significant differences in IFV-MTP were seen between immobilization devices. The stereotactic frame immobilization device was found to be significantly less likely to have an IFV-MTP vector greater than 2 mm compared with the alpha cradle, BodyFIX, and hybrid immobilization devices. Conclusions: Treatment time and respiratory excursion are significantly associated with IFV-MTP. Significant differences in IFV-MTP were found between immobilization devices. Target margins for IFV-MTP plus post-correction residuals are dependent on immobilization device with 5-mm uniform margins being acceptable for the frame immobilization device.

  16. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  17. A Retrospective Comparison of Robotic Stereotactic Body Radiotherapy and Three-Dimensional Conformal Radiotherapy for the Reirradiation of Locally Recurrent Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Ozyigit, Gokhan; Cengiz, Mustafa; Yazici, Gozde; Yildiz, Ferah; Gurkaynak, Murat; Zorlu, Faruk; Yildiz, Demet; Hosal, Sefik; Gullu, Ibrahim; Akyol, Fadil

    2011-01-01

    Purpose: We assessed therapeutic outcomes of reirradiation with robotic stereotactic radiotherapy (SBRT) for locally recurrent nasopharyngeal carcinoma (LRNPC) patients and compared those results with three-dimensional conformal radiotherapy (CRT) with or without brachytherapy (BRT). Methods and Materials: Treatment outcomes were evaluated retrospectively in 51 LRNPC patients receiving either robotic SBRT (24 patients) or CRT with or without BRT (27 patients) in our department. CRT was delivered with a 6-MV linear accelerator, and a median total reirradiation dose of 57 Gy in 2 Gy/day was given. Robotic SBRT was delivered with CyberKnife (Accuray, Sunnyvale, CA). Patients in the SBRT arm received 30 Gy over 5 consecutive days. We calculated actuarial local control and cancer-specific survival rates for the comparison of treatment outcomes in SBRT and CRT arms. The Common Terminology Criteria for Adverse Events v3.0 was used for toxicity evaluation. Results: The median follow-up was 24 months for all patients. Two-year actuarial local control rates were 82% and 80% for SBRT and CRT arms, respectively (p = 0.6). Two-year cancer-specific survival rates were 64% and 47% for the SBRT and CRT arms, respectively (p = 0.4). Serious late toxicities (Grade 3 and above) were observed in 21% of patients in the SBRT arm, whereas 48% of patients had serious toxicity in the CRT arm (p = 0.04). Fatal complications occurred in three patients (12.5%) of the SBRT arm, and four patients (14.8%) of the CRT arm (p = 0.8). T stage at recurrence was the only independent predictor for local control and survival. Conclusion: Our robotic SBRT protocol seems to be feasible and less toxic in terms of late effects compared with CRT arm for the reirradiation of LRNPC patients.

  18. Clinical and molecular markers of long-term survival after oligometastasis-directed stereotactic body radiotherapy (SBRT).

    Science.gov (United States)

    Wong, Anthony C; Watson, Sydeaka P; Pitroda, Sean P; Son, Christina H; Das, Lauren C; Stack, Melinda E; Uppal, Abhineet; Oshima, Go; Khodarev, Nikolai N; Salama, Joseph K; Weichselbaum, Ralph R; Chmura, Steven J

    2016-07-15

    The selection of patients for oligometastasis-directed ablative therapy remains a challenge. The authors report on clinical and molecular predictors of survival from a stereotactic body radiotherapy (SBRT) dose-escalation trial for oligometastases. Patients who had from 1 to 5 metastases, a life expectancy of >3 months, and a Karnofsky performance status of >60 received escalating SBRT doses to all known cancer sites. Time to progression, progression-free survival, and overall survival (OS) were calculated at the completion of SBRT, and clinical predictors of OS were modeled. Primary tumor microRNA expression was analyzed to identify molecular predictors of OS. Sixty-one evaluable patients were enrolled from 2004 to 2009. The median follow-up was 2.3 years for all patients (range, 0.2-9.3 years) and 6.8 years for survivors (range, 2.0-9.3 years). The median, 2-year, and 5-year estimated OS were 2.4 years, 57%, and 32%, respectively. The rate of progression after SBRT was associated with an increased risk of death (hazard ratio [HR], 1.44; 95% confidence interval [CI], 1.24-1.82). The time from initial cancer diagnosis to metastasis (HR, 0.98; 95% CI, 0.98-0.99), the time from metastasis to SBRT (HR, 0.98; 95% CI, 0.98-0.99), and breast cancer histology (HR, 0.12; 95% CI, 0.07-0.37) were significant predictors of OS. In an exploratory analysis, a candidate classifier using expression levels of 3 microRNAs (miR-23b, miR-449a, and miR-449b) predicted survival among 17 patients who had primary tumor microRNA expression data available. A subset of oligometastatic patients achieves long-term survival after metastasis-directed SBRT. Clinical features and primary tumor microRNA expression profiling, if validated in an independent dataset, may help select oligometastatic patients most likely to benefit from metastasis-directed therapy. Cancer 2016;122:2242-50. © 2016 American Cancer Society. © 2016 American Cancer Society.

  19. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors.

    Science.gov (United States)

    Luke, Jason J; Lemons, Jeffrey M; Karrison, Theodore G; Pitroda, Sean P; Melotek, James M; Zha, Yuanyuan; Al-Hallaq, Hania A; Arina, Ainhoa; Khodarev, Nikolai N; Janisch, Linda; Chang, Paul; Patel, Jyoti D; Fleming, Gini F; Moroney, John; Sharma, Manish R; White, Julia R; Ratain, Mark J; Gajewski, Thomas F; Weichselbaum, Ralph R; Chmura, Steven J

    2018-02-13

    Purpose Stereotactic body radiotherapy (SBRT) may stimulate innate and adaptive immunity to augment immunotherapy response. Multisite SBRT is an emerging paradigm for treating metastatic disease. Anti-PD-1-treatment outcomes may be improved with lower disease burden. In this context, we conducted a phase I study to evaluate the safety of pembrolizumab with multisite SBRT in patients with metastatic solid tumors. Patients and Methods Patients progressing on standard treatment received SBRT to two to four metastases. Not all metastases were targeted, and metastases > 65 mL were partially irradiated. SBRT dosing varied by site and ranged from 30 to 50 Gy in three to five fractions with predefined dose de-escalation if excess dose-limiting toxicities were observed. Pembrolizumab was initiated within 7 days after completion of SBRT. Pre- and post-SBRT biopsy specimens were analyzed in a subset of patients to quantify interferon-γ-induced gene expression. Results A total of 79 patients were enrolled; three patients did not receive any treatment and three patients only received SBRT. Patients included in the analysis were treated with SBRT and at least one cycle of pembrolizumab. Most (94.5%) of patients received SBRT to two metastases. Median follow-up for toxicity was 5.5 months (interquartile range, 3.3 to 8.1 months). Six patients experienced dose-limiting toxicities with no radiation dose reductions. In the 68 patients with imaging follow-up, the overall objective response rate was 13.2%. Median overall survival was 9.6 months (95% CI, 6.5 months to undetermined) and median progression-free survival was 3.1 months (95% CI, 2.9 to 3.4 months). Expression of interferon-γ-associated genes from post-SBRT tumor biopsy specimens significantly correlated with nonirradiated tumor response. Conclusion Multisite SBRT followed by pembrolizumab was well tolerated with acceptable toxicity. Additional studies exploring the clinical benefit and predictive biomarkers of combined

  20. A study to 3D dose measurement and evaluation for respiratory motion in lung cancer stereotactic body radiotherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byeong Geol; Choi, Chang Heon; Yun, Il Gyu; Yang, Jin Seong; Lee, Dong Myeong; Park, Ju Mi [Dept. of Radiation Oncology, VHS Medical Center, Seoul (Korea, Republic of)

    2014-06-15

    This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four dimensional computed tomography (4DCT) study was performed . We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03∼0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with V{sub 20}, V{sub 10}, V{sub 5} of Lung was -0.04%∼2.32%. The average Homogeneity Index difference between MIP and each phase 3D data of all patient was -0.03∼0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of V{sub 20}, V{sub 10}, V{sub 5} of Lung show bo certain trend. There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

  1. Optimal beam margins in linac-based VMAT stereotactic ablative body radiotherapy: a Pareto front analysis for liver metastases.

    Science.gov (United States)

    Cilla, Savino; Ianiro, Anna; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Valentini, Vincenzo; Morganti, Alessio G

    2017-11-27

    We explored the Pareto fronts mathematical strategy to determine the optimal block margin and prescription isodose for stereotactic body radiotherapy (SBRT) treatments of liver metastases using the volumetric-modulated arc therapy (VMAT) technique. Three targets (planning target volumes [PTVs] = 20, 55, and 101 cc) were selected. A single fraction dose of 26 Gy was prescribed (prescription dose [PD]). VMAT plans were generated for 3 different beam energies. Pareto fronts based on (1) different multileaf collimator (MLC) block margin around PTV and (2) different prescription isodose lines (IDL) were produced. For each block margin, the greatest IDL fulfilling the criteria (95% of PTV reached 100%) was considered as providing the optimal clinical plan for PTV coverage. Liver D mean , V7Gy, and V12Gy were used against the PTV coverage to generate the fronts. Gradient indexes (GI and mGI), homogeneity index (HI), and healthy liver irradiation in terms of D mean , V7Gy, and V12Gy were calculated to compare different plans. In addition, each target was also optimized with a full-inverse planning engine to obtain a direct comparison with anatomy-based treatment planning system (TPS) results. About 900 plans were calculated to generate the fronts. GI and mGI show a U-shaped behavior as a function of beam margin with minimal values obtained with a +1 mm MLC margin. For these plans, the IDL ranges from 74% to 86%. GI and mGI show also a V-shaped behavior with respect to HI index, with minimum values at 1 mm for all metrics, independent of tumor dimensions and beam energy. Full-inversed optimized plans reported worse results with respect to Pareto plans. In conclusion, Pareto fronts provide a rigorous strategy to choose clinical optimal plans in SBRT treatments. We show that a 1-mm MLC block margin provides the best results with regard to healthy liver tissue irradiation and steepness of dose fallout. Copyright © 2017 American Association of Medical Dosimetrists

  2. Evaluation and management of 2 ferocactus spines in the orbit.

    Science.gov (United States)

    Russell, David J; Kim, Tim I; Kubis, Kenneth

    2013-01-01

    A 49-year-old woman, who had fallen face first in a cactus 1 week earlier, presented with a small, mobile, noninflamed subcutaneous nodule at the rim of her right lateral orbit with no other functional deficits. A CT scan was obtained, which revealed a 4-cm intraorbital tubular-shaped foreign body resembling a large cactus spine. A second preoperative CT scan, obtained for an intraoperative guidance system, demonstrated a second cactus spine, which was initially not seen on the first CT scan. Both spines were removed surgically without complication. The authors discuss factors that can cause diagnosis delay, review the radiographic features of cactus spines, and discuss the often times benign clinical course of retained cactus spine foreign bodies. To the authors' knowledge, this is the first case report of cactus spines in the orbit. Health-care professionals should have a low threshold for imaging in cases of traumatic injuries involving cactus spines.

  3. Lumbar spine chordoma

    Directory of Open Access Journals (Sweden)

    M.A. Hatem, M.B.Ch.B, MRes, LMCC

    2014-01-01

    Full Text Available Chordoma is a rare tumor arising from notochord remnants in the spine. It is slow-growing, which makes it difficult to diagnose and difficult to follow up after treatment. Typically, it occurs in the base of the skull and sacrococcygeal spine; it rarely occurs in other parts of the spine. CT-guided biopsy of a suspicious mass enabled diagnosis of lumbar spine chordoma.

  4. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Lindsay, WD; Berlind, CG; Gee, JC; Simone, CB

    2015-01-01

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  5. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, WD [University of Pennsylvania, Philadelphia, PA (United States); Oncora Medical, LLC, Philadelphia, PA (United States); Berlind, CG [Georgia Institute of Technology, Atlanta, GA (Georgia); Oncora Medical, LLC, Philadelphia, PA (United States); Gee, JC; Simone, CB [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013 was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced

  6. Clinical outcome of stereotactic body radiotherapy of 54 Gy in nine fractions for patients with localized lung tumor using a custom-made immobilization system

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Kondo, Hidehiro

    2007-01-01

    The aim of this study was to investigate the clinical outcome of stereotactic body radiotherapy (SBRT) of 54 Gy in nine fractions for patients with localized lung tumor using a custom-made immobilization system. The subjects were 19 patients who had localized lung tumor (11 primaries, 8 metastases) between May 2003 and October 2005. Treatment was conducted on 19 lung tumors by fixed multiple noncoplanar conformal beams with a standard linear accelerator. The isocentric dose was 54 Gy in nine fractions. The median overall treatment time was 15 days (range 11-22 days). All patients were immobilized by a thermo-shell and a custom-made headrest during the treatment. The crude local tumor control rate was 95% during the follow-up of 9.4-39.5 (median 17.7) months. In-field recurrence was noted in only one patient at the last follow-up. The Kaplan-Meier overall survival rate at 2 years was 89.5%. Grade 1 radiation pneumonia and grade 1 radiation fibrosis were observed in 12 of the 19 patients. Treatment-related severe early and late complications were not observed in this series. The stereotactic body radiotherapy of 54 Gy in nine fractions achieved acceptable tumor control without any severe complications. The results suggest that SBRT can be one of the alternatives for patients with localized lung tumors. (author)

  7. Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.

    Science.gov (United States)

    Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C

    2017-01-01

    Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either

  8. Disparities in Rates of Spine Surgery for Degenerative Spine Disease Between HIV Infected and Uninfected Veterans

    Science.gov (United States)

    King, Joseph T.; Gordon, Adam J.; Perkal, Melissa F.; Crystal, Stephen; Rosenthal, Ronnie A.; Rodriguez-Barradas, Maria C.; Butt, Adeel A.; Gibert, Cynthia L.; Rimland, David; Simberkoff, Michael S.; Justice, Amy C.

    2011-01-01

    Study Design Retrospective analysis of nationwide Veterans Health Administration (VA) clinical and administrative data. Objective Examine the association between HIV infection and the rate of spine surgery for degenerative spine disease. Summary of Background Data Combination anti-retroviral therapy (cART) has prolonged survival in patients with HIV/AIDS, increasing the prevalence of chronic conditions such as degenerative spine disease that may require spine surgery. Methods We studied all HIV infected patients under care in the VA from 1996–2008 (n=40,038) and uninfected comparator patients (n=79,039) matched on age, gender, race, year, and geographic region. The primary outcome was spine surgery for degenerative spine disease defined by ICD-9 procedure and diagnosis codes. We used a multivariate Poisson regression to model spine surgery rates by HIV infection status, adjusting for factors that might affect suitability for surgery (demographics, year, comorbidities, body mass index, cART, and laboratory values). Results Two-hundred twenty eight HIV infected and 784 uninfected patients underwent spine surgery for degenerative spine disease during 700,731 patient-years of follow-up (1.44 surgeries per 1,000 patient-years). The most common procedures were spinal decompression (50%), and decompression and fusion (33%); the most common surgical sites were the lumbosacral (50%), and cervical (40%) spine. Adjusted rates of surgery were lower for HIV infected patients (0.86 per 1,000 patient-years of follow-up) than for uninfected patients (1.41 per 1,000 patient-years; IRR 0.61, 95% CI: 0.51, 0.74, Pdegenerative spine disease. Possible explanations include disease prevalence, emphasis on treatment of non-spine HIV-related symptoms, surgical referral patterns, impact of HIV on surgery risk-benefit ratio, patient preferences, and surgeon bias. PMID:21697770

  9. Hypofractionated image-guided breath-hold SABR (Stereotactic Ablative Body Radiotherapy of liver metastases – clinical results

    Directory of Open Access Journals (Sweden)

    Boda-Heggemann Judit

    2012-06-01

    Full Text Available Abstract Purpose Stereotactic Ablative Body Radiotherapy (SABR is a non-invasive therapy option for inoperable liver oligometastases. Outcome and toxicity were retrospectively evaluated in a single-institution patient cohort who had undergone ultrasound-guided breath-hold SABR. Patients and methods 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination with computer-controlled breath-hold were analysed regarding overall-survival (OS, progression-free-survival (PFS, progression pattern, local control (LC, acute and late toxicity. Results PTV (planning target volume-size was 108 ± 109cm3 (median 67.4 cm3. BED2 (Biologically effective dose in 2 Gy fraction was 83.3 ± 26.2 Gy (median 78 Gy. Median follow-up and median OS were 12 months. Actuarial 2-year-OS-rate was 31%. Median PFS was 4 months, actuarial 1-year-PFS-rate was 20%. Site of first progression was predominantly distant. Regression of irradiated lesions was observed in 84% (median time to detection of regression was 2 months. Actuarial 6-month-LC-rate was 92%, 1- and 2-years-LC-rate 57%, respectively. BED2 influenced LC. When a cut-off of BED2 = 78 Gy was used, the higher BED2 values resulted in improved local control with a statistical trend to significance (p = 0.0999. Larger PTV-sizes, inversely correlated with applied dose, resulted in lower local control, also with a trend to significance (p-value = 0.08 when a volume cut-off of 67 cm3 was used. No local relapse was observed at PTV-sizes 3 and BED2 > 78 Gy. No acute clinical toxicity > °2 was observed. Late toxicity was also ≤ °2 with the exception of one gastrointestinal bleeding-episode 1 year post-SABR. A statistically significant elevation in the acute phase was observed for alkaline-phosphatase; in the chronic phase for alkaline-phosphatase, bilirubine, cholinesterase and C

  10. SU-G-BRB-01: A Novel 3D Printed Patient-Specific Phantom for Spine SBRT Quality Assurance: Comparison of 3D Printing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Kim, M; Lee, M; Suh, T [Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Department of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The novel 3 dimensional (3D)-printed spine quality assurance (QA) phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet, were developed and evaluated for spine stereotactic body radiation treatment (SBRT). Methods: The developed 3D-printed spine QA phantom consisted of an acrylic body and a 3D-printed spine phantom. DLP and Polyjet 3D printers using the high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. To verify dosimetric effects, the novel phantom was made it enable to insert films between each slabs of acrylic body phantom. Also, for measuring internal dose of spine, 3D-printed spine phantom was designed as divided laterally exactly in half. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield unit (HU) was measured based on each CT image. Intensity-modulated radiotherapy plans to deliver a fraction of a 16 Gy dose to a planning target volume (PTV) based on the two 3D-printing techniques were compared for target coverage and normal organ-sparing. Results: Image fusion demonstrated good reproducibility of the fabricated spine QA phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than for the Polyjet-generated phantom. The organs at risk received a lower dose when the DLP technique was used than when the Polyjet technique was used. Conclusion: This study confirmed that a novel 3D-printed phantom mimicking a high-density organ can be created based on CT images, and that a developed 3D-printed spine phantom could be utilized in patient-specific QA for SBRT. Despite using the same main material, DLP and Polyjet yielded different HU values. Therefore, the printing technique and materials must be carefully chosen in order to accurately produce a patient-specific QA phantom.

  11. SU-G-BRB-01: A Novel 3D Printed Patient-Specific Phantom for Spine SBRT Quality Assurance: Comparison of 3D Printing Techniques

    International Nuclear Information System (INIS)

    Lee, S; Kim, M; Lee, M; Suh, T

    2016-01-01

    Purpose: The novel 3 dimensional (3D)-printed spine quality assurance (QA) phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet, were developed and evaluated for spine stereotactic body radiation treatment (SBRT). Methods: The developed 3D-printed spine QA phantom consisted of an acrylic body and a 3D-printed spine phantom. DLP and Polyjet 3D printers using the high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. To verify dosimetric effects, the novel phantom was made it enable to insert films between each slabs of acrylic body phantom. Also, for measuring internal dose of spine, 3D-printed spine phantom was designed as divided laterally exactly in half. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield unit (HU) was measured based on each CT image. Intensity-modulated radiotherapy plans to deliver a fraction of a 16 Gy dose to a planning target volume (PTV) based on the two 3D-printing techniques were compared for target coverage and normal organ-sparing. Results: Image fusion demonstrated good reproducibility of the fabricated spine QA phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than for the Polyjet-generated phantom. The organs at risk received a lower dose when the DLP technique was used than when the Polyjet technique was used. Conclusion: This study confirmed that a novel 3D-printed phantom mimicking a high-density organ can be created based on CT images, and that a developed 3D-printed spine phantom could be utilized in patient-specific QA for SBRT. Despite using the same main material, DLP and Polyjet yielded different HU values. Therefore, the printing technique and materials must be carefully chosen in order to accurately produce a patient-specific QA phantom.

