WorldWideScience

Sample records for spinal nociceptive processing

  1. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  2. Learned control over spinal nociception in patients with chronic back pain.

    Science.gov (United States)

    Krafft, S; Göhmann, H-D; Sommer, J; Straube, A; Ruscheweyh, R

    2017-10-01

    Descending pain inhibition suppresses spinal nociception, reducing nociceptive input to the brain. It is modulated by cognitive and emotional processes. In subjects with chronic pain, it is impaired, possibly contributing to pain persistence. A previously developed feedback method trains subjects to activate their descending inhibition. Participants are trained to use cognitive-emotional strategies to reduce their spinal nociception, as quantified by the nociceptive flexor reflex (RIII reflex), under visual feedback about their RIII reflex size. The aim of the present study was to test whether also subjects with chronic back pain can achieve a modulation of their descending pain inhibition under RIII feedback. In total, 33 subjects with chronic back pain received either true (n = 18) or sham RIII feedback (n = 15), 15 healthy control subjects received true RIII feedback. All three groups achieved significant RIII suppression, largest in controls (to 76 ± 26% of baseline), intermediate in chronic back pain subjects receiving true feedback (to 82 ± 13%) and smallest in chronic back pain subjects receiving sham feedback (to 89 ± 14%, all p chronic pain subjects receiving true feedback significantly improved their descending inhibition over the feedback training, quantified by the conditioned pain modulation effect (test pain reduction of baseline before training: to 98 ± 26%, after: to 80 ± 21%, p chronic back pain can achieve a reduction of their spinal nociception and improve their descending pain inhibition under RIII feedback training. Subjects with chronic back pain can learn to control their spinal nociception, quantified by the RIII reflex, when they receive feedback about the RIII reflex. © 2017 European Pain Federation - EFIC®.

  3. Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception

    DEFF Research Database (Denmark)

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.

    2012-01-01

    . Cytosolic calcium concentration elevates faster and with higher amplitude following G-1 intracellular microinjections compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium......Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER......) activation. Membrane depolarization and increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological, and fluorescent imaging studies, we evaluated GPER involvement...

  4. Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat

    Directory of Open Access Journals (Sweden)

    Marchand Fabien

    2011-11-01

    Full Text Available Abstract Background Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP, a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. Results Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs following formalin administration. In addition, Complete Freund's Adjuvant (CFA-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. Conclusions These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation.

  5. Impact of behavioral control on the processing of nociceptive stimulation

    Directory of Open Access Journals (Sweden)

    James W Grau

    2012-08-01

    Full Text Available How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation, it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation. These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: Controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit. Uncontrollable stimulation also enhances mechanical reactivity (allodynia. We review evidence that training with controllable stimulation engages a BDNF-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin. A model is proposed that assumes nociceptive input is gated at an early stage, within the dorsal horn. his gate is sensitive to current environmental relations (between proprioceptive and nociceptive input, allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain.

  6. Impact of Behavioral Control on the Processing of Nociceptive Stimulation

    Science.gov (United States)

    Grau, James W.; Huie, J. Russell; Garraway, Sandra M.; Hook, Michelle A.; Crown, Eric D.; Baumbauer, Kyle M.; Lee, Kuan H.; Hoy, Kevin C.; Ferguson, Adam R.

    2012-01-01

    How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain. PMID:22934018

  7. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    Science.gov (United States)

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex. Copyright © 2015 the American Physiological Society.

  8. Central nociceptive sensitization vs. spinal cord training: Opposing forms of plasticity that dictate function after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training. Conversely intradermal formalin impaired future spinal learning (24 h post-injection. Because the NMDA receptor has been implicated in formalin-induced central sensitization, we tested whether pretreatment with NMDA affects spinal learning. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24h. These data provide strong evidence for an

  9. Interactions between superficial and deep dorsal horn spinal cord neurons in the processing of nociceptive information.

    Science.gov (United States)

    Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy

    2012-12-01

    In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Modulation of melanocortin- induced changes in spinal nociception by µ-opioid receptor agonist and antagonist in neuropathic rats

    NARCIS (Netherlands)

    Gispen, W.H.; Starowitcz, K.; Przewlocki, R.; Przewlocka, B.

    2002-01-01

    Co-localization of opioid and melanocortin receptor expression, especially at the spinal cord level in the dorsal horn and in the gray matter surrounding the central canal led to the suggestion that melanocortins might play a role in nociceptive processes. In the present studies, we aimed to

  11. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  12. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry.

    Science.gov (United States)

    Ge, Yanhu; Jiao, Yingfu; Li, Peiying; Xiang, Zhenghua; Li, Zhi; Wang, Long; Li, Wenqian; Gao, Hao; Shao, Jiayun; Wen, Daxiang; Yu, Weifeng

    2018-05-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen leads to ER stress, which is related to cellular reactive oxygen species production. Neuropathic pain may result from spinal dorsal horn (SDH) ER stress. In this study, we examined the cause-effect relationship between ER stress and neuropathic pain using the spinal nerve ligation (SNL) rat model. We showed that ER stress was mutually promotive with oxidative stress during the process. We also tested the hypothesis that spinal sensitization arose from reduced activities of GABA-ergic interneurons and that spinal sensitization was mediated by SDH ER stress. Other important findings in this study including the following: (1) nociceptive behavior was alleviated in SNL rat as long as tauroursodeoxycholic acid injections were repeated to inhibit ER stress; (2) inducing SDH ER stress in healthy rat resulted in mechanical hyperalgesia; (3) blocking protein disulfide isomerase pharmacologically reduced ER stress and nociceptive behavior in SNL rat; (4) cells in the dorsal horn with elevated ER stress were mainly neurons; and (5) whole-cell recordings made in slide preparations revealed significant inhibition of GABA-ergic interneuron activity in the dorsal horn with ER stress vs in the healthy dorsal horn. Taken together, results of the current study demonstrate that coregulation of ER stress and oxidative stress played an important role in neuropathic pain process. Inhibiting SDH ER stress could be a potential novel strategy to manage neuropathic pain.

  13. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture

    OpenAIRE

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Sun, Yuan; Wei, Tzuping; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glia activation and central sensitization. At 4 weeks after tibia fracture and casting ...

  14. Early Postoperative Nociceptive Threshold and Production of Brain-Derived Neurotrophic Factor Induced by Plantar Incision Are Not Influenced with Minocycline in a Rat: Role of Spinal Microglia

    Directory of Open Access Journals (Sweden)

    Eiji Masaki

    2016-03-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF from spinal microglia is crucial for aberrant nociceptive signaling in several pathological pain conditions, including postoperative pain. We assess the contribution of spinal microglial activation and associated BDNF overexpression to the early post-incisional nociceptive threshold. Methods: Male Sprague-Dawley rats were implanted with an intrathecal catheter. A postoperative pain model was established by plantar incision. Thermal and mechanical nociceptive responses were assessed by infrared radiant heat and von Frey filaments before and after plantar incision. Rats were injected intrathecally the microglial activation inhibitor minocycline before incision, 24 h after incision, or both. Other groups were subjected to the same treatments and the L4-L5 spinal cord segment removed for immunohistochemical analysis of microglia activation and BNDF expression. Results: Plantar incision reduced both thermal latency and mechanical threshold, indicating thermal hypersensitivity and mechanical allodynia. Minocycline temporally reduced thermal withdrawal latency but had no effect on mechanical withdrawal threshold, spinal microglial activity, or dorsal horn BDNF overexpression during the early post-incision period. Conclusion: These results suggest that spinal microglia does not contribute substantially to post-incisional nociceptive threshold. The BDNF overexpression response that may contribute to postoperative hyperalgesia and allodynia is likely derived from other sources.

  15. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  16. Spinal cellular and network properties modulate pain perception

    Directory of Open Access Journals (Sweden)

    Darbon Pascal

    2016-01-01

    Previously, it has been shown that high levels of plasma glucocorticoids give rise to analgesia. However to our knowledge nothing has been reported regarding a direct non genomic modulation of neuronal spinal activity by peripheral CORT. In the present study, we used combined in vivo and in vitro electrophysiology approaches, associated with the measure of nociceptive mechanical sensitivity and plasma corticosterone level measurement to assess the impact of circulating CORT on rat nociception. We showed that CORT plasma level elevation produced analgesia via the reduction of nociceptive fiber mediated spinal responses. CORT is spinally reduced in the neuroactive metabolite THDOC that specifically enhances lamina II GABAergic synaptic transmission. The main consequence is a reduction of lamina II network excitability reflecting a selective decrease in processing of nociceptive inputs. The depressed neuronal activity at the spinal level then in turn leads to a weaker nociceptive message transmission to supraspinal structures and hence to an alleviation of pain.

  17. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    Directory of Open Access Journals (Sweden)

    Liu Xian-Guo

    2011-03-01

    Full Text Available Abstract Long-term potentiation (LTP in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

  18. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats.

    Directory of Open Access Journals (Sweden)

    Luiz Fabio Dimov

    Full Text Available Transcranial direct current stimulation (tDCS is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG and the dorsal horn of the spinal cord (DHSC in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1, which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.

  19. Venlafaxine and Oxycodone Effects on Human Spinal and Supraspinal Pain Processing

    DEFF Research Database (Denmark)

    Lelic, D; Fischer, I W D; Olesen, Anne Estrup

    2016-01-01

    affect spinal and supraspinal pain processing. Twenty volunteers were included in this randomized cross-over study comparing 5-day treatment with venlafaxine, oxycodone and placebo. As a proxy of the spinal pain transmission, the nociceptive withdrawal reflex (NWR) to electrical stimulation on the sole......Severe pain is often treated with opioids. Antidepressants that inhibit serotonin and norepinephrine reuptake (SNRI) have also shown a pain relieving effect, but for both SNRI and opioids, the specific mode of action in humans remains vague. This study investigated how oxycodone and venlafaxine...

  20. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  1. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  2. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    Science.gov (United States)

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Involvement of melatonin metabolites in the long-term inhibitory effect of the hormone on rat spinal nociceptive transmission.

    Science.gov (United States)

    Mondaca, Mauricio; Hernández, Alejandro; Valladares, Luis; Sierralta, Walter; Noseda, Rodrigo; Soto-Moyano, Rubén

    2004-02-01

    There is evidence that melatonin and its metabolites could bind to nuclear sites in neurones, suggesting that this hormone is able to exert long-term functional effects in the central nervous system via genomic mechanisms. This study was designed to investigate (i) whether systemically administered melatonin can exert long-term effects on spinal cord windup activity, and (ii) whether blockade of melatonin degradation with eserine could prevent this effect. Rats receiving melatonin (10 mg/kg ip), the same dose of melatonin plus eserine (0.5 mg/kg ip), or saline were studied. Seven days after administration of the drugs or saline, spinal windup of rats was assessed in a C-fiber reflex response paradigm. Results show that rats receiving melatonin exhibited a reduction in spinal windup activity. This was not observed in the animals receiving melatonin plus eserine or saline, suggesting a role for melatonin metabolites in long-term changes of nociceptive transmission in the rat spinal cord.

  4. Chronic intrathecal cannulation enhances nociceptive responses in rats

    Directory of Open Access Journals (Sweden)

    Almeida F.R.C.

    2000-01-01

    Full Text Available The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2 was significantly increased in cannulated (Cn rats, compared with naive (Nv or sham-operated (Sh rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%. The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

  5. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  6. Markovian Analysis of the Sequential Behavior of the Spontaneous Spinal Cord Dorsum Potentials Induced by Acute Nociceptive Stimulation in the Anesthetized Cat

    Directory of Open Access Journals (Sweden)

    Mario Martin

    2017-05-01

    Full Text Available In a previous study we developed a Machine Learning procedure for the automatic identification and classification of spontaneous cord dorsum potentials (CDPs. This study further supported the proposal that in the anesthetized cat, the spontaneous CDPs recorded from different lumbar spinal segments are generated by a distributed network of dorsal horn neurons with structured (non-random patterns of functional connectivity and that these configurations can be changed to other non-random and stable configurations after the noceptive stimulation produced by the intradermic injection of capsaicin in the anesthetized cat. Here we present a study showing that the sequence of identified forms of the spontaneous CDPs follows a Markov chain of at least order one. That is, the system has memory in the sense that the spontaneous activation of dorsal horn neuronal ensembles producing the CDPs is not independent of the most recent activity. We used this markovian property to build a procedure to identify portions of signals as belonging to a specific functional state of connectivity among the neuronal networks involved in the generation of the CDPs. We have tested this procedure during acute nociceptive stimulation produced by the intradermic injection of capsaicin in intact as well as spinalized preparations. Altogether, our results indicate that CDP sequences cannot be generated by a renewal stochastic process. Moreover, it is possible to describe some functional features of activity in the cord dorsum by modeling the CDP sequences as generated by a Markov order one stochastic process. Finally, these Markov models make possible to determine the functional state which produced a CDP sequence. The proposed identification procedures appear to be useful for the analysis of the sequential behavior of the ongoing CDPs recorded from different spinal segments in response to a variety of experimental procedures including the changes produced by acute nociceptive

  7. Markovian Analysis of the Sequential Behavior of the Spontaneous Spinal Cord Dorsum Potentials Induced by Acute Nociceptive Stimulation in the Anesthetized Cat.

    Science.gov (United States)

    Martin, Mario; Béjar, Javier; Esposito, Gennaro; Chávez, Diógenes; Contreras-Hernández, Enrique; Glusman, Silvio; Cortés, Ulises; Rudomín, Pablo

    2017-01-01

    In a previous study we developed a Machine Learning procedure for the automatic identification and classification of spontaneous cord dorsum potentials ( CDPs ). This study further supported the proposal that in the anesthetized cat, the spontaneous CDPs recorded from different lumbar spinal segments are generated by a distributed network of dorsal horn neurons with structured (non-random) patterns of functional connectivity and that these configurations can be changed to other non-random and stable configurations after the noceptive stimulation produced by the intradermic injection of capsaicin in the anesthetized cat. Here we present a study showing that the sequence of identified forms of the spontaneous CDPs follows a Markov chain of at least order one. That is, the system has memory in the sense that the spontaneous activation of dorsal horn neuronal ensembles producing the CDPs is not independent of the most recent activity. We used this markovian property to build a procedure to identify portions of signals as belonging to a specific functional state of connectivity among the neuronal networks involved in the generation of the CDPs . We have tested this procedure during acute nociceptive stimulation produced by the intradermic injection of capsaicin in intact as well as spinalized preparations. Altogether, our results indicate that CDP sequences cannot be generated by a renewal stochastic process. Moreover, it is possible to describe some functional features of activity in the cord dorsum by modeling the CDP sequences as generated by a Markov order one stochastic process. Finally, these Markov models make possible to determine the functional state which produced a CDP sequence. The proposed identification procedures appear to be useful for the analysis of the sequential behavior of the ongoing CDPs recorded from different spinal segments in response to a variety of experimental procedures including the changes produced by acute nociceptive stimulation. They

  8. Sphingosine kinase 2-deficiency mediated changes in spinal pain processing

    Directory of Open Access Journals (Sweden)

    Jastrow eCanlas

    2015-08-01

    Full Text Available Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined, and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P and its receptors have recently been shown to modulate nociceptive signalling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2, in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2-/- showed in contrast to mice deficient in Sphk1 (Sphk1-/- substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2-/- mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2-/- and wild-type mice. Chronic peripheral inflammation (CPI caused a bilateral increase in mechanical sensitivity in Sphk2-/- mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral spinal cord of wild-type but not Sphk2-/- mice. Similarly, Sphk2-/- mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker GFAP. Our results suggest that the tightly regulated cell signalling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.

  9. Neonatal bee venom exposure induces sensory modality-specific enhancement of nociceptive response in adult rats.

    Science.gov (United States)

    Li, Mengmeng; Chen, Huisheng; Tang, Jiaguang; Chen, Jun

    2014-06-01

    Previous studies have shown that inflammatory pain at the neonatal stage can produce long-term structural and functional changes in nociceptive pathways, resulting in altered pain perception in adulthood. However, the exact pattern of altered nociceptive response and associated neurochemical changes in the spinal cord in this process is unclear. In this study, we used an experimental paradigm in which each rat first received intraplantar bee venom (BV) or saline injection on postnatal day 1, 4, 7, 14, 21, or 28. This was followed 2 months later by a second intraplantar bee venom injection in the same rats to examine the difference in nociceptive responses. We found that neonatal inflammatory pain induced by the first BV injection significantly reduced baseline paw withdrawal mechanical threshold, but not baseline paw withdrawal thermal latency, when rats were examined 2 months from the first BV injection. Neonatal inflammatory pain also exacerbated mechanical, but not thermal, hyperalgesia in response to the second BV injection in these same rats. Rats exposed to neonatal inflammation also showed up-regulation of spinal NGF, TrkA receptor, BDNF, TrkB receptor, IL-1β, and COX-2 expression following the second BV injection, especially with prior BV exposure on postnatal day 21 or 28. These results indicate that neonatal inflammation produces sensory modality-specific changes in nociceptive behavior and alters neurochemistry in the spinal cord of adult rats. These results also suggest that a prior history of inflammatory pain during the developmental period might have an impact on clinical pain in highly susceptible adult patients. Wiley Periodicals, Inc.

  10. The Absence of Sensory Axon Bifurcation Affects Nociception and Termination Fields of Afferents in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Philip Tröster

    2018-02-01

    Full Text Available A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli.

  11. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    Science.gov (United States)

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  12. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Science.gov (United States)

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  13. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Sandra M. Garraway

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions.

  14. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain.

    Science.gov (United States)

    Lichtner, Gregor; Auksztulewicz, Ryszard; Kirilina, Evgeniya; Velten, Helena; Mavrodis, Dionysios; Scheel, Michael; Blankenburg, Felix; von Dincklage, Falk

    2018-05-15

    Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Wind-up of spinal cord neurones and pain sensation: much ado about something?

    Science.gov (United States)

    Herrero, J F; Laird, J M; López-García, J A

    2000-06-01

    Wind-up is a frequency-dependent increase in the excitability of spinal cord neurones, evoked by electrical stimulation of afferent C-fibres. Although it has been studied over the past thirty years, there are still uncertainties about its physiological meaning. Glutamate (NMDA) and tachykinin NK1 receptors are required to generate wind-up and therefore a positive modulation between these two receptor types has been suggested by some authors. However, most drugs capable of reducing the excitability of spinal cord neurones, including opioids and NSAIDs, can also reduce or even abolish wind-up. Thus, other theories involving synaptic efficacy, potassium channels, calcium channels, etc. have also been proposed for the generation of this phenomenon. Whatever the mechanisms involved in its generation, wind-up has been interpreted as a system for the amplification in the spinal cord of the nociceptive message that arrives from peripheral nociceptors connected to C-fibres. This probably reflects the physiological system activated in the spinal cord after an intense or persistent barrage of afferent nociceptive impulses. On the other hand, wind-up, central sensitisation and hyperalgesia are not the same phenomena, although they may share common properties. Wind-up can be an important tool to study the processing of nociceptive information in the spinal cord, and the central effects of drugs that modulate the nociceptive system. This paper reviews the physiological and pharmacological data on wind-up of spinal cord neurones, and the perceptual correlates of wind-up in human subjects, in the context of its possible relation to the triggering of hyperalgesic states, and also the multiple factors which contribute to the generation of wind-up.

  16. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  17. The Inhibitory Effect of Somatostatin Receptor Activation on Bee Venom-Evoked Nociceptive Behavior and pCREB Expression in Rats

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The present study examined nociceptive behaviors and the expression of phosphorylated cAMP response element-binding protein (pCREB in the dorsal horn of the lumbar spinal cord and the dorsal root ganglion (DRG evoked by bee venom (BV. The effect of intraplantar preapplication of the somatostatin analog octreotide on nociceptive behaviors and pCREB expression was also examined. Subcutaneous injection of BV into the rat unilateral hindpaw pad induced significant spontaneous nociceptive behaviors, primary mechanical allodynia, primary thermal hyperalgesia, and mirror-thermal hyperalgesia, as well as an increase in pCREB expression in the lumbar spinal dorsal horn and DRG. Octreotide pretreatment significantly attenuated the BV-induced lifting/licking response and mechanical allodynia. Local injection of octreotide also significantly reduced pCREB expression in the lumbar spinal dorsal horn and DRG. Furthermore, pretreatment with cyclosomatostatin, a somatostatin receptor antagonist, reversed the octreotide-induced inhibition of the lifting/licking response, mechanical allodynia, and the expression of pCREB. These results suggest that BV can induce nociceptive responses and somatostatin receptors are involved in mediating the antinociception, which provides new evidence for peripheral analgesic action of somatostatin in an inflammatory pain state.

  18. Learned control over spinal nociception: Transfer and stability of training success in a long-term study.

    Science.gov (United States)

    Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Schiffer, Manuela; Sommer, Jens; Straube, Andreas; Weinges, Fabian; Ruscheweyh, Ruth

    2017-12-01

    Healthy subjects can learn to use cognitive-emotional strategies to suppress their spinal nociception, quantified by the nociceptive flexor reflex (RIII reflex), when given visual RIII feedback. This likely reflects learned activation of descending pain inhibition. Here, we investigated if training success persists 4 and 8 months after the end of RIII feedback training, and if transfer (RIII suppression without feedback) is possible. 18 and 8 subjects who had successfully completed feedback training were investigated 4 and 8 months later. At 4 months, RIII suppression during feedback and transfer was similar to that achieved at the final RIII feedback training session (to 50 ± 22%, 53 ± 21% and 52 ± 21% of baseline, all differences n.s.). At 8 months, RIII suppression was somewhat (not significantly) smaller in the feedback run (to 64 ± 17%) compared to the final training session (56 ± 19%). Feedback and transfer runs were similar (to 64 ± 17% vs. 68 ± 24%, n.s.). Concomitant reductions in pain intensity ratings were stable at 4 and 8 months. RIII feedback training success was completely maintained after 4 months, and somewhat attenuated 8 months after training. Transfer was successful. These results are an important pre-requisite for application of RIII feedback training in the context of clinical pain. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Effects of intraplantar botulinum toxin-B on carrageenan-induced changes in nociception and spinal phosphorylation of GluA1 and Akt.

    Science.gov (United States)

    Sikandar, Shafaq; Gustavsson, Ynette; Marino, Marc J; Dickenson, Anthony H; Yaksh, Tony L; Sorkin, Linda S; Ramachandran, Roshni

    2016-07-01

    Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 μL) or saline prior to intraplantar carrageenan (20 μL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 μL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury.

    Science.gov (United States)

    Mercier, Catherine; Roosink, Meyke; Bouffard, Jason; Bouyer, Laurent J

    2017-04-01

    Most persons living with a spinal cord injury experience neuropathic pain in the months following their lesion, at the moment where they receive intensive gait rehabilitation. Based on studies using animal models, it has been proposed that central sensitization in nociceptive pathways (maladaptive plasticity) and plasticity related to motor learning (adaptive plasticity) share common neural mechanisms and compete with each other. This article aims to address the discrepancy between the growing body of basic science literature supporting this hypothesis and the general belief in rehabilitation research that pain and gait rehabilitation represent two independent problems. First, the main findings from basic research showing interactions between nociception and learning in the spinal cord will be summarized, focusing both on evidence demonstrating the impact of nociception on motor learning and of motor learning on central sensitization. Then, the generalizability of these findings in animal models to humans will be discussed. Finally, the way potential interactions between nociception and motor learning are currently taken into account in clinical research in patients with spinal cord injury will be presented. To conclude, recommendations will be proposed to better integrate findings from basic research into future clinical research in persons with spinal cord injury.

  1. Reliability and validity of a brief method to assess nociceptive flexion reflex (NFR) threshold.

    Science.gov (United States)

    Rhudy, Jamie L; France, Christopher R

    2011-07-01

    The nociceptive flexion reflex (NFR) is a physiological tool to study spinal nociception. However, NFR assessment can take several minutes and expose participants to repeated suprathreshold stimulations. The 4 studies reported here assessed the reliability and validity of a brief method to assess NFR threshold that uses a single ascending series of stimulations (Peak 1 NFR), by comparing it to a well-validated method that uses 3 ascending/descending staircases of stimulations (Staircase NFR). Correlations between the NFR definitions were high, were on par with test-retest correlations of Staircase NFR, and were not affected by participant sex or chronic pain status. Results also indicated the test-retest reliabilities for the 2 definitions were similar. Using larger stimulus increments (4 mAs) to assess Peak 1 NFR tended to result in higher NFR threshold estimates than using the Staircase NFR definition, whereas smaller stimulus increments (2 mAs) tended to result in lower NFR threshold estimates than the Staircase NFR definition. Neither NFR definition was correlated with anxiety, pain catastrophizing, or anxiety sensitivity. In sum, a single ascending series of electrical stimulations results in a reliable and valid estimate of NFR threshold. However, caution may be warranted when comparing NFR thresholds across studies that differ in the ascending stimulus increments. This brief method to assess NFR threshold is reliable and valid; therefore, it should be useful to clinical pain researchers interested in quickly assessing inter- and intra-individual differences in spinal nociceptive processes. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Inhibitory effects of aspirin-triggered resolvin D1 on spinal nociceptive processing in rat pain models.

    Science.gov (United States)

    Meesawatsom, Pongsatorn; Burston, James; Hathway, Gareth; Bennett, Andrew; Chapman, Victoria

    2016-09-02

    Harnessing the actions of the resolvin pathways has the potential for the treatment of a wide range of conditions associated with overt inflammatory signalling. Aspirin-triggered resolvin D1 (AT-RvD1) has robust analgesic effects in behavioural models of pain; however, the potential underlying spinal neurophysiological mechanisms contributing to these inhibitory effects in vivo are yet to be determined. This study investigated the acute effects of spinal AT-RvD1 on evoked responses of spinal neurones in vivo in a model of acute inflammatory pain and chronic osteoarthritic (OA) pain and the relevance of alterations in spinal gene expression to these neurophysiological effects. Pain behaviour was assessed in rats with established carrageenan-induced inflammatory or monosodium iodoacetate (MIA)-induced OA pain, and changes in spinal gene expression of resolvin receptors and relevant enzymatic pathways were examined. At timepoints of established pain behaviour, responses of deep dorsal horn wide dynamic range (WDR) neurones to transcutaneous electrical stimulation of the hind paw were recorded pre- and post direct spinal administration of AT-RvD1 (15 and 150 ng/50 μl). AT-RvD1 (15 ng/50 μl) significantly inhibited WDR neurone responses to electrical stimuli at C- (29 % inhibition) and Aδ-fibre (27 % inhibition) intensities. Both wind-up (53 %) and post-discharge (46 %) responses of WDR neurones in carrageenan-treated animals were significantly inhibited by AT-RvD1, compared to pre-drug response (p < 0.05). These effects were abolished by spinal pre-administration of a formyl peptide receptor 2 (FPR2/ALX) antagonist, butoxy carbonyl-Phe-Leu-Phe-Leu-Phe (BOC-2) (50 μg/50 μl). AT-RvD1 did not alter evoked WDR neurone responses in non-inflamed or MIA-treated rats. Electrophysiological effects in carrageenan-inflamed rats were accompanied by a significant increase in messenger RNA (mRNA) for chemerin (ChemR23) receptor and 5-lipoxygenase

  3. Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity.

    Science.gov (United States)

    DʼMello, Richard; Sand, Claire A; Pezet, Sophie; Leiper, James M; Gaurilcikaite, Egle; McMahon, Stephen B; Dickenson, Anthony H; Nandi, Manasi

    2015-10-01

    Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetric dimethylarginine concentrations. Here, we show that the DDAH-1 isoform is constitutively active in the nervous system, specifically in the spinal dorsal horn. DDAH-1 was found to be expressed in sensory neurons within both the dorsal root ganglia and spinal dorsal horn; L-291 (NG-[2-Methoxyethyl]-L-arginine methyl ester), a DDAH-1 inhibitor, reduced NO synthesis in cultured dorsal root ganglia neurons. Spinal application of L-291 decreased N-methyl-D-aspartate-dependent postdischarge and windup of dorsal horn sensory neurons--2 measures of spinal hyperexcitability. Finally, spinal application of L-291 reduced both neuronal and behavioral measures of formalin-induced central sensitization. Thus, DDAH-1 may be a potential therapeutic target in neuronal disorders, such as chronic pain, where elevated NO is a contributing factor.

  4. Dynamic Changes in Nociception and Pain Perception After Spinal Cord Stimulation in Chronic Neuropathic Pain Patients.

    Science.gov (United States)

    Biurrun Manresa, José A; Sörensen, Jan; Andersen, Ole K; Arendt-Nielsen, Lars; Gerdle, Björn

    2015-12-01

    Patients with an implanted spinal cord stimulation (SCS) system for pain management present an opportunity to study dynamic changes in the pain system in a situation where patients are not stimulated (ie, experiencing severe pain) compared with a situation in which patients have just been stimulated (ie, pain free or greatly reduced pain). The aims of this study were (1) to determine if there are differences in nociceptive withdrawal reflex thresholds (NWR-T) and electrical pain thresholds (EP-T) before and after SCS; and (2) to establish if these differences are related to psychological factors associated with chronic pain. Seventeen volunteers with chronic neuropathic pain participated in the experiment. Electrical stimuli were applied to assess the NWR-T and the EP-T. In addition, psychological factors (ie, pain characteristics, depression, anxiety, and disability indexes) were also recorded. The NWR-T and EP-T were assessed with the SCS system off (at least 8 h before the experiment), and then reassessed 1 hour after the SCS system was turned on. Ongoing pain intensity ratings decreased (P=0.018), whereas the NWR-T increased (P=0.028) after the SCS was turned on, whereas no significant difference was found for EP-T (P=0.324). Psychological factors were significant predictors for EP-T but not for NWR-T. The results of this study suggest that pain relief after SCS is partially mediated by a decrease in the excitability of dorsal horn neurons in the spinal cord.

  5. Sinularin from Indigenous Soft Coral Attenuates Nociceptive Responses and Spinal Neuroinflammation in Carrageenan-Induced Inflammatory Rat Model

    Directory of Open Access Journals (Sweden)

    Zhi-Hong Wen

    2012-08-01

    Full Text Available Three decades ago, the marine-derived compound sinularin was shown to have anti-edematous effects on paw edema induced by carrageenan or adjuvant. To the best of our knowledge, no new studies were conducted to explore the bioactivity of sinularin until we reported the analgesic properties of sinularin based on in vivo experiments. In the present study, we found that sinularin significantly inhibits the upregulation of proinflammatory proteins, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2 and upregulates the production of transforming growth factor-β (TGF-β in lipopolysaccharide (LPS-stimulated murine macrophage RAW 264.7 cells according to western blot analysis. We found that subcutaneous (s.c. administration of sinularin (80 mg/kg 1 h before carrageenan injection significantly inhibited carrageenan-induced nociceptive behaviors, including thermal hyperalgesia, mechanical allodynia, cold allodynia, and hindpaw weight-bearing deficits. Further, s.c. sinularin (80 mg/kg significantly inhibited carrageenan-induced microglial and astrocyte activation as well as upregulation of iNOS in the dorsal horn of the lumbar spinal cord. Moreover, s.c. sinularin (80 mg/kg inhibited carrageenan-induced tissue inflammatory responses, redness and edema of the paw, and leukocyte infiltration. The results of immunohistochemical studies indicate that s.c. sinularin (80 mg/kg could upregulate production of TGF-β1 in carrageenan-induced inflamed paw tissue. The present results demonstrate that systemic sinularin exerts analgesic effects at the behavioral and spinal levels, which are associated with both inhibition of leukocyte infiltration and upregulation of TGF-β1.Three decades ago, the marine-derived compound sinularin was shown to have anti-edematous effects on paw edema induced by carrageenan or adjuvant. To the best of our knowledge, no new studies were conducted to explore the bioactivity of sinularin until we reported the

  6. Shielding cognition from nociception with working memory.

    Science.gov (United States)

    Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André

    2013-01-01

    Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  8. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1

    Directory of Open Access Journals (Sweden)

    Yelena Nersesyan

    2017-11-01

    Full Text Available Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.

  9. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

    Science.gov (United States)

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

  10. Activated microglia in the spinal cord underlies diabetic neuropathic pain.

    Science.gov (United States)

    Wang, Dongmei; Couture, Réjean; Hong, Yanguo

    2014-04-05

    Diabetes mellitus is an increasingly common chronic medical condition. Approximately 30% of diabetic patients develop neuropathic pain, manifested as spontaneous pain, hyperalgesia and allodynia. Hyperglycemia induces metabolic changes in peripheral tissues and enhances oxidative stress in nerve fibers. The damages and subsequent reactive inflammation affect structural properties of Schwann cells and axons leading to the release of neuropoietic mediators, such as pro-inflammatory cytokines and pro-nociceptive mediators. Therefore, diabetic neuropathic pain (DNP) shares some histological features and underlying mechanisms with traumatic neuropathy. DNP displays, however, other distinct features; for instance, sensory input to the spinal cord decreases rather than increasing in diabetic patients. Consequently, development of central sensitization in DNP involves mechanisms that are distinct from traumatic neuropathic pain. In DNP, the contribution of spinal cord microglia activation to central sensitization and pain processes is emerging as a new concept. Besides inflammation in the periphery, hyperglycemia and the resulting production of reactive oxygen species affect the local microenvironment in the spinal cord. All these alterations could trigger resting and sessile microglia to the activated phenotype. In turn, microglia synthesize and release pro-inflammatory cytokines and neuroactive molecules capable of inducing hyperactivity of spinal nociceptive neurons. Hence, it is imperative to elucidate glial mechanisms underlying DNP for the development of effective therapeutic agents. The present review highlights the recent developments regarding the contribution of spinal microglia as compelling target for the treatment of DNP. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats

    Directory of Open Access Journals (Sweden)

    Ohtani N

    2016-10-01

    Full Text Available Norimasa Ohtani, Eiji Masaki Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan Background: Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats.Methods: Male Sprague-Dawley rats (250–300 g were anesthetized with sevoflurane and an intrathecal (IT catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole, or a D2-like receptor antagonist (sulpiride was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision.Results: Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect.Conclusion: A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold. Keywords: postoperative pain, descending pathway

  12. Toponomics analysis of functional interactions of the ubiquitin ligase PAM (Protein Associated with Myc) during spinal nociceptive processing.

    Science.gov (United States)

    Pierre, Sandra; Maeurer, Christian; Coste, Ovidiu; Becker, Wiebke; Schmidtko, Achim; Holland, Sabrina; Wittpoth, Claus; Geisslinger, Gerd; Scholich, Klaus

    2008-12-01

    Protein associated with Myc (PAM) is a giant E3 ubiquitin ligase of 510 kDa. Although the role of PAM during neuronal development is well established, very little is known about its function in the regulation of synaptic strength. Here we used multiepitope ligand cartography (MELC) to study protein network profiles associated with PAM during the modulation of synaptic strength. MELC is a novel imaging technology that utilizes biomathematical tools to describe protein networks after consecutive immunohistochemical visualization of up to 100 proteins on the same sample. As an in vivo model to modulate synaptic strength we used the formalin test, a common model for acute and inflammatory pain. MELC analysis was performed with 37 different antibodies or fluorescence tags on spinal cord slices and led to the identification of 1390 PAM-related motifs that distinguish untreated and formalin-treated spinal cords. The majority of these motifs related to ubiquitin-dependent processes and/or the actin cytoskeleton. We detected an intermittent colocalization of PAM and ubiquitin with TSC2, a known substrate of PAM, and the glutamate receptors mGluR5 and GLUR1. Importantly these complexes were detected exclusively in the presence of F-actin. A direct PAM/F-actin interaction was confirmed by colocalization and cosedimentation. The binding of PAM toward F-actin varied strongly between the PAM splice forms found in rat spinal cords. PAM did not ubiquitylate actin or alter actin polymerization and depolymerization. However, F-actin decreased the ubiquitin ligase activity of purified PAM. Because PAM activation is known to involve its translocation, the binding of PAM to F-actin may serve to control its subcellular localization as well as its activity. Taken together we show that defining protein network profiles by topological proteomics analysis is a useful tool to identify previously unknown protein/protein interactions that underlie synaptic processes.

  13. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain.

    Science.gov (United States)

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J W; Li, Junfa; Fang, Li

    2007-04-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.

  14. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan

    2011-01-01

    The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4-11weeks...

  15. Role of NHE1 in Nociception

    Directory of Open Access Journals (Sweden)

    Jorge Elías Torres-López

    2013-01-01

    Full Text Available Intracellular pH is a fundamental parameter to cell function that requires tight homeostasis. In the absence of any regulation, excessive acidification of the cytosol would have the tendency to produce cellular damage. Mammalian Na+/H+ exchangers (NHEs are electroneutral Na+-dependent proteins that exchange extracellular Na+ for intracellular H+. To date, there are 9 identified NHE isoforms where NHE1 is the most ubiquitous member, known as the housekeeping exchanger. NHE1 seems to have a protective role in the ischemia-reperfusion injury and other inflammatory diseases. In nociception, NHE1 is found in neurons along nociceptive pathways, and its pharmacological inhibition increases nociceptive behavior in acute pain models at peripheral and central levels. Electrophysiological studies also show that NHE modulates electrical activity of primary nociceptive terminals. However, its role in neuropathic pain still remains controversial. In humans, NHE1 may be responsible for inflammatory bowel diseases since its expression is reduced in Crohn’s disease and ulcerative colitis. The purpose of this work is to provide a review of the evidence about participation of NHE1 in the nociceptive processing.

  16. Characterization of nociceptive response to chemical, mechanical, and thermal stimuli in adolescent rats with neonatal dopamine depletion.

    Science.gov (United States)

    Ogata, M; Noda, K; Akita, H; Ishibashi, H

    2015-03-19

    Rats with dopamine depletion caused by 6-hydroxydopamine (6-OHDA) treatment during adulthood and the neonatal period exhibit akinetic motor activity and spontaneous motor hyperactivity during adolescence, respectively, indicating that the behavioral effects of dopamine depletion depend on the period of lesion development. Dopamine depletion during adulthood induces hyperalgesic response to mechanical, thermal, and/or chemical stimuli, whereas the effects of neonatal dopamine depletion on nociceptive response in adolescent rats are yet to be examined. The latter aspect was addressed in this study, and behavioral responses were examined using von-Frey, tail flick, and formalin tests. The formalin test revealed that rats with neonatal dopamine depletion exhibited a significant increase in nociceptive response during interphase (6-15min post formalin injection) and phase 2 (16-75min post formalin injection). This increase in nociceptive response to the formalin injection was not reversed by pretreatment with methamphetamine, which ameliorates motor hyperactivity observed in adolescent rats with neonatal 6-OHDA treatment. The von-Frey filament and tail flick tests failed to reveal significant differences in withdrawal thresholds between neonatal 6-OHDA-treated and vehicle-treated rats. The spinal neuronal response to the formalin injection into the rat hind paw was also examined through immunohistochemical analysis of c-Fos protein. Significantly increased numbers of c-Fos-immunoreactive cells were observed in laminae I-II and V-VI of the ipsilateral spinal cord to the site of the formalin injection in rats with neonatal dopamine depletion compared with vehicle-treated rats. These results suggest that the dopaminergic neural system plays a crucial role in the development of a neural network for tonic pain, including the spinal neural circuit for nociceptive transmission, and that the mechanism underlying hyperalgesia to tonic pain is not always consistent with that of

  17. Spinal microglia: A potential target in the treatment of chronic visceral pain

    Directory of Open Access Journals (Sweden)

    Ching-Liang Lu

    2014-01-01

    Full Text Available Chronic visceral pain is the predominant symptom of functional gastrointestinal disorders and chronic pancreatitis. Such pain can impair the patients' quality of life, and can also serve as one of the principal reasons for these patients to seek medical help. Nevertheless, the underlying mechanisms of chronic visceral pain have remained unclear, and much of what we know about visceral pain has been derived from studies of somatic nociception. Current treatment of chronic visceral pain has continued to be unsatisfactory, because of unclear pathophysiology. However, recent progress in pain research has identified the important role of spinal microglia in the development of somatic nociception. For visceral pain, several animal studies have demonstrated that spinal cord microglia is activated during the development of visceral hyperalgesia, which can be induced by neonatal colorectal irritation, psychological stress, and trinitrobenzene sulfonic acid-induced pancreatitis. This visceral hyperalgesia is also associated with elevated phosphorylation of p38 mitogen-activated protein kinase. Minocycline (a microglia inhibitor reversed the hyperalgesia in rat models of chronic visceral pain, whereas fractalkine (FKN, a microglia activator reproduced the visceral nociception in naïve rats. These preliminary results support the pronociceptive role of spinal microglia in mediating visceral hyperalgesia. Consequently, spinal microglia may serve as a promising target for controlling the chronic visceral pain.

  18. Controlling attention to nociceptive stimuli with working memory.

    Directory of Open Access Journals (Sweden)

    Valéry Legrain

    Full Text Available BACKGROUND: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. METHODOLOGY AND PRINCIPAL FINDINGS: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials, tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory, reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. CONCLUSION AND SIGNIFICANCE: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal

  19. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses.

    Directory of Open Access Journals (Sweden)

    Makoto Sumie

    Full Text Available Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord.We made patch-clamp recordings from substantia gelatinosa (SG neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli.Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine.We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous

  20. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  1. Gastric electrical stimulation decreases gastric distension-induced central nociception response through direct action on primary afferents.

    Directory of Open Access Journals (Sweden)

    Wassila Ouelaa

    Full Text Available BACKGROUND & AIMS: Gastric electrical stimulation (GES is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. METHODS: Gastric pain was induced by performing gastric distension (GD in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation, while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. RESULTS: GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9-T10, the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. CONCLUSIONS: GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception.

  2. Central nervous system mast cells in peripheral inflammatory nociception

    Directory of Open Access Journals (Sweden)

    Ellmeier Wilfried

    2011-06-01

    Full Text Available Abstract Background Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation. Results Spinal application of supernatant from activated cultured mast cells induces significant mechanical hyperalgesia and long-term potentiation (LTP at spinal synapses of C-fibers. Lumbar, thoracic and thalamic preparations are then examined for mast cell number and degranulation status after intraplantar capsaicin and carrageenan. Intradermal capsaicin induces a significant percent increase of lumbar dural mast cells at 3 hours post-administration. Peripheral carrageenan in female rats significantly increases mast cell density in the lumbar dura, but not in thoracic dura or thalamus. Intrathecal administration of the mast cell stabilizer sodium cromoglycate or the spleen tyrosine kinase (Syk inhibitor BAY-613606 reduce the increased percent degranulation and degranulated cell density of lumbar dural mast cells after capsaicin and carrageenan respectively, without affecting hyperalgesia. Conclusion The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.

  3. Cortical and spinal assessment - a comparative study using encephalography and the nociceptive withdrawal reflex

    DEFF Research Database (Denmark)

    Fischer, I W; Gram, M; Hansen, T M

    2017-01-01

    solution in randomized order. The electroencephalogram (EEG) was recorded during rest and during immersion of the hand into ice-water. Electrical stimulation of the sole of the foot was used to elicit the nociceptive withdrawal reflex and the reflex amplitude was recorded. RESULTS: Data from thirty...

  4. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-03-01

    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  5. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  6. Anti-inflammatory and anti-nociceptive activities of methanol extract from aerial part of Phlomis younghusbandii Mukerjee.

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available This study was designed to investigate the anti-inflammatory and anti-nociceptive activity of the methanol extract from the aerial part of Phlomis younghusbandii (MEAP and to explore the possible related mechanisms. Anti-inflammatory effects of MEAP were evaluated by using the ear edema test induced by dimethylbenzene and vascular permeability test induced by acetic acid. Anti-nociceptive activities of MEAP were evaluated by the chemical nociception in models of acetic acid-induced writhing and formalin-induced hind paw licking, and by the thermal nociception in hot plate tests. Mechanisms of MEAP activities also were explored by evaluating expression levels of TNF-α, IL-6 and iNOS induced by LPS using real-time fluorogenic PCR and expression of COX-2 using Western blotting and an open-field test. The results indicated that the MEAP administered orally could significantly decrease ear edema induced by dimethylbenzene and increase vascular permeability induced by acetic acid. Additionally, the nociceptions induced by acetic acid and formalin were significantly inhibited. The anti-nociceptive effect could not be decreased by naloxone in the formalin test, and MEAP did not affect the normal autonomic activities of mice. Expression levels of pro-inflammatory cytokines (TNF-α, IL-6, iNOS induced by LPS were decreased obviously by treatment with MEAP. Furthermore, COX-2 expression in the spinal dorsal horns of the pain model mice induced by formalin was significantly down-regulated by MEAP. In conclusion, MEAP has significant anti-inflammatory and antinociceptive activities, and the mechanisms may be related to the down-regulated expression of TNF-α, IL-6, iNOS and COX-2.

  7. The role of protease-activated receptor type 2 in nociceptive signaling and pain

    Czech Academy of Sciences Publication Activity Database

    Mrózková, Petra; Paleček, Jiří; Špicarová, Diana

    2016-01-01

    Roč. 65, č. 3 (2016), s. 357-367 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12058; GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LH15279; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : protease-activated receptor (PAR2) * signaling pathways * nociception * pain * spinal cord Subject RIV: FH - Neurology Impact factor: 1.461, year: 2016

  8. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. The NA(v)1.7 blocker protoxin II reduces burn injury-induced spinal nociceptive processing

    Czech Academy of Sciences Publication Activity Database

    Torres-Pérez, J. V.; Adámek, Pavel; Paleček, Jiří; Vizcaychipi, M.; Nagy, I.; Varga, A.

    2018-01-01

    Roč. 96, č. 1 (2018), s. 75-84 ISSN 0946-2716 R&D Projects: GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LH15279; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : pain * p-ERK1/2 * primary sensory neuron * p-S10H3 * spinal cord Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.686, year: 2016

  10. Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats: an in vivo electrophysiological study.

    Science.gov (United States)

    Dalmolin, Gerusa D; Bannister, Kirsty; Gonçalves, Leonor; Sikandar, Shafaq; Patel, Ryan; Cordeiro, Marta do Nascimento; Gomez, Marcus Vinícius; Ferreira, Juliano; Dickenson, Anthony H

    2017-07-01

    Drugs that counteract nociceptive transmission in the spinal dorsal horn preferentially after nerve injury are being pursued as possible neuropathic pain treatments. In a previous behavioural study, the peptide toxin Tx3-3, which blocks P/Q- and R-type voltage-gated calcium channels, was effective in neuropathic pain models. In the present study, we aimed to investigate the effect of Tx3-3 on dorsal horn neuronal responses in rats under physiological conditions and neuropathic pain condition induced by spinal nerve ligation (SNL). In vivo electrophysiological recordings of dorsal horn neuronal response to electrical and natural (mechanical and thermal) stimuli were made in rats under normal physiological state (naive rats) or after the SNL model of neuropathic pain. Tx3-3 (0.3-100 pmol/site) exhibited greater inhibitory effect on electrical-evoked neuronal response of SNL rats than naive rats, inhibiting nociceptive C-fibre and Aδ-fibre responses only in SNL rats. The wind-up of neurones, a measurement of spinal cord hyperexcitability, was also more susceptible to a dose-related inhibition by Tx3-3 after nerve injury. Moreover, Tx3-3 exhibited higher potency to inhibit mechanical- and thermal-evoked neuronal response in conditions of neuropathy. Tx3-3 mediated differential inhibitory effect under physiological and neuropathic conditions, exhibiting greater potency in conditions of neuropathic pain.

  11. Optogenetic exploration and modulation of pain processing.

    Science.gov (United States)

    Xie, Yu-Feng; Wang, Jing; Bonin, Robert P

    2018-08-01

    Intractable pain is the single most common cause of disability, affecting more than 20% of the population world-wide. There is accordingly a global effort to decipher how changes in nociceptive processing in the peripheral and central nervous systems contribute to the onset and maintenance of chronic pain. The past several years have brought rapid progress in the adaptation of optogenetic approaches to study and manipulate the activity of sensory afferents and spinal cord neurons in freely behaving animals, and to investigate cortical processing and modulation of pain responses. This review discusses methodological advances that underlie this recent progress, and discusses practical considerations for the optogenetic modulation of nociceptive sensory processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  12. Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn ?