  12. Definitive Treatment of Early-Stage Non-Small Cell Lung Cancer with Stereotactic Ablative Body Radiotherapy in a Community Cancer Center Setting

    Directory of Open Access Journals (Sweden)

    Cory eHeal

    2015-06-01

    Full Text Available IntroductionSABR provides a superior NSCLC treatment option when compared to conventional radiotherapy for patients deemed inoperable or refusing surgery. This study retrospectively analyzed the rates of tumor control and toxicity following SABR treatment (Cyberknife system of primary early-stage NSCLC in a community setting.MethodsOne hundred patients were treated between 2007 and 2011. Patients with T3-4 or N1-3 disease, metastasis, recurrent local disease, or a non-lung primary were excluded from analysis. All patients had biopsy proven disease. Staging included CT or FDGPET scan. Median dose was 54Gy (45-60; 18Gy (10-20 per fraction. Median PTV expansion was 8mm (2-10. Median BED was 151.2. Tumors were tracked via Synchrony, X-Sight Lung, or X-Sight Spine. Patients were evaluated for local control, overall survival, and toxicity. All local failures were determined by evaluating post treatment PET/CT.ResultsWith a median follow up of 27.5 months, the 1-, 2-, and 3-year local control rates were 100%, 93.55%, and 84.33%, respectively. Median survival was 2.29 years; actuarial 3- year survival was 37.20%. Grade-3 toxicity was observed in 2% of patients (pneumonia within two months of treatment, n=1; chronic pneumonitis requiring hospital admission, n=1. No patients demonstrated toxicity above Grade-3. Multivariate analysis did not show T-stage as an independent predictor of OS, though it did trend toward significance.ConclusionIn a community-center setting, definitive treatment of NSCLC with SABR for nonsurgical candidates and those who choose to forego surgery result in excellent and comparable rates of local control and toxicity compared to published series from large academic centers.

  13. Stereotactic body radiotherapy and treatment at a high volume facility is associated with improved survival in patients with inoperable stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Koshy, Matthew; Malik, Renuka; Mahmood, Usama; Husain, Zain; Sher, David J.

    2015-01-01

    Background: This study examined the comparative effectiveness of no treatment (NoTx), conventional fractionated radiotherapy (ConvRT), and stereotactic body radiotherapy (SBRT) in patients with inoperable stage I non-small cell lung cancer. This population based cohort also allowed us to examine what facility level characteristics contributed to improved outcomes. Methods: We included patients in the National Cancer Database from 2003 to 2006 with T1-T2N0M0 inoperable lung cancer (n = 13,036). Overall survival (OS) was estimated using Kaplan–Meier methods and Cox proportional hazard regression. Results: The median follow up was 68 months (interquartile range: 35–83 months) in surviving patients. Among the cohort, 52% received NoTx, 41% received ConvRT and 6% received SBRT. The 3-year OS was 28% for NoTx, 36% for ConvRT radiotherapy, and 48% for the SBRT cohort (p < 0.0001). On multivariate analysis, the hazard ratio for SBRT and ConvRT were 0.67 and 0.77, respectively, as compared to NoTx (1.0 ref) (p < 0.0001). Patients treated at a high volume facility vs. low volume facility had a hazard ratio of 0.94 vs. 1.0 (p = 0.01). Conclusions: Patients with early stage inoperable lung cancer treated with SBRT and at a high volume facility had a survival benefit compared to patients treated with ConvRT or NoTx or to those treated at a low volume facility

  14. The effects of radiation therapy on height and spine MRI characteristics in children with neuroblastoma

    International Nuclear Information System (INIS)

    Yu, Jeong Il; Lim, Do Hoon; Jung, Sang Hoon; Sung, Ki Woong; Yoo, So-Young; Nam, Heerim

    2015-01-01

    Purpose: To investigate the effect of radiotherapy (RT) on height and spine using magnetic resonance imaging (MRI) analysis in children with neuroblastoma and to identify parameters related to patient height. Methods and materials: We performed a retrospective cohort study of neuroblastoma patients treated between January 1997 and December 2007. Twenty-seven children were enrolled. Whole spine MRI was completed and height percentiles were compared with national growth charts. Results: The median ages were 28, 43, and 126 months at diagnosis, RT, and analysis, respectively. All of the enrolled children received local RT, and 15 patients received total body irradiation (TBI). Median growth percentiles were 67.0, 54.0, and 4.9 at diagnosis, RT, and analysis, respectively. The number of irradiated vertebrae (P = 0.009) and having undergone TBI (P = 0.03) were significantly associated with shorter stature. Among the MRI parameters for irradiated vertebrae, signal intensity was higher (P = 0.05) and more heterogeneous (P = 0.02) in T1-weighted images and roundness was lower (P = 0.03) in T2-weighted images. Conclusions: Height of children with neuroblastoma was significantly affected by RT. The number of irradiated vertebrae and having undergone TBI were significantly associated with lower height. Irradiated spine showed changes in both signal and shape on MRI

  15. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr [Department of Radiotherapy–Oncology, Radiopathology and Radiobiology Unit, Medical School, Democritus University of Thrace, Alexandroupolis 68100 (Greece); Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr [Medical Physics Department, University General Hospital of Alexandroupolis, Alexandroupolis 68100 (Greece)

    2016-05-15

    Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.

  16. The stability of osseous metastases of the spine in lung cancer – a retrospective analysis of 338 cases

    International Nuclear Information System (INIS)

    Rief, Harald; Bischof, Marc; Bruckner, Thomas; Welzel, Thomas; Askoxylakis, Vasileios; Rieken, Stefan; Lindel, Katja; Combs, Stephanie; Debus, Jürgen

    2013-01-01

    The objective of this retrospective analysis is to systematically assess osseous lesions on the basis of a validated scoring system in terms of stability and fractures prior to and following radiotherapy in 338 lung cancer patients with bone metastases in the vertebral column. The stability of 338 patients with 981 osteolytic metastases in the thoracic and lumbar spine was evaluated retrospectively on the basis of the Taneichi-Score between January 2000 and January 2012. 64% (215 patients) were classified stable prior to radiotherapy. Of the stable osseous metastases, none were rated unstable in the further course (p < 0.001, McNemar test). Of the 123 patients in whom the metastases were classified unstable prior to radiotherapy, 21 patients (17%) were classified stable after three months, and 30 patients (24%) stable after six months. A pathological fracture was diagnosed in 62 patients (18%) prior to radiotherapy. Regarding cases of osteolytic metastases of the vertebral bodies in which no fractures could be detected prior to the start of therapy, fractures occurred in 2% of all patients (n = 7) within six months following radiotherapy. Our analysis demonstrated that pathological fractures following radiotherapy occur in the very minority of vertebral lesions for patients with a favorable outcome. The use of a systematic radiological scoring system to classify osteolytic metastases of the vertebral column has shown to be feasible in daily routine. Prospective clinical trials are warranted in order to analyse, to what extent patients with osseous metastases can be mobilized by physiotherapy for strengthening the paravertebral muscles before radiotherapy effects can be measured by means of radiological recalcification

  17. Radiotherapy for vertebral metastases. Analysis of symptoms and clinical effects by MR imaging

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    1994-01-01

    Fifty patients with 63 symptomatic vertebral metastasis (18 sites: pain only, 28 sites: radiculopathy with pain, 17 sites: myelopathy) were treated by radiotherapy. Primary lesions were located in the lung (9 cases), breast (9), colorectal area (9), prostate (7) and so on. We correlated the radiologic findings, symptoms and clinical effects with metastatic features which were classified into 4 types by MR imaging: non-deformity, expanding, vertebral collapse, and destructive mass. Each type of metastasis was accompanied with or without epidural tumor. Osteolytic metastases were apt to create features of deformity (expanding type: 18 vertebrae, vertebral collapse type: 17, destructive mass type: 9). The features of osteoblastic metastases were no deformity (18 vertebrae) and expanding type (2). The symptom of pain only occurred most frequently in the lumbosacral spine. The vertebral body deformity of symptomatic sites was relatively slight (non-deformity type: 6 sites, expanding type: 6, vertebral collapse type: 6), and epidural tumors were seen at only 2 sites. The effect of radiotherapy was excellent (complete pain relief: 64.7%, partial pain relief: 29.4%). Radiculopathy occurred most frequently in the lumber spine. Vertebral body deformity was noted in most symptomatic sites (expanding type: 9 sites, vertebral collapse type: 10, destructive mass type: 2). Complete relief was obtained in 6 sites (22.2%), partial relief in 18 (63.0%). Myelopathy occurred most often in the thoracic spine, followed by the lumbar spine. The vertebral body deformity was severe (expanding: 3 cases, vertebral collapse type: 3, destructive mass type: 6). Epidural tumors were also present in all but one case. Six of 13 patients treated with radiation alone improved. These 6 patients had non-deformity or expanding types with epidural tumor. No improvement was seen in the vertebral collapse type with epidural tumor or destructive mass type. (author)

  18. Spine Metastases in Lung Cancer

    Directory of Open Access Journals (Sweden)

    O.Yu. Stolyarova

    2015-10-01

    Full Text Available The purpose and the objectives of the study were to determine the incidence of metastatic lesions to various parts of the spine, the assessment of the association with other clinical signs of lung cancer (localization, form, histology, degree of differentiation, staging, nature of extraosseous metastasis, to investigate the effect of these parameters on the survi­val of the patients. Material and methods. The study included 1071 patients with lung cancer aged 24 to 86 years. None of the examined patients has been operated previously for lung cancer, and after arriving at a diagnosis, all patients received radiation therapy, 73 % of them — combined radiochemothe­rapy. Results. Metastasis in the vertebral bodies and vertebral joints occurs in 13 % of patients with lung cancer and in 61 % of patients with bone form of the disease, the ratio of the defeat of thoracic, sacral, lumbar and cervical spine was 6 : 4 : 2 : 1. The development of metastases in the spine is mostly associa­ted with the localization of the tumor in the upper lobe of the lung, the peripheral form of the disease, with non-small cell histologic variants (adenocarcinoma and squamous cell carcinoma. The number of metastases in the spinal column directly correlates with the degree of metastatic involvement of the inguinal lymph nodes, abdominal wall and the liver, has an impact on the invasion of lung tumor into the esophagus and the trachea. The life expectancy of the deceased persons with spine metastases is less than that of other patients with the lung cancer, but the overall survival rate in these groups of patients is not very different. Conclusions. Clinical features of lung cancer with metastases in the spine necessitate the development of medical technology of rational radiochemotherapy in such patients.

  19. Comparing conVEntional RadioTherapy with stereotactIC body radiotherapy in patients with spinAL metastases: study protocol for an randomized controlled trial following the cohort multiple randomized controlled trial design

    International Nuclear Information System (INIS)

    Velden, Joanne M. van der; Verkooijen, Helena M.; Seravalli, Enrica; Hes, Jochem; Gerlich, A. Sophie; Kasperts, Nicolien; Eppinga, Wietse S. C.; Verlaan, Jorrit-Jan; Vulpen, Marco van

    2016-01-01

    Standard radiotherapy is the treatment of first choice in patients with symptomatic spinal metastases, but is only moderately effective. Stereotactic body radiation therapy is increasingly used to treat spinal metastases, without randomized evidence of superiority over standard radiotherapy. The VERTICAL study aims to quantify the effect of stereotactic radiation therapy in patients with metastatic spinal disease. This study follows the ‘cohort multiple Randomized Controlled Trial’ design. The VERTICAL study is conducted within the PRESENT cohort. In PRESENT, all patients with bone metastases referred for radiation therapy are enrolled. For each patient, clinical and patient-reported outcomes are captured at baseline and at regular intervals during follow-up. In addition, patients give informed consent to be offered experimental interventions. Within PRESENT, 110 patients are identified as a sub cohort of eligible patients (i.e. patients with unirradiated painful, mechanically stable spinal metastases who are able to undergo stereotactic radiation therapy). After a protocol amendment, also patients with non-spinal bony metastases are eligible. From the sub cohort, a random selection of patients is offered stereotactic radiation therapy (n = 55), which patients may accept or refuse. Only patients accepting stereotactic radiation therapy sign informed consent for the VERTICAL trial. Non-selected patients (n = 55) receive standard radiotherapy, and are not aware of them serving as controls. Primary endpoint is pain response after three months. Data will be analyzed by intention to treat, complemented by instrumental variable analysis in case of substantial refusal of the stereotactic radiation therapy in the intervention arm. This study is designed to quantify the treatment response after (stereotactic) radiation therapy in patients with symptomatic spinal metastases. This is the first randomized study in palliative care following the cohort multiple Randomized

  20. [Application of Finite Element Method in Thoracolumbar Spine Traumatology].

    Science.gov (United States)

    Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei

    2015-04-01

    The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.

  1. Transfer vibration through spine

    OpenAIRE

    Benyovszky, Adam

    2012-01-01

    Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

  2. Acute exacerbation of subclinical idiopathic pulmonary fibrosis triggered by hypofractionated stereotactic body radiotherapy in a patient with primary lung cancer and slightly focal honeycombing

    International Nuclear Information System (INIS)

    Takeda, Atsuya; Sanuki, Naoko; Enomoto, Tatsuji; Takeda, Toshiaki; Kunieda, Etsuo; Nakajima, Takeshi; Sayama, Koichi

    2008-01-01

    Hypofractionated stereotactic body radiotherapy (SBRT) for pulmonary lesions provides a high local control rate, allows completely painless ambulatory treatment, and is not associated with adverse reactions in most cases. Here we report a 70-year-old lung cancer patient with slight focal pulmonary honeycombing in whom subclinical idiopathic pulmonary fibrosis was exacerbated by SBRT. This experience has important implications for the development of selection criteria prior to SBRT for pulmonary lesions. For SBRT candidates with lung tumors, attention must be paid to the presence of co-morbid interstitial pneumonia even if findings are minimal. Such patients must be informed of potential risks, and careful decision-making must take place when SBRT is being considered. (author)

  3. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Dunlap, Neal E.; Cai, Jing; Biedermann, Gregory B.; Yang, Wensha; Benedict, Stanley H.; Sheng Ke; Schefter, Tracey E.; Kavanagh, Brian D.; Larner, James M.

    2010-01-01

    Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving ≥20, ≥30, ≥40, ≥50, and ≥60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R 2 = 0.9552). A volume threshold of 30 cm 3 was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm 3 receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to 3 , if possible, to reduce the risk of toxicity without compromising tumor coverage.

  4. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results

    Directory of Open Access Journals (Sweden)

    Ayakawa Shiho

    2009-05-01

    Full Text Available Abstract Background In stereotactic body radiotherapy (SBRT for lung tumors, reducing tumor movement is necessary. In this study, we evaluated changes in tumor movement and percutaneous oxygen saturation (SpO2 levels, and preliminary clinical results of SBRT using the BodyFIX immobilization system. Methods Between 2004 and 2006, 53 consecutive patients were treated for 55 lesions; 42 were stage I non-small cell lung cancer (NSCLC, 10 were metastatic lung cancers, and 3 were local recurrences of NSCLC. Tumor movement was measured with fluoroscopy under breath holding, free breathing on a couch, and free breathing in the BodyFIX system. SpO2 levels were measured with a finger pulseoximeter under each condition. The delivered dose was 44, 48 or 52 Gy, depending on tumor diameter, in 4 fractions over 10 or 11 days. Results By using the BodyFIX system, respiratory tumor movements were significantly reduced compared with the free-breathing condition in both craniocaudal and lateral directions, although the amplitude of reduction in the craniocaudal direction was 3 mm or more in only 27% of the patients. The average SpO2 did not decrease by using the system. At 3 years, the local control rate was 80% for all lesions. Overall survival was 76%, cause-specific survival was 92%, and local progression-free survival was 76% at 3 years in primary NSCLC patients. Grade 2 radiation pneumonitis developed in 7 patients. Conclusion Respiratory tumor movement was modestly suppressed by the BodyFIX system, while the SpO2 level did not decrease. It was considered a simple and effective method for SBRT of lung tumors. Preliminary results were encouraging.

  5. Clinical experience with a new stereotactic localisation method for fractionated radiotherapy of extracranial lesions

    International Nuclear Information System (INIS)

    Engenhart-Cabillic, R.; Pastyr, O.; Wenz, F.; Debus, J.; Schlegel, W.; Bahner, M.L.; Wannenmacher, M.

    1996-01-01

    coordinates was 0.8 mm at the lower cervical spine (C7), 1.2 mm at the lower thoracic spine (T11) and 1.0 mm in the lumbar spine (L4). Conclusion: Over recent years, new 3D conformal technology have changed to improve local control and decrease treatment related morbidity. For conformal radiotherapy more complex treatment techniques are applied. These techniques require safe and reproducible repositioning. Our preliminary clinical data confirm the excellent long term stability of the stereotactic total body system. The positioning accuracy for bony structures is comparable to intracranial stereotactic radiotherapy. We will examine in a subsequent study if this technique will allow us to deliver highly conformal radiotherapy to avoid unnecessary radiation dose to critical adjacent normal tissue

  6. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  7. Assessment of quality of life and changes in body composition in men with localized prostate cancer on hormone therapy combined with radiotherapy prostate cancer, quality of life, body composition

    International Nuclear Information System (INIS)

    Pires, Daniele de Campos; Salvajoli, Joao Victor; Gagliardi, Joao Fernando; Evangelista, Alexandre Lopes; Lopes, Charles Ricardo; Cruz, Ticiane

    2014-01-01

    Objective: the aim of this study was to evaluate the quality of life and changes in body composition in adult men (71.3 ± 6.9 years) with prostate cancer on hormone therapy combined with radiotherapy. Methodology: to assess the quality of life of individuals, we used the 36-Item Short Form Health Survey (SF-36), which is a tool developed to survey health status in the Medical Outcomes Study. This questionnaire was applied at the beginning and six months after the start of the study. Weight was measured and the percentage of fat was estimated from an anthropometric equation from Jackson and Pollock (1978). The period of assessments and reassessments was September 2009 to October 2010. Radiotherapy was performed in other hospitals (information contained in participant's data form), as the management of patients was conducted at the oncology pharmacy of Varzea do Carmo Specialties Clinic. Results: of the eight domains of the SF-36 questionnaire, five were worse with significant differences from the first to the second assessment. They are: overall health status (p <0.01), vitality (p <0.01), functional capacity (p <0.01), social functioning (p <0.01) and pain (p <0, 01). Body weight ranged statistically significant (p <0.01) between the first evaluation (75.3 ± 12.5kg) and the second evaluation (77.4 ± 12.5kg). The same occurred with the percentage of fat, where the initial values (25.1 ± 3.8%) and final (25.8 ± 3.5%) experienced statistically significant difference (p <0.01). Conclusion: the results of this study showed that hormone therapy combined with radiotherapy led to a gain of weight and body fat percentage in the men evaluated, as well as deterioration in the quality of life of these patients. Therefore, it is necessary to continue researching this topic in order to develop strategies that mitigate the side effects of hormone therapy. The risks of hormone therapy should be evaluated and compared with gains in order to define the length of treatment

  8. Assessment of quality of life and changes in body composition in men with localized prostate cancer on hormone therapy combined with radiotherapy prostate cancer, quality of life, body composition

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Daniele de Campos; Salvajoli, Joao Victor; Gagliardi, Joao Fernando; Evangelista, Alexandre Lopes; Lopes, Charles Ricardo; Cruz, Ticiane

    2014-07-01

    Objective: the aim of this study was to evaluate the quality of life and changes in body composition in adult men (71.3 ± 6.9 years) with prostate cancer on hormone therapy combined with radiotherapy. Methodology: to assess the quality of life of individuals, we used the 36-Item Short Form Health Survey (SF-36), which is a tool developed to survey health status in the Medical Outcomes Study. This questionnaire was applied at the beginning and six months after the start of the study. Weight was measured and the percentage of fat was estimated from an anthropometric equation from Jackson and Pollock (1978). The period of assessments and reassessments was September 2009 to October 2010. Radiotherapy was performed in other hospitals (information contained in participant's data form), as the management of patients was conducted at the oncology pharmacy of Varzea do Carmo Specialties Clinic. Results: of the eight domains of the SF-36 questionnaire, five were worse with significant differences from the first to the second assessment. They are: overall health status (p <0.01), vitality (p <0.01), functional capacity (p <0.01), social functioning (p <0.01) and pain (p <0, 01). Body weight ranged statistically significant (p <0.01) between the first evaluation (75.3 ± 12.5kg) and the second evaluation (77.4 ± 12.5kg). The same occurred with the percentage of fat, where the initial values (25.1 ± 3.8%) and final (25.8 ± 3.5%) experienced statistically significant difference (p <0.01). Conclusion: the results of this study showed that hormone therapy combined with radiotherapy led to a gain of weight and body fat percentage in the men evaluated, as well as deterioration in the quality of life of these patients. Therefore, it is necessary to continue researching this topic in order to develop strategies that mitigate the side effects of hormone therapy. The risks of hormone therapy should be evaluated and compared with gains in order to define the length of treatment

  9. Thoracic spine pain

    Directory of Open Access Journals (Sweden)

    Aleksey Ivanovich Isaikin

    2013-01-01

    Full Text Available Thoracic spine pain, or thoracalgia, is one of the common reasons for seeking for medical advice. The epidemiology and semiotics of pain in the thoracic spine unlike in those in the cervical and lumbar spine have not been inadequately studied. The causes of thoracic spine pain are varied: diseases of the cardiovascular, gastrointestinal, pulmonary, and renal systems, injuries to the musculoskeletal structures of the cervical and thoracic portions, which require a thorough differential diagnosis. Facet, costotransverse, and costovertebral joint injuries and myofascial syndrome are the most common causes of musculoskeletal (nonspecific pain in the thoracic spine. True radicular pain is rarely encountered. Traditionally, treatment for thoracalgia includes a combination of non-drug and drug therapies. The cyclooxygenase 2 inhibitor meloxicam (movalis may be the drug of choice in the treatment of musculoskeletal pain.