    OpenAIRE

    Polg?r, Erika; Sardella, Thomas C.P.; Tiong, Sheena Y.X.; Locke, Samantha; Watanabe, Masahiko; Todd, Andrew J.

    2013-01-01

    In order to understand how nociceptive information is processed in the spinal dorsal horn we need to unravel the complex synaptic circuits involving interneurons, which constitute the vast majority of the neurons in laminae I?III. The main limitation has been the difficulty in defining functional populations among these cells. We have recently identified 4 non-overlapping classes of inhibitory interneuron, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase ...

  13. Spinal cord stimulation for neuropathic pain: current perspectives

    Directory of Open Access Journals (Sweden)

    Wolter T

    2014-11-01

    Full Text Available Tilman Wolter Interdisciplinary Pain Centre, University Hospital Freiburg, Freiburg, Germany Abstract: Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation. Keywords: spinal cord stimulation, neuropathic pain, neurostimulation

  14. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  15. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity.

    Science.gov (United States)

    Kadow, Brian T; Lyon, Timothy D; Zhang, Zhaocun; Lamm, Vladimir; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-07-01

    This study investigated the role of the hypogastric nerve and β-adrenergic mechanisms in the inhibition of nociceptive and non-nociceptive reflex bladder activity induced by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats, non-nociceptive reflex bladder activity was induced by slowly infusing saline into the bladder, whereas nociceptive reflex bladder activity was induced by replacing saline with 0.25% acetic acid (AA) to irritate the bladder. PNS was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. During saline infusion, PNS at 2T and 4T significantly (P reflex bladder activity. In addition to this peripheral mechanism, a central nervous system mechanism involving metabotropic glutamate 5 receptors also has a role in PNS inhibition. Copyright © 2016 the American Physiological Society.

  16. Microsurgical Drezotomy for Neuropathic Pain after Spinal Cord Injury: Long Term Results in a Patient

    OpenAIRE

    Acevedo González, Juan Carlos; López Cárdenas, Gloria Viviana; Berbeo Calderón, Miguel Enrique; Zorro Guio, Óscar; Díaz Orduz, Roberto Carlos; Feo Lee, Óscar

    2012-01-01

    70 % of patients with spinal cord injuries are chronic and disabling neuropathic pain. This article presents the 23 years-old patient case, who suffered an infrasegmentary severe pain by spinal cord trauma. We performed neurosurgical treatment of pain. Drezotomy is selective section of nociceptive fibers in the spinal segments involved. The patient has 24 months of complete improvement and discontinuation of analgesics. Un 70 % de pacientes con lesión medular tiene dolor neuropático crónic...

  17. Comparative biology of pain: What invertebrates can tell us about how nociception works.

    Science.gov (United States)

    Burrell, Brian D

    2017-04-01

    The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented. Copyright © 2017 the American Physiological Society.

  18. Spinal cord stimulation for neuropathic pain: current perspectives.

    Science.gov (United States)

    Wolter, Tilman

    2014-01-01

    Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation.

  19. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data.

    Science.gov (United States)

    De Leener, Benjamin; Lévy, Simon; Dupont, Sara M; Fonov, Vladimir S; Stikov, Nikola; Louis Collins, D; Callot, Virginie; Cohen-Adad, Julien

    2017-01-15

    For the past 25 years, the field of neuroimaging has witnessed the development of several software packages for processing multi-parametric magnetic resonance imaging (mpMRI) to study the brain. These software packages are now routinely used by researchers and clinicians, and have contributed to important breakthroughs for the understanding of brain anatomy and function. However, no software package exists to process mpMRI data of the spinal cord. Despite the numerous clinical needs for such advanced mpMRI protocols (multiple sclerosis, spinal cord injury, cervical spondylotic myelopathy, etc.), researchers have been developing specific tools that, while necessary, do not provide an integrative framework that is compatible with most usages and that is capable of reaching the community at large. This hinders cross-validation and the possibility to perform multi-center studies. In this study we introduce the Spinal Cord Toolbox (SCT), a comprehensive software dedicated to the processing of spinal cord MRI data. SCT builds on previously-validated methods and includes state-of-the-art MRI templates and atlases of the spinal cord, algorithms to segment and register new data to the templates, and motion correction methods for diffusion and functional time series. SCT is tailored towards standardization and automation of the processing pipeline, versatility, modularity, and it follows guidelines of software development and distribution. Preliminary applications of SCT cover a variety of studies, from cross-sectional area measures in large databases of patients, to the precise quantification of mpMRI metrics in specific spinal pathways. We anticipate that SCT will bring together the spinal cord neuroimaging community by establishing standard templates and analysis procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Spinal SIRT1 activation attenuates neuropathic pain in mice.

    Directory of Open Access Journals (Sweden)

    Haijun Shao

    Full Text Available Abnormal histone acetylation occurs during neuropathic pain through an epigenetic mechanism. Silent information regulator 1 (sir2 or SIRT1, a NAD-dependent deacetylase, plays complex systemic roles in a variety of processes through deacetylating acetylated histone and other specific substrates. But the role of SIRT1 in neuropathic pain is not well established yet. The present study was intended to detect SIRT1 content and activity, nicotinamide (NAM and nicotinamide adenine dinucleotide (NAD in the spinal cord using immunoblotting or mass spectroscopy over time in mice following chronic constriction injury (CCI or sham surgery. In addition, the effect of intrathecal injection of NAD or resveratrol on thermal hyperalgesia and mechanical allodynia was evaluated in CCI mice. Finally, we investigated whether SIRT1 inhibitor EX-527 could reverse the anti-nociceptive effect of NAD or resveratrol. It was found that spinal SIRT1 expression, deacetylase activity and NAD/NAM decreased significantly 1, 3, 7, 14 and 21 days after CCI surgery as compared with sham group. In addition, daily intrathecal injection of 5 µl 800 mM NAD 1 h before and 1 day after CCI surgery or single intrathecal injection of 5 µl 90 mM resveratrol 1 h before CCI surgery produced a transient inhibitory effect on thermal hyperalgesia and mechanical allodynia in CCI mice. Finally, an intrathecal injection of 5 µl 1.2 mM EX-527 1 h before NAD or resveratrol administration reversed the anti-nociceptive effect of NAD or resveratrol. These data indicate that the reduction in SIRT1 deacetylase activity may be a factor contributing to the development of neuropathic pain in CCI mice. Our findings suggest that the enhancement of spinal NAD/NAM and/or SIRT1 activity may be a potentially promising strategy for the prevention or treatment of neuropathic pain.

  1. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  2. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    Science.gov (United States)

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Metaplasticity and Behavior: How Training and Inflammation Affect Plastic Potential within the Spinal Cord and Recovery after Injury

    Directory of Open Access Journals (Sweden)

    James W Grau

    2014-09-01

    Full Text Available Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor. As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF. Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu receptor, glia, and the cytokine tumor necrosis factor (TNF. Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia. These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB. In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2, which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA

  4. Nociceptor-Enriched Genes Required for Normal Thermal Nociception

    Directory of Open Access Journals (Sweden)

    Ken Honjo

    2016-07-01

    Full Text Available Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil. Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  5. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  6. Spinal cord stimulation for neuropathic pain: current perspectives

    OpenAIRE

    Wolter, Tilman

    2014-01-01

    Tilman Wolter Interdisciplinary Pain Centre, University Hospital Freiburg, Freiburg, Germany Abstract: Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, re...

  7. Spinal anesthesia with diphenhydramine and pheniramine in rats.

    Science.gov (United States)

    Hung, Ching-Hsia; Chu, Chin-Chen; Chen, Yu-Chung; Chen, Yu-Wen; Li, Zong-Ying; Wang, Jhi-Joung

    2011-12-30

    The aim of this study was to evaluate the local anesthetic effects of pheniramine and diphenhydramine, two histamine H₁ receptor antagonists, on spinal anesthesia and their comparison with lidocaine, a commonly used local anesthetic. After rats were injected intrathecally with diphenhydramine and pheniramine, the dose-response curves were obtained. The potency and duration of diphenhydramine and pheniramine on spinal anesthesia were compared with lidocaine. We showed that diphenhydramine and pheniramine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED₅₀) basis, the rank of potency of drugs was diphenhydramine=pheniramine>lidocaine (ppheniramine or lidocaine (ppheniramine or lidocaine, elicited longer duration of sensory block than that of motor block at the same dose of 1.75 μmol. These preclinical data reported that diphenhydramine with a more sensory-selective action over motor blockade demonstrated more potent and longer-lasting spinal blockades, compared with pheniramine or lidocaine. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Directory of Open Access Journals (Sweden)

    Serena Boccella

    2015-01-01

    Full Text Available D-Aspartate (D-Asp is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO. D-Asp acts as an agonist on NMDA receptors (NMDARs. Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/− or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS neurons of the dorsal horn of the spinal cord (L4–L6 and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.

  9. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain

    OpenAIRE

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J.W.; Li, Junfa; Fang, Li

    2007-01-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the ...

  10. Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain

    Directory of Open Access Journals (Sweden)

    Shih Ming-Hung

    2008-12-01

    Full Text Available Abstract Spinal cord α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 μg and GYKI 52466 (50 μg, significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4–5 dorsal horn at 24 h (but not at 2 h post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4–5 dorsal horn at 24 h (but not at 2 h post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain.

  11. Ketamine as an Adjunct to Postoperative Pain Management in Opioid Tolerant Patients After Spinal Fusions: A Prospective Randomized Trial

    OpenAIRE

    Urban, Michael K.; Ya Deau, Jacques T.; Wukovits, Barbara; Lipnitsky, Jane Y.

    2007-01-01

    Management of acute postoperative pain is challenging, particularly in patients with preexisting narcotic dependency. Ketamine has been used at subanesthetic doses as a N-methyl d-aspartate (NMDA) receptor antagonist to block the processing of nociceptive input in chronic pain syndromes. This prospective randomized study was designed to assess the use of ketamine as an adjunct to acute pain management in narcotic tolerant patients after spinal fusions. Twenty-six patients for 1–2 level poster...

  12. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.

    Science.gov (United States)

    Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan

    2012-12-01

    Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. [Changes in ingestive behavior during growth affects the functional maturation of temporomandibular joint nociceptive neurons of rats].

    Science.gov (United States)

    Hiranuma, Maya

    2013-03-01

    Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.

  14. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    Science.gov (United States)

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (pinformation carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Spinal cord distribution of sup 3 H-morphine after intrathecal administration: Relationship to analgesia

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Sinatra, R.S.; Kitahata, L.M.; Collins, J.G. (Yale Univ. School of Medicine, CT (USA))

    1989-09-01

    The distribution of intrathecally administered {sup 3}H-morphine was examined by light microscopic autoradiography in rat spinal cord and temporal changes in silver grain localization were compared with results obtained from simultaneous measurements of analgesia. After tissue processing, radio-activity was found to have penetrated in superficial as well as in deeper layers (Rexed lamina V, VII, and X) of rat spinal cord within minutes after application. Silver grain density reached maximal values at 30 min in every region of cord studied. Radioactivity decreased rapidly between 30 min and 2 hr and then more slowly over the next 24 hr. In rats tested for responses to a thermal stimulus (tail flick test), intrathecal administration of morphine (5 and 15 micrograms) resulted in significant dose dependent analgesia that peaked at 30 min and lasted up to 5 hr (P less than 0.5). There was a close relationship between analgesia and spinal cord silver grain density during the first 4 hr of the study. It is postulated that the onset of spinal morphine analgesia depends on appearance of molecules at sites of action followed by the activation of anti-nociceptive mechanisms.

  16. Tumor necrosis factor α sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine

    Directory of Open Access Journals (Sweden)

    Spicarova Diana

    2010-08-01

    Full Text Available Abstract Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor α (TNFα, is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFα and its receptors (TNFR in dorsal root ganglion (DRG cells and in the spinal cord has been shown to play an important role in neuropathic and inflammatory pain conditions. Transient receptor potential vanilloid 1 (TRPV1 receptors are known as molecular integrators of nociceptive stimuli in the periphery, but their role on the spinal endings of nociceptive DRG neurons is unclear. The endogenous TRPV1 receptor agonist N-oleoyldopamine (OLDA was shown previously to activate spinal TRPV1 receptors. In our experiments the possible influence of TNFα on presynaptic spinal cord TRPV1 receptor function was investigated. Using the patch-clamp technique, miniature excitatory postsynaptic currents (mEPSCs were recorded in superficial dorsal horn neurons in acute slices after incubation with 60 nM TNFα. A population of dorsal horn neurons with capsaicin sensitive primary afferent input recorded after the TNFα pretreatment had a basal mEPSC frequency of 1.35 ± 0.20 Hz (n = 13, which was significantly higher when compared to a similar population of neurons in control slices (0.76 ± 0.08 Hz; n = 53; P

  17. Expression of nociceptive ligands in canine osteosarcoma.

    Science.gov (United States)

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  18. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn.

    Science.gov (United States)

    Grau, James W; Huang, Yung-Jen

    2018-04-07

    Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl - is down-regulated. This causes the intracellular concentration of Cl - to increase, reducing (and potentially reversing) the inward flow of Cl - through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The

  19. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  20. Central sensitization in spinal cord injured humans assessed by reflex receptive fields

    DEFF Research Database (Denmark)

    Biurrun Manresa, José Alberto; Finnerup, Nanna Susanne Brix; Johannesen, Inger Lauge

    2014-01-01

    OBJECTIVE: To investigate the effects of central sensitization, elicited by intramuscular injection of capsaicin, by comparing the reflex receptive fields (RRF) of spinally-intact volunteers and spinal cord injured volunteers that present presensitized spinal nociceptive mechanisms. METHODS...... after an intramuscular injection of capsaicin in the foot sole in order to induce central sensitization. RESULTS: Both groups presented RRF expansion and lowered NWR thresholds immediately after capsaicin injection, reflected by the enlargement of RRF sensitivity areas and RRF probability areas....... Moreover, the topography of the RRF sensitivity and probability areas were significantly different in SCI volunteers compared to NI volunteers in terms of size and shape. CONCLUSIONS: SCI volunteers can develop central sensitization, despite adaptive/maladaptive changes in synaptic plasticity and lack...

  1. Measuring cutaneous thermal nociception in group-housed pigs using laser technique - effects of laser power output

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Ladevig, Jan; Arendt-Nielsen, Lars

    2009-01-01

    Nociceptive testing is a valuable tool in the development of pharmaceutical products, for basic nociceptive research, and for studying changes in pain sensitivity is investigated after inflammatory states or nerve injury. However, in pigs only very limited knowledge about nociceptive processes...... nociceptive stimulation from a computer-controlled CO2-laser beam applied to either the caudal part of the metatarsus on the hind legs or the shoulder region of gilts. In Exp. 1, effects of laser power output (0, 0.5, 1, 1.5 and 2 W) on nociceptive responses toward stimulation on the caudal aspects...... of the metatarsus were examined using 15 gilts kept in one group and tested in individual feeding stalls after feeding. Increasing the power output led to gradually decreasing latency to respond (P 

  2. Spinal cord compression injury in lysophosphatidic acid 1 receptor-null mice promotes maladaptive pronociceptive descending control.

    Science.gov (United States)

    Suardíaz, M; Galan-Arriero, I; Avila-Martin, G; Estivill-Torrús, G; de Fonseca, F R; Chun, J; Gómez-Soriano, J; Bravo-Esteban, E; Taylor, J

    2016-02-01

    Although activation of the lysophosphatidic acid receptor 1 (LPA1) is known to mediate pronociceptive effects in peripheral pain models, the role of this receptor in the modulation of spinal nociception following spinal cord injury (SCI) is unknown. In this study, LPA1 regulation of spinal excitability mediated by supraspinal descending antinociceptive control systems was assessed following SCI in both wild-type (WT) and maLPA1-null receptor mice. The effect of a T8 spinal compression in WT and maLPA1-null mice was assessed up to 1 month after SCI using histological, immunohistochemical and behavioural techniques analysis including electrophysiological recording of noxious toes-Tibialis Anterior (TA) stimulus-response reflex activity. The effect of a T3 paraspinal transcutaneous electrical conditioning stimulus on TA noxious reflex temporal summation was also assessed. Histological analysis demonstrated greater dorsolateral funiculus damage after SCI in maLPA1-null mice, without a change in the stimulus-response function of the TA noxious reflex when compared to WT mice. While T3 conditioning stimulation in the WT group inhibited noxious TA reflex temporal summation after SCI, this stimulus strongly excited TA reflex temporal summation in maLPA1-null mice. The functional switch from descending inhibition to maladaptive facilitation of central excitability of spinal nociception demonstrated in maLPA1-null mice after SCI was unrelated to a general change in reflex activity. These data suggest that the LPA1 receptor is necessary for inhibition of temporal summation of noxious reflex activity, partly mediated via long-tract descending modulatory systems acting at the spinal level. © 2015 European Pain Federation - EFIC®

  3. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.

    Directory of Open Access Journals (Sweden)

    David L Boyle

    2006-09-01

    Full Text Available Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3 gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha in the nervous system because IT etanercept (a TNF inhibitor given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.These data suggest that peripheral inflammation is sensed by the central nervous system (CNS, which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.

  4. Treatment of rat spinal cord injury with the neurotrophic factor albumin-oleic acid: translational application for paralysis, spasticity and pain.

    Directory of Open Access Journals (Sweden)

    Gerardo Avila-Martin

    Full Text Available Sensorimotor dysfunction following incomplete spinal cord injury (iSCI is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb and Oleic Acid (OA may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i Saline, ii Alb (0.4 nanomoles, iii OA (80 nanomoles, iv Alb-Elaidic acid (0.4/80 nanomoles, or v Alb-OA (0.4/80 nanomoles were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50 ± 10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47 ± 5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4-L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2 ± 1.1 and 2.3 ± 0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel

  5. Protein kinases mediate increment of the phosphorylation of cyclic AMP -responsive element binding protein in spinal cord of rats following capsaicin injection

    Directory of Open Access Journals (Sweden)

    Li Junfa

    2005-09-01

    Full Text Available Abstract Background Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB is a well-characterized stimulus-induced transcription factor whose activation requires phosphorylation of the Serine-133 residue. Phospho-CREB can further induce gene transcription and strengthen synaptic transmission by the activation of the protein kinase cascades. However, little is known about the mechanisms by which CREB phosphorylation is regulated by protein kinases during nociception. This study was designed to use Western blot analysis to investigate the role of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK 1/2, PKA and PKC in regulating the phosphorylation of CREB in the spinal cord of rats following intraplantar capsaicin injection. Results We found that capsaicin injection significantly increased the phosphorylation level of CREB in the ipsilateral side of the spinal cord. Pharmacological manipulation of MEK 1/2, PKA and PKC with their inhibitors (U0126, H89 and NPC 15473, respectively significantly blocked this increment of CREB phosphorylation. However, the expression of CREB itself showed no change in any group. Conclusion These findings suggest that the activation of intracellular MAP kinase, PKA and PKC cascades may contribute to the regulation of phospho-CREB in central nociceptive neurons following peripheral painful stimuli.

  6. Repetitive Treatment with Diluted Bee Venom Attenuates the Induction of Below-Level Neuropathic Pain Behaviors in a Rat Spinal Cord Injury Model.

    Science.gov (United States)

    Kang, Suk-Yun; Roh, Dae-Hyun; Choi, Jung-Wan; Ryu, Yeonhee; Lee, Jang-Hern

    2015-07-10

    The administration of diluted bee venom (DBV) into an acupuncture point has been utilized traditionally in Eastern medicine to treat chronic pain. We demonstrated previously that DBV has a potent anti-nociceptive efficacy in several rodent pain models. The present study was designed to examine the potential anti-nociceptive effect of repetitive DBV treatment in the development of below-level neuropathic pain in spinal cord injury (SCI) rats. DBV was applied into the Joksamli acupoint during the induction and maintenance phase following thoracic 13 (T13) spinal hemisection. We examined the effect of repetitive DBV stimulation on SCI-induced bilateral pain behaviors, glia expression and motor function recovery. Repetitive DBV stimulation during the induction period, but not the maintenance, suppressed pain behavior in the ipsilateral hind paw. Moreover, SCI-induced increase in spinal glia expression was also suppressed by repetitive DBV treatment in the ipsilateral dorsal spinal cord. Finally, DBV injection facilitated motor function recovery as indicated by the Basso-Beattie-Bresnahan rating score. These results indicate that the repetitive application of DBV during the induction phase not only decreased neuropathic pain behavior and glia expression, but also enhanced locomotor functional recovery after SCI. This study suggests that DBV acupuncture can be a potential clinical therapy for SCI management.

  7. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  8. Nociceptive Effects of Locally Treated Metoprolol

    Directory of Open Access Journals (Sweden)

    Nursima Cukadar

    2015-06-01

    Results: Metoprolol, an antagonist, significantly decreased the thermal latency and mechanical thresholds with dose and time dependent manner. However, dobutamine, an agonist, enhanced the latency and thresholds dose and time dependent. Conclusions: This results suggest that in contrast to dobutamine, locally treated metoprolol may cause hyperalgesic and allodynic actions. In addition, our results can demonstrate that peripheral beta-adrenergic receptors can play important roles in nociceptive process. [Cukurova Med J 2015; 40(2.000: 258-266

  9. Cognitive aspects of nociception and pain: bridging neurophysiology with cognitive psychology.

    Science.gov (United States)

    Legrain, V; Mancini, F; Sambo, C F; Torta, D M; Ronga, I; Valentini, E

    2012-10-01

    The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by vigilance, emotion, alertness, and attention. Studies that specifically investigated the effects of cognition on nociceptive ERPs support the idea that most of these ERP components can be regarded as the neurophysiological indexes of the processes underlying detection and orientation of attention toward the eliciting stimulus. Such detection is determined both by the salience of the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) and by its relevance according to the subject's goals and motivation (top-down attentional control). The fact that nociceptive ERPs are largely influenced by information from other sensory modalities such as vision and proprioception, as well as from motor preparation, suggests that these ERPs reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations of the body, well suited to guide defensive actions. The findings here reviewed highlight that the ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a coherent perception of salient sensory events with action selection processes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Osteopathic manipulative treatment is effective on pain control associated to spinal cord injury.

    Science.gov (United States)

    Arienti, C; Daccò, S; Piccolo, I; Redaelli, T

    2011-04-01

    This study was designed as an experimental study (trial). To verify the effects of the association between conventional pharmacological treatment and osteopathic manipulative treatment (OMT) for chronic pain management in spinal cord injury (SCI). This study was carried out at Spinal Unit, Ospedale Niguarda Ca' Granda, Milan, Italy. Istituto Superiore di Osteopatia, Milan, Italy. We enrolled 47 patients with SCI, 26 with pain of both nociceptive and neuropathic origin, and 21 with pure neuropathic pain. In all, 33 patients had a complete spinal cord lesion (ASIA level A) and 14 had incomplete lesion (ASIA level B, C and D). The patients were subdivided in a pharmacological group (Ph), a pharmacological osteopathic (PhO) group and a osteopathic (Os) group. The verbal numeric scale (VNS) was used at various time intervals to evaluate treatment outcomes. Ph patients reached a 24% improvement in their pain perception, assessed by the VNS scale after 3 weeks of treatment, whereas Os patients reached a 16% improvement in their pain perception for the same weeks. Both treatments per se failed to induce further improvements at later time points. In contrast, the combination of the two approaches yielded a significantly better pain relief both in patients with nociceptive or pure neuropathic pain in the PhO group. Our results suggest the OMT is a feasible approach in patients in whom available drugs cannot be used. Moreover, a benefit can be expected by the association of OMT in patients treated according to existing pharmacological protocols.

  11. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

    Directory of Open Access Journals (Sweden)

    Hawes Martha C

    2006-03-01

    Full Text Available Abstract Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes, by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with

  12. Identifying brain nociceptive information transmission in patients with chronic somatic pain

    Directory of Open Access Journals (Sweden)

    Don A. Davis

    2016-10-01

    Conclusion:. Collectively, the results suggest that, across 2 types of chronic pain, nociceptive-specific information is relayed through the spinothalamic pathway to the lateral thalamus, potentiated by pronociceptive descending modulation, and interrupting cortical cognitive processes.

  13. Vitamin A active metabolite, all-trans retinoic acid, induces spinal cord sensitization. II. Effects after intrathecal administration

    Science.gov (United States)

    Alique, M; Lucio, F J; Herrero, J F

    2006-01-01

    Background and purpose: In our previous study (see accompanying paper) we observed that all-trans retinoic acid (ATRA) p.o. induces changes in spinal cord neuronal responses similar to those observed in inflammation-induced sensitization. In the present study we assessed the it. effects of ATRA, and its mechanisms of action. Experimental approach: The effects of all drugs were studied after it. administration in nociceptive withdrawal reflexes using behavioural tests in awake male Wistar rats. Key results: The administration of ATRA in normal rats induced a dose-dependent enhancement of nociceptive responses to noxious mechanical and thermal stimulation, as well as responses to innocuous stimulation. The intensity of the responses was similar to that observed in non-treated animals after carrageenan-induced inflammation. The effect induced by ATRA was fully prevented by the previous administration of the retinoic acid receptor (RAR) pan-antagonist LE540 but not by the retinoid X receptor (RXR) pan-antagonist HX531, suggesting a selective action on spinal cord RARs. The COX inhibitor dexketoprofen and the interleukin-1 receptor antagonist IL-1ra inhibited ATRA effect. The results indicate that COX and interleukin-1 are involved in the effects of ATRA in the spinal cord, similar to that seen in inflammation. Conclusions and implications: In conclusion, ATRA induces changes in the spinal cord similar to those observed in inflammation. The sensitization-like effect induced by ATRA was mediated by RARs and associated with a modulation of COX-2 and interleukin-1 activities. ATRA might be involved in the mechanisms underlying the initiation and/or maintenance of sensitization in the spinal cord. PMID:16847438

  14. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v1; ref status: indexed, http://f1000r.es/3rm

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-07-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  15. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v2; ref status: indexed, http://f1000r.es/4dl

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-09-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  16. Nociceptive Response to L-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats.

    Science.gov (United States)

    Nascimento, G C; Bariotto-Dos-Santos, K; Leite-Panissi, C R A; Del-Bel, E A; Bortolanza, M

    2018-04-02

    Non-motor symptoms are increasingly identified to present clinical and diagnostic importance for Parkinson's disease (PD). The multifactorial origin of pain in PD makes this symptom of great complexity. The dopamine precursor, L-DOPA (L-3,4-dihydroxyphenylalanine), the classic therapy for PD, seems to be effective in pain threshold; however, there are no studies correlating L-DOPA-induced dyskinesia (LID) and nociception development in experimental Parkinsonism. Here, we first investigated nociceptive responses in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease to a hind paw-induced persistent inflammation. Further, the effect of L-DOPA on nociception behavior at different times of treatment was investigated. Pain threshold was determined using von Frey and Hot Plate/Tail Flick tests. Dyskinesia was measured by abnormal involuntary movements (AIMs) induced by L-DOPA administration. This data is consistent to show that 6-OHDA-lesioned rats had reduced nociceptive thresholds compared to non-lesioned rats. Additionally, when these rats were exposed to a persistent inflammatory challenge, we observed increased hypernociceptive responses, namely hyperalgesia. L-DOPA treatment alleviated pain responses on days 1 and 7 of treatment, but not on day 15. During that period, we observed an inverse relationship between LID and nociception threshold in these rats, with a high LID rate corresponding to a reduced nociception threshold. Interestingly, pain responses resulting from CFA-induced inflammation were significantly enhanced during established dyskinesia. These data suggest a pro-algesic effect of L-DOPA-induced dyskinesia, which is confirmed by the correlation founded here between AIMs and nociceptive indexes. In conclusion, our results are consistent with the notion that central dopaminergic mechanism is directly involved in nociceptive responses in Parkinsonism condition.

  17. Diabetes-induced microvascular complications at the level of the spinal cord; a contributing factor in diabetic neuropathic pain.

    Science.gov (United States)

    Ved, N; Da Vitoria Lobo, M E; Bestall, S M; L Vidueira, C; Beazley-Long, N; Ballmer-Hofer, K; Hirashima, M; Bates, D O; Donaldson, L F; Hulse, R P

    2018-05-17

    Abnormalities of neurovascular interactions within the central nervous system of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of VEGF-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A 165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, as well as a concurrent reduction of VEGF-A 165 b expression. In diabetic animals, VEGF-A 165 b treatment (biweekly intraperitoneal, 20 ng g -1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreER T2 -vegfr2 flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All

  18. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    Science.gov (United States)

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  19. Spinal antinflammatory action of Diclofenac.

    Science.gov (United States)

    Sandri, Alberto

    2016-06-01

    Diclofenac is a non-steroidal antinflammatory drug (NSAID) that finds indication in the treatment of debilitating pathologies characterized by chronic pain sustained by inflammation, such as in rheumatic disease (rheumatoid arthritis or osteoarthritis) or periarthritis, bursitis, tendonitis, myositis and sciatica. Its properties differentiate it from other NSAIDs. In fact, diclofenac's increased effect on spinal nociception and chronic neuro-inflammatory pain may be referred to: 1) its synergistic effects on peroxisome proliferator-activated receptor-γ (PPAR- γ) activation and prostaglandin synthesis inhibition (COX-2 inhibition); 2) its capacity of suppressing neuronal hyperexcitability through the blockage of neuronal K+ channels in a concentration-dependant manner; and 3) its facility to cross the blood-brain barrier.

  20. Spinal axis irradiation with electrons: Measurements of attenuation by the spinal processes

    International Nuclear Information System (INIS)

    Muller-Runkel, R.; Vijayakumar, S.

    1986-01-01

    Electrons may be used beneficially for spinal axis irradiation in medulloblastoma children to avoid some of the long-term sequelae induced by megavoltage photons. However, the attenuation by the intervening bone ought to be considered. Three-dimensional computer treatment planning with inhomogeneity correction for electron beams is not yet generally available, and alternate methods are needed to evaluate the attenuation by the complex bony structure of the spine. Here, we present our experimental data showing the alteration in the electron isodoses due to the intervening spinous processes. Film dosimetric measurements were made in the vertebral columns obtained from autopsies of a goat, a dog, and a child. Our results show that electron beam therapy for the spinal axis is a viable option

  1. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  2. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    Science.gov (United States)

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  3. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  4. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  6. p-Cymene reduces orofacial nociceptive response in mice

    Directory of Open Access Journals (Sweden)

    Michele F. Santana

    2011-12-01

    Full Text Available This study investigated the possible antinociceptive effect of p-cymene in different tests of orofacial nociception. The animals (mice were pretreated (i.p. with p-cymene (25, 50, 100 mg/kg, morphine (5 mg/kg, or vehicle (0.2% Tween 80+saline, and were then subsequently administered, subcutaneously into their upper lip: formalin, capsaicin, and glutamate. The nociceptive behavior response was characterized by the time in s that the mice remained rubbing the orofacial region, for a period of 40 min in the formalin test (first phase, 0-6 min; and second phase, 21-40 min, and for 42 and 15 min in the capsaicin and glutamate tests, respectively. To verify the possible opioid involvement in the antinociceptive effects, naloxone (i.p. was administered into the mice 15 min prior to the pretreatment with p-cymene (100 mg/kg. Finally, whether or not the p-cymene evoked any change in motor performance in the Rota-rod test was evaluated. The results showed that the treatment with p-cymene, at all doses, reduced (p<0.001 the nociceptive behavior in all nociception tests. The antinociceptive effect of p-cymene was antagonized by naloxone (1.5 mg/kg. Additionally, mice treated with p-cymene did not show any change in motor performance. In conclusion, p-cymene attenuated orofacial nociception, suggesting an involvement of the opioid system in this effect. Thus, p-cymene might represent an important biomolecule for management and/or treatment of orofacial pain.

  7. Characterization of thoracic spinal neurons with noxious convergent inputs from heart and lower airways in rats.

    Science.gov (United States)

    Qin, Chao; Foreman, Robert D; Farber, Jay P

    2007-04-13

    Respiratory symptoms experienced in some patients with cardiac diseases may be due to convergence of noxious cardiac and pulmonary inputs onto neurons of the central nervous system. For example, convergence of cardiac and respiratory inputs onto single solitary tract neurons may be in part responsible for integration of regulatory and defensive reflex control. However, it is unknown whether inputs from the lungs and heart converge onto single neurons of the spinal cord. The present aim was to characterize upper thoracic spinal neurons responding to both noxious stimuli of the heart and lungs in rats. Extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. A catheter was placed in the pericardial sac to administer bradykinin (BK, 10 microg/ml, 0.2 ml, 1 min) as a noxious cardiac stimulus. The lung irritant, ammonia, obtained as vapor over a 30% solution of NH(4)OH was injected into the inspiratory line of the ventilator (0.5-1.0 ml over 20 s). Intrapericardial bradykinin (IB) altered activity of 58/65 (89%) spinal neurons that responded to inhaled ammonia (IA). Among those cardiopulmonary convergent neurons, 81% (47/58) were excited by both IA and IB, and the remainder had complex response patterns. Bilateral cervical vagotomy revealed that vagal afferents modulated but did not eliminate responses of individual spinal neurons to IB and IA. The convergence of pulmonary and cardiac nociceptive signaling in the spinal cord may be relevant to situations where a disease process in one organ influences the behavior of the other.

  8. CGRPα within the Trpv1-Cre population contributes to visceral nociception.

    Science.gov (United States)

    Spencer, Nick J; Magnúsdóttir, Elín I; Jakobsson, Jon E T; Kestell, Garreth; Chen, Bao Nan; Morris, David; Brookes, Simon J; Lagerström, Malin C

    2018-02-01

    potential cation channel subfamily V member 1 (TRPV1)-expressing primary afferent neurons, but the functional role of CGRPα specifically in these neurons is unknown in pain processing from visceral and somatic afferents. We used cre-lox recombination to conditionally delete CGRPα from TRPV1-expressing neurons in mice. We show that CGRPα from within TRPV1-cre population plays an important role in visceral nociception but less so in somatic nociception.

  9. Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway.

    Science.gov (United States)

    Follansbee, Taylor L; Gjelsvik, Kayla J; Brann, Courtney L; McParland, Aidan L; Longhurst, Colin A; Galko, Michael J; Ganter, Geoffrey K

    2017-08-30

    Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans. SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a

  10. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content

    Directory of Open Access Journals (Sweden)

    Almeida Armando

    2009-07-01

    Full Text Available Abstract Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT and dexamethasone (DEX in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT; however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP, calcitonin gene-related peptide (CGRP, somatostatin (SS and B2-γ-aminobutiric acid receptors (GABAB2 expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the

  11. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  12. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates.

    Science.gov (United States)

    Sessle, B J

    2000-01-01

    This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neurochemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.

  13. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization.

    Science.gov (United States)

    Huang, Yung-Jen; Lee, Kuan H; Grau, James W

    2017-02-01

    Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man

    DEFF Research Database (Denmark)

    Thomsen, L L; Brennum, J; Iversen, Helle Klingenberg

    1996-01-01

    Several animal studies suggest that nitric oxide (NO) plays a role in central and peripheral modulation of nociception. Glyceryl trinitrate (GTN) exerts its physiological actions via donation of NO. The purpose of the present study was to examine the effect of this NO donor on nociceptive...... central facilitation of nociception by NO. However, we regard convergence of nociceptive input from pericranial myofascial tissue and from cephalic blood vessels dilated by NO as a more likely explanation of our findings....

  15. Nociceptive flexion reflexes during analgesic neurostimulation in man.

    Science.gov (United States)

    García-Larrea, L; Sindou, M; Mauguière, F

    1989-11-01

    Nociceptive flexion reflexes of the lower limbs (RIII responses) have been studied in 21 patients undergoing either epidural (DCS, n = 16) or transcutaneous (TENS, n = 5) analgesic neurostimulation (AN) for chronic intractable pain. Flexion reflex RIII was depressed or suppressed by AN in 11 patients (52.4%), while no modification was observed in 9 cases and a paradoxical increase during AN was evidenced in 1 case. In all but 2 patients, RIII changes were rapidly reversible after AN interruption. RIII depression was significantly associated with subjective pain relief, as assessed by conventional self-rating; moreover, in 2 patients it was possible to ameliorate the pain-suppressing effects of AN by selecting those stimulation parameters (intensity and frequency) that maximally depressed nociceptive reflex RIII. We recorded 2 cases of RIII attenuation after contralateral neurostimulation. AN appeared to affect nociceptive reflexes rather selectively, with no or very little effect on other cutaneous, non-nociceptive responses. Recording of RIII reflexes is relatively simple to implement as a routine paraclinical procedure. It facilitates the objective assessment of AN efficacy and may help to choose the most appropriate parameters of neurostimulation. In addition, RIII behavior in patients could be relevant to the understanding of some of the mechanisms involved in AN-induced pain relief.

  16. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  18. Comparison of voiding function and nociceptive behavior in two rat models of cystitis induced by cyclophosphamide or acetone

    Science.gov (United States)

    Saitoh, Chikashi; Yokoyama, Hitoshi; Chancellor, Michael B.; de Groat, William C.; Yoshimura, Naoki

    2009-01-01

    Aims Nociceptive behavior and its relationship with bladder dysfunction were investigated in two cystitis models, which were induced by intraperitoneal (ip) injection of cyclophosphamide (CYP) or intravesical instillation of acetone, using freely moving, non-catheterized conscious rats. Methods Female Sprague-Dawley rats were used. Cystitis was induced by ip injection of CYP (100 and 200mg/kg) or intravesical instillation of acetone (10, 30 and 50%) via a polyethylene catheter temporarily inserted into the bladder through the urethra. Then the incidence of nociceptive behavior (immobility with decreased breathing rates) was scored. Voided urine was collected simultaneously and continuously to measure bladder capacity. The plasma extravasation in the bladder was quantified by an evans blue (EB) dye leakage technique. Results CYP (100mg/kg, ip) induced nociceptive behavior without affecting bladder capacity or EB concentration in the bladder. A higher dose of CYP (200mg/kg, ip) decreased bladder capacity and increased EB levels as well as nociceptive behavior. In contrast, intravesical instillation of acetone (30%) decreased bladder capacity and increased EB levels, but evoked nociceptive behavior less frequently compared with CYP-treated animals. In capsaicin pretreated rats, nociceptive behavior induced by CYP or acetone was reduced; however, the overall effects of CYP or acetone on bladder capacity and bladder EB levels were unaffected. Conclusions These results suggest that there is a difference in the induction process of nociceptive behavior and small bladder capacity after two different types of bladder irritation and that C-fiber sensitization is more directly involved in pain sensation than reduced bladder capacity. PMID:19618450

  19. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Directory of Open Access Journals (Sweden)

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  20. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  1. Citral reduces nociceptive and inflammatory response in rodents

    Directory of Open Access Journals (Sweden)

    Lucindo J. Quintans-Júnior

    2011-04-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  2. Citral reduces nociceptive and inflammatory response in rodents

    Directory of Open Access Journals (Sweden)

    Lucindo J. Quintans-Júnior

    2011-06-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  3. Assessment of anti-nociceptive efficacy of costus speciosus rhizome in swiss albino mice.

    Science.gov (United States)

    Bhattacharya, Sanjib; Nagaich, Upendra

    2010-01-01

    Present study attempts to evaluate the anti-nociceptive activity of the aqueous and ethanol extracts of Costus speciosus rhizome (CPA and CPE) in Swiss albino mice. The maceration extracts were evaluated for anti-nociceptive activity by acetic acid-induced writhing and tail flick method in mice. The anti-nociceptive screening revealed significant peripheral anti-nociceptive actions of both extracts against acetic acid induced writhing in mice. Aqueous extract (CPA) significantly inhibited writhes at the dose of 75 and 150 mg/kg body weight, while ethanol extract (CPE) produced significant protection at the dose of 150 mg/kg body weight. However, in tail flick method only the ethanol extract (CPE) showed significant central analgesic action, while aqueous extract was totally ineffective. The present investigation demonstrates that the rhizome extracts of C. speciosus exhibited significant anti-nociceptive effects in Swiss albino mice.

  4. Assessment of anti-nociceptive efficacy of Costus Speciosus rhizome in swiss albino mice

    Directory of Open Access Journals (Sweden)

    Sanjib Bhattacharya

    2010-01-01

    Full Text Available Present study attempts to evaluate the anti-nociceptive activity of the aqueous and ethanol extracts of Costus speciosus rhizome (CPA and CPE in Swiss albino mice. The maceration extracts were evaluated for anti-nociceptive activity by acetic acid-induced writhing and tail flick method in mice. The anti-nociceptive screening revealed significant peripheral anti-nociceptive actions of both extracts against acetic acid induced writhing in mice. Aqueous extract (CPA significantly inhibited writhes at the dose of 75 and 150 mg/kg body weight, while ethanol extract (CPE produced significant protection at the dose of 150 mg/kg body weight. However, in tail flick method only the ethanol extract (CPE showed significant central analgesic action, while aqueous extract was totally ineffective. The present investigation demonstrates that the rhizome extracts of C. speciosus exhibited significant anti-nociceptive effects in Swiss albino mice.

  5. Cannabinoid-induced effects on the nociceptive system: a neurophysiological study in patients with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio

    2009-05-01

    Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.

  6. Intraplantar injection of tetrahydrobiopterin induces nociception in mice

    DEFF Research Database (Denmark)

    Nasser, Arafat; Ali, Sawsan; Wilsbech, Signe

    2015-01-01

    was tested. Morphine served as a positive control. Intraplantar pre-injection of morphine dose-dependently inhibited BH4-induced nociception, while none of the other compounds showed any statistical significant antinociception. These results suggest that BH4 exhibits nociceptive properties at peripheral......Tetrahydrobiopterin (BH4) is implicated in the development and maintenance of chronic pain. After injury/inflammation, the biosynthesis of BH4 is markedly increased in sensory neurons, and the pharmacological and genetic inhibition of BH4 shows analgesic effects in pre-clinical animal pain models...

  7. Anti-nociceptive activity of Pereskia bleo Kunth. (Cactaceae) leaves extracts.

    Science.gov (United States)

    Abdul-Wahab, Ikarastika Rahayu; Guilhon, Carolina Carvalho; Fernandes, Patricia Dias; Boylan, Fabio

    2012-12-18

    Local communities in Malaysia consume Pereskia bleo Kunth. (Cactaceae) leaves as raw vegetables or as a concoction and drink as a tea to treat diabetes, hypertension, rheumatism, cancer-related diseases, inflammation, gastric pain, ulcers, and for revitalizing the body. To evaluate anti-nociceptive activity of the extracts and vitexin, isolated for the first time in this species, in two analgesic models; formalin-induced licking and acetic acid-induced abdominal writhing. Three and a half kilos of P. bleo leaves were extracted using Soxhlet apparatus with ethanol for 72 h. The crude ethanol extract was treated with activated charcoal overnight and subjected to a liquid-liquid partition yielding hexane, dichloromethane, ethyl acetate and butanol extracts. All extracts, including the crude ethanol and vitexin isolated from the ethyl acetate partition were tested for peripheral anti-nociceptive activity using formalin test and acetic acid-induced abdominal writhing, besides having their acute toxicity assays performed. The phytochemical analyses resulted in the isolation of vitexin (1), β-sitosterol glucoside (2) and β-sitosterol (3) isolated from the ethyl acetate, dichloromethane and hexane extracts, respectively. This is the first time vitexin and β-sitosterol glucoside are isolated from this species. The anti-nociceptive activities for all extracts were only moderate. Vitexin, which was isolated from the ethyl acetate extract did not show any activity in all models tested when used alone at the same concentration as it appears in the extract. This study showed that all the extracts possess moderate anti-nociceptive activity. Vitexin is not the compound responsible for the anti-nociceptive effect in the ethyl acetate extract. Further investigations are needed to identify the compound(s) that might be responsible for the anti-nociceptive activity in this plant. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Neurokinin-1 (NK-1 receptor and brain-derived neurotrophic factor (BDNF gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain

    Directory of Open Access Journals (Sweden)

    McCarson Kenneth E

    2007-10-01

    Full Text Available Abstract Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1 receptors and brain-derived neurotrophic factor (BDNF, known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB, while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  9. Nociception at the diabetic foot, an uncharted territory

    Science.gov (United States)

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  10. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord.

    Science.gov (United States)

    Liu, Ming; Liao, Kaijun; Yu, Changxi; Li, Xuejun; Liu, Suhuan; Yang, Shuyu

    2014-01-01

    Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI) and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4-100 nM) for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB) and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.

  11. Puerarin Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2014-01-01

    Full Text Available Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.

  12. Role of spinal inhibitory mechanisms in whiplash injuries.

    Science.gov (United States)

    Lo, Yew-Long; Tan, Yam-Eng; Fook-Chong, Stephanie; Boolsambatra, Pensie; Yue, Wai-Mun; Chan, Ling-Ling; Tan, Seang-Beng

    2007-06-01

    Whiplash injury, commonly encountered in road traffic accidents, is a major cause of morbidity. Its pathophysiology is not well understood, and diagnosis remains clinical. Imaging and electrophysiological methods have not provided objective diagnostic evidence. Availability of a sensitive and specific diagnostic method would be of high clinical interest. We studied 20 consecutive patients with chronic whiplash injury. Despite persistent symptoms, most had minimal neurological findings. Cutaneous silent period (CSP), a nociceptive spinal inhibitory electromyographic reflex, showed 90% sensitivity and 90% specificity for its diagnosis. In contrast, only two patients (10%) had abnormal transcranial magnetic stimulation findings, and another two (10%) showed abnormal electromyography. Magnetic resonance imaging (MRI) showed cervical cord abnormalities in only two of 20 (10%) patients. None of the patients had abnormal somatosensory evoked potential studies. Our findings suggest that neurological dysfunction of whiplash may occur at several possible spinal cord localities in the CSP functional pathway. The use of this simple, quick, and sensitive method is advocated in the diagnostic work up of whiplash injury.

  13. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies

    Directory of Open Access Journals (Sweden)

    Aaron D. Mickle

    2016-11-01

    Full Text Available Specialized receptors belonging to the transient receptor potential (TRP family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.

  14. Calcitonin gene-related peptide modulates heat nociception in the human brain - An fMRI study in healthy volunteers

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Becerra, Lino; Larsson, Henrik B.W.

    2016-01-01

    Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded...... cortex. Sumatriptan injection reversed these changes. Conclusion: The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli....

  15. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain.

    Science.gov (United States)

    Shelukhina, Irina; Mikhailov, Nikita; Abushik, Polina; Nurullin, Leniz; Nikolsky, Evgeny E; Giniatullin, Rashid

    2017-01-01

    Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca 2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which

  16. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  17. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain.

    Science.gov (United States)

    Sun, Shukai; Yin, Yue; Yin, Xin; Cao, Fale; Luo, Daoshu; Zhang, Ting; Li, Yunqing; Ni, Longxing

    2012-09-01

    Inflammatory pain is an important clinical symptom. The levels of extracellular signal-regulated kinases (ERKs) and the levels of cytokines such as interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) play important roles in inflammatory pain. Tanshinone IIA (TIIA) is an important component of Danshen, a traditional Chinese medicine that has been commonly used to treat cardiovascular disease. In this study, we investigated the potential anti-inflammatory nociceptive effects of TIIA on complete Freund's adjuvant (CFA)-induced inflammation and inflammatory pain in rats. The effects of TIIA on CFA-induced thermal and mechanical hypersensitivity were investigated using behavioral tests. The levels of ERKs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transient receptor potential vanilloid 1 (TRPV1) in the fifth segment of the lumbar spinal cord (L5) ganglia were detected by Western blot, and the levels of mRNA and protein production of IL1-β, IL-6 and TNF-α were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). In this study, we found that TIIA attenuates the development of CFA-induced mechanical and thermal hypersensitivity. In addition, p-ERK and NF-κB expression levels were inhibited by TIIA, and the levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced. Finally, we found that the expression level of TRPV1 was significantly decreased after TIIA injection. This study demonstrated that TIIA has significant anti-nociceptive effects in a rat model of CFA-induced inflammatory pain. TIIA can inhibit the activation of ERK signaling pathways and the expression of pro-inflammatory cytokines. These results suggest that TIIA may be a potential anti-inflammatory and anti-nociceptive drug. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Sida cordifolia leaf extract reduces the orofacial nociceptive response in mice.