  10. RSA in Spine: A Review.

    Science.gov (United States)

    Humadi, Ali; Dawood, Sulaf; Halldin, Klas; Freeman, Brian

    2017-12-01

    Systematic review of literature. This systematic review was conducted to investigate the accuracy of radiostereometric analysis (RSA), its assessment of spinal motion and disorders, and to investigate the limitations of this technique in spine assessment. Systematic review in all current literature to invesigate the role of RSA in spine. The results of this review concluded that RSA is a very powerful tool to detect small changes between 2 rigid bodies such as a vertebral segment. The technique is described for animal and human studies for cervical and lumbar spine and can be used to analyze range of motion, inducible displacement, and fusion of segments. However, there are a few disadvantages with the technique; RSA percutaneous procedure needs to be performed to implant the markers (and cannot be used preoperatively), one needs a specific knowledge to handle data and interpret the results, and is relatively time consuming and expensive. RSA should be looked at as a very powerful research instrument and there are many questions suitable for RSA studies.

  11. Stereotactic ablative body radiotherapy for non-small-cell lung cancer: setup reproducibility with novel arms-down immobilization.

    Science.gov (United States)

    Moore, Karen; Paterson, Claire; Hicks, Jonathan; Harrow, Stephen; McJury, Mark

    2016-12-01

    A clinical evaluation of the intrafraction and interfraction setup accuracy of a novel thermoplastic mould immobilization device and patient position in early-stage lung cancer being treated with stereotactic radiotherapy at the Beatson West of Scotland Cancer Centre, Glasgow, UK. 35 patients were immobilized in a novel, arms-down position, with a four-point Klarity ™ (Klarity Medical Products, Ohio, US) clear thermoplastic mould fixed to a SinMed (CIVCO Medical solutions, lowa, US) head and neck board. A knee support was also used for patient comfort and support. Pre- and post-treatment kilovoltage cone beam CT (CBCT) images were fused with the planning CT scan to determine intra- and interfraction motion. A total of 175 CBCT scans were analysed in the longitudinal, vertical and lateral directions. The mean intrafraction errors were 0.05 ± 0.77 mm (lateral), 0.44 ± 1.2 mm (superior-inferior) and -1.44 ± 1.35 mm (anteroposterior), respectively. Mean composite three-dimensional displacement vector was 2.14 ± 1.2 mm. Interfraction errors were -0.66 ± 2.35 mm (lateral), -0.13 ± 3.11 mm (superior-inferior) and 0.00 ± 2.94 mm (anteroposterior), with three-dimensional vector 4.08 ± 2.73 mm. Setup accuracy for lung image-guided stereotactic ablative radiotherapy using a unique immobilization device, where patients have arms by their sides, has been shown to be safe and favourably comparable to other published setup data where more complex and cumbersome devices were utilised. There was no arm toxicity reported and low arm doses. Advances in knowledge: We report on the accuracy of a novel patient immobilization device.

  12. Salvage stereotactic body radiotherapy for locally recurrent non-small cell lung cancer after sublobar resection and I125 vicryl mesh brachytherapy

    Directory of Open Access Journals (Sweden)

    Beant Singh Gill

    2015-05-01

    Full Text Available Purpose: Locally-recurrent non-small cell lung cancer (LR-NSCLC remains challenging treat, particularly in patients having received prior radiotherapy. Heterogeneous populations and varied treatment intent in existing literature result in significant limitations in evaluating efficacy of lung re-irradiation. In order to better establish the impact of re-irradiation in patients with LR-NSCLC following high-dose radiotherapy, we report outcomes for patients treated with prior sublobar resection and brachytherapy that subsequently underwent stereotactic body radiotherapy (SBRT.Methods: A retrospective review of patients initially treated with sublobar resection and I125 vicryl mesh brachytherapy, who later developed LR-NSCLC along the suture line, was performed. Patients received salvage SBRT with curative intent. Dose and fractionation was based on tumor location and size, with a median prescription dose of 48 Gy in 4 fractions (range 20-60 Gy in 1-4 fractions.Results: Thirteen consecutive patients were identified with median follow-up of 2.1 years (range 0.7-5.6 years. Two in-field local failures occurred at 7.5 and 11.1 months, resulting in 2-year local control of 83.9% (95% CI 63.5-100.0%. Two-year disease-free survival and overall survival estimates were 38.5% (95% CI 0.0-65.0% and 65.8% (95% CI, 38.2-93.4%. Four patients (31% remained disease-free at last follow-up. All but one patient who experienced disease recurrence developed isolated or synchronous distant metastases. Only one patient (7.7% developed grade ≥3 toxicity, consisting of grade 3 esophageal stricture following a centrally located recurrence previously treated with radiofrequency ablation.Conclusion: Despite high local radiation doses delivered to lung parenchyma previously with I125 brachytherapy, re-irradiation with SBRT for LR-NSCLC results in excellent local control with limited morbidity, allowing for potential disease cure in a subset of patients.

  13. Treatment and Prognosis of Isolated Local Relapse after Stereotactic Body Radiotherapy for Clinical Stage I Non-Small-Cell Lung Cancer: Importance of Salvage Surgery.

    Science.gov (United States)

    Hamaji, Masatsugu; Chen, Fengshi; Matsuo, Yukinori; Ueki, Nami; Hiraoka, Masahiro; Date, Hiroshi

    2015-11-01

    Many efforts have been made to detect local relapse (LR) in the follow-up after stereotactic body radiotherapy (SBRT) for non-small-cell lung cancer (NSCLC) although limited data are available on its treatment and prognosis. We aimed to characterize treatment options and clarify long-term outcomes of isolated LR after SBRT for patients with clinical stage I NSCLC. We reviewed our institutional database in search of patients with isolated LR after SBRT for clinical stage I NSCLC at our institution between 1999 and 2013. Patient characteristics were compared with Mann-Whitney U test, χ2 test, or Fisher's exact test as appropriate. Survival outcomes were estimated with Kaplan-Meier method. Potential prognostic factors were investigated using Cox proportional hazard model. Of 308 patients undergoing SBRT for clinical stage I NSCLC, 49 patients were identified to have isolated LR. Twelve patients underwent salvage surgery, none underwent radiotherapy, and eight patients received chemotherapy, whereas 29 patients received best supportive care. No patient characteristic except operability was significantly related with patient selection for LR treatments. Five-year overall survival (OS) rate of the whole cohort was 47.9% from SBRT and 25.7% from LR. Salvage surgery was associated with improved OS after LR (p = 0.014), and 5-year OS for patients undergoing salvage surgery was 79.5% from LR. It was confirmed that our patient selection for salvage surgery for isolated LR was associated with favorable survival outcomes. Operability based on multidisciplinary conferences, rather than measurable patient characteristics, is essential for appropriate patient selection for salvage surgery.

  14. Treatment of Non-Small Cell Lung Cancer Patients With Proton Beam-Based Stereotactic Body Radiotherapy: Dosimetric Comparison With Photon Plans Highlights Importance of Range Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Panahandeh, Hamid Reza [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Westover, Kenneth [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States); Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA (United States); Adams, Judith; Willers, Henning [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA (United States)

    2012-05-01

    Purpose: Proton beam radiotherapy has been proposed for use in stereotactic body radiotherapy (SBRT) for early-stage non-small-cell lung cancer. In the present study, we sought to analyze how the range uncertainties for protons might affect its therapeutic utility for SBRT. Methods and Materials: Ten patients with early-stage non-small-cell lung cancer received SBRT with two to three proton beams. The patients underwent repeat planning for photon SBRT, and the dose distributions to the normal and tumor tissues were compared with the proton plans. The dosimetric comparisons were performed within an operational definition of high- and low-dose regions representing volumes receiving >50% and <50% of the prescription dose, respectively. Results: In high-dose regions, the average volume receiving {>=}95% of the prescription dose was larger for proton than for photon SBRT (i.e., 46.5 cm{sup 3} vs. 33.5 cm{sup 3}; p = .009, respectively). The corresponding conformity indexes were 2.46 and 1.56. For tumors in close proximity to the chest wall, the chest wall volume receiving {>=}30 Gy was 7 cm{sup 3} larger for protons than for photons (p = .06). In low-dose regions, the lung volume receiving {>=}5 Gy and maximum esophagus dose were smaller for protons than for photons (p = .019 and p < .001, respectively). Conclusions: Protons generate larger high-dose regions than photons because of range uncertainties. This can result in nearby healthy organs (e.g., chest wall) receiving close to the prescription dose, at least when two to three beams are used, such as in our study. Therefore, future research should explore the benefit of using more than three beams to reduce the dose to nearby organs. Additionally, clinical subgroups should be identified that will benefit from proton SBRT.

  15. Radiotherapy physics

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Collier, J.M.; Lyman, J.T.; Pitluck, S.

    1982-01-01

    The Radiotherapy Physics Group works on the physical and biophysical aspects of charged particle radiotherapy. Our activities include the development of isosurvival beams (beams of uniform biological effect), computerized treatment planning development for charged particle radiotherapy, design of compensation to shape dose distributions, and development of dosimetry techniques to verify planned irradiations in both phantoms and patients

  16. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams

    International Nuclear Information System (INIS)

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  17. [Role of percutaneous vertebroplasty and kyphoplasty in the treatment of oncology disorders of the spine].

    Science.gov (United States)

    Ryska, P; Rehák, S; Odráka, K; Maisnar, V; Raupach, J; Málek, V; Renc, O; Kaltofen, K

    2006-01-01

    The aim of the study is to present results of a prospective uncontrolled clinical study. Percutaneous vertebroplasty or kyphoplasty are minimally invasive methods based on polymethylmethacrylate (PMMA) bone cement application into the damaged vertebra. This leads to decrease of the pain and vertebral body stabilisation. Oncology disorders of the spine are relatively common, having a wide alternative of various methods of treatment. Patients, according to their findings and indication criteria, are treated surgically or conservatively, oncological treatment is usually based on radiotherapy. Authors discuss the role of these invasive procedures in the treating algorithm of patients with spinal metasthases and multiple myeloma. From September 2003 to December 2005, 21 percutaneous vertebroplasties in 14 patients, mean age 68.7 (47-80) year, were performed in our department. During one treatment session 1-2 vertebrae (total of 21 vertebrae) in level Th9 - L5 were treated. Vertebroplasties and kyphoplasty were performed under fluoroscopy guidance. Transpedicular acces was used. Totally, 3 asymptomatic complications were proved. As first, a bone cement leaked paravertebrally during L5 body treatment, as second, a bone cement leaked into paravertebral veins, and as third, a bone cement leaked into the intervertebral space. Visual analog scale (VAS) was 8.9 points before procedure, 1.9 point 3 months after procedure and 2.6 points 6 months after procedure. We did not prove a symptomatic or total complication. According to our experience, percutaneous vertebroplasty is an effective alternative treatment of painful oncologic spine disease.

  18. A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

    International Nuclear Information System (INIS)

    Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum; Jung Moon Ki

    2016-01-01

    The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

  19. A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum [Chung-Ang University, Seoul (Korea, Republic of); Jung Moon Ki [AnyBody Technology A/S, Aalborg (Denmark)

    2016-06-15

    The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

  20. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  1. Palliative Radiotherapy for Bone Metastases: An ASTRO Evidence-Based Guideline

    International Nuclear Information System (INIS)

    Lutz, Stephen; Berk, Lawrence; Chang, Eric; Chow, Edward; Hahn, Carol; Hoskin, Peter; Howell, David; Konski, Andre; Kachnic, Lisa; Lo, Simon; Sahgal, Arjun; Silverman, Larry; Gunten, Charles von; Mendel, Ehud; Vassil, Andrew; Bruner, Deborah Watkins; Hartsell, William

    2011-01-01

    Purpose: To present guidance for patients and physicians regarding the use of radiotherapy in the treatment of bone metastases according to current published evidence and complemented by expert opinion. Methods and Materials: A systematic search of the National Library of Medicine's PubMed database between 1998 and 2009 yielded 4,287 candidate original research articles potentially applicable to radiotherapy for bone metastases. A Task Force composed of all authors synthesized the published evidence and reached a consensus regarding the recommendations contained herein. Results: The Task Force concluded that external beam radiotherapy continues to be the mainstay for the treatment of pain and/or prevention of the morbidity caused by bone metastases. Various fractionation schedules can provide significant palliation of symptoms and/or prevent the morbidity of bone metastases. The evidence for the safety and efficacy of repeat treatment to previously irradiated areas of peripheral bone metastases for pain was derived from both prospective studies and retrospective data, and it can be safe and effective. The use of stereotactic body radiotherapy holds theoretical promise in the treatment of new or recurrent spine lesions, although the Task Force recommended that its use be limited to highly selected patients and preferably within a prospective trial. Surgical decompression and postoperative radiotherapy is recommended for spinal cord compression or spinal instability in highly selected patients with sufficient performance status and life expectancy. The use of bisphosphonates, radionuclides, vertebroplasty, and kyphoplasty for the treatment or prevention of cancer-related symptoms does not obviate the need for external beam radiotherapy in appropriate patients. Conclusions: Radiotherapy is a successful and time efficient method by which to palliate pain and/or prevent the morbidity of bone metastases. This Guideline reviews the available data to define its proper use

  2. SpineData

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice; Jensen, Tue Secher

    2015-01-01

    Background: Large-scale clinical registries are increasingly recognized as important resources for quality assurance and research to inform clinical decision-making and health policy. We established a clinical registry (SpineData) in a conservative care setting where more than 10,000 new cases...... of spinal pain are assessed each year. This paper describes the SpineData registry, summarizes the characteristics of its clinical population and data, and signals the availability of these data as a resource for collaborative research projects. Methods: The SpineData registry is an Internet-based system...... that captures patient data electronically at the point of clinical contact. The setting is the government-funded Medical Department of the Spine Centre of Southern Denmark, Hospital Lillebaelt, where patients receive a multidisciplinary assessment of their chronic spinal pain. Results: Started in 2011...

  3. Periscopic Spine Surgery

    National Research Council Canada - National Science Library

    Cleary, Kevin R

    2000-01-01

    .... Key research accomplishments for the first year are: ̂Demonstrated the value of intraoperative CT for visualization and verification of the anatomy in complex spine surgeries in the neurosurgery operating room...

  4. Beyond the spine

    DEFF Research Database (Denmark)

    Donovan, James; Cassidy, J David; Cancelliere, Carol

    2015-01-01

    Over the past two decades, clinical research within the chiropractic profession has focused on the spine and spinal conditions, specifically neck and low back pain. However, there is now a small group of chiropractors with clinical research training that are shifting their focus away from...... highlight recent research in these new areas and discuss how clinical research efforts in musculoskeletal areas beyond the spine can benefit patient care and the future of the chiropractic profession....

  5. Stereotactic body radiotherapy (SBRT) for multiple pulmonary oligometastases: Analysis of number and timing of repeat SBRT as impact factors on treatment safety and efficacy.

    Science.gov (United States)

    Klement, R J; Hoerner-Rieber, J; Adebahr, S; Andratschke, N; Blanck, O; Boda-Heggemann, J; Duma, M; Eble, M J; Eich, H C; Flentje, M; Gerum, S; Hass, P; Henkenberens, C; Hildebrandt, G; Imhoff, D; Kahl, K H; Klass, N D; Krempien, R; Lohaus, F; Petersen, C; Schrade, E; Wendt, T G; Wittig, A; Guckenberger, M

    2018-03-03

    Stereotactic body radiotherapy (SBRT) for oligometastatic disease is characterized by an excellent safety profile; however, experiences are mostly based on treatment of one single metastasis. It was the aim of this study to evaluate safety and efficacy of SBRT for multiple pulmonary metastases. This study is based on a retrospective database of the DEGRO stereotactic working group, consisting of 637 patients with 858 treatments. Cox regression and logistic regression were used to analyze the association between the number of SBRT treatments or the number and the timing of repeat SBRT courses with overall survival (OS) and the risk of early death. Out of 637 patients, 145 patients were treated for multiple pulmonary metastases; 88 patients received all SBRT treatments within one month whereas 57 patients were treated with repeat SBRT separated by at least one month. Median OS for the total patient population was 23.5 months and OS was not significantly influenced by the overall number of SBRT treatments or the number and timing of repeat SBRT courses. The risk of early death within 3 and 6 months was not increased in patients treated with multiple SBRT treatments, and no grade 4 or grade 5 toxicity was observed in these patients. In appropriately selected patients, synchronous SBRT for multiple pulmonary oligometastases and repeat SBRT may have a comparable safety and efficacy profile compared to SBRT for one single oligometastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A dose-response relationship for time to bone pain resolution after stereotactic body radiotherapy (SBRT) for renal cell carcinoma (RCC) bony metastases

    Energy Technology Data Exchange (ETDEWEB)

    Jhaveri, Pavan M. [Dept. of Radiology, Section of Radiation Oncology, Baylor College of Medicine, Houston (United States); Teh, Bin S.; Paulino, Arnold C.; Blanco, Angel I.; Butler, E. Brian [Dept. of Radiation Oncology, The Methodist Hospital/The Methodist Hospital Research Inst., Houston (United States)], email: bteh@tmhs.org; Lo, Simon S. [Dept. of Radiation Oncology, Univ. Hospitals Seidman Cancer Center, Case Western Reserve Univ., Cleveland (United States); Amato, Robert J. [Dept. of Internal Medicine, Div. of Oncology, Univ. of Texas Health Sciences Center, Houston (United States)

    2012-05-15

    Background. To investigate the utility of stereotactic body radiotherapy (SBRT) in the treatment of painful renal cell carcinoma (RCC) bone metastases, and for a possible dose effect on time to symptom relief. Material and methods. Eighteen patients with 24 painful osseous lesions from metastatic RCC were treated with SBRT. The most common treatment regimens were 24 Gy in 3 fractions and 40 Gy in 5 fractions. The times from treatment to first reported pain relief and time to symptom recurrence were evaluated. Median follow-up was 38 weeks (1-156 weeks). Results. Seventy-eight percent of all patients had pain relief. Patients treated with a BED > 85 Gy achieved faster and more durable pain relief compared to those treated with a BED < 85 Gy. There was decrease in time to pain relief after a change in treatment regimen to 8 Gy x 5 fractions (BED = 86). There was only one patient with grade 1 skin toxicity. No neurological or other toxicity was observed. Conclusions. SBRT can safely and effectively treat painful RCC bony metastases. There appears to be a relationship between radiation dose and time to stable pain relief.