    Science.gov (United States)

    Bonjardim, L R; Silva, A M; Oliveira, M G B; Guimarães, A G; Antoniolli, A R; Santana, M F; Serafini, M R; Santos, R C; Araújo, A A S; Estevam, C S; Santos, M R V; Lyra, A; Carvalho, R; Quintans-Júnior, L J; Azevedo, E G; Botelho, M A

    2011-08-01

    In this study, we describe the antinociceptive activity of the ethanol extract (EE), chloroform (CF) and methanol (MF) fractions obtained from Sida cordifolia, popularly known in Brazil as "malva branca" or "malva branca sedosa". Leaves of S. cordifolia were used to produce the crude ethanol extract and after CF and MF. Experiments were conducted on Swiss mice using the glutamate and formalin-induced orofacial nociception. In the formalin test, all doses of EE, CF and MF significantly reduced the orofacial nociception in the first (p < 0.001) and second phase (p < 0.001), which was also naloxone-sensitive. In the glutamate-induced nociception test, only CF and MF significantly reduced the orofacial nociceptive behavior with inhibition percentage values of 48.1% (100 mg/kg, CF), 56.1% (200 mg/kg, CF), 66.4% (400 mg/kg, CF), 48.2 (200 mg/kg, MF) and 60.1 (400 mg/kg, MF). Furthermore, treatment of the animals with EE, CF and MF was not able to promote motor activity changes. These data demonstrate that S. cordifolia has a pronounced antinociceptive activity on orofacial nociception. However, pharmacological and chemical studies are necessary in order to characterize the responsible mechanisms for this antinociceptive action and also to identify other bioactive compounds present in S. cordifolia. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Nociceptive sensations evoked from 'spots' in the skin by mild cooling and heating.

    Science.gov (United States)

    Green, Barry G; Roman, Carolyn; Schoen, Kate; Collins, Hannah

    2008-03-01

    It was recently found that nociceptive sensations (stinging, pricking, or burning) can be evoked by cooling or heating the skin to innocuous temperatures (e.g., 29 and 37 degrees C). Here, we show that this low-threshold thermal nociception (LTN) can be traced to sensitive 'spots' in the skin equivalent to classically defined warm spots and cold spots. Because earlier work had shown that LTN is inhibited by simply touching a thermode to the skin, a spatial search procedure was devised that minimized tactile stimulation by sliding small thermodes (16 and 1mm(2)) set to 28 or 36 degrees C slowly across the lubricated skin of the forearm. The procedure uncovered three types of temperature-sensitive sites (thermal, bimodal, and nociceptive) that contained one or more thermal, nociceptive, or (rarely) bimodal spots. Repeated testing indicated that bimodal and nociceptive sites were less stable over time than thermal sites, and that mechanical contact differentially inhibited nociceptive sensations. Intensity ratings collected over a range of temperatures showed that LTN increased monotonically on heat-sensitive sites but not on cold-sensitive sites. These results provide psychophysical evidence that stimulation from primary afferent fibers with thresholds in the range of warm fibers and cold fibers is relayed to the pain pathway. However, the labile nature of LTN implies that these low-threshold nociceptive inputs are subject to inhibitory controls. The implications of these findings for the roles of putative temperature receptors and nociceptors in innocuous thermoreception and thermal pain are discussed.

  20. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    Directory of Open Access Journals (Sweden)

    Mamoru Takeda

    2016-10-01

    Full Text Available Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.

  1. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    Science.gov (United States)

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Co-expression of GAD67 and choline acetyltransferase in neurons in the mouse spinal cord: A focus on lamina X.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Yanagawa, Yuchio; Deuchars, Jim; Deuchars, Susan A

    2016-09-01

    Lamina X of the spinal cord is a functionally diverse area with roles in locomotion, autonomic control and processing of mechano and nociceptive information. It is also a neurochemically diverse region. However, the different populations of cells in lamina X remain to be fully characterised. To determine the co-localisation of the enzymes responsible for the production of GABA and acetylcholine (which play major roles in the spinal cord) in lamina X of the adult and juvenile mouse, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurons, combined with choline acetyltransferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurons were observed in lamina X of both adult and juvenile mice and in both age groups a population of cells containing both ChAT-IR and GAD67-GFP were observed in lumbar, thoracic and cervical spinal cord. Such dual labelled cells were predominantly located ventral to the central canal. Immunohistochemistry for vesicular acetylcholine transporter (VAChT) and GAD67 revealed a small number of double labelled terminals located lateral, dorsolateral and ventrolateral to the central canal. This study therefore describes in detail a population of ChAT-IR/GAD67-GFP neurons predominantly ventral to the central canal of the cervical, thoracic and lumbar spinal cord of adult and juvenile mice. These cells potentially correspond to a sub-population of the cholinergic central canal cluster cells which may play a unique role in controlling spinal cord circuitry. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Nuclear magnetic imaging for MTRA. Spinal canal and spinal cord

    International Nuclear Information System (INIS)

    Fritzsch, Dominik; Hoffmann, Karl-Titus

    2011-01-01

    The booklet covers the following topics: (1) Clinical indications for NMR imaging of spinal cord and spinal canal; (2) Methodic requirements: magnets and coils, image processing, contrast media: (3) Examination technology: examination conditions, sequences, examination protocols; (4) Disease pattern and indications: diseases of the myelin, the spinal nerves and the spinal canal (infections, tumors, injuries, ischemia and bleedings, malformations); diseases of the spinal cord and the intervertebral disks (degenerative changes, infections, injuries, tumors, malformations).

  4. Changes in thermal nociceptive responses in dairy cows following experimentally induced Esherichia coli mastitis

    DEFF Research Database (Denmark)

    Rasmussen, Ditte B.; Fogsgaard, Katrine; Røntved, Christine Maria

    2011-01-01

    Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS......) in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables....

  5. CORTICAL RESPONSES TO SALIENT NOCICEPTIVE AND NOT NOCICEPTIVE STIMULI IN VEGETATIVE AND MINIMAL CONSCIOUS STATE

    Directory of Open Access Journals (Sweden)

    MARINA eDE TOMMASO

    2015-01-01

    Full Text Available Aims Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient multimodal visual, acoustic, somatosensory electric non nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation.Methods: Five Vegetative State (VS, 4 Minimally Conscious State (MCS patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 sec. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2 vertex complex in the 500 msec post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R and Coma Recovery Scale (CRS-R for clinical evaluation of pain perception and consciousness impairment.Results: The laser evoked potentials (LEPs were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the

  6. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Directory of Open Access Journals (Sweden)

    Aunis Dominique

    2010-12-01

    Full Text Available Abstract Background- Mice deficient for the stable tubule only peptide (STOP display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. Results- In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p. produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. Conclusions- Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.

  7. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue.

    Science.gov (United States)

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi

    2016-01-01

    Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells

  8. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  9. Dissecting the contribution of knee joint NGF to spinal nociceptive sensitization in a model of OA pain in the rat.

    Science.gov (United States)

    Sagar, D R; Nwosu, L; Walsh, D A; Chapman, V

    2015-06-01

    Although analgesic approaches targeting nerve growth factor (NGF) for the treatment of osteoarthritis (OA) pain remain of clinical interest, neurophysiological mechanisms by which NGF contribute to OA pain remain unclear. We investigated the impact of local elevation of knee joint NGF on knee joint, vs remote (hindpaw), evoked responses of spinal neurones in a rodent model of OA pain. In vivo spinal electrophysiology was carried out in anaesthetised rats with established pain behaviour and joint pathology following intra-articular injection of monosodium iodoacetate (MIA), vs injection of saline. Neuronal responses to knee joint extension and flexion, mechanical punctate stimulation of the peripheral receptive fields over the knee and at a remote site (ipsilateral hind paw) were studied before, and following, intra-articular injection of NGF (10 μg/50 μl) or saline. MIA-injected rats exhibited significant local (knee joint) and remote (lowered hindpaw withdrawal thresholds) changes in pain behaviour, and joint pathology. Intra-articular injection of NGF significantly (P knee extension-evoked firing of spinal neurones and the size of the peripheral receptive fields of spinal neurones (100% increase) over the knee joint in MIA rats, compared to controls. Intra-articular NGF injection did not significantly alter responses of spinal neurones following noxious stimulation of the ipsilateral hind paw in MIA-injected rats. The facilitatory effects of intra-articular injection of NGF on spinal neurones receiving input from the knee joint provide a mechanistic basis for NGF mediated augmentation of OA knee pain, however additional mechanisms may contribute to the spread of pain to remote sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. 'Pseudofailure' of spinal cord stimulation for neuropathic pain following a new severe noxious stimulus: learning points from a case series of failed spinal cord stimulation for complex regional pain syndrome and failed back surgery syndrome.

    Science.gov (United States)

    Muquit, Samiul; Moussa, Ahmad Abdelhai; Basu, Surajit

    2016-05-01

    Failure of spinal cord stimulation (SCS) may be due to hardware problems, migration of electrodes and, in the long-term, plasticity in the spinal cord with habituation to the stimulation current. We describe a series of seven patients who experienced acute therapeutic loss of SCS effects following an acute nociceptive event unrelated to primary pathology. There were no hardware problems. We called this 'Pseudofailure', as the effective stimulation returned in all patients following a period off stimulation or reprogramming. This phenomenon has not been reported previously in the literature. Over a 4-year period, we managed seven patients with this feature: four had received SCS for complex regional pain syndrome and three for failed back surgery syndrome. In all seven cases, there was cessation of the pain relief afforded by SCS following an acute painful event: four patients had trauma, two patients had domestic electric shock and one patient suffered shingles (varicella zoster infection). We excluded hardware-related problems in all cases. In two patients, SCS effects could be regained by an initial attempt at reprogramming. In the remaining five cases reprogramming was unsuccessful, and stimulation was switched off for several months before recommencing, when we discovered a return of good therapeutic effect. We conclude that SCS may seem to fail following a separate strong nociceptive stimulus. Stimulation may be regained with reprogramming or following a period with stimulation switched off. We would, therefore, advise against removal of SCS hardware in the first instance.

  11. Antagonism of the melanocortin system reduces cold and mechanical allodynia in mononeuropathic rats

    NARCIS (Netherlands)

    Gispen, W.H.; Vrinten, D.H.; Groen, G.J.; Adan, R.A.H.

    2000-01-01

    The presence of both pro-opiomelanocortin-derived peptides and melanocortin (MC) receptors in nociception-associated areas in the spinal cord suggests that, at the spinal level, the MC system might be involved in nociceptive transmission. In the present study, we demonstrate that a chronic

  12. Neonatal morphine enhances nociception and decreases analgesia in young rats.

    Science.gov (United States)

    Zhang, Guo Hua; Sweitzer, Sarah M

    2008-03-14

    The recognition of the impact of neonatal pain experience on subsequent sensory processing has led to the increased advocacy for the use of opioids for pain relief in infants. However, following long-term opioid exposure in intensive care units more than 48% of infants exhibited behaviors indicative of opioid abstinence syndrome, a developmentally equivalent set of behaviors to opioid withdrawal as seen in adults. Little is known about the long-term influence of repeated neonatal morphine exposure on nociception and analgesia. To investigate this, we examined mechanical and thermal nociception on postnatal days 11, 13, 15, 19, 24, 29, 39 and 48 following subcutaneous administration of morphine (3 mg/kg) once daily on postnatal days 1-9. The cumulative morphine dose-response was assessed on postnatal days 20 and 49, and stress-induced analgesia was assessed on postnatal days 29 and 49. Both basal mechanical and thermal nociception in neonatal, morphine-exposed rats were significantly lower than those in saline-exposed, handled-control rats and naive rats until P29. A rightward-shift of cumulative dose-response curves for morphine analgesia upon chronic neonatal morphine was observed both on P20 and P49. The swim stress-induced analgesia was significantly decreased in neonatal morphine-exposed rats on P29, but not on P49. These data indicate that morphine exposure equivalent to the third trimester of gestation produced prolonged pain hypersensitivity, decreased morphine antinociception, and decreased stress-induced analgesia. The present study illustrates the need to examine the long-term influence of prenatal morphine exposure on pain and analgesia in the human pediatric population.

  13. (-)-α-Bisabolol reduces orofacial nociceptive behavior in rodents.

    Science.gov (United States)

    Melo, Luana Torres; Duailibe, Mariana Araújo Braz; Pessoa, Luciana Moura; da Costa, Flávio Nogueira; Vieira-Neto, Antonio Eufrásio; de Vasconcellos Abdon, Ana Paula; Campos, Adriana Rolim

    2017-02-01

    The purposes of this study were to evaluate the anti-nociceptive effect of oral and topical administration of (-)-α-bisabolol (BISA) in rodent models of formalin- or cinnamaldehyde-induced orofacial pain and to explore the inhibitory mechanisms involved. Orofacial pain was induced by injecting 1.5% formalin into the upper lip of mice (20 μL) or into the temporomandibular joint (TMJ) of rats (50 μL). In another experiment, orofacial pain was induced with cinnamaldehyde (13.2 μg/lip). Nociceptive behavior was proxied by time (s) spent rubbing the injected area and by the incidence of head flinching. BISA (100, 200, or 400 mg/kg p.o. or 50, 100, or 200 mg/mL topical) or vehicle was administered 60 min before pain induction. The two formulations (lotion and syrup) were compared with regard to efficacy. The effect of BISA remained after incorporation into the formulations, and nociceptive behavior decreased significantly in all tests. The high binding affinity observed for BISA and TRPA1 in the molecular docking study was supported by in vivo experiments in which HC-030031 (a TRPA1 receptor antagonist) attenuated pain in a manner qualitatively and quantitatively similar to that of BISA. Blockers of opioid receptors, NO synthesis, and K + ATP channels did not affect orofacial pain, nor inhibit the effect of BISA. In conclusion, BISA had a significant anti-nociceptive effect on orofacial pain. The effect may in part be due to TRPA1 antagonism. The fact that the effect of BISA remained after incorporation into oral and topical formulations suggests that the compound may be a useful adjuvant in the treatment of orofacial pain.

  14. A study of the reliability of the Nociception Coma Scale.

    Science.gov (United States)

    Riganello, F; Cortese, M D; Arcuri, F; Candelieri, A; Guglielmino, F; Dolce, G; Sannita, W G; Schnakers, C

    2015-04-01

    In this study, we investigated the reliability of the Nociception Coma Scale which has recently been developed to assess nociception in non-communicative, severely brain-injured patients. Prospective cross-sequential study. Semi-intensive care unit and long-term brain injury care. Forty-four patients diagnosed as being in a vegetative state (n=26) or in a minimally conscious state (n=18). Patients were assessed by two experts (rater A and rater B) on two consecutive weeks to measure inter-rater agreement and test-retest reliability. Total scores and subscores of the Nociception Coma Scale. We performed a total of 176 assessments. The inter-rater agreement was moderate for the total scores (k = 0.57) and fair to substantial for the subscores (0.33 ≤ k ≤ 0.62) on week 2. The test-retest reliability was substantial for the total scores (k = 0.66) and moderate to almost perfect for the subscores (0.53 ≤ k ≤ 0.96) for rater A. The inter-rater agreement was weaker on week 1, whereas the test-retest reliability was lower for the least experienced rater (rater B). This study provides further evidence of the psychometric qualities of the Nociception Coma Scale. Future studies should assess the impact of practical experience and background on administration and scoring of the scale. © The Author(s) 2014.

  15. Pain profiles in a community dwelling population following spinal cord injury: a national survey.

    Science.gov (United States)

    Burke, Dearbhla; Fullen, Brona M; Lennon, Olive

    2017-07-24

    While as many as 60% of patients with spinal cord injury (SCI) develop chronic pain, limited data currently exists on the prevalence and profile of pain post-SCI in community dwelling populations. A cross-sectional population survey. Primary care. Community dwelling adults with SCI. Following ethical approval members registered to a national SCI database (n=1,574) were surveyed. The survey included demographic and SCI characteristics items, the International Spinal Cord Injury Pain Basic Data Set (version 1) the Douleur Neuropathique 4 questionnaire (interview) and questions relating to health care utilisation. Data were entered into the Statistical Package for the Social Sciences (version 20) Significance was set P < 0.05 for between group comparisons. In total 643 (41%) surveys were returned with 458 (71%) respondents experiencing pain in the previous week. Neuropathic pain (NP) was indicated in 236 (37%) of responses and nociceptive pain in 206 (32%) Common treatments for pain included medications n=347 (76%) massage n=133 (29%) and heat n=115 (25%). Respondents with NP reported higher pain intensities and increased healthcare service utilisation (P= < 0.001) when compared to those with nociceptive pain presentations. A higher proportion of females than males reported pain (P = 0.003) and NP (P = 0.001) and those unemployed presented with greater NP profiles compared with those in education or employment (P = 0.006). Pain, in particular NP post SCI interferes with daily life, increases health service utilisation and remains refractory to current management strategies. Increased availability of multi-disciplinary pain management and further research into management strategies is warranted.

  16. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat.

    Science.gov (United States)

    Due, Michael R; Park, Jonghyuck; Zheng, Lingxing; Walls, Michael; Allette, Yohance M; White, Fletcher A; Shi, Riyi

    2014-03-01

    Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here, we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury-induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3-L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound's pro-nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggest that acrolein directly modulates SCI-associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic. Following spinal cord injury (SCI), acrolein involvement in neuropathic pain is likely through direct activation and elevated levels of pro-nociceptive channel TRPA1. While acrolein elevation correlates with neuropathic pain, suppression of this aldehyde by hydralazine leads to an analgesic effect. Acrolein may serve as a novel therapeutic target for preclinical and clinical SCI to relieve both acute and chronic post-SCI neuropathic pain. © 2013 International Society for Neurochemistry.

  17. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats.

    Directory of Open Access Journals (Sweden)

    Li-Hong Li

    Full Text Available Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX, a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%-induced nociceptive responses (such as elevating and licking or biting during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact. Using formalin-induced conditioned place avoidance (F-CPA, which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA. In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.

  18. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state

    Science.gov (United States)

    de Tommaso, Marina; Navarro, Jorge; Lanzillotti, Crocifissa; Ricci, Katia; Buonocunto, Francesca; Livrea, Paolo; Lancioni, Giulio E.

    2015-01-01

    Aims: Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient visual, acoustic, somatosensory electric non-nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation. Methods: Five Vegetative State (VS), 4 Minimally Conscious State (MCS) patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 s. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2) vertex complex in the 500 ms post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R) and Coma Recovery Scale (CRS-R) for clinical evaluation of pain perception and consciousness impairment. Results: The laser evoked potentials (LEPs) were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the degree of cognitive and motor

  19. Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation

    Directory of Open Access Journals (Sweden)

    Volodymyr Krotov

    2017-11-01

    Full Text Available Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent. The tissue preparation has been also probed using Ca2+ imaging with fluorescent Ca2+ dyes (membrane-impermeable or -permeable to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.

  20. Intravenous dextromethorphan/quinidine inhibits activity of dura-sensitive spinal trigeminal neurons in rats.

    Science.gov (United States)

    Sokolov, A Y; Lyubashina, O A; Berkovich, R R; Panteleev, S S

    2015-09-01

    Migraine is a chronic neurological disorder characterized by episodes of throbbing headaches. Practically all medications currently used in migraine prophylaxis have a number of substantial disadvantages and use limitations. Therefore, the further search for principally new prophylactic antimigraine agents remains an important task. The objective of our study was to evaluate the effects of a fixed combination of dextromethorphan hydrobromide and quinidine sulphate (DM/Q) on activity of the spinal trigeminal neurons in an electrophysiological model of trigemino-durovascular nociception. The study was performed in 15 male Wistar rats, which were anaesthetized with urethane/α-chloralose and paralysed using pipecuronium bromide. The effects of cumulative intravenous infusions of DM/Q (three steps performed 30 min apart, 15/7.5 mg/kg of DM/Q in 0.5 mL of isotonic saline per step) on ongoing and dural electrical stimulation-induced neuronal activities were tested in a group of eight rats over 90 min. Other seven animals received cumulative infusion of equal volumes of saline and served as control. Cumulative administration of DM/Q produced steady suppression of both the ongoing activity of the spinal trigeminal neurons and their responses to electrical stimulation of the dura mater. It is evident that the observed DM/Q-induced suppression of trigeminal neuron excitability can lead to a reduction in nociceptive transmission from meninges to higher centres of the brain. Since the same mechanism is believed to underlie the pharmacodynamics of many well-known antimigraine drugs, results of the present study enable us to anticipate the potential efficacy of DM/Q in migraine. © 2014 European Pain Federation - EFIC®

  1. Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact.

    Science.gov (United States)

    Green, Barry G; Pope, Jennifer V

    2003-02-01

    In a previous study of the heat grill illusion, sensations of burning and stinging were sometimes reported when the skin was cooled by as little as 2 degrees C. Informal tests subsequently indicated that these nociceptive sensations were experienced if cooling occurred when the stimulating thermode rested on the skin, but not when the thermode was cooled and then touched to the skin. In experiment 1 subjects judged the intensity of thermal (cold/warm) and nociceptive (burning/stinging) sensations when the volar surface of the forearm was cooled to 25 degrees C (1) via a static thermode (Static condition), or (2) via a cold thermode touched to the skin (Dynamic condition). The total area of stimulation was varied from 2.6 to 10.4 cm(2) to determine if the occurrence of nociceptive sensations depended upon stimulus size. Burning/stinging was rated 10.3 times stronger in the Static condition than in the Dynamic condition, and this difference did not vary significantly with stimulus size. In experiment 2, thermal and nociceptive sensations were measured during cooling to just 31 degrees, 29 degrees or 27 degrees C, and data were obtained on the frequency at which different sensation qualities were experienced. Stinging was the most frequently reported nociceptive quality in the Static condition, and stinging and burning were both markedly reduced in the Dynamic condition. In experiment 3 we tested the possibility that dynamic contact might have inhibited burning and stinging not because of mechanical contact per se, but rather because dynamic contact caused higher rates of cooling. However, varying cooling rate over a tenfold range (-0.5 degrees to -5.0 degrees /s) had no appreciable effect on the frequency of stinging and burning. Overall, the data show that mild cooling can produce nociceptive sensations that are suppressed under conditions of dynamic mechanical contact. The latter observation suggests that cold is perceived differently during active contact with

  2. Reciprocal functional interactions between the brainstem and the lower spinal cord

    Science.gov (United States)

    Yazawa, Itaru

    2014-01-01

    The interplay of the neuronal discharge patterns regarding respiration and locomotion was investigated using electrophysiological techniques in a decerebrate and arterially perfused in situ mouse preparation. The phrenic, tibial, and/or peroneal nerve discharge became clearly organized into discharge episodes of increasing frequency and duration, punctuated by periods of quiescence as the perfusion flow rate increased at room temperature. The modulated sympathetic tone induced by the hyperoxic/normocapnic state was found to activate the locomotor pattern generator (LPG) via descending pathways and generate a left and right alternating discharge during discharge episodes in the motor nerves. The rhythm coupling of respiration and locomotion occurred at a 1:1 frequency ratio. Although the phrenic discharge synchronized with the tibial discharge at all flow rates tested, the time lag between peaks of the two discharges during locomotion was ≈400 ms rather than ≈200 ms, suggesting spinal feedback via ascending pathways. The incidence of the phrenic and tibial discharge episodes decreased by ≈50% after spinalization at the twelfth thoracic cord and the respiratory rhythm was more regular. These results indicate that: (i) locomotion can be generated in a hyperoxic/normocapnic state induced by specific respiratory conditions, (ii) the central mechanism regarding entrainment of respiratory and locomotor rhythms relies on spinal feedback via ascending pathways, initiated by the activated LPG generating locomotion, and (iii) the increase in respiratory rate seen during locomotion is caused not only by afferent mechanical and nociceptive inputs but also by impulses from the activated spinal cord producing a locomotor-like discharge via ascending pathways. PMID:24910591

  3. Reciprocal functional interactions between the brainstem and the lower spinal cord

    Directory of Open Access Journals (Sweden)

    Itaru eYazawa

    2014-05-01

    Full Text Available The interplay of the neuronal discharge patterns regarding respiration and locomotion was investigated using electrophysiological techniques in a decerebrate and arterially perfused in situ mouse preparation. The phrenic, tibial and/or peroneal nerve discharge became clearly organized into discharge episodes of increasing frequency and duration, punctuated by periods of quiescence as the perfusion flow rate increased at room temperature. The modulated sympathetic tone induced by the hyperoxic/normocapnic state was found to activate the locomotor pattern generator (LPG via descending pathways and generate a left and right alternating discharge during discharge episodes in the motor nerves. The rhythm coupling of respiration and locomotion occurred at a 1:1 frequency ratio. Although the phrenic discharge synchronized with the tibial discharge at all flow rates tested, the time lag between peaks of the two discharges during locomotion was ≈400 ms rather than ≈200 ms, suggesting spinal feedback via ascending pathways. The incidence of the phrenic and tibial discharge episodes decreased by ≈50% after spinalization at the twelfth thoracic vertebra and the respiratory rhythm was more regular. These results indicate that: (i locomotion can be generated in a hyperoxic/normocapnic state induced by specific respiratory conditions, (ii the central mechanism regarding entrainment of respiratory and locomotor rhythms relies on spinal feedback via ascending pathways, initiated by the activated LPG generating locomotion, and (iii the increase in respiratory rate seen during locomotion is caused not only by afferent mechanical and nociceptive inputs but also by impulses from the activated spinal cord producing a locomotor-like discharge via ascending pathways.

  4. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  5. Heart rate variability analysis as an index of emotion regulation processes: interest of the Analgesia Nociception Index (ANI).

    Science.gov (United States)

    De Jonckheere, J; Rommel, D; Nandrino, J L; Jeanne, M; Logier, R

    2012-01-01

    Autonomic Nervous System (ANS) variations are strongly influence by emotion regulation processes. Indeed, emotional stimuli are at the origin of an activation of the ANS and the way an individual pass from a state of alert in the case of emotional situation to a state of calm is closely coupled with the ANS flexibility. We have previously described and developed an Analgesia Nociception Index (ANI) for real time pain measurement during surgical procedure under general anesthesia. This index, based on heart rate variability analysis, constitutes a measure of parasympathetic tone and can be used in several other environments. In this paper, we hypothesized that such an index could be used as a tool to investigate the processes of emotional regulation of a human subject. To test this hypothesis, we analyzed ANI's response to a negative emotional stimulus. This analysis showed that the index decreases during the emotion induction phase and returns to its baseline after 2 minutes. This result confirms that ANI could be a good indicator of parasympathetic changes in emotional situation.

  6. Changes in thermal nociceptive responses in dairy cows following experimentally induced Escherichia coli mastitis

    Directory of Open Access Journals (Sweden)

    Klaas Ilka C

    2011-05-01

    Full Text Available Abstract Background Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables. Methods Seven Danish Holstein-Friesian cows were kept in tie-stalls, where the E. coli associated mastitis was induced and laser stimulations were conducted. Measurements of rectal temperature, somatic cell counts, white blood cell counts and E. coli counts were conducted. Furthermore, scores were given for anorexia, local udder inflammation and milk appearance to quantify the local and systemic disease response. In order to quantify the nociceptive threshold, behavioral responses toward cutaneous NLS applied to six skin areas at the tarsus/metatarsus and udder hind quarters were registered at evening milking on day 0 (control and days 1, 2, 3, 6 and 10 after experimental induction of mastitis. Results All clinical and paraclinical variables were affected by the induced mastitis. All cows were clinically ill on days 1 and 2. The cows responded behaviorally toward the NLS. For hind leg stimulation, the proportion of cows responding by stepping was higher on day 0 than days 3 and 6, and the frequency of leg movements after laser stimulation tended to decrease on day 1 compared to the other days. After udder stimulation, the proportion of cows responding by stepping was higher on day 1 than on all other days of testing. Significant correlations between the clinical and paraclinical variables of disease and the behavioral responses toward nociceptive stimulation were found. Conclusions Changes in behavioral responses coincide with peaks in local and systemic signs of E

  7. White matter and information processing speed following treatment with cranial-spinal radiation for pediatric brain tumor.

    Science.gov (United States)

    Scantlebury, Nadia; Bouffet, Eric; Laughlin, Suzanne; Strother, Douglas; McConnell, Dina; Hukin, Juliette; Fryer, Christopher; Laperriere, Normand; Montour-Proulx, Isabelle; Keene, Daniel; Fleming, Adam; Jabado, Nada; Liu, Fang; Riggs, Lily; Law, Nicole; Mabbott, Donald J

    2016-05-01

    We compared the structure of specific white matter tracts and information processing speed between children treated for posterior fossa tumors with cranial-spinal radiation (n = 30), or with surgery +/- focal radiation (n = 29), and healthy children (n = 37). Probabilistic diffusion tensor imaging (DTI) tractography was used to delineate the inferior longitudinal fasciculi, optic radiation, inferior frontal occipital fasciculi, and uncinate fasciculi bilaterally. Information processing speed was measured using the coding and symbol search subtests of the Wechsler Intelligence Scales, and visual matching, pair cancellation, and rapid picture naming subtests of the Woodcock-Johnson Test of Cognitive Ability, 3rd revision. We examined group differences using repeated measures MANOVAs and path analyses were used to test the relations between treatment, white matter structure of the tracts, and information processing speed. DTI indices of the optic radiations, the inferior longitudinal fasciculi, and the inferior fronto-occipital fasciculi differed between children treated with cranial-spinal radiation and children treated with surgery +/- focal radiation, and healthy controls (p = .045). Children treated with cranial-spinal radiation also exhibited lower processing speed scores relative to healthy control subjects (p = .002). Notably, we observed that group differences in information processing speed were related to the structure of the right optic radiation (p = .002). We show that cranial-spinal radiation may have a negative impact on information processing speed via insult to the right optic radiations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.

    Directory of Open Access Journals (Sweden)

    Choong-Wan Woo

    2015-01-01

    Full Text Available Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS, an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system.

  9. Modulation of Cervical Facet Joint Nociception and Pain Attenuates Physical and Psychological Features of Chronic Whiplash: A Prospective Study.

    Science.gov (United States)

    Smith, Ashley Dean; Jull, Gwendolen; Schneider, Geoff M; Frizzell, Bevan; Hooper, Robert A; Sterling, Michele

    2015-09-01

    To investigate changes in clinical (physical and psychological) features of individuals with chronic whiplash-associated disorder who had previously undergone cervical radiofrequency neurotomy at the time point when the effects of radiofrequency neurotomy had dissipated and pain returned. Prospective cohort observational trial of consecutive patients. Tertiary spinal intervention centre in Calgary, Alberta, Canada. A total of 53 consecutive individuals with chronic whiplash-associated disorder. Individuals underwent radiofrequency neurotomy and were assessed before radiofrequency neurotomy, at 1 and 3 months postprocedure, and then after the return of pain (approximately 10 months postprocedure). Quantitative sensory tests (pressure; thermal pain thresholds; brachial plexus provocation test), nociceptive flexion reflex, and motor function (cervical range of movement; craniocervical flexion test) were measured. Self-reported disability, psychological distress, pain catastrophization, and posttraumatic stress disorder symptoms also were measured. Upon the return of pain after radiofrequency neurotomy, levels of disability increased (P .22). There were no significant changes in pressure hyperalgesia (P > .054) or craniocervical flexion test performance (P > .07) after the return of pain. Psychological distress and pain catastrophizing increased significantly after the return of pain (P .13). However, there was no difference in number or severity of posttraumatic stress symptoms after the return of pain (P > .30). Physical and psychological features of chronic whiplash-associated disorder are modulated dynamically with cervical radiofrequency neurotomy. These findings indicate that peripheral nociception is involved in the manifestations of chronic whiplash-associated disorder in this cohort of individuals. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    Science.gov (United States)

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2017-07-01

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Factors affecting mechanical (nociceptive) thresholds in piglets.

    Science.gov (United States)

    Janczak, Andrew M; Ranheim, Birgit; Fosse, Torunn K; Hild, Sophie; Nordgreen, Janicke; Moe, Randi O; Zanella, Adroaldo J

    2012-11-01

    To evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer. Descriptive, prospective cohort. Forty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age. Mechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data. Variance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and clinical settings. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  12. Current Status and Future Directions of Botulinum Neurotoxins for Targeting Pain Processing

    Directory of Open Access Journals (Sweden)

    Sabine Pellett

    2015-11-01

    Full Text Available Current evidence suggests that botulinum neurotoxins (BoNTs A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.

  13. Trans-spinal direct current stimulation for the modulation of the lumbar spinal motor networks

    NARCIS (Netherlands)

    Kuck, Alexander

    2018-01-01

    Trans-spinal Direct Current Stimulation (tsDCS) is a noninvasive neuromodulatory tool for the modulation of the spinal neurocircuitry. Initial studies have shown that tsDCS is able to induce a significant and lasting change in spinal-reflex- and corticospinal information processing. It is therefore

  14. Has central sensitization become independent of nociceptive input in chronic pancreatitis patients who fail thoracoscopic splanchnicectomy?

    NARCIS (Netherlands)

    Bouwense, S.A.W.; Buscher, H.C.J.L.; Goor, H. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND AND OBJECTIVES: : Central sensitization due to visceral pancreatic nociceptive input may be important in chronic pancreatitis pain. We investigated whether bilateral thoracoscopic splanchnicectomy (BTS) to reduce nociceptive input in chronic pancreatitis patients (CPP) with poor pain

  15. Cellular mechanisms of nociception in the frog

    Czech Academy of Sciences Publication Activity Database

    Kuffler, D. P.; Lyfenko, Alla; Vyklický st., Ladislav; Vlachová, Viktorie

    2002-01-01

    Roč. 88, č. 4 (2002), s. 1843-1850 ISSN 0022-3077 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Grant - others:NATO(XX) Grant 977062 Institutional research plan: CEZ:AV0Z5011922 Keywords : cellular mechanisms of nociception * frog Subject RIV: FH - Neurology Impact factor: 3.743, year: 2002

  16. Possible effects of mobilisation on acute post-operative pain and nociceptive function after total knee arthroplasty

    DEFF Research Database (Denmark)

    Lunn, T H; Kristensen, B B; Gaarn-Larsen, L

    2012-01-01

    anaesthesia and analgesia underwent an exercise (mobilisation) strategy on the first post-operative morning consisting of 25-m walking twice, with a 20-min interval. Pain was assessed at rest and during passive hip and knee flexion before, and 5 and 20 min after walk, as well as during walk. Nociceptive......BACKGROUND: Experimental studies in animals, healthy volunteers, and patients with chronic pain suggest exercise to provide analgesia in several types of pain conditions and after various nociceptive stimuli. To our knowledge, there is no data on the effects of exercise on pain and nociceptive...... function in surgical patients despite early mobilisation being an important factor to enhance recovery. We therefore investigated possible effects of mobilisation on post-operative pain and nociceptive function after total knee arthroplasty (TKA). METHODS: Thirty patients undergoing TKA under standardised...

  17. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    International Nuclear Information System (INIS)

    Tong, Wei; Wang, Wei; Huang, Jing; Ren, Ning; Wu, Sheng-Xi; Li, Yong-Qi

    2010-01-01

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1β was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1β was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1β. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1β expression and thus modulating spinal excitatory synaptic transmission and pain response.

  18. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    Science.gov (United States)

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  19. Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain.

    Science.gov (United States)

    Zychowska, Magdalena; Rojewska, Ewelina; Makuch, Wioletta; Luvisetto, Siro; Pavone, Flaminia; Marinelli, Sara; Przewlocka, Barbara; Mika, Joanna

    2016-11-15

    Botulinum neurotoxin serotype A (BoNT/A) shows antinociceptive properties, and its clinical applications in pain therapy are continuously increasing. BoNT/A specifically cleaves SNAP-25, which results in the formation of a non-functional SNARE complex, thereby potently inhibiting the release of neurotransmitters and neuropeptides, including those involved in nociception. The aim of the present study was to determine the effects of BoNT/A (300pg/paw) on pain-related behavior and the levels of glial markers and interleukins in the spinal cord and dorsal root ganglia (DRG) after chronic constriction injury (CCI) to the sciatic nerve in rats. Glial activity was also examined after repeated intraperitoneal injection of minocycline combined with a single BoNT/A injection. Our results show that a single intraplantar BoNT/A injection did not influence motor function but strongly diminished pain-related behaviors in naïve and CCI-exposed rats. Additionally, microglial inhibition using minocycline enhanced the analgesic effects of BoNT/A. Western blotting results suggested that CCI induces the upregulation of the pronociceptive proteins IL-18, IL-6 and IL-1β in the ipsilateral lumbar spinal cord and DRG, but no changes in the levels of the antinociceptive proteins IL-18BP, IL-1RA and IL-10 were observed. Interestingly, BoNT/A injection suppressed the CCI-induced upregulation of IL-18 and IL-1β in the spinal cord and/or DRG and increased the levels of IL-10 and IL-1RA in the DRG. In summary, our results suggest that BoNT/A significantly attenuates pain-related behavior and microglial activation and restores the neuroimmune balance in a CCI model by decreasing the levels of pronociceptive factors (IL-1β and IL-18) and increasing the levels of antinociceptive factors (IL-10 and IL-1RA) in the spinal cord and DRG. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of detomidine on visceral and somatic nociception and duodenal motility in conscious adult horses.

    Science.gov (United States)

    Elfenbein, Johanna R; Sanchez, L Chris; Robertson, Sheilah A; Cole, Cynthia A; Sams, Richard

    2009-03-01

    To evaluate the effects of detomidine on visceral and somatic nociception, heart and respiratory rates, sedation, and duodenal motility and to correlate these effects with serum detomidine concentrations. Nonrandomized, experimental trial. Five adult horses, each with a permanent gastric cannula weighing 534 +/- 46 kg. Visceral nociception was evaluated by colorectal (CRD) and duodenal distension (DD). The duodenal balloon was used to assess motility. Somatic nociception was assessed via thermal threshold (TT). Nose-to-ground (NTG) height was used as a measure of sedation. Serum was collected for pharmacokinetic analysis. Detomidine (10 or 20 microg kg(-1)) was administered intravenously. Data were analyzed by means of a three-factor anova with fixed factors of treatment and time and random factor of horse. When a significant time x treatment interaction was detected, differences were compared with a simple t-test or Bonferroni t-test. Significance was set at p Detomidine produced a significant, dose-dependent decrease in NTG height, heart rate, and skin temperature and a significant, nondose-dependent decrease in respiratory rate. Colorectal distension threshold was significantly increased with 10 microg kg(-1) for 15 minutes and for at least 165 minutes with 20 microg kg(-1). Duodenal distension threshold was significantly increased at 15 minutes for the 20 microg kg(-1) dose. A significant change in TT was not observed at either dose. A marked, immediate decrease in amplitude of duodenal contractions followed detomidine administration at both doses for 50 minutes. Detomidine caused a longer period of visceral anti-nociception as determined by CRD but a shorter period of anti-nociception as determined by DD than has been previously reported. The lack of somatic anti-nociception as determined by TT testing may be related to the marked decrease in skin temperature, likely caused by peripheral vasoconstriction and the low temperature cut-off of the testing device.

  1. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  2. Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception.

    Directory of Open Access Journals (Sweden)

    G Gregory Neely

    Full Text Available The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species.

  3. Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Science.gov (United States)

    Mair, Norbert; Racz, Ildiko; Milinkeviciute, Giedre; Meixner, Arabella; Nayanala, Swetha; Griffin, Robert S.; Belfer, Inna; Dai, Feng; Smith, Shad; Diatchenko, Luda; Marengo, Stefano; Haubner, Bernhard J.; Novatchkova, Maria; Gibson, Dustin; Maixner, William; Pospisilik, J. Andrew; Hirsch, Emilio; Whishaw, Ian Q.; Zimmer, Andreas; Gupta, Vaijayanti; Sasaki, Junko; Kanaho, Yasunori; Sasaki, Takehiko; Kress, Michaela; Woolf, Clifford J.; Penninger, Josef M.

    2012-01-01

    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. PMID:23236288

  4. Linkage between increased nociception and olfaction via a SCN9A haplotype.

    Directory of Open Access Journals (Sweden)

    Dirk Heimann

    Full Text Available BACKGROUND AND AIMS: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. METHODS: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14 or rs6746030C>T (R1150W; n = 21 were compared with non-carriers (n = 40. Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli. RESULTS: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1, 1 allele: 10.6±2.6 (n = 34, 2 alleles: 9.5±2.1 (n = 40. The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m(2, 1 allele: 29.8±10.4 N/m(2, 2 alleles: 33.5±10.2 N/m(2. CONCLUSIONS: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.

  5. Spinal Cord Stimulation Alters Protein Levels in the Cerebrospinal Fluid of Neuropathic Pain Patients: A Proteomic Mass Spectrometric Analysis.

    Science.gov (United States)

    Lind, Anne-Li; Emami Khoonsari, Payam; Sjödin, Marcus; Katila, Lenka; Wetterhall, Magnus; Gordh, Torsten; Kultima, Kim

    2016-08-01

    Electrical neuromodulation by spinal cord stimulation (SCS) is a well-established method for treatment of neuropathic pain. However, the mechanism behind the pain relieving effect in patients remains largely unknown. In this study, we target the human cerebrospinal fluid (CSF) proteome, a little investigated aspect of SCS mechanism of action. Two different proteomic mass spectrometry protocols were used to analyze the CSF of 14 SCS responsive neuropathic pain patients. Each patient acted as his or her own control and protein content was compared when the stimulator was turned off for 48 hours, and after the stimulator had been used as normal for three weeks. Eighty-six proteins were statistically significantly altered in the CSF of neuropathic pain patients using SCS, when comparing the stimulator off condition to the stimulator on condition. The top 12 of the altered proteins are involved in neuroprotection (clusterin, gelsolin, mimecan, angiotensinogen, secretogranin-1, amyloid beta A4 protein), synaptic plasticity/learning/memory (gelsolin, apolipoprotein C1, apolipoprotein E, contactin-1, neural cell adhesion molecule L1-like protein), nociceptive signaling (neurosecretory protein VGF), and immune regulation (dickkopf-related protein 3). Previously unknown effects of SCS on levels of proteins involved in neuroprotection, nociceptive signaling, immune regulation, and synaptic plasticity are demonstrated. These findings, in the CSF of neuropathic pain patients, expand the picture of SCS effects on the neurochemical environment of the human spinal cord. An improved understanding of SCS mechanism may lead to new tracks of investigation and improved treatment strategies for neuropathic pain. © 2016 International Neuromodulation Society.

  6. Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress

    Directory of Open Access Journals (Sweden)

    Piyush eJain

    2015-07-01

    Full Text Available Gastrointestinal disorders with abdominal pain are associated with central sensitization and psychopathologies that are often exacerbated by stress. Here we investigated the impact of colitis induced by dextran sulfate sodium (DSS and repeated water avoidance stress (WAS on spontaneous and nociception-related behavior and molecular signaling in the mouse brain. DSS increased the mechanical pain sensitivity of the abdominal skin while both WAS and DSS enhanced the mechanical and thermal pain sensitivity of the plantar skin. These manifestations of central sensitization were associated with augmented c-Fos expression in spinal cord, thalamus, hypothalamus, amygdala and prefrontal cortex. While WAS stimulated phosphorylation of mitogen-activated protein kinase (MAPK p42/44, DSS activated another signaling pathway, both of which converged on c-Fos. The DSS- and WAS-induced hyperalgesia in the abdominal and plantar skin and c-Fos expression in the brain disappeared when the mice were subjected to WAS+DSS treatment. Intrarectal allyl isothiocyanate (AITC evoked aversive behavior (freezing, reduction of locomotion and exploration in association with p42/44 MAPK and c-Fos activation in spinal cord and brain. These effects were inhibited by morphine, which attests to their relationship with nociception. DSS and WAS exerted opposite effects on AITC-evoked p42/44 MAPK and c-Fos activation, which indicates that these transduction pathways subserve different aspects of visceral pain processing in the brain. In summary, behavioral perturbations caused by colitis and psychological stress are associated with distinct alterations in cerebral signaling. These findings provide novel perspectives on central sensitization and the sensory and emotional processing of visceral pain stimuli in the brain.

  7. Patient-focused goal planning process and outcome after spinal cord injury rehabilitation: quantitative and qualitative audit.

    Science.gov (United States)

    Byrnes, Michelle; Beilby, Janet; Ray, Patricia; McLennan, Renee; Ker, John; Schug, Stephan

    2012-12-01

    To evaluate the process and outcome of a multidisciplinary inpatient goal planning rehabilitation programme on physical, social and psychological functioning for patients with spinal cord injury. Clinical audit: quantitative and qualitative analyses. Specialist spinal injury unit, Perth, Australia. Consecutive series of 100 newly injured spinal cord injury inpatients. MAIN MEASURE(S): The Needs Assessment Checklist (NAC), patient-focused goal planning questionnaire and goal planning progress form. The clinical audit of 100 spinal cord injured patients revealed that 547 goal planning meetings were held with 8531 goals stipulated in total. Seventy-five per cent of the goals set at the first goal planning meeting were achieved by the second meeting and the rate of goal achievements at subsequent goal planning meetings dropped to 56%. Based on quantitative analysis of physical, social and psychological functioning, the 100 spinal cord injury patients improved significantly from baseline to discharge. Furthermore, qualitative analysis revealed benefits consistently reported by spinal cord injury patients of the goal planning rehabilitation programme in improvements to their physical, social and psychological adjustment to injury. The findings of this clinical audit underpin the need for patient-focused goal planning rehabilitation programmes which are tailored to the individual's needs and involve a comprehensive multidisciplinary team.

  8. Antioxidant and orofacial anti-nociceptive activities of the stem bark aqueous extract of Anadenanthera colubrina (Velloso) Brenan (Fabaceae).

    Science.gov (United States)

    Damascena, N P; Souza, M T S; Almeida, A F; Cunha, R S; Damascena, N P; Curvello, R L; Lima, A C B; Almeida, E C V; Santos, C C S; Dias, A S; Paixão, M S; Souza, L M A; Quintans Júnior, L J; Estevam, C S; Araujo, B S

    2014-01-01

    The anti-nociceptive and antioxidant activities of the Anadenantheracolubrina stem bark aqueous extract (AEAC) were investigated. AEAC (30 μg/mL) reduced 94.8% of 2,2-diphenyl-1-picrylhydrazyl radical and prevented 64% (200 μg/mL) of lipid peroxidation caused by 2,2'-azobis(2-methylpropionamidine) dihydrochloride-induced peroxyl radicals. AEAC treatment (200 and 400 mg/kg) significantly (p < 0.001) reduced mice orofacial nociception in the first (61.4% and 62.6%, respectively) and second (48.9% and 61.9%, respectively) phases of the formalin test. Nociception caused by glutamate was significantly (p < 0.001) reduced by up to 79% at 400 mg/kg, while 56-60% of the nociceptive behaviour induced by capsaicin was significantly inhibited by AEAC (100-400 mg/kg). Mice treated with AEAC did not show changes in motor performance in the Rota-rod apparatus. It appears that AEAC is of pharmacological importance in treating pain due to its anti-nociceptive effects, which were shown to be mediated by central and peripheral mechanisms.

  9. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis.

    Science.gov (United States)

    Schwartz, Erica S; Xie, Amy; La, Jun-Ho; Gebhart, G F

    2015-08-01

    Chronic nonbacterial prostatitis, characterized by genitourinary pain in the pelvic region in the absence of an identifiable cause, is common in adult males. Surprisingly, the sensory innervation of the prostate and mediators that sensitize its innervation have received little attention. We thus characterized a mouse model of chronic prostatitis, focusing on the prostate innervation and how organ inflammation affects gene expression of putative nociceptive markers in prostate afferent somata in dorsal root ganglia (DRG) and mediators in the prostate. Retrograde tracing (fast blue) from the prostate revealed that thoracolumbar and lumbosacral DRG are the principal sources of somata of prostate afferents. Nociceptive markers (eg, transient receptor potential, TREK, and P2X channels) were upregulated in fast blue-labeled thoracolumbar and lumbosacral somata for up to four weeks after inflaming the prostate (intraprostate injection of zymosan). Prostatic inflammation was evident histologically, by monocyte infiltration and a significant increase in mast cell tryptase activity 14, 21, and 28 days after zymosan injection. Interleukin 10 and NGF were also significantly upregulated in the prostate throughout the 4 weeks of inflammation. Open-field pain-related behaviors (eg, rearing) were unchanged in prostate-inflamed mice, suggesting the absence of ongoing nociception, but withdrawal thresholds to lower abdominal pressure were significantly reduced. The increases in IL-10, mast cell tryptase, and NGF in the inflamed prostate were cotemporaneous with reduced thresholds to probing of the abdomen and upregulation of nociceptive markers in DRG somata innervating the prostate. The results provide insight and direction for the study of mechanisms underlying pain in chronic prostatitis.

  10. Borneol, a Bicyclic Monoterpene Alcohol, Reduces Nociceptive Behavior and Inflammatory Response in Mice

    Directory of Open Access Journals (Sweden)

    Jackson Roberto Guedes da Silva Almeida

    2013-01-01

    Full Text Available Borneol, a bicyclic monoterpene, has been evaluated for antinociceptive and anti-inflammatory activities. Antinociceptive and anti-inflammatory activities were studied by measuring nociception by acetic acid, formalin, hot plate, and grip strength tests, while inflammation was prompted by carrageenan-induced peritonitis. The rotarod test was used to evaluate motor coordination. Borneol produced a significant (P<0.01 reduction of the nociceptive behavior at the early and late phases of paw licking and reduced the writhing reflex in mice (formalin and writhing tests, resp.. When the hot plate test was conducted, borneol (in higher dose produced an inhibition (P<0.05 of the nociceptive behavior. Such results were unlikely to be provoked by motor abnormality. Additionally, borneol-treated mice reduced the carrageenan-induced leukocytes migration to the peritoneal cavity. Together, our results suggest that borneol possess significant central and peripheral antinociceptive activity; it has also anti-inflammatory activity. In addition, borneol did not impair motor coordination.

  11. LncRNA expression in the spinal cord modulated by minocycline in a mouse model of spared nerve injury

    Directory of Open Access Journals (Sweden)

    Liu ZH

    2017-10-01

    Full Text Available Zihao Liu, Ying Liang, Honghua Wang, Zhenhe Lu, Jinsheng Chen, Qiaodong Huang, Lei Sheng, Yinghong Ma, Huiying Du, Qingjuan GongDepartment of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China Abstract: Neuropathic pain is a common and refractory chronic pain that affects millions of people worldwide. Its underlying mechanisms are still unclear, but they may involve long noncoding RNAs (lncRNAs, which play crucial roles in a variety of biological functions, including nociception. We used microarrays to investigate the possible interactions between lncRNAs and neuropathic pain and identified 22,213 lncRNAs and 19,528 mRNAs in the spinal cord in a mouse model of spared nerve injury (SNI-induced neuropathic pain. The abundance levels of 183 lncRNAs and 102 mRNAs were significantly modulated by both SNI and administration of minocycline. A quantitative real-time polymerase chain reaction analysis validated expression changes in three lncRNAs (NR_015491, ENSMUST00000174263, and ENSMUST00000146263. Class distribution analysis of differentially expressed lncRNAs revealed intergenic lncRNAs as the largest category. Functional analysis indicated that SNI-induced gene regulations might be involved in the activities of cytokines (IL17A and IL17F and chemokines (CCL2, CCL5, and CCL7, whereas minocycline might exert a pain-alleviating effect on mice through actin binding, thereby regulating nociception by controlling the cytoskeleton. Thus, lncRNAs might be responsible for SNI-induced neuropathic pain and the attenuation caused by minocycline. Our study could implicate lncRNAs as potential targets for future treatment of neuropathic pain. Keywords: LncRNA, neuropathic pain, spinal cord, minocycline

  12. Estradiol-induced antinociceptive responses on formalin-induced nociception are independent of COX and HPA activation.

    Science.gov (United States)

    Hunter, Deirtra A; Barr, Gordon A; Amador, Nicole; Shivers, Kai-Yvonne; Kemen, Lynne; Kreiter, Christopher M; Jenab, Shirzad; Inturrisi, Charles E; Quinones-Jenab, Vanya

    2011-07-01

    Estrogen modulates pain perception but how it does so is not fully understood. The aim of this study was to determine if estradiol reduces nociceptive responses in part via hypothalamic-pituitary-adrenal (HPA) axis regulation of cyclooxygenase (COX)-1/COX-2 activity. The first study examined the effects of estradiol (20%) or vehicle with concurrent injection nonsteroidal antiinflammatory drugs (NSAIDs) on formalin-induced nociceptive responding (flinching) in ovariectomized (OVX) rats. The drugs were ibuprofen (COX-1 and COX-2 inhibitor), SC560 (COX-1 inhibitor), or NS398 (COX-2 inhibitor). In a second study, estradiol's effects on formalin-induced nociception were tested in adrenalectomized (ADX), OVX, and ADX+OVX rats. Serum levels of prostaglandins (PG) PGE(2) and corticosterone were measured. Estradiol significantly decreased nociceptive responses in OVX rats with effects during both the first and the second phase of the formalin test. The nonsteroidal antiinflammatory drugs (NSAIDs) did not alter nociception at the doses used here. Adrenalectomy neither altered flinching responses in female rats nor reversed estradiol-induced antinociceptive responses. Estradiol alone had no effect on corticosterone (CORT) or prostaglandin levels after the formalin test, dissociating the effects of estradiol on behavior and these serum markers. Ibuprofen and NS398 significantly reduced PGE2 levels. CORT was not decreased by OVX surgery or by estradiol below that of ADX. Only IBU significantly increased corticosterone levels. Taken together, our results suggest that estradiol-induced antinociception in female rats is independent of COX activity and HPA axis activation. Copyright © 2010 Wiley-Liss, Inc.

  13. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José

    2012-04-01

    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  14. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation.

    Directory of Open Access Journals (Sweden)

    Ivanne Pincedé

    Full Text Available The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process.Basically, the procedures involved heating of the tail with a CO(2 laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making.We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as "pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of mice.

  15. Trigeminal nociception-induced, cerebral Fos expression in the conscious rat

    NARCIS (Netherlands)

    Ter Horst, GJ; Meijler, WJ; Korf, J; Kemper, RHA

    2001-01-01

    Little is known about trigeminal nociception-induced cerebral activity and involvement of cerebral structures in pathogenesis of trigeminovascular headaches such as migraine. Neuroimaging has demonstrated cortical, hypothalamic and brainstem activation during the attack and after abolition with

  16. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    Science.gov (United States)

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  17. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.

    Science.gov (United States)

    Huie, J Russell; Morioka, Kazuhito; Haefeli, Jenny; Ferguson, Adam R

    2017-05-15

    Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.

  18. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails

    DEFF Research Database (Denmark)

    Di Giminiani, Pierpaolo; Sandercock, Dale A.; Malcolm, Emma M.

    2016-01-01

    The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury...... to the body was observed (P knowledge, no other...... nociceptive threshold in pig tails. This methodological approach is possibly suitable for assessing changes in tail stump MNTs after tail injury caused by tail docking and biting....

  19. Divergent functions of the left and right central amygdala in visceral nociception.

    Science.gov (United States)

    Sadler, Katelyn E; McQuaid, Neal A; Cox, Abigail C; Behun, Marissa N; Trouten, Allison M; Kolber, Benedict J

    2017-04-01

    The left and right central amygdalae (CeA) are limbic regions involved in somatic and visceral pain processing. These 2 nuclei are asymmetrically involved in somatic pain modulation; pain-like responses on both sides of the body are preferentially driven by the right CeA, and in a reciprocal fashion, nociceptive somatic stimuli on both sides of the body predominantly alter molecular and physiological activities in the right CeA. Unknown, however, is whether this lateralization also exists in visceral pain processing and furthermore what function the left CeA has in modulating nociceptive information. Using urinary bladder distension (UBD) and excitatory optogenetics, a pronociceptive function of the right CeA was demonstrated in mice. Channelrhodopsin-2-mediated activation of the right CeA increased visceromotor responses (VMRs), while activation of the left CeA had no effect. Similarly, UBD-evoked VMRs increased after unilateral infusion of pituitary adenylate cyclase-activating polypeptide in the right CeA. To determine intrinsic left CeA involvement in bladder pain modulation, this region was optogenetically silenced during noxious UBD. Halorhodopsin (NpHR)-mediated inhibition of the left CeA increased VMRs, suggesting an ongoing antinociceptive function for this region. Finally, divergent left and right CeA functions were evaluated during abdominal mechanosensory testing. In naive animals, channelrhodopsin-2-mediated activation of the right CeA induced mechanical allodynia, and after cyclophosphamide-induced bladder sensitization, activation of the left CeA reversed referred bladder pain-like behaviors. Overall, these data provide evidence for functional brain lateralization in the absence of peripheral anatomical asymmetries.

  20. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  1. Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats.

    Science.gov (United States)

    Mitome, Kazuki; Takehana, Shiori; Oshima, Katsuo; Shimazu, Yoshihito; Takeda, Mamoru

    2018-02-23

    Although docosahexaenoic acid (DHA) administration suppresses sodium channels in primary afferent sensory neurons, the acute local effect of DHA on the trigeminal nociceptive reflex remains to be elucidated, in vivo. Therefore, the aim of the present study was to investigate whether local administration of DHA attenuates the nociceptive jaw-opening reflex (JOR) in vivo in the rat. The JOR evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1-5 x threshold). At 3 x threshold, local administration of DHA (0.1, 10 and 25 mM) dose-dependently inhibited the dEMG response, and lasted 40 min. Maximum inhibition of the dEMG signal amplitude was seen within approximately 10 min. The mean magnitude of inhibition of the dEMG signal amplitude by DHA (25 mM) was almost equal to the local anesthetic, 1% lidocaine (37 mM), a sodium channel blocker. These findings suggest that DHA attenuates the nociceptive JOR via possibly blocking sodium channels, and strongly support the idea that DHA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  2. Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia

    Directory of Open Access Journals (Sweden)

    Talbot Sébastien

    2012-01-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1 activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791, the antioxidant N-acetyl-L-cysteine (NAC, or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t. injection of a selective B1R agonist (des-Arg9-BK, and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c. enhanced time-dependently (0-24h B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t. and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.. Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg. Des-Arg9-BK (9.6 nmol/site, i.t. decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p

  3. Anti-nociceptive effect of total alkaloids isolated from the seeds of ...

    African Journals Online (AJOL)

    pretreatment of the animals with naloxone (2 mg/kg) was performed to investigate whether the anti- nociceptive effect .... detecting the absorbance at 618 nm. Arecoline ..... attenuates food allergic responses in ovalbumin- sensitized mice.

  4. Investigating Circadian Rhythmicity in Pain Sensitivity Using a Neural Circuit Model for Spinal Cord Processing of Pain

    DEFF Research Database (Denmark)

    Crodelle, Jennifer; Piltz, Sofia Helena; Booth, Victoria

    2017-01-01

    Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating the resu......Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating...... the resultant pain signal. The differential equation models describe the average firing rates of excitatory and inhibitory interneuron populations, as well as the wide dynamic range (WDR) neurons whose output correlates with the pain signal. The temporal profile of inputs on the different afferent nerve fibers...

  5. Anti-nociceptive and anti-inflammatory properties of the ethanolic ...

    African Journals Online (AJOL)

    Anti-nociceptive and anti-inflammatory properties of the ethanolic extract of Lagenaria breviflora whole fruit in rat and mice. ... Its effect was comparable especially at 200mg/kg body weight to those of diclofenac, indomethacin and ibuprofen. It could be suggested from the findings of this experiment that the extract may be ...

  6. Effects of Danggui Sini decoction on neuropathic pain: experimental studies and clinical pharmacological significance of inhibiting glial activation and proinflammatory cytokines in the spinal cord
.

    Science.gov (United States)

    Liu, Ming; Qiang, Qiu Hong; Ling, Qian; Yu, Chang Xi; Li, Xuejun; Liu, Suhuan; Yang, Shuyu

    2017-05-01

    Neuropathic pain responds poorly to drug treatments. Partial relief is achieved in only about half of the patients. Danggui Sini decoction (DSD), an aqueous extract of Angelica sinensis, Ramulus Cinnamomi, and Radix Puerariae, has been used extensively in China to treat inflammatory and ischemic diseases. The current study examined the putative effects of DSD on neuropathic pain. We used two commonly-used animal models: chronic constriction injury (CCI) and diabetic neuropathy for the study. And we examined effects of DSD on pain response, activation of microglia and astroglia in spinal dorsal horn, and expression of proinflammatory cytokines in the spinal cord. Consecutive intragastric administration of DSD (25 - 100 mg/kg) for 10 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models, DSD inhibited the over-expression of specific markers for microglia (Iba-1) and astroglia (GFAP) activation in the spinal dorsal horn. DSD also reduced the elevated nuclear NF-κB level and inhibited the up-regulation of proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. DSD can alleviate CCI and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal dorsal horn. The anti-inflammation effect of DSD may be related to the suppression of spinal NF-κB activation and/or cytokines expression.
.

  7. Interspinous process device versus standard conventional surgical decompression for lumbar spinal stenosis: Randomized controlled trial

    NARCIS (Netherlands)

    W.A. Moojen (Wouter); M.P. Arts (Mark); W.C.H. Jacobs (Wilco); E.W. van Zwet (Erik); M.E. van den Akker-van Marle (Elske); B.W. Koes (Bart); C.L.A.M. Vleggeert-Lankamp (Carmen); W.C. Peul (Wilco)

    2013-01-01

    markdownabstractAbstract Objective To assess whether interspinous process device implantation is more effective in the short term than conventional surgical decompression for patients with intermittent neurogenic claudication due to lumbar spinal stenosis. Design Randomized controlled

  8. The role of Drosophila Piezo in mechanical nociception.

    Science.gov (United States)

    Kim, Sung Eun; Coste, Bertrand; Chadha, Abhishek; Cook, Boaz; Patapoutian, Ardem

    2012-02-19

    Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo

  9. Does the application site of spinal manipulative therapy alter spinal tissues loading?

    Science.gov (United States)

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N

    2018-01-31

    Previous studies found that the intervertebral disc (IVD) experiences the greatest loads during spinal manipulation therapy (SMT). Based on that, this study aimed to determine if loads experienced by spinal tissues are significantly altered when the application site of SMT is changed. A biomechanical robotic serial dissection study. Thirteen porcine cadaveric motion segments. Forces experienced by lumbar spinal tissues. A servo-controlled linear actuator provided standardized 300 N SMT simulations to six different cutaneous locations of the porcine lumbar spine: L2-L3 and L3-L4 facet joints (FJ), L3 and L4 transverse processes (TVP), and the space between the FJs and the TVPs (BTW). Vertebral kinematics were tracked optically using indwelling bone pins; the motion segment was removed and mounted in a parallel robot equipped with a six-axis load cell. Movements of each SMT application at each site were replayed by the robot with the intact specimen and following the sequential removal of spinal ligaments, FJs and IVD. Forces induced by SMT were recorded, and specific axes were analyzed using linear mixed models. Analyses yielded a significant difference (p<.05) in spinal structures loads as a function of the application site. Spinal manipulative therapy application at the L3 vertebra caused vertebral movements and forces between L3 and L4 spinal segment in the opposite direction to when SMT was applied at L4 vertebra. Additionally, SMT applications over the soft tissue between adjacent vertebrae significantly decreased spinal structure loads. Applying SMT with a constant force at different spinal levels creates different relative kinetics of the spinal segments and load spinal tissues in significantly different magnitudes. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Science.gov (United States)

    Asante, Curtis O; Wallace, Victoria C; Dickenson, Anthony H

    2009-01-01

    Background The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR) dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via mRNA translation and thus protein

  11. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Directory of Open Access Journals (Sweden)

    Wallace Victoria C

    2009-06-01

    Full Text Available Abstract Background The mammalian target of rapamycin (mTOR is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via m

  12. Suppression of thermal and chemical nociception in rats by methanol extract and its sub-fraction from lantana camara

    International Nuclear Information System (INIS)

    Simjee, S.U.; Perveen, H.; Zehra, S.Q.

    2016-01-01

    The traditional use of Lantana camara (Verbenaceae) is reported to include anti-nociceptive, antimicrobial, and immunosuppressant activity. To our knowledge no systematic study has been carried out on the anti-nociceptive activity of L. camara. The present study was designed to delineate the analgesic activity of L. camara extract and its fractions to elucidate the traditional belief in the painkilling effects. Experimental models employed were thermal and chemical-induced nociception assays. After initial screening of the methanol extract and its fractions prepared from the aerial parts of the plant, the dose of 50,100 and 200 mg/kg were selected and route of administration was i.p. The test samples were tested against a reference drug indomethacine (i.p. 5 mg/kg). The observations were made at 15, 30, 60, and 120 seconds following the administration of the samples or reference drug. Experiments on naloxone antagonism were conducted to determine involvement of opioid receptors. Compared to concurrent controls, a significant anti-nociceptive activity was observed in methanol extract LC (ED50 50 mg/kg, P < 0.002) and its sub-fractions LCEA-AQ (ED50 50 mg/kg, P < 0.004), LCEA (ED50 100 mg/kg, P < 0.004) and LCEA-PEI (ED50 100 mg/kg, P < 0.005). No apparent acute toxicity was observed in any test groups. The anti-nociceptive activity was not precipitated by naloxone antagonism indicating that these fractions do not act through opioid receptors. The methanol extract and active fractions of Lantana camara possess anti-nociceptive activity. Further investigations are needed to elucidate the mechanism of its action. (author)

  13. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons.

    Science.gov (United States)

    van den Hoogen, Nynke J; Patijn, Jacob; Tibboel, Dick; Joosten, Bert A; Fitzgerald, Maria; Kwok, Charlie H T

    2018-03-08

    Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  14. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  15. Neuroradiological investigations and findings in spinal vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsang, H [Medizinische Hochschule Hannover (Germany, F.R.). Abt. fuer Neuroradiologie

    1980-02-01

    Neuroradiological examinations play a great role today in spinal blood flow disturbances due to spinal vascular disease. This goes for myelography with its new aqueous contrast medium Amipaque as well as for selective spinal arteriography, also with regard to therapeutical approaches (embolisation). Other causes of blood flow disturbances, however - with the exception of growing and displacing processes of the spinal column and spinal canal - cannot be detected by radiological methods or only indirectly; examinations with contrasting agents can only serve for diagnosis by exclusion. The article deals mainly with techniques and findings of examinations for spinal angioma which account for 7 to 11% of growing and displacing processes of the spine. Progress in diagnosis and therapeutical success has been accelerated by technical developments and new contrasting agents as well as by improved surgical techniques.

  16. "Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice".

    Science.gov (United States)

    Pieretti, Stefano; Ranjan, Amalendu P; Di Giannuario, Amalia; Mukerjee, Anindita; Marzoli, Francesca; Di Giovannandrea, Rita; Vishwanatha, Jamboor K

    2017-10-01

    Given the poor bioavailability of curcumin, its antinociceptive effects are produced after chronic intravenous administration of high doses, while poly (d,l-lactide-co-glycolide)-loaded vesicles (PLGA) can improve drug delivery. This paper investigates the antinociceptive effects of curcumin-loaded PLGA nanovesicles (PLGA-CUR) administered via intravenous (i.v.) or intrathecal (i.t.) routes at low and high doses. The following models of pain were used: formalin test, zymosan-induced hyperalgesia and sciatic nerve ligation inducing neuropathic allodynia and hyperalgesia. PLGA-CUR administered intravenously was able to reduce the response to nociceptive stimuli in the formalin test and hyperalgesia induced by zymosan. Curcumin, instead, was inactive. Low-dose i.t. administration of PLGA-CUR significantly reduced allodynia produced by sciatic nerve ligation, whereas low doses of curcumin did not change the response to nociceptive stimuli. Long-lasting antinociceptive effects were observed when high doses of PLGA-CUR were administered intrathecally. At high doses, i.t. administration of curcumin only exerted rapid and transient antinociceptive effects. Measurement of cytokine and BDNF in the spinal cord of neuropathic mice demonstrate that the antinociceptive effects of PLGA-CUR depend on the reduction in cytokine release and BDNF in the spinal cord. The results demonstrate the effectiveness of PLGA-CUR and suggest that PLGA-CUR nanoformulation might be a new potential drug in the treatment of pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury.

    Science.gov (United States)

    Vuckovic, Aleksandra; Hasan, Muhammad A; Fraser, Matthew; Conway, Bernard A; Nasseroleslami, Bahman; Allan, David B

    2014-06-01

    Central neuropathic pain (CNP) is believed to be accompanied by increased activation of the sensorimotor cortex. Our knowledge of this interaction is based mainly on functional magnetic resonance imaging studies, but there is little direct evidence on how these changes manifest in terms of dynamic neuronal activity. This study reports on the presence of transient electroencephalography (EEG)-based measures of brain activity during motor imagery in spinal cord-injured patients with CNP. We analyzed dynamic EEG responses during imaginary movements of arms and legs in 3 groups of 10 volunteers each, comprising able-bodied people, paraplegic patients with CNP (lower abdomen and legs), and paraplegic patients without CNP. Paraplegic patients with CNP had increased event-related desynchronization in the theta, alpha, and beta bands (16-24 Hz) during imagination of movement of both nonpainful (arms) and painful limbs (legs). Compared to patients with CNP, paraplegics with no pain showed a much reduced power in relaxed state and reduced event-related desynchronization during imagination of movement. Understanding these complex dynamic, frequency-specific activations in CNP in the absence of nociceptive stimuli could inform the design of interventional therapies for patients with CNP and possibly further understanding of the mechanisms involved. This study compares the EEG activity of spinal cord-injured patients with CNP to that of spinal cord-injured patients with no pain and also to that of able-bodied people. The study shows that the presence of CNP itself leads to frequency-specific EEG signatures that could be used to monitor CNP and inform neuromodulatory treatments of this type of pain. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Citral reduces nociceptive and inflammatory response in rodents

    OpenAIRE

    Quintans-Júnior, Lucindo J.; Guimarães, Adriana G.; Santana, Marilia T. de; Araújo, Bruno E.S.; Moreira, Flávia V.; Bonjardim, Leonardo R.; Araújo, Adriano A. S.; Siqueira, Jullyana S.; Antoniolli, Ângelo R.; Botelho, Marco A.; Almeida, Jackson R. G. S.; Santos, Márcio R. V.

    2011-01-01

    Citral (CIT), which contains the chiral enantiomers, neral (cis) and geranial (trans), is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT...

  19. The Role of PPK26 in Drosophila Larval Mechanical Nociception

    Directory of Open Access Journals (Sweden)

    Yanmeng Guo

    2014-11-01

    Full Text Available In Drosophila larvae, the class IV dendritic arborization (da neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546 plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1 function in the same pathway, whereas piezo functions in a parallel pathway. Consistent with these functional results, we found that PPK and PPK26 are interdependent on each other for their cell surface localization. Our work indicates that PPK26 and PPK might form heteromeric DEG/ENaC channels that are essential for mechanotransduction in class IV da neurons.

  20. Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats

    Science.gov (United States)

    Todorovic, Slobodan M; Rastogi, A J; Jevtovic-Todorovic, Vesna

    2003-01-01

    Anticonvulsant agents are commonly used to treat neuropathic pain conditions because of their effects on voltage- and ligand-gated channels in central pain pathways. However, their interaction with ion channels in peripheral pain pathways is poorly understood. Therefore, we studied the potential analgesic effects of commonly used anticonvulsant agents in peripheral nociception. We injected anticonvulsants intradermally into peripheral receptive fields of sensory neurons in the hindpaws of adult rats, and studied pain perception using the model of acute thermal nociception. Commonly used anticonvulsants such as voltage-gated Na+ channel blockers, phenytoin and carbamazepine, and voltage-gated Ca2+ channel blockers, gabapentin and ethosuximide, induced dose-dependent analgesia in the injected paw, with ED50 values of 0.30, 0.32 and 8, 410 μg per 100 μl, respectively. Thermal nociceptive responses were not affected in the contralateral, noninjected paws, indicating a lack of systemic effects with doses of anticonvulsants that elicited local analgesia. Hill slope coefficients for the tested anticonvulsants indicate that the dose–response curve was less steep for gabapentin than for phenytoin, carbamazepine and ethosuximide. Our data strongly suggest that cellular targets like voltage-gated Na+ and Ca2+ channels, similar to those that mediate the effects of anticonvulsant agents in the CNS, may exist in the peripheral nerve endings of rat sensory neurons. Thus, peripherally applied anticonvulsants that block voltage-gated Na+ and Ca2+ channels may be useful analgesics. PMID:12970103

  1. Effect of Gmelina arborea Roxb in experimentally induced inflammation and nociception

    Directory of Open Access Journals (Sweden)

    Yogesh A Kulkarni

    2013-01-01

    Full Text Available Background: Gmelina arborea Roxb (Verbenaceae, also known as "Gambhari", is an important medicinal plant in the Ayurveda. There are no meticulous scientific reports on effect of the plant on inflammation and pain. Objective: To study the anti-inflammatory and anti-nociceptive properties of aqueous extracts (AE and methanol extracts (ME of G. arborea. Materials and Methods: The AE and ME of stembark of G. arborea was prepared by cold maceration and Soxhlet extraction technique respectively. Anti-inflammatory activity was determined in Wistar albino rats in a model of acute plantar inflammation induced by carrageenan. The anti-nociceptive activity was evaluated by using hot plate test and writhing test in Swiss albino mice. Significant differences between the experimental groups were assessed by analysis of variance. Results: AE and ME at dose of 500 mg/kg showed maximum inhibition in carrageenan induced inflammation up to 30.15 and 31.21% respectively. In hot plate test, the AE and ME showed the maximum response of 8.8 ± 0.97 (P < 0.01 and 8.2 ± 1.24 (P < 0.01 respectively at dose of 500 mg/kg when compared with control. AE showed maximum inhibition of writhing response (84.3% as compared to ME (77.9% in writhing test at a dose of 500 mg/kg. Conclusion: The findings suggested that G. arborea possess significant anti-inflammatory and anti-nociceptive activities.

  2. Effects of magnetic field exposure on open field behaviour and nociceptive responses in mice.

    Science.gov (United States)

    Del Seppia, Cristina; Mezzasalma, Lorena; Choleris, Elena; Luschi, Paolo; Ghione, Sergio

    2003-09-15

    Results of previous studies have shown that nociceptive sensitivity in male C57 mice is enhanced by exposure to a regular 37 Hz or an irregularly varying (field. In order to test whether these fields affect more generally mouse behaviour, we placed Swiss CD-1 mice in a novel environment (open field test) and exposed them for 2 h to these two different magnetic field conditions. Hence, we analysed how duration and time course of various behavioural patterns (i.e. exploration, rear, edge chew, self-groom, sit, walk and sleep) and nociceptive sensitivity had been affected by such exposure. Nociceptive sensitivity was significantly greater in magnetically treated mice than in controls. The overall time spent in exploratory activities was significantly shorter in both magnetically treated groups (time), than in controls (42%). Conversely, the time spent in sleeping was markedly longer in the treated groups (both 27% of total time) than in controls (11%). These results suggest that exposure to altered magnetic fields induce a more rapid habituation to a novel environment.

  3. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong Soo; Lee, Jong Hyuk; Lee, So Hee; Lee, Sun Kyung; Lee, Yoon Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2014-11-04

    Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c - Fos in the ipsilateral dorsal root ganglion. The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.

  4. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  5. Ulex europaeus agglutinin-I binding to dental primary afferent projections in the spinal trigeminal complex combined with double immunolabeling of substance P and GABA elements using peroxidase and colloidal gold.

    Science.gov (United States)

    Matthews, M A; Hoffmann, K D; Hernandez, T V

    1989-01-01

    Ulex europaeus agglutinin I (UEA-I) is a plant lectin with an affinity for L-fucosyl residues in the chains of lactoseries oligosaccharides associated with medium- and smaller-diameter dorsal root ganglion neurons and their axonal processes. These enter Lissauer's tract and terminate within the superficial laminae of the spinal cord overlapping projections known to have a nociceptive function. This implies that the surface coatings of neuronal membranes may have a relationship with functional modalities. The present investigation further examined this concept by studying a neuronal projection with a nociceptive function to determine whether fucosyl-lactoseries residues were incorporated in its primary afferent terminals. Transganglionic transport of horseradish peroxidase (HRP) following injection into tooth pulp chambers was employed to demonstrate dental pulp terminals in the trigeminal spinal complex, while peroxidase and fluorescent tags were used concomitantly to stain for UEA-I. Double immunolabeling for substance P (SP) and gamma-aminobutyric acid (GABA) using peroxidase and colloidal gold allowed a comparison of the distribution of a known excitatory nociceptive transmitter with that of UEA-I binding in specific subnuclei. Synaptic interrelationships between UEA-I positive dental pulp primary afferent inputs and specific inhibitory terminals were also examined. SP immunoreactivity occurred in laminae I and outer lamina II (IIo) of subnucleus caudalis (Vc) and in the ventrolateral and lateral marginal region of the caudal half of subnucleus interpolaris (Vi), including the periobex area in which Vi is slightly overlapped on its lateral aspect by cellular elements of Vc. The adjacent interstitial nucleus (IN) also showed an intense immunoreactivity for this peptide antibody. UEA-I binding displayed a similar distribution pattern in both Vc and Vi, but extended into lamina IIi and the superficial part of Lamina III in Vc. Dental pulp terminals were found to

  6. Bilateral complex regional pain syndrome following spinal cord injury and bilateral calcaneus fracture

    Directory of Open Access Journals (Sweden)

    Ahmet Boyacı

    2013-09-01

    Full Text Available Complex regional pain syndrome (CRPS is a disease affectingone or more extremities, characterized by spontaneouspain, allodynia, hyperpathia and hyperalgesia.CRPS is separated into Type 1 and Type 2. CRPS whichdevelops after a nociceptive event is labeled as Type 1and when it develops following peripheral nerve damage,Type 2. Although the pathogenesis is not fully understood,peripheral and central sensitivity are held responsible.Bilateral lower extremity involvement is extremely rare.However, it should be borne in mind that it can develop intraumatic injuries which occur in more than one area anddiagnosis and commencement of a rehabilitation programshould be made in the early period. The case is presentedhere of bilateral Type 1 CRPS developing after incompletespinal cord injury and bilateral calcaneus fracture. JClin Exp Invest 2013; 4 (3: 360-363Key words: complex regional pain syndrome, calcaneusfracture, spinal cord injury

  7. How effective is a virtual consultation process in facilitating multidisciplinary decision-making for malignant epidural spinal cord compression?

    Science.gov (United States)

    Fitzpatrick, David; Grabarz, Daniel; Wang, Lisa; Bezjak, Andrea; Fehlings, Michael G; Fosker, Christopher; Rampersaud, Raja; Wong, Rebecca K S

    2012-10-01

    The purpose of this study was to assess the accuracy of a virtual consultation (VC) process in determining treatment strategy for patients with malignant epidural spinal cord compression (MESCC). A prospective clinical database was maintained for patients with MESCC. A virtual consultation process (involving exchange of key predetermined clinical information and diagnostic imaging) facilitated rapid decision-making between oncologists and spinal surgeons. Diagnostic imaging was reviewed retrospectively (by R.R.) for surgical opinions in all patients. The primary outcome was the accuracy of virtual consultation opinion in predicting the final treatment recommendation. After excluding 20 patients who were referred directly to the spinal surgeon, 125 patients were eligible for virtual consultation. Of the 46 patients who had a VC, surgery was recommended in 28 patients and actually given to 23. A retrospective review revealed that 5/79 patients who did not have a VC would have been considered surgical candidates. The overall accuracy of the virtual consultation process was estimated at 92%. The VC process for MESCC patients provides a reliable means of arriving at a multidisciplinary opinion while minimizing patient transfer. This can potentially shorten treatment decision time and enhance clinical outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Validation of a thermal threshold nociceptive model in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Couture, Émilie L; Monteiro, Beatriz P; Aymen, Jessica; Troncy, Eric; Steagall, Paulo V

    2017-05-01

    To validate a thermal threshold (TT) nociceptive model in bearded dragons (Pogona vitticeps) and to document TT changes after administration of morphine. A two-part randomized, blinded, controlled, experimental study. Five adult bearded dragons (242-396 g). A TT device delivered a ramped nociceptive stimulus (0.6 °C second -1 ) to the medial thigh until a response (leg kick/escape behavior) was observed or maximum (cut-off) temperature of 62 °C was reached. In phase I, period 1, six TT readings were determined at 20 minute intervals for evaluation of repeatability. Two of these readings were randomly assigned to be sham to assess specificity of the behavioral response. The same experiment was repeated 2 weeks later (period 2) to test reproducibility. In phase II, animals were administered either intramuscular morphine (10 mg kg -1 ) or saline 0.9%. TTs (maximum 68 °C) were determined before and 2, 4, 8, 12 and 24 hours after treatment administration. Data were analyzed using one-way anova (temporal changes and repeatability) and paired t tests (reproducibility and treatment comparisons) using Bonferroni correction (p dragons. TT nociceptive testing detected morphine administration and may be suitable for studying opioid regimens in bearded dragons. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  9. Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Samira Afrazi

    2014-05-01

    Full Text Available Objective(s:Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have been demonstrated in numerous cellular and animal models of neurodegeneration. Materials and Methods: Here, the protective effects of allopregnanolone, a neurosteroid were investigated in an in vivo model of diabetic neuropathy. The tail-flick test was used to assess the nociceptive threshold. Diabetes was induced by injection of 50 mg/kg (IP streptozotocin. Seven weeks after the induction of diabetes, the dorsal half of the lumbar spinal cord was assayed for the expression of γ2 subunit of GABAA receptor using semiquantitative RT-PCR. Results: The data shows that allopregnanolone (5 and 20 mg/kg markedly ameliorated diabetes-induced thermal hyperalgesia and motor deficit. The weights of diabetic rats that received 5 and 20 mg/kg allopregnanolone did not significantly reduce during the time course of study. Furthermore, this neurosteroid could inhibit GABAA receptor down-regulation induced by diabetes in the rat spinal cord. Conclusion: The data revealed that allopregnanolone has preventive effects against hyperglycemic-induced neuropathic pain and motor deficit which are related to the inhibition of GABAA receptor down-regulation.

  10. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli.

    Directory of Open Access Journals (Sweden)

    Michael Schütz

    Full Text Available BACKGROUND: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. METHODS: Olfactory function and nociception was compared between carriers (n = 38 and non-carriers (n = 43 of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2. RESULTS: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2 were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049. Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006, which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. CONCLUSIONS: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.

  11. Neuropathic pain characteristics in patients from Curitiba (Brazil) with spinal cord injury.

    Science.gov (United States)

    Vall, Janaína; Costa, Carlos Mauricio de Castro; Santos, Terezinha de Jesus Teixeira; Costa, Samuel Bovy de Castro

    2011-02-01

    This was a descriptive cross-sectional study on patients with spinal cord injuries living in Curitiba, Paraná, Brazil. The aim was to evaluate the pain characteristics among such patients seen at referral care centers for spinal cord injury patients in Curitiba. A total of 109 adults with spinal cord injury in this city were evaluated regarding the presence of pain, especially neuropathic pain. Neuropathic pain was evaluated using the DN4 questionnaire, a universal instrument that has been translated and validated for Portuguese. A visual analog scale (VAS) was used to evaluate the intensity of pain. The prevalence of pain among these 109 patients was 31.2% (34 patients). The nociceptive pain presented was classified as musculoskeletal pain (nine patients), visceral pain (four patients) and mixed pain (one patient), thus totaling 14 patients (12.8%). Another 20 patients (18.3%) showed symptoms of neuropathic pain and fulfilled the criteria for neuropathic pain with scores greater than 4 out 10 in the DN4 questionnaire. Regarding the characteristics of the patients with neuropathic pain, most of them were male, younger than 40 years of age and paraplegic with incomplete lesions. They had become injured from 1 to more than 5 years earlier. The predominant etiology was gunshot wounds, and the intensity of their pain was high, with VAS scores greater than 5. This study partially corroborates other studies conducted on this subject. Studies of this type are important for understanding the profile of these patients, for the purpose of designing strategies for their rehabilitation, with a focus on the appropriate treatment and management of pain.

  12. Neuropathic pain characteristics in patients from Curitiba (Brazil with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Janaína Vall

    2011-02-01

    Full Text Available This was a descriptive cross-sectional study on patients with spinal cord injuries living in Curitiba, Paraná, Brazil. The aim was to evaluate the pain characteristics among such patients seen at referral care centers for spinal cord injury patients in Curitiba. A total of 109 adults with spinal cord injury in this city were evaluated regarding the presence of pain, especially neuropathic pain. Neuropathic pain was evaluated using the DN4 questionnaire, a universal instrument that has been translated and validated for Portuguese. A visual analog scale (VAS was used to evaluate the intensity of pain. The prevalence of pain among these 109 patients was 31.2% (34 patients. The nociceptive pain presented was classified as musculoskeletal pain (nine patients, visceral pain (four patients and mixed pain (one patient, thus totaling 14 patients (12.8%. Another 20 patients (18.3% showed symptoms of neuropathic pain and fulfilled the criteria for neuropathic pain with scores greater than 4 out 10 in the DN4 questionnaire. Regarding the characteristics of the patients with neuropathic pain, most of them were male, younger than 40 years of age and paraplegic with incomplete lesions. They had become injured from 1 to more than 5 years earlier. The predominant etiology was gunshot wounds, and the intensity of their pain was high, with VAS scores greater than 5. This study partially corroborates other studies conducted on this subject. Studies of this type are important for understanding the profile of these patients, for the purpose of designing strategies for their rehabilitation, with a focus on the appropriate treatment and management of pain.

  13. Effect of butorphanol on thermal nociceptive threshold in healthy pony foals.

    Science.gov (United States)

    McGowan, K T; Elfenbein, J R; Robertson, S A; Sanchez, L C

    2013-07-01

    Pain management is an important component of foal nursing care, and no objective data currently exist regarding the analgesic efficacy of opioids in foals. To evaluate the somatic antinociceptive effects of 2 commonly used doses of intravenous (i.v.) butorphanol in healthy foals. Our hypothesis was that thermal nociceptive threshold would increase following i.v. butorphanol in a dose-dependent manner in both neonatal and older pony foals. Seven healthy neonatal pony foals (age 1-2 weeks), and 11 healthy older pony foals (age 4-8 weeks). Five foals were used during both age periods. Treatments, which included saline (0.5 ml), butorphanol (0.05 mg/kg bwt) and butorphanol (0.1 mg/kg bwt), were administered i.v. in a randomised crossover design with at least 2 days between treatments. Response variables included thermal nociceptive threshold, skin temperature and behaviour score. Data within each age period were analysed using a 2-way repeated measures ANOVA, followed by a Holm-Sidak multiple comparison procedure if warranted. There was a significant (P<0.05) increase in thermal threshold, relative to Time 0, following butorphanol (0.1 mg/kg bwt) administration in both age groups. No significant time or treatment effects were apparent for skin temperature. Significant time, but not treatment, effects were evident for behaviour score in both age groups. Butorphanol (0.1 mg/kg bwt, but not 0.05 mg/kg bwt) significantly increased thermal nociceptive threshold in neonatal and older foals without apparent adverse behavioural effects. Butorphanol shows analgesic potential in foals for management of somatic painful conditions. © 2012 EVJ Ltd.

  14. Pruritic and Nociceptive Sensations and Dysesthesias From a Spicule of Cowhage

    Science.gov (United States)

    LaMotte, R. H.; Shimada, S. G.; Green, B. G.; Zelterman, D.

    2009-01-01

    Although the trichomes (spicules) of a pod of cowhage (Mucuna pruriens) are known to evoke a histamine-independent itch that is mediated by a cysteine protease, little is known of the itch and accompanying nociceptive sensations evoked by a single spicule and the enhanced itch and pain that can occur in the surrounding skin. The tip of a single spicule applied to the forearm of 45 subjects typically evoked 1) itch accompanied by nociceptive sensations (NS) of pricking/stinging and, to a lesser extent, burning, and 2) one or more areas of cutaneous dysesthesia characterized by hyperknesis (enhanced itch to pricking) with or without alloknesis (itch to stroking) and/or hyperalgesia (enhanced pricking pain). Itch could occur in the absence of NS or one or more dysesthesias but very rarely the reverse. The peak magnitude of sensation was positively correlated for itch and NS and increased (exhibited spatial summation) as the number of spicules was increased within a spatial extent of 6 cm but not 1 cm. The areas of dysesthesia did not exhibit spatial summation. We conclude that itch evoked by a punctate chemical stimulus can co-exist with NS and cutaneous dysesthesias as may occur in clinical pruritus. However, cowhage itch was not always accompanied by NS or dysesthesia nor was a momentary change in itch necessarily accompanied by a similar change in NS or vice versa. Thus there may be separate neural coding mechanisms for itch, nociceptive sensations, and each type of dysesthesia. PMID:19144738

  15. Sex-dependent effects of restraint on nociception and pituitary-adrenal hormones in the rat.

    Science.gov (United States)

    Aloisi, A M; Steenbergen, H L; van de Poll, N E; Farabollini, F

    1994-05-01

    The sex-dependent effects of acute restraint (RT) on nociceptive and pituitary-adrenal responses were investigated in the rat. In a first experiment, the effect of 30 min RT on pain sensitivity was evaluated through repeated use of the tail withdrawal test during and after treatment. RT induced an increase in the nociceptive threshold, i.e., analgesia, in males and females, but the duration and time-course of this effect varied between sexes. The latencies returned to approximately control values in females in the second half of RT, but in males they remained higher for the whole period of RT and immediately afterwards. Twenty-four hours later, males displayed longer latencies than controls in response to simple reexposure to the environment. In a second experiment, ACTH and corticosterone plasma levels were measured immediately after 15 or 30 min of RT. ACTH and corticosterone were higher in restrained animals than in controls after both periods of treatment, and in both sexes; however, females showed higher basal and stress corticosterone levels than males. The role played by corticosteroids in the nociceptive responses of the two sexes is discussed.

  16. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice.

    Science.gov (United States)

    Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori

    2011-11-01

    Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  17. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus.

    Science.gov (United States)

    Dyuizen, Inessa V; Kotsyuba, Elena P; Lamash, Nina E

    2012-08-01

    Using NADPH-diaphorase (NADPH-d) histochemistry, inducible nitric oxide synthase (iNOS)-immunohistochemistry and immunoblotting, we characterized the nitric oxide (NO)-producing neurons in the brain and thoracic ganglion of a shore crab subjected to a nociceptive chemical stimulus. Formalin injection into the cheliped evoked specific nociceptive behavior and neurochemical responses in the brain and thoracic ganglion of experimental animals. Within 5-10 min of injury, the NADPH-d activity increased mainly in the neuropils of the olfactory lobes and the lateral antenna I neuropil on the side of injury. Later, the noxious-induced expression of NADPH-d and iNOS was detected in neurons of the brain, as well as in segmental motoneurons and interneurons of the thoracic ganglion. Western blotting analysis showed that an iNOS antiserum recognized a band at 120 kDa, in agreement with the expected molecular mass of the protein. The increase in nitrergic activity induced by nociceptive stimulation suggests that the NO signaling system may modulate nociceptive behavior in crabs.

  18. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone.

    Science.gov (United States)

    Huang, Y; Brodda-Jansen, G; Lundeberg, T; Yu, L C

    2000-08-04

    The present study investigated the role of calcitonin gene-related peptide (CGRP) on nociception in nucleus raphe magnus (NRM) and the interaction between CGRP and opioid peptides in NRM of rats. CGRP-like immunoreactivity was found at a concentration of 6.0+/-0. 77 pmol/g in NRM tissue of ten samples of rats, suggesting that it may contribute to physiological responses orchestrated by the NRM. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation increased significantly after intra-NRM administration of 0.5 or 1 nmol of CGRP in rats, but not 0.25 nmol. The anti-nociceptive effect induced by CGRP was antagonized by following intra-NRM injection of 1 nmol of the CGRP receptor antagonist CGRP8-37. Furthermore, the CGRP-induced anti-nociceptive effect was attenuated by following intra-NRM administration of 6 nmol of naloxone. The results indicate that CGRP and its receptors play an important role in anti-nociception, and there is a possible interaction between CGRP and opioid peptides in NRM of rats.

  19. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

    Science.gov (United States)

    Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.

    2018-06-01

    Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.

  20. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    Science.gov (United States)

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  1. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

    Directory of Open Access Journals (Sweden)

    Jordan L. Hawkins

    2017-12-01

    Conclusion:. Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.

  2. The role of glia in the spinal cord in neuropathic and inflammatory pain.

    Science.gov (United States)

    Old, Elizabeth Amy; Clark, Anna K; Malcangio, Marzia

    2015-01-01

    Chronic pain, both inflammatory and neuropathic, is a debilitating condition in which the pain experience persists after the painful stimulus has resolved. The efficacy of current treatment strategies using opioids, NSAIDS and anticonvulsants is limited by the extensive side effects observed in patients, underlining the necessity for novel therapeutic targets. Preclinical models of chronic pain have recently provided evidence for a critical role played by glial cells in the mechanisms underlying the chronicity of pain, both at the site of damage in the periphery and in the dorsal horn of the spinal cord. Here microglia and astrocytes respond to the increased input from the periphery and change morphology, increase in number and release pro-nociceptive mediators such as ATP, cytokines and chemokines. These gliotransmitters can sensitise neurons by activation of their cognate receptors thereby contributing to central sensitization which is fundamental for the generation of allodynia, hyperalgesia and spontaneous pain.

  3. Spinal dual-energy computed tomography: improved visualisation of spinal tumorous growth with a noise-optimised advanced monoenergetic post-processing algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Mareen; Weiss, Jakob; Selo, Nadja; Notohamiprodjo, Mike; Bamberg, Fabian; Nikolaou, Konstantin; Othman, Ahmed E. [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Flohr, Thomas [Siemens Healthcare GmbH, Erlangen (Germany)

    2016-11-15

    The aim of this study was to evaluate the effect of advanced monoenergetic post-processing (MEI+) on the visualisation of spinal growth in contrast-enhanced dual-energy CT (DE-CT). Twenty-six oncologic patients (age, 61 ± 17 years) with spinal tumorous growth were included. Patients underwent contrast-enhanced dual-energy CT on a third-generation dual-source CT scanner. Image acquisition was in dual-energy mode (100/Sn150kV), and scans were initiated 90 s after contrast agent administration. Virtual monoenergetic images (MEI+) were reconstructed at four different kiloelectron volts (keV) levels (40, 60, 80, 100) and compared to the standard blended portal venous computed tomography (CT{sub pv}). Image quality was assessed qualitatively (conspicuity, delineation, sharpness, noise, confidence; two independent readers; 5-point Likert scale; 5 = excellent) and quantitatively by calculating signal-to-noise (SNR) and contrast-to-noise-ratios (CNR). For a subgroup of 10 patients with MR imaging within 4 months of the DE-CT, we compared the monoenergetic images to the MRIs qualitatively. Highest contrast of spinal growth was observed in MEI+ at 40 keV, with significant differences to CT{sub pv} and all other keV reconstructions (60, 80, 100; p < 0.01). Highest conspicuity, delineation and sharpness were observed in MEI+ at 40 keV, with significant differences to CT{sub pv} (p < 0.001). Similarly, MEI+ at 40 keV yielded highest diagnostic confidence (4.6 ± 0.6), also with significant differences to CT{sub pv} (3.45 ± 0.9, p < 0.001) and to high keV reconstructions (80, 100; p ≤ 0.001). Similarly, CNR calculations revealed highest scores for MEI+ at 40 keV followed by 60 keV and CT{sub pv}, with significant differences to high keV MEI+ reconstructions. Qualitative analysis scores peaked for MR images followed by the MEI+ 40-keV reconstructions. MEI+ at low keV levels can significantly improve image quality and delineation of spinal growth in patients with portal

  4. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Directory of Open Access Journals (Sweden)

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  5. Impact of carprofen administration on stress and nociception responses of calves to cautery dehorning.