  7. Stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer and other primary cancers in comparison with primary lung cancer

    International Nuclear Information System (INIS)

    Takeda, Atsuya; Kunieda, Etsuo; Ohashi, Toshio; Aoki, Yousuke; Koike, Naoyoshi; Takeda, Toshiaki

    2011-01-01

    Purpose: To analyze local control of oligometastatic lung tumors (OLTs) compared with that of primary lung cancer after stereotactic body radiotherapy (SBRT). Materials and methods: Retrospective record review of patients with OLTs who received SBRT with 50 Gy in 5 fractions. Local control rates (LCRs), toxicities, and factors of prognostic significance were assessed. Results: Twenty-one colorectal OLTs, 23 OLTs from other origins, and 188 primary lung cancers were included. Multivariate analysis revealed only tumor origin was prognostically significant (p < 0.05). The 1-year/2-year LCRs in colorectal OLTs and OLTs from other origins were 80%/72% and 94%/94%, respectively. The LCR in colorectal OLTs was significantly worse than that in OLTs from the other origins and primary lung cancers with pathological and clinical diagnosis (p < 0.05, p < 0.0001 and p < 0.005). Among 44 OLT patients, Grades 2 and 3 radiation pneumonitis were identified in 2 and 1 patients, respectively. No other toxicities of more than Grade 3 occurred. Conclusion: SBRT for OLTs is tolerable. The LCR for OLTs from origins other than colorectal cancer is excellent. However, LCR for colorectal OLTs is worse than that from other origins. Therefore dose escalation should be considered to achieve good local control for colorectal OLTs.

  8. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Arimura, H; Toyofuku, F; Higashida, Y; Onizuka, Y; Terashima, H; Egashira, Y; Shioyama, Y; Nomoto, S; Honda, H; Nakamura, K; Yoshidome, S; Anai, S

    2009-01-01

    The purpose of this study was to develop a computerized method for estimation of the location of a lung tumor in cine images on an electronic portal imaging device (EPID) without implanted markers during stereotactic body radiotherapy (SBRT). Each tumor region was segmented in the first EPID cine image, i.e., reference portal image, based on a multiple-gray level thresholding technique and a region growing technique, and then the image including the tumor region was cropped as a 'tumor template' image. The tumor location was determined as the position in which the tumor template image took the maximum cross-correlation value within each consecutive portal image, which was acquired in cine mode on the EPID in treatment. EPID images with 512 x 384 pixels (pixel size: 0.56 mm) were acquired at a sampling rate of 0.5 frame s -1 by using energies of 4, 6 or 10 MV on linear accelerators. We applied our proposed method to EPID cine images (226 frames) of 12 clinical cases (ages: 51-83, mean: 72) with a non-small cell lung cancer. As a result, the average location error between tumor points obtained by our method and the manual method was 1.47 ± 0.60 mm. This preliminary study suggests that our method based on the tumor template matching technique might be feasible for tracking the location of a lung tumor without implanted markers in SBRT.

  9. Stereotactic Body Radiotherapy for Recurrent Squamous Cell Carcinoma of the Head and Neck: Results of a Phase I Dose-Escalation Trial

    International Nuclear Information System (INIS)

    Heron, Dwight E.; Ferris, Robert L.; Karamouzis, Michalis; Andrade, Regiane S.; Deeb, Erin L.; Burton, Steven; Gooding, William E.; Branstetter, Barton F.; Mountz, James M.; Johnson, Jonas T.; Argiris, Athanassios; Grandis, Jennifer R.; Lai, Stephen Y.

    2009-01-01

    Purpose: To evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) in previously irradiated patients with squamous cell carcinoma of the head and neck (SCCHN). Patients and Methods: In this Phase I dose-escalation clinical trial, 25 patients were treated in five dose tiers up to 44 Gy, administered in 5 fractions over a 2-week course. Response was assessed according to the Response Evaluation Criteria in Solid Tumors and [ 18 F]-fluorodeoxyglucose standardized uptake value change on positron emission tomography-computed tomography (PET-CT). Results: No Grade 3/4 or dose-limiting toxicities occurred. Four patients had Grade 1/2 acute toxicities. Four objective responses were observed, for a response rate of 17% (95% confidence interval 2%-33%). The maximum duration of response was 4 months. Twelve patients had stable disease. Median time to disease progression was 4 months, and median overall survival was 6 months. Self-reported quality of life was not significantly affected by treatment. Fluorodeoxyglucose PET was a more sensitive early-measure response to treatment than CT volume changes. Conclusion: Reirradiation up to 44 Gy using SBRT is well tolerated in the acute setting and warrants further evaluation in combination with conventional and targeted therapies.

  10. Comparative Analysis of Local Control Prediction Using Different Biophysical Models for Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy

    Directory of Open Access Journals (Sweden)

    Bao-Tian Huang

    2017-01-01

    Full Text Available Purpose. The consistency for predicting local control (LC data using biophysical models for stereotactic body radiotherapy (SBRT treatment of lung cancer is unclear. This study aims to compare the results calculated from different models using the treatment planning data. Materials and Methods. Treatment plans were designed for 17 patients diagnosed with primary non-small cell lung cancer (NSCLC using 5 different fraction schemes. The Martel model, Ohri model, and the Tai model were used to predict the 2-year LC value. The Gucken model, Santiago model, and the Tai model were employed to estimate the 3-year LC data. Results. We found that the employed models resulted in completely different LC prediction except for the Gucken and the Santiago models which exhibited quite similar 3-year LC data. The predicted 2-year and 3-year LC values in different models were not only associated with the dose normalization but also associated with the employed fraction schemes. The greatest difference predicted by different models was up to 15.0%. Conclusions. Our results show that different biophysical models influence the LC prediction and the difference is not only correlated to the dose normalization but also correlated to the employed fraction schemes.

  11. Dummy run for a phase II study of stereotactic body radiotherapy of T1-T2 N0M0 medical inoperable non-small cell lung cancer

    DEFF Research Database (Denmark)

    Djärv, Emma; Nyman, Jan; Baumann, Pia

    2006-01-01

    of       SBRT of T1-T2N0M0 inoperable NSCLC in a dummy run oriented on volumes and       doses. Six Scandinavian centres participated. Each centre received       CT-scans covering the whole lung volumes of two patients with instructions       to follow the study protocol when outlining tumour and target volumes......In forthcoming multicentre studies on stereotactic body radiotherapy       (SBRT) compliance with volume and dose prescriptions will be mandatory to       avoid unnecessary heterogeneity bias. To evaluate compliance in a       multicentre setting we used two cases from an ongoing phase II study......,       prescribing doses and creating dose plans. Volumes and doses of the 12       dose plans were evaluated according to the study protocol. For the two       patients the GTV volume range was 24 to 39 cm3 and 26 to 41 cm3,       respectively. The PTV volume range was 90 to 116 cm3, and 112 to 155 cm3...

  12. Stereotactic body radiotherapy for Stage I lung cancer with chronic obstructive pulmonary disease. Special reference to survival and radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Inoue, Toshihiko; Shiomi, Hiroya; Oh, Ryoong-Jin

    2015-01-01

    This retrospective study aimed to evaluate radiation-induced pneumonitis (RIP) and a related condition that we define in this report — prolonged minimal RIP (pmRIP) — after stereotactic body radiotherapy (SBRT) for Stage I primary lung cancer in patients with chronic obstructive pulmonary disease (COPD). We assessed 136 Stage I lung cancer patients with COPD who underwent SBRT. Airflow limitation on spirometry was classified into four Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, with minor modifications: GOLD 1 (mild), GOLD 2 (moderate), GOLD 3 (severe) and GOLD 4 (very severe). On this basis, we defined two subgroups: COPD-free (COPD -) and COPD-positive (COPD +). There was no significant difference in overall survival or cause-specific–survival between these groups. Of the 136 patients, 44 (32%) had pmRIP. Multivariate analysis showed that COPD and the Brinkman index were statistically significant risk factors for the development of pmRIP. COPD and the Brinkman index were predictive factors for pmRIP, although our findings also indicate that SBRT can be tolerated in early lung cancer patients with COPD. (author)

  13. 59Fe and 58Co-vitamin B12 absorptions studies in radiotherapy of collum carcinomas by whole-body radiometry

    International Nuclear Information System (INIS)

    Kaplan, M.A.; Bolovin, L.M.; Verkhovskaya, N.I.; Mel'nikova, L.N.; Yavor, T.; Bero, T.

    1983-01-01

    The results of examination of iron and vitamin B-12 metabolism in the radiotherapy of collum carcinomas are reported. The absorption of iron and vitamin B-12 was found to decrease under the influence of radiotherapy. The degree of the absorption decrease depends on the radiation dose. (author)

  14. Approaches to radiotherapy in metastatic spinal cord compression.

    Science.gov (United States)

    Suppl, Morten Hiul

    2018-04-01

    population, we found a higher number of patients experiencing vertebral fractures than the number of patient developing myelopathy. Patients with diabetes had an increased risk of toxicity compared to the remaining patients. Stereotactic body radiotherapy is effective in treating metastatic spinal cord compression but the efficacy cannot be determined due low accrual. The use of PET/MRI did not spare normal tissue in radiotherapy planning of spinal metastases. The incidence of toxicity after re-irradiation of the spine and spinal cord was low. For patients with in-field recurrence, re-irradiation is safe and has a low incidence of toxicity. Articles published in the Danish Medical Journal are “open access”. This means that the articles are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits any non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

  15. Can Whole-Body Cryotherapy with Subsequent Kinesiotherapy Procedures in Closed Type Cryogenic Chamber Improve BASDAI, BASFI, and Some Spine Mobility Parameters and Decrease Pain Intensity in Patients with Ankylosing Spondylitis?

    Science.gov (United States)

    Stanek, Agata; Cholewka, Armand; Gadula, Jolanta; Drzazga, Zofia; Sieron, Aleksander; Sieron-Stoltny, Karolina

    2015-01-01

    The present study investigated whether whole-body cryotherapy (WBC) procedures could potentially have more beneficial effects on index of BASDAI and BASFI, pain intensity, and spine mobility parameters: Ott test, modified Schober test, chest expansion in ankylosing spondylitis (AS) patients, than kinesiotherapy procedures used separately. AS patients were exposed to a cycle of WBC procedures lasting 3 minutes a day, with a subsequent 60 minutes of kinesiotherapy or 60 minutes of kinesiotherapy only, for 10 consecutive days excluding weekend. After the completion of the cycle of WBC procedures with subsequent kinesiotherapy in the AS patients, BASDAI index decreased about 40% in comparison with the input value, whereas in the group of patients who received only kinesiotherapy it decreased only about 15% in comparison with the input value. After the completion of the treatment in the WBC group, BASFI index decreased about 30% in comparison with the input value, whereas in the kinesiotherapy group it only decreased about 16% in comparison with the input value. The important conclusion was that, in WBC group with subsequent kinesiotherapy, we observed on average about twice better results than in the group treated only by kinesiotherapy. PMID:26273618

  16. Impact of low skeletal muscle mass on non-lung cancer mortality after stereotactic body radiotherapy for patients with stage I non-small cell lung cancer.

    Science.gov (United States)

    Matsuo, Yukinori; Mitsuyoshi, Takamasa; Shintani, Takashi; Iizuka, Yusuke; Mizowaki, Takashi

    2018-05-17

    The purpose of the present study was to retrospectively evaluate impact of pre-treatment skeletal muscle mass (SMM) on overall survival and non-lung cancer mortality after stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). One-hundred and eighty-six patients whose abdominal CT before the treatment was available were enrolled into this study. The patients were divided into two groups of SMM according to gender-specific thresholds for unilateral psoas area. Operability was judged by the treating physician or thoracic surgeon after discussion in a multi-disciplinary tumor board. Patients with low SMM tended to be elderly and underweight in body mass index compared with the high SMM. Overall survival in patients with the low SMM tended to be worse than that in the high SMM (41.1% and 55.9% at 5 years, P = 0.115). Cumulative incidence of non-lung cancer death was significantly worse in the low SMM (31.3% at 5 years compared with 9.7% in the high SMM, P = 0.006). Multivariate analysis identified SMM and operability as significant factors for non-lung cancer mortality. Impact of SMM on lung cancer death was not significant. No difference in rate of severe treatment-related toxicity was observed between the SMM groups. Low SMM is a significant risk factor for non-lung cancer death, which might lead to worse overall survival, after SBRT for stage I NSCLC. However, the low SMM does not increase lung cancer death or severe treatment-related toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Volume Modulated Arc Therapy (VMAT for pulmonary Stereotactic Body Radiotherapy (SBRT in patients with lesions in close approximation to the chest wall

    Directory of Open Access Journals (Sweden)

    Thomas J. FitzGerald

    2013-02-01

    Full Text Available Chest wall pain and discomfort has been recognized as a significant late effect of radiation therapy in historical and modern treatment models. Stereotactic Body Radiotherapy (SBRT is becoming an important treatment tool in oncology care for patients with intrathoracic lesions. For lesions in close approximation to the chest wall including lesions requiring motion management, SBRT techniques can deliver high dose to the chest wall. As an unintended target of consequence, there is possibility of generating significant chest wall pain and discomfort as a late effect of therapy. The purpose of this paper is to evaluate the potential role of Volume Modulated Arc Therapy (VMAT technologies in decreasing chest wall dose in SBRT treatment of pulmonary lesions in close approximation to the chest wall.Ten patients with pulmonary lesions of various sizes and topography in close approximation to the chest wall were selected for retrospective review. All volumes including target, chest wall, ribs, and lung were contoured with maximal intensity projection maps and four-dimensional computer tomography planning. Radiation therapy planning consisted of static techniques including Intensity Modulated Radiation Therapy compared to VMAT therapy to a dose of 60Gy in 12Gy fractions. Dose volume histogram to rib, chest wall, and lung were compared between plans with statistical analysis.In all patients dose and volume were improved to ribs and chest wall using VMAT technologies compared to static field techniques. On average, volume receiving 30Gy to the chest wall was improved by 72%;the ribs by 60%. In only one patient did the VMAT treatment technique increase pulmonary volume receiving 20Gy (V20.VMAT technology has potential of limiting radiation dose to sensitive chest wall regions in patients with lesions in close approximation to this structure. This would also have potential value to lesions treated with SBRT in other body regions where targets abut critical

  18. Hypofractionated stereotactic body radiotherapy (SBRT) for liver metastases. A retrospective analysis of 74 patients treated in the Klinikum rechts der Isar Munich; Die hypofraktionierte, stereotaktische Strahlentherapie von Lebermetastasen. Eine retrospektive Analyse von 74 Patienten des Klinikums rechts der Isar Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Heppt, Franz Johannes

    2013-06-12

    Purpose of this study was to evaluate the outcome of stereotactic body radiotherapy (SBRT) of liver metastases and prognostic factors for local control and overall survival. From 2000 to 2009 74 patients with 91 metastases were treated at the Department for Radiation Therapy and Oncology (TU Muenchen). With an observed local control rate of 75% after 1 year, SBRT proved as an effective local treatment option. Unfortunately, systemic tumor progression still dominates long term survival in many patients.

  19. Whither radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W M

    1987-03-01

    The 1986 Glyn Evans Memorial Lecture, given at the Joint Provincial Meeting of the Royal College of Radiologists, Sheffield, September 1986, sketches an outline of the history of radiotherapy and discusses the future development of the art. Topics included are siting of centres, training needs, the relationship of radiotherapy to other medical specialities, and the advantages and disadvantages of radiotherapy practitioners forming a separate medical College. (U.K.)

  20. Stereotactic body radiotherapy for centrally located early-stage non-small cell lung cancer or lung metastases from the RSSearch® patient registry

    International Nuclear Information System (INIS)

    Davis, Joanne N.; Medbery, Clinton; Sharma, Sanjeev; Pablo, John; Kimsey, Frank; Perry, David; Muacevic, Alexander; Mahadevan, Anand

    2015-01-01

    The purpose of this study was to evaluate treatment patterns and outcomes of stereotactic body radiotherapy (SBRT) for centrally located primary non-small cell lung cancer (NSCLC) or lung metastases from the RSSearch ® Patient Registry, an international, multi-center patient registry dedicated to radiosurgery and SBRT. Eligible patients included those with centrally located lung tumors clinically staged T1-T2 N0, M0, biopsy-confirmed NSCLC or lung metastases treated with SBRT between November 2004 and January 2014. Descriptive analysis was used to report patient demographics and treatment patterns. Overall survival (OS) and local control (LC) were determined using Kaplan-Meier method. Toxicity was reported using the Common Terminology Criteria for Adverse Events version 3.0. In total, 111 patients with 114 centrally located lung tumors (48 T1-T2,N0,M0 NSCLC and 66 lung metastases) were treated with SBRT at 19 academic and community-based radiotherapy centers in the US and Germany. Median follow-up was 17 months (range, 1–72). Median age was 74 years for primary NSCLC patients and 65 years for lung metastases patients (p < 0.001). SBRT dose varied from 16 – 60 Gy (median 48 Gy) delivered in 1–5 fractions (median 4 fractions). Median dose to centrally located primary NSCLC was 48 Gy compared to 37.5 Gy for lung metastases (p = 0.0001) and median BED 10 was 105.6 Gy for primary NSCLC and 93.6 Gy for lung metastases (p = 0.0005). Two-year OS for T1N0M0 and T2N0M0 NSCLC was 79 and 32.1 %, respectively (p = 0.009) and 2-year OS for lung metastases was 49.6 %. Two-year LC was 76.4 and 69.8 % for primary NSCLC and lung metastases, respectively. Toxicity was low with no Grade 3 or higher acute or late toxicities. Overall, patients with centrally located primary NSCLC were older and received higher doses of SBRT than those with lung metastases. Despite these differences, LC and OS was favorable for patients with central lung tumors treated with SBRT. Reported toxicity

  1. Improvement in Scoliosis Top View: Evaluation of Vertebrae Localization in Scoliotic Spine-Spine Axial Presentation

    Directory of Open Access Journals (Sweden)

    Paweł Główka

    2016-11-01

    Full Text Available Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sagittal. The three-dimensional character of scoliosis has raised the necessity for analyzing scoliosis in three planes. We proposed a new user-friendly method of graphical presentation of the spine in the third plane–the Spine Axial Presentation (SAP. Eighty-five vertebrae of patients with scoliosis were analyzed. Due to different positions during X-rays (standing and computer tomography (CT (supine, the corresponding measurements cannot be directly compared. As a solution, a software creating Digital Reconstructed Radiographs (DRRs from CT scans was developed to replace regular X-rays with DRRs. Based on the measurements performed on DRRs, the coordinates of vertebral bodies central points were defined. Next, the geometrical centers of vertebral bodies were determined on CT scans. The reproducibility of measurements was tested with Intraclass Correlation Coefficient (ICC, using p = 0.05. The intra-observer reproducibility and inter-observer reliability for vertebral body central point’s coordinates (x, y, z were high for results obtained based on DRRs and CT scans, as well as for comparison results obtained based on DRR and CT scans. Based on two standard radiographs, it is possible to localize vertebral bodies in 3D space. The position of vertebral bodies can be present in the Spine Axial Presentation.

  2. Comparison of quality of life after stereotactic body radiotherapy and surgery for early-stage prostate cancer

    Directory of Open Access Journals (Sweden)

    Katz Alan

    2012-11-01

    Full Text Available Abstract Background As the long-term efficacy of stereotactic body radiation therapy (SBRT becomes established and other prostate cancer treatment approaches are refined and improved, examination of quality of life (QOL following prostate cancer treatment is critical in driving both patient and clinical treatment decisions. We present the first study to compare QOL after SBRT and radical prostatectomy, with QOL assessed at approximately the same times pre- and post-treatment and using the same validated QOL instrument. Methods Patients with clinically localized prostate cancer were treated with either radical prostatectomy (n = 123 Spanish patients or SBRT (n = 216 American patients. QOL was assessed using the Expanded Prostate Cancer Index Composite (EPIC grouped into urinary, sexual, and bowel domains. For comparison purposes, SBRT EPIC data at baseline, 3 weeks, 5, 11, 24, and 36 months were compared to surgery data at baseline, 1, 6, 12, 24, and 36 months. Differences in patient characteristics between the two groups were assessed using Chi-squared tests for categorical variables and t-tests for continuous variables. Generalized estimating equation (GEE models were constructed for each EPIC scale to account for correlation among repeated measures and used to assess the effect of treatment on QOL. Results The largest differences in QOL occurred in the first 1–6 months after treatment, with larger declines following surgery in urinary and sexual QOL as compared to SBRT, and a larger decline in bowel QOL following SBRT as compared to surgery. Long-term urinary and sexual QOL declines remained clinically significantly lower for surgery patients but not for SBRT patients. Conclusions Overall, these results may have implications for patient and physician clinical decision making which are often influenced by QOL. These differences in sexual, urinary and bowel QOL should be closely considered in selecting the right treatment

  3. Comparison of quality of life after stereotactic body radiotherapy and surgery for early-stage prostate cancer

    International Nuclear Information System (INIS)

    Katz, Alan; Ferrer, Montserrat; Suárez, José Francisco

    2012-01-01

    As the long-term efficacy of stereotactic body radiation therapy (SBRT) becomes established and other prostate cancer treatment approaches are refined and improved, examination of quality of life (QOL) following prostate cancer treatment is critical in driving both patient and clinical treatment decisions. We present the first study to compare QOL after SBRT and radical prostatectomy, with QOL assessed at approximately the same times pre- and post-treatment and using the same validated QOL instrument. Patients with clinically localized prostate cancer were treated with either radical prostatectomy (n = 123 Spanish patients) or SBRT (n = 216 American patients). QOL was assessed using the Expanded Prostate Cancer Index Composite (EPIC) grouped into urinary, sexual, and bowel domains. For comparison purposes, SBRT EPIC data at baseline, 3 weeks, 5, 11, 24, and 36 months were compared to surgery data at baseline, 1, 6, 12, 24, and 36 months. Differences in patient characteristics between the two groups were assessed using Chi-squared tests for categorical variables and t-tests for continuous variables. Generalized estimating equation (GEE) models were constructed for each EPIC scale to account for correlation among repeated measures and used to assess the effect of treatment on QOL. The largest differences in QOL occurred in the first 1–6 months after treatment, with larger declines following surgery in urinary and sexual QOL as compared to SBRT, and a larger decline in bowel QOL following SBRT as compared to surgery. Long-term urinary and sexual QOL declines remained clinically significantly lower for surgery patients but not for SBRT patients. Overall, these results may have implications for patient and physician clinical decision making which are often influenced by QOL. These differences in sexual, urinary and bowel QOL should be closely considered in selecting the right treatment, especially in evaluating the value of non-invasive treatments, such as SBRT

  4. Imaging of spine injuries

    International Nuclear Information System (INIS)

    Lomoschitz, F. . e-mai: friedrich.lomoschitz@univie.ac.at

    2001-01-01

    Spinal trauma requires a prompt and detailed diagnosis for estimating the prognosis and installing proper therapy. Conventional radiograms are the first imaging modality in most cases. In the cervical and the lumbar spine, a CT has to be performed in patients with polytrauma and a higher risk of complications or with signs of instability. Especially for imaging the cervicocranium, multiplanar reformations in sagittal and coronal planes are necessary. For fractures of the thoracic spine, MR imaging is superior to CT because of the better detection of associated neurologic complications. (author)

  5. Gorham's disease of the spine

    International Nuclear Information System (INIS)

    Livesley, P.J.; Saifuddin, A.; Webb, P.J.; Mitchell, N.; Ramani, P.

    1996-01-01

    Massive osteolysis is a rare condition and is very uncommon in the spine. The MRI appearance of Gorham's disease of the spine has not previously been reported. We present here a case of this condition with imaging details. (orig.)

  6. Magnetic Resonance Imaging Assessment of Spinal Cord and Cauda Equina Motion in Supine Patients With Spinal Metastases Planned for Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chia-Lin [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Sussman, Marshall S. [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Soliman, Hany; Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John; Simeonov, Anna [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Yu, Eugene [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Fehlings, Michael G. [Department of Neurosurgery and Spine Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2015-04-01

    Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results

  7. Clinical outcome of stereotactic body radiotherapy for primary and oligometastatic lung tumors: a single institutional study with almost uniform dose with different five treatment schedules

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Hatayama, Yoshiomi; Kawaguchi, Hideo; Hirose, Katsumi; Sato, Mariko; Akimoto, Hiroyoshi; Fujioka, Ichitaro; Ono, Shuichi; Tsushima, Eiki; Takai, Yoshihiro

    2016-01-01

    To evaluate clinical outcomes of stereotactic body radiotherapy (SBRT) for localized primary and oligometastatic lung tumors by assessing efficacy and safety of 5 regimens of varying fraction size and number. One-hundred patients with primary lung cancer (n = 69) or oligometastatic lung tumors (n = 31), who underwent SBRT between May 2003 and August 2010, were included. The median age was 75 years (range, 45–88). Of them, 98 were judged to have medically inoperable disease, predominantly due to chronic illness or advanced age. SBRT was performed using 3 coplanar and 3 non-coplanar fixed beams with a standard linear accelerator. Fraction sizes were escalated by 1 Gy, and number of fractions given was decreased by 1 for every 20 included patients. Total target doses were between 50 and 56 Gy, administered as 5–9 fractions. The prescribed dose was defined at the isocenter, and median overall treatment duration was 10 days (range, 5–22). The median follow-up was 51.1 months for survivors. The 3-year local recurrence rates for primary lung cancer and oligometastasis was 6 % and 3 %, respectively. The 3-year local recurrence rates for tumor sizes ≤3 cm and >3 cm were 3 % and 14 %, respectively (p = 0.124). Additionally, other factors (fraction size, total target dose, and BED 10 ) were not significant predictors of local control. Radiation pneumonia (≥ grade 2) was observed in 2 patients. Radiation-induced rib fractures were observed in 22 patients. Other late adverse events of greater than grade 2 were not observed. Within this dataset, we did not observe a dose response in BED 10 values between 86.4 and 102.6 Gy. SBRT with doses between 50 and 56 Gy, administered over 5–9 fractions achieved acceptable tumor control without severe complications

  8. Stereotactic Body Radiotherapy for Recurrent or Oligometastatic Uterine Cervix Cancer: A Cooperative Study of the Korean Radiation Oncology Group (KROG 14-11).

    Science.gov (United States)

    Park, Hae Jin; Chang, Ah Ram; Seo, Youngseok; Cho, Chul Koo; Jang, Won-Il; Kim, Mi Sook; Choi, Chulwon

    2015-09-01

    To evaluate local control and patient survival for recurrent or oligometastatic uterine cervical cancer treated with stereotactic body radiotherapy (SBRT) using CyberKnife, and to demonstrate the safety of SBRT. Between 2002 and 2013, 100 recurrent or oligometastatic lesions in 85 patients were treated with SBRT at three Institutions. SBRT sites were within the previous RT field in 59 and partially overlapped in nine. SBRT sites included three local recurrences, 89 lymph node metastases, and eight distant metastases. Patients were treated with a median dose of 39 Gy in three fractions, which was equivalent to a biologically effective dose (BED) of 90 Gy. The median follow-up period was 20.4 months. Local failure occurred in 17 out of 100 SBRT-treated sites. The 2-year and 5-year local progression-free survival rates were 82.5% and 78.8%, respectively. Eleven local failures occurred within the previous RT field. The 2-year and 5-year overall survival rates were 57.5% and 32.9%, respectively. BED >90 Gy (p=0.072) and >69 Gy (p=0.059) and longer disease-free interval (p=0.065) predicted marginally superior local control. Re-irradiation appeared to be related to inferior local control (p<0.001), but the SBRT BED in this group was much lower than the dose in the other group (median BED, 79 Gy vs. 90 Gy). Chronic toxicities of grade 3 or more occurred in five cases. SBRT for recurrent or oligometastatic cervical cancer resulted in excellent local control, especially with a long disease-free interval and high BED treatment, with acceptable toxicities. Therefore, SBRT can be considered a therapeutic option for these patients. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Daniel, E-mail: Daniel.Pham@petermac.org [Radiotherapy Services, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Kron, Tomas [Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Foroudi, Farshad; Siva, Shankar [Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  10. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    Energy Technology Data Exchange (ETDEWEB)

    Dhou, S; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Ionascu, D [William Beaumont Hospital, Royal Oak, MI (United States); Lewis, J [University of California at Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  11. Dosimetric evaluation of the feasibility of stereotactic body radiotherapy for primary lung cancer with lobe-specific selective elective nodal irradiation.

    Science.gov (United States)

    Komatsu, Tetsuya; Kunieda, Etsuo; Kitahara, Tadashi; Akiba, Takeshi; Nagao, Ryuta; Fukuzawa, Tsuyoshi

    2016-01-01

    More than 10% of all patients treated with stereotactic body radiotherapy (SBRT) for primary lung cancer develop regional lymph node recurrence. We evaluated the dosimetric feasibility of SBRT with lobe-specific selective elective nodal irradiation (ENI) on dose-volume histograms. A total of 21 patients were treated with SBRT for Stage I primary lung cancer between January 2010 and June 2012 at our institution. The extents of lobe-specific selective ENI fields were determined with reference to prior surgical reports. The ENI fields included lymph node stations (LNS) 3 + 4 + 11 for the right upper lobe tumors, LNS 7 + 11 for the right middle or lower lobe tumors, LNS 5 + 11 for the left upper lobe tumors, and LNS 7 + 11 for the left lower lobe tumors. A composite plan was generated by combining the ENI plan and the SBRT plan and recalculating for biologically equivalent doses of 2 Gy per fraction, using a linear quadratic model. The V20 of the lung, D(1cm3) of the spinal cord, D(1cm3) and D(10cm3) of the esophagus and D(10cm3) of the tracheobronchial wall were evaluated. Of the 21 patients, nine patients (43%) could not fulfill the dose constraints. In all these patients, the distance between the planning target volume (PTV) of ENI (PTVeni) and the PTV of SBRT (PTVsrt) was ≤2.0 cm. Of the three patients who developed regional metastasis, two patients had isolated lymph node failure, and the lymph node metastasis was included within the ENI field. When the distance between the PTVeni and PTVsrt is >2.0 cm, SBRT with selective ENI may therefore dosimetrically feasible. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. Stereotactic Body Radiotherapy: A Promising Treatment Option for the Boost of Oropharyngeal Cancers Not Suitable for Brachytherapy: A Single-Institutional Experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mamgani, Abrahim, E-mail: a.al-mamgani@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands); Tans, Lisa; Teguh, David N. [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands); Rooij, Peter van [Department of Biostatistics, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands); Zwijnenburg, Ellen M.; Levendag, Peter C. [Department of Radiation Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Groene Hilledijk, Rotterdam (Netherlands)

    2012-03-15

    Purpose: To prospectively assess the outcome and toxicity of frameless stereotactic body radiotherapy (SBRT) as a treatment option for boosting primary oropharyngeal cancers (OPC) in patients who not suitable for the standard brachytherapy boost (BTB). Methods and Materials: Between 2005 and 2010, 51 patients with Stage I to IV biopsy-proven OPC who were not suitable for BTB received boosts by means of SBRT (3 times 5.5 Gy, prescribed to the 80% isodose line), after 46 Gy of IMRT to the primary tumor and neck (when indicated). Endpoints of the study were local control (LC), disease-free survival (DFS), overall survival (OS), and acute and late toxicity. Results: After a median follow-up of 18 months (range, 6-65 months), the 2-year actuarial rates of LC, DFS, and OS were 86%, 80%, and 82%, respectively, and the 3-year rates were 70%, 66%, and 54%, respectively. The treatment was well tolerated, as there were no treatment breaks and no Grade 4 or 5 toxicity reported, either acute or chronic. The overall 2-year cumulative incidence of Grade {>=}2 late toxicity was 28%. Of the patients with 2 years with no evidence of disease (n = 20), only 1 patient was still feeding tube dependent and 2 patients had Grade 3 xerostomia. Conclusions: According to our knowledge, this study is the first report of patients with primary OPC who received boosts by means of SBRT. Patients with OPC who are not suitable for the standard BTB can safely and effectively receive boosts by SBRT. With this radiation technique, an excellent outcome was achieved. Furthermore, the SBRT boost did not have a negative impact regarding acute and late side effects.

  13. Evaluation of the Effectiveness of the Stereotactic Body Frame in Reducing Respiratory Intrafractional Organ Motion Using the Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Bengua, Gerard; Ishikawa, Masayori; Sutherland, Kenneth; Horita, Kenji; Yamazaki, Rie; Fujita, Katsuhisa; Onimaru, Rikiya; Katoh, Noriwo; Inoue, Tetsuya; Onodera, Shunsuke; Shirato, Hiroki

    2010-01-01

    Purpose: To evaluate the effectiveness of the stereotactic body frame (SBF), with or without a diaphragm press or a breathing cycle monitoring device (Abches), in controlling the range of lung tumor motion, by tracking the real-time position of fiducial markers. Methods and Materials: The trajectories of gold markers in the lung were tracked with the real-time tumor-tracking radiotherapy system. The SBF was used for patient immobilization and the diaphragm press and Abches were used to actively control breathing and for self-controlled respiration, respectively. Tracking was performed in five setups, with and without immobilization and respiration control. The results were evaluated using the effective range, which was defined as the range that includes 95% of all the recorded marker positions in each setup. Results: The SBF, with or without a diaphragm press or Abches, did not yield effective ranges of marker motion which were significantly different from setups that did not use these materials. The differences in the effective marker ranges in the upper lobes for all the patient setups were less than 1mm. Larger effective ranges were obtained for the markers in the middle or lower lobes. Conclusion: The effectiveness of controlling respiratory-induced organ motion by using the SBF+diaphragm press or SBF + Abches patient setups were highly dependent on the individual patient reaction to the use of these materials and the location of the markers. They may be considered for lung tumors in the lower lobes, but are not necessary for tumors in the upper lobes.

  14. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lilie L., E-mail: lin@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Hertan, Lauren; Rengan, Ramesh; Teo, Boon-Keng Kevin [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    2012-06-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed. To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.

  15. Once-weekly versus every-other-day stereotactic body radiotherapy in patients with prostate cancer (PATRIOT): A phase 2 randomized trial.

    Science.gov (United States)

    Quon, Harvey C; Ong, Aldrich; Cheung, Patrick; Chu, William; Chung, Hans T; Vesprini, Danny; Chowdhury, Amit; Panjwani, Dilip; Pang, Geordi; Korol, Renee; Davidson, Melanie; Ravi, Ananth; McCurdy, Boyd; Zhang, Liying; Mamedov, Alexandre; Deabreu, Andrea; Loblaw, Andrew

    2018-05-01

    Prostate stereotactic body radiotherapy (SBRT) regimens differ in time, dose, and fractionation. We completed a multicentre, randomized phase II study to investigate the impact of overall treatment time on quality of life (QOL). Men with low and intermediate-risk prostate cancer were randomly assigned to 40 Gy in 5 fractions delivered once per week (QW) vs. every other day (EOD). QOL was assessed using the Expanded Prostate Cancer Index Composite. The primary endpoint was the proportion with a minimum clinically important change (MCIC) in bowel QOL during the acute (≤12 week) period, and analysis was by intention-to-treat. ClinicalTrials.gov NCT01423474. 152 men from 3 centres were randomized with median follow-up of 47 months. Patients treated QW had superior acute bowel QOL with 47/69 (68%) reporting a MCIC compared to 63/70 (90%) treated EOD (p = 0.002). Fewer patients treated QW reported moderate-severe problems with bowel QOL during the acute period compared with EOD (14/70 [20%] vs. 40/70 [57%], p < 0.001). Acute urinary QOL was also better in the QW arm, with 52/67 (78%) vs 65/69 (94%) experiencing a MCIC (p = 0.006). There were no significant differences in late urinary or bowel QOL at 2 years or last follow-up. Prostate SBRT delivered QW improved acute bowel and urinary QOL compared to EOD. Patients should be counselled regarding the potential for reduced short-term toxicity and improved QOL with QW prostate SBRT. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Early Graphical Appearance of Radiation Pneumonitis Correlates With the Severity of Radiation Pneumonitis After Stereotactic Body Radiotherapy (SBRT) in Patients With Lung Tumors

    International Nuclear Information System (INIS)

    Takeda, Atsuya; Ohashi, Toshio; Kunieda, Etsuo

    2010-01-01

    Purpose: To investigate factors associated with Grade ≥3 radiation pneumonitis (RP) in patients with lung tumors treated with stereotactic body radiotherapy (SBRT). Methods and Materials: We retrospectively analyzed 128 patients with 133 lung tumors treated with SBRT. RP was graded according to the Common Terminology Criteria for Adverse Events version 3.0. Univariate analyses were used to identify predictive factors for RP. Results: The median follow-up period after SBRT was 12 months (range, 5-45 months). Incidences of Grades 0, 1, 2, and 3 RP were 27%, 52%, 16%, and 5%, respectively. No patients suffered Grade 4 or 5 RP. For all patients with Grade 2 or 3, symptoms occurred either simultaneously with or subsequent to graphical appearances. The latent period was the only significant factor associated with Grade ≥3 RP (p < 0.01). A latent period of 1 or 2 months indicated a 40% (6/15) risk for Grade 3. However, the risk for Grade 3 was 1.2% (1/82) 3 months after SBRT. No pretreatment clinical or dosimetric factors were significantly associated with Grade ≥3 RP. However, 4 of 7 patients with Grade 3 RP had severe pulmonary comorbidities. Conclusion: Only the latency period was a significant factor in the development of RP. No pretreatment clinical or dosimetric factors were significantly associated with Grade ≥3 RP. Patients, especially those with severe pulmonary comorbidities, should be carefully observed for the graphical appearance of RP within a few months during the follow-up period after SBRT.

  17. Salvage Stereotactic Body Radiotherapy for Isolated Lymph Node Recurrent Prostate Cancer: Single Institution Series of 94 Consecutive Patients and 124 Lymph Nodes.

    Science.gov (United States)

    Jereczek-Fossa, Barbara Alicja; Fanetti, Giuseppe; Fodor, Cristiana; Ciardo, Delia; Santoro, Luigi; Francia, Claudia Maria; Muto, Matteo; Surgo, Alessia; Zerini, Dario; Marvaso, Giulia; Timon, Giorgia; Romanelli, Paola; Rondi, Elena; Comi, Stefania; Cattani, Federica; Golino, Federica; Mazza, Stefano; Matei, Deliu Victor; Ferro, Matteo; Musi, Gennaro; Nolè, Franco; de Cobelli, Ottavio; Ost, Piet; Orecchia, Roberto

    2017-08-01

    The purpose of the study was to evaluate the prostate serum antigen (PSA) response, local control, progression-free survival (PFS), and toxicity of stereotactic body radiotherapy (SBRT) for lymph node (LN) oligorecurrent prostate cancer. Between May 2012 and October 2015, 124 lesions were treated in 94 patients with a median dose of 24 Gy in 3 fractions. Seventy patients were treated for a single lesion and 25 for > 1 lesion. In 34 patients androgen deprivation (AD) was combined with SBRT. We evaluated biochemical response according to PSA level every 3 months after SBRT: a 3-month PSA decrease from pre-SBRT PSA of more than 10% identified responder patients. In case of PSA level increase, imaging was performed to evaluate clinical progression. Toxicity was assessed every 6 to 9 months after SBRT. Median follow-up was 18.5 months. In 13 patients (14%) Grade 1 to 2 toxicity was reported without any Grade 3 to 4 toxicity. Biochemical response, stabilization, and progression were observed in 64 (68%), 10 (11%), and 20 (21%) of 94 evaluable patients. Clinical progression was observed in 31 patients (33%) after a median time of 8.1 months. In-field progression occurred in 12 lesions (9.7%). Two-year local control and PFS rates were 84% and 30%, respectively. Age older than 75 years correlated with better biochemical response rate. Age older than 75 years, concomitant AD administered up to 12 months, and pelvic LN involvement correlated with longer PFS. SBRT is safe and offers good in-field control. At 2 years after SBRT, 1 of 3 patients is progression-free. Further investigation is warranted to identify patients who benefit most from SBRT and to define the optimal combination with AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. SU-E-J-24: Image-Guidance Using Cone-Beam CT for Stereotactic Body Radiotherapy (SBRT) of Lung Cancer Patients: Bony Alignment or Soft Tissue Alignment?

    Science.gov (United States)

    Wang, L; Turaka, A; Meyer, J; Spoka, D; Jin, L; Fan, J; Ma, C

    2012-06-01

    To assess the reliability of soft tissue alignment by comparing pre- and post-treatment cone-beam CT (CBCT) for image guidance in stereotactic body radiotherapy (SBRT) of lung cancers. Our lung SBRT procedures require all patients undergo 4D CT scan in order to obtain patient-specific target motion information through reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. The internal target volume (ITV) was outlined directly from the MIP images and a 3-5 mm margin expansion was then applied to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was used for image guidance by comparing with the simulation CT and for patient relocalization based on the bony anatomy. Any displacement of the patient bony structure would be considered as setup errors and would be corrected by couch shifts. Theoretically, as the PTV definition included target internal motion, no further shifts other than setup corrections should be made. However, it is our practice to have treating physicians further check target localization within the PTV. Whenever the shifts based on the soft-tissue alignment (that is, target alignment) exceeded a certain value (e.g. 5 mm), a post-treatment CBCT was carried out to ensure that the tissue alignment is reliable by comparing between pre- and post-treatment CBCT. Pre- and post-CBCT has been performed for 7 patients so far who had shifts beyond 5 mm despite bony alignment. For all patients, post CBCT confirmed that the visualized target position was kept in the same position as before treatment after adjusting for soft-tissue alignment. For the patient population studied, it is shown that soft-tissue alignment is necessary and reliable in the lung SBRT for individual cases. © 2012 American Association of Physicists in Medicine.

  19. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    International Nuclear Information System (INIS)

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk

  20. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    International Nuclear Information System (INIS)

    Dhou, S; Williams, C; Ionascu, D; Lewis, J

    2016-01-01

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  1. Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results

    International Nuclear Information System (INIS)

    Aluwini, Shafak; Rooij, Peter van; Hoogeman, Mischa; Kirkels, Wim; Kolkman-Deurloo, Inger-Karine; Bangma, Chris

    2013-01-01

    There is growing evidence that prostate cancer (PC) cells are more sensitive to high fraction dose in hypofractionation schemes. High-dose-rate (HDR) brachytherapy as monotherapy is established to be a good treatment option for PC using extremely hypofractionated schemes. This hypofractionation can also be achieved with stereotactic body radiotherapy (SBRT). We report results on toxicity, PSA response, and quality of life (QOL) in patients treated with SBRT for favorable-risk PC. Over the last 4 years, 50 hormone-naïve patients with low- and intermediate-risk PC were treated with SBRT to a total dose of 38 Gy delivered in four daily fractions of 9.5 Gy. An integrated boost to 11 Gy per fraction was applied to the dominant lesion if visible on MRI. Toxicity and QoL was assessed prospectively using validated questionnaires. Median follow-up was 23 months. The 2-year actuarial biochemical control rate was 100%. Median PSA nadir was 0.6 ng/ml. Median International Prostate Symptoms Score (IPSS) was 9/35 before treatment, with a median increase of 4 at 3 months and remaining stable at 13/35 thereafter. The EORTC/RTOG toxicity scales showed grade 2 and 3 gastrointestinal (GI) acute toxicity in 12% and 2%, respectively. The late grade 2 GI toxicity was 3% during 24 months FU. Genitourinary (GU) grade 2, 3 toxicity was seen in 15%, 8%, in the acute phase and 10%, 6% at 24 months, respectively. The urinary, bowel and sexual domains of the EORTC-PR25 scales recovered over time, showing no significant changes at 24 months post-treatment. SBRT to 38 Gy in 4 daily fractions for low- and intermediate-risk PC patients is feasible with low acute and late genitourinary and gastrointestinal toxicity. Longer follow-up preferably within randomized studies, is required to compare these results with standard fractionation schemes

  2. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Wang Zhiheng; Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-01-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm

  3. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    International Nuclear Information System (INIS)

    Lin, Lilie L.; Hertan, Lauren; Rengan, Ramesh; Teo, Boon-Keng Kevin

    2012-01-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed. To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23–62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI ≥25 to <30); 26.7% (n = 8) were mildly obese (BMI ≥30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI ≥ 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.

  4. Dosimetric comparison of deep inspiration breath hold and free breathing technique in stereotactic body radiotherapy for localized lung tumor using Flattening Filter Free beam

    Science.gov (United States)

    Mani, Karthick Raj; Bhuiyan, Md. Anisuzzaman; Alam, Md. Mahbub; Ahmed, Sharif; Sumon, Mostafa Aziz; Sengupta, Ashim Kumar; Rahman, Md. Shakilur; Azharul Islam, Md. S. M.

    2018-03-01

    Aim: To compare the dosimetric advantage of stereotactic body radiotherapy (SBRT) for localized lung tumor between deep inspiration breath hold technique and free breathing technique. Materials and methods: We retrospectively included ten previously treated lung tumor patients in this dosimetric study. All the ten patients underwent CT simulation using 4D-CT free breathing (FB) and deep inspiration breath hold (DIBH) techniques. Plans were created using three coplanar full modulated arc using 6 MV flattening filter free (FFF) bream with a dose rate of 1400 MU/min. Same dose constraints for the target and the critical structures for a particular patient were used during the plan optimization process in DIBH and FB datasets. We intend to deliver 50 Gy in 5 fractions for all the patients. For standardization, all the plans were normalized at target mean of the planning target volume (PTV). Doses to the critical structures and targets were recorded from the dose volume histogram for evaluation. Results: The mean right and left lung volumes were inflated by 1.55 and 1.60 times in DIBH scans compared to the FB scans. The mean internal target volume (ITV) increased in the FB datasets by 1.45 times compared to the DIBH data sets. The mean dose followed by standard deviation (x¯ ± σx¯) of ipsilateral lung for DIBH-SBRT and FB-SBRT plans were 7.48 ± 3.57 (Gy) and 10.23 ± 4.58 (Gy) respectively, with a mean reduction of 36.84% in DIBH-SBRT plans. Ipsilateral lung were reduced to 36.84% in DIBH plans compared to FB plans. Conclusion: Significant dose reduction in ipsilateral lung due to the lung inflation and target motion restriction in DIBH-SBRT plans were observed compare to FB-SBRT. DIBH-SBRT plans demonstrate superior dose reduction to the normal tissues and other critical structures.

  5. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A 1 ) was set in the range of 0.0–12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of γ index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within ± 0.7%. From the dose area histograms on the film, the mean ± standard deviation of the dose covering 100% of the cross section of the target was 102.32 ± 1.20% (range, 100.59–103.49%). By contrast, the irradiated areas receiving more than 95% dose for A 1 = 12 mm were 1.46 and 1.33 times larger than those for A 1 = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  6. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  7. Tuberculosis of the cervical spine

    African Journals Online (AJOL)

    Tuberculosis of the cervical spine is rare, comprising 3 -. 5% of cases of tuberculosis of the spine. Eight patients with tuberculosis of the cervicaJ spine seen during 1989 -. 1992 were reviewed. They all presented with neck pain. The 4 children presented with a kyphotic deformity. In all the children the disease was extensive, ...

  8. Inspection of the brazilian nuclear regulatory body in the area of radiotherapy. A critical analysis; Inspecao do orgao regulador nuclear brasileiro na area de radioterapia. Uma analise critica

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Ricardo Roberto de Azevedo

    2005-07-01

    The National Commission of Nuclear Energy (CNEN) is responsible in Brazil for the activities of licensing and control of radioactive installations in the radiotherapy medical area. The majority of these activities are developed by CNEN Co-ordination of Radioactive Installations (CORAD). One of the necessary stages for the development of licensing and control activities is the inspection of radiotherapy services (clinics and hospitals). Almost all of these inspections are carried out by CNEN Inst. of Radiation Protection and Dosimetry (IRD), through its Service of Medical Physics in Radiotherapy and Nuclear Medicine (SEFME). This work makes a survey of the main nonconformities found during ten years of inspections in radiotherapy services (1995 - 2004) and analyses the efficiency of these inspections in making the radiotherapy services develop their activities according to the norms in vigour in the country and adopt corrective actions against, at least, the nonconformities evidenced by CNEN inspectors. Additionally, it analyses the possibility of improvement and / or the optimisation of the process, through a procedure able to be unified and controlled, aiming a prompt communication to those involved in the licensing process (SEFME and CORAD) about the attendance by the radiotherapy services to the non-conformity items observed during the inspection. (author)

  9. Gorham-Stout syndrome of the spine. Case report and review of literature

    International Nuclear Information System (INIS)

    Floerchinger, A.; Boettger, E.; Claass-Boettger, F.; Harmes, J.

    1998-01-01

    Two female patients with Gorham-Stout syndrome (GSS) of the spine are described. One 25 year old patient developed progressive osteolysis of the upper cervical spine over a period of several years but despite gross extent of the disease had no neurological complications. Some bone implanted in order to stabilise the spine was absorbed after only a few weeks. A six year old girl with progressive osteolysis of the thoracic spine developed a reversible trans-section syndrome on several occasions. During an active episode, the spine was stabilised by a titanium implant. In both patients the condition arrested spontaneously. A review of the world literature (175 cases) has indicated that, including our two patients, there were only 15 patients with primary involvement of the spine and 27 patients with secondary involvement. The relatively good prognosis of the condition (mortality 13.3%), which often shows spontaneous arrest, becomes much worse if there is involvement of the spine or thorax because of neurological complications or a chylothorax. Involvement of the spine increases mortality to 33.3%, and to 52% if the thorax is involved. Early diagnosis and the institution of appropriate treatment is therefore essential. For involvement of the spine, a combination of radiotherapy and surgical stabilisation with a titanium implant should be performed since in nearly all patients bone transplants are reabsorbed. For this treatment the patient should be transferred to a neuro-orthopaedic centre. (orig.) [de

  10. Tuberculosis of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Psarras, H.; Faraj, J.; Gouliamos, A.; Kalovidouris, A.; Vlahos, L.; Papavassiliou, C.

    1985-07-01

    Two surgically proven cases of turberculous psoas abscess are presented. The common findings on CT were low-density paraspinal masses and extension of the lesions which followed the typical distribution of iliopsoas muscle in both cases. The skeletal findings from the spine are also discussed. Our cases indicate the complementary use of plain radiography and CT in the investigation of tuberculous spondylitis.

  11. [Cervical spine trauma].

    Science.gov (United States)

    Yilmaz, U; Hellen, P

    2016-08-01

    In the emergency department 65 % of spinal injuries and 2-5 % of blunt force injuries involve the cervical spine. Of these injuries approximately 50 % involve C5 and/or C6 and 30 % involve C2. Older patients tend to have higher spinal injuries and younger patients tend to have lower injuries. The anatomical and development-related characteristics of the pediatric spine as well as degenerative and comorbid pathological changes of the spine in the elderly can make the radiological evaluation of spinal injuries difficult with respect to possible trauma sequelae in young and old patients. Two different North American studies have investigated clinical criteria to rule out cervical spine injuries with sufficient certainty and without using imaging. Imaging of cervical trauma should be performed when injuries cannot be clinically excluded according to evidence-based criteria. Degenerative changes and anatomical differences have to be taken into account in the evaluation of imaging of elderly and pediatric patients.

  12. Care of patients undergoing external radiotherapy

    International Nuclear Information System (INIS)

    Lang, C.

    1977-01-01

    The anxiety and associated depression suffered by most patients undergoing radiotherapy is discussed and the possibilities open to the nurse to encourage and reassure patients thus facilitating physical care are considered. The general symptoms of anorexia, nausea, tiredness, skin problems, alopecia, bonemarrow depresssion and rapid tumour destruction are described and nursing care prescribed. The side-effects which may occur following radiation of the brain, head and neck region, eyes, oesophagus, lung, abdomen, pelvis, bones, skin, spine, and spinal cord are considered from the nursing standpoint. The specialised subject of radiotherapy in children is discussed briefly. (U.K.)

  13. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    International Nuclear Information System (INIS)

    Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.

    2013-01-01

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D EPL and 4D EPL ) were recalculated by a Monte Carlo algorithm (3D MC and 4D MC ) to further investigate the effects of dose calculation algorithms. The calculated 3D EPL , 3D MC , 4D EPL , and 4D MC dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the γ metric at 5%/3mm criteria (γ 5%/3mm ). Treatment plans were considered acceptable if the percentage of pixels passing γ 5

  14. A case of lumbar pain after intraoperative radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Wakako; Ogino, Takashi; Murakami, Koji; Nawano, Shigeru; Moriyama, Noriyuki; Ryu, Munemasa; Kawano, Nariaki

    1996-01-01

    We report a case of abnormal magnetic resonance imaging (MRI) findings after intraoperative radiotherapy. A 53-year-old woman with cancer of the papilla of Vater was treated with pancreatoduodenectomy and 20 Gy of intraoperative radiotherapy by electron beam to the tumor bed. Three months later the patient complained of lumbar pain. A change of signal intensity on MRI was detected in the anterior half of the vertebral body within the irradiated field. The signal was of high intensity but was not enhanced by Gd-DTPA on T1-weighted images, was isointense on T2-weighted images and of low intensity with the fat-suppression method. The radiation dose to the lumbar spine and the surrounding soft tissue was calculated to be 16 Gy. Histologic changes in bone after irradiation may include depletion of bone marrow cells and fat degeneration. The MRI findings were compatible with these changes. The radiation dose that can be tolerated by soft tissue is lower than that tolerated by bone. Therefore, late radiation injury of the soft tissue might have been the cause of the patient's lumbar pain. (author)

  15. Pediatric spine imaging post scoliosis surgery

    Energy Technology Data Exchange (ETDEWEB)

    Alsharief, Alaa N. [IWK Children' s Health Center, Dalhousie University, Diagnostic Imaging Department, Halifax, NS (Canada); The Hospital for Sick Children, University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); King Saud University, Department of Medical Imaging, King Abdul-Aziz Medical City, King Khaled National Guard Hospital-Western Region, Jeddah (Saudi Arabia); El-Hawary, Ron [Dalhousie University, Orthopedic Surgery Department, IWK Children' s Health Center, Halifax, NS (Canada); Schmit, Pierre [IWK Children' s Health Center, Dalhousie University, Diagnostic Imaging Department, Halifax, NS (Canada)

    2018-01-15

    Many orthopedic articles describe advances in surgical techniques and implants used in pediatric scoliosis surgery. However, even though postoperative spine imaging constitutes a large portion of outpatient musculoskeletal pediatric radiology, few, if any, radiology articles discuss this topic. There has been interval advancement over the last decades of the orthopedic procedures used in the treatment of spinal scoliosis in adolescents with idiopathic scoliosis. The goal of treatment in these patients is to stop the progression of the curve by blocking the spinal growth and correcting the deformity as much as possible. To that end, the authors in this paper discuss postoperative imaging findings of Harrington rods, Luque rods, Luque-Galveston implants and segmental spinal fusion systems. Regarding early onset scoliosis, the guiding principles used for adolescent idiopathic scoliosis do not apply to a growing spine because they would impede lung development. As a result, other devices have been developed to correct the curve and to allow spinal growth. These include spine-based growing rods, vertically expandable prosthetic titanium rods (requiring repetitive surgeries) and magnetically controlled growing rods (with a magnetic locking/unlocking system). Other more recent systems are Shilla and thoracoscopic anterior vertebral body tethering, which allow guided growth of the spine without repetitive interventions. In this paper, we review the radiologic appearances of different orthopedic implants and techniques used to treat adolescent idiopathic scoliosis and early onset scoliosis. Moreover, we present the imaging findings of the most frequent postoperative complications. (orig.)

  16. Pediatric spine imaging post scoliosis surgery

    International Nuclear Information System (INIS)

    Alsharief, Alaa N.; El-Hawary, Ron; Schmit, Pierre

    2018-01-01

    Many orthopedic articles describe advances in surgical techniques and implants used in pediatric scoliosis surgery. However, even though postoperative spine imaging constitutes a large portion of outpatient musculoskeletal pediatric radiology, few, if any, radiology articles discuss this topic. There has been interval advancement over the last decades of the orthopedic procedures used in the treatment of spinal scoliosis in adolescents with idiopathic scoliosis. The goal of treatment in these patients is to stop the progression of the curve by blocking the spinal growth and correcting the deformity as much as possible. To that end, the authors in this paper discuss postoperative imaging findings of Harrington rods, Luque rods, Luque-Galveston implants and segmental spinal fusion systems. Regarding early onset scoliosis, the guiding principles used for adolescent idiopathic scoliosis do not apply to a growing spine because they would impede lung development. As a result, other devices have been developed to correct the curve and to allow spinal growth. These include spine-based growing rods, vertically expandable prosthetic titanium rods (requiring repetitive surgeries) and magnetically controlled growing rods (with a magnetic locking/unlocking system). Other more recent systems are Shilla and thoracoscopic anterior vertebral body tethering, which allow guided growth of the spine without repetitive interventions. In this paper, we review the radiologic appearances of different orthopedic implants and techniques used to treat adolescent idiopathic scoliosis and early onset scoliosis. Moreover, we present the imaging findings of the most frequent postoperative complications. (orig.)

  17. Concomitant lower thoracic spine disc disease in lumbar spine MR imaging studies.

    Science.gov (United States)

    Arana, Estanislao; Martí-Bonmatí, Luis; Dosdá, Rosa; Mollá, Enrique

    2002-11-01

    Our objective was to study the coexistence of lower thoracic-spine disc changes in patients with low back pain using a large field of view (FOV) in lumbar spine MR imaging. One hundred fifty patients with low back pain were referred to an MR examination. All patients were studied with a large FOV (27 cm), covering from the coccyx to at least the body of T11. Discs were coded as normal, protrusion, and extrusion (either epiphyseal or intervertebral). The relationship between disc disease and level was established with the Pearson chi(2) test. The T11-12 was the most commonly affected level of the lower thoracic spine with 58 disc cases rated as abnormal. Abnormalities of T11-12 and T12-L1 discs were significantly related only to L1-L2 disease ( p=0.001 and p=0.004, respectively) but unrelated to other disc disease, patient's gender, and age. No correlation was found between other discs. Magnetic resonance imaging of the lumbar spine can detect a great amount of lower thoracic disease, although its clinical significance remains unknown. A statistically significant relation was found within the thoracolumbar junctional region (T11-L2), reflecting common pathoanatomical changes. The absence of relation with lower lumbar spine discs is probably due to differences in their pathomechanisms.

  18. Concomitant lower thoracic spine disc disease in lumbar spine MR imaging studies

    International Nuclear Information System (INIS)

    Arana, Estanislao; Marti-Bonmati, Luis; Dosda, Rosa; Molla, Enrique

    2002-01-01

    Our objective was to study the coexistence of lower thoracic-spine disc changes in patients with low back pain using a large field of view (FOV) in lumbar spine MR imaging. One hundred fifty patients with low back pain were referred to an MR examination. All patients were studied with a large FOV (27 cm), covering from the coccyx to at least the body of T11. Discs were coded as normal, protrusion, and extrusion (either epiphyseal or intervertebral). The relationship between disc disease and level was established with the Pearson χ 2 test. The T11-12 was the most commonly affected level of the lower thoracic spine with 58 disc cases rated as abnormal. Abnormalities of T11-12 and T12-L1 discs were significantly related only to L1-L2 disease (p=0.001 and p=0.004, respectively) but unrelated to other disc disease, patient's gender, and age. No correlation was found between other discs. Magnetic resonance imaging of the lumbar spine can detect a great amount of lower thoracic disease, although its clinical significance remains unknown. A statistically significant relation was found within the thoracolumbar junctional region (T11-L2), reflecting common pathoanatomical changes. The absence of relation with lower lumbar spine discs is probably due to differences in their pathomechanisms. (orig.)

  19. Stereotactic Body Radiation Therapy in Spinal Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A. [Mayo Medical School, College of Medicine, Mayo Clinic, Rochester, MN (United States); Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Rose, Peter S. [Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (United States); Olivier, Kenneth R. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Brown, Paul D. [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Brinkmann, Debra H. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Laack, Nadia N., E-mail: laack.nadia@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States)

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  20. Stereotactic Body Radiation Therapy in Spinal Metastases

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-01-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 ± 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10–40 Gy) in a median of three fractions (range, 1–5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18–30 Gy) in a median of three fractions (range, 1–5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  1. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yan, Guanghua; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-01-01

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  2. SU-E-J-110: Dosimetric Analysis of Respiratory Motion Based On Four-Dimensional Dose Accumulation in Liver Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)

    2015-06-15

    Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the

  3. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.; Wong, Jeffrey Y.C.

    2017-07-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.

  4. Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning.

    Science.gov (United States)

    Chin Snyder, Karen; Kim, Jinkoo; Reding, Anne; Fraser, Corey; Gordon, James; Ajlouni, Munther; Movsas, Benjamin; Chetty, Indrin J

    2016-11-08

    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model's ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine

  5. SU-E-T-591: Optimizing the Flattening Filter Free Beam Selection in RapidArc-Based Stereotactic Body Radiotherapy for Stage I Lung Cancer

    International Nuclear Information System (INIS)

    Huang, B-T; Lu, J-Y

    2015-01-01

    Purpose: To optimize the flattening filter free (FFF) beam energy selection in stereotactic body radiotherapy (SBRT) treatment for stage I lung cancer with different fraction schemes. Methods: Twelve patients suffering from stage I lung cancer were enrolled in this study. Plans were designed using 6XFFF and 10XFFF beams with the most widely used fraction schemes of 4*12 Gy, 3*18 Gy and 1*34 Gy, respectively. The plan quality was appraised in terms of planning target volume (PTV) coverage, conformity of the prescribed dose (CI100%), intermediate dose spillage (R50% and D2cm), organs at risk (OARs) sparing and beam-on time. Results: The 10XFFF beam predicted 1% higher maximum, mean dose to the PTV and 4–5% higher R50% compared with the 6XFFF beam in the three fraction schemes, whereas the CI100% and D2cm was similar. Most importantly, the 6XFFF beam exhibited 3–10% lower dose to all the OARs. However, the 10XFFF beam reduced the beam-on time by 31.9±7.2%, 38.7±2.8% and 43.6±4.0% compared with the 6XFFF beam in the 4*12 Gy, 3*18 Gy and 1*34 Gy schemes, respectively. Beam-on time was 2.2±0.2 vs 1.5±0.1, 3.3±0.9 vs 2.0±0.5 and 6.3±0.9 vs 3.5±0.4 minutes for the 6XFFF and 10XFFF one in the three fraction schemes. Conclusion: The 6XFFF beam obtains better OARs sparing in SBRT treatment for stage I lung cancer, but the 10XFFF one provides improved treatment efficiency. To balance the OARs sparing and intrafractional variation as a function of prolonged treatment time, the authors recommend to use the 6XFFF beam in the 4*12 Gy and 3*18 Gy schemes for better OARs sparing. However, for the 1*34 Gy scheme, the 10XFFF beam is recommended to achieve improved treatment efficiency

  6. Once-Weekly, High-Dose Stereotactic Body Radiotherapy for Lung Cancer: 6-Year Analysis of 60 Early-Stage, 42 Locally Advanced, and 7 Metastatic Lung Cancers

    International Nuclear Information System (INIS)

    Salazar, Omar M.; Sandhu, Taljit S.; Lattin, Paul B.; Chang, Jung H.; Lee, Choon K.; Groshko, Gayle A.; Lattin, Cheryl J.

    2008-01-01

    Purpose: To explore once-weekly stereotactic body radiotherapy (SBRT) in nonoperable patients with localized, locally advanced, or metastatic lung cancer. Methods and Materials: A total of 102 primary (89 untreated plus 13 recurrent) and 7 metastatic tumors were studied. The median follow-up was 38 months, the average patient age was 75 years. Of the 109 tumors studied, 60 were Stage I (45 IA and 15 IB), 9 were Stage II, 30 were Stage III, 3 were Stage IV, and 7 were metastases. SBRT only was given in 73% (40 Gy in four fractions to the planning target volume to a total dose of 53 Gy to the isocenter for a biologically effective dose of 120 Gy 10 ). SBRT was given as a boost in 27% (22.5 Gy in three fractions once weekly for a dose of 32 Gy at the isocenter) after 45 Gy in 25 fractions to the primary plus the mediastinum. The total biologically effective dose was 120 Gy 10 . Respiration gating was used in 46%. Results: The overall response rate was 75%; 33% had a complete response. The overall response rate was 89% for Stage IA patients (40% had a complete response). The local control rate was 82%; it was 100% and 93% for Stage IA and IB patients, respectively. The failure rate was 37%, with 17% within the planning target volume. No Grade 3-4 acute toxicities developed in any patient; 12% and 7% of patients developed Grade 1 and 2 toxicities, respectively. Late toxicity, all Grade 2, developed in 3% of patients. The 5-year cause-specific survival rate for Stage I was 70% and was 74% and 64% for Stage IA and IB patients, respectively. The 3-year Stage III cause-specific survival rate was 30%. The patients with metastatic lung cancer had a 57% response rate, a 27% complete response rate, an 86% local control rate, a median survival time of 19 months, and 23% 3-year survival rate. Conclusions: SBRT is noninvasive, convenient, fast, and economically attractive; it achieves results similar to surgery for early or metastatic lung cancer patients who are older

  7. Impact of tumor attachment to the pleura measured by a pretreatment CT image on outcome of stage I NSCLC treated with stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yamamoto, Takaya; Kadoya, Noriyuki; Shirata, Yuko; Koto, Masashi; Sato, Kiyokazu; Matsushita, Haruo; Sugawara, Toshiyuki; Umezawa, Rei; Kubozono, Masaki; Ishikawa, Yojiro; Kozumi, Maiko; Takahashi, Noriyoshi; Ito, Kengo; Katagiri, Yu; Takeda, Ken; Jingu, Keiichi

    2015-01-01

    Pleural invasion status is known to be a predictor of survival after pulmonary resection for non-small cell lung cancer. Our goal was to determine whether the length of tumor attachment to the pleura on a pretreatment CT image has prognostic value as an alternative to pleural invasion status for stage I non-small cell lung cancer treated with stereotactic body radiotherapy (SBRT). A total of 90 tumors in 87 patients (males: 68, females: 19) who received SBRT between March 2005 and September 2011 in our institution were reviewed. The median age of the patients was 78 years (range, 48-90 years). The median tumor diameter was 2.2 cm (range, 0.9-4.2 cm). The prescribed dose was typically 48 Gy in 4 fractions, 60 Gy in 8 fractions or 60 Gy in 15 fractions to the isocenter with 6 MV X-ray using 4 non-coplanar and 3 coplanar static beams. The lengths of attachment were measured using pretreatment CT images at the lung window. Cumulative incidence rates were calculated using Kaplan-Meier curves, and univariate and multivariate analyses for in-field tumor control, locoregional control (LRC), freedom from distant metastasis and freedom from progression (FFP) were performed using a Cox proportional hazards model. Of the 90 tumors, 42 tumors were attached to the pleura (median, 14.7 mm; range, 4.3-36.0 mm), 21 tumors had pleural indentation and 27 tumors had no attachment. The median follow-up period for survivors was 46.1 months. The 3-year in-field control, LRC, FFP and overall survival rates were 91.2%, 75.3%, 63.8% and 68.6%, respectively. SBRT dose and tumor diameter were independently significant predictors of in-field control (p = 0.02 and p = 0.04, respectively). Broad attachment to the pleura, the length being more than 14.7 mm, was a negative independent predictor of LRC and FFP (p = 0.02 and p = 0.01, respectively). Pleural attachment status on a pretreatment CT image might be an important predictor of LRC and FFP

  8. The utility of FDG-PET for assessing outcomes in oligometastatic cancer patients treated with stereotactic body radiotherapy: a cohort study

    Directory of Open Access Journals (Sweden)

    Solanki Abhishek A

    2012-12-01

    Full Text Available Abstract Background Studies suggest that patients with metastases limited in number and destination organ benefit from metastasis-directed therapy. Stereotactic body radiotherapy (SBRT is commonly used for metastasis directed therapy in this group. However, the characterization of PET response following SBRT is unknown in this population. We analyzed our cohort of patients to describe the PET response following SBRT. Methods Patients enrolled on a prospective dose escalation trial of SBRT to all known sites of metastatic disease were reviewed to select patients with pre- and post-therapy PET scans. Response to SBRT was characterized on PET imaging based on standard PET response criteria and compared to CT based RECIST criteria for each treated lesion. Results 31 patients had PET and CT data available before and after treatment for analysis in this study. In total, 58 lesions were treated (19 lung, 11 osseous, 11 nodal, 9 liver, 6 adrenal and 2 soft tissue metastases. Median follow-up was 14 months (range: 3–41. Median time to first post-therapy PET was 1.2 months (range; 0.5-4.1. On initial post-therapy PET evaluation, 96% (56/58 of treated metastases responded to therapy. 60% (35/58 had a complete response (CR on PET and 36% (21/58 had a partial response (PR. Of 22 patients with stable disease (SD on initial CT scan, 13 had CR on PET, 8 had PR, and one had SD. Of 21 metastases with PET PR, 38% became CR, 52% remained PR, and 10% had progressive disease on follow-up PET. 10/35 lesions (29% with an initial PET CR progressed on follow-up PET scan with median time to progression of 4.11 months (range: 2.75-9.56. Higher radiation dose correlated with long-term PET response. Conclusions PET response to SBRT enables characterization of metastatic response in tumors non-measurable by CT. Increasing radiation dose is associated with prolonged complete response on PET.

  9. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  10. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  11. Vacuum immobilisation reduces tumour excursion and minimises intrafraction error in a cohort study of stereotactic ablative body radiotherapy for pulmonary metastases

    International Nuclear Information System (INIS)

    Siva, Shankar; Devereux, Tomas; Kron, Tomas

    2014-01-01

    The purpose of this study is to assess the impact of a vacuum immobilisation system on reproducibility of patient set-up, interfraction stability and tumour motion amplitude. From February 2010 to February 2012 as part of a prospective clinical trial 12 patients with solitary pulmonary metastases had consecutive four-dimensional computed tomography (4DCT) scans performed with and without vacuum immobilisation. The displacement of the tumour centroid position was recorded in each of the 10 phases of the 4DCT reconstruction. A further six patients with seven metastases underwent single fraction stereotactic ablative body radiotherapy (SABR) during this period (a total of 19 targets) and were included in an analysis of positional reproducibility and intrafraction immobilisation. Couch shifts recorded in the medio-lateral (X), cranio-caudal (Y) and ventero-dorsal (Z) planes. For the 19 treatments delivered, the median (0–90% range) shift required immediately pretreatment was 1mm (0–3) in the X-plane, 2mm (0–6) in the Y-plane and 4mm (0–8) in the Z-plane, respectively. The mean (+/− standard deviation) of mid-treatment shifts were 0.3mm (+/− 0.7), 1.1mm (+/− 2) and 0.8mm (+/− 1.5) in the X, Y and Z planes, respectively. Mid-treatment shifts were <2mm in all directions (P=<0.001). The length of treatment time correlated to the required shifts in the Z plane (r2=0.377, P=0.005), but not in the X or Y planes (P=0.198 and P=0.653, respectively). In the subset of 12 patients who had two 4DCTs, the median (range) amplitude of tumour displacements in the X, Y and Z planes when immobilised were 0.9mm (0.3–2.9), 2.6mm (0.2–10.6) and 1.6mm (0.5–5.5), respectively. Immobilisation reduced the volume of tumour displacement during respiration by a median of 52.6% (P=0.021). Vacuum immobilisation reduces total tumour excursion, facilitates reproducible positioning and provides robust intrafractional immobilisation during SABR treatments for pulmonary metastases.

  12. Establishing stereotactic body radiotherapy with flattening filter free techniques in the treatment of pulmonary lesions - initial experiences from a single institution

    International Nuclear Information System (INIS)

    Rieber, Juliane; Tonndorf-Martini, Eric; Schramm, Oliver; Rhein, Bernhard; König, Laila; Adeberg, Sebastian; Meyerhof, Eva; Mohr, Angela; Kappes, Jutta; Hoffmann, Hans; Debus, Jürgen; Rieken, Stefan

    2016-01-01

    Stereotactic body radiotherapy (SBRT) using flattening filter free (FFF)-techniques has been increasingly applied during the last years. However, clinical studies investigating this emerging technique are still rare. Hence, we analyzed toxicity and clinical outcome of pulmonary SBRT with FFF-techniques and performed dosimetric comparison to conventional techniques using flattening filters (FF). Between 05/2014 and 06/2015, 56 consecutive patients with 61 pulmonary lesions were treated with SBRT in FFF-mode. Central lesions received 8 × 7.5 Gy delivered to the conformally enclosing 80 %-isodose, while peripheral lesions were treated with 3 × 15 Gy, prescribed to the 65 %-isodose. Early and late toxicity (after 6 months) as well as initial clinical outcomes were evaluated. Furthermore, [deleted] plan quality and efficiency were evaluated by analyzing conformity, beam- on and total treatment delivery times in comparison to plans with FF-dose application. Median follow-up time was 9.3 months (range 1.5–18.0 months). Early toxicity was low with only 5 patients (8.9 %) reporting CTCAE 2° or higher side-effects. Only one patient (1.8 %) was diagnosed with radiation-induced pneumonitis CTCAE 3°, while 2 (3.6 %) patients suffered from pneumonitis CTCAE 2°. After 6 months, no toxicity greater than CTCAE 2° was reported. 1-year local progression-free survival, distant progression-free survival and overall survival were 92.8 %, 78.0 %, and 94.4 %, respectively. While plan quality was similar for FFF- and FF-plans in respect to conformity (p = 0.275), median beam-on time as well as total treatment time were significantly reduced for SBRT in FFF-mode compared to FF-mode (p ≤ 0.001, p ≤ 0.001). Patient treatment with SBRT using FFF-techniques is safe and provides promising clinical results with only modest toxicity at significantly increased dose delivery speed

  13. SU-D-204-07: Retrospective Correlation of Dose Accuracy with Regions of Local Failure for Early Stage Lung Cancer Patients Treated with Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Devpura, S; Li, H; Liu, C; Fraser, C; Ajlouni, M; Movsas, B; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to the pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution

  14. SU-F-T-566: Absolute Film Dosimetry for Stereotactic Radiosurgery and Stereotactic Body Radiotherapy Quality Assurance Using Gafchromic EBT3 Films

    Energy Technology Data Exchange (ETDEWEB)

    Wen, N; Lu, S; Qin, Y; Huang, Y; Zhao, B; Liu, C; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To evaluate the dosimetric uncertainty associated with Gafchromic (EBT3) films and establish an absolute dosimetry protocol for Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiotherapy (SBRT). Methods: EBT3 films were irradiated at each of seven different dose levels between 1 and 15 Gy with open fields, and standard deviations of dose maps were calculated at each color channel for evaluation. A scanner non-uniform response correction map was built by registering and comparing film doses to the reference diode array-based dose map delivered with the same doses. To determine the temporal dependence of EBT3 films, the average correction factors of different dose levels as a function of time were evaluated up to four days after irradiation. An integrated film dosimetry protocol was developed for dose calibration, calibration curve fitting, dose mapping, and profile/gamma analysis. Patient specific quality assurance (PSQA) was performed for 93 SRS/SBRT treatment plans. Results: The scanner response varied within 1% for the field sizes less than 5 × 5 cm{sup 2}, and up to 5% for the field sizes of 10 × 10 cm{sup 2}. The scanner correction method was able to remove visually evident, irregular detector responses found for larger field sizes. The dose response of the film changed rapidly (∼10%) in the first two hours and plateaued afterwards, ∼3% change between 2 and 24 hours. The mean uncertainties (mean of the standard deviations) were <0.5% over the dose range 1∼15Gy for all color channels for the OD response curves. The percentage of points passing the 3%/1mm gamma criteria based on absolute dose analysis, averaged over all tests, was 95.0 ± 4.2. Conclusion: We have developed an absolute film dose dosimetry protocol using EBT3 films. The overall uncertainty has been established to be approximately 1% for SRS and SBRT PSQA. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.

  15. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  16. Interventional spine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kelekis, A.D. [Attikon University Hospital, 2nd Radiology Department, University of Athens, Rimini 1, 124 61 Athens (Greece)]. E-mail: akelekis@cc.uoa.gr; Somon, T. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Yilmaz, H. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Bize, P. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Brountzos, E.N. [Attikon University Hospital, 2nd Radiology Department, University of Athens, Rimini 1, 124 61 Athens (Greece); Lovblad, K. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Ruefenacht, D. [Geneva University Hospital, Department of Radiology, Neuroradiology, 24, Rue Micheli-du-Crest, 1211 Geneva 14 (Switzerland); Martin, J.B. [Clinique Generale Beaulieu 12 chemin Beau Soleil 1206 Geneva (Switzerland)]. E-mail: jbmartin@beaulieu.ch

    2005-09-01

    Minimally invasive techniques for the treatment of some spinal diseases are percutaneous treatments, proposed before classic surgery. By using imaging guidance, one can significantly increase accuracy and decrease complication rates. This review report physiopathology and discusses indications, methods, complications and results of performing these techniques on the spine, including different level (cervical, thoracic, lumbar and sacroiliac) and different kind of treatments (nerve block, disc treatment and bone treatment). Finally the present article also reviews current literature on the controversial issues involved.

  17. Tuberculosis of the spine

    International Nuclear Information System (INIS)

    Psarras, H.; Faraj, J.; Gouliamos, A.; Kalovidouris, A.; Vlahos, L.; Papavassiliou, C.

    1985-01-01

    Two surgically proven cases of turberculous psoas abscess are presented. The common findings on CT were low-density paraspinal masses and extension of the lesions which followed the typical distribution of iliopsoas muscle in both cases. The skeletal findings from the spine are also discussed. Our cases indicate the complementary use of plain radiography and CT in the investigation of tuberculous spondylitis. (orig.) [de

  18. Imaging the cervical spine following rugby related injury

    International Nuclear Information System (INIS)

    Beck, J.J.W.

    2016-01-01

    Rugby Union and Rugby League are popular sports with high participation across the world. The high impact nature of the sport results in a high proportion of injuries. Rugby has an association with cervical spine injury which has potentially catastrophic consequences for the patient. Anecdotal evidence suggests that radiographers find it challenging to visualise the cervicothoracic junction on the lateral supine cervical spine projection in broad shouldered athletes. This paper intends to analyse the risk factors for cervical spine injuries in rugby and discuss the imaging strategy in respect to radiography and CT scanning in high risk patient groups such as rugby players who are suspected of suffering a cervical spine injury. - Highlights: • Rugby as a participation sport represents a risk of cervical spine injury. • Conventional radiography lacks sensitivity in identifying cervical spine injury. • The body habitus of rugby players makes the imaging of the cervicothoracic junction challenging. • CT scanning should replace radiography in the event of serious suspicion of cervical spine injury. • The notion of CT being a high dose modality should be questioned.

  19. MRI of cervical spine injuries complicating ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Koivikko, Mika P.; Koskinen, Seppo K. [Helsinki Medical Imaging Center, Helsinki University Central Hospital, Toeoeloe Hospital, Department of Radiology, Helsinki (Finland)

    2008-09-15

    The objective was to study characteristic MRI findings in cervical spine fractures complicating ankylosing spondylitis (AS). Technical issues related to MRI are also addressed. A review of 6,774 consecutive cervical spine multidetector CT (MDCT) scans obtained during 6.2 years revealed 33 ankylosed spines studied for suspected acute cervical spine injury complicating AS. Of these, 20 patients also underwent MRI. On MRI, of these 20 patients, 19 had a total of 29 cervical and upper thoracic spine fractures. Of 20 transverse fractures traversing both anterior and posterior columns, 7 were transdiskal and exhibited less bone marrow edema than did those traversing vertebral bodies. One Jefferson's, 1 atlas posterior arch (Jefferson's on MDCT), 2 odontoid process, and 5 non-contiguous spinous process fractures were detectable. MRI showed 2 fractures that were undetected by MDCT, and conversely, MDCT detected 6 fractures not seen on MRI; 16 patients had spinal cord findings ranging from impingement and contusion to complete transection. Magnetic resonance imaging can visualize unstable fractures of the cervical and upper thoracic spine. Paravertebral hemorrhages and any ligamentous injuries should alert radiologists to seek transverse fractures. Multiple fractures are common and often complicated by spinal cord injuries. Diagnostic images can be obtained with a flexible multipurpose coil if the use of standard spine array coil is impossible due to a rigid collar or excessive kyphosis. (orig.)

  20. Biologics in spine arthrodesis.

    Science.gov (United States)

    Kannan, Abhishek; Dodwad, Shah-Nawaz M; Hsu, Wellington K

    2015-06-01

    Spine fusion is a tool used in the treatment of spine trauma, tumors, and degenerative disorders. Poor outcomes related to failure of fusion, however, have directed the interests of practitioners and scientists to spinal biologics that may impact fusion at the cellular level. These biologics are used to achieve successful arthrodesis in the treatment of symptomatic deformity or instability. Historically, autologous bone grafting, including iliac crest bong graft harvesting, had represented the gold standard in spinal arthrodesis. However, due to concerns over potential harvest site complications, supply limitations, and associated morbidity, surgeons have turned to other bone graft options known for their osteogenic, osteoinductive, and/or osteoconductive properties. Current bone graft selection includes autograft, allograft, demineralized bone matrix, ceramics, mesenchymal stem cells, and recombinant human bone morphogenetic protein. Each pose their respective advantages and disadvantages and are the focus of ongoing research investigating the safety and efficacy of their use in the setting of spinal fusion. Rh-BMP2 has been plagued by issues of widespread off-label use, controversial indications, and a wide range of adverse effects. The risks associated with high concentrations of exogenous growth factors have led to investigational efforts into nanotechnology and its application in spinal arthrodesis through the binding of endogenous growth factors. Bone graft selection remains critical to successful fusion and favorable patient outcomes, and orthopaedic surgeons must be educated on the utility and limitations of various biologics in the setting of spine arthrodesis.

  1. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  2. Clinical practice of image-guided spine radiosurgery - results from an international research consortium

    Directory of Open Access Journals (Sweden)

    Guckenberger Matthias

    2011-12-01

    Full Text Available Abstract Background Spinal radiosurgery is a quickly evolving technique in the radiotherapy and neurosurgical communities. However, the methods of spine radiosurgery have not been standardized. This article describes the results of a survey about the methods of spine radiosurgery at five international institutions. Methods All institutions are members of the Elekta Spine Radiosurgery Research Consortium and have a dedicated research and clinical focus on image-guided radiosurgery. The questionnaire consisted of 75 items covering all major steps of spine radiosurgery. Results Strong agreement in the methods of spine radiosurgery was observed. In particular, similarities were observed with safety and quality assurance playing an important role in the methods of all institutions, cooperation between neurosurgeons and radiation oncologists in case selection, dedicated imaging for target- and organ-at-risk delineation, application of proper safety margins for the target volume and organs-at-risk, conformal planning and precise image-guided treatment delivery, and close clinical and radiological follow-up. In contrast, three major areas of uncertainty and disagreement were identified: 1 Indications and contra-indications for spine radiosurgery; 2 treatment dose and fractionation and 3 tolerance dose of the spinal cord. Conclusions Results of this study reflect the current practice of spine radiosurgery in large academic centers. Despite close agreement was observed in many steps of spine radiosurgery, further research in form of retrospective and especially prospective studies is required to refine the details of spinal radiosurgery in terms of safety and efficacy.

  3. Anatomy of large animal spines and its comparison to the human spine: a systematic review.

    Science.gov (United States)

    Sheng, Sun-Ren; Wang, Xiang-Yang; Xu, Hua-Zi; Zhu, Guo-Qing; Zhou, Yi-Fei

    2010-01-01

    Animal models have been commonly used for in vivo and in vitro spinal research. However, the extent to which animal models resemble the human spine has not been well known. We conducted a systematic review to compare the morphometric features of vertebrae between human and animal species, so as to give some suggestions on how to choose an appropriate animal model in spine research. A literature search of all English language peer-reviewed publications was conducted using PubMed, OVID, Springer and Elsevier (Science Direct) for the years 1980-2008. Two reviewers extracted data on the anatomy of large animal spines from the identified articles. Each anatomical study of animals had to include at least three vertebral levels. The anatomical data from all animal studies were compared with the existing data of the human spine in the literature. Of the papers retrieved, seven were included in the review. The animals in the studies involved baboon, sheep, porcine, calf and deer. Distinct anatomical differences of vertebrae were found between the human and each large animal spine. In cervical region, spines of the baboon and human are more similar as compared to other animals. In thoracic and lumbar regions, the mean pedicle height of all animals was greater than the human pedicles. There was similar mean pedicle width between animal and the human specimens, except in thoracic segments of sheep. The human spinal canal was wider and deeper in the anteroposterior plane than any of the animals. The mean human vertebral body width and depth were greater than that of the animals except in upper thoracic segments of the deer. However, the mean vertebral body height was lower than that of all animals. This paper provides a comprehensive review to compare vertebrae geometries of experimental animal models to the human vertebrae, and will help for choosing animal model in vivo and in vitro spine research. When the animal selected for spine research, the structural similarities and

  4. Radiotherapy of breast fibrosis

    International Nuclear Information System (INIS)

    Heibel, J.H.

    1979-01-01

    In a retrospective study radiotherapy of breast fibrosis in hormone-treated men with histologically confirmed prostate carcinoma was examined. 10 patients had received hormones even before irradiation, 113 obtained hormone administration only after irradiation. The objective size of the glandular body and the overall size of the breast were measured with a special method developed by the author. 46 patients indicated complaints. With hypertrophic mamma and hypertrophic mamilla in 67 examined patients, 127 different symptoms resulted in total. Four patients of the group who had obtained hormones before irradiation, suffered from subjective symptoms. It resulted that radiotherapy of breast fibrosis carried out during hormone treatment is no gynecomastia prophylaxis, that already existent mamma hypertrophies are irreversible, but that existent sensations were notably reduced within 6 months after irradiation therapy. These results indicate the necessity of a radiotherapy of the mamma fibrosis before the hormone treatment is begun. Particularly in cases of higher operative risks, also the possibility of preferring radiotherapy to mastectomy should be fully utilized, in view of adequate or even better therapeutic results. (orig./MG) [de

  5. The progress in radiotherapy techniques and it's clinical implications

    International Nuclear Information System (INIS)

    Reinfuss, M.; Walasek, T.; Byrski, E.; Blecharz, P.

    2011-01-01

    Three modem radiotherapy techniques were introduced into clinical practice at the onset of the 21 st century - stereotactic radiation therapy (SRT), proton therapy and carbon-ion radiotherapy. Our paper summarizes the basic principles of physics, as well as the technical reqirements and clinical indications for those techniques. SRT is applied for intracranial diseases (arteriovenous malformations, acoustic nerve neuromas, brain metastases, skull base tumors) and in such cases it is referred to as stereotactic radiosurgery (SRS). Techniques used during SRS include GammaKnife, CyberKnife and dedicated linacs. SRT can also be applied for extracranial disease (non-small cell lung cancer, lung metastases, spinal and perispinal tumors, primary liver tumors, breast cancer, pancreatic tumors, prostate cancer, head and neck tumors) and in such cases it is referred to as stereotactic body radiation therapy (SBRT). Eye melanomas, skull base and cervical spine chordomas and chordosarcomas, as well as childhood neoplasms, are considered to be the classic indications for proton therapy. Clinical trials are currently conducted to investigate the usefulness of proton beam in therapy of non-small cell lung cancer, prostate cancer, head and neck tumors, primary liver and oesophageal cancer Carbon-ion radiotherapy is presumed to be more advantageous than proton therapy because of its higher relative biological effectiveness (RBE) and possibility of real-time control of the irradiated volume under PET visualization. The basic indications for carbon-ion therapy are salivary glands neoplasms, selected types of soft tissue and bone sarcomas, skull base chordomas and chordosarcomas, paranasal sinus neoplasms, primary liver cancers and inoperable rectal adenocarcinoma recurrences. (authors)

  6. The top 100 classic papers in lumbar spine surgery.

    Science.gov (United States)

    Steinberger, Jeremy; Skovrlj, Branko; Caridi, John M; Cho, Samuel K

    2015-05-15

    Bibliometric review of the literature. To analyze and quantify the most frequently cited papers in lumbar spine surgery and to measure their impact on the entire lumbar spine literature. Lumbar spine surgery is a dynamic and complex field. Basic science and clinical research remain paramount in understanding and advancing the field. While new literature is published at increasing rates, few studies make long-lasting impacts. The Thomson Reuters Web of Knowledge was searched for citations of all papers relevant to lumbar spine surgery. The number of citations, authorship, year of publication, journal of publication, country of publication, and institution were recorded for each paper. The most cited paper was found to be the classic paper from 1990 by Boden et al that described magnetic resonance imaging findings in individuals without back pain, sciatica, and neurogenic claudication showing that spinal stenosis and herniated discs can be incidentally found when scanning patients. The second most cited study similarly showed that asymptomatic patients who underwent lumbar spine magnetic resonance imaging frequently had lumbar pathology. The third most cited paper was the 2000 publication of Fairbank and Pynsent reviewing the Oswestry Disability Index, the outcome-measure questionnaire most commonly used to evaluate low back pain. The majority of the papers originate in the United States (n=58), and most were published in Spine (n=63). Most papers were published in the 1990s (n=49), and the 3 most common topics were low back pain, biomechanics, and disc degeneration. This report identifies the top 100 papers in lumbar spine surgery and acknowledges those individuals who have contributed the most to the advancement of the study of the lumbar spine and the body of knowledge used to guide evidence-based clinical decision making in lumbar spine surgery today. 3.

  7. SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?

    International Nuclear Information System (INIS)

    Acar, H; Altinok, A; Kucukmorkoc, E; Kucuk, N; Caglar, H

    2014-01-01

    Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of the planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is

  8. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  9. Experience with carbon ion radiotherapy at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, O. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)]. E-mail: o.jaekel@dkfz.de; Schulz-Ertner, D. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Karger, C.P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Heeg, P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Debus, J. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2005-12-15

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  10. Radiotherapy and brachytherapy

    International Nuclear Information System (INIS)

    2007-02-01

    This presentation first defines the radiotherapy and brachytherapy techniques, indicates the used ionizing radiations (electromagnetic and particles), describes the mechanisms and processes of action of ionizing radiations: they can be physical by photon-matter interactions (Compton effect and photoelectric effect) or due to electron-matter interactions (excitation, ionization), physical-chemical by direct or indirect action (DNA damage), cellular (mitotic or apoptotic death), tissue (sane and tumorous tissues and differential effect). It discusses the biological efficiency of these treatments which depends on different parameters: intrinsic radio-sensitivity, time (session fractioning and organisation in time), oxygen, radiation quality, cellular cycle, dose rate, temperature. It presents the different types of radiotherapy: external radiotherapy (general sequence, delineation, dosimetry, protection of critical organs, treatment session, quality control, monitoring consultation) and briefly presents some specific techniques (total body irradiation, total cutaneous electron therapy, pre-operation radiotherapy, radio-surgery, hadron-therapy). It proposes an overview of the main indications for this treatment: brain tumours, upper aero digestive tract tumours, bronchial tumours, oesophagus, stomach and pancreas tumours, breast tumours, cervix cancer, rectum tumour, and so on, and indicates the possible associated treatments. The next part addresses brachytherapy. It presents the principles and comments the differences with radiotherapy. It indicates the used radio-elements (Caesium 137, Iridium 192, Iodine 125), describes the implementation techniques (plastic tubes, use of iodine 125, intracavitary and endo-luminal radiation therapy). It proposes an overview of the different treated tumours (skin, breast, prostates, bronchial, oesophagus, ENT) and indicates possible early and late secondary effects for different organs

  11. Stereotactic body radiotherapy (SBRT) in recurrent or oligometastatic pancreatic cancer. A toxicity review of simultaneous integrated protection (SIP) versus conventional SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Gkika, E.; Kirste, S.; Schimek-Jasch, T. [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg im Breisgau (Germany); Adebahr, S. [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg im Breisgau (Germany); German Cancer Consortium (DKTK), Heidelberg (partner site Freiburg) (Germany); Wiehle, R. [University Medical Center Freiburg, Division of Medical Physics, Department of Radiation Oncology, Freiburg (Germany); Claus, R. [University Medical Center Freiburg, Department of Hematology, Oncology and Stem-Cell Transplantation, Freiburg (Germany); Wittel, U. [University Medical Center Freiburg, Department of General and Visceral Surgery, Freiburg (Germany); Nestle, U.; Grosu, A.L.; Brunner, T.B. [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg im Breisgau (Germany); German Cancer Consortium (DKTK), Heidelberg (partner site Freiburg) (Germany); University of Freiburg, Faculty of Medicine, Freiburg (Germany); Baltas, D. [University Medical Center Freiburg, Division of Medical Physics, Department of Radiation Oncology, Freiburg (Germany); German Cancer Consortium (DKTK), Heidelberg (partner site Freiburg) (Germany); University of Freiburg, Faculty of Medicine, Freiburg (Germany)

    2017-06-15

    Stereotactic body radiotherapy (SBRT) in pancreatic cancer can be limited by its proximity to organs at risk (OAR). In this analysis, we evaluated the toxicity and efficacy of two different treatment approaches in patients with locally recurrent or oligometastatic pancreatic cancer. According to the prescription method, patients were divided in two cohorts (C1 and C2). The planning target volume (PTV) was created through a 4 mm expansion of the internal target volume. In C2, a subvolume was additionally created, a simultaneous integrated protection (SIP), which is the overlap of the PTV with the planning risk volume of an OAR to which we prescribed a reduced dose. In all, 18 patients were treated (7 with local recurrences, 9 for oligometastases, 2 for both). Twelve of 23 lesions were treated without SIP (C1) and 11 with SIP (C2). The median follow-up was 12.8 months. Median overall survival (OS) was 13.2 (95% confidence interval [CI] 9.8-14.6) months. The OS rates at 6 and 12 months were 87 and 58%, respectively. Freedom from local progression for combined cohorts at 6 and 12 months was 93 and 67% (95% CI 15-36), respectively. Local control was not statistically different between the two groups. One patient in C2 experienced grade ≥3 acute toxicities and 1 patient in C1 experienced a grade ≥3 late toxicity. The SIP approach is a useful prescription method for abdominal SBRT with a favorable toxicity profile which does not compromise local control and overall survival despite dose sacrifices in small subvolumes. (orig.) [German] Die stereotaktische Strahlentherapie (SBRT) ist bei Pankreaskarzinomen durch die enge Lagebeziehung der Risikoorgane (OAR) zum Zielvolumen erschwert. In dieser Analyse evaluierten wir die Toxizitaet und die Lokalkontrolle von zwei unterschiedlichen Therapiestrategien bei Patienten mit rezidivierendem oder oligometastatischem Pankreaskarzinom. Die Patienten wurden anhand der Verschreibungsmethode in zwei Kohorten geteilt (C1 und C2). Das

  12. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: Evaluation of the impact on daily dose coverage

    International Nuclear Information System (INIS)

    Wang Lu; Hayes, Shelly; Paskalev, Kamen; Jin Lihui; Buyyounouski, Mark K.; Ma, Charlie C.-M.; Feigenberg, Steve

    2009-01-01

    Purpose: To investigate the dosimetric impact of using 4D CT and multiphase (helical) CT images for treatment planning target definition and the daily target coverage in hypofractionated stereotactic body radiotherapy (SBRT) of lung cancer. Materials and methods: For 10 consecutive patients treated with SBRT, a set of 4D CT images and three sets of multiphase helical CT scans, taken during free-breathing, end-inspiration and end-expiration breath-hold, were obtained. Three separate planning target volumes (PTVs) were created from these image sets. A PTV 4D was created from the maximum intensity projection (MIP) reconstructed 4D images by adding a 3 mm margin to the internal target volume (ITV). A PTV 3CT was created by generating ITV from gross target volumes (GTVs) contoured from the three multiphase images. Finally, a third conventional PTV (denoted PTV conv ) was created by adding 5 mm in the axial direction and 10 mm in the longitudinal direction to the GTV (in this work, GTV = CTV = clinical target volume) generated from free-breathing helical CT scans. Treatment planning was performed based on PTV 4D (denoted as Plan-1), and the plan was adopted for PTV 3CT and PTV conv to form Plan-2 and Plan-3, respectively, by superimposing 'Plan-1' onto the helical free-breathing CT data set using modified beam apertures that conformed to either PTV 3CT or PTV conv . We first studied the impact of PTV design on treatment planning by evaluating the dosimetry of the three PTVs under the three plans, respectively. Then we examined the effect of the PTV designs on the daily target coverage by utilizing pre-treatment localization CT (CT-on-rails) images for daily GTV contouring and dose recalculation. The changes in the dose parameters of D 95 and D 99 (the dose received by 95% and 99% of the target volume, respectively), and the V p (the volume receiving the prescription dose) of the daily GTVs were compared under the three plans before and after setup error correction

  13. Nonmetastatic Ewing’s Sarcoma of the Lumbar Spine in an Adult Patient

    Directory of Open Access Journals (Sweden)

    Maurizio Iacoangeli

    2012-01-01

    Full Text Available Although the spine is frequently involved in metastatic Ewing's sarcoma, primary involvement of the spine, beside sacrum, is much less frequent, especially in adult patients. Because of the low incidence of these tumors, there are currently no clinical guidelines outlining their management and a multitude of therapeutic strategies have been employed with varying success. The definitive management of Ewing's sarcoma of the spine, as in other locations, could include the combination of three main modalities: aggressive surgery, radiotherapy, and combined chemotherapy. Whenever possible, en bloc spondylectomy or extralesional resection is preferable, providing a better oncological result with a longer survival and a better preservation of the spine biomechanics. This is the lesson we learned about the case, we present here, of nonmetastatic lumbar localization by Ewing’s sarcoma in as adult patient.

  14. Stereotactic body radiation therapy (SBRT) in the treatment of liver metastases: State of the art; Radiotherapie en conditions stereotaxiques des metastases hepatiques

    Energy Technology Data Exchange (ETDEWEB)

    De Bari, B.; Guillet, M.; Mornex, F. [Departement de radiotherapie oncologie, centre hospitalier Lyon-Sud, chemin du Grand-Revoyet, 69310 Pierre-Benite (France); EA3738, domaine Rockefeller, universite Claude-Bernard, 8, avenue Rockefeller, 69373 Lyon cedex 08 (France)

    2011-02-15

    Liver metastases are frequently found in oncologic patients. Chemotherapy is the standard treatment in pluri-metastatic patients, with the possibility to obtain a clear improvement of their prognosis. Local treatment (surgery, radiofrequency, cryo-therapy, radiotherapy, etc.) could be proposed for oligo-metastatic patients, particularly for those with a good prognosis. Historically, radiation therapy has had a limited role in the treatment of liver metastases because of its toxicity when whole liver irradiation was delivered. Improvements in the knowledge of liver r