    Science.gov (United States)

    Stock, M L; Barth, L A; Van Engen, N K; Millman, S T; Gehring, R; Wang, C; Voris, E A; Wulf, L W; Labeur, Léa; Hsu, W H; Coetzee, J F

    2016-02-01

    The objective of this study was to investigate the effects of carprofen administered immediately before cautery dehorning on nociception and stress. Forty Holstein calves aged approximately 6 to 8 wk old were either placebo treated and sham dehorned ( = 10) or cautery dehorned following administration of carprofen (1.4 mg/kg) subcutaneously ( = 10) or orally ( = 10) or a subcutaneous and oral placebo ( = 10) in a randomized, controlled trial. All animals were given a cornual nerve block using lidocaine before dehorning. Response variables including mechanical nociception threshold, ocular temperature, heart rate, and respiratory rate were measured before and following cautery dehorning for 96 h. Blood samples were also collected over 96 h following dehorning and analyzed for plasma cortisol and substance P concentrations by RIA. Plasma carprofen concentration and ex vivo PGE concentrations were also determined for this time period. Average daily gain was calculated for 7 d after dehorning. Data were analyzed using a linear mixed effects model with repeated measures, controlling for baseline values by their inclusion as a covariate in addition to planned contrasts. Dehorning was associated with decreased nociception thresholds throughout the study and a stress response immediately after dehorning, following the loss of local anesthesia, and 48 h after dehorning compared with sham-dehorned calves. Carprofen was well absorbed after administration and reached concentrations that inhibited ex vivo PGE concentrations for 72 h (subcutaneous) and 96 h (oral) compared with placebo-treated calves ( Carprofen-treated calves tended to be less sensitive ( = 0.097) to nociceptive threshold tests. Overall, at the dosing regimen studied, the effect of carprofen on sensitivity and stress following cautery dehorning was minimal. Consideration of route of administration and dose determination studies may be warranted.

  6. The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process.

    Science.gov (United States)

    Wei, Fang; Zhang, Cui; Xue, Rong; Shan, Lidong; Gong, Shan; Wang, Guoqing; Tao, Jin; Xu, Guangyin; Zhang, Guoxing; Wang, Linhui

    2017-08-01

    It has been proved that cerebrospinal fluid (CSF) in the subarachnoid space could reenter the brain parenchyma via the perivascular space. The present study was designed to explore the pathway of subarachnoid CSF flux into the spinal cord and the potential role of aquaporin-4 (AQP4) in this process. Fluorescently tagged cadaverine, for the first time, was used to study CSF movement in mice. Following intracisternal infusion of CSF tracers, the cervical spinal cord was sliced and prepared for fluorescence imaging. Some sections were subject with immunostaining in order to observe tracer distribution and AQP4 expression. Fluorescently tagged cadaverine rapidly entered the spinal cord. Tracer influx into the spinal parenchyma was time dependent. At 10min post-infusion, cadaverine was largely distributed in the superficial tissue adjacent to the pial surface. At 70min post-infusion, cadaverine was distributed in the whole cord and especially concentrated in the gray matter. Furthermore, fluorescent tracer could enter the spinal parenchyma either along the perivascular space or across the pial surface. AQP4 was observed highly expressed in the astrocytic endfeet surrounding blood vessels and the pial surface. Blocking AQP4 by its specific inhibitor TGN-020 strikingly reduced the inflow of CSF tracers into the spinal cord. Subarachnoid CSF could flow into the spinal cord along the perivascular space or across the pial surface, in which AQP4 is involved. Our observation provides a basis for the study on CSF movement in the spinal cord when some neurological diseases occur. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Does Spinal Block Through Tattooed Skin Cause Histological Changes in Nervous Tissue and Meninges?: An Experimental Model in Rabbits.

    Science.gov (United States)

    Ferraz, Isabela Leite; Barros, Guilherme Antônio Moreira de; Ferreira Neto, Patrícia Gomes; Solanki, Daneshivari; Marques, Mariângela Alencar; Machado, Vânia Maria de Vasconcelos; Cabral, Lucas Wynne; Lima, Rodrigo Moreira E; Vianna, Pedro Thadeu Galvão; Navarro, Lais Helena Camacho; Ganen, Eliana Marisa

    2015-01-01

    Although there is no documented evidence that tattoo pigments can cause neurological complications, the implications of performing neuraxial anesthesia through tattooed skin are unknown. In this study, we aimed to assess whether spinal puncture performed through tattooed skin of rabbits determines changes over the spinal cord and meninges. In addition, we sought to evaluate the presence of ink fragments entrapped in spinal needles. Thirty-six young male adult rabbits, each weighing between 3400 and 3900 g and having a spine length between 38.5 and 39 cm, were divided by lot into 3 groups as follows: GI, spinal puncture through tattooed skin; GII, spinal puncture through tattooed skin and saline injection; and GIII, spinal puncture through skin free of tattoo and saline injection. After intravenous anesthesia with ketamine and xylazine, the subarachnoid space was punctured at S1-S2 under ultrasound guidance with a 22-gauge 2½ Quincke needle. Animals in GII and GIII received 5 μL/cm of spinal length (0.2 mL) of saline intrathecally. In GI, the needle tip was placed into the yellow ligament, and no solution was injected into the intrathecal space; after tattooed skin puncture, 1 mL of saline was injected through the needle over a histological slide to prepare a smear that was dyed by the Giemsa method to enable tissue identification if present. All animals remained in captivity for 21 days under medical observation and were killed by decapitation. The lumbosacral spinal cord portion was removed for histological analysis using hematoxylin-eosin stain. None of the animals had impaired motor function or decreased nociception during the period of clinical observation. None of the animals from the control group (GIII) showed signs of injuries to meninges. In GII, however, 4 animals presented with signs of meningeal injury. The main histological changes observed were focal areas of perivascular lymphoplasmacyte infiltration in the pia mater and arachnoid. There was no

  8. Pain Experience is Somatotopically Organized and Overlaps with Pain Anticipation in the Human Cerebellum.

    Science.gov (United States)

    Michelle Welman, F H S; Smit, Albertine E; Jongen, Joost L M; Tibboel, Dick; van der Geest, Jos N; Holstege, Jan C

    2018-02-26

    Many fMRI studies have shown activity in the cerebellum after peripheral nociceptive stimulation. We investigated whether the areas in the cerebellum that were activated after nociceptive thumb stimulation were separate from those after nociceptive toe stimulation. In an additional experiment, we investigated the same for the anticipation of a nociceptive stimulation on the thumb or toe. For his purpose, we used fMRI after an electrical stimulation of the thumb and toe in 19 adult healthy volunteers. Following nociceptive stimulation, different areas were activated by stimulation on the thumb (lobule VI ipsilaterally and Crus II mainly contralaterally) and toe (lobules VIII-IX and IV-V bilaterally and lobule VI contralaterally), i.e., were somatotopically organized. Cerebellar areas innervated non-somatotopically by both toe and thumb stimulation were the posterior vermis and Crus I, bilaterally. In the anticipation experiment, similar results were found. However, here, the somatotopically activated areas were relatively small for thumb and negligible for toe stimulation, while the largest area was innervated non-somatotopically and consisted mainly of Crus I and lobule VI bilaterally. These findings indicate that nociceptive stimulation and anticipation of nociceptive stimulation are at least partly processed by the same areas in the cerebellum. This was confirmed by an additional conjunction analysis. Based on our findings, we hypothesize that input that is organized in a somatotopical manner reflects direct input from the spinal cord, while non-somatotopically activated parts of the cerebellum receive their information indirectly through cortical and subcortical connections, possibly involved in processing contextual emotional states, like the expectation of pain.

  9. Hydrogen sulfide inhibits opioid withdrawal-induced pain sensitization in rats by down-regulation of spinal calcitonin gene-related peptide expression in the spine.

    Science.gov (United States)

    Yang, Hai-Yu; Wu, Zhi-Yuan; Bian, Jin-Song

    2014-09-01

    Hyperalgesia often occurs in opioid-induced withdrawal syndrome. In the present study, we found that three hourly injections of DAMGO (a μ-opioid receptor agonist) followed by naloxone administration at the fourth hour significantly decreased rat paw nociceptive threshold, indicating the induction of withdrawal hyperalgesia. Application of NaHS (a hydrogen sulfide donor) together with each injection of DAMGO attenuated naloxone-precipitated withdrawal hyperalgesia. RT-PCR and Western blot analysis showed that NaHS significantly reversed the gene and protein expression of up-regulated spinal calcitonin gene-related peptide (CGRP) in naloxone-treated animals. NaHS also inhibited naloxone-induced cAMP rebound and cAMP response element-binding protein (CREB) phosphorylation in rat spinal cord. In SH-SY5Y neuronal cells, NaHS inhibited forskolin-stimulated cAMP production and adenylate cyclase (AC) activity. Moreover, NaHS pre-treatment suppressed naloxone-stimulated activation of protein kinase C (PKC) α, Raf-1, and extracellular signal-regulated kinase (ERK) 1/2 in rat spinal cord. Our data suggest that H2S prevents the development of opioid withdrawal-induced hyperalgesia via suppression of synthesis of CGRP in spine through inhibition of AC/cAMP and PKC/Raf-1/ERK pathways.

  10. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input

    NARCIS (Netherlands)

    Henssen, D.J.H.A.; Kurt, E.; Kozicz, L.T.; Dongen, R.T.M. van; Bartels, R.H.M.A.; Cappellen van Walsum, A.M. van

    2016-01-01

    Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called

  11. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  12. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  13. TRPA1 in the spinal dorsal horn is involved in post-inflammatory visceral hypersensitivity: in vivo study using TNBS-treated rat model

    Directory of Open Access Journals (Sweden)

    Li Q

    2016-12-01

    Full Text Available Qian Li,1,* Cheng-Hao Guo,2,* Mohammed Ali Chowdhury,1 Tao-Li Dai,1 Wei Han,1,3 1Department of Gastroenterology, Qilu Hospital of Shandong University, 2Department of Pathology, Medical School of Shandong University, 3Laboratory of Translational Gastroenterology, Shandong University, Qilu Hospital, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Introduction: The transient receptor potential ankyrin-1 (TRPA1 channel, a pain transducer and amplifier, is drawing increasing attention in the field of visceral hypersensitivity, commonly seen in irritable bowel syndrome and inflammatory bowel disease. However, the role of TRPA1 in visceral nociception during post-inflammatory states is not well defined. Here, we explore the correlation between TRPA1 expression in the spinal dorsal horn (SDH and persistent post-inflammatory visceral hypersensitivity.Methods: We injected rats intracolonically with 2,4,6-trinitrobenzene sulfonic acid (TNBS or vehicle (n=12 per group. Post-inflammatory visceral hypersensitivity was assessed by recording the electromyographic activity of the external oblique muscle in response to colorectal distension. TRPA1 expression and distribution in the spinal cord and colon were examined by Western blotting and immunohistochemistry.Results: Animals exposed to TNBS had more abdominal contractions than vehicle-injected controls (P<0.05, which corresponded to a lower nociceptive threshold. Expression of TRPA1 in the SDH (especially in the substantia gelatinosa and the colon was significantly greater in the TNBS-treated group than in controls (P<0.05. In the SDH, the number of TRPA1-immunopositive neurons was 25.75±5.12 in the control group and 34.25±7.89 in the TNBS-treated group (P=0.023, and integrated optical density values of TRPA1 in the control and TNBS-treated groups were 14,544.63±6,525.54 and 22,532.75±7,608.11, respectively (P=0.041.Conclusion: Our results indicate

  14. Response characteristics of pruriceptive and nociceptive trigeminoparabrachial tract neurons in the rat

    NARCIS (Netherlands)

    N.A. Jansen (Nico A.); G.J. Giesler (Glenn J.)

    2015-01-01

    textabstractWe tested the possibility that the trigeminoparabrachial tract (VcPbT), a projection thought to be importantly involved in nociception, might also contribute to sensation of itch. In anesthetized rats, 47 antidromically identified VcPbT neurons with receptive fields involving the cheek

  15. Pain sensation and nociceptive reflex excitability in surgical patients and human volunteers

    DEFF Research Database (Denmark)

    Dahl, J B; Erichsen, C J; Fuglsang-Frederiksen, A

    1992-01-01

    Pain threshold, nociceptive flexion reflex (NFR) threshold and responses to suprathreshold stimulation were investigated in 15 female patients (mean age 32 yr (range 22-48 yr)) before and 68 (range 48-96) h after gynaecological laparotomy. Control measurements were performed in 17 healthy human v...

  16. 8-O-Acetyl Shanzhiside Methylester From Lamiophlomis Rotata Reduces Neuropathic Pain by Inhibiting the ERK/TNF-α Pathway in Spinal Astrocytes

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-03-01

    Full Text Available Lamiophlomis rotata (L. rotata; Benth. Kudo is an effective traditional herb in the clinical treatment of chronic pain syndromes in China. 8-O-acetyl shanzhiside methylester (8-OaS, a chief component in L. rotata, possesses potent immunosuppressive activities and favorable analgesic effects. This study was proposed to compare the analgesic effects of 8-OaS with those of lidocaine and ketamine in a spinal nerve ligation (SNL model by behavioral tests, and then investigated its effects upon the expression of spinal glial fibrillary acidic protein (GFAP, phosphorylated extracellular regulated protein kinases (pERK and tumor necrosis factor-alpha (TNF-α via immunofluorescence staining and western blot analyses. The data showed consecutive intrathecal injection of 8-OaS for 2 weeks brought about remarkable palliation of neuropathic pain (NP, possessing similar anti-allodynia effects with those of lidocaine and ketamine. Two weeks after surgery, pERK within the spinal dorsal horn was mainly expressed in astrocytes more than neurons and microglia, and 8-OaS inhibited spinal astrocytic activation and TNF-α expression. Finally, co-treatment of 8-OaS and PD98059 (an Extracellular signal-regulated kinase, ERK inhibitor did not lead to remarkable increase in pain relief or TNF-α expression comparing to rats treated with 8-OaS or PD98059 alone. In conclusion, the anti-nociceptive effects of 8-OaS in the condition of NP relied on the inhibition of SNL-induced astrocyte activation, probably via the down-regulation of the ERK/TNF-α pathway.

  17. Spinal infection: Evaluation with MR imaging and intraoperative spinal US

    International Nuclear Information System (INIS)

    Donovan Post, M.J.; Montalvo, B.M.; Quencer, R.M.; Katz, B.H.; Green, B.A.; Elsmont, F.

    1987-01-01

    MR spine images and/or intraoperative US scans in 15 patients were reviewed retrospectively and correlated with clinical and pathologic data to determine the diagnostic value of these modalities in spinal infection. In osteomyelitis and retrospinal abscess MR imaging was definitive; in myelitis it was positive but nonspecific. In epidural abscess concomitant with meningitis, myelography with CT and intraoperative US were superior to MR imaging. Intraoperative US could be used to distinguish these processes and to monitor surgical decompression. The authors recommend that MR imaging be performed at the screening examination in cases of spinal infection, accompanied by intraoperative US in all surgical cases

  18. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword.

    Science.gov (United States)

    Chen, Jun; Lariviere, William R

    2010-10-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Electrophysiological assessment of nociception in patients with Parkinson's disease : A multi-methods approach

    NARCIS (Netherlands)

    Priebe, Janosch A.; Kunz, Miriam; Morcinek, Christian; Rieckmann, Peter; Lautenbacher, Stefan

    2016-01-01

    Objective: Nociceptive abnormalities indicating increased pain sensitivity have been reported in patients with Parkinson's disease (PD). The disturbances are mostly responsive to dopaminergic (DA) treatment; yet, there are conflicting results. The objective of the present study was to investigate

  20. Hydro-ethanolic leaf extract of Ziziphus abyssinica Hochst Ex A. Rich (Rhamnaceae) exhibits anti-nociceptive effects in murine models.

    Science.gov (United States)

    Boakye-Gyasi, Eric; Henneh, Isaac Tabiri; Abotsi, Wonder Kofi Mensah; Ameyaw, Elvis Ofori; Woode, Eric

    2017-04-26

    Despite substantial advances in pain research and treatment, millions of people continue to suffer from pain and this has been attributed mainly to the unavailability of effective and safer analgesics. The use of plants as medicines is still widespread and plants constitute a large source of novel phytocompounds that might become leads for the discovery of newer, effective and safer alternatives. Various parts of Ziziphus abyssinica have been used in folk medicine in several African countries as painkillers. However, there is no report on the possible anti-nociceptive effects of this plant especially the leaves, hence the need for this current study. The possible anti-nociceptive activity of hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) was assessed in rodents using chemical (acetic acid, formalin and glutamate), thermal (tail-immersion test) and mechanical/inflammatory (carrageenan) models of nociception. EthE (30-300 mg/kg, p.o.) dose-dependently and significantly inhibited chemical-induced nociception with a maximum inhibition of 86.29 ± 2.27%, 76.34 ± 5.67%, 84.97 ± 5.35%, and 82.81 ± 5.97% respectively for acetic acid, formalin (phase 1), formalin (phase 2) and glutamate tests at its highest dose. EthE also dose-dependently and significantly increased reaction times in both tail-immersion and carrageenan-induced hypernociceptive tests. The activities of the extract in the various models were comparable with the effect of morphine hydrochloride and diclofenac sodium used as standard analgesic drugs. Oral administration of hydro-ethanolic leaf extract of Ziziphus abyssinica ameliorates nocifensive behaviours associated with chemical-, thermal- and mechanical/inflammatory - induced nociceptive pain.

  1. Magnesium Therapy in Pre-eclampsia Prolongs Analgesia Following Spinal Anaesthesia with Fentanyl and Bupivacaine: An Observational Study

    Directory of Open Access Journals (Sweden)

    Tülay Özkan Seyhan

    2014-06-01

    Full Text Available Background: Magnesium has anti-nociceptive effects and potentiates opioid analgesia following its systemic and neuraxial administration. However, there is no study evaluating the effects of intravenous (IV magnesium sulphate (MgSO4 therapy on spinal anaesthesia characteristics in severely pre-eclamptic patients. Aims: The aim of this study was to compare spinal anaesthesia characteristics in severely pre-eclamptic parturients treated with MgSO4 and healthy preterm parturients undergoing caesarean section. Thus, our primary outcome was regarded as the time to first analgesic request following spinal anaesthesia. Study Design: Case-control Study. Methods: Following approval of Institutional Clinical Research Ethics Committee and informed consent of the patients, 44 parturients undergoing caesarean section with spinal anaesthesia were enrolled in the study in two groups: Healthy preterm parturients (Group C and severely pre-eclamptic parturients with IV MgSO4 therapy (Group Mg. Following blood and cerebrospinal fluid (CSF sampling, spinal anaesthesia was induced with 9 mg hyperbaric bupivacaine and 20 µg fentanyl. Serum and CSF magnesium levels, onset of sensory block at T4 level, highest sensory block level, motor block characteristics, time to first analgesic request, maternal haemodynamics as well as side effects were evaluated. Results: Blood and CSF magnesium levels were higher in Group Mg. Sensory block onset at T4 were 257.1±77.5 and 194.5±80.1 sec in Group C and Mg respectively (p=0.015. Time to first postoperative analgesic request was significantly prolonged in Group Mg than in Group C (246.1±52.8 and 137.4±30.5 min, respectively, p<0.001; with a mean difference of 108.6 min and 95% CI between 81.6 and 135.7. Side effects were similar in both groups. Group C required significantly more fluids. Conclusion: Treatment with IV MgSO4 in severe pre-eclamptic parturients significantly prolonged the time to first analgesic request compared

  2. The spinal cord: a review of functional neuroanatomy.

    Science.gov (United States)

    Bican, Orhan; Minagar, Alireza; Pruitt, Amy A

    2013-02-01

    The spinal cord controls the voluntary muscles of the trunk and limbs and receives sensory input from these areas. It extends from the medulla oblongata to the lower border of the first lumbar vertebra. A basic knowledge of spinal cord anatomy is essential for interpretation of clinical signs and symptoms and for understanding of pathologic processes involving the spinal cord. In this article, anatomic structures are correlated with relevant clinical signs and symptoms and a step-wise approach to spinal cord diagnosis is outlined. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Ergonomics intervention on an alternative design of a spinal board.

    Science.gov (United States)

    Zadry, Hilma Raimona; Susanti, Lusi; Rahmayanti, Dina

    2017-09-01

    A spinal board is the evacuation tool of first aid to help the injured spinal cord. The existing spinal board has several weaknesses, both in terms of user comfort and the effectiveness and efficiency of the evacuation process. This study designs an ergonomic spinal board using the quality function deployment approach. A preliminary survey was conducted through direct observation and interviews with volunteers from the Indonesian Red Cross. Data gathered were translated into a questionnaire and answered by 47 participants in West Sumatra. The results indicate that the selection of materials, the application of strap systems as well as the addition of features are very important in designing an ergonomic spinal board. The data were used in designing an ergonomic spinal board. The use of anthropometric data ensures that this product can accommodate safety and comfort when immobilized, as well as the flexibility and speed of the rescue evacuation process.

  4. Pain assessment according to the International Spinal Cord Injury Pain classification in patients with spinal cord injury referred to a multidisciplinary pain center.

    Science.gov (United States)

    Mahnig, S; Landmann, G; Stockinger, L; Opsommer, E

    2016-10-01

    This is a retrospective study. The aim of this study was to investigate the epidemiology of pain types in patients with spinal cord injury (SCI) according to the International Spinal Cord Injury Pain (ISCIP) classification. This study was conducted in a multidisciplinary pain center. Socio-demographic and clinical data were examined and ISCIP classification was applied. Sixty-six individuals (51±13 years) with SCI had pain, a lesion older than 5 years in 67% and a pain history older than 5 years in 54% of patients. According to the ISCIP classification, nociceptive pain was present in 58% (musculoskeletal pain) and 3% (visceral pain) of the patients. At-level, below-level neuropathic pain and other neuropathic pain were observed, respectively in 53, 42 and 5% of patients. Unknown pain type was found in 8% of patients. Patients with complete lesions showed significantly more frequent neuropathic pain (P=0.021) and more frequent at-level SCI pain (P=0.00) compared with those with incomplete lesions. Patients with paraplegia had more often at-level pain (P=0.00), whereas patients with tetraplegia reported more often below-level pain (P=0.00). Patients had severe pain (mean intensity: 8.2 (±1.6) on a 0 to 10 numerical scale) and showed high grades of pain chronicity. Mild to severe depression and anxiety were present, respectively in 53 and 56% of patients. The health-related quality of life was low. The use of the ISCIP classification in a clinical setting is mirroring the very complex pain situation in patients with SCI referred to a multidisciplinary pain center, and it might be an important step for adequate pain therapy.

  5. The negotiated equilibrium model of spinal cord function.

    Science.gov (United States)

    Wolpaw, Jonathan R

    2018-04-16

    The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Differential inhibitory effect on human nociceptive skin senses induced by local stimulation of thin cutaneous fibers.

    Science.gov (United States)

    Nilsson, H J; Schouenborg, J

    1999-03-01

    It is known that stimulation of thin cutaneous nerve fibers can induce long lasting analgesia through both supraspinal and segmental mechanisms, the latter often exhibiting restricted receptive fields. On this basis, we recently developed a new method, termed cutaneous field stimulation (CFS), for localized stimulation of A delta and C fibers in the superficial part of the skin. In the present study, we have evaluated the effects of CFS on non-nociceptive and nociceptive skin senses. We compared the effects of CFS with those of conventional transcutaneous electrical nerve stimulation (TENS), known to preferentially activate coarse myelinated fibers. A battery of sensory tests were made on the right volar forearm of 20 healthy subjects. CFS (16 electrodes, 4 Hz per electrode, 1 ms, up to 0.8 mA) and TENS (100 Hz, 0.2 ms, up to 26 mA) applied either on the right volar forearm (homotopically), or on the lower right leg (heterotopically) were used as conditioning stimulation for 25 min. The tactile threshold was not affected by either homo- or heterotopical CFS or TENS. The mean thresholds for detecting warming or cooling of the skin were increased by 0.4-0.9 degrees C after homo- but not heterotopical CFS and TENS. Regarding nociceptive skin senses, homo- but not heterotopical CFS, markedly reduced CO2-laser evoked A delta- and C fiber mediated heat pain to 75 and 48% of control, respectively, and mechanically evoked pain to 73% of control. Fabric evoked prickle, was not affected by CFS. Neither homo- nor heterotopical TENS induced any marked analgesic effects. It is concluded that different qualities of nociception can be differentially controlled by CFS.

  7. Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2011-11-01

    Full Text Available The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist, physostigmine (a cholinesterase inhibitor, atropine (an antagonist of muscarinic cholinergic receptors and hexamethonium (an antagonist of nicotinic cholinergic receptors into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was induced by putting a drop of 5 M NaCl solution onto the corneal surface of the eye and the number of eye wipes was counted during the first 30s. Both acetylcholine and physostigmine at the same doses of 0.5, 1 and 2 μg significantly (P < 0.05 reduced the number of eye wipes. The intensity of corneal nociception was not changed when atropine and hexamethonium were used alone. Atropine (4 μg, but not hexamethonium (4 μg significantly (P < 0.05 prevented acetylcholine (2 μg- and physostigmine (2 μg-induced antinociceptive effects. The results indicated that at the level of the parafascicular nucleus of thalamus, the muscarinic cholinergic receptors might be involved in the antinociceptive effects of acetylcholine and physostigmine.

  8. Sexual and reproductive function in spinal cord injury and spinal surgery patients

    Directory of Open Access Journals (Sweden)

    Theodore H. Albright

    2015-09-01

    Full Text Available Sexual and reproductive health is important quality of life outcomes, which can have a major impact on patient satisfaction. Spinal pathology arising from trauma, deformity, and degenerative disease processes may be detrimental to sexual and reproductive function. Furthermore, spine surgery may impact sexual and reproductive function due to post-surgical mechanical, neurologic, and psychological factors. The aim of this paper is to provide a concise evidence-based review on the impact that spine surgery and pathology can have on sexual and reproductive function. A review of published literature regarding sexual and reproductive function in spinal injury and spinal surgery patients was performed. We have found that sexual and reproductive dysfunction can occur due to numerous etiological factors associated with spinal pathology. Numerous treatment options are available for those patients, depending on the degree of dysfunction. Spine surgeons and non-operative healthcare providers should be aware of the issues surrounding sexual and reproductive function as related to spine pathology and spine surgery. It is important for spine surgeons to educate their patients on the operative risks that spine surgery encompasses with regard to sexual dysfunction, although current data examining these topics largely consists of level IV data.

  9. Nurses assessing pain with the Nociception Coma Scale: interrater reliability and validity

    NARCIS (Netherlands)

    Vink, Peter; Eskes, Anne Maria; Lindeboom, Robert; van den Munckhof, Pepijn; Vermeulen, Hester

    2014-01-01

    The Nociception Coma Scale (NCS) is a pain observation tool, developed for patients with disorders of consciousness (DOC) due to acquired brain injury (ABI). The aim of this study was to assess the interrater reliability of the NCS and NCS-R among nurses for the assessment of pain in ABI patients

  10. Overcoming the tyranny of distance: An audit of process and outcomes from a pilot telehealth spinal assessment clinic.

    Science.gov (United States)

    Beard, Matthew; Orlando, Joseph F; Kumar, Saravana

    2017-09-01

    Introduction There is consistent evidence to indicate people living in rural and remote regions have limited access to healthcare and poorer health outcomes. One way to address this inequity is through innovative models of care such as telehealth. The aim of this pilot trial was to determine the feasibility, appropriateness and access to a telehealth clinic. In this pilot trial, the telehealth clinic outcomes are compared with the outreach clinic. Both models of care are commonly utilised means of providing healthcare to meet the needs of people living in rural and remote regions. Methods A prospective audit was conducted on a Spinal Assessment Clinic Telehealth pilot trial for patients with spinal disorders requiring non-urgent surgical consultation. Data were recorded from all consultations managed using videoconferencing technology between the Royal Adelaide Hospital and Port Augusta Community Health Service, South Australia between September 2013 and January 2014. Outcomes included analysis of process, service activity, clinical actions, safety and costs. Data were compared to a previous spinal assessment outreach clinic in the same area between August and December 2012. Results There were 25 consultations with 22 patients over the five-month telehealth pilot trial. Spinal disorders were predominantly of the lumbar region (88%); the majority of initial consultations (64%) were discharged to the general practitioner. There were three requests for further imaging, five for minor interventions and three for other specialist/surgical consultation. Patient follow-up post telehealth pilot trial revealed no adverse outcomes. The total cost of AUD$11,187 demonstrated a 23% reduction in favour of the spinal assessment telehealth pilot trial, with the greatest savings in travel costs. Discussion The telehealth model of care demonstrated the efficient management of patients with spinal disorders in rural regions requiring non-urgent surgical consultation at low costs with

  11. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia.

    Science.gov (United States)

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R Shane; Moisi, Marc

    2017-02-16

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation.

  12. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  13. Evaluation of Postoperative Anti-nociceptive Efficacy of Intrathecal Dexketoprofen in Rats

    OpenAIRE

    Birol Muhammet Er; İsmail Serhat Kocamanoğlu; Ayhan Bozkurt; Sırrı Bilge; Erhan Çetin Çetinoğlu

    2016-01-01

    Background: Some studies have suggested that the intrathecal use of cyclooxygenase enzyme inhibitors provides an anti-nociceptive effect. Therefore, the occurrence of side effects seen in systemic usage can be eliminated. Aims: The primary objective of this experimental, randomized, controlled trial was to test the hypothesis asserting that intrathecal dexketoprofen trometamol would demonstrate an analgesic effect during postoperative period. Study Design: Animal experimentation. ...

  14. Spinal cord contusion.

    Science.gov (United States)

    Ju, Gong; Wang, Jian; Wang, Yazhou; Zhao, Xianghui

    2014-04-15

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  15. Transcutaneous spinal stimulation as a therapeutic strategy for spinal cord injury: state of the art

    Directory of Open Access Journals (Sweden)

    Grecco LH

    2015-03-01

    Full Text Available Leandro H Grecco,1,3,4,* Shasha Li,1,5,* Sarah Michel,1,6,* Laura Castillo-Saavedra,1 Andoni Mourdoukoutas,7 Marom Bikson,7 Felipe Fregni1,21Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, 2Spaulding-Harvard Spinal Cord Injury Model System, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA; 3Special Laboratory of Pain and Signaling, Butantan Institute, 4Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; 5Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; 6Department of Pharmacy and Biomedical Sciences, University of Namur, Belgium; 7Department of Biomedical Engineering, The City College of New York, New York, NY, USA*These authors contributed equally to this workAbstract: Treatments for spinal cord injury (SCI still have limited effects. Electrical stimulation might facilitate plastic changes in affected spinal circuitries that may be beneficial in improving motor function and spasticity or SCI-related neuropathic pain. Based on available animal and clinical evidence, we critically reviewed the physiological basis and therapeutic action of transcutaneous spinal cord stimulation in SCI. We analyzed the literature published on PubMed to date, looking for the role of three main noninvasive stimulation techniques in the recovery process of SCI and focusing mainly on transcutaneous spinal stimulation. This review discusses the main clinical applications, latest advances, and limitations of noninvasive electrical stimulation of the spinal cord. Although most recent research in this topic has focused on transcutaneous spinal direct current stimulation (tsDCS, we also reviewed the technique of transcutaneous electric nerve stimulation (TENS and neuromuscular electrical stimulation (NMES as potential methods to modulate spinal cord

  16. Spinal Manipulative Therapy Specific Changes In Pain Sensitivity In Individuals With Low Back Pain (NCT01168999)

    Science.gov (United States)

    Bialosky, Joel E; George, Steven Z; Horn, Maggie E; Price, Donald D; Staud, Roland; Robinson, Michael E

    2013-01-01

    Spinal Manipulative Therapy (SMT) is effective for some individuals experiencing low back pain (LBP); however, the mechanisms are not established regarding the role of placebo. SMT is associated with changes in pain sensitivity suggesting related altered central nervous system response or processing of afferent nociceptive input. Placebo is also associated with changes in pain sensitivity and the efficacy of SMT for changes in pain sensitivity beyond placebo has not been adequately considered. We randomly assigned 110 participants with LBP to receive SMT, placebo SMT, placebo SMT with the instructional set, “The manual therapy technique you will receive has been shown to significantly reduce low back pain in some people”, or no intervention. Participants receiving the SMT and placebo SMT received their assigned intervention 6 times over two weeks. Pain sensitivity was assessed prior to and immediately following the assigned intervention during the first session. Clinical outcomes were assessed at baseline and following two weeks of participation in the study. Immediate attenuation of suprathreshold heat response was greatest following SMT (p= 0.05, partial η2= 0.07). Group dependent differences were not observed for changes in pain intensity and disability at two week. Participant satisfaction was greatest following the enhanced placebo SMT. PMID:24361109

  17. Motor cortex stimulation suppresses cortical responses to noxious hindpaw stimulation after spinal cord lesion in rats.

    Science.gov (United States)

    Jiang, Li; Ji, Yadong; Voulalas, Pamela J; Keaser, Michael; Xu, Su; Gullapalli, Rao P; Greenspan, Joel; Masri, Radi

    2014-01-01

    Motor cortex stimulation (MCS) is a potentially effective treatment for chronic neuropathic pain. The neural mechanisms underlying the reduction of hyperalgesia and allodynia after MCS are not completely understood. To investigate the neural mechanisms responsible for analgesic effects after MCS. We test the hypothesis that MCS attenuates evoked blood oxygen-level dependent signals in cortical areas involved in nociceptive processing in an animal model of chronic neuropathic pain. We used adult female Sprague-Dawley rats (n = 10) that received unilateral electrolytic lesions of the right spinal cord at the level of C6 (SCL animals). In these animals, we performed magnetic resonance imaging (fMRI) experiments to study the analgesic effects of MCS. On the day of fMRI experiment, 14 days after spinal cord lesion, the animals were anesthetized and epidural bipolar platinum electrodes were placed above the left primary motor cortex. Two 10-min sessions of fMRI were performed before and after a session of MCS (50 μA, 50 Hz, 300 μs, for 30 min). During each fMRI session, the right hindpaw was electrically stimulated (noxious stimulation: 5 mA, 5 Hz, 3 ms) using a block design of 20 s stimulation off and 20 s stimulation on. A general linear model-based statistical parametric analysis was used to analyze whole brain activation maps. Region of interest (ROI) analysis and paired t-test were used to compare changes in activation before and after MCS in these ROI. MCS suppressed evoked blood oxygen dependent signals significantly (Family-wise error corrected P cortex and the prefrontal cortex. These findings suggest that, in animals with SCL, MCS attenuates hypersensitivity by suppressing activity in the primary somatosensory cortex and prefrontal cortex. Copyright © 2014. Published by Elsevier Inc.

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  20. Prediction of immediate postoperative pain using the analgesia/nociception index: a prospective observational study.

    Science.gov (United States)

    Boselli, E; Bouvet, L; Bégou, G; Dabouz, R; Davidson, J; Deloste, J-Y; Rahali, N; Zadam, A; Allaouchiche, B

    2014-04-01

    The analgesia/nociception index (ANI) is derived from heart rate variability, ranging from 0 (maximal nociception) to 100 (maximal analgesia), to reflect the analgesia/nociception balance during general anaesthesia. This should be correlated with immediate postoperative pain in the post-anaesthesia care unit (PACU). The aim of this study was to evaluate the performance of ANI measured at arousal from general anaesthesia to predict immediate postoperative pain on arrival in PACU. Two hundred patients undergoing ear, nose, and throat or lower limb orthopaedic surgery with general anaesthesia using an inhalational agent and remifentanil were included in this prospective observational study. The ANI was measured immediately before tracheal extubation and pain intensity was assessed within 10 min of arrival in PACU using a 0-10 numerical rating scale (NRS). The relationship between ANI and NRS was assessed using linear regression. A receiver-operating characteristic (ROC) curve was used to evaluate the performance of ANI to predict NRS>3. A negative linear relationship was observed between ANI immediately before extubation and NRS on arrival in PACU. Using a threshold of 3 were both 86% with 92% negative predictive value, corresponding to an area under the ROC curve of 0.89. The measurement of ANI immediately before extubation after inhalation-remifentanil anaesthesia was significantly associated with pain intensity on arrival in PACU. The performance of ANI for the prediction of immediate postoperative pain is good and may assist physicians in optimizing acute pain management. ClinicalTrials.gov NCT01796249.

  1. Computer tomographic investigations of cervical spinal stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S.O.

    1983-10-01

    Computed tomography was applied in 29 patients with cervical spinal stenosis. In 8 cases there was a congenital narrowed spinal canal. In 18 cases we found dorsal spondylotic ridges of the vertebral bodies and in three cases an atlanto-dental dislocation. The complaints showed either radicular character or in case of myelopathy came out as para- and quadriplegia. In 25 cases the spinal sagittal diamter was a lot below a critical borderline of about 13 mm. The kind and localisation of the underlying process can be demonstrated very excellent by computed tomography.

  2. Computer tomographic investigations of cervical spinal stenosis

    International Nuclear Information System (INIS)

    Rodiek, S.O.

    1983-01-01

    Computed tomography was applied in 29 patients with cervical spinal stenosis. In 8 cases there was a congenital narrowed spinal canal. In 18 cases we found dorsal spondylotic ridges of the vertebral bodies and in three cases an atlanto-dental dislocation. The complaints showed either radicular character or in case of myelopathy came out as para- and quadriplegia. In 25 cases the spinal sagittal diamter was a lot below a critical borderline of about 13 mm. The kind and localisation of the underlying process can be demonstrated very excellent by computed tomography. (orig.) [de

  3. Molecular Basis of TRPA1 Regulation in Nociceptive Neurons. A Review

    Czech Academy of Sciences Publication Activity Database

    Kádková, Anna; Synytsya, Viktor; Krůšek, Jan; Zímová, Lucie; Vlachová, Viktorie

    2017-01-01

    Roč. 66, č. 3 (2017), s. 425-439 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA15-15839S; GA MZd(CZ) NV16-28784A Institutional support: RVO:67985823 Keywords : transient receptor potential ankyrin 1 * bradykinin * structure- function * nociception * post-translational modifications * signaling pathways Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 1.461, year: 2016

  4. Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord.

    Science.gov (United States)

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Pan, Hui-Lin

    2017-09-01

    Chemotherapeutic drugs, including bortezomib, often cause painful peripheral neuropathy, which is a severe dose-limiting adverse effect experienced by many cancer patients. The glutamate N-methyl-d-aspartate receptors (NMDARs) at the spinal cord level are critically involved in the synaptic plasticity associated with neuropathic pain. In this study, we determined whether treatment with bortezomib, a proteasome inhibitor, affects the NMDAR activity of spinal dorsal horn neurons. Systemic treatment with bortezomib in rats did not significantly affect postsynaptic NMDAR currents elicited by puff application of NMDA directly to dorsal horn neurons. Bortezomib treatment markedly increased the baseline frequency of miniature excitatory postsynaptic currents (EPSCs), which was completely normalized by the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). AP5 also reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation in bortezomib-treated, but not vehicle-treated, rats. Furthermore, inhibition of protein kinase C (PKC) with chelerythrine fully reversed the increased frequency of miniature EPSCs and the amplitude of evoked EPSCs in bortezomib-treated rats. Intrathecal injection of AP5 and chelerythrine both profoundly attenuated mechanical allodynia and hyperalgesia induced by systemic treatment with bortezomib. In addition, treatment with bortezomib induced striking membrane translocation of PKC-βII, PKC-δ, and PKC-ε in the dorsal root ganglion. Our findings indicate that bortezomib treatment potentiates nociceptive input from primary afferent nerves via PKC-mediated tonic activation of presynaptic NMDARs. Targeting presynaptic NMDARs and PKC at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phytochemical Screening and Anti-nociceptive Properties of the Ethanolic Leaf Extract of Trema Cannabina Lour

    Directory of Open Access Journals (Sweden)

    Hira Arpona

    2013-02-01

    Full Text Available Purpose: The present study was designed to investigate the anti-nociceptive activity of ethanolic leaf extract of Trema cannabina Lour (family: Cannabaceae in experimental animal models. Methods: The anti-nociceptive action was carried out against two types of noxious stimuli, thermal (hot plate and tail immersion tests and chemical (acetic acid-induced writhing in mice. Results: Phytochemical analysis of crude extract indicated the presence of reducing sugar, tannins, steroid and alkaloid types of secondary metabolites. Crude extract of T. cannabina (500 mg/kg dose showed maximum time needed for the response against thermal stimuli (6.79±0.15 seconds which is comparable to diclofenac sodium (8.26±0.14 seconds in the hot plate test. Hot tail immersion test also showed similar results as in hot plate test. At the dose of 250 and 500 mg/kg body weight, the extract showed significantly and in a dose-dependent (p<0.001 reduction in acetic acid induced writhing in mice with a maximum effect of 47.56% reduction at 500 mg/kg dose comparable to that of diclofenac sodium (67.07% at 25 mg/kg. Conclusion: The obtained results tend to suggest the Anti-nociceptive activity of ethanolic leaf extract of Trema cannabina and thus provide the scientific basis for the traditional uses of this plant part as a remedy for pain.

  6. Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats.

    Science.gov (United States)

    Cervantes-Durán, C; Rocha-González, H I; Granados-Soto, V

    2013-11-12

    -yl]methyl]cyclopentanepropanamide dihydrochloride, SB-699551, 1-3 nmol/paw), receptor antagonists. In marked contrast, the spinal antinociceptive effect of fluoxetine was prevented by the 5-HT1A (WAY-100635, 0.3-1 nmol/rat), 5-HT1B/1D (GR-127935, 0.3-1 nmol/rat), 5-HT1B (SB-224289, 0.3-1 nmol/rat), 5-HT1D (BRL-15572, 0.3-1 nmol/rat) and 5-HT5A (SB-699551, 1-3 nmol/rat), but not by the 5-HT2A (ketanserin, 3-10 pmol/rat), 5-HT2B (RS-127445, 3-10 pmol/rat), 5-HT2C (RS-102221, 3-10 pmol/rat), 5-HT3 (ondansetron, 3-10 nmol/rat), 5-HT4 (GR-113808, 3-100 fmol/rat), 5-HT6 (SB-258585, 3-10 pmol/rat) nor 5-HT7 (SB-269970, 0.3-1 nmol/rat), receptor antagonists. These results suggest that fluoxetine produces nociception at the periphery by activating peripheral 5-HT2A/2B/2C/3/4/6/7 receptors. In addition, intrathecal fluoxetine produces antinociception by activation of spinal 5-HT1A/1B/1D/5A receptors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus.

    Science.gov (United States)

    Woda, Alain; Blanc, Olivier; Voisin, Daniel L; Coste, Jérôme; Molat, Jean-Louis; Luccarini, Philippe

    2004-04-01

    Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input. It is thus unknown where the NMDA mechanisms for windup operate. Here, using the Sprague-Dawley rat trigeminal system as a model, we anatomically identify a subpopulation of interneurons that relay nociceptive information from the superficial dorsal horn where C-fibres terminate, to downstream wide dynamic range nociceptive neurons. Using in vivo electrophysiological recordings, we show that at the end of this pathway, windup was reduced (24 +/- 6%, n = 7) by the NMDA receptor antagonist AP-5 (2.0 fmol) and enhanced (62 +/- 19%, n = 12) by NMDA (1 nmol). In contrast, microinjections of AP-5 (1.0 fmol) within the superficial laminae increased windup (83 +/- 44%, n = 9), whereas NMDA dose dependently decreased windup (n = 19). These results indicate that NMDA receptor function at the segmental level depends on their precise location in nociceptive neural networks. While some NMDA receptors actually amplify pain information, the new evidence for NMDA dependent inhibition of windup we show here indicates that, simultaneously, others act in the opposite direction. Working together, the two mechanisms may provide a fine tuning of gain in pain.

  8. Anatomy of the Spinal Meninges.

    Science.gov (United States)

    Sakka, Laurent; Gabrillargues, Jean; Coll, Guillaume

    2016-06-01

    The spinal meninges have received less attention than the cranial meninges in the literature, although several points remain debatable and poorly understood, like their phylogenesis, their development, and their interactions with the spinal cord. Their constancy among the chordates shows their crucial importance in central nervous system homeostasis and suggests a role far beyond mechanical protection of the neuraxis. This work provides an extensive study of the spinal meninges, from an overview of their phylogenesis and embryology to a descriptive and topographic anatomy with clinical implications. It examines their involvement in spinal cord development, functioning, and repair. This work is a review of the literature using PubMed as a search engine on Medline. The stages followed by the meninges along the phylogenesis could not be easily compared with their development in vertebrates for methodological aspects and convergence processes throughout evolution. The distinction between arachnoid and pia mater appeared controversial. Several points of descriptive anatomy remain debatable: the functional organization of the arterial network, and the venous and lymphatic drainages, considered differently by classical anatomic and neuroradiological approaches. Spinal meninges are involved in neurodevelopment and neurorepair producing neural stem cells and morphogens, in cerebrospinal fluid dynamics and neuraxis functioning by the synthesis of active molecules, and the elimination of waste products of central nervous system metabolism. The spinal meninges should be considered as dynamic functional formations evolving over a lifetime, with ultrastructural features and functional interactions with the neuraxis remaining not fully understood.

  9. Computed tomography of the spinal canal for the cervical spine and spinal cord injury

    International Nuclear Information System (INIS)

    Kimura, Isao; Niimiya, Hikosuke; Nasu, Kichiro; Shioya, Akihide; Ohhama, Mitsuru

    1983-01-01

    The cervical spinal canal and cervical spinal cord were measured in normal cases and 34 cases of spinal or spinal cord injury. The anteroposterior diameter and area of the normal cervical spinal canal showed a high correlation. The area ratio of the normal cervical spinal canal to the cervical spinal cord showed that the proportion of the cervical spinal cord in the spinal canal was 1/3 - 1/5, Csub(4,5) showing a particularly large proportion. In acute and subacute spinal or spinal cord injury, CT visualized in more details of the spinal canal in cases that x-ray showed definite bone injuries. Computer assisted myelography visualized more clearly the condition of the spinal cord in cases without definite findings bone injuries on x-ray. Demonstrating the morphology of spinal injury in more details, CT is useful for selection of therapy for injured spines. (Chiba, N.)

  10. Neuroprotection and its molecular mechanism following spinal cord injury☆

    Science.gov (United States)

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  12. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    Science.gov (United States)

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. M.R. imaging of spinal disorders

    International Nuclear Information System (INIS)

    Akino, Minoru; Isu, Toyohiko; Iwasaki, Yoshinobu; Abe, Hiroshi; Abe, Satoru; Miyasaka, Kazuo; Nomura, Mikio; Saito, Hisatoshi.

    1987-01-01

    In many papers about the M.R. imaging of spinal disorders, almost all the diagnoses have been carried out using only the sagittal image. However, we ourselves have thus for diagnosed about 500 cases of spinal disorders using the resistive type of MRI (0.15 T). On the basis of our experience, we have established two main principles as regards the MRI diagnosis of spinal disorders: 1) a surface coil must be used in the diagnosis of spinal disorders, and 2) diagnosis must be carried out by the use of both sagittal and axial images. We present some typical cases of spinal disorders in this paper. From these cases, we see that MRI has advantages and disadvantages as regards the diagnosis of spinal disorders compared with X-ray diagnostic apparatus. The first advantageous point is that we can directly obtain an image of the spinal cord without the intrathecal injection of a contrast material. The second point is that MRI can avoid the bone artifacts which often occur when using the X-ray CT; moreover, there is none of the hazard connected with the use of X-rays. The biggest disadvantage is that the spatial resolution of the resistive type of MRI is slightly inferior to that of the high-resolutional X-ray CT. The second disadvantage is that the ability to detect an ossificative process, such as disc disease or OPLL, is very restricted because of the low signal intensity from the cortical bone. We propose two points for the improvement of the MR imaging of spinal disorders. One is the production of a high-sensitivity surface coil. The other is the application of Gd-DTPA, which is thought to have a high potential to detect spinal disorders. If we can realize these points, the images of spinal disorders produced by the resistive type of MRI will be clearer and more informative. (J.P.N.)

  14. Comparisons of MR findings of the spinal metastasis and the spinal tuberculosis

    International Nuclear Information System (INIS)

    Hong, Myung Sun; Lee, Kil Woo; Kang, Ik Won; Yun, Ku Sub; Choi, Chul Sun; Bae, Sang Hoon

    1994-01-01

    MR findings of the spinal metastasis and the tuberculosis are well known, but sometimes it might be difficult to differentiate these lesions. Therefore we reviewed and analyzed the MR findings which would be useful for the differentiation. T1- and T2- weighted spin echo images and gadolinium-enhanced T1- weighted images were obtained with 1.5 T and 1.0 T superconductive MR imager. We reviewed MR findings in 16 cases of spinal metastases and 24 cases of spinal tuberculosis in terms of signal intensity, contrast enhancement pattern, disc space involvement, spinal canal compressing feature and paraspinal soft tissue mass. The signal intensities of both lesions were hypointense on T1WI and hyperintense on T2WI except those of the metastatic lesions from the prostatic carcinoma. Heterogeneous enhancement was noted in 63% of metastasis, whereas peripheral rim enhancement was noted 83% of spinal tuberculosis(p < .001). Spinal canal compression by collapsed vertebra was only noted in spinal metastasis, and that by paraspinal soft tissue was noted in both spinal metastasis and tuberculosis(p<.001). Disc space invasion was noted in 19% of spinal metastasis and 88% of spinal tuberculosis. Spinal tuberculosis was common at lower thoracic spine(T10) and typically involved two or more adjacent vertebral bodies(96%). The important differential point between spinal metastasis and tuberculosis was the enhancement pattern, involvement of two or more contiguous vertebral bodies and the feature of spinal canal compressing. The secondary importance was the disc space involvement pattern

  15. Sensitization of the nociceptive system in patients with low back pain and sickness absence: Disc degeneration disease or pain syndrome

    DEFF Research Database (Denmark)

    Jensen, Ole Kudsk; Nielsen, Claus Vinther; Stengaard-Pedersen, Kristian

    SENSITIZATION OF THE NOCICEPTIVE SYSTEM IN PATIENTS WITH LOW BACK PAIN AND SICKNESS ABSENCE O.K. Jensen1, C.V. Nielsen2, K. Stengaard-Pedersen3 1The Spine Center, Department of Internal Medicine, Region Hospital Silkeborg, 2Department of Clinical Social Medicine, University of Aarhus, and 3...... characterized by sensitization of the nociceptive system. Purpose: To assess sensitization of the nociceptive system in low back pain (LBP) patients by means of TP examination and measure of Pressure Pain Threshold (PPT) on the thumb nails. To search for associations between the number of TPs and structural...... = 1.35, p = 0.017) and mental distress (anxiety) in men (OR = 1.39, p = 0.003). After adjustment for age and sex, a positive association between LBP score and DDS was found only in patients with less than six TPs (OR = 1.21 (1.0-1.47), p = 0.043). Low PPT on the thumb nails was associated with DDS...

  16. Topologically preserving straightening of spinal cord MRI.

    Science.gov (United States)

    De Leener, Benjamin; Mangeat, Gabriel; Dupont, Sara; Martin, Allan R; Callot, Virginie; Stikov, Nikola; Fehlings, Michael G; Cohen-Adad, Julien

    2017-10-01

    To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T 2 - and T 1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    Energy Technology Data Exchange (ETDEWEB)

    Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Futuro Neto, H.A. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil); Pires, J.G.P. [Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Gonçalves, W.L.S. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Tiradentes, R.V.; Gouvea, S.A.; Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2011-11-18

    The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8 per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg{sup −1}·day{sup −1}, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.

  18. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors.

    Science.gov (United States)

    Bedi, Supinder S; Lago, Michael T; Masha, Luke I; Crook, Robyn J; Grill, Raymond J; Walters, Edgar T

    2012-03-20

    Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.

  19. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Venlafaxine and oxycodone have different effects on spinal and supra-spinal activity in Man

    DEFF Research Database (Denmark)

    Lelic, Dina; Valeriani, Massimiliano; Fischer, Iben W D

    2017-01-01

    INTRODUCTION: Opioids and antidepressants that inhibit serotonin and norepinephrine reuptake (SNRI) are recognized as analgesics to treat severe and moderate pain, but for both of them the mechanisms in humans remain unclear. This study aimed to explore how oxycodone (opioid) and venlafaxine (SNRI......) modulate spinal and supraspinal sensory processing. METHODS: Twenty volunteers were included in this randomized, double blinded, three-way (placebo, oxycodone, venlafaxine), cross-over study. Spinal and full scalp cortical evoked potentials (EPs) to median nerve stimulation were recorded before and after...... sources underlying early cortical EPs and 5) brain networks underlying the late cortical EPs. RESULTS: In the venlafaxine arm, the spinal P11 and the late cortical N60-80 latencies were reduced by 1.8%(95%CI:1.7,1.9%) and 5.7%(95%CI:5.3,6.1%), whereas the early cortical P25 amplitude was decreased by 7...

  1. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Science.gov (United States)

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  2. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  3. 17β-Estradiol Enhances ASIC Activity in Primary Sensory Neurons to Produce Sex Difference in Acidosis-Induced Nociception.

    Science.gov (United States)

    Qu, Zu-Wei; Liu, Ting-Ting; Ren, Cuixia; Gan, Xiong; Qiu, Chun-Yu; Ren, Ping; Rao, Zhiguo; Hu, Wang-Ping

    2015-12-01

    Sex differences have been reported in a number of pain conditions. Women are more sensitive to most types of painful stimuli than men, and estrogen plays a key role in the sex differences in pain perception. However, it is unclear whether there is a sex difference in acidosis-evoked pain. We report here that both male and female rats exhibit nociceptive behaviors in response to acetic acid, with females being more sensitive than males. Local application of exogenous 17β-estradiol (E2) exacerbated acidosis-evoked nociceptive response in male rats. E2 and estrogen receptor (ER)-α agonist 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, but not ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile, replacement also reversed attenuation of the acetic acid-induced nociceptive response in ovariectomized females. Moreover, E2 can exert a rapid potentiating effect on the functional activity of acid-sensing ion channels (ASICs), which mediated the acidosis-induced events. E2 dose dependently increased the amplitude of ASIC currents with a 42.8 ± 1.6 nM of EC50. E2 shifted the concentration-response curve for proton upward with a 50.1% ± 6.2% increase of the maximal current response to proton. E2 potentiated ASIC currents via an ERα and ERK1/2 signaling pathway. E2 also altered acidosis-evoked membrane excitability of dorsal root ganglia neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acidic stimuli. E2 potentiation of the functional activity of ASICs revealed a peripheral mechanism underlying this sex difference in acetic acid-induced nociception.

  4. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    International Nuclear Information System (INIS)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon; Bae, Sang Jin

    2004-01-01

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance (ρ > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury

  5. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Bae, Sang Jin [Sanggyepaik Hospital, Inje University, Seoul (Korea, Republic of)

    2004-12-15

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance ({rho} > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury.

  6. Malignant spinal cord compression in cancer patients may be mimicked by a primary spinal cord tumour.

    Science.gov (United States)

    Mohammadianpanah, M; Vasei, M; Mosalaei, A; Omidvari, S; Ahmadloo, N

    2006-12-01

    Although it is quite rare, second primary neoplasms in cancer patients may present with the signs and symptoms of malignant spinal cord compression. Primary spinal cord tumours in the cancer patients may be deceptive and considered as the recurrent first cancer. Therefore, it should be precisely differentiated and appropriately managed. We report such a case of intramedullary ependymoma of the cervical spinal cord mimicking metatstatic recurrent lymphoma and causing cord compression. A 50-year-old man developed intramedullary ependymoma of the cervical spinal cord 1.5 years following chemoradiation for Waldeyer's ring lymphoma. He presented with a 2-month history of neck pain, progressive upper- and lower-extremity numbness and weakness, and bowel and bladder dysfunction. Magnetic resonance imaging revealed an intramedullary expansive lesion extending from C4 to C6 levels of the cervical spinal cord. The clinical and radiological findings were suggestive of malignant process. A comprehensive investigation failed to detect another site of disease. He underwent operation, and the tumour was subtotally resected. The patient's neurological deficits improved subsequently. The development of the intramedullary ependymoma following treating lymphoma has not been reported. We describe the clinical, radiological and pathological findings of this case and review the literature.

  7. Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age

    Science.gov (United States)

    Galbavy, William; Kaczocha, Martin; Puopolo, Michelino; Liu, Lixin; Rebecchi, Mario J.

    2015-01-01

    Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not

  8. Effects of awareness and nociception on heart rate variability during general anaesthesia

    International Nuclear Information System (INIS)

    Huhle, R; Zaunseder, S; Malberg, H; Burghardt, M; Koch, T; Heller, A R; Wessel, N

    2012-01-01

    During anaesthesia awareness and nociception are serious complications that may further lead to haemodynamic instability. Specific monitoring of depth of hypnosis and depth of analgesia based on heart rate variability (HRV) analysis is eligible to improve patient safety and reduce efforts in post-operative care. Consequently, in this analysis we assess the applicability of HRV parameters during surgical interventions with standardized intravenous propofol-remifentanil-anaesthesia. Peri-operative electrocardiograms were recorded from cardiovascular stable patients (ASA Score I/II, N = 32, age: 36.4 ± 11.23 a, BMI: 25.2 ± 3.16) scheduled for trauma and dentofacial surgery. HRV time- and frequency-domain parameters, measures of complexity and nonlinear dynamics were compared by analysing longitudinally distributed 300 s intervals preceding/following induction of anaesthesia (BL–I1), intubation (I1–I2) and extubation (E1–E2). Mean value (meanNN) and standard deviation (sdNN) of the heart rate are influenced in BL–I1 (p < 0.001), I1–I2 (p < 0.05) and E1–E2 (p < 0.001). The number of forbidden words of symbolic dynamics changes significantly for BL–I1 (p < 0.001) and not for I1–I2 and E1–E2 (p > 0.05). Probability of low-variability POLVAR10 is significantly altered in all comparisons (BL–I1: Δ = 0.032, p < 0.01, I1–I2: Δ = 0.12, p < 0.05, E1–E2: Δ = 0.169, p < 0.01) but especially during nociception. While standard time-domain parameters lacked selectivity, parameters of symbolic dynamics appear to be specifically influenced by changes in depth of hypnosis and nociception, respectively. However, the lack of steady-state ventilation/breathing in this study needs to be considered in future research. To be used for clinical anaesthesia monitoring our results have to be prospectively validated in clinical studies. (paper)

  9. Spinal cord toxoplasmosis in AIDS

    International Nuclear Information System (INIS)

    Carteret, M.; Petit, E.; Granat, O.; Marichez, M.; Gilquin, J.

    1995-01-01

    Toxoplasmosis is the most common brain parasitic infection in acquired immunodeficiency syndrome (AIDS). Spinal cord localizations are still rare (2 cases with cerebral involvement, 2 cases without). A case of both spinal cord and cerebral involvement is reported. Magnetic resonance imaging (MR imaging) was performed because of sensory level (L 1). A focal conus medullaris enlargement was seen, iso intense on T 1 weighted images. This lesion was hyperintense on T 2 weighted sequence, and was homogeneously enhanced after Gadolinium on T 1 weighted images. A medullary oedema was noted. A toxoplasmosis treatment was initiated, without cortico therapy. MR imaging performed one month later (D 30), while important clinical improvements were seen, pointed out normal thickness of conus medullaris, without enhancement after Gadolinium. Disease lesions in AIDS with focal spinal cord processes are reviewed, and diagnostic work-up is discussed. Spinal cord single lesion, associated or not with brain involvements should be treated as a toxoplasmic infection, with MR imaging follow up. This work up should avoid medullary biopsy, still required in case of treatment failure. Cerebral involvements, with multiples lesions can mask medullary localization. (authors). 8 refs., 2 figs

  10. Differential diagnoses of spinal tumors; Differenzialdiagnose spinaler Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2011-12-15

    A wide variety of degenerative, inflammatory and vascular diseases can resemble the clinical presentation and imaging findings of spinal tumors. This article provides an overview of the most frequent diseases which are important to recognize for diagnostic imaging of the spine. (orig.) [German] Eine Vielzahl degenerativer, entzuendlicher und vaskulaerer Erkrankungen kann das klinische Bild und radiologische Befunde spinaler Tumoren imitieren. Dieser Artikel dient der Uebersicht ueber die haeufigsten dieser Erkrankungen, deren Kenntnis wichtig fuer die spinale Bildgebung ist. (orig.)

  11. Fish oil concentrate delays sensitivity to thermal nociception in mice

    Science.gov (United States)

    Veigas, Jyothi M.; Williams, Paul J.; Halade, Ganesh; Rahman, Mizanur M.; Yoneda, Toshiyuki; Fernandes, Gabriel

    2011-01-01

    Fish oil has been used to alleviate pain associated with inflammatory conditions such as rheumatoid arthritis. The anti-inflammatory property of fish oil is attributed to the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid. Contrarily, vegetable oils such as safflower oil are rich in n-6 fatty acids which are considered to be mediators of inflammation. This study investigates the effect of n-3 and n-6 fatty acids rich oils as dietary supplements on the thermally induced pain sensitivity in healthy mice. C57Bl/6J mice were fed diet containing regular fish oil, concentrated fish oil formulation (CFO) and safflower oil (SO) for 6 months. Pain sensitivity was measured by plantar test and was correlated to the expression of acid sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1) and c-fos in dorsal root ganglion cells. Significant delay in sensitivity to thermal nociception was observed in mice fed CFO compared to mice fed SO (p<0.05). A significant diminution in expression of ion channels such as ASIC1a (64%), ASIC13 (37%) and TRPV1 (56%) coupled with reduced expression of c-fos, a marker of neuronal activation, was observed in the dorsal root ganglion cells of mice fed CFO compared to that fed SO. In conclusion, we describe here the potential of fish oil supplement in reducing sensitivity to thermal nociception in normal mice. PMID:21345372

  12. Chronic spinal subdural hematoma; Spinales chronisches subdurales Haematom

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, T.; Lensch, T. [Radiologengemeinschaft, Augsburg (Germany)

    2008-10-15

    Compared with spinal epidural hematomas, spinal subdural hematomas are rare; chronic forms are even more uncommon. These hematomas are associated not only with lumbar puncture and spinal trauma, but also with coagulopathies, vascular malformations and tumors. Compression of the spinal cord and the cauda equina means that the patients develop increasing back or radicular pain, followed by paraparesis and bladder and bowel paralysis, so that in most cases surgical decompression is carried out. On magnetic resonance imaging these hematomas present as thoracic or lumbar subdural masses, their signal intensity varying with the age of the hematoma. We report the clinical course and the findings revealed by imaging that led to the diagnosis in three cases of chronic spinal subdural hematoma. (orig.) [German] Spinale subdurale Haematome sind im Vergleich zu epiduralen Haematomen selten, chronische Verlaufsformen noch seltener. Ursaechlich sind neben Lumbalpunktionen und traumatischen Verletzungen auch Blutgerinnungsstoerungen, Gefaessmalformationen und Tumoren. Aufgrund der Kompression von Myelon und Cauda equina kommt es zu zunehmenden Ruecken- oder radikulaeren Schmerzen mit anschliessender Paraparese sowie einer Darm- und Blasenstoerung, weshalb in den meisten Faellen eine operative Entlastung durchgefuehrt wird. Magnetresonanztomographisch stellen sich die Haematome meist als thorakale bzw. lumbale subdurale Raumforderungen dar, die Signalintensitaet variiert mit dem Blutungsalter. Wir berichten ueber den klinischen Verlauf und die bildgebende Diagnostik von 3 Patienten mit spinalen chronischen subduralen Haematomen. (orig.)

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  15. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  16. Spinal Cord Diseases

    Science.gov (United States)

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  17. Spinal segmental dysgenesis

    Directory of Open Access Journals (Sweden)

    N Mahomed

    2009-06-01

    Full Text Available Spinal segmental dysgenesis is a rare congenital spinal abnormality , seen in neonates and infants in which a segment of the spine and spinal cord fails to develop normally . The condition is segmental with normal vertebrae above and below the malformation. This condition is commonly associated with various abnormalities that affect the heart, genitourinary, gastrointestinal tract and skeletal system. We report two cases of spinal segmental dysgenesis and the associated abnormalities.

  18. Hyperacute spinal subdural haematoma as a complication of lumbar spinal anaesthesia: MRI

    International Nuclear Information System (INIS)

    Pedraza Gutierrez, S.; Suescun, M.; Rovira Canellas, A.; Coll Masfarre, S.; Castano Duque, C.H.

    1999-01-01

    We report two cases of hyperacute spinal subdural haematoma secondary to lumbar spinal anaesthesia, identified with MRI. Prompt diagnosis of this infrequent, potentially serious complication of spinal anaesthesia is essential, as early surgical evacuation may be needed. Suggestive MRI findings in this early phase include diffuse occupation filling of the spinal canal with poor delineation of the spinal cord on T1-weighted images, and a poorly-defined high-signal lesion with a low-signal rim on T2-weighted images. (orig.)

  19. Pre-test habituation improves the reliability of a handheld test of mechanical nociceptive threshold in dairy cows

    DEFF Research Database (Denmark)

    Raundal, P. M.; Andersen, P. H.; Toft, Nils

    2015-01-01

    Mechanical nociceptive threshold (MNT) testing has been used to investigate aspects of painful states in bovine claws. We investigated a handheld tool, where the applied stimulation force was monitored continuously relative to a pre-encoded based target force. The effect on MNT of two pre-testing...... habituation procedures was performed in two different experiments comprising a total of 88 sound Holsteins dairy cows kept either inside or outside their home environment. MNT testing was performed using five consecutive mechanical nociceptive stimulations per cow per test at a fixed pre-encoded target rate...... of 2.1 N/s. The habituation procedure performed in dairy cows kept in their home environment led to lowered intra-individual coefficient of variation of MNT (P test...

  20. MULTIPLE SPINAL CANAL MENINGIOMAS

    Directory of Open Access Journals (Sweden)

    Nandigama Pratap Kumar

    2016-10-01

    Full Text Available BACKGROUND Meningiomas of the spinal canal are common tumours with the incidence of 25 percent of all spinal cord tumours. But multiple spinal canal meningiomas are rare in compare to solitary lesions and account for 2 to 3.5% of all spinal meningiomas. Most of the reported cases are both intra cranial and spinal. Exclusive involvement of the spinal canal by multiple meningiomas are very rare. We could find only sixteen cases in the literature to the best of our knowledge. Exclusive multiple spinal canal meningiomas occurring in the first two decades of life are seldom reported in the literature. We are presenting a case of multiple spinal canal meningiomas in a young patient of 17 years, who was earlier operated for single lesion. We analysed the literature, with illustration of our case. MATERIALS AND METHODS In September 2016, we performed a literature search for multiple spinal canal meningiomas involving exclusively the spinal canal with no limitation for language and publication date. The search was conducted through http://pubmed.com, a wellknown worldwide internet medical address. To the best of our knowledge, we could find only sixteen cases of multiple meningiomas exclusively confined to the spinal canal. Exclusive multiple spinal canal meningiomas occurring in the first two decades of life are seldom reported in the literature. We are presenting a case of multiple spinal canal meningiomas in a young patient of 17 years, who was earlier operated for solitary intradural extra medullary spinal canal meningioma at D4-D6 level, again presented with spastic quadriparesis of two years duration and MRI whole spine demonstrated multiple intradural extra medullary lesions, which were excised completely and the histopathological diagnosis was transitional meningioma. RESULTS Patient recovered from his weakness and sensory symptoms gradually and bladder and bowel symptoms improved gradually over a period of two to three weeks. CONCLUSION Multiple

  1. Spinal diffusion tensor imaging: a comprehensive review with emphasis on spinal cord anatomy and clinical applications.

    Science.gov (United States)

    Hendrix, Philipp; Griessenauer, Christoph J; Cohen-Adad, Julien; Rajasekaran, Shanmuganathan; Cauley, Keith A; Shoja, Mohammadali M; Pezeshk, Parham; Tubbs, R Shane

    2015-01-01

    Magnetic resonance imaging technology allows for in vivo visualization of fiber tracts of the central nervous system using diffusion-weighted imaging sequences and data processing referred to as "diffusion tensor imaging" and "diffusion tensor tractography." While protocols for high-fidelity diffusion tensor imaging of the brain are well established, the spinal cord has proven a more difficult target for diffusion tensor methods. Here, we review the current literature on spinal diffusion tensor imaging and tractography with special emphasis on neuroanatomical correlations and clinical applications. © 2014 Wiley Periodicals, Inc.

  2. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  3. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  4. 'High resolution' computerized tomography in spinal narrow and spinal column diagnosis

    International Nuclear Information System (INIS)

    Koester, O.

    1985-01-01

    Bearing in mind that direct comparison is lacking, high resolution computerized tomography in spinal column diagnosis can be said to supply considerably increased information when dealing with the issues of a cervical prolapse and bony changes of any origin. Its advantages appear to be reduced when assessing lumbar prolapse, intraspinal masses and paravertebral soft-tissue processes. (orig.) [de

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... What is a spinal cord injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  6. Radiological evaluation of the cervical spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Bae, W. K.; Koh, B. H.; Hahm, C. K.; Kim, J. J. [School of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1983-03-15

    Acute injuries of the cervical spine are the most common causes of severe disability following trauma, yet the diagnosis of these injuries are often delayed and the treatment, inadequate. Traumatic injuries of the cervical spine are diagnosed by radiological examinations. And complete evaluations of bony structures and soft tissue changes on conventional radiograms are very important for determining the therapeutic plans and prognoses of the injuries patients. During the period of 5 years from June 1976 to May 1981, the radiological and clinical evaluation had been made on 38 patients suffered from acute cervical spinal injuries which were confirmed by the radiological examinations. The results were as follows. 1. Age distribution of total 38 patients was broad ranging from 19 years to 72 years. 2. The most common cause of injury was traffic accident, next fall down, other accident respectively. 3. Levels of the cervical spinal injuries were as follows: Upper cervical spine in 15.8%, lower cervical spine in 84.2%, and the most common injuries level was C 5. Most of the lower cervical spinal injuries were located in the vertebral body and spinous process. 4. Anatomical sites of the cervical spinal injuries were as follows; vertebral body in 55.5%, spinous process in 23.7%, neural arch in 15.8%, and locked facet in 18.4%, etc. 5. Most of the patients with severe mental changes were injuries in upper cervical spine rather than lower. And most of the patients with quadriplegia or paraplegia were shown marked disruption of spinal canal.

  7. Radiological evaluation of the cervical spinal trauma

    International Nuclear Information System (INIS)

    Bae, W. K.; Koh, B. H.; Hahm, C. K.; Kim, J. J.

    1983-01-01

    Acute injuries of the cervical spine are the most common causes of severe disability following trauma, yet the diagnosis of these injuries are often delayed and the treatment, inadequate. Traumatic injuries of the cervical spine are diagnosed by radiological examinations. And complete evaluations of bony structures and soft tissue changes on conventional radiograms are very important for determining the therapeutic plans and prognoses of the injuries patients. During the period of 5 years from June 1976 to May 1981, the radiological and clinical evaluation had been made on 38 patients suffered from acute cervical spinal injuries which were confirmed by the radiological examinations. The results were as follows. 1. Age distribution of total 38 patients was broad ranging from 19 years to 72 years. 2. The most common cause of injury was traffic accident, next fall down, other accident respectively. 3. Levels of the cervical spinal injuries were as follows: Upper cervical spine in 15.8%, lower cervical spine in 84.2%, and the most common injuries level was C 5. Most of the lower cervical spinal injuries were located in the vertebral body and spinous process. 4. Anatomical sites of the cervical spinal injuries were as follows; vertebral body in 55.5%, spinous process in 23.7%, neural arch in 15.8%, and locked facet in 18.4%, etc. 5. Most of the patients with severe mental changes were injuries in upper cervical spine rather than lower. And most of the patients with quadriplegia or paraplegia were shown marked disruption of spinal canal

  8. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G

    2015-01-01

    STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS......: A committee of experts was established to select and define data elements. The data set was then disseminated to the appropriate committees and organizations for comments. All suggested revisions were considered and both the International Spinal Cord Society and the American Spinal Injury Association endorsed...... spinal intervention and procedure is coded (variables 1 through 7) and the spinal segment level is described (variables 8 and 9). Sample clinical cases were developed to illustrate how to complete it. CONCLUSION: The International SCI Spinal Interventions and Surgical Procedures Basic Data Set...

  9. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: a randomized, controlled trial using surface electromyography.

    Science.gov (United States)

    Dalewski, B; Chruściel-Nogalska, M; Frączak, B

    2015-12-01

    An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.

  10. Nociception contributes to the formation of myogenic contracture in the early phase of adjuvant-induced arthritis in a rat knee.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Moriyama, Hideki; Yamaoka, Kaoru

    2017-07-01

    It is unknown how joint contracture is generated in inflamed joints. This study aimed to clarify the role of nociception on the formation of joint contracture secondary to arthritis. Monoarthritis was induced by intra-articular injections of complete Freund's adjuvant (CFA) into rat knees. On day 5 after CFA injection, the passive extension range of motion (ROM) of knee joints were measured, both before and after myotomy of knee flexors, to evaluate the extent of muscular contribution to CFA-induced joint contracture. The steroidal anti-inflammatory drug dexamethasone could prevent ROM restrictions completely, both before and after myotomy. On the other hand, the opioid analgesic drug morphine did not prevent the development of restricted ROM observed after myotomy, while it did before myotomy. This indicates that nociception contributes to joint contracture through alterations in muscular structure (myogenic factors). Next, we tested the hypothesis that nociception-induced reflexive flexor muscle contractions cause myogenic contracture in arthritic joints. To do this, chemical denervation was performed by Botulinum toxin type A (BTX-A) injections into knee flexor muscles, simultaneously with CFA injections into the knee. As expected, BTX-A could alleviate ROM restrictions observed before myotomy. These findings suggest that nociceptive-related muscle contractions play an essential role in the formation of joint contracture. Thus, our study indicates that analgesic management during an early stage of joint arthritis is an essential mean to prevent the formation of joint contracture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1404-1413, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis.

    Science.gov (United States)

    Greaves, Erin; Grieve, Kelsey; Horne, Andrew W; Saunders, Philippa T K

    2014-09-01

    Ovarian suppression is a common treatment for endometriosis-associated pelvic pain. Its exact mechanism of action is poorly understood, although it is assumed to reflect reduced production/action of estrogens. The objective of the study was to measure the expression of mRNAs encoded by nociceptive genes in the peritoneum of women with chronic pelvic pain (CPP) with or without endometriosis and to investigate whether estrogens alter nociceptive gene expression in human sensory neurons. The study was performed using human tissue analysis and cell culture. The study was conducted at a university research institute. Peritoneal biopsies were obtained from women with CPP and endometriosis (n = 12), CPP and no endometriosis (n = 10), and no pain or endometriosis (n = 5). Endometriosis lesions were obtained from women with endometriosis (n = 18). mRNAs encoding ion channels (P2RX3, SCN9A, SCN11A, TRPA1, TRPV1) and the neurotransmitter TAC1 were measured in human tissue samples and in human embryonic stem cell-derived sensory neurons treated with estrogens. TRPV1, TRPA1, and SCN11A mRNAs were significantly higher in the peritoneum from women with endometriosis (P endometriosis lesions (P endometriosis (P endometriosis-associated pain. Strategies directly targeting ion channels may offer an alternative option for the management of CPP.

  12. Spinal cysts. Diagnostic workup and therapy; Spinale Zysten. Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Simgen, A. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2018-02-15

    Spinal cysts can be classified as meningeal, not meningeal, and tumor-associated cysts. Due to the widespread availability of high-resolution computed tomography and magnet resonance imaging, spinal cysts can be detected with high sensitivity these days. Concerning the variety of potential cystic differential diagnoses, a precise classification is difficult and can often only be realized after surgical inspection or histological examination. Spinal cysts are generally incidental findings during a routine diagnostic workup and need no further therapy. Surgical treatment can be necessary if the spinal cyst reaches a certain size and causes neurological symptoms due to the compression of the spinal cord or the nerve root. (orig.) [German] Spinale Zysten koennen in meningeale, nichtmeningeale und tumorassoziierte Zysten eingeteilt werden. Durch die weite Verbreitung von hochaufloesenden Computer- und Magnetresonanztomographen koennen spinale Zysten heutzutage mit einer hohen Sensitivitaet erkannt werden. Eine genaue Klassifikation kann sich unter der Vielzahl der moeglichen zystischen Differenzialdiagnosen schwierig gestalten und ist haeufig nur durch eine chirurgische Inspektion oder die histologische Untersuchung moeglich. Meistens werden spinale Zysten bei der Routinediagnostik als Zufallsbefunde entdeckt und benoetigen keine weitere Therapie. Erreichen sie allerdings eine gewisse Groesse, koennen sie raumfordernd auf das Myelon oder einzelne Nervenwurzeln wirken und somit ausgepraegte neurologische Symptome verursachen. In solchen Faellen ist ein chirurgisches Vorgehen zur Resektion einer spinalen Zyste notwendig. (orig.)

  13. Anti-nociceptive, anti-hyperalgesic and anti-arthritic activity of amides and extract obtained from Piper amalago in rodents.

    Science.gov (United States)

    da Silva Arrigo, Jucicléia; Balen, Eloise; Júnior, Ubirajara Lanza; da Silva Mota, Jonas; Iwamoto, Renan Donomae; Barison, Andersson; Sugizaki, Mario Mateus; Leite Kassuya, Cândida Aparecida

    2016-02-17

    Piper amalago (Piperaceae) has been used in folk medicine as an analgesic. This study aimed to evaluate the pharmacological effects of extract and pure amides obtained from P. amalago on pain to provide a pharmacological basis for their use in traditional medicine. This study evaluated the anti-nociceptive, anti-hyperalgesic, anti-arthritic and anti-depressive activities of the ethanolic extract of P. amalago (EEPA) and the amides N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl] pyrrolidine (1) and N-[7-(3',4'-methylenedioxyphenyl)-2(E),4(E)-heptadienoyl] pyrrolidine (2) obtained from P. amalago in animal models. Mice treated daily with EEPA (100mg/kg, p.o.) were assayed for 20 days for knee edema (micrometer measurement), mechanical hyperalgesia (analgesiometer analysis), heat sensitivity and immobility (forced swim test) in the Complete Freund's Adjuvant (CFA) model. Cold (acetone test) and mechanical hyperalgesia (electronic von Frey analysis) responses were evaluated for 15 days in rats treated with oral EEPA (100mg/kg) in the spared nerve injury (SNI) model. Meanwhile, mice were evaluated for carrageenan-induced edema and mechanical hyperalgesia and for nociception using the formalin model after a single administration of EEPA (100mg/kg) or amides 1 and 2 (1mg/kg). Amides (1) and (2) were detected and isolated from the EEPA. The EEPA inhibited mechanical hyperalgesia, knee edema, and heat hyperalgesia, but not depressive-like behavior, induced by the intraplantar injection of CFA. When evaluated in the SNI model, the EEPA inhibited mechanical and cold hyperalgesia. The EEPA, 1 and 2 prevented the mechanical hyperalgesia induced by carrageenan and the anti-nociceptive effects in both phases of formalin nociception. The EEPA did not induce alterations in the open field test. The EEPA was effective for inhibition of pain and arthritic parameters but was not effective against depressive-like behavior; additionally, it did not alter locomotor activity. The

  14. Modern spinal instrumentation. Part 1: Normal spinal implants

    International Nuclear Information System (INIS)

    Davis, W.; Allouni, A.K.; Mankad, K.; Prezzi, D.; Elias, T.; Rankine, J.; Davagnanam, I.

    2013-01-01

    The general radiologist frequently encounters studies demonstrating spinal instrumentation, either as part of the patient's postoperative evaluation or as incidental to a study performed for another purpose. There are various surgical approaches and devices used in spinal surgery with an increased understanding of spinal and spinal implant biomechanics drives development of modern fixation devices. It is, therefore, important that the radiologist can recognize commonly used devices and identify their potential complications demonstrated on imaging. The aim of part 1 of this review is to familiarize the reader with terms used to describe surgical approaches to the spine, review the function and normal appearances of commonly used instrumentations, and understand the importance of the different fixation techniques. The second part of this review will concentrate on the roles that the different imaging techniques play in assessing the instrumented spine and the recognition of complications that can potentially occur.

  15. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  16. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  17. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  18. Tissue identification with micro-magnetic resonance imaging in a caprine spinal fusion model

    NARCIS (Netherlands)

    Uffen, M.; Krijnen, M.; Hoogendoorn, R.; Strijkers, G.; Everts, V.; Wuisman, P.; Smit, T.

    2008-01-01

    Nonunion is a major complication of spinal interbody fusion. Currently X-ray and computed tomography (CT) are used for evaluating the spinal fusion process. However, both imaging modalities have limitations in judgment of the early stages of this fusion process, as they only visualize mineralized

  19. 3,6-Dimethoxy-6″,6″-Dimethyl-(7,8,2″,3″)-Chromeneflavone, a Flavonoid Isolated from Lonchocarpus Araripensis Benth. (Fabaceae), Reduces Nociceptive Behaviour in Mice.

    Science.gov (United States)

    Almeida, Jackson R G S; Silva, Juliane C; Guimarães, Amanda L; Oliveira, Ana P; Souza, Grasielly R; Oliveira-Júnior, Raimundo G; Lima-Saraiva, Sarah R G; Barbosa-Filho, José M; Braz-Filho, Raimundo; Queiroz, Dinalva Brito; Botelho, Marco Antônio

    2015-10-01

    Lonchocarpus araripensis Benth. is largely distributed in the northeast region of Brazil. It is popularly known as 'sucupira'. Recent studies have shown that some species of Lonchocarpus have interesting pharmacological activities. In this study, we evaluated the antinociceptive effect of a flavone isolated from L. araripensis. The chemical examination resulted in the isolation of 3,6-dimethoxy-6″,6″-dimethyl-(7,8,2″,3″)-chromeneflavone (DDF). The structure of the compound was established by spectral analysis. Antinociceptive activity of DDF was evaluated by measuring nociception by acetic acid, formalin and hot plate tests. The rota rod test was used to evaluate motor coordination. The results demonstrated that DDF was able to prevent acetic-acid-writhing-induced nociception (p < 0.001) in mice. Furthermore, DDF produced a significant reduction of the nociceptive behaviour at the early and late phases of paw licking in the formalin test. Also, DDF produced an inhibition of the nociceptive behaviour during a hot-plate test. No alteration in motor coordination was observed. These results confirm the hypothesis that DDF reduces the nociceptive behaviour in mice, probably through central mechanisms, but without compromising the motor coordination of animals. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    Science.gov (United States)

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  1. An Intensive Locomotor Training Paradigm Improves Neuropathic Pain following Spinal Cord Compression Injury in Rats.

    Science.gov (United States)

    Dugan, Elizabeth A; Sagen, Jacqueline

    2015-05-01

    Spinal cord injury (SCI) is often associated with both locomotor deficits and sensory dysfunction, including debilitating neuropathic pain. Unfortunately, current conventional pharmacological, physiological, or psychological treatments provide only marginal relief for more than two-thirds of patients, highlighting the need for improved treatment options. Locomotor training is often prescribed as an adjunct therapy for peripheral neuropathic pain but is rarely used to treat central neuropathic pain. The goal of this study was to evaluate the potential anti-nociceptive benefits of intensive locomotor training (ILT) on neuropathic pain consequent to traumatic SCI. Using a rodent SCI model for central neuropathic pain, ILT was initiated either 5 d after injury prior to development of neuropathic pain symptoms (the "prevention" group) or delayed until pain symptoms fully developed (∼3 weeks post-injury, the "reversal" group). The training protocol consisted of 5 d/week of a ramping protocol that started with 11 m/min for 5 min and increased in speed (+1 m/min/week) and time (1-4 minutes/week) to a maximum of two 20-min sessions/d at 15 m/min by the fourth week of training. ILT prevented and reversed the development of heat hyperalgesia and cold allodynia, as well as reversed developed tactile allodynia, suggesting analgesic benefits not seen with moderate levels of locomotor training. Further, the analgesic benefits of ILT persisted for several weeks once training had been stopped. The unique ability of an ILT protocol to produce robust and sustained anti-nociceptive effects, as assessed by three distinct outcome measures for below-level SCI neuropathic pain, suggests that this adjunct therapeutic approach has great promise in a comprehensive treatment strategy for SCI pain.

  2. Pediatric spinal infections

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2014-01-01

    Full Text Available The infections of the spinal axis in children are rare when compared with adults. They encompass a large spectrum of diseases ranging from relatively benign diskitis to spinal osteomyleitis and to the rapidly progressive, rare, and potentially devastating spinal epidural, subdural, and intramedullary spinal cord infections. We present a comprehensive review of the literature pertaining to these uncommon entities, in light of our experience from northern India. The most prevalent pediatric spinal infection in Indian scenario is tuberculosis, where an extradural involvement is more common than intradural. The craniovertebral junction is not an uncommon site of involvement in children of our milieu. The majority of pyogenic infections of pediatric spine are associated with congenital neuro-ectodermal defects such as congenital dermal sinus. The clinico-radiological findings of various spinal infections commonly overlap. Hence the endemicity of certain pathogens should be given due consideration, while considering the differential diagnosis. However, early suspicion, rapid diagnosis, and prompt treatment are the key factors in avoiding neurological morbidity and deformity in a growing child.

  3. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  4. Effect of intravenous dexmedetomidine infusion on some ...

    African Journals Online (AJOL)

    Ahmed G. Yacout

    2011-12-17

    Dec 17, 2011 ... a Anaesthesia and Surgical Intensive Care Department, Faculty of Medicine, ... idine infusion in patients undergoing major abdominal surgery on stress .... the spinal cord, where drug activity attenuates nociceptive sig-.

  5. Treatment with albumin-hydroxyoleic acid complex restores sensorimotor function in rats with spinal cord injury: Efficacy and gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Gerardo Avila-Martin

    Full Text Available Sensorimotor dysfunction following incomplete spinal cord injury (SCI is often characterized by paralysis, spasticity and pain. Previously, we showed that intrathecal (i.t. administration of the albumin-oleic acid (A-OA complex in rats with SCI produced partial improvement of these symptoms and that oral 2-hydroxyoleic acid (HOA, a non-hydrolyzable OA analogue, was efficacious in the modulation and treatment of nociception and pain-related anxiety, respectively. Here we observed that intrathecal treatment with the complex albumin-HOA (A-HOA every 3 days following T9 spinal contusion injury improved locomotor function assessed with the Rotarod and inhibited TA noxious reflex activity in Wistar rats. To investigate the mechanism of action of A-HOA, microarray analysis was carried out in the spinal cord lesion area. Representative genes involved in pain and neuroregeneration were selected to validate the changes observed in the microarray analysis by quantitative real-time RT-PCR. Comparison of the expression between healthy rats, SCI rats, and SCI treated with A-HOA rats revealed relevant changes in the expression of genes associated with neuronal morphogenesis and growth, neuronal survival, pain and inflammation. Thus, treatment with A-HOA not only induced a significant overexpression of growth and differentiation factor 10 (GDF10, tenascin C (TNC, aspirin (ASPN and sushi-repeat-containing X-linked 2 (SRPX2, but also a significant reduction in the expression of prostaglandin E synthase (PTGES and phospholipases A1 and A2 (PLA1/2. Currently, SCI has very important unmet clinical needs. A-HOA downregulated genes involved with inflammation and upregulated genes involved in neuronal growth, and may serve to promote recovery of function after experimental SCI.

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 ...

  7. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  8. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Henry James L

    2009-09-01

    Full Text Available Abstract Background Clinical data on osteoarthritis (OA suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Aδ-fiber associated neurons and therefore the focus is on Aβ-fiber nociceptive neurons. Results At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Aβ-fiber dorsal root ganglion (DRG neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Aβ-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. Conclusion These data indicate that Aβ nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Aβ-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 David ...

  10. Evaluation of Postoperative Anti-nociceptive Efficacy of Intrathecal Dexketoprofen in Rats.

    Science.gov (United States)

    Birol Muhammet, Er; Kocamanoğlu, İsmail Serhat; Bozkurt, Ayhan; Bilge, Sırrı; Çetinoğlu, Erhan Çetin

    2016-05-01

    Some studies have suggested that the intrathecal use of cyclooxygenase enzyme inhibitors provides an anti-nociceptive effect. Therefore, the occurrence of side effects seen in systemic usage can be eliminated. The primary objective of this experimental, randomized, controlled trial was to test the hypothesis asserting that intrathecal dexketoprofen trometamol would demonstrate an analgesic effect during postoperative period. Animal experimentation. Forty rats were randomized into 4 groups 7 days after intrathecal catheterization; the following drugs were given through catheter lumens: Group Lidocaine (Group L): Lidocaine 20 μg; Group Lidocaine-Morphine (Group LM): Lidocaine 20 μg and morphine 0.5 μgr; Group Lidocaine-Dexketoprofen (Group LD): Lidocaine 20 μg and dexketoprofen trometamol 100 μg; and Group Dexketoprofen (Group D): Dexketoprofen trometamol 100 μg. Paw incision was achieved under ether inhalation. To measure analgesic potential, hot plate and tail immersion tests were used as nociceptive tests during the postoperative period. The mean reaction times detected in groups during hot plate and tail immersion tests were shortest in Group L at 15, 30, 45, 60, 75, 90, 105, and 120 minutes after start of surgery (pdexketoprofen, as in the morphine group, longer reaction times were detected than in the lidocaine group at all measurement times except 120 minutes (pdexketoprofen in the optimal perioperative pain management is effective, and can be administered as an adjuvant in clinics after neurotoxicity studies in animals, and effective dose studies in volunteers.

  11. Acute versus chronic phase mechanisms in a rat model of CRPS.

    Science.gov (United States)

    Wei, Tzuping; Guo, Tian-Zhi; Li, Wen-Wu; Kingery, Wade S; Clark, John David

    2016-01-19

    Tibia fracture followed by cast immobilization in rats evokes nociceptive, vascular, epidermal, and bone changes resembling complex regional pain syndrome (CRPS). In most cases, CRPS has three stages. Over time, this acute picture, allodynia, warmth, and edema observed at 4 weeks, gives way to a cold, dystrophic but still painful limb. In the acute phase (at 4 weeks post fracture), cutaneous immunological and NK1-receptor signaling mechanisms underlying CRPS have been discovered; however, the mechanisms responsible for the chronic phase are still unknown. The purpose of this study is to understand the mechanisms responsible for the chronic phases of CRPS (at 16 weeks post fracture) at both the peripheral and central levels. We used rat tibial fracture/cast immobilization model of CRPS to study molecular, vascular, and nociceptive changes at 4 and 16 weeks post fracture. Immunoassays and Western blotting were carried out to monitor changes in inflammatory response and NK1-receptor signaling in the skin and spinal cord. Skin temperature and thickness were measured to elucidate vascular changes, whereas von Frey testing and unweighting were carried out to study nociceptive changes. All data were analyzed by one-way analysis of variance (ANOVA) followed by Neuman-Keuls multiple comparison test to compare among all cohorts. In the acute phase (at 4 weeks post fracture), hindpaw allodynia, unweighting, warmth, edema, and/or epidermal thickening were observed among 90 % fracture rats, though by 16 weeks (chronic phase), only the nociceptive changes persisted. The expression of the neuropeptide signaling molecule substance P (SP), NK1 receptor, inflammatory mediators TNFα, IL-1β, and IL-6 and nerve growth factor (NGF) were elevated at 4 weeks in sciatic nerve and/or skin, returning to normal levels by 16 weeks post fracture. The systemic administration of a peripherally restricted IL-1 receptor antagonist (anakinra) or of anti-NGF inhibited nociceptive behaviors at 4

  12. Anti-nociceptive and anti-hyperprolactinemia activities of Fructus Viticis and its effective fractions and chemical constituents.

    Science.gov (United States)

    Hu, Y; Xin, H-L; Zhang, Q-Y; Zheng, H-C; Rahman, K; Qin, L-P

    2007-10-01

    Vitex rotundifolia L. is widely distributed along the sea coast of China. The aim of this study was to investigate the anti-nociceptive and anti-hyperprolactinemia activities of substances isolated from Fructus Viticis (the fruit of Vitex rotundifolia), which may be effective in the treatment of pre-menstrual symptoms, using acetic-acid-induced writhing and metoclopramide-dihydrochloride-induced hyperprolactinemia in mice. The fractions effective in terms of anti-nociceptive and anti-hyperprolactinemia activities were obtained from Fructus Viticis by elution through macro-porous resin, and polyamide and silica gel column chromatography. The standardization of the fractions obtained from the separation procedures was carried out by means of high-performance liquid chromatography (HPLC)-fingerprint. In this study, the flavone-enriched fraction (Fraction 6) showed a higher inhibitory rate than indomethacin (69.4% vs. 56.4%) at a dose of 50 mg/kg body wt., and significantly reduced the prolactin level as compared to HPRL-treated mice (8.2 ng/ml vs. 25.5 ng/ml). Furthermore, this fraction showed anti-nociceptive activity in a dose-dependent manner (10-50 mg/kg body wt., i.g.). On further purification with silica gel, Casticin was isolated from this fraction and it decreased abnormal serum levels of prolactin by approximately 50% (p screening methods, our results indicate that the presence of flavonoids such as Casticin in this plant may be responsible for the activity effects. Casticin has potent analgesic and anti-hyperprolactinaemia properties, is likely to be one of the active components of Fructus Viticis, and may have a role in treating PMS (premenstrual syndrom).

  13. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  14. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  15. Human and bovine spinal disc mechanics subsequent to trypsin injection

    Directory of Open Access Journals (Sweden)

    Jeremy Alsup

    2017-10-01

    The Translational Potential of this Article: Preclinical testing of novel spinal devices is essential to the design validation and regulatory processes, but current testing techniques rely on cadaveric testing of primarily older spines with essentially random amounts of disc degeneration. The present work investigates the viability of using trypsin injections to create a more uniform preclinical model of disc degeneration from a mechanics perspective, for the purpose of testing spinal devices. Such a model would facilitate translation of new spinal technologies to clinical practice.

  16. Model of lumbar spinal stenosis in the experiment

    Directory of Open Access Journals (Sweden)

    Oleg Perepechai

    2015-07-01

      Abstracts The description of an experimental model of lumbar spinal stenosis on 20 rats. The experiment was symmetrical dissection of arc plates to the inside thin cortical layer plates, and then dissection of the latter. The middle part of the arc with the spinous processes of the vertebrae is separated from the rest of the arc, and articular processes. The separated middle part of the arc with yellow ligament is shifted in the ventral direction, reducing the size of the cavity of the spinal canal and fix the contacting bone edges with bone cement. Degenerative changes of the nerve roots were evaluated histologically by endoneural and epineural changes using a 7-point scale of G. Byrond and others. In the studied group of animals 7 days after spinal canal stenosis simulations appeared degenerative changes of nerve fibers, but the degree is low, and there is virtually no endoneural inflammation. The epineurium determined expressed or gross changes, indicating epineural inflammatory processes. After 1 month. There appeared dystrophic and degenerative changes of nerve fibers of the overwhelming majority (over 75%. At a later date (3 months, endoneural change remained practically the same as in the 1th month after surgery, epineural violations were preserved, there were groups and single fibroblasts as a sign of epineural fibrosis, as well as portions of connective tissue neoplasms and hyalinosis.   Keywords: lumbar spinal stenosis, an experimental model.

  17. The Discriminative validity of "nociceptive," "peripheral neuropathic," and "central sensitization" as mechanisms-based classifications of musculoskeletal pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-02-01

    OBJECTIVES: Empirical evidence of discriminative validity is required to justify the use of mechanisms-based classifications of musculoskeletal pain in clinical practice. The purpose of this study was to evaluate the discriminative validity of mechanisms-based classifications of pain by identifying discriminatory clusters of clinical criteria predictive of "nociceptive," "peripheral neuropathic," and "central sensitization" pain in patients with low back (+\\/- leg) pain disorders. METHODS: This study was a cross-sectional, between-patients design using the extreme-groups method. Four hundred sixty-four patients with low back (+\\/- leg) pain were assessed using a standardized assessment protocol. After each assessment, patients\\' pain was assigned a mechanisms-based classification. Clinicians then completed a clinical criteria checklist indicating the presence\\/absence of various clinical criteria. RESULTS: Multivariate analyses using binary logistic regression with Bayesian model averaging identified a discriminative cluster of 7, 3, and 4 symptoms and signs predictive of a dominance of "nociceptive," "peripheral neuropathic," and "central sensitization" pain, respectively. Each cluster was found to have high levels of classification accuracy (sensitivity, specificity, positive\\/negative predictive values, positive\\/negative likelihood ratios). DISCUSSION: By identifying a discriminatory cluster of symptoms and signs predictive of "nociceptive," "peripheral neuropathic," and "central" pain, this study provides some preliminary discriminative validity evidence for mechanisms-based classifications of musculoskeletal pain. Classification system validation requires the accumulation of validity evidence before their use in clinical practice can be recommended. Further studies are required to evaluate the construct and criterion validity of mechanisms-based classifications of musculoskeletal pain.

  18. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Directory of Open Access Journals (Sweden)

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  19. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    Directory of Open Access Journals (Sweden)

    Zhong-jun Hou

    2015-01-01

    Full Text Available Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI and T2-weighted imaging (T2WI scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L 3 to S 1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49% and abruption in 17 lumbosacral spinal nerve roots (23%. Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  20. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis.

    Science.gov (United States)

    Hou, Zhong-Jun; Huang, Yong; Fan, Zi-Wen; Li, Xin-Chun; Cao, Bing-Yi

    2015-11-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3 to S1 stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These findings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

  1. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    Science.gov (United States)

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  2. Spinal Cord Independence Measure, version III: applicability to the UK spinal cord injured population.

    Science.gov (United States)

    Glass, Clive A; Tesio, Luigi; Itzkovich, Malka; Soni, Bakul M; Silva, Pedro; Mecci, Munawar; Chadwick, Raymond; el Masry, Waghi; Osman, Aheed; Savic, Gordana; Gardner, Brian; Bergström, Ebba; Catz, Amiram

    2009-09-01

    To examine the validity, reliability and usefulness of the Spinal Cord Independence Measure for the UK spinal cord injury population. Multi-centre cohort study. Four UK regional spinal cord injury centres. Eighty-six people with spinal cord injury. Spinal Cord Independence Measure and Functional Independence Measure on admission analysed using inferential statistics, and Rasch analysis of Spinal Cord Independence Measure. Internal consistency, inter-rater reliability, discriminant validity; Spinal Cord Independence Measure subscale match between distribution of item difficulty and patient ability measurements; reliability of patient ability measures; fit of data to Rasch model; unidimensionality of subscales; hierarchical ordering of categories within items; differential item functioning across patient groups. Scale reliability (kappa coefficients range 0.491-0.835; (p Spinal Cord Independence Measure subscales compatible with stringent Rasch requirements; mean infit indices high; distinct strata of abilities identified; most thresholds ordered; item hierarchy stable across clinical groups and centres. Misfit and differences in item hierarchy identified. Difficulties assessing central cord injuries highlighted. Conventional statistical and Rasch analyses justify the use of the Spinal Cord Independence Measure in clinical practice and research in the UK. Cross-cultural validity may be further improved.

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow What kind of surgery is common after a spinal cord injury? play_ ... How soon after a spinal cord injury should surgery be performed? play_arrow Is it common to ...

  5. The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations

    International Nuclear Information System (INIS)

    Gao Sijia; Zhang Mengwei; Liu Xiping; Zh Yushen; Liu Jinghong; Wang Zhonghui; Zang Peizhuo; Shi Qiang; Wang Qiang; Liang Chuansheng; Xu Ke

    2009-01-01

    Background and purpose: To explore the value of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Methods: Seventeen patients with initial MR and clinical findings suggestive of spinal vascular diseases underwent CT spinal angiography. Among these, 14 patients took DSA examination within 1 week after CT scan, 7 patients underwent surgical treatment, and 6 patients underwent vascular intervention embolotheraphy. CT protocol: TOSHIBA Aquilion 64 Slice CT scanner, 0.5 mm thickness, 0.5 s/r, 120 kV and 350 mA, positioned at the aortic arch level, and applied with 'sure start' technique with CT threshold of 180 Hu. Contrast agent Iohexol (370 mg I/ml) was injected at 6 ml/s velocity with total volume of 80 ml. The post-processing procedures included MPR, CPR, MIP, VR, etc. Among the 17 patients, four patients underwent fast dynamic contrast-enhanced 3D MR angiography imaging. CT spinal angiography and three-dimensional contrast-enhanced MR angiography (3D CE-MRA) images were compared and evaluated with DSA and operation results based on disease type, lesion range, feeding arteries, fistulas, draining veins of vascular malformation by three experienced neuroradiologists independently, using double blind method. The data were analyzed using SPSS analytic software with χ 2 -test. We compared the results with DSA and operation results. Results: The statistical analysis of the diagnostic results by the three experienced neuroradiologists had no statistical difference (P > 0.05). All of the 17 patients showed clearly the abnormality of spinal cord vessels and the range of lesions by CT spinal angiography. Among them, one patient was diagnosed as arteriovenous fistulas (AVF) by MRI and CT spinal angiography, which was verified by surgical operation. DSA of the same patient, however, did not visualize the lesion. One case was diagnosed as AVM complicated with AVF by DSA, but CT spinal angiography could only show AVM not AVF. The

  6. The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Gao Sijia [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China)], E-mail: scarlettgao@126.com; Zhang Mengwei; Liu Xiping; Zh Yushen; Liu Jinghong; Wang Zhonghui [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Zang Peizhuo [Department of Neurosurgery, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Shi Qiang; Wang Qiang [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Liang Chuansheng [Department of Neurosurgery, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China); Xu Ke [Department of Radiology, No. 1 Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2009-07-15

    Background and purpose: To explore the value of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Methods: Seventeen patients with initial MR and clinical findings suggestive of spinal vascular diseases underwent CT spinal angiography. Among these, 14 patients took DSA examination within 1 week after CT scan, 7 patients underwent surgical treatment, and 6 patients underwent vascular intervention embolotheraphy. CT protocol: TOSHIBA Aquilion 64 Slice CT scanner, 0.5 mm thickness, 0.5 s/r, 120 kV and 350 mA, positioned at the aortic arch level, and applied with 'sure start' technique with CT threshold of 180 Hu. Contrast agent Iohexol (370 mg I/ml) was injected at 6 ml/s velocity with total volume of 80 ml. The post-processing procedures included MPR, CPR, MIP, VR, etc. Among the 17 patients, four patients underwent fast dynamic contrast-enhanced 3D MR angiography imaging. CT spinal angiography and three-dimensional contrast-enhanced MR angiography (3D CE-MRA) images were compared and evaluated with DSA and operation results based on disease type, lesion range, feeding arteries, fistulas, draining veins of vascular malformation by three experienced neuroradiologists independently, using double blind method. The data were analyzed using SPSS analytic software with {chi}{sup 2}-test. We compared the results with DSA and operation results. Results: The statistical analysis of the diagnostic results by the three experienced neuroradiologists had no statistical difference (P > 0.05). All of the 17 patients showed clearly the abnormality of spinal cord vessels and the range of lesions by CT spinal angiography. Among them, one patient was diagnosed as arteriovenous fistulas (AVF) by MRI and CT spinal angiography, which was verified by surgical operation. DSA of the same patient, however, did not visualize the lesion. One case was diagnosed as AVM complicated with AVF by DSA, but CT spinal angiography could only show

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury ... Jennifer Piatt, PhD David Chen, MD Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... L Sarah Harrison, OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury ... a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ...

  10. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.

    Science.gov (United States)

    Barrière, Grégory; Frigon, Alain; Leblond, Hugues; Provencher, Janyne; Rossignol, Serge

    2010-08-01

    The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.

  11. Trauma: Spinal Cord Injury.

    Science.gov (United States)

    Eckert, Matthew J; Martin, Matthew J

    2017-10-01

    Injuries to the spinal column and spinal cord frequently occur after high-energy mechanisms of injury, or with lower-energy mechanisms, in select patient populations like the elderly. A focused yet complete neurologic examination during the initial evaluation will guide subsequent diagnostic procedures and early supportive measures to help prevent further injury. For patients with injury to bone and/or ligaments, the initial focus should be spinal immobilization and prevention of inducing injury to the spinal cord. Spinal cord injury is associated with numerous life-threatening complications during the acute and long-term phases of care that all acute care surgeons must recognize. Published by Elsevier Inc.

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  13. Role of allografts in spinal surgery

    International Nuclear Information System (INIS)

    Aziz Nather

    1999-01-01

    With development of more tissue banks in the region and internationally, allografts are increasingly being used in orthopaedic surgery including spinal surgery. Two groups of patients will particularly benefit from the use of allografts. The first group is young children in whom iliac crest is cartilaginous and cannot provide sufficient quantity of autografts. The second is the elderly where bones from iliac crest are porotic and fatty. Allografts are used to fulfill two distinct functions in Spinal Surgery. One is to act as a buttress for anterior spinal surgery using cortical allografts. The other is to enhance fusion for posterior spinal surgery. Up to December 1997, 71 transplantations have been performed using allografts from NUH Tissue Bank. Anterior Spinal Surgery has been performed in 15 cases. The indications are mainly Trauma-Burst Fractures and Spinal Secondaries to the Spine. All cases are in thoracic and thoracolumbar region. Allografts used are deep frozen and freeze-dried cortical allografts. Femur is used for thoraco-lumbar region and humerus for upper thoracic region. Instrumentation used ranged from anterior devices (Canada, DCP, Synergy etc) to posterior devices (ISOLA). Deep frozen allografts and more recently freeze-dried allografts are preferred especially for osteoporotic spines. Cortical allografts are packed with autografts from ribs in the medullary canal. Allograft-autograft composites are always used to ensure better incorporation. Postero-lateral fusion has been performed for 56 cases. The indications include congenital and idiopathic scoliosis, degenerative stenosis, degenerative spondylolisthesis, spondylolytic spondylolisthesis, fracture-dislocation, osteoporotic burst fracture, spinal secondaries with cord compression and traumatic spondylolisthesis. Deep frozen bone allografts are used in combination with patient's own autografts from spinous processes to provide a 50% mix. Instrumentation used include Hartshill, Steffee, Isola

  14. Glycoconjugates distribution during developing mouse spinal cord motor organizers.

    Science.gov (United States)

    Vojoudi, Elham; Ebrahimi, Vahid; Ebrahimzadeh-Bideskan, Alireza; Fazel, Alireza

    2015-01-01

    The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase-labeled specific lectins were used: N-acetylgalactosamine, including Dolichos biflorus, Wisteria floribunda agglutinin (WFA), Vicia villosa, Glycine max as well as focuse-binding lectins, including tetragonolobus, Ulex europaeus, and Orange peel fungus (OFA). All sections were counterstained with alcian blue (pH 2.5). Our results showed that only WFA and OFA reacted strongly with the floor plate cells from early to late embryonic period of developing spinal cord. The strongest reactions were related to the 14, 15, and 16 days of tissue sections incubated with OFA and WFA lectins. The present study demonstrated that cellular and molecular differentiation of the spinal cord organizers is a wholly regulated process, and α-L-fucose, α-D-GalNAc, and α/β-D-GalNAc terminal sugars play a significant role during the prenatal spinal cord development.

  15. Characterizing the location of spinal and vertebral levels in the human cervical spinal cord.

    Science.gov (United States)

    Cadotte, D W; Cadotte, A; Cohen-Adad, J; Fleet, D; Livne, M; Wilson, J R; Mikulis, D; Nugaeva, N; Fehlings, M G

    2015-04-01

    Advanced MR imaging techniques are critical to understanding the pathophysiology of conditions involving the spinal cord. We provide a novel, quantitative solution to map vertebral and spinal cord levels accounting for anatomic variability within the human spinal cord. For the first time, we report a population distribution of the segmental anatomy of the cervical spinal cord that has direct implications for the interpretation of advanced imaging studies most often conducted across groups of subjects. Twenty healthy volunteers underwent a T2-weighted, 3T MRI of the cervical spinal cord. Two experts marked the C3-C8 cervical nerve rootlets, C3-C7 vertebral bodies, and pontomedullary junction. A semiautomated algorithm was used to locate the centerline of the spinal cord and measure rostral-caudal distances from a fixed point in the brain stem, the pontomedullary junction, to each of the spinal rootlets and vertebral bodies. Distances to each location were compared across subjects. Six volunteers had 2 additional scans in neck flexion and extension to measure the effects of patient positioning in the scanner. We demonstrated that substantial variation exists in the rostral-caudal position of spinal cord segments among individuals and that prior methods of predicting spinal segments are imprecise. We also show that neck flexion or extension has little effect on the relative location of vertebral-versus-spinal levels. Accounting for spinal level variation is lacking in existing imaging studies. Future studies should account for this variation for accurate interpretation of the neuroanatomic origin of acquired MR signals. © 2015 by American Journal of Neuroradiology.

  16. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    Science.gov (United States)

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.

  17. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    Science.gov (United States)

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  18. Disorders of spinal blood circulation

    OpenAIRE

    Hevyak, O.M.; Kuzminskyy, A.P.

    2017-01-01

    Spinal strokes are rare. The most common causes of the haemorrhage are spinal cord trauma, vasculitis with signs of haemorrhagic diathesis, spinal vascular congenital anomalies (malformations) and haemangioma. By localization, haemorrhagic strokes are divided into three groups: haematomyelia, spinal subarachnoid haemorrhage, epidural hematoma. Most cavernous malformations are localized at the cervical level, fewer — at thoracic and lumbar levels of the spinal cord. The clinical case of diagno...

  19. Tramadol effects on clinical variables and the mechanical nociceptive threshold in horses

    OpenAIRE

    Franco,Leandro Guimarães; Moreno,Juan Carlos Duque; Teixeira Neto,Antônio Raphael; Souza,Moisés Caetano e; Silva,Luiz Antônio Franco da

    2014-01-01

    This study assessed the clinical effects and the mechanical antinociceptive potential of intravenous (IV) tramadol in horses.A blinded and randomized study was designed with 7 horses treated with 1 (Tr1), 2 (Tr2) or 3 (Tr3) mg kg-1 of tramadol IV. The heart rate, respiratory rate (fR), arterial pressure, degree of sedation, gastrointestinal motility (GI), behavior changes and the mechanical nociceptive threshold (MNT) were evaluated. The MNT was determined with von Frey device method.Tr3 had ...

  20. Mechanisms in Chronic Multisympton Illnesses

    Science.gov (United States)

    2007-10-01

    related to spinal cord injury [25], and in restless leg syndrome [26]. The caudate nucleus receives a large nociceptive input from spinal pain...Deutsch G: Familial painful restless legs syndrome correlates with pain dependent variation of blood flow to the caudate, thalamus, and anterior cingulate...imaging sequence commonly used in clinical practice to detection early ischemia (19). Diffusion tensor imaging ( DTI ) yields quantitative measures for

  1. Superficial dorsal horn neurons with double spike activity in the rat.

    Science.gov (United States)

    Rojas-Piloni, Gerardo; Dickenson, Anthony H; Condés-Lara, Miguel

    2007-05-29

    Superficial dorsal horn neurons promote the transfer of nociceptive information from the periphery to supraspinal structures. The membrane and discharge properties of spinal cord neurons can alter the reliability of peripheral signals. In this paper, we analyze the location and response properties of a particular class of dorsal horn neurons that exhibits double spike discharge with a very short interspike interval (2.01+/-0.11 ms). These neurons receive nociceptive C-fiber input and are located in laminae I-II. Double spikes are generated spontaneously or by depolarizing current injection (interval of 2.37+/-0.22). Cells presenting double spike (interval 2.28+/-0.11) increased the firing rate by electrical noxious stimulation, as well as, in the first minutes after carrageenan injection into their receptive field. Carrageenan is a polysaccharide soluble in water and it is used for producing an experimental model of semi-chronic pain. In the present study carrageenan also produces an increase in the interval between double spikes and then, reduced their occurrence after 5-10 min. The results suggest that double spikes are due to intrinsic membrane properties and that their frequency is related to C-fiber nociceptive activity. The present work shows evidence that double spikes in superficial spinal cord neurones are related to the nociceptive stimulation, and they are possibly part of an acute pain-control mechanism.

  2. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  3. Five-year durability of stand-alone interspinous process decompression for lumbar spinal stenosis

    Directory of Open Access Journals (Sweden)

    Nunley PD

    2017-09-01

    Full Text Available Pierce D Nunley,1 Vikas V Patel,2 Douglas G Orndorff,3 William F Lavelle,4 Jon E Block,5 Fred H Geisler6 1Spine Institute of Louisiana, Shreveport, LA, 2The Spine Center, University of Colorado Hospital, Denver, CO, 3Spine Colorado, Mercy Regional Hospital, Durango, CO, 4Upstate Bone and Joint Center, East Syracuse, NY, 5Independent Consultant, San Francisco, CA, 6Independent Consultant, Chicago, IL, USA Background: Lumbar spinal stenosis is the most common indication for spine surgery in older adults. Interspinous process decompression (IPD using a stand-alone spacer that functions as an extension blocker offers a minimally invasive treatment option for intermittent neurogenic claudication associated with spinal stenosis.Methods: This study evaluated the 5-year clinical outcomes for IPD (Superion® from a randomized controlled US Food and Drug Administration (FDA noninferiority trial. Outcomes included Zurich Claudication Questionnaire (ZCQ symptom severity (ss, physical function (pf, and patient satisfaction (ps subdomains, leg and back pain visual analog scale (VAS, and Oswestry Disability Index (ODI.Results: At 5 years, 84% of patients (74 of 88 demonstrated clinical success on at least two of three ZCQ domains. Individual ZCQ domain success rates were 75% (66 of 88, 81% (71 of 88, and 90% (79 of 88 for ZCQss, ZCQpf, and ZCQps, respectively. Leg and back pain success rates were 80% (68 of 85 and 65% (55 of 85, respectively, and the success rate for ODI was 65% (57 of 88. Percentage improvements over baseline were 42%, 39%, 75%, 66%, and 58% for ZCQss, ZCQpf, leg and back pain VAS, and ODI, respectively (all P<0.001. Within-group effect sizes were classified as very large for four of five clinical outcomes (ie, >1.0; all P<0.0001. Seventy-five percent of IPD patients were free from reoperation, revision, or supplemental fixation at their index level at 5 years.Conclusion: After 5 years of follow-up, IPD with a stand-alone spacer provides

  4. Influence of Spinal Manipulative Therapy Force Magnitude and Application Site on Spinal Tissue Loading: A Biomechanical Robotic Serial Dissection Study in Porcine Motion Segments.

    Science.gov (United States)

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Greg

    In order to define the relation between spinal manipulative therapy (SMT) input parameters and the distribution of load within spinal tissues, the aim of this study was to determine the influence of force magnitude and application site when SMT is applied to cadaveric spines. In 10 porcine cadavers, a servo-controlled linear actuator motor provided a standardized SMT simulation using 3 different force magnitudes (100N, 300N, and 500N) to 2 different cutaneous locations: L3/L4 facet joint (FJ), and L4 transverse processes (TVP). Vertebral kinematics were tracked optically using indwelling bone pins, the motion segment removed and mounted in a parallel robot equipped with a 6-axis load cell. The kinematics of each SMT application were replicated robotically. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Forces experienced by the L3/L4 segment and spinal structures during SMT replication were recorded and analyzed. Spinal manipulative therapy force magnitude and application site parameters influenced spinal tissues loading. A significant main effect (P < .05) of force magnitude was observed on the loads experienced by the intact specimen and supra- and interspinous ligaments. The main effect of application site was also significant (P < .05), influencing the loading of the intact specimen and facet joints, capsules, and ligamentum flavum (P < .05). Spinal manipulative therapy input parameters of force magnitude and application site significantly influence the distribution of forces within spinal tissues. By controlling these SMT parameters, clinical outcomes may potentially be manipulated. Copyright © 2017. Published by Elsevier Inc.

  5. Determination of the temperature causing a nociceptive response in the tail of albino BALB/c mice.

    Science.gov (United States)

    Aguirre Siancas, E E; Lam Figueroa, N M; Delgado Rios, J C; Ruiz Ramirez, E; Portilla Flores, O S; Crispín Huamaní, L J; Alarcón Velásquez, L

    2018-06-08

    Designs for determining nociceptive response in rodents are of great use in neurology and experimental neuroscience. Immersing mice's tails in warm water is one of the most widely used procedures to evaluate this response; however, a wide range of temperatures are used in different studies. Knowing the temperature that produces a powerful nociceptive response in the tail of BALB/c mice is extremely useful. Eight 2-month-old male BALB/c mice were used. A 14-cm high beaker was filled with water up to 13 cm. The animals' tails were immersed in the container with a starting temperature of 36°C. The water temperature was raised in 1°C increments until we identified the temperatures that produced nociceptive responses. That response was determined by counting the time taken before the mouse shook its tail to remove it from the water. Six of the 8 mice began shaking their tails at the temperature of 51°C. All animals removed their tails from the water at the temperatures of 54°C, 55°C, and 56°C, taking a mean time of 8.54, 7.99, and 5.33seconds, respectively. ANOVA applied to the response times for each of the 3 temperatures indicated revealed a value of F=2.8 (P=.123). The response time was statistically similar for the temperatures of 54°C, 55°C, and 56°C; however, the data were less dispersed for the latter temperature. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Management of Penetrating Spinal Cord Injuries in a Non Spinal ...

    African Journals Online (AJOL)

    Management of Penetrating Spinal Cord Injuries in a Non Spinal Centre: Experience at Enugu, Nigeria. ... The thoracic spine{9(41%)}was most often involved. ... Five (23%) patients with injury at cervical level died from respiratory failure.

  7. Spinal stenosis

    Science.gov (United States)

    ... in the spine that was present from birth Narrow spinal canal that the person was born with Herniated or slipped disk, which ... when you sit down or lean forward. Most people with spinal stenosis cannot walk for a long ... During a physical exam, your health care provider will try to ...

  8. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    Science.gov (United States)

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow ...

  10. Evaluation of Postoperative Anti-nociceptive Efficacy of Intrathecal Dexketoprofen in Rats

    Directory of Open Access Journals (Sweden)

    Birol Muhammet Er

    2016-06-01

    Full Text Available Background: Some studies have suggested that the intrathecal use of cyclooxygenase enzyme inhibitors provides an anti-nociceptive effect. Therefore, the occurrence of side effects seen in systemic usage can be eliminated. Aims: The primary objective of this experimental, randomized, controlled trial was to test the hypothesis asserting that intrathecal dexketoprofen trometamol would demonstrate an analgesic effect during postoperative period. Study Design: Animal experimentation. Methods: Forty rats were randomized into 4 groups 7 days after intrathecal catheterization; the following drugs were given through catheter lumens: Group Lidocaine (Group L: Lidocaine 20 μg; Group Lidocaine-Morphine (Group LM: Lidocaine 20 μg and morphine 0.5 μgr; Group Lidocaine-Dexketoprofen (Group LD: Lidocaine 20 μg and dexketoprofen trometamol 100 μg; and Group Dexketoprofen (Group D: Dexketoprofen trometamol 100 μg. Paw incision was achieved under ether inhalation. To measure analgesic potential, hot plate and tail immersion tests were used as nociceptive tests during the postoperative period. Results: The mean reaction times detected in groups during hot plate and tail immersion tests were shortest in Group L at 15, 30, 45, 60, 75, 90, 105, and 120 minutes after start of surgery (p<0.01, all others. In the groups using dexketoprofen, as in the morphine group, longer reaction times were detected than in the lidocaine group at all measurement times except 120 minutes (p<0.01. Conclusion: Intrathecal dexketoprofen in the optimal perioperative pain management is effective, and can be administered as an adjuvant in clinics after neurotoxicity studies in animals, and effective dose studies in volunteers.

  11. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury

    OpenAIRE

    Zimmer, M. Beth; Goshgarian, Harry G.

    2006-01-01

    Previous work has shown that latent respiratory motor pathways known as crossed phrenic pathways are inhibited via a spinal inhibitory process; however, the underlying mechanisms remain unknown. The present study investigated whether spinal GABA-A and/or glycine receptors are involved in the inhibition of the crossed phrenic pathways after a C2 spinal cord hemisection injury. Under ketamine/xylazine anesthesia, adult, female, Sprague Dawley rats were hemisected at the C2 spinal cord level. Fo...

  12. Sub-paresthesia spinal cord stimulation reverses thermal hyperalgesia and modulates low frequency EEG in a rat model of neuropathic pain.

    Science.gov (United States)

    Koyama, Suguru; Xia, Jimmy; Leblanc, Brian W; Gu, Jianwen Wendy; Saab, Carl Y

    2018-05-08

    Paresthesia, a common feature of epidural spinal cord stimulation (SCS) for pain management, presents a challenge to the double-blind study design. Although sub-paresthesia SCS has been shown to be effective in alleviating pain, empirical criteria for sub-paresthesia SCS have not been established and its basic mechanisms of action at supraspinal levels are unknown. We tested our hypothesis that sub-paresthesia SCS attenuates behavioral signs of neuropathic pain in a rat model, and modulates pain-related theta (4-8 Hz) power of the electroencephalogram (EEG), a previously validated correlate of spontaneous pain in rodent models. Results show that sub-paresthesia SCS attenuates thermal hyperalgesia and power amplitude in the 3-4 Hz range, consistent with clinical data showing significant yet modest analgesic effects of sub-paresthesia SCS in humans. Therefore, we present evidence for anti-nociceptive effects of sub-paresthesia SCS in a rat model of neuropathic pain and further validate EEG theta power as a reliable 'biosignature' of spontaneous pain.

  13. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  14. Non osseous intra-spinal tumors in children and adolescents: spinal column deformity (in french)

    International Nuclear Information System (INIS)

    Ghanem, I.; Zeller, R.; Dubousset, J.

    1997-01-01

    Purpose of the study. The delay in diagnosis of spinal tumors is not rare. The chief complaint may include pain, walking disability and spinal or limb deformities. The purpose of our study is to analyze the spinal deformities associated with non osseous intra-spinal tumors, to assess the complications of treatment, and to set out a preventive protocol. Methods. The incidence and pattern of spinal deformity was assessed before tumor treatment and ultimately after laminectomy or osteoplastic laminotomy (or lamino-plasty). Results. Among the 9 cases with preexisting spinal deformity, the curve magnitude increased after laminectomy in 4. A kyphotic, kyphoscoliotic or scoliotic deformity developed in 18 cases after surgery for tumor resection. Among these 18 patients, only one had bad an adequate osteoplastic laminotomy. The treatment of spinal deformities was surgical in 12 cases, and done by either posterior or anterior and posterior combined arthrodesis. Discussion. Spinal deformity may be the main complaint of a patient who has intraspinal tumor. Prevention of post-laminectomy spinal deformity is mandatory, and could be done by osteoplastic laminotomy and the use of a brace during a minimum period of 4 to 6 months after surgery. Conclusion. Diagnosis of intraspinal tumors in children and adolescents should be done early, and lamino-arthrectomy should be replaced by osteoplastic laminotomy. (authors)

  15. [Current status of thoracoscopic surgery for thoracic and lumbar spine. Part 2: treatment of the thoracic disc hernia, spinal deformities, spinal tumors, infections and miscellaneous].

    Science.gov (United States)

    Verdú-López, Francisco; Beisse, Rudolf

    2014-01-01

    Thoracoscopic surgery or video-assisted thoracic surgery (VATS) of the thoracic and lumbar spine has evolved greatly since it appeared less than 20 years ago. It is currently used in a large number of processes and injuries. The aim of this article, in its two parts, is to review the current status of VATS of the thoracic and lumbar spine in its entire spectrum. After reviewing the current literature, we developed each of the large groups of indications where VATS takes place, one by one. This second part reviews and discusses the management, treatment and specific thoracoscopic technique in thoracic disc herniation, spinal deformities, tumour pathology, infections of the spine and other possible indications for VATS. Thoracoscopic surgery is in many cases an alternative to conventional open surgery. The transdiaphragmatic approach has made endoscopic treatment of many thoracolumbar junction processes possible, thus widening the spectrum of therapeutic indications. These include the treatment of spinal deformities, spinal tumours, infections and other pathological processes, as well as the reconstruction of injured spinal segments and decompression of the spinal canal if lesion placement is favourable to antero-lateral approach. Good clinical results of thoracoscopic surgery are supported by growing experience reflected in a large number of articles. The degree of complications in thoracoscopic surgery is comparable to open surgery, with benefits in regard to morbidity of the approach and subsequent patient recovery. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  16. Magnetic resonance imaging of spinal cord lesions in multiple sclerosis

    International Nuclear Information System (INIS)

    Kojima, Shigeyuki; Yagishita, Toshiyuki; Fukutake, Toshio; Hirayama, Keizo; Fukuda, Nobuo.

    1987-01-01

    Magnetic resonance imaging (MRI) was used in three patients with multiple sclerosis (MS) to demonstrate the longitudinal distribution of demyelinating plaques in the spinal cord and to measure their T1 relaxation time values in these disease processes. Neurological examination allowed the detection of the superior limit of the spinal cord lesions in the three patients, but did not permit detection of the inferior limit in two of the patients. With MRI, however, it was possible to demonstrate the longitudinal distribution of demyelinating plaques in all three patients from coronal or sagittal images using spin echo and inversion recovery pulse sequences. In two patients treated with prednisolone, serial T1 relaxation time values of MS spinal cord lesions were measured from T1 calculated images. In one patient with transverse myelopathy, the T1 relaxation time values of MS spinal cord lesions were significantly increased at a stage of acute exacerbation. This is apparently in contrast with the values at the stage of remission. In the patient with localized cervical myelopathy, the increase in T1 relaxation time values of MS spinal cord lesions at the acute stage was small and significantly different from the values at the remission stage. Several recent reports have indicated that MRI is extremely sensitive in the detection of MS plaques, but most efforts to use MRI in the diagnosis of MS have been concentrated on brain lesions in spite of their frequent associations with spinal cord involvements. It is concluded from our case studies that MRI coronal or sagittal image is useful in demonstrating the longitudinal distribution of MS spinal cord lesions. In addition, serial observations of T1 relaxation time values of MS plaques may be important in assessing the activity of MS plaques and evaluation of the steroid therapy in MS processes. (author)

  17. Anti-inflammatory and anti-nociceptive activities of methanolic leaf extract of Indigofera cassioides Rottl. Ex. DC.

    Directory of Open Access Journals (Sweden)

    Raju Senthil Kumar

    2013-01-01

    Conclusions: All the results obtained revealed that the extract MEIC showed potent anti-inflammatory and anti-nociceptive activity against all the tested models and the results obtained were comparable with the standards used. The activity of the extract may be due to the presence of terpenoids, flavonoids and other phytochemicals.

  18. Chronic spinal subdural hematoma

    International Nuclear Information System (INIS)

    Hagen, T.; Lensch, T.

    2008-01-01

    Compared with spinal epidural hematomas, spinal subdural hematomas are rare; chronic forms are even more uncommon. These hematomas are associated not only with lumbar puncture and spinal trauma, but also with coagulopathies, vascular malformations and tumors. Compression of the spinal cord and the cauda equina means that the patients develop increasing back or radicular pain, followed by paraparesis and bladder and bowel paralysis, so that in most cases surgical decompression is carried out. On magnetic resonance imaging these hematomas present as thoracic or lumbar subdural masses, their signal intensity varying with the age of the hematoma. We report the clinical course and the findings revealed by imaging that led to the diagnosis in three cases of chronic spinal subdural hematoma. (orig.) [de

  19. Imaging procedures in spinal infectious diseases

    International Nuclear Information System (INIS)

    Rodiek, S.O.

    2001-01-01

    A targeted successful treatment of spinal infectious diseases requires clinical and laboratory data that are completed by the contribution of imaging procedures. Neuroimaging only provides essential informations on the correct topography, localisation, acuity and differential diagnosis of spinal infectious lesions. MRI with its sensitivity concerning soft tissue lesions is a useful tool in detecting infectious alterations of spinal bone marrow, intervertebral disks, leptomeninges and the spinal cord itself. Crucial imaging patterns of typical spinal infections are displayed and illustrated by clinical case studies. We present pyogenic, granulomatous and postoperative variants of spondylodicitis, spinal epidural abscess, spinal meningitis and spinal cord infections. The importance of intravenous contrastmedia application is pointed out. (orig.) [de

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  1. A comparison of effect of preemptive use of oral gabapentin and pregabalin for acute post-operative pain after surgery under spinal anesthesia

    Science.gov (United States)

    Bafna, Usha; Rajarajeshwaran, Krishnamoorthy; Khandelwal, Mamta; Verma, Anand Prakash

    2014-01-01

    Background and Aims: Preemptive analgesia is an antinociceptive treatment that prevents establishment of altered processing of afferent input. Pregabalin has been claimed to be more effective in preventing neuropathic component of acute nociceptive pain of surgery. We conducted a study to compare the effect of oral gabapentin and pregabalin with control group for post-operative analgesia Materials and Methods: A total of 90 ASA grade I and II patients posted for elective gynecological surgeries were randomized into 3 groups (group A, B and C of 30 patients each). One hour before entering into the operation theatre the blinded drug selected for the study was given with a sip of water. Group A- received identical placebo capsule, Group B- received 600mg of gabapentin capsule and Group C — received 150 mg of pregabalin capsule. Spinal anesthesia was performed at L3-L4 interspace and a volume of 3.5 ml of 0.5% bupivacaine heavy injected over 30sec through a 25 G spinal needle. VAS score at first rescue analgesia, mean time of onset of analgesia, level of sensory block at 5min and 10 min interval, onset of motor block, total duration of analgesia and total requirement of rescue analgesia were observed as primary outcome. Hemodynamics and side effects were recorded as secondary outcome in all patients. Results: A significantly longer mean duration of effective analgesia in group C was observed compared with other groups (P < 0.001). The mean duration of effective analgesia in group C was 535.16 ± 32.86 min versus 151.83 ± 16.21 minutes in group A and 302.00 ± 24.26 minutes in group B. The mean numbers of doses of rescue analgesia in the first 24 hours in group A, B and C was 4.7 ± 0.65, 4.1 ±0.66 and 3.9±0.614. (P value <0.001). Conclusion: We conclude that preemptive use of gabapentin 600mg and pregabalin 150 mg orally significantly reduces the postoperative rescue analgesic requirement and increases the duration of postoperative analgesia in patients undergoing

  2. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat

    Science.gov (United States)

    Zheng, Lingxing; Walls, Michael; Allette, Yohance M.; White, Fletcher A.; Shi, Riyi

    2013-01-01

    Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury-induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3-L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound’s pro-nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggests that acrolein directly modulates SCI-associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic. PMID:24147766

  3. Spinal CT scan, 1

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi

    1982-01-01

    Methods of CT of the cervical and thoracic spines were explained, and normal CT pictures of them were described. Spinal CT was evaluated in comparison with other methods in various spinal diseases. Plain CT revealed stenosis due to spondylosis or ossification of posterior longitudinal ligament and hernia of intervertebral disc. CT took an important role in the diagnosis of spinal cord tumors with calcification and destruction of the bone. CT scan in combination with other methods was also useful for the diagnosis of spinal injuries, congenital anomalies and infections. (Ueda, J.)

  4. Spinal injury in sport

    Energy Technology Data Exchange (ETDEWEB)

    Barile, Antonio [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy)]. E-mail: antonio.barile@cc.univaq.it; Limbucci, Nicola [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Splendiani, Alessandra [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Gallucci, Massimo [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy); Masciocchi, Carlo [Department of Radiology, University of L' Aquila, S. Salvatore Hospital, Via Vetoio, Coppito, 67100 L' Aquila (Italy)

    2007-04-15

    Spinal injuries are very common among professional or amateur athletes. Spinal sport lesions can be classified in overuse and acute injuries. Overuse injuries can be found after years of repetitive spinal load during sport activity; however specific overuse injuries can also be found in adolescents. Acute traumas are common in contact sports. Most of the acute injuries are minor and self-healing, but severe and catastrophic events are possible. The aim of this article is to review the wide spectrum of spinal injuries related to sport activity, with special regard to imaging finding.

  5. Spinal injury in sport

    International Nuclear Information System (INIS)

    Barile, Antonio; Limbucci, Nicola; Splendiani, Alessandra; Gallucci, Massimo; Masciocchi, Carlo

    2007-01-01

    Spinal injuries are very common among professional or amateur athletes. Spinal sport lesions can be classified in overuse and acute injuries. Overuse injuries can be found after years of repetitive spinal load during sport activity; however specific overuse injuries can also be found in adolescents. Acute traumas are common in contact sports. Most of the acute injuries are minor and self-healing, but severe and catastrophic events are possible. The aim of this article is to review the wide spectrum of spinal injuries related to sport activity, with special regard to imaging finding

  6. Spinal cord stimulation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007560.htm Spinal cord stimulation To use the sharing features on this page, please enable JavaScript. Spinal cord stimulation is a treatment for pain that uses ...

  7. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    Science.gov (United States)

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where

  8. Influence of dental correction on nociceptive test responses, fecal appearance, body condition score, and apparent digestibility coefficient for dry matter of Zamorano-leones donkeys (Equus asinus).

    Science.gov (United States)

    Rodrigues, J B; Ferreira, L M; Bastos, E; San Roman, F; Viegas, C; Santos, A S

    2013-10-01

    The influence of dental correction on nociceptive (pressure) test responses, fecal appearance, BCS, and apparent digestibility coefficient for DM was studied in 18 Zamorano-Leonés donkeys, an endangered local breed from the Zamora province in Spain. For this purpose, donkeys were divided into 2 homogeneous control and treatment groups, based on age, BCS, and dental findings. On d 1, 45, 90, and 135, BCS and nociceptive test responses were evaluated in all donkeys. Feed and fecal samples were collected from all donkeys for 3 consecutive days, starting at each of the aforementioned days. Apparent digestibility coefficient for DM was estimated, using ADL as an internal marker. A progressive decrease of positive nociceptive test responses was observed from d 1 up to 90 (P donkeys but also the equid population, in general, to improve their welfare.

  9. Interaction of corneal nociceptive stimulation and lacrimal secretion.

    Science.gov (United States)

    Situ, Ping; Simpson, Trefford L

    2010-11-01

    To investigate the interaction between corneal stimuli at different positions and tear secretion and to establish relationships between nociceptive stimuli detection thresholds and stimulated tearing. Using a computerized Belmonte-esthesiometer, mechanical and chemical stimuli, from 0% to 200% of the threshold in 50% steps, were delivered (in random order) to the central and peripheral (approximately 2-mm inside the limbus) cornea during four separate sessions to 15 subjects. Immediately after each stimulus, tear meniscus height (TMH) was measured using optical coherence tomography to quantify the amount of lacrimal secretion, and subjects reported whether they felt tears starting to accumulate in their eyes. Thresholds (50% detection) for detection of tearing were estimated. TMH increased with increasing stimulus intensity (P lacrimation reflex. Central mechanical corneal stimulation is the most effective stimulus-position pairing and appears to be the major sensory driving force for reflex tear secretion by the lacrimal functional unit.

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  11. Neuro chemical characteristic of structures of nociceptive system athyperthyroid function of the thyroid gland

    Directory of Open Access Journals (Sweden)

    O. M. Demchenko

    2015-06-01

    Full Text Available The papercomprises the study of the conditionofpro-antioxidantprocesses in the formationso fnociceptivesystem (cerebral cortex, hippocampus, stem and thalamus in the presence of the experiment al induced hyperthyroidism. It was found that nociceptive irritation (laparotomy on the background of hyper thyroidism had not pronounced effect on the content of diene conjugates (DC and malondialdehyde. The level of enzymes of antioxidant system of superoxidedismutase (SOD and glutathioneperoxidase (GPO decreased.

  12. Imaging of tuberculosis. Pt. 4. Spinal manifestations in 63 patients

    International Nuclear Information System (INIS)

    Lindahl, S.; Nyman, R.S.; Brismar, J.; Hugosson, C.; Lundstedt, C.

    1996-01-01

    Purpose: To describe the radiologic findings in patients with spinal tuberculosis (TB). Material and Methods: Out of a total of 503 patients with TB, 63 (13%) had involvement of the spine. Results: In 40 patients, the spine was the only location; 20 patients had concomitant chest TB. Conventional radiographs gave a good overview, CT visualized the diskovetebral lesions and the paravertebral abscesses, while MR imaging was useful to determine the spread of disease to the soft tissues and the spinal canal. The typical findings were destroyed vertebrae with associated paraspinal soft-tissue mass, with or without abscess formation, sometimes also involving the epidural space together with adjoining disk lesion and focal gibbus formation. Involvement of a single vertebra was a relatively common finding. Large psoas abscesses could occur without any signs of bone involvement. The TB process could sometimes be indistinguishable from malignant processes, and in 3 patients, with multiple lesions in the spine, it mimicked metastatic disease. Conclusion: It is stressed that TB should always be considered in the differential diagnosis when radiologic findings suggest spinal infections or primary or secondary spinal tumors. (orig.)

  13. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain.

    Science.gov (United States)

    Zhang, Jin; Wu, Dan; Xie, Cheng; Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.

  14. Spinal cord involvement in tuberculous meningitis.

    Science.gov (United States)

    Garg, R K; Malhotra, H S; Gupta, R

    2015-09-01

    To summarize the incidence and spectrum of spinal cord-related complications in patients of tuberculous meningitis. Reports from multiple countries were included. An extensive review of the literature, published in English, was carried out using Scopus, PubMed and Google Scholar databases. Tuberculous meningitis frequently affects the spinal cord and nerve roots. Initial evidence of spinal cord involvement came from post-mortem examination. Subsequent advancement in neuroimaging like conventional lumbar myelography, computed tomographic myelography and gadolinium-enhanced magnetic resonance-myelography have contributed immensely. Spinal involvement manifests in several forms, like tuberculous radiculomyelitis, spinal tuberculoma, myelitis, syringomyelia, vertebral tuberculosis and very rarely spinal tuberculous abscess. Frequently, tuberculous spinal arachnoiditis develops paradoxically. Infrequently, spinal cord involvement may even be asymptomatic. Spinal cord and spinal nerve involvement is demonstrated by diffuse enhancement of cord parenchyma, nerve roots and meninges on contrast-enhanced magnetic resonance imaging. High cerebrospinal fluid protein content is often a risk factor for arachnoiditis. The most important differential diagnosis of tuberculous arachnoiditis is meningeal carcinomatosis. Anti-tuberculosis therapy is the main stay of treatment for tuberculous meningitis. Higher doses of corticosteroids have been found effective. Surgery should be considered only when pathological confirmation is needed or there is significant spinal cord compression. The outcome in these patients has been unpredictable. Some reports observed excellent recovery and some reported unfavorable outcomes after surgical decompression and debridement. Tuberculous meningitis is frequently associated with disabling spinal cord and radicular complications. Available treatment options are far from satisfactory.

  15. Optogenetics of the Spinal Cord: Use of Channelrhodopsin Proteins for Interrogation of Spinal Cord Circuits.

    Science.gov (United States)

    Rahman, Habibur; Nam, Youngpyo; Kim, Jae-Hong; Lee, Won-Ha; Suk, Kyoungho

    2017-12-29

    Spinal cord circuits play a key role in receiving and transmitting somatosensory information from the body and the brain. They also contribute to the timing and coordination of complex patterns of movement. Under disease conditions, such as spinal cord injury and neuropathic pain, spinal cord circuits receive pain signals from peripheral nerves, and are involved in pain development via neurotransmitters and inflammatory mediators released from neurons and glial cells. Despite the importance of spinal cord circuits in sensory and motor functions, many questions remain regarding the relationship between activation of specific cells and behavioral responses. Optogenetics offers the possibility of understanding the complex cellular activity and mechanisms of spinal cord circuits, as well as having therapeutic potential for addressing spinal cord-related disorders. In this review, we discuss recent findings in optogenetic research employing the channelrhodopsin protein to assess the function of specific neurons and glia in spinal cord circuits ex vivo and in vivo. We also explore the possibilities and challenges of employing optogenetics technology in future therapeutic strategies for the treatment of spinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.

    Science.gov (United States)

    Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A

    2018-02-01

    Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.

  17. Dynamic changes to the endocannabinoid system in models of chronic pain

    Science.gov (United States)

    Rani Sagar, Devi; Burston, James J.; Woodhams, Stephen G.; Chapman, Victoria

    2012-01-01

    The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling. PMID:23108548

  18. MR imaging and spinal cord injury

    International Nuclear Information System (INIS)

    Azar-Kia, B.; Fine, M.; Naheedy, M.; Elias, D.

    1987-01-01

    MR imaging has significantly improved diagnostic capability of spinal cord injuries. Other available diagnostic modalities such as plain films, myelography, CT, and post-CT myelography have failed to consistently show the secific evidence of spinal cord injuries and their true extent. The authors are presenting our experiences with MR imaging in spinal column injury. They have found MR imaging to be the procedure of choice for prognostic evaluation of spinal cord trauma. They are showing examples of recent and old spinal cord injury such as hematomyelia, myelomalacia, transection, spinal cord edema, and cavitation

  19. MR imaging of spinal factors and compression of the spinal cord in cervical myelopathy

    International Nuclear Information System (INIS)

    Kokubun, Shoichi; Ozawa, Hiroshi; Sakurai, Minoru; Ishii, Sukenobu; Tani, Shotaro; Sato, Tetsuaki.

    1992-01-01

    Magnetic resonance (MR) images of surgical 109 patients with cervical spondylotic myelopathy were retrospectively reviewed to examine whether MR imaging would replace conventional radiological procedures in determining spinal factors and spinal cord compression in this disease. MR imaging was useful in determining spondylotic herniation, continuous type of ossification of posterior longitudinal ligament, and calcification of yellow ligament, probably replacing CT myelography, discography, and CT discography. When total defect of the subarachnoid space on T2-weighted images and block on myelograms were compared in determining spinal cord compression, the spinal cord was affected more extensively by 1.3 intervertebral distance (IVD) on T2-weighted images. When indentation of one third or more in anterior and posterior diameter of the spinal cord was used as spinal cord compression, the difference in the affected extension between myelography and MR imaging was 0.2 IVD on T1-weighted images and 0.6 IVD on T2-weighted images. However, when block was seen in 3 or more IVD on myelograms, the range of spinal cord compression tended to be larger on T1-weighted images. For a small range of spinal cord compression, T1-weighted imaging seems to be helpful in determining the range of decompression. When using T2-weighted imaging, the range of decompression becomes large, frequently including posterior decompression. (N.K.)

  20. Anterior spinal cord syndrome of unknown etiology

    OpenAIRE

    Klakeel, Merrine; Thompson, Justin; Srinivasan, Rajashree; McDonald, Frank

    2015-01-01

    A spinal cord injury encompasses a physical insult to the spinal cord. In the case of anterior spinal cord syndrome, the insult is a vascular lesion at the anterior spinal artery. We present the cases of two 13-year-old boys with anterior spinal cord syndrome, along with a review of the anatomy and vasculature of the spinal cord and an explanation of how a lesion in the cord corresponds to anterior spinal cord syndrome.

  1. Comparison of cutting and pencil-point spinal needle in spinal anesthesia regarding postdural puncture headache

    Science.gov (United States)

    Xu, Hong; Liu, Yang; Song, WenYe; Kan, ShunLi; Liu, FeiFei; Zhang, Di; Ning, GuangZhi; Feng, ShiQing

    2017-01-01

    Abstract Background: Postdural puncture headache (PDPH), mainly resulting from the loss of cerebral spinal fluid (CSF), is a well-known iatrogenic complication of spinal anesthesia and diagnostic lumbar puncture. Spinal needles have been modified to minimize complications. Modifiable risk factors of PDPH mainly included needle size and needle shape. However, whether the incidence of PDPH is significantly different between cutting-point and pencil-point needles was controversial. Then we did a meta-analysis to assess the incidence of PDPH of cutting spinal needle and pencil-point spinal needle. Methods: We included all randomly designed trials, assessing the clinical outcomes in patients given elective spinal anesthesia or diagnostic lumbar puncture with either cutting or pencil-point spinal needle as eligible studies. All selected studies and the risk of bias of them were assessed by 2 investigators. Clinical outcomes including success rates, frequency of PDPH, reported severe PDPH, and the use of epidural blood patch (EBP) were recorded as primary results. Results were evaluated using risk ratio (RR) with 95% confidence interval (CI) for dichotomous variables. Rev Man software (version 5.3) was used to analyze all appropriate data. Results: Twenty-five randomized controlled trials (RCTs) were included in our study. The analysis result revealed that pencil-point spinal needle would result in lower rate of PDPH (RR 2.50; 95% CI [1.96, 3.19]; P < 0.00001) and severe PDPH (RR 3.27; 95% CI [2.15, 4.96]; P < 0.00001). Furthermore, EBP was less used in pencil-point spine needle group (RR 3.69; 95% CI [1.96, 6.95]; P < 0.0001). Conclusions: Current evidences suggest that pencil-point spinal needle was significantly superior compared with cutting spinal needle regarding the frequency of PDPH, PDPH severity, and the use of EBP. In view of this, we recommend the use of pencil-point spinal needle in spinal anesthesia and lumbar puncture. PMID:28383416

  2. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H]Epibatid......The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H...... intraspinal administration of substances through the spinal loop dialysis probe....

  3. Evidence of altered pressure pain thresholds in persons with disorders of consciousness as measured by the Nociception Coma Scale-Italian version.

    Science.gov (United States)

    Sattin, Davide; Schnakers, Caroline; Pagani, Marco; Arenare, Francesca; Devalle, Guya; Giunco, Fabrizio; Guizzetti, GianBattista; Lanfranchi, Maurizio; Giovannetti, Ambra M; Covelli, Venusia; Bersano, Anna; Nigri, Anna; Minati, Ludovico; Rossi Sebastiano, Davide; Parati, Eugenio; Bruzzone, MariaGrazia; Franceschetti, Silvana; Leonardi, Matilde

    2017-02-28

    Pain assessment in patients with disorders of consciousness (DoC) is a controversial issue for clinicians, who require tools and standardised procedures for testing nociception in non-communicative patients. The aims of the present study were, first, to analyse the psychometric properties of the Italian version of the Nociception Coma Scale and, second, to evaluate pressure pain thresholds in a group of patients with DoC. The authors conducted a multi-centre study on 40 healthy participants and 60 DoC patients enrolled from six hospitals in Italy. For each group an electronic algometer was used to apply all nociceptive pressure stimuli. Our results show that the Italian version of the NCS retains the good psychometric properties of the original version and is therefore suitable for standardised pain assessment in clinical practice. In our study, pressure pain thresholds measured in a group of patients in vegetative and minimally conscious state were relatively lower than pain threshold values found in a group of healthy participants. Such findings motivate additional investigation on possible pain sensitisation in patients with severe brain injury and multiple co-morbidities, and on application of tailored therapeutic approaches useful for pain management in patients unable verbally to communicate their feelings.

  4. Lumbar spinal stenosis

    DEFF Research Database (Denmark)

    Lønne, Greger; Fritzell, Peter; Hägg, Olle

    2018-01-01

    BACKGROUND: Decompression surgery for lumbar spinal stenosis (LSS) is the most common spinal procedure in the elderly. To avoid persisting low back pain, adding arthrodesis has been recommended, especially if there is a coexisting degenerative spondylolisthesis. However, this strategy remains con...

  5. The selective effect of N-feruloylserotonins isolated from Leuzea carthamoides on nociception and anxiety in rats

    Czech Academy of Sciences Publication Activity Database

    Yamamotová, A.; Pometlová, M.; Harmatha, Juraj; Rašková, H.; Rokyta, R.

    2007-01-01

    Roč. 112, č. 2 (2007), s. 368-374 ISSN 0378-8741 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : nociception * anxiety * N-feruloylserotonin * Leuzea carthamoides Subject RIV: CC - Organic Chemistry Impact factor: 2.049, year: 2007

  6. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats.

    Science.gov (United States)

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-07-30

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain.

  7. Intraoperative Spinal Navigation for the Removal of Intradural Tumors: Technical Notes.

    Science.gov (United States)

    Stefini, Roberto; Peron, Stefano; Mandelli, Jaime; Bianchini, Elena; Roccucci, Paolo

    2017-08-05

    In recent years, spinal surgery has incorporated the many advantages of navigation techniques to facilitate the placement of pedicle screws during osteosynthesis, mainly for degenerative diseases. However, spinal intradural tumors are not clearly visible by intraoperative fluoroscopy or computed tomography scans, thereby making navigation necessary. To evaluate the use of spinal navigation for the removal of intradural and spinal cord tumors using spinal magnetic resonance imaging (MRI) merged with intraoperative 3-dimensional (3-D) fluoro images. After fixing the patient reference frame on the spinous process, the 3-D fluoro images were obtained in the surgical room. Using this image as the reference, the preoperative volumetric MRI images and intraoperative 3-D fluoro images were merged using automated software or manually. From January to July 2016, we performed 10 navigated procedures for intradural spinal tumors by merging MRI and 3-D fluoro images. Nine patients had an intradural extramedullary tumor, 6 had neurinomas, and 3 had meningiomas; 1 patient had an intramedullary spinal cord metastasis. The surgically demonstrated benefits of spinal navigation for the removal of intradural tumors include the decreased risk of surgery at the wrong spinal level, a minimal length of skin incision and muscle strip, and a reduction in bone removal extension. Furthermore, this technique offers the advantage of opening the dura as much as is necessary and, in the case of intrinsic spinal cord tumors, it allows the tumor to be centered. Otherwise, this would not be visible, thus enabling the precise level and the posterior midline sulcus to be determined when performing a mielotomy. Copyright © 2017 by the Congress of Neurological Surgeons

  8. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.

    Science.gov (United States)

    Takeda, Akihito; Okada, Soichiro; Funakoshi, Kengo

    2017-10-15

    Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Neuroradiology of the spinal canal

    International Nuclear Information System (INIS)

    Lehmann, R.; Molsen, H.P.

    1985-01-01

    Radiodiagnostics of the vertebral column and of the spinal cord under normal conditions and under different pathological alterations are elaborated. Especially cervical and thoracal myelography, lumbosacral myeloradiculography, spinal arteriography and phlebography as well as spinal computerized tomography are discussed in detail

  10. The effect of social isolation, gender and familiarity with the experimental procedure on tests of porcine nociceptive thresholds

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Stausholm, Julie S.; Viitasaari, Eliina

    2015-01-01

    Objective To investigate the effects of habituation and isolation on mechanical nociceptive thresholds in pigs at the pelvic limbs and at the tail. Study design Prospective randomized multifactorial study. Animals Thirty-two healthy castrated male (experiment 1), and 12 castrated male and 12 female...

  11. Morphological analysis of the cervical spinal canal, dural tube and spinal cord in normal individuals using CT myelography

    International Nuclear Information System (INIS)

    Inoue, H.; Ohmori, K.; Takatsu, T.; Teramoto, T.; Ishida, Y.; Suzuki, K.

    1996-01-01

    To verify the conventional concept of ''developmental stenosis of the cervical spinal canal'', we performed a morphological analysis of the relations of the cervical spinal canal, dural tube and spinal cord in normal individuals. The sagittal diameter, area and circularity of the three structures, and the dispersion of each parameter, were examined on axial sections of CT myelograms of 36 normal subjects. The spinal canal was narrowest at C4, followed by C5, while the spinal cord was largest at C4/5. The area and circularity of the cervical spinal cord were not significantly correlated with any parameter of the spinal canal nor with the sagittal diameter and area of the dural tube at any level examined, and the spinal cord showed less individual variation than the bony canal. Compression of the spinal cord might be expected whenever the sagittal diameter of the spinal canal is below the lower limit of normal, that is about 12 mm on plain radiographs. Thus, we concluded that the concept of ''developmental stenosis of the cervical spinal canal'' was reasonable and acceptable. (orig.). With 2 figs., 3 tabs

  12. In vitro and in vivo effects on neural crest stem cell differentiation by conditional activation of Runx1 short isoform and its effect on neuropathic pain behavior

    DEFF Research Database (Denmark)

    Kanaykina, Nadezda; Abelson, Klas; King, Dale

    2010-01-01

    INTRODUCTION: Runx1, a Runt domain transcription factor, controls the differentiation of nociceptors that express the neurotrophin receptor Ret, regulates the expression of many ion channels and receptors, and controls the lamina-specific innervation pattern of nociceptive afferents in the spinal...

  13. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    Science.gov (United States)

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  14. Sexual and reproductive function in spinal cord injury and spinal surgery patients

    OpenAIRE

    Theodore H. Albright; Zachary Grabel; J. Mason DePasse; Mark A. Palumbo; Alan H. Daniels

    2015-01-01

    Sexual and reproductive health is important quality of life outcomes, which can have a major impact on patient satisfaction. Spinal pathology arising from trauma, deformity, and degenerative disease processes may be detrimental to sexual and reproductive function. Furthermore, spine surgery may impact sexual and reproductive function due to post-surgical mechanical, neurologic, and psychological factors. The aim of this paper is to provide a concise evidence-based review on the impact that sp...

  15. Potentialities of spinal liquor scanography

    International Nuclear Information System (INIS)

    Vlakhov, N.; Vylkanov, P.

    1986-01-01

    It is shown that spinal liquor scanography is a harmless and informative method for the examination of patients, permitting to detect injury foci for spinal cord tumours in 90% cases, for acute injuries of the vertebral column and spinal cord in 89.5% cases, for herniation of nucleus pulposus in 81% cases. The method of spinal liquor scanography can be used in neurology and neurosurgery to select the method of treatment and to evaluate its efficiency

  16. Value of MRI and DTI as Biomarkers for Classifying Acute Spinal Cord Injury

    Science.gov (United States)

    2014-10-29

    Datasets were checked for goodness of fit as part of the quality assurance process. Whole cord FA, MD, LD (λ1) and TD (λ23) were calculated for...discussion 1658. 10. Marino RJ, Ditunno JF,Jr, Donovan WH, Maynard F ,Jr. Neurologic recovery after traumatic spinal cord injury: Data from the model spinal...Jan;75(1):67-72. 17. Foo D, Subrahmanyan TS, Rossier AB. Post-traumatic acute anterior spinal cord syndrome. Paraplegia. 1981;19(4):201-5. 18

  17. Spinal canal stenosis; Spinalkanalstenose

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Boutchakova, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany)

    2014-11-15

    Spinal stenosis is a narrowing of the spinal canal by a combination of bone and soft tissues, which can lead to mechanical compression of spinal nerve roots or the dural sac. The lumbal spinal compression of these nerve roots can be symptomatic, resulting in weakness, reflex alterations, gait disturbances, bowel or bladder dysfunction, motor and sensory changes, radicular pain or atypical leg pain and neurogenic claudication. The anatomical presence of spinal canal stenosis is confirmed radiologically with computerized tomography, myelography or magnetic resonance imaging and play a decisive role in optimal patient-oriented therapy decision-making. (orig.) [German] Die Spinalkanalstenose ist eine umschriebene, knoechern-ligamentaer bedingte Einengung des Spinalkanals, die zur Kompression der Nervenwurzeln oder des Duralsacks fuehren kann. Die lumbale Spinalkanalstenose manifestiert sich klinisch als Komplex aus Rueckenschmerzen sowie sensiblen und motorischen neurologischen Ausfaellen, die in der Regel belastungsabhaengig sind (Claudicatio spinalis). Die bildgebende Diagnostik mittels Magnetresonanztomographie, Computertomographie und Myelographie spielt eine entscheidende Rolle bei der optimalen patientenbezogenen Therapieentscheidung. (orig.)

  18. Spinal infections

    International Nuclear Information System (INIS)

    Tali, E. Turgut; Gueltekin, Serap

    2005-01-01

    Spinal infections have an increasing prevalence among the general population. Definitive diagnosis based solely on clinical grounds is usually not possible and radiological imaging is used in almost all patients. The primary aim of the authors is to present an overview of spinal infections located in epidural, intradural and intramedullary compartments and to provide diagnostic clues regarding different imaging modalities, particularly MRI, to the practicing physicians and radiologists. (orig.)

  19. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  20. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  1. Spinal Cord Tolerance in the Age of Spinal Radiosurgery: Lessons From Preclinical Studies

    International Nuclear Information System (INIS)

    Medin, Paul M.; Boike, Thomas P.

    2011-01-01

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat has demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.

  2. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization.

    Science.gov (United States)

    Gros, Charley; De Leener, Benjamin; Dupont, Sara M; Martin, Allan R; Fehlings, Michael G; Bakshi, Rohit; Tummala, Subhash; Auclair, Vincent; McLaren, Donald G; Callot, Virginie; Cohen-Adad, Julien; Sdika, Michaël

    2018-02-01

    During the last two decades, MRI has been increasingly used for providing valuable quantitative information about spinal cord morphometry, such as quantification of the spinal cord atrophy in various diseases. However, despite the significant improvement of MR sequences adapted to the spinal cord, automatic image processing tools for spinal cord MRI data are not yet as developed as for the brain. There is nonetheless great interest in fully automatic and fast processing methods to be able to propose quantitative analysis pipelines on large datasets without user bias. The first step of most of these analysis pipelines is to detect the spinal cord, which is challenging to achieve automatically across the broad range of MRI contrasts, field of view, resolutions and pathologies. In this paper, a fully automated, robust and fast method for detecting the spinal cord centerline on MRI volumes is introduced. The algorithm uses a global optimization scheme that attempts to strike a balance between a probabilistic localization map of the spinal cord center point and the overall spatial consistency of the spinal cord centerline (i.e. the rostro-caudal continuity of the spinal cord). Additionally, a new post-processing feature, which aims to automatically split brain and spine regions is introduced, to be able to detect a consistent spinal cord centerline, independently from the field of view. We present data on the validation of the proposed algorithm, known as "OptiC", from a large dataset involving 20 centers, 4 contrasts (T 2 -weighted n = 287, T 1 -weighted n = 120, T 2 ∗ -weighted n = 307, diffusion-weighted n = 90), 501 subjects including 173 patients with a variety of neurologic diseases. Validation involved the gold-standard centerline coverage, the mean square error between the true and predicted centerlines and the ability to accurately separate brain and spine regions. Overall, OptiC was able to cover 98.77% of the gold-standard centerline, with a

  3. Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants

    Directory of Open Access Journals (Sweden)

    Stathopoulos Konstantinos

    2011-09-01

    Full Text Available Abstract Background Secondary systemic vasculitis after posterior spinal fusion surgery is rare. It is usually related to over-reaction of immune-system, to genetic factors, toxicity, infection or metal allergies. Case Description A 14 year-old girl with a history of extended posterior spinal fusion due to idiopathic scoliosis presented to our department with diffuse erythema and nephritis (macroscopic hemuresis and proteinuria 5 months post surgery. The surgical trauma had no signs of inflammation or infection. The blood markers ESR and CRP were increased. Skin tests were positive for nickel allergy, which is a content of titanium alloy. The patient received corticosteroids systematically (hydrocortisone 10 mg for 6 months, leading to total recess of skin and systemic reaction. However, a palpable mass close to the surgical wound raised the suspicion of a late infection. The patient had a second surgery consisting of surgical debridement and one stage revision of posterior spinal instrumentation. Intraoperative cultures were positive to Staphylococcus aureus. Intravenous antibiotics were administered. The patient is now free of symptoms 24 months post revision surgery without any signs of recurrence of either vasculitis or infection. Literature Review Systemic vasculitis after spinal surgery is exceptionally rare. Causative factors are broad and sometimes controversial. In general, it is associated with allergy to metal ions. This is usually addressed with metal on metal total hip bearings. In spinal surgery, titanium implants are considered to be inert and only few reports have presented cases with systemic vasculitides. Therefore, other etiologies of immune over-reaction should always be considered, such as drug toxicity, infection, or genetic predisposition. Purposes and Clinical Relevance Our purpose was to highlight the difficulties during the diagnostic work-up for systemic vasculitis and management in cases of posterior spinal surgery.

  4. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  5. Continuous spinal anesthesia.

    Science.gov (United States)

    Moore, James M

    2009-01-01

    Continuous spinal anesthesia (CSA) is an underutilized technique in modern anesthesia practice. Compared with other techniques of neuraxial anesthesia, CSA allows incremental dosing of an intrathecal local anesthetic for an indefinite duration, whereas traditional single-shot spinal anesthesia usually involves larger doses, a finite, unpredictable duration, and greater potential for detrimental hemodynamic effects including hypotension, and epidural anesthesia via a catheter may produce lesser motor block and suboptimal anesthesia in sacral nerve root distributions. This review compares CSA with other anesthetic techniques and also describes the history of CSA, its clinical applications, concerns regarding neurotoxicity, and other pharmacologic implications of its use. CSA has seen a waxing and waning of its popularity in clinical practice since its initial description in 1907. After case reports of cauda equina syndrome were reported with the use of spinal microcatheters for CSA, these microcatheters were withdrawn from clinical practice in the United States but continued to be used in Europe with no further neurologic sequelae. Because only large-bore catheters may be used in the United States, CSA is usually reserved for elderly patients out of concern for the risk of postdural puncture headache in younger patients. However, even in younger patients, sometimes the unique clinical benefits and hemodynamic stability involved in CSA outweigh concerns regarding postdural puncture headache. Clinical scenarios in which CSA may be of particular benefit include patients with severe aortic stenosis undergoing lower extremity surgery and obstetric patients with complex heart disease. CSA is an underutilized technique in modern anesthesia practice. Perhaps more accurately termed fractional spinal anesthesia, CSA involves intermittent dosing of local anesthetic solution via an intrathecal catheter. Where traditional spinal anesthesia involves a single injection with a

  6. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review.

    Science.gov (United States)

    Mazensky, David; Flesarova, Slavka; Sulla, Igor

    2017-12-01

    Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. However, the literature has not completely clarified our knowledge of anatomy of the complex three-dimensional arterial system of the spinal cord in experimental animals, which can impede the translation of experimental results to human clinical applications. As the literary sources dealing with the spinal cord arterial blood supply in experimental animals are limited and scattered, the authors performed a review of the anatomy of the arterial blood supply to the spinal cord in several experimental animals, including pigs, dogs, cats, rabbits, guinea pigs, rats, and mice and created a coherent format discussing the interspecies differences. This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Imaging of Spinal Metastatic Disease

    Directory of Open Access Journals (Sweden)

    Lubdha M. Shah

    2011-01-01

    Full Text Available Metastases to the spine can involve the bone, epidural space, leptomeninges, and spinal cord. The spine is the third most common site for metastatic disease, following the lung and the liver. Approximately 60–70% of patients with systemic cancer will have spinal metastasis. Materials/Methods. This is a review of the imaging techniques and typical imaging appearances of spinal metastatic disease. Conclusions. Awareness of the different manifestations of spinal metastatic disease is essential as the spine is the most common site of osseous metastatic disease. Imaging modalities have complimentary roles in the evaluation of spinal metastatic disease. CT best delineates osseous integrity, while MRI is better at assessing soft tissue involvement. Physiologic properties, particularly in treated disease, can be evaluated with other imaging modalities such as FDG PET and advanced MRI sequences. Imaging plays a fundamental role in not only diagnosis but also treatment planning of spinal metastatic disease.

  8. [Pain in humans: experimental facts and hypotheses].

    Science.gov (United States)

    Cesaro, P

    1994-09-15

    The description of painful phenomena in humans has to take into account its different components: sensory component (relevant to nociception), affective and emotional components. Nociceptor's (physiology is best understood with electrophysiological and neurochemical methods allowing a clear description of hyperalgesia, with its peripheral and spinal mechanisms. A functional model is partly available to explain allodynia, spontaneous burning pain and lightning pain, the three main consequences following deafferentation. At the thalamo-cortical level, one can describe nociceptive pathways and other pathways or neuronal networks involved in the affective and emotional components of pain.

  9. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    Science.gov (United States)

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  10. Characterization and regulation of [3H]-serotonin uptake and release in rodent spinal

    International Nuclear Information System (INIS)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of [ 3 H]-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent [ 3 H]-serotonin accumulation processes were found. Sodium-dependent [ 3 H]-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC 50 75 nM), followed by desipramine (IC 50 430 nM) and nomifensine (IC 50 950 nM). The sodium-independent [ 3 H]-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent [ 3 H]-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K + -induced release of previously accumulated [ 3 H]-serotonin was Ca 2+ -dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited [ 3 H]-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca 2+ -sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord

  11. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    Science.gov (United States)

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Geun-Woo; Kim, Min-Ji; Yang, Kui-Ye; Kim, Seong-Taek; Bae, Yong-Cheol

    2015-01-01

    We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions. PMID:26170739

  13. MRI of anterior spinal artery syndrome of the cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Yamada, T. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Ishii, K. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Saito, H. (Dept. of Neurology, Tohoku Univ. School of Medicine, Sendai (Japan)); Tanji, H. (Dept. of Neurology, Tohoku Univ. School of Medicine, Sendai (Japan)); Kobayashi, T. (Inst. of Rehabilitation Medicine, Tohoku Univ. School of Medicine, Miyagi (Japan)); Soma, Y. (Div. of Neurology, Takeda Hospital, Aizuwakamatsu (Japan)); Sakamoto, K. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan))

    1992-12-01

    Cervical spinal cord lesions in the anterior spinal artery syndrome were delineated on magnetic resonance images (MRI) in four patients. The lesion was always seen anteriorly in the cervical cord. On T2-weighted images, the lesions appeared hyperintense relative to the normal spinal cord, while on T1-weighted images, two chronic lesions appeared hypointense, with local atrophy of the cord. In one case, repeated T1-weighted images showed no signal abnormality 4 days after the ictus, but the lesion became hypointense 18 days later, when contrast enhancement was also recognized after injection of Gd-DTPA; this sequence of intensity changes was similar to that of cerebral infarction. The extent of the lesion seen MRI correlated closely with neurological findings in all cases. Although the findings may not be specific, MRI is now the modality of choice for confirming the diagnosis in patients suspected of having an anterior spinal artery syndrome. (orig.)

  14. Polysaccharide rich fractions from barks of Ximenia americana inhibit peripheral inflammatory nociception in mice Antinociceptive effect of Ximenia americana polysaccharide rich fractions

    Directory of Open Access Journals (Sweden)

    Kaira E.S. da Silva-Leite

    Full Text Available Abstract Ximenia americana L., Olacaceae, barks are utilized in folk medicine as analgesic and anti-inflammatory. The objective was to evaluate the toxicity and antinociceptive effect of polysaccharides rich fractions from X. americana barks. The fractions were obtained by extraction with NaOH, followed by precipitation with ethanol and fractionation by ion exchange chromatography. They were administered i.v. or p.o. before nociception tests (writhing, formalin, carragenan-induced hypernociception, hot plate, or during 14 days for toxicity assay. The total polysaccharides fraction (TPL-Xa: 8.1% yield presented 43% carbohydrate (21% uronic acid and resulted in two main fractions after chromatography (FI: 12%, FII: 22% yield. FII showed better homogeneity/purity, content of 44% carbohydrate, including 39% uronic acid, arabinose and galactose as major monosaccharides, and infrared spectra with peaks in carbohydrate range for COO- groups of uronic acid. TPL-Xa (10 mg/kg and FII (0.1 and 1 mg/kg presented inhibitory effect in behavior tests that evaluate nociception induced by chemical and mechanical, but not thermal stimuli. TPL-Xa did not alter parameters of systemic toxicity. In conclusion, polysaccharides rich fractions of X. americana barks inhibit peripheral inflammatory nociception, being well tolerated by animals.

  15. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  16. Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor.

    Science.gov (United States)

    Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun

    2017-08-09

    To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (Peffect of PA. A decrease in the intracellular calcium level (Peffect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

  17. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-01-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  18. Post spinal meningitis and asepsis.

    Science.gov (United States)

    Videira, Rogerio L R; Ruiz-Neto, P P; Brandao Neto, M

    2002-07-01

    Post spinal meningitis (PSM) is a complication still currently being reported. After two PSM cases in our hospital an epidemiological study was initiated, which included a survey of techniques for asepsis that are applied in our department. Cases defined as PSM comprised meningitis within a week after spinal anesthesia. Anesthesia records, anesthesia complication files and the records of the Hospital Commission for Infection Control from 1997 to 2000 were reviewed. Asepsis techniques applied were surveyed by a questionnaire answered by all our department's anesthesiologists. The equipment and procedures for spinal anesthesia were listed. Current anesthesia textbooks were reviewed for recommendations regarding asepsis techniques in conjunction with spinal anesthesia. Three cases of PSM were identified following 38,128 spinal anesthesias whereas none was observed in 12,822 patients subjected to other types of regional or general anesthesia (P>0.05). Culture of cerebrospinal fluid yielded Streptococcus in two patients and was negative in the other patient. The asepsis technique applied by the anesthesiologists varied considerably. The literature review showed that aspects on asepsis for spinal anesthesia are poorly covered. The incidence of meningitis was similar in patients subjected to spinal anesthesia and in those subjected to other anesthetic techniques. Asepsis techniques were found to differ considerably among our staff members, reflecting the lack of well-defined published standards for this procedure. We recommend that asepsis for spinal anesthesia should not be less rigorous than for surgical asepsis.

  19. Congenital spinal malformations; Kongenitale spinale Malformationen

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, B.B.; Reiser, M.F. [Klinikum Grosshadern, Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2001-12-01

    Congenital spinal malformations form a complex and heterogeneous group of disorders whose pathogenesis is best explained embryologically. Radiologically, it is important to formulate a diagnosis when the disorder first becomes symptomatic. However, it is also crucial to detect complications of the disorder or of the respective therapeutic interventions in the further course of the disease such as hydromyelia or re-tethering after repair of a meningomyelocele. Moreover, once a congenital spinal malformation is diagnosed, associated malformations should be sought after. A possible syndromal classification such as in OEIS- or VACTERL-syndromes should also be considered. (orig.) [German] Kongenitale spinale Malformationen stellen eine komplexe Gruppe an Stoerungen dar, deren Genese sich am einfachsten aus der Embryologie heraus erklaeren laesst. Bei der klinisch-radiologischen Begutachtung ist zunaechst ihre korrekte Klassifikation im Rahmen der Erstdiagnose wichtig. Im weiteren Verlauf ist es jedoch zudem entscheidend, moegliche Komplikationen wie beispielsweise eine Hydromyelie oder ein Wiederanheften des Myelons nach Operation einer Spina bifida aperta zu erkennen. Zudem sollte bei der Diagnosestellung einer kongenitalen spinalen Malformation immer auch auf assoziierte Fehlbildungen, wie z.B. die Diastematomyelie oder das intraspinale Lipom bei der Spina bifida aperta, sowie auf eine moegliche syndromale Einordnung wie beispielsweise beim OEIS-oder VACTERL-Syndrom geachtet werden. (orig.)

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences ...

  1. The effect of spinal manipulative therapy on spinal range of motion

    DEFF Research Database (Denmark)

    Millan, Mario; Leboeuf-Yde, Charlotte; Budgell, Brian

    2012-01-01

    Spinal manipulative therapy (SMT) has been shown to have an effect on spine-related pain, both clinically and in experimentally induced pain. However, it is unclear if it has an immediate noticeable biomechanical effect on spinal motion that can be measured in terms of an increased range of motion...

  2. CT diagnosis of acute spinal injury

    International Nuclear Information System (INIS)

    Ohhama, Mitsuru; Niimiya, Hikosuke; Kimura, Ko; Yamazaki, Gyoji; Nasu, Yoshiro; Shioya, Akihide

    1982-01-01

    CT pictures of 22 acute spinal injuries with damage of the spinal cord were evaluated. In the cases of spinal cord damage with bone injury, changes in the vertebral canal were fully observed by CT. In some of spinal cord damages without bone injury, narrowing of the vertebral canal was demonstrated by CT combined with CT myelography and reconstruction. Evaluation of CT number showed a high density area in damaged spinal cord in some cases. CT was thus considered to be useful as an adjunct diagnostic aid. (Ueda, J.)

  3. Thermal nociception as a measure of non-steroidal anti-inflammatory drug effectiveness in broiler chickens with articular pain☆

    Science.gov (United States)

    Caplen, Gina; Baker, Laurence; Hothersall, Becky; McKeegan, Dorothy E.F.; Sandilands, Victoria; Sparks, Nick H.C.; Waterman-Pearson, Avril E.; Murrell, Joanna C.

    2013-01-01

    Pain associated with poultry lameness is poorly understood. The anti-nociceptive properties of two non-steroidal anti-inflammatory drugs (NSAIDs) were evaluated using threshold testing in combination with an acute inflammatory arthropathy model. Broilers were tested in six groups (n = 8 per group). Each group underwent a treatment (saline, meloxicam (3 or 5 mg/kg) or carprofen (15 or 25 mg/kg)) and a procedure (Induced (arthropathy-induction) or sham (sham-handling)) prior to testing. Induced groups had Freund’s complete adjuvant injected intra-articularly into the left intertarsal joint (hock). A ramped thermal stimulus (1 °C/s) was applied to the skin of the left metatarsal. Data were analysed using random-intercept multi-level models. Saline-induced birds had a significantly higher skin temperature (± SD) than saline-sham birds (37.6 ± 0.8 °C vs. 36.5 ± 0.5 °C; Z = −3.47, P carprofen: Z = 2.58, P = 0.010) in induced birds. Saline-induced birds also had significantly lower TT than saline-sham birds (Z = −2.17, P = 0.030). This study found direct evidence of an association between inflammatory arthropathies and thermal hyperalgesia, and showed that NSAID treatment maintained baseline thermal sensitivity (via anti-nociception). Quantification of nociceptive responsiveness in a predictable broiler pain model identified thermal anti-hyperalgesic properties of two NSAIDs, which suggested that therapeutically effective treatment was provided at the doses administered. Such validation of analgesic strategies will increase the understanding of pain associated with specific natural broiler lameness types. PMID:24129110

  4. Ethanolic extract of Aconiti Brachypodi Radix attenuates nociceptive pain probably via inhibition of voltage-dependent Na⁺ channel.

    Science.gov (United States)

    Ren, Wei; Yuan, Lin; Li, Jun; Huang, Xian-Ju; Chen, Su; Zou, Da-Jiang; Liu, Xiangming; Yang, Xin-Zhou

    2012-01-01

    Aconiti Brachypodi Radix, belonging to the genus of Aconitum (Family Ranunculaceae), are used clinically as anti-rheumatic, anti-inflammatory and anti-nociceptive in traditional medicine of China. However, its mechanism and influence on nociceptive threshold are unknown and need further investigation. The analgesic effects of ethanolic extract of Aconiti Brachypodi Radix (EABR) were thus studied in vivo and in vitro. Three pain models in mice were used to assess the effect of EABR on nociceptive threshold. In vitro study was conducted to clarify the modulation of the extract on the tetrodotoxin-sensitive (TTX-S) sodium currents in rat's dorsal root ganglion (DRG) neurons using whole-cell patch clamp technique. The results showed that EABR (5-20 mg/kg, i.g.) could produce dose-dependent analgesic effect on hot-plate tests as well as writhing response induced by acetic acid. In addition, administration of 2.5-10 mg/kg EABR (i.g.) caused significant decrease in pain responses in the first and second phases of formalin test without altering the PGE₂ production in the hind paw of the mice. Moreover, EABR (10 µg/ml -1 mg/ml) could suppress TTX-S voltage-gated sodium currents in a dose-dependent way, indicating the underlying electrophysiological mechanism of the analgesic effect of the folk plant medicine. Collectively, our results indicated that EABR has analgesic property in three pain models and useful influence on TTX-S sodium currents in DRG neurons, suggesting that the interference with pain messages caused by the modulation of EABR on TTX-S sodium currents in DRG neurones may explain some of its analgesic effect.

  5. Embolization of spinal arteriovenous malformations

    International Nuclear Information System (INIS)

    Son, Mi Young; Kim, Sun Yong; Park, Bok Hwan

    1990-01-01

    Recently, therapeutic embolization has been advocated as the treatment of choice for spinal AVM(arteriovenous malformations). The authors review our experience with two cases of spinal AVM treated by embolization using coaxial Tracker-18 microcatheter with Latvian. The patients included a 10 year old male with glomus type and a 14 year old female with juvenile type spinal AVM revealed recanalization 5 month later. Embolization provides curative or temporary treatment for spinal AVM. After embolic occlusion, delayed reassessment with arteriography is indicated, particularly if symptoms persist or recur

  6. MR imaging of spinal trauma

    International Nuclear Information System (INIS)

    Buchberger, W.; Springer, P.; Birbamer, G.; Judmaier, W.; Kathrein, A.; Daniaux, H.

    1995-01-01

    To assess the value of MR imaging in the acute and chronic stages of spinal trauma. 126 MR examinations of 120 patients were evaluated retrospectively. In 15 cases of acute spinal cord injury, correlation of MR findings with the degree of neurological deficit and eventual recovery was undertaken. Cord anomalies in the acute stage were seen in 16 patients. Intramedullary haemorrhage (n=6) and cord transection (n=2) were associated with complete injuries and poor prognosis, whereas patients with cord oedema (n=7) had incomplete injuries and recovered significant neurological function. In the chronic stage, MR findings included persistent cord compression in 8 patients, syringomyelia or post-traumatic cyst in 12, myelomalacia in 6, cord atrophy in 9, and cord transection in 7 patients. In acute spinal trauma, MR proved useful in assessing spinal cord compression and instability. In addition, direct visualisation and characterisation of posttraumatic changes within the spinal cord may offer new possibilities in establishing the prognosis for neurological recovery. In the later stages, potentially remediable causes of persistent or progressive symptoms, such as chronic spinal cord compression or syringomyelia can be distinguished from other sequelae of spinal trauma, such as myelomalacia, cord transection or atrophy. (orig.) [de

  7. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  8. Epidural spinal cord stimulation for recovery from spinal cord injury: its place in therapy

    Directory of Open Access Journals (Sweden)

    Jacques L

    2016-09-01

    Full Text Available Line Jacques, Michael Safaee Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA Abstract: This paper is a review of some of the current research focused on using existing epidural spinal cord stimulation technologies in establishing the effectiveness in the recovery of independent standing, ambulation, or intentional movement of spinal cord injury patients. From a clinician’s perspective, the results have been intriguing, from a restorative perspective they are promising, and from a patient’s perspective they are hopeful. The outcomes, although still in the experimental phase, show some proof of theory and support further research. From a high volume university based clinician’s perspective, the resources needed to integrate this type of restorative care into a busy clinical practice are highly challenging without a well-structured and resource rich institutional restorative program. Patient selection is profoundly critical due to the extraordinary resources needed, and the level of motivation required to participate in such an intense and arduous rehabilitation process. Establishing an algorithmic approach to patient selection and treatment will be paramount to effectively utilize scarce resources and optimize outcomes. Further research is warranted, and the development of dedicated technological hardware and software for this therapeutic treatment versus using traditional spinal cord stimulation devices may yield more robust and efficacious outcomes. Keywords: independent standing, ambulation, intentional movement, recovery, rehabilitation, locomotion

  9. Biomechanical implications of lumbar spinal ligament transection.

    Science.gov (United States)

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  10. Imaging in spine and spinal cord malformations

    International Nuclear Information System (INIS)

    Rossi, Andrea; Biancheri, Roberta; Cama, Armando; Piatelli, Gianluca; Ravegnani, Marcello; Tortori-Donati, Paolo

    2004-01-01

    Spinal and spinal cord malformations are collectively named spinal dysraphisms. They arise from defects occurring in the early embryological stages of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal dysraphisms are categorized into open spinal dysraphisms (OSDs), in which there is exposure of abnormal nervous tissues through a skin defect, and closed spinal dysraphisms (CSD), in which there is a continuous skin coverage to the underlying malformation. Open spinal dysraphisms basically include myelomeningocele and other rare abnormalities such as myelocele and hemimyelo(meningo)cele. Closed spinal dysraphisms are further categorized based on the association with low-back subcutaneous masses. Closed spinal dysraphisms with mass are represented by lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category further comprises defects of midline notochordal integration (basically represented by diastematomyelia) and defects of segmental notochordal formation (represented by caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging (MRI) is the preferred modality for imaging these complex abnormalities. The use of the aforementioned classification scheme is greatly helpful to make the diagnosis

  11. Development and aging of human spinal cord circuitries

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Willerslev-Olsen, Maria; Lorentzen, Jakob

    2017-01-01

    development and to what extent they are shaped according to the demands of the body that they control and the environment that the body has to interact with. We also discuss how ageing processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries....... The complex, multi-facetted connectivity of the spinal cord motor circuitries allow that they can be used to generate vastly different movements and that their activity can be adapted to meet new challenges imposed by bodily changes or a changing environment. There are thus plenty of possibilities...

  12. Focal Anterior Displacement of the Thoracic Spinal Cord without Evidence of Spinal Cord Herniation or an Intradural Mass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Yoon; Lee, Joon Woo; Lee, Guen Young; Kang, Heung Sik [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2014-07-01

    We report magnetic resonance imaging (MRI) findings on focal anterior displacement of the thoracic spinal cord in asymptomatic patients without a spinal cord herniation or intradural mass. We identified 12 patients (male:female = 6:6; mean age, 51.7; range, 15-83 years) between 2007 and 2011, with focal anterior displacement of the spinal cord and without evidence of an intradural mass or spinal cord herniation. Two radiologists retrospectively reviewed the MRI findings in consensus. An asymmetric spinal cord deformity with a focal dented appearance was seen on the posterior surface of the spinal cord in all patients, and it involved a length of 1 or 2 vertebral segments in the upper thoracic spine (thoracic vertebrae 1-6). Moreover, a focal widening of the posterior subarachnoid space was also observed in all cases. None of the patients had myelopathy symptoms, and they showed no focal T2-hyperintensity in the spinal cord with the exception of one patient. In addition, cerebrospinal fluid (CSF) flow artifacts were seen in the posterior subarachnoid space of the affected spinal cord level. Computed tomography myelography revealed preserved CSF flow in the two available patients. Focal anterior spinal cord indentation can be found in the upper thoracic level of asymptomatic patients without a spinal cord herniation or intradural mass.

  13. Focal Anterior Displacement of the Thoracic Spinal Cord without Evidence of Spinal Cord Herniation or an Intradural Mass

    International Nuclear Information System (INIS)

    Lee, Jong Yoon; Lee, Joon Woo; Lee, Guen Young; Kang, Heung Sik

    2014-01-01

    We report magnetic resonance imaging (MRI) findings on focal anterior displacement of the thoracic spinal cord in asymptomatic patients without a spinal cord herniation or intradural mass. We identified 12 patients (male:female = 6:6; mean age, 51.7; range, 15-83 years) between 2007 and 2011, with focal anterior displacement of the spinal cord and without evidence of an intradural mass or spinal cord herniation. Two radiologists retrospectively reviewed the MRI findings in consensus. An asymmetric spinal cord deformity with a focal dented appearance was seen on the posterior surface of the spinal cord in all patients, and it involved a length of 1 or 2 vertebral segments in the upper thoracic spine (thoracic vertebrae 1-6). Moreover, a focal widening of the posterior subarachnoid space was also observed in all cases. None of the patients had myelopathy symptoms, and they showed no focal T2-hyperintensity in the spinal cord with the exception of one patient. In addition, cerebrospinal fluid (CSF) flow artifacts were seen in the posterior subarachnoid space of the affected spinal cord level. Computed tomography myelography revealed preserved CSF flow in the two available patients. Focal anterior spinal cord indentation can be found in the upper thoracic level of asymptomatic patients without a spinal cord herniation or intradural mass

  14. [THE CHANGES OF NOCICEPTIVE THRESHOLD AND ACTIVITY OF THE ADENYLYL CYCLASE SYSTEM IN THE SKELETAL MUSCLES OF RATS WITH ACUTE AND MILD TYPE 1 DIABETES MELLITUS ].

    Science.gov (United States)

    Shipilov, V N; Trost, A M; Chistyakova, O V; Derkach, K V; Shpakov, A O

    2016-02-01

    Diabetic peripheral neuropathy (DPN) is one of the most common complications of the type 1 diabetes mellitus (DM1). The aim of the work was to study the dynamics of a painful DPN and functional state of the hormone-sensitive ACSS in the skeletal muscles of rats with the models of acute and mild DM1, as well as the study of impact on them of insulin therapy with different ways of hormone delivery - intranasal and peripheral. In both models of DM1, the level of nociceptive threshold in rats decreased and the stimulatory effects of guanine nucleotides (GppNHp) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) activity were attenuated. The AC stimulating effect of relaxin decreased in animals with acute DM1, but in mild DM1, the decrease was insignificant. Peripheral administration of insulin in rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of ß 3-agonist BRL-37344. Intranasal administration of insulin in rats with DM1 also increased the nociceptive threshold and partially restored the basal and BRL-37344-stimulated AC activity in the skeletal muscles of diabetic animals. Thus, in the skeletal muscles of rats with acute and mild DM1 the nociceptive sensitivity and the functions of ACSS were disturbed, and they were partially restored by the treatment with peripheral (acute DM1) or intranasal (mild DM1) insulin.

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  16. Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Russ

    2013-09-01

    Full Text Available During perinatal development, corticospinal tract (CST projections into the spinal cord help refine spinal circuitry. Although the normal developmental processes that are controlled by the arrival of corticospinal input are becoming clear, little is known about how perinatal cortical damage impacts specific aspects of spinal circuit development, particularly the inhibitory microcircuitry that regulates spinal reflex circuits. In this study, we sought to determine how ischemic cortical damage impacts the synaptic attributes of a well-characterized population of inhibitory, GABAergic interneurons, called GABApre neurons, which modulates the efficiency of proprioceptive sensory terminals in the sensorimotor reflex circuit. We found that putative GABApre interneurons receive CST input and, using an established mouse model of perinatal stroke, that cortical ischemic injury results in a reduction of CST density within the intermediate region of the spinal cord, where these interneurons reside. Importantly, CST alterations were restricted to the side contralateral to the injury. Within the synaptic terminals of the GABApre interneurons, we observed a dramatic upregulation of the 65-isoform of the GABA synthetic enzyme glutamic acid decarboxylase (GAD65. In accordance with the CST density reduction, GAD65 was elevated on the side of the spinal cord contralateral to cortical injury. This effect was not seen for other GABApre synaptic markers or in animals that received sham surgery. Our data reveal a novel effect of perinatal stroke that involves severe deficits in the architecture of descending spinal pathways, which in turn appear to promote molecular alterations in a specific spinal GABAergic circuit.

  17. Cervical radiofrequency neurotomy reduces central hyperexcitability and improves neck movement in individuals with chronic whiplash.

    Science.gov (United States)

    Smith, Ashley Dean; Jull, Gwendolen; Schneider, Geoff; Frizzell, Bevan; Hooper, Robert Allen; Sterling, Michele

    2014-01-01

    This study aims to determine if cervical medial branch radiofrequency neurotomy reduces psychophysical indicators of augmented central pain processing and improves motor function in individuals with chronic whiplash symptoms. Prospective observational study of consecutive patients with healthy control comparison. Tertiary spinal intervention centre in Calgary, Alberta, Canada. Fifty-three individuals with chronic whiplash associated disorder symptoms (Grade 2); 30 healthy controls. Measures were made at four time points: two prior to radiofrequency neurotomy, and 1- and 3-months post-radiofrequency neurotomy. Measures included: comprehensive quantitative sensory testing (including brachial plexus provocation test), nociceptive flexion reflex, and motor function (cervical range of movement, superficial neck flexor activity during the craniocervical flexion test). Self-report pain and disability measures were also collected. One-way repeated measures analysis of variance and Friedman's tests were performed to investigate the effect of time on the earlier measures. Differences between the whiplash and healthy control groups were investigated with two-tailed independent samples t-test or Mann-Whitney tests. Following cervical radiofrequency neurotomy, there were significant early (within 1 month) and sustained (3 months) improvements in pain, disability, local and widespread hyperalgesia to pressure and thermal stimuli, nociceptive flexor reflex threshold, and brachial plexus provocation test responses as well as increased neck range of motion (all P  0.13) was measured. Attenuation of psychophysical measures of augmented central pain processing and improved cervical movement imply that these processes are maintained by peripheral nociceptive input. Wiley Periodicals, Inc.

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  19. Neuropathic Pain Following Spinal Cord Injury: Mechanism, Assessment and Treatment

    Directory of Open Access Journals (Sweden)

    Gul Mete Civelek

    2016-04-01

    Full Text Available Spinal cord injury (SCI is a devastating disease which may cause physical, psychological and social dysfunction. Neuropathic pain (NP after SCI is common, can be seen in varying degrees and is one of the most difficultly treated problems developing after SCI. With the addition of the NP to loss of function after SCI, sleep patterns, moods and daily activities of patients are adversely affected. In order to treat pain effectively, classification of pain after SCI must be done carefully and correctly. According to classification of International Pain Study Group, pain after SCI is divided into two main groups as nociceptive and neuropathic pain. Neuropathic pain is defined as %u201Cpain occuring as a direct result of a disease or lesion directly affecting somato-sensorial system%u201D. NP after SCI can be classified according to anatomical region (above the level of lesion, at the level of lesion, below the level of lesion. Treatment of NP after SCI is often challenging and receiving response to treatment may take long time. Therefore, treatment of NP after SCI should be multifactorial. Treatment options include pharmochologic treatment, application of transcutanous electrical nerve stimulation, psychiatric treatment approaches, and surgical approaches in selected cases. In pharmachologic treatment, first line agents are tricyclic antidepresants, pregabalin and gabapentin. In this review, mechanisms and assessment and treatment of NP after SCI is discussed with the guide of current literature.

  20. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    body sizes (30 and 60 kg) were exposed to thermal (CO(2) laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS: Small pigs exhibited...... animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore...