WorldWideScience

Sample records for spinal neurons show

  1. Nav 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity

    Directory of Open Access Journals (Sweden)

    Wood John N

    2006-02-01

    Full Text Available Abstract Background The voltage gated sodium channel Nav 1.8 has a highly restricted expression pattern to predominantly nociceptive peripheral sensory neurones. Behaviourally Nav 1.8-null mice show an increased acute pain threshold to noxious mechanical pressure and also deficits in inflammatory and visceral, but not neuropathic pain. Here we have made in vivo electrophysiology recordings of dorsal horn neurones in intact anaesthetised Nav 1.8-null mice, in response to a wide range of stimuli to further the understanding of the functional roles of Nav 1.8 in pain transmission from the periphery to the spinal cord. Results Nav 1.8-null mice showed marked deficits in the coding by dorsal horn neurones to mechanical, but not thermal, -evoked responses over the non-noxious and noxious range compared to littermate controls. Additionally, responses evoked to other stimulus modalities were also significantly reduced in Nav 1.8-null mice where the reduction observed to pinch > brush. The occurrence of ongoing spontaneous neuronal activity was significantly less in mice lacking Nav 1.8 compared to control. No difference was observed between groups in the evoked activity to electrical activity of the peripheral receptive field. Conclusion This study demonstrates that deletion of the sodium channel Nav 1.8 results in stimulus-dependent deficits in the dorsal horn neuronal coding to mechanical, but not thermal stimuli applied to the neuronal peripheral receptive field. This implies that Nav 1.8 is either responsible for, or associated with proteins involved in mechanosensation.

  2. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons

    OpenAIRE

    Lee, Young il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-01-01

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precedes the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any ...

  4. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  5. Spinal Accessory Motor Neurons in the Mouse: A Special Type of Branchial Motor Neuron?

    Science.gov (United States)

    Watson, Charles; Tvrdik, Petr

    2018-04-16

    The spinal accessory nerve arises from motor neurons in the upper cervical spinal cord. The axons of these motor neurons exit dorsal to the ligamentum denticulatum and form the spinal accessory nerve. The nerve ascends in the spinal subarachnoid space to enter the posterior cranial fossa through the foramen magnum. The spinal accessory nerve then turns caudally to exit through the jugular foramen alongside the vagus and glossopharyngeal nerves, and then travels to supply the sternomastoid and trapezius muscles in the neck. The unusual course of the spinal accessory nerve has long prompted speculation that it is not a typical spinal motor nerve and that it might represent a caudal remnant of the branchial motor system. Our cell lineage tracing data, combined with images from public databases, show that the spinal accessory motor neurons in the mouse transiently express Phox2b, a transcription factor that is required for development of brain stem branchial motor nuclei. While this is strong prima facie evidence that the spinal accessory motor neurons should be classified as branchial motor, the evolutionary history of these motor neurons in anamniote vertebrates suggests that they may be considered to be an atypical branchial group that possesses both branchial and somatic characteristics. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. Distribution of glycinergic neuronal somata in the rat spinal cord.

    Science.gov (United States)

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  7. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons.

    Science.gov (United States)

    Lee, Young Il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-08-15

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion

    Science.gov (United States)

    Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.

    2010-01-01

    In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243

  9. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  10. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    Science.gov (United States)

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  11. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  12. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair

    Science.gov (United States)

    Mandrekar-Colucci, Shweta; Hall, Jodie C.E.; Sweet, David R.; Schmitt, Philipp J.; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia

    2016-01-01

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155–5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. SIGNIFICANCE STATEMENT Axon regeneration after spinal cord injury (SCI) fails

  13. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Science.gov (United States)

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  14. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    Science.gov (United States)

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P control cells by 50% (P neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Neuronal Population Activity in Spinal Motor Circuits

    DEFF Research Database (Denmark)

    Berg, Rune W.

    2017-01-01

    The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi......-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate...

  16. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  17. Enteric neurons show a primary cilium.

    Science.gov (United States)

    Luesma, Ma José; Cantarero, Irene; Castiella, Tomás; Soriano, Mario; Garcia-Verdugo, José Manuel; Junquera, Concepción

    2013-01-01

    The primary cilium is a non-motile cilium whose structure is 9+0. It is involved in co-ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells. © 2012 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  18. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    Science.gov (United States)

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  19. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, David P; Kiskinis, Evangelos

    2017-01-01

    Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.

  20. Erythropoietin's Beta Common Receptor Mediates Neuroprotection in Spinal Cord Neurons.

    Science.gov (United States)

    Foley, Lisa S; Fullerton, David A; Mares, Joshua; Sungelo, Mitchell; Weyant, Michael J; Cleveland, Joseph C; Reece, T Brett

    2017-12-01

    Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury. The purpose of this study was to examine whether EPO-mediated neuroprotection was dependent on βcR expression. We hypothesized that spinal cord neurons subjected to oxygen-glucose deprivation would mimic SCIR injury in aortic surgery and EPO treatment attenuates this injury in a βcR-dependent fashion. Lentiviral vectors with βcR knockdown sequences were tested on neuron cell cultures. The virus with greatest βcR knockdown was selected. Spinal cord neurons from perinatal wild-type mice were harvested and cultured to maturity. They were treated with knockdown or nonsense virus and transduced cells were selected. Three groups (βcR knockdown virus, nonsense control virus, no virus control; n = 8 each) were subjected to 1 hour of oxygen-glucose deprivation. Viability was assessed. βcR expression was quantified by immunoblot. EPO preserved neuronal viability after oxygen-glucose deprivation (0.82 ± 0.04 versus 0.61 ± 0.01; p neuron preservation was similar in the nonsense virus and control mice (0.82 ± 0.04 versus 0.80 ± 0.05; p = 0.77). EPO neuron preservation was lost in βcR knockdown mice compared with nonsense control mice (0.46 ± 0.03 versus 0.80 ± 0.05; p neuronal loss after oxygen-glucose deprivation in a βcR-dependent fashion. This receptor holds immense clinical promise as a target for pharmacotherapies treating spinal cord ischemic injury. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Directory of Open Access Journals (Sweden)

    Gabriela Fabbiani

    2018-03-01

    Full Text Available Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+ increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU and did not express the proliferating cell nuclear antigen (PCNA indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.

  2. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Science.gov (United States)

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  3. Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization

    DEFF Research Database (Denmark)

    Wild, Raphael; Klems, Alina; Takamiya, Masanari

    2017-01-01

    Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa......-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss...... of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting...

  4. Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rosalia eCrupi

    2016-03-01

    Full Text Available Spinal cord injury (SCI stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultra PEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5 to T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.

  5. Neurogenic period of ascending tract neurons in the upper lumbar spinal cord of the rat

    International Nuclear Information System (INIS)

    Nandi, K.N.; Beal, J.A.; Knight, D.S.

    1990-01-01

    Although the neurogenic period for neurons in the lumbar spinal cord has been clearly established (Days 12 through 16 of gestation), it is not known when the neurogenesis of ascending tract neurons is completed within this period. The purpose of the present study was to determine the duration of the neurogenic period for projection neurons of the ascending tracts. To label neurons undergoing mitosis during this period, tritiated thymidine was administered to fetal rats on Embryonic (E) Days E13 through E16 of gestation. Ascending tract neurons of the lumbar cord were later (Postnatal Days 40-50) labeled in each animal with a retrograde tracer, Fluoro-Gold, applied at the site of a hemisection at spinal cord segment C3. Ascending tract neurons which were undergoing mitosis in the upper lumbar cord were double labeled, i.e., labeled with both tritiated thymidine and Fluoro-Gold. On Day E13, 89-92% of the ascending tract neurons were double labeled; on Day E14, 35-37%; and on Day E15, 1-4%. Results showed, then, that some ascending tract neurons were double labeled through Day E15 and were, therefore, proliferating in the final one-third of the neurogenic period. Ascending tract neurons proliferating on Day E15 were confined to laminae III, IV, V, and X and the nucleus dorsalis. Long tract neurons in the superficial dorsal horn (laminae I and II), on the other hand, were found to have completed neurogenesis on Day E14 of gestation. Results of the present study show that spinal neurogenesis of ascending projection neurons continues throughout most of the neurogenic period and does not completely follow the well-established ventral to dorsal gradient

  6. Distribution of spinal neuronal networks controlling forward and backward locomotion.

    Science.gov (United States)

    Merkulyeva, Natalia; Veshchitskii, Aleksandr; Gorsky, Oleg; Pavlova, Natalia; Zelenin, Pavel V; Gerasimenko, Yury; Deliagina, Tatiana G; Musienko, Pavel

    2018-04-20

    Higher vertebrates, including humans, are capable not only of forward (FW) locomotion but also of walking in other directions relative to the body axis [backward (BW), sideways, etc.]. While the neural mechanisms responsible for controlling FW locomotion have been studied in considerable detail, the mechanisms controlling steps in other directions are mostly unknown. The aim of the present study was to investigate the distribution of spinal neuronal networks controlling FW and BW locomotion. First, we applied electrical epidural stimulation (ES) to different segments of the spinal cord from L2 to S2 to reveal zones triggering FW and BW locomotion in decerebrate cats of either sex. Second, to determine the location of spinal neurons activated during FW and BW locomotion, we used c-fos immunostaining. We found that the neuronal networks responsible for FW locomotion were distributed broadly in the lumbosacral spinal cord and could be activated by ES of any segment from L3 to S2. By contrast, networks generating BW locomotion were activated by ES of a limited zone from the caudal part of L5 to the caudal part of L7. In the intermediate part of the gray matter within this zone, a significantly higher number of c- fos -positive interneurons was revealed in BW-stepping cats compared with FW-stepping cats. We suggest that this region of the spinal cord contains the network that determines the BW direction of locomotion. Significance Statement Sequential and single steps in various directions relative to the body axis [forward (FW), backward (BW), sideways, etc.] are used during locomotion and to correct for perturbations, respectively. The mechanisms controlling step direction are unknown. In the present study, for the first time we compared the distributions of spinal neuronal networks controlling FW and BW locomotion. Using a marker to visualize active neurons, we demonstrated that in the intermediate part of the gray matter within L6 and L7 spinal segments

  7. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.

    Science.gov (United States)

    Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G

    2016-08-10

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron

  8. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Christian M. Simon

    2017-12-01

    Full Text Available The hallmark of spinal muscular atrophy (SMA, an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.

  9. Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks

    Science.gov (United States)

    Zelenin, P. V.; Lyalka, V. F.; Orlovsky, G. N.; Deliagina, T. G.

    2016-01-01

    In quadrupeds, acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Postural limb reflexes (PLRs) represent a substantial component of postural corrections in intact animals. The aim of the present study was to characterize the effects of acute LHS on two populations of spinal neurons (F and E) mediating PLRs. For this purpose, in decerebrate rabbits, responses of individual neurons from L5 to stimulation causing PLRs were recorded before and during reversible LHS (caused by temporal cold block of signal transmission in lateral spinal pathways at L1), as well as after acute surgical (Sur) LHS at L1. Results obtained after Sur-LHS were compared to control data obtained in our previous study. We found that acute LHS caused disappearance of PLRs on the affected side. It also changed a proportion of different types of neurons on that side. A significant decrease and increase in the proportion of F- and non-modulated neurons, respectively, was found. LHS caused a significant decrease in most parameters of activity in F-neurons located in the ventral horn on the lesioned side and in E-neurons of the dorsal horn on both sides. These changes were caused by a significant decrease in the efficacy of posture-related sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to both F- and E-neurons. These distortions in operation of postural networks underlie the impairment of postural control after acute LHS, and represent a starting point for the subsequent recovery of postural functions. PMID:27702647

  10. Characterization of A11 neurons projecting to the spinal cord of mice.

    Directory of Open Access Journals (Sweden)

    Kathrin Koblinger

    Full Text Available The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC, the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2, which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT. In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.

  11. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion

    DEFF Research Database (Denmark)

    Hägglund, Martin; Borgius, Lotta; Dougherty, Kimberly J.

    2010-01-01

    Central pattern generators (CPGs) are spinal neuronal networks required for locomotion. Glutamatergic neurons have been implicated as being important for intrinsic rhythm generation in the CPG and for the command signal for initiating locomotion, although this has not been demonstrated directly. We...... neurons in the spinal cord are critical for initiating or maintaining the rhythm and that activation of hindbrain areas containing the locomotor command regions is sufficient to directly activate the spinal locomotor network....

  12. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    Science.gov (United States)

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not

  14. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation is Essential for Functional Regeneration

    Directory of Open Access Journals (Sweden)

    Anne Tscherter

    2016-09-01

    Full Text Available Presently there exists no cure for spinal cord injury. However, transplantation of embryonic tissue into spinal cord lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated spinal cord circuits. We tested the two hypotheses in an in vitro spinal cord lesion model that is based on propagation of activity between two rat organotypic spinal cord slices in culture. Transplantation of dissociated cells from E14 rat spinal cord or forebrain re-established the relay of activity over the lesion site and, thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse forebrain cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated spinal cord circuits. In contrast, transplantation of neurospheres induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated spinal cord circuits.

  15. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords

    OpenAIRE

    Otaegi, Gaizka; Pollock, Andrew; Hong, Janet; Sun, Tao

    2011-01-01

    The precise organization of motor neuron subtypes in a columnar pattern in developing spinal cords is controlled by cross-interactions of multiple transcription factors and segmental expressions of Hox genes and their accessory proteins. Accurate expression levels and domains of these regulators are essential for organizing spinal motor neuron columns and axonal projections to target muscles. Here, we show that microRNA miR-9 is transiently expressed in a motor neuron subtype and displays ove...

  16. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Parvaneh Tafreshi, Azita; Talebi, Farideh; Ghorbani, Samira; Bernard, Claude; Noorbakhsh, Farshid

    2017-10-01

    There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE. © 2017 Wiley Periodicals, Inc.

  18. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  19. The Cellular Composition and Glia-Neuron Ratio in the Spinal Cord of a Human and a Nonhuman Primate: Comparison With Other Species and Brain Regions.

    Science.gov (United States)

    Bahney, Jami; von Bartheld, Christopher S

    2018-04-01

    The cellular composition of brains shows largely conserved, gradual evolutionary trends between species. In the primate spinal cord, however, the glia-neuron ratio was reported to be greatly increased over that in the rodent spinal cord. Here, we re-examined the cellular composition of the spinal cord of one human and one nonhuman primate species by employing two different counting methods, the isotropic fractionator and stereology. We also determined whether segmental differences in cellular composition, possibly reflecting increased fine motor control of the upper extremities, may explain a sharply increased glia-neuron ratio in primates. In the cynomolgus monkey spinal cord, the isotropic fractionator and stereology yielded 206-275 million cells, of which 13.3-25.1% were neurons (28-69 million). Stereological estimates yielded 21.1% endothelial cells and 65.5% glial cells (glia-neuron ratio of 4.9-5.6). In human spinal cords, the isotropic fractionator and stereology generated estimates of 1.5-1.7 billion cells and 197-222 million neurons (13.4% neurons, 12.2% endothelial cells, 74.8% glial cells), and a glia-neuron ratio of 5.6-7.1, with estimates of neuron numbers in the human spinal cord based on morphological criteria. The non-neuronal to neuron ratios in human and cynomolgus monkey spinal cords were 6.5 and 3.2, respectively, suggesting that previous reports overestimated this ratio. We did not find significant segmental differences in the cellular composition between cervical, thoracic and lumbar levels. When compared with brain regions, the spinal cord showed gradual increases of the glia-neuron ratio with increasing brain mass, similar to the cerebral cortex and the brainstem. Anat Rec, 301:697-710, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. [RECONSTRUCTION OF LOWER EXTREMITY FUNCTION OF COMPLETE SPINAL CORD INJURY RATS BY FIRST NEURON CONNECTION].

    Science.gov (United States)

    Wang, Fangyong; Yuan, Yuan; Li, Jianjun

    2015-12-01

    To investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. Forty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L₁ transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n = 20) and experimental group (n = 20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. After establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P > 0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. Direct reconstruction

  1. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Bo Wang; Xiaoqing Zhang; Xue-Jun Li

    2013-01-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease.Here,we developed a closely representative cell model of SMA by knocking down the disease-determining gene,survival motor neuron (SMN),in human embryonic stem cells (hESCs).Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons.Notably,the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated.Furthermore,these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-A7 (lacking exon 7)knockdown,and were specific to spinal motor neurons.Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes,including specific axonal defects and motor neuron loss.Finally,knockdown of SMNFL led to excessive mitochondrial oxidative stress in human motor neuron progenitors.The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine,a potent antioxidant,which prevented disease-related apoptosis and subsequent motor neuron death.Thus,we report here the successful establishment of an hESC-based SMA model,which exhibits disease gene isoform specificity,cell type specificity,and phenotype reversibility.Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  2. Spinal Muscular Atrophy: More than a Disease of Motor Neurons?

    Science.gov (United States)

    Nash, L A; Burns, J K; Chardon, J Warman; Kothary, R; Parks, R J

    2016-01-01

    Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease resulting in infant mortality. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in reduced levels of the survival of motor neuron (SMN) protein. SMN protein deficiency preferentially affects α- motor neurons, leading to their degeneration and subsequent atrophy of limb and trunk muscles, progressing to death in severe forms of the disease. More recent studies have shown that SMN protein depletion is detrimental to the functioning of other tissues including skeletal muscle, heart, autonomic and enteric nervous systems, metabolic/endocrine (e.g. pancreas), lymphatic, bone and reproductive system. In this review, we summarize studies discussing SMN protein's function in various cell and tissue types and their involvement in the context of SMA disease etiology. Taken together, these studies indicate that SMA is a multi-organ disease, which suggests that truly effective disease intervention may require body-wide correction of SMN protein levels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  4. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  5. Activation of AMPK by OSU53 protects spinal cord neurons from oxidative stress.

    Science.gov (United States)

    Xu, Jun; Wu, Liang; Zhang, Yiming; Gu, Huijie; Huang, Zhongyue; Zhou, Kaifeng; Yin, Xiaofan

    2017-12-22

    The present study tested the potential effect of OSU53, a novel AMPK activator, against hydrogen peroxide (H2O2)-induced spinal cord neuron damages. Treatment with OSU53 attenuated H2O2-induced death and apoptosis of primary murine spinal cord neurons. OSU53 activated AMPK signaling, which is required for its actions in spinal cord neurons. The AMPK inhibitor Compound C or AMPKα1 siRNA almost abolished OSU53-mediated neuroprotection against H2O2. On the other hand, sustained-activation of AMPK by introducing the constitutive-active AMPKα1 mimicked OSU53's actions, and protected spinal cord neurons from oxidative stress. OSU53 significantly attenuated H2O2-induced reactive oxygen species production, lipid peroxidation and DNA damages in spinal cord neurons. Additionally, OSU53 increased NADPH content and heme oxygenase-1 mRNA expression in H2O2-treated spinal cord neurons. Together, we indicate that targeted-activation of AMPK by OSU53 protects spinal cord neurons from oxidative stress.

  6. Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera.

    Science.gov (United States)

    Patel, Ryan; Brice, Nicola L; Lewis, Richard J; Dickenson, Anthony H

    2015-12-01

    Cold hypersensitivity is evident in a range of neuropathies and can evoke sensations of paradoxical burning cold pain. Ciguatoxin poisoning is known to induce a pain syndrome caused by consumption of contaminated tropical fish that can persist for months and include pruritus and cold allodynia; at present no suitable treatment is available. This study examined, for the first time, the neural substrates and molecular components of Pacific ciguatoxin-2-induced cold hypersensitivity. Electrophysiological recordings of dorsal horn lamina V/VI wide dynamic range neurones were made in non-sentient rats. Subcutaneous injection of 10 nm ciguatoxin-2 into the receptive field increased neuronal responses to innocuous and noxious cooling. In addition, neuronal responses to low-threshold but not noxious punctate mechanical stimuli were also elevated. The resultant cold hypersensitivity was not reversed by 6-({2-[2-fluoro-6-(trifluoromethyl)phenoxy]-2-methylpropyl}carbamoyl)pyridine-3-carboxylic acid, an antagonist of transient receptor potential melastatin 8 (TRPM8). Both mechanical and cold hypersensitivity were completely prevented by co-injection with the Nav 1.8 antagonist A803467, whereas the transient receptor potential ankyrin 1 (TRPA1) antagonist A967079 only prevented hypersensitivity to innocuous cooling and partially prevented hypersensitivity to noxious cooling. In naive rats, neither innocuous nor noxious cold-evoked neuronal responses were inhibited by antagonists of Nav 1.8, TRPA1 or TRPM8 alone. Ciguatoxins may confer cold sensitivity to a subpopulation of cold-insensitive Nav 1.8/TRPA1-positive primary afferents, which could underlie the cold allodynia reported in ciguatera. These data expand the understanding of central spinal cold sensitivity under normal conditions and the role of these ion channels in this translational rat model of ciguatoxin-induced hypersensitivity. © 2015 The Authors. European Journal of Neuroscience published by Federation of

  7. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord.

    Science.gov (United States)

    Petracca, Yanina L; Sartoretti, Maria Micaela; Di Bella, Daniela J; Marin-Burgin, Antonia; Carcagno, Abel L; Schinder, Alejandro F; Lanuza, Guillermo M

    2016-03-01

    Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells. © 2016. Published by The Company of Biologists Ltd.

  8. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  9. TOXOPLASMOSIS: MORPHOLOGICAL AND MORPHOMETRIC EVALUATION OF SPINAL CORD NEURONS FROM NONSYMPTOMATIC SEROPOSITIVE DOGS

    Directory of Open Access Journals (Sweden)

    Alessandra Cristina Francischini de Carvalho

    2015-04-01

    Full Text Available The aim of this work was to analyze the neuron morphology and morphometry of cervical, thoracic and lumbar areas of nonsymptomatic seropositive dogs’ spinal cord for toxoplasmosis. Twenty indefinite-breed adult dogs were used; ten dogs were healthy, with negative serology for toxoplasmosis, and were used as the control group (group 1, and ten dogs were nonsymptomatic but seropositive for toxoplasmosis (group 2. After the microtomy, with interval of 100 micrometers (µm, the histological 5-µm-thick cuts were dyed by hematoxylin-eosin and Masson's trichrome techniques. The glass slides were analyzed under light microscope to examine the neuron morphology. The parameters considered for the morphometric analysis were area, perimeter, maximum diameter, minimum diameter and shape factor of cytoplasm and nucleus of neuron. The results were statistically analyzed by Student’s t test at 5% probability level. The morphological characteristics between the two groups were similar and according to literature. The morphometric results showed that there were changes in neurons size and structure, and increase and loss of star shape were noticed in seropositive animals. The results suggest that the neurons of these dogs, yet nonsymptomatic, can have lost their conductor function.

  10. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Science.gov (United States)

    Asante, Curtis O; Wallace, Victoria C; Dickenson, Anthony H

    2009-01-01

    Background The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR) dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via mRNA translation and thus protein

  11. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Directory of Open Access Journals (Sweden)

    Wallace Victoria C

    2009-06-01

    Full Text Available Abstract Background The mammalian target of rapamycin (mTOR is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via m

  12. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Sharyn L Rossi

    2010-07-01

    Full Text Available Motor neuron loss is characteristic of cervical spinal cord injury (SCI and contributes to functional deficit.In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP derived from human embryonic stem cells (hESCs. In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.

  13. Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition

    Directory of Open Access Journals (Sweden)

    Schlichter Rémy

    2008-05-01

    Full Text Available Abstract Background Recent evidence suggests that oxytocin (OT, secreted in the superficial spinal cord dorsal horn by descending axons of paraventricular hypothalamic nucleus (PVN neurons, produces antinociception and analgesia. The spinal mechanism of OT is, however, still unclear and requires further investigation. We have used patch clamp recording of lamina II neurons in spinal cord slices and immunocytochemistry in order to identify PVN-activated neurons in the superficial layers of the spinal cord and attempted to determine how this neuronal population may lead to OT-mediated antinociception. Results We show that OT released during PVN stimulation specifically activates a subpopulation of lamina II glutamatergic interneurons which are localized in the most superficial layers of the dorsal horn of the spinal cord (lamina I-II. This OT-specific stimulation of glutamatergic neurons allows the recruitment of all GABAergic interneurons in lamina II which produces a generalized elevation of local inhibition, a phenomenon which might explain the reduction of incoming Aδ and C primary afferent-mediated sensory messages. Conclusion Our results obtained in lamina II of the spinal cord provide the first clear evidence of a specific local neuronal network that is activated by OT release to induce antinociception. This OT-specific pathway might represent a novel and interesting therapeutic target for the management of neuropathic and inflammatory pain.

  14. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    Science.gov (United States)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  15. In search for a gold-standard procedure to count motor neurons in the spinal cord.

    Science.gov (United States)

    Ferrucci, Michela; Lazzeri, Gloria; Flaibani, Marina; Biagioni, Francesca; Cantini, Federica; Madonna, Michele; Bucci, Domenico; Limanaqi, Fiona; Soldani, Paola; Fornai, Francesco

    2018-03-14

    Counting motor neurons within the spinal cord and brainstem represents a seminal step to comprehend the anatomy and physiology of the final common pathway sourcing from the CNS. Motor neuron loss allows to assess the severity of motor neuron disorders while providing a tool to assess disease modifying effects. Counting motor neurons at first implies gold standard identification methods. In fact, motor neurons may occur within mixed nuclei housing a considerable amount of neurons other than motor neurons. In the present review, we analyse various approaches to count motor neurons emphasizing both the benefits and bias of each protocol. A special emphasis is placed on discussing automated stereology. When automated stereology does not take into account site-specificity and does not distinguish between heterogeneous neuronal populations, it may confound data making such a procedure a sort of "guide for the perplex". Thus, if on the one hand automated stereology improves our ability to quantify neuronal populations, it may also hide false positives/negatives in neuronal counts. For instance, classic staining for antigens such as SMI-32, SMN and ChAT, which are routinely considered to be specific for motor neurons, may also occur in other neuronal types of the spinal cord. Even site specificity within Lamina IX may be misleading due to neuronal populations having a size and shape typical of motor neurons. This is the case of spinal border cells, which often surpass the border of Lamina VII and intermingle with motor neurons of Lamina IX. The present article discusses the need to join automated stereology with a dedicated knowledge of each specific neuroanatomical setting.

  16. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  17. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    Science.gov (United States)

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  18. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    Science.gov (United States)

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  19. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  20. V1 spinal neurons regulate the speed of vertebrate locomotor outputs

    DEFF Research Database (Denmark)

    Gosgnach, Simon; Lanuza, Guillermo M.; Butt, Simon J B

    2006-01-01

    The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs...... for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements....

  1. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  2. Characterization of thoracic spinal neurons with noxious convergent inputs from heart and lower airways in rats.

    Science.gov (United States)

    Qin, Chao; Foreman, Robert D; Farber, Jay P

    2007-04-13

    Respiratory symptoms experienced in some patients with cardiac diseases may be due to convergence of noxious cardiac and pulmonary inputs onto neurons of the central nervous system. For example, convergence of cardiac and respiratory inputs onto single solitary tract neurons may be in part responsible for integration of regulatory and defensive reflex control. However, it is unknown whether inputs from the lungs and heart converge onto single neurons of the spinal cord. The present aim was to characterize upper thoracic spinal neurons responding to both noxious stimuli of the heart and lungs in rats. Extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. A catheter was placed in the pericardial sac to administer bradykinin (BK, 10 microg/ml, 0.2 ml, 1 min) as a noxious cardiac stimulus. The lung irritant, ammonia, obtained as vapor over a 30% solution of NH(4)OH was injected into the inspiratory line of the ventilator (0.5-1.0 ml over 20 s). Intrapericardial bradykinin (IB) altered activity of 58/65 (89%) spinal neurons that responded to inhaled ammonia (IA). Among those cardiopulmonary convergent neurons, 81% (47/58) were excited by both IA and IB, and the remainder had complex response patterns. Bilateral cervical vagotomy revealed that vagal afferents modulated but did not eliminate responses of individual spinal neurons to IB and IA. The convergence of pulmonary and cardiac nociceptive signaling in the spinal cord may be relevant to situations where a disease process in one organ influences the behavior of the other.

  3. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation

    Directory of Open Access Journals (Sweden)

    Volodymyr Krotov

    2017-11-01

    Full Text Available Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent. The tissue preparation has been also probed using Ca2+ imaging with fluorescent Ca2+ dyes (membrane-impermeable or -permeable to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.

  5. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  6. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  7. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Dhruv Sareen

    Full Text Available Spinal muscular atrophy (SMA is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC lines generated from two Type I SMA subjects-one produced with lentiviral constructs and the second using a virus-free plasmid-based approach-recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients.

  8. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury

    Directory of Open Access Journals (Sweden)

    Stelzner Dennis J

    2010-11-01

    Full Text Available Abstract Background Propriospinal neurons, with axonal projections intrinsic to the spinal cord, have shown a greater regenerative response than supraspinal neurons after axotomy due to spinal cord injury (SCI. Our previous work focused on the response of axotomized short thoracic propriospinal (TPS neurons following a low thoracic SCI (T9 spinal transection or moderate spinal contusion injury in the rat. The present investigation analyzes the intrinsic response of cervical propriospinal neurons having long descending axons which project into the lumbosacral enlargement, long descending propriospinal tract (LDPT axons. These neurons also were axotomized by T9 spinal injury in the same animals used in our previous study. Results Utilizing laser microdissection (LMD, qRT-PCR, and immunohistochemistry, we studied LDPT neurons (located in the C5-C6 spinal segments between 3-days, and 1-month following a low thoracic (T9 spinal cord injury. We examined the response of 89 genes related to growth factors, cell surface receptors, apoptosis, axonal regeneration, and neuroprotection/cell survival. We found a strong and significant down-regulation of ~25% of the genes analyzed early after injury (3-days post-injury with a sustained down-regulation in most instances. In the few genes that were up-regulated (Actb, Atf3, Frs2, Hspb1, Nrap, Stat1 post-axotomy, the expression for all but one was down-regulated by 2-weeks post-injury. We also compared the uninjured TPS control neurons to the uninjured LDPT neurons used in this experiment for phenotypic differences between these two subpopulations of propriospinal neurons. We found significant differences in expression in 37 of the 84 genes examined between these two subpopulations of propriospinal neurons with LDPT neurons exhibiting a significantly higher base line expression for all but 3 of these genes compared to TPS neurons. Conclusions Taken collectively these data indicate a broad overall down

  9. Selective retrograde transport of D-aspartate in spinal interneurons anc cortical neurons of rats

    International Nuclear Information System (INIS)

    Rustioni, A.; Cuenod, M.

    1982-01-01

    Retrograde labeling of neuronal elements in the brain and spinal cord has been investigated by autoradiographic techniques following injections of D-[ 3 H]aspartate (asp), [ 3 H]γ-aminobutyric acid (GABA) or horseradish peroxidase (HRP) in the medulla and spinal cord of rats. Twenty-four hours after D-[ 3 H]asp injections focused upon the cuneate nucleus, autoradiographic labeling is present over fibers in the pyramidal tract, internal capsule and over layer V pyramids in the forelimb representation of the sensorimotor cortex. After [ 3 H]GABA injections in the same nucleus no labeling attributable to retrograde translocation can be detected in spinal segments, brain stem or cortex. Conversely, injections of 30% HRP in the cuneate nucleus label neurons in several brain stem nuclei, in spinal gray and in layer V of the sensorimotor cortex. D-[ 3 H]Asp injections focused on the dorsal horn at cervical segments label a fraction of perikarya of the substantia gelatinosa and a sparser population of larger neurons in laminae IV to VI for a distance of 3-5 segments above and below the injection point. No brain stem neuronal perikarya appear labeled following spinal injections of D-[ 3 H]asp although autoradiographic grains overlie pyramidal tract fibers on the side contralateral to the injection. (Auth.)

  10. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury

    DEFF Research Database (Denmark)

    Lee, I. Hui; Lindqvist, Eva; Kiehn, Ole

    2005-01-01

    Spinal cord injury induces a complex cascade of degenerative and remodeling events evolving over time. The possible roles of changed intercellular communication via gap junctions after spinal cord injury (SCI) have remained relatively unexplored. We investigated the temporospatial expression...... patterns of gap junctional genes and proteins, connexin 43 (Cx43), Cx36, and Cx32, by in situ hybridization and immunohistochemistry in the rat neonatal, adult normal, and adult injured spinal cord. Cx36 was strongly expressed in immature neurons, and levels declined markedly during development, whereas Cx...

  11. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    Science.gov (United States)

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    2017-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins.

    Science.gov (United States)

    Beattie, Christine E; Kolb, Stephen J

    2018-08-15

    Spinal muscular atrophy is caused by deletions or mutations in the SMN1 gene that result in reduced expression of the SMN protein. The SMN protein is an essential molecular chaperone that is required for the biogenesis of multiple ribonucleoprotein (RNP) complexes including spliceosomal small nuclear RNPs (snRNPs). Reductions in SMN expression result in a reduced abundance of snRNPs and to downstream RNA splicing alterations. SMN is also present in axons and dendrites and appears to have important roles in the formation of neuronal mRNA-protein complexes during development or neuronal repair. Thus, SMA is an exemplar, selective motor neuron disorder that is caused by defects in fundamental RNA processing events. A detailed molecular understanding of how motor neurons fail, and why other neurons do not, in SMA will yield important principals about motor neuron maintenance and neuronal specificity in neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    Science.gov (United States)

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  14. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Science.gov (United States)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  15. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice.

    Science.gov (United States)

    Miyazaki, Kazunori; Masamoto, Kazuto; Morimoto, Nobutoshi; Kurata, Tomoko; Mimoto, Takahumi; Obata, Takayuki; Kanno, Iwao; Abe, Koji

    2012-03-01

    The exact mechanism of selective motor neuron death in amyotrophic lateral sclerosis (ALS) remains still unclear. In the present study, we performed in vivo capillary imaging, directly measured spinal blood flow (SBF) and glucose metabolism, and analyzed whether if a possible flow-metabolism coupling is disturbed in motor neuron degeneration of ALS model mice. In vivo capillary imaging showed progressive decrease of capillary diameter, capillary density, and red blood cell speed during the disease course. Spinal blood flow was progressively decreased in the anterior gray matter (GM) from presymptomatic stage to 0.80-fold of wild-type (WT) mice, 0.61 at early-symptomatic, and 0.49 at end stage of the disease. Local spinal glucose utilization (LSGU) was transiently increased to 1.19-fold in anterior GM at presymptomatic stage, which in turn progressively decreased to 0.84 and 0.60 at early-symptomatic and end stage of the disease. The LSGU/SBF ratio representing flow-metabolism uncoupling (FMU) preceded the sequential pathological changes in the spinal cord of ALS mice and was preferentially found in the affected region of ALS. The present study suggests that this early and progressive FMU could profoundly involve in the whole disease process as a vascular factor of ALS pathology, and could also be a potential target for therapeutic intervention of ALS.

  16. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  17. Nuclear organization in the spinal cord depends on motor neuron lamination orchestrated by catenin and afadin function

    OpenAIRE

    Dewitz, C.; Pimpinella, S.; Hackel, P.; Akalin, A.; Jessell, T.M.; Zampieri, N.

    2018-01-01

    Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, a...

  18. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    DEFF Research Database (Denmark)

    Ryge, J.; Winther, Ole; Wienecke, J.

    2010-01-01

    Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of ...

  19. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats

    DEFF Research Database (Denmark)

    Qin, Chao; Ghorbani, Marie L M; Wu, Mingyuan

    2008-01-01

    The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats...

  1. Monosynaptic connections between primary afferents and giant neurons in the turtle spinal dorsal horn

    DEFF Research Database (Denmark)

    Fernández, A; Radmilovich, M; Russo, R E

    1996-01-01

    This paper reports the occurrence of monosynaptic connections between dorsal root afferents and a distinct cell type-the giant neuron-deep in the dorsal horn of the turtle spinal cord. Light microscope studies combining Nissl stain and transganglionic HRP-labeling of the primary afferents have...

  2. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    Science.gov (United States)

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    Science.gov (United States)

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons

    Directory of Open Access Journals (Sweden)

    Guoyang Huang

    2016-12-01

    Full Text Available Spinal cord injury (SCI is a debilitating disease, effective prevention measures are in desperate need. Our previous work found that hyperbaric oxygen (HBO preconditioning significantly protected rats from SCI after stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons from oxidative insult and oxygen glucose deprivation injury via heat shock protein (HSP 32 induction. In this study, underlying molecular mechanisms were further investigated. The results showed that a single exposure to HBO significantly increased intracellular levels of reactive oxygen species (ROS and nitric oxide (NO and activated MEK1/2, ERK1/2, p38 MAPK, CREB, Bach1 and Nrf2. The induction of HSP32 by HBO was significantly reversed by pretreatment neurons with ROS scavenger N-Acetyl-L-cysteine, p38 MAPK inhibitor or Nrf2 gene knockdown, enhanced by MEK1/2 inhibitors or gene knockdown but not by ERK1/2 inhibitor. CREB knockdown did not change the expression of HSP32 induced by HBO. N-Acetyl-L-cysteine significantly inhibited the activation of MEK1/2, ERK1/2, p38 MAPK, and Nrf2. Activation of Nrf2 was significantly inhibited by p38 MAPK inhibitor and the nuclear export of Bach1 was significantly enhanced by MEK1/2 inhibitor. The results demonstrated that HBO induces HSP32 expression through a ROS/p38 MAPK/Nrf2 pathway and the MEK1/2/Bach1 pathway contributes to negative regulation in the process. More importantly, as we know, this is the first study to delineate that ERK1/2 is not the only physiological substrates of MEK1/2.

  5. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole; Butt, Simon J.B.

    2003-01-01

    . These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace...... network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG...

  6. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Kaneko, Ai; Matsushita, Akira; Sankai, Yoshiyuki

    2015-01-01

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  7. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    Science.gov (United States)

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  8. Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy.

    Science.gov (United States)

    Ramirez, Agnese; Crisafulli, Sebastiano G; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania; Nizzardo, Monica

    2018-01-06

    Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 ( SMN1 ) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2 . Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials.

  9. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Structural and Functional Substitution of Deleted Primary Sensory Neurons by New Growth from Intrinsic Spinal Cord Nerve Cells: An Alternative Concept in Reconstruction of Spinal Cord Circuits

    Directory of Open Access Journals (Sweden)

    Nicholas D. James

    2017-07-01

    Full Text Available In a recent clinical report, return of the tendon stretch reflex was demonstrated after spinal cord surgery in a case of total traumatic brachial plexus avulsion injury. Peripheral nerve grafts had been implanted into the spinal cord to reconnect to the peripheral nerves for motor and sensory function. The dorsal root ganglia (DRG containing the primary sensory nerve cells had been surgically removed in order for secondary or spinal cord sensory neurons to extend into the periphery and replace the deleted DRG neurons. The present experimental study uses a rat injury model first to corroborate the clinical finding of a re-established spinal reflex arch, and second, to elucidate some of the potential mechanisms underlying these findings by means of morphological, immunohistochemical, and electrophysiological assessments. Our findings indicate that, after spinal cord surgery, the central nervous system sensory system could replace the traumatically detached original peripheral sensory connections through new neurite growth from dendrites.

  11. Wind-up of spinal cord neurones and pain sensation: much ado about something?

    Science.gov (United States)

    Herrero, J F; Laird, J M; López-García, J A

    2000-06-01

    Wind-up is a frequency-dependent increase in the excitability of spinal cord neurones, evoked by electrical stimulation of afferent C-fibres. Although it has been studied over the past thirty years, there are still uncertainties about its physiological meaning. Glutamate (NMDA) and tachykinin NK1 receptors are required to generate wind-up and therefore a positive modulation between these two receptor types has been suggested by some authors. However, most drugs capable of reducing the excitability of spinal cord neurones, including opioids and NSAIDs, can also reduce or even abolish wind-up. Thus, other theories involving synaptic efficacy, potassium channels, calcium channels, etc. have also been proposed for the generation of this phenomenon. Whatever the mechanisms involved in its generation, wind-up has been interpreted as a system for the amplification in the spinal cord of the nociceptive message that arrives from peripheral nociceptors connected to C-fibres. This probably reflects the physiological system activated in the spinal cord after an intense or persistent barrage of afferent nociceptive impulses. On the other hand, wind-up, central sensitisation and hyperalgesia are not the same phenomena, although they may share common properties. Wind-up can be an important tool to study the processing of nociceptive information in the spinal cord, and the central effects of drugs that modulate the nociceptive system. This paper reviews the physiological and pharmacological data on wind-up of spinal cord neurones, and the perceptual correlates of wind-up in human subjects, in the context of its possible relation to the triggering of hyperalgesic states, and also the multiple factors which contribute to the generation of wind-up.

  12. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  13. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Histochemical characterization, distribution and morphometric analysis of NADPH diaphorase neurons in the spinal cord of the agouti

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2008-05-01

    Full Text Available We evaluated the neuropil distribution of the enzymes NADPH diaphorase (NADPH-d and cytochrome oxidase (CO in the spinal cord of the agouti, a medium-sized diurnal rodent, together with the distribution pattern and morphometrical characteristics of NADPH-d reactive neurons across different spinal segments. Neuropil labeling pattern was remarkably similar for both enzymes in coronal sections: reactivity was higher in regions involved with pain processing. We found two distinct types of NADPH-d reactive neurons in the agouti’s spinal cord: type I neurons had large, heavily stained cell bodies while type II neurons displayed relatively small and poorly stained somata. We concentrated our analysis on type I neurons. These were found mainly in the dorsal horn and around the central canal of every spinal segment, with a few scattered neurons located in the ventral horn of both cervical and lumbar regions. Overall, type I neurons were more numerous in the cervical region. Type I neurons were also found in the white matter, particularly in the ventral funiculum. Morphometrical analysis revealed that type I neurons located in the cervical region have dendritic trees that are more complex than those located in both lumbar and thoracic regions. In addition, NADPH-d cells located in the ventral horn had a larger cell body, especially in lumbar segments. The resulting pattern of cell body and neuropil distribution is in accordance with proposed schemes of segregation of function in the mammalian spinal cord.

  15. Shenfu injection attenuates neurotoxicity of bupivacaine in cultured mouse spinal cord neurons

    Institute of Scientific and Technical Information of China (English)

    XIONG Li-ze; WANG Qiang; LIU Mu-yun; PENG Ye; LI Qing-bo; LU Zhi-hong; LEI Chong

    2007-01-01

    Background Our previous in vivo study in the rat demonstrates that Shenfu injection, a clinically used extract preparation from Chinese herbs, attenuates neural and cardiac toxicity induced by intravenous infusion of bupivacaine, a local anesthetic. This study was designed to investigate whether bupivacaine could induce a toxic effect in primary cultured mouse spinal cord neuron and if so, whether the Shenfu injection had a similar neuroprotective effect in the cell model. Methods The spinal cords from 11- to 14-day-old fetal mice were minced and incubated. Cytarabine was added into the medium to inhibit the proliferation of non-neuronal cells. The immunocytochemical staining of β-tubulin was used to determine the identity of cultured cells. The cultured neurons were randomly assigned into three sets treated with various doses of bupivacaine, Shenfu and bupivacaine+Shenfu, for 48 hours respectively. Cell viability in each group was analyzed by methyl thiazoleterazolium (MTT) assay. Results The viability of the cultured neurons treated with bupivacaine at concentrations of 0.01%, 0.02%, 0.04% and 0.08% was decreased in a dose-dependent manner. Although the Shenfu injection at concentrations ranging from 1/50 to 1/12.5 (V/V) had no significant influence on the viability of cultured neurons (P<0.05 vs control), the injection significantly increased the cellular viability of cultured neurons pretreated with 0.03% bupivacaine (P<0.05). Conclusion Although Shenfu injection itself has no effect on spinal neurons, it was able to reduce the bupivacaine induced neurotoxicity in vitro.

  16. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia.

    Science.gov (United States)

    Ardell, Jeffrey L; Cardinal, René; Vermeulen, Michel; Armour, J Andrew

    2009-08-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects.

  17. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    Science.gov (United States)

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  18. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain.

    Science.gov (United States)

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J W; Li, Junfa; Fang, Li

    2007-04-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.

  19. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity

    Directory of Open Access Journals (Sweden)

    Jessica Maria D'Amico

    2014-05-01

    Full Text Available The state of areflexia and muscle weakness that immediately follows a spinal cord injury is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of descending and movement-induced sensory inputs and the eventual impact on the muscle. We discuss how replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord below an injury with spared descending and/or peripheral functional synaptic activation, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after spinal cord injury.

  20. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  1. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment

    Science.gov (United States)

    Deng, Lingxiao; Ruan, Yiwen; Chen, Chen; Frye, Christian Corbin; Xiong, Wenhui; Jin, Xiaoming; Jones, Kathryn; Sengelaub, Dale; Xu, Xiao-Ming

    2016-01-01

    acetyltransferase (ChAT), glycine, and GABA was performed in the T7–9 spinal cord. We show that the majority of FG retrogradely-labeled dPSNs were located in the Rexed Lamina VII. Over 90 percent of FG-labeled neurons were glutamatergic, with the other three neurotransmitters contributing less than 10 percent of the total. To our knowledge this is the first report describing the morphologic characteristics of dPSNs and their neurotransmitter expressions, as well as the dendritic response of dPSNs after transection injury and GDNF treatment. PMID:26730519

  2. Stereological estimate of the total number of neurons in spinal segment D9 of the red-eared turtle

    DEFF Research Database (Denmark)

    Walløe, Solveig; Nissen, Ulla Vig; Berg, Rune W

    2011-01-01

    The red-eared turtle is an important animal model for investigating the neural activity in the spinal circuit that generates motor behavior. However, basic anatomical features, including the number of neurons in the spinal segments involved, are unknown. In the present study, we estimate the total...... number of neurons in segment D9 of the spinal cord in the red-eared turtle (Trachemys scripta elegans) using stereological cell counting methods. In transverse spinal cord sections stained with modified Giemsa, motoneurons (MNs), interneurons (INs), and non-neuronal cells were distinguished according...... to location and morphology. Each cell type was then counted separately using an optical disector with the cell nucleus as counting item. The number of cells in segment D9 was as follows (mean ± SE): MNs, 2049 ± 74; INs, 16,135 ± 316; non-neuronal cells, 47,504 ± 478 (n = 6). These results provide the first...

  3. Protective Effects of Two Constituents of Chinese Herbs on Spinal Motor Neurons from Embryonic Rats with Hypoxia Injury

    OpenAIRE

    Chen, Jian-feng; Fan, Jian; Tian, Xiao-wu; Tang, Tian-si

    2011-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided int...

  4. Reelin signaling in the migration of ventral brain stem and spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2016-03-01

    Full Text Available The extracellular matrix protein Reelin is an important orchestrator of neuronal migration during the development of the central nervous system. While its role and mechanism of action have been extensively studied and reviewed in the formation of dorsal laminar brain structures like the cerebral cortex, hippocampus, and cerebellum, its functions during the neuronal migration events that result in the nuclear organization of the ventral central nervous system are less well understood. In an attempt to delineate an underlying pattern of Reelin action in the formation of neuronal cell clusters, this review highlights the role of Reelin signaling in the migration of neuronal populations that originate in the ventral brain stem and the spinal cord.

  5. Plastic Changes in the Spinal Cord in Motor Neuron Disease

    Directory of Open Access Journals (Sweden)

    Francesco Fornai

    2014-01-01

    Full Text Available In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive, while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive. These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus.

  6. Organization of left-right coordination of neuronal activity in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Shevtsova, Natalia A.; Talpalar, Adolfo E.; Markin, Sergey N.

    2015-01-01

    and the left-right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN....... In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified...... inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce...

  7. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.

    Directory of Open Access Journals (Sweden)

    Jesper Ryge

    Full Text Available BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional

  8. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  9. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Pregabalin Suppresses Spinal Neuronal Hyperexcitability and Visceral Hypersensitivity in the Absence of Peripheral Pathophysiology

    Science.gov (United States)

    Bannister, Kirsty; Sikandar, Shafaq; Bauer, Claudia S.; Dolphin, Annette C.; Porreca, Frank; Dickenson, Anthony H.

    2011-01-01

    Background Opioid induced hyperalgesia is recognised in the laboratory and the clinic, generating central hyperexcitability in the absence of peripheral pathology. We investigated pregabalin, indicated for neuropathic pain, and ondansetron, a drug that disrupts descending serotonergic processing in the central nervous system, on spinal neuronal hyperexcitability and visceral hypersensitivity in a rat model of opioid induced hyperalgesia. Methods Sprague-Dawley rats (180-200 g) were implanted with morphine (90μg · μl−1 · hr−1) or saline (0.9% w/v) filled osmotic mini-pumps. On days 7-10 in isoflurane anaesthetized animals we evaluated the effects of (a) systemic pregabalin on spinal neuronal and visceromotor responses and (b) spinal ondansetron on dorsal horn neuronal responses. The messenger RNA levels of α2δ-1, 5HT3A and mu-opioid receptor in the dorsal root ganglia of all animals were analysed. Results In morphine-treated animals the evoked spinal neuronal responses were enhanced to a sub-set of thermal and mechanical stimuli. This activity was attenuated by pregabalin (by at least 71%) and ondansetron (37%), and the visceromotor response to a sub-set of colorectal distension pressures was attenuated by pregabalin (52.8%) (n = 8 for all measures, P < 0.05). Messenger RNA levels were unchanged. Conclusions The inhibitory action of pregabalin in opioid induced hyperalgesia animals is not neuropathy-dependent nor reliant on up-regulation of the α2δ-1 subunit of voltage gated calcium channels, mechanisms proposed essential for pregabalin’s efficacy in neuropathy. In opioid induced hyperalgesia, which extends to colonic distension, a serotonergic facilitatory system may be upregulated creating an environment that’s permissive for pregabalin-mediated analgesia without peripheral pathology. PMID:21602662

  11. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    OpenAIRE

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons...

  12. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    Science.gov (United States)

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  13. Tailless-like (TLX) protein promotes neuronal differentiation of dermal multipotent stem cells and benefits spinal cord injury in rats.

    Science.gov (United States)

    Wang, Tao; Ren, Xiaobao; Xiong, Jianqiong; Zhang, Lei; Qu, Jifu; Xu, Wenyue

    2011-04-01

    Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.

  14. Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located laterally in the deep...

  15. Burst-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1996-01-01

    1. In transverse slices of the spinal cord of the turtle, intracellular recordings were used to characterize and analyse the responses to injected current and activation of primary afferents in dorsal horn neurones. 2. A subpopulation of neurones, with cell bodies located centrally in the dorsal...

  16. Spinal glutamatergic neurons defined by EphA4 signaling are essential components of normal locomotor circuits

    DEFF Research Database (Denmark)

    Borgius, Lotta; Nishimaru, Hiroshi; Caldeira, Vanessa

    2014-01-01

    EphA4 signaling is essential for the spatiotemporal organization of neuronal circuit formation. In mice, deletion of this signaling pathway causes aberrant midline crossing of axons from both brain and spinal neurons and the complete knock-outs (KOs) exhibit a pronounced change in motor behavior...

  17. Imaging Flow Cytometry Analysis to Identify Differences of Survival Motor Neuron Protein Expression in Patients With Spinal Muscular Atrophy.

    Science.gov (United States)

    Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko

    2016-08-01

    Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    Science.gov (United States)

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  19. Is Spinal Muscular Atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    Science.gov (United States)

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261

  20. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    Science.gov (United States)

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  1. Cross-organ sensitization of thoracic spinal neurons receiving noxious cardiac input in rats with gastroesophageal reflux.

    Science.gov (United States)

    Qin, Chao; Malykhina, Anna P; Thompson, Ann M; Farber, Jay P; Foreman, Robert D

    2010-06-01

    Gastroesophageal reflux (GER) frequently triggers or worsens cardiac pain or symptoms in patients with coronary heart disease. This study aimed to determine whether GER enhances the activity of upper thoracic spinal neurons receiving noxious cardiac input. Gastric fundus and pyloric ligations as well as a longitudinal myelotomy at the gastroesophageal junction induced acute GER in pentobarbital-anesthetized, paralyzed, and ventilated male Sprague-Dawley rats. Manual manipulations of the stomach and lower esophagus were used as surgical controls in another group. At 4-9 h after GER surgery, extracellular potentials of single neurons were recorded from the T3 spinal segment. Intrapericardial bradykinin (IB) (10 microg/ml, 0.2 ml, 1 min) injections were used to activate cardiac nociceptors, and esophageal distensions were used to activate esophageal afferent fibers. Significantly more spinal neurons in the GER group responded to IB compared with the control group (69.1 vs. 38%, P neurons in the superficial laminae of GER animals was significantly different from those in deeper layers (1/8 vs. 46/60, P 0.05). Excitatory responses of spinal neurons to IB in the GER group were greater than in the control group [32.4 +/- 3.5 impulses (imp)/s vs. 13.3 +/- 2.3 imp/s, P neurons responded to cardiac input and ED, which was higher than the control group (61.5%, P neurons in deeper laminae of the dorsal horn to noxious cardiac stimulus.

  2. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    Directory of Open Access Journals (Sweden)

    Urszula eSlawinska

    2014-08-01

    Full Text Available There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-OHDPAT (acting on 5-HT1A/7 receptors and quipazine (acting on 5-HT2 receptors, to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor CPG. Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.

  3. 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons.

    Science.gov (United States)

    Sławińska, Urszula; Miazga, Krzysztof; Jordan, Larry M

    2014-01-01

    There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the

  4. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    Science.gov (United States)

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  5. Modeling the phenotype of spinal muscular atrophy by the direct conversion of human fibroblasts to motor neurons.

    Science.gov (United States)

    Zhang, Qi-Jie; Li, Jin-Jing; Lin, Xiang; Lu, Ying-Qian; Guo, Xin-Xin; Dong, En-Lin; Zhao, Miao; He, Jin; Wang, Ning; Chen, Wan-Jin

    2017-02-14

    Spinal muscular atrophy (SMA) is a lethal autosomal recessive neurological disease characterized by selective degeneration of motor neurons in the spinal cord. In recent years, the development of cellular reprogramming technology has provided an alternative and effective method for obtaining patient-specific neurons in vitro. In the present study, we applied this technology to the field of SMA to acquire patient-specific induced motor neurons that were directly converted from fibroblasts via the forced expression of 8 defined transcription factors. The infected fibroblasts began to grow in a dipolar manner, and the nuclei gradually enlarged. Typical Tuj1-positive neurons were generated at day 23. After day 35, induced neurons with multiple neurites were observed, and these neurons also expressed the hallmarks of Tuj1, HB9, ISL1 and CHAT. The conversion efficiencies were approximately 5.8% and 5.5% in the SMA and control groups, respectively. Additionally, the SMA-induced neurons exhibited a significantly reduced neurite outgrowth rate compared with the control neurons. After day 60, the SMA-induced neurons also exhibited a liability of neuronal degeneration and remarkable fracturing of the neurites was observed. By directly reprogramming fibroblasts, we established a feeder-free conversion system to acquire SMA patient-specific induced motor neurons that partially modeled the phenotype of SMA in vitro.

  6. Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Darbon Pascal

    2009-11-01

    Full Text Available Abstract Background Growing evidence in the literature shows that oxytocin (OT has a strong spinal anti-nociceptive action. Oxytocinergic axons originating from a subpopulation of paraventricular hypothalamic neurons establish synaptic contacts with lamina II interneurons but little is known about the functional role of OT with respect to neuronal firing and excitability. Results Using the patch-clamp technique, we have recorded lamina II interneurons in acute transverse lumbar spinal cord slices of rats (15 to 30 days old and analyzed the OT effects on action potential firing ability. In the current clamp mode, we found that bath application of a selective OT-receptor agonist (TGOT reduced firing in the majority of lamina II interneurons exhibiting a bursting firing profile, but never in those exhibiting a single spike discharge upon depolarization. Interestingly, OT-induced reduction in spike frequency and increase of firing threshold were often observed, leading to a conversion of the firing profile from repetitive and delayed profiles into phasic ones and sometimes further into single spike profile. The observed effects following OT-receptor activation were completely abolished when the OT-receptor agonist was co-applied with a selective OT-receptor antagonist. In current and voltage clamp modes, we show that these changes in firing are strongly controlled by voltage-gated potassium currents. More precisely, transient IA currents and delayed-rectifier currents were reduced in amplitude and transient IA current was predominantly inactivated after OT bath application. Conclusion This effect of OT on the firing profile of lamina II neurons is in good agreement with the antinociceptive and analgesic properties of OT described in vivo.

  7. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    Science.gov (United States)

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  8. Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

    Directory of Open Access Journals (Sweden)

    Peng Yan

    2017-09-01

    Full Text Available Objective(s: AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1 signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI. Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI in vitro. The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. Results: We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro, indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro. Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Conclusion: Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  9. Regulation of autophagy by AMP-activated protein kinase/sirtuin 1 pathway reduces spinal cord neurons damage.

    Science.gov (United States)

    Yan, Peng; Bai, Liangjie; Lu, Wei; Gao, Yuzhong; Bi, Yunlong; Lv, Gang

    2017-09-01

    AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI) in vitro . The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro , indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro . Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  10. Intravenous dextromethorphan/quinidine inhibits activity of dura-sensitive spinal trigeminal neurons in rats.

    Science.gov (United States)

    Sokolov, A Y; Lyubashina, O A; Berkovich, R R; Panteleev, S S

    2015-09-01

    Migraine is a chronic neurological disorder characterized by episodes of throbbing headaches. Practically all medications currently used in migraine prophylaxis have a number of substantial disadvantages and use limitations. Therefore, the further search for principally new prophylactic antimigraine agents remains an important task. The objective of our study was to evaluate the effects of a fixed combination of dextromethorphan hydrobromide and quinidine sulphate (DM/Q) on activity of the spinal trigeminal neurons in an electrophysiological model of trigemino-durovascular nociception. The study was performed in 15 male Wistar rats, which were anaesthetized with urethane/α-chloralose and paralysed using pipecuronium bromide. The effects of cumulative intravenous infusions of DM/Q (three steps performed 30 min apart, 15/7.5 mg/kg of DM/Q in 0.5 mL of isotonic saline per step) on ongoing and dural electrical stimulation-induced neuronal activities were tested in a group of eight rats over 90 min. Other seven animals received cumulative infusion of equal volumes of saline and served as control. Cumulative administration of DM/Q produced steady suppression of both the ongoing activity of the spinal trigeminal neurons and their responses to electrical stimulation of the dura mater. It is evident that the observed DM/Q-induced suppression of trigeminal neuron excitability can lead to a reduction in nociceptive transmission from meninges to higher centres of the brain. Since the same mechanism is believed to underlie the pharmacodynamics of many well-known antimigraine drugs, results of the present study enable us to anticipate the potential efficacy of DM/Q in migraine. © 2014 European Pain Federation - EFIC®

  11. In vivo tracking of neuronal-like cells by magnetic resonance in rabbit models of spinal cord injury

    Science.gov (United States)

    Zhang, Ruiping; Zhang, Kun; Li, Jianding; Liu, Qiang; Xie, Jun

    2013-01-01

    In vitro experiments have demonstrated that neuronal-like cells derived from bone marrow mesenchymal stem cells can survive, migrate, integrate and help to restore the function and behaviors of spinal cord injury models, and that they may serve as a suitable approach to treating spinal cord injury. However, it is very difficult to track transplanted cells in vivo. In this study, we injected superparamagnetic iron oxide-labeled neuronal-like cells into the subarachnoid space in a rabbit model of spinal cord injury. At 7 days after cell transplantation, a small number of dot-shaped low signal intensity shadows were observed in the spinal cord injury region, and at 14 days, the number of these shadows increased on T2-weighted imaging. Perl's Prussian blue staining detected dot-shaped low signal intensity shadows in the spinal cord injury region, indicative of superparamagnetic iron oxide nanoparticle-labeled cells. These findings suggest that transplanted neuronal-like cells derived from bone marrow mesenchymal stem cells can migrate to the spinal cord injury region and can be tracked by magnetic resonance in vivo. Magnetic resonance imaging represents an efficient noninvasive technique for visually tracking transplanted cells in vivo. PMID:25206659

  12. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2014-05-01

    Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation.

  13. Tobacco-induced neuronal degeneration via cotinine in rats subjected to experimental spinal cord injury.

    Science.gov (United States)

    Dalgic, Ali; Okay, Onder; Helvacioglu, Fatma; Daglioglu, Ergun; Akdag, Rifat; Take, Gulnur; Belen, Deniz

    2013-05-01

    Cigarette smoke contains over 4000 chemicals including well-characterized toxicants and carcinogens, among which is cotinine. Cotinine is the principal metabolite of nicotine that has adverse affects on the microcirculation via vasoconstriction, hypoxia and the wound-healing cascade. Its impact on spinal cord injury (SCI) has not been investigated yet. The aim of the present study is to investigate the cotinine effect on SCI. 48 male Wistar rats were divided into six groups as follows: sham-control, sham-trauma, vehicle-control, vehicle-trauma, cotinine-control, and cotinine-trauma. Initially, a defined concentration of cotinine blood level was maintained by daily intraperitoneal injection of cotinine for 14 days in the cotinine groups. The concentration was similar to the cotinine dose in the blood level of heavy smokers. Only ethyl alcohol was injected in the vehicle groups during the same period. Then, SCI was performed by a Tator clip. The cotinine groups were compared with rats subjected to vehicle and sham groups by immunohistochemical biomarkers such as glial fibrillary acidic protein (GFAP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP) expressions. Electron microscopic examination was also performed. GFAP-positive cells were noted to be localized around degenerated astrocytes. Marked vacuolization with perivascular and perineural edema was seen in the cotinin consumption groups. These findings showed the inhibition of regeneration after SCI. Similarly, vacuolization within myelin layers was noted in the cotinine groups, which was detected through reduced CNP expression. Cotinine, a main metabolite of nicotine, has harmful effects on SCI via GFAP and CNP expression. The findings of the present study support the hypothesis that tobacco causes neuronal degeneration via cotinine. Georg Thieme Verlag KG Stuttgart · New York.

  14. Spinal muscular atrophy pathogenic mutations impair the axonogenic properties of axonal-survival of motor neuron.

    Science.gov (United States)

    Locatelli, Denise; d'Errico, Paolo; Capra, Silvia; Finardi, Adele; Colciaghi, Francesca; Setola, Veronica; Terao, Mineko; Garattini, Enrico; Battaglia, Giorgio

    2012-05-01

    The axonal survival of motor neuron (a-SMN) protein is a truncated isoform of SMN1, the spinal muscular atrophy (SMA) disease gene. a-SMN is selectively localized in axons and endowed with remarkable axonogenic properties. At present, the role of a-SMN in SMA is unknown. As a first step to verify a link between a-SMN and SMA, we investigated by means of over-expression experiments in neuroblastoma-spinal cord hybrid cell line (NSC34) whether SMA pathogenic mutations located in the N-terminal part of the protein affected a-SMN function. We demonstrated here that either SMN1 missense mutations or small intragenic re-arrangements located in the Tudor domain consistently altered the a-SMN capability of inducing axonal elongation in vitro. Mutated human a-SMN proteins determined in almost all NSC34 motor neurons the growth of short axons with prominent morphologic abnormalities. Our data indicate that the Tudor domain is critical in dictating a-SMN function possibly because it is an association domain for proteins involved in axon growth. They also indicate that Tudor domain mutations are functionally relevant not only for FL-SMN but also for a-SMN, raising the possibility that also a-SMN loss of function may contribute to the pathogenic steps leading to SMA. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  15. Interactions between superficial and deep dorsal horn spinal cord neurons in the processing of nociceptive information.

    Science.gov (United States)

    Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy

    2012-12-01

    In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. A functional assay to measure postsynaptic gamma-aminobutyric acidB responses in cultured spinal cord neurons: Heterologous regulation of the same K+ channel

    Energy Technology Data Exchange (ETDEWEB)

    Kamatchi, G.L.; Ticku, M.K. (Univ. of Texas Health Science Center, San Antonio (USA))

    1991-02-01

    The stimulation of postsynaptic gamma-aminobutyric acid (GABA)B receptors leads to slow inhibitory postsynaptic potentials due to the influx of K(+)-ions. This was studied biochemically, in vitro in mammalian cultured spinal cord neurons by using 86Rb as a substitute for K+. (-)-Baclofen, a GABAB receptor agonist, produced a concentration-dependent increase in the 86Rb-influx. This effect was stereospecific and blocked by GABAB receptor antagonists like CGP 35 348 (3-aminopropyl-diethoxymethyl-phosphonic acid) and phaclofen. Apart from the GABAB receptors, both adenosine via adenosine1 receptors and 5-hydroxytryptamine (5-HT) via 5-HT1 alpha agonists also increased the 86Rb-influx. These agonists failed to show any additivity between them when they were combined in their maximal concentration. In addition, their effect was antagonized specifically by their respective antagonists without influencing the others. These findings suggest the presence of GABAB, adenosine1 and 5-HT1 alpha receptors in the cultured spinal cord neurons, which exhibit a heterologous regulation of the same K(+)-channel. The effect of these agonists were antagonized by phorbol 12,13-didecanoate, an activator of protein kinase C, and pretreatment with pertussis toxin. This suggests that these agonists by acting on their own receptors converge on the same K(+)-channel through the Gi/Go proteins. In summary, we have developed a biochemical functional assay for studying and characterizing GABAB synaptic pharmacology in vitro, using spinal cord neurons.

  17. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function

    Directory of Open Access Journals (Sweden)

    Carola Dewitz

    2018-02-01

    Full Text Available Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed.

  18. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function.

    Science.gov (United States)

    Dewitz, Carola; Pimpinella, Sofia; Hackel, Patrick; Akalin, Altuna; Jessell, Thomas M; Zampieri, Niccolò

    2018-02-13

    Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Electroacupuncture improves microcirculation and neuronal morphology in the spinal cord of a rat model of intervertebral disc extrusion

    Directory of Open Access Journals (Sweden)

    Dai-xun Jiang

    2015-01-01

    Full Text Available Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral surface of T 13 . Electroacupuncture was used to stimulate the bilateral Zusanli point (ST36 and Neiting point (ST44 for 14 days. Compared with control animals, blood flow in the first lumbar vertebra (L 1 was noticeably increased in rats given electroacupuncture. Microvessel density in the T 13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved significantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.

  20. Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons

    International Nuclear Information System (INIS)

    Ticku, M.K.; Lowrimore, P.; Lehoullier, P.

    1986-01-01

    Ethanol has a pharmacological profile similar to other centrally acting drugs, which facilitate GABAergic transmission. GABA is known to produce its effects by increasing the conductance to Cl- ions. In this study, we have examined the effect of ethanol on GABA-induced 36Cl-influx in primary spinal cord cultured neurons. GABA produces a concentration-dependent, and saturable effect on 36Cl-influx in these neurons. Ethanol potentiates the effect of GABA on 36Cl-influx in these neurons. GABA (20 microM) increased the 36Cl-influx by 75% over the basal value, and in the presence of 50 mM ethanol, the observed increase was 142%. Eadie-Hoffstee analysis of the saturation curves indicated that ethanol decreases the Km value of GABA (10.6 microM to 4.2 microM), and also increases the Vmax. Besides potentiating the effect of GABA, ethanol also appears to have a direct effect in the absence of added GABA. These results suggest that ethanol enhances GABA-induced 36Cl-influx and indicate a role of GABAergic system in the actions of ethanol. These results also support the behavioral and electrophysiological studies, which have implicated GABA systems in the actions of ethanol. The potential mechanism(s) and the role of direct effect of ethanol is not clear at this time, but is currently being investigated

  1. Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons

    NARCIS (Netherlands)

    Southerland, E. M.; Milhorn, D. M.; Foreman, R. D.; Linderoth, B.; DeJongste, M. J. L.; Armour, J. A.; Subramanian, V.; Singh, M.; Singh, K.; Ardell, J. L.

    2007-01-01

    Our objective was to determine whether electrical neuromodulation using spinal cord stimulation ( SCS) mitigates transient ischemia-induced ventricular infarction and, if so, whether adrenergic neurons are involved in such cardioprotection. The hearts of anesthetized rabbits, subjected to 30 min of

  2. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics

    Czech Academy of Sciences Publication Activity Database

    Molet, J.; Mauborgne, A.; Diallo, Michael; Armand, V.; Geny, D.; Villanueva, L.; Boucher, Y.; Pohl, M.

    2016-01-01

    Roč. 136, č. 1 (2016), s. 133-147 ISSN 0022-3042 R&D Projects: GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : astrocytes * cell plasticity * JAK/STAT3 pathway * microglia conditioned media * spinal cord neurons Subject RIV: FH - Neurology Impact factor: 4.083, year: 2016

  3. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons.

    Directory of Open Access Journals (Sweden)

    Ximena Paez-Colasante

    Full Text Available In the inherited childhood neuromuscular disease spinal muscular atrophy (SMA, lower motor neuron death and severe muscle weakness result from the reduction of the ubiquitously expressed protein survival of motor neuron (SMN. Although SMA mice recapitulate many features of the human disease, it has remained unclear if their short lifespan and motor weakness are primarily due to cell-autonomous defects in motor neurons. Using Hb9(Cre as a driver, we selectively raised SMN expression in motor neurons in conditional SMAΔ7 mice. Unlike a previous study that used choline acetyltransferase (ChAT(Cre+ as a driver on the same mice, and another report that used Hb9(Cre as a driver on a different line of conditional SMA mice, we found no improvement in survival, weight, motor behavior and presynaptic neurofilament accumulation. However, like in ChAT(Cre+ mice, we detected rescue of endplate size and mitigation of neuromuscular junction (NMJ denervation status. The rescue of endplate size occurred in the absence of an increase in myofiber size, suggesting endplate size is determined by the motor neuron in these animals. Real time-PCR showed that the expression of spinal cord SMN transcript was sharply reduced in Hb9(Cre+ SMA mice relative to ChAT(Cre+ SMA mice. This suggests that our lack of overall phenotypic improvement is most likely due to an unexpectedly poor recombination efficiency driven by Hb9(Cre . Nonetheless, the low levels of SMN were sufficient to rescue two NMJ structural parameters indicating that these motor neuron cell autonomous phenotypes are very sensitive to changes in motoneuronal SMN levels. Our results directly suggest that even those therapeutic interventions with very modest effects in raising SMN in motor neurons may provide mitigation of neuromuscular phenotypes in SMA patients.

  4. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells.

    Directory of Open Access Journals (Sweden)

    Yu Mi Park

    Full Text Available Presently, few treatments for spinal cord injury (SCI are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm, a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2 weight for 1 min at thoracic vertebra (Th 9 segment. Mice that received an intraperitoneal (i.p. injection of Agm (100 mg/kg/day within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following

  5. The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells

    Science.gov (United States)

    Park, Yu Mi; Lee, Won Taek; Bokara, Kiran Kumar; Seo, Su Kyoung; Park, Seung Hwa; Kim, Jae Hwan; Yenari, Midori A.; Park, Kyung Ah; Lee, Jong Eun

    2013-01-01

    Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI. PMID

  6. Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling

    Science.gov (United States)

    Shevtsova, Natalia A; Talpalar, Adolfo E; Markin, Sergey N; Harris-Warrick, Ronald M; Kiehn, Ole; Rybak, Ilya A

    2015-01-01

    Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left–right alternation of neural activity, switching gaits between the left–right alternating walking-like activity and the left–right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits. Key points Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V

  7. Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K+ Channel Dysfunction in DRG Neurons.

    Science.gov (United States)

    Zemel, Benjamin M; Muqeem, Tanziyah; Brown, Eric V; Goulão, Miguel; Urban, Mark W; Tymanskyj, Stephen R; Lepore, Angelo C; Covarrubias, Manuel

    2017-08-23

    Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI. SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have

  8. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  9. Effect of Electroacupuncture at ST36 on Gastric-Related Neurons in Spinal Dorsal Horn and Nucleus Tractus Solitarius

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    2013-01-01

    Full Text Available The aim of this study was to observe the effect of electroacupuncture (EA at the ST36 acupoint on the firing rate of gastric-related neurons in the spinal dorsal horn (SDH and nucleus tractus solitarius (NTS. There were different effects of gastric distention in SDH and NTS in 46 male Sprague-Dawley rats. In 10 excitatory neurons in SDH, most of the neurons were inhibited by homolateral EA. The firing rates decreased significantly (P<0.05 in 10 excitatory gastric-related neurons in NTS; the firing rates of 6 neurons were further excited by homolateral EA, with a significant increase of the firing rates (P<0.05; all inhibitory gastric-related neurons in NTS were excited by EA. The inhibition rate of homolateral EA was significantly increased in comparison with contralateral EA in gastric-related neurons of SDH (P<0.05. There was no significant difference between homolateral and contralateral EA in gastric-related neurons of NTS. EA at ST36 changes the firing rate of gastric-related neurons in SDH and NTS. However, there are some differences in responsive mode in these neurons. The existence of these differences could be one of the physiological foundations of diversity and complexity in EA effects.

  10. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  11. The effects of spinal cord stimulation on the neuronal activity of the brain in patients with chronic neuropathic pain

    International Nuclear Information System (INIS)

    Kunitake, Ayumi; Hidaka, Nami; Katsuki, Hiroshi; Iwasaki, Tatsuma; Nagamachi, Shigeki; Takasaki, Mayumi; Uno, Takeshi

    2005-01-01

    The effects of spinal cord stimulation (SCS) on the neuronal activity of the brain were examined by single photon emission computed tomography (SPECT) in patients with chronic neuropathic pain. Regional cerebral blood flow (CBF) in each cortical area and the thalamus decreased in several patients without SCS. Patients with central pain due to thalamic hemorrhage showed a decrease in rCBF in the thalamus contralateral to the painful side. During the stimulation period in SCS, parietal rCBF decreased on the side contralateral to the pain. In contrast, rCBF increased in the bilateral frontal and anterior cingulate cortex and in the contralateral temporal lobe in half of the patients in whom SCS was effective in relieving pain. The decrease in thalamic rCBF in two patients with central pain was improved by the SCS therapy; however, pain was relieved in only one of them. In the majority of patients in whom SCS was not effective, there was no change in rCBF in various cortical areas, even after SCS. These results suggest that, in patients with chronic neuropathic pain, SCS modulates the neuronal activities of several brain areas that are believed to be associated with pain processing. (author)

  12. ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway.

    Science.gov (United States)

    Liu, Shu-Guang; Wang, Yun-Mei; Zhang, Yan-Jun; He, Xi-Jing; Ma, Tao; Song, Wei; Zhang, Yu-Min

    2017-09-01

    Spinal cord ischemia (SCI) induces a range of cellular and molecular cascades, including activation of glutamate receptors and downstream signaling. Post-synaptic density protein 95 (PSD-95) links neuronal nitric oxide synthase (nNOS) with the N-methyl-d-aspartic acid (NMDA) receptors to form a ternary complex in the CNS. This molecular complex-mediated cytotoxicity has been implicated in brain ischemia, but its role in SCI has not been determined. The goal of the study was to investigate the potential protective effects of ZL006, a small-molecule inhibitor of the PSD-95/nNOS interaction, in an in vitro SCI model induced by oxygen and glucose deprivation (OGD) in cultured spinal cord neurons. We found that ZL006 reduced OGD-induced lactate dehydrogenase (LDH) release, neuronal apoptosis and loss of cell viability. This protection was accompanied by the preservation of mitochondrial function, as evidenced by reduced mitochondrial oxidative stress, attenuated mitochondrial membrane potential (MMP) loss, and enhanced ATP generation. In addition, ZL006 stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that ZL006 increased the activation of AMPK-PGC-1α-Sirt3 pathway, and the beneficial effects of ZL006 was partially abolished by AMPK inhibitor and PGC-1α knockdown. Therefore, our present data showed that, by the AMPK-PGC-1α-Sirt3 pathway, ZL006 protects spinal cord neurons against ischemia through reducing mitochondrial oxidative stress to prevent apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Obese Neuronal PPARγ Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility.

    Science.gov (United States)

    Fernandez, Marina O; Sharma, Shweta; Kim, Sun; Rickert, Emily; Hsueh, Katherine; Hwang, Vicky; Olefsky, Jerrold M; Webster, Nicholas J G

    2017-01-01

    The peroxisome-proliferator activated receptor γ (PPARγ) is expressed in the hypothalamus in areas involved in energy homeostasis and glucose metabolism. In this study, we created a deletion of PPARγ brain-knockout (BKO) in mature neurons in female mice to investigate its involvement in metabolism and reproduction. We observed that there was no difference in age at puberty onset between female BKOs and littermate controls, but the BKOs gave smaller litters when mated and fewer oocytes when ovulated. The female BKO mice had regular cycles but showed an increase in the number of cycles with prolonged estrus. The mice also had increased luteinizing hormone (LH) levels during the LH surge and histological examination showed hemorrhagic corpora lutea. The mice were challenged with a 60% high-fat diet (HFD). Metabolically, the female BKO mice showed normal body weight, glucose and insulin tolerance, and leptin levels but were protected from obesity-induced leptin resistance. The neuronal knockout also prevented the reduction in estrous cycles due to the HFD. Examination of ovarian histology showed a decrease in the number of primary and secondary follicles in both genotypes due to the HFD, but the BKO ovaries showed an increase in the number of hemorrhagic follicles. In summary, our results show that neuronal PPARγ is required for optimal female fertility but is also involved in the adverse effects of diet-induced obesity by creating leptin resistance potentially through induction of the repressor Socs3. Copyright © 2017 by the Endocrine Society.

  14. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  15. Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury

    DEFF Research Database (Denmark)

    Zhang, Ming Dong; Tortoriello, Giuseppe; Hsueh, Brian

    2014-01-01

    , and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1....../2 neurons are much more abundant in DRGs than the Ca2+-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn....... In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca2+-binding proteins in pain-related DRG neurons...

  16. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  17. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  18. Protective effects of two constituents of Chinese herbs on spinal motor neurons from embryonic rats with hypoxia injury.

    Science.gov (United States)

    Chen, Jian-Feng; Fan, Jian; Tian, Xiao-Wu; Tang, Tian-Si

    2012-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided into five groups with 10 wells in each group. In control group, SMNs suffered no injury under normal oxygen; in hypoxia- inducible (HI) group, SMNs suffered injury from hypoxia; in Gin group, 37.5µg/ml Gin were used before 24 hrs of hypoxia; in ASS group, 50µg/ml ASS were used before 24 hrs of hypoxia;in glial cell-lined derived neurotrophic factor (GDNF) group, 0.1µg/ml GDNF were used before 24 hrs of hypoxia. Changes in morphology, neuron viability, and lactate dehydrogenase (LDH) release were observed. In addition, the expression of HIF-1α induced by hypoxia was measured. The neuronal viability in the Gin, ASS, and GDNF pretreated groups was higher than that in the HI group (P0.05). The quantity of LDH released in the three pretreated groups was lower than that in the HI group (Phypoxic neurons.

  19. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn.

    Science.gov (United States)

    Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T

    2016-04-05

    Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. EFFECT OF DIMETHYL GLYCINE ON SPINAL NEURONS%二甲基甘氨酸对脊髓神经元的作用

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    N, N-dimethyl glycine(DMG),a food supplement, is claimed to be non-toxic and is known for its immunoprotective and stamina building property. It improves CNS functions,mainly speech in autistic children, causes behavioral improvement and decreases seizures. To study its effect on the neurons on the ventral half of the cervical enlargement of the spinal cord, DMG dissolved in distilled water was given to 21 day old albino mice at a dose of 20mg/kg body weight per day for 30 days. The ventral half of the cervical enlargement of the spinal cord was studied morphologically. The results showed a significant decrease in the neuron count in the 15-25 micron range in the DMG-treated mice. No significant change was observed in the area of gray matter or white matter or total area. Neurons having a diameter of more than 25 microns showed no change in the cell count.These results suggest a cytotoxic damage caused by DMG.

  1. The spinal muscular atrophy with pontocerebellar hypoplasia gene VRK1 regulates neuronal migration through an amyloid-β precursor protein-dependent mechanism.

    Science.gov (United States)

    Vinograd-Byk, Hadar; Sapir, Tamar; Cantarero, Lara; Lazo, Pedro A; Zeligson, Sharon; Lev, Dorit; Lerman-Sagie, Tally; Renbaum, Paul; Reiner, Orly; Levy-Lahad, Ephrat

    2015-01-21

    Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH) is an infantile SMA variant with additional manifestations, particularly severe microcephaly. We previously identified a nonsense mutation in Vaccinia-related kinase 1 (VRK1), R358X, as a cause of SMA-PCH. VRK1-R358X is a rare founder mutation in Ashkenazi Jews, and additional mutations in patients of different origins have recently been identified. VRK1 is a nuclear serine/threonine protein kinase known to play multiple roles in cellular proliferation, cell cycle regulation, and carcinogenesis. However, VRK1 was not known to have neuronal functions before its identification as a gene mutated in SMA-PCH. Here we show that VRK1-R358X homozygosity results in lack of VRK1 protein, and demonstrate a role for VRK1 in neuronal migration and neuronal stem cell proliferation. Using shRNA in utero electroporation in mice, we show that Vrk1 knockdown significantly impairs cortical neuronal migration, and affects the cell cycle of neuronal progenitors. Expression of wild-type human VRK1 rescues both proliferation and migration phenotypes. However, kinase-dead human VRK1 rescues only the migration impairment, suggesting the role of VRK1 in neuronal migration is partly noncatalytic. Furthermore, we found that VRK1 deficiency in human and mouse leads to downregulation of amyloid-β precursor protein (APP), a known neuronal migration gene. APP overexpression rescues the phenotype caused by Vrk1 knockdown, suggesting that VRK1 affects neuronal migration through an APP-dependent mechanism. Copyright © 2015 the authors 0270-6474/15/350936-08$15.00/0.

  2. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.

    Science.gov (United States)

    Hassan, Atiq; Arnold, Breanna M; Caine, Sally; Toosi, Behzad M; Verge, Valerie M K; Muir, Gillian D

    2018-01-01

    One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions

  3. VGLUT1 or VGLUT2 mRNA-positive neurons in spinal trigeminal nucleus provide collateral projections to both the thalamus and the parabrachial nucleus in rats.

    Science.gov (United States)

    Zhang, Chun-Kui; Li, Zhi-Hong; Qiao, Yu; Zhang, Ting; Lu, Ya-Cheng; Chen, Tao; Dong, Yu-Lin; Li, Yun-Qing; Li, Jin-Lian

    2018-04-12

    The trigemino-thalamic (T-T) and trigemino-parabrachial (T-P) pathways are strongly implicated in the sensory-discriminative and affective/emotional aspects of orofacial pain, respectively. These T-T and T-P projection fibers originate from the spinal trigeminal nucleus (Vsp). We previously determined that many vesicular glutamate transporter (VGLUT1 and/or VGLUT2) mRNA-positive neurons were distributed in the Vsp of the adult rat, and most of these neurons sent their axons to the thalamus or cerebellum. However, whether VGLUT1 or VGLUT2 mRNA-positive projection neurons exist that send their axons to both the thalamus and the parabrachial nucleus (PBN) has not been reported. Thus, in the present study, dual retrograde tract tracing was used in combination with fluorescence in situ hybridization (FISH) for VGLUT1 or VGLUT2 mRNA to identify the existence of VGLUT1 or VGLUT2 mRNA neurons that send collateral projections to both the thalamus and the PBN. Neurons in the Vsp that send collateral projections to both the thalamus and the PBN were mainly VGLUT2 mRNA-positive, with a proportion of 90.3%, 93.0% and 85.4% in the oral (Vo), interpolar (Vi) and caudal (Vc) subnucleus of the Vsp, respectively. Moreover, approximately 34.0% of the collateral projection neurons in the Vc showed Fos immunopositivity after injection of formalin into the lip, and parts of calcitonin gene-related peptide (CGRP)-immunopositive axonal varicosities were in direct contact with the Vc collateral projection neurons. These results indicate that most collateral projection neurons in the Vsp, particularly in the Vc, which express mainly VGLUT2, may relay orofacial nociceptive information directly to the thalamus and PBN via axon collaterals.

  4. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy.

    Directory of Open Access Journals (Sweden)

    Estefanía de Munck

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA, a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.

  5. The number of postsynaptic currents necessary to produce locomotor- related cyclic information in neurons in the neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Raastad, Morten; Johnson, Bruce R.; Kiehn, Ole

    1996-01-01

    To understand better how synaptic signaling contributes to network activity, we analyzed the potential contribution of putative unitary postsynaptic currents (PSCs) to locomotor-related information received by spinal interneurons in neonatal rats. The average cyclic modulation of the whole-cell c......-5) of the synapses contributing to the cyclic information need to be active simultaneously. This suggests that individual presynaptic cells in a central locomotor network can have a powerful influence on other neurons....

  6. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    Science.gov (United States)

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  7. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue.

    Science.gov (United States)

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi

    2016-01-01

    Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells

  8. Degeneration of Phrenic Motor Neurons Induces Long-Term Diaphragm Deficits following Mid-Cervical Spinal Contusion in Mice

    Science.gov (United States)

    Nicaise, Charles; Putatunda, Rajarshi; Hala, Tamara J.; Regan, Kathleen A.; Frank, David M.; Brion, Jean-Pierre; Leroy, Karelle; Pochet, Roland; Wright, Megan C.

    2012-01-01

    Abstract A primary cause of morbidity and mortality following cervical spinal cord injury (SCI) is respiratory compromise, regardless of the level of trauma. In particular, SCI at mid-cervical regions targets degeneration of both descending bulbospinal respiratory axons and cell bodies of phrenic motor neurons, resulting in deficits in the function of the diaphragm, the primary muscle of inspiration. Contusion-type trauma to the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron–diaphragm circuitry. We have generated a mouse model of cervical contusion SCI that unilaterally targets both C4 and C5 levels, the location of the phrenic motor neuron pool, and have examined histological and functional outcomes for up to 6 weeks post-injury. We report that phrenic motor neuron loss in cervical spinal cord, phrenic nerve axonal degeneration, and denervation at diaphragm neuromuscular junctions (NMJ) resulted in compromised ipsilateral diaphragm function, as demonstrated by persistent reduction in diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation and abnormalities in spontaneous diaphragm electromyography (EMG) recordings. This injury paradigm is reproducible, does not require ventilatory assistance, and provides proof-of-principle that generation of unilateral cervical contusion is a feasible strategy for modeling diaphragmatic/respiratory deficits in mice. This study and its accompanying analyses pave the way for using transgenic mouse technology to explore the function of specific genes in the pathophysiology of phrenic motor neuron degeneration and respiratory dysfunction following cervical SCI. PMID:23176637

  9. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v1; ref status: indexed, http://f1000r.es/3rm

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-07-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  10. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v2; ref status: indexed, http://f1000r.es/4dl

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-09-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  11. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2007-02-01

    Full Text Available Abstract Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching, thermal (immersion in water at 52°C or chemical (injection of 2% formaldehyde. Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.

  12. The age factor in axonal repair after spinal cord injury: A focus on neuron-intrinsic mechanisms.

    Science.gov (United States)

    Geoffroy, Cédric G; Meves, Jessica M; Zheng, Binhai

    2017-06-23

    Age is an important consideration for recovery and repair after spinal cord injury. Spinal cord injury is increasingly affecting the middle-aged and aging populations. Despite rapid progress in research to promote axonal regeneration and repair, our understanding of how age can modulate this repair is rather limited. In this review, we discuss the literature supporting the notion of an age-dependent decline in axonal growth after central nervous system (CNS) injury. While both neuron-intrinsic and extrinsic factors are involved in the control of axon growth after injury, here we focus on possible intrinsic mechanisms for this age-dependent decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. [Mechanism of disorders of inhibition of electrogenesis in spinal alpha-motor neurons in experimental local botulin poisoning].

    Science.gov (United States)

    Mikhaĭlov, V V; Barashkov, G N

    1977-06-01

    Disorders of postsynaptic inhibition and of the spinal cord alpha-motoneurons were studied in cats with experimental local botulinum intoxication. A significant decrease of the reciprocal, and, to a lesser extent, of polysynaptic inhibitory postsynaptic potential (IPSP) was noted. With the appearance of total paralysis of the muscles in the poisoned extremity there proved to be an even greater depression of the reciprocal and polysynaptic IPSP; however, they never disappeared or turned into depolarization potentials. Synaptic permeability of motor neurons as a rule decreased during the IPSP development, this indirectly indicating a reduction of ion transport.

  14. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Science.gov (United States)

    Wheaton, Benjamin J; Noor, Natassya M; Whish, Sophie C; Truettner, Jessie S; Dietrich, W Dalton; Zhang, Moses; Crack, Peter J; Dziegielewska, Katarzyna M; Saunders, Norman R

    2013-01-01

    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although

  15. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin J Wheaton

    Full Text Available Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating

  16. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  17. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study

    International Nuclear Information System (INIS)

    Phelps, P.E.; Barber, R.P.; Vaughn, J.E.

    1988-01-01

    This report examines the generation of cholinergic neurons in the spinal cord in order to determine whether the transmitter phenotype of neurons is associated with specific patterns of neurogenesis. Previous immunocytochemical studies identified four groups of choline acetyltransferase (ChAT)-positive neurons in the cervical enlargement of the rat spinal cord. These cell groups vary in both somatic size and location along the previously described ventrodorsal neurogenic gradient of the spinal cord. Thus, large (and small) motoneurons are located in the ventral horn, medium-sized partition cells are found in the intermediate gray matter, small central canal cluster cells are situated within lamina X, and small dorsal horn neurons are scattered predominantly through laminae III-V. The relationships among the birthdays of these four subsets of cholinergic neurons have been examined by combining 3H-thymidine autoradiography and ChAT immunocytochemistry. Embryonic day 11 was the earliest time that neurons were generated within the cervical enlargement. Large and small ChAT-positive motoneurons were produced on E11 and 12, with 70% of both groups being born on E11. ChAT-positive partition cells were produced between E11 and 13, with their peak generation occurring on E12. Approximately 70% of the cholinergic central canal cluster and dorsal horn cells were born on E13, and the remainder of each of these groups was generated on E14. Other investigators have shown that all neurons within the rat cervical spinal cord are produced in a ventrodorsal sequence between E11 and E16. In contrast, ChAT-positive neurons are born only from E11 to E14 and are among the earliest cells generated in the ventral, intermediate, and dorsal subdivisions of the spinal cord

  18. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Kathleen M. Keefe

    2017-03-01

    Full Text Available Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI. We focus on nerve growth factor (NGF, brain derived neurotrophic factor (BDNF, and neurotrophin-3 (NT-3, and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.

  19. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury

    Science.gov (United States)

    Keefe, Kathleen M.; Sheikh, Imran S.; Smith, George M.

    2017-01-01

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord. PMID:28273811

  20. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury.

    Science.gov (United States)

    Keefe, Kathleen M; Sheikh, Imran S; Smith, George M

    2017-03-03

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.

  1. High Content Analysis of Hippocampal Neuron-Astrocyte Co-cultures Shows a Positive Effect of Fortasyn Connect on Neuronal Survival and Postsynaptic Maturation.

    Science.gov (United States)

    van Deijk, Anne-Lieke F; Broersen, Laus M; Verkuyl, J Martin; Smit, August B; Verheijen, Mark H G

    2017-01-01

    Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis -docosahexaenoic acid (DHA), uridine and choline- has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro . A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC), improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA), uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium), on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning.

  2. High Content Analysis of Hippocampal Neuron-Astrocyte Co-cultures Shows a Positive Effect of Fortasyn Connect on Neuronal Survival and Postsynaptic Maturation

    Directory of Open Access Journals (Sweden)

    Anne-Lieke F. van Deijk

    2017-08-01

    Full Text Available Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis –docosahexaenoic acid (DHA, uridine and choline– has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro. A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC, improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium, on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning.

  3. Spatacsin and spastizin act in the same pathway required for proper spinal motor neuron axon outgrowth in zebrafish.

    Science.gov (United States)

    Martin, Elodie; Yanicostas, Constantin; Rastetter, Agnès; Alavi Naini, Seyedeh Maryam; Maouedj, Alissia; Kabashi, Edor; Rivaud-Péchoux, Sophie; Brice, Alexis; Stevanin, Giovanni; Soussi-Yanicostas, Nadia

    2012-12-01

    Hereditary spastic paraplegias (HSPs) are rare neurological conditions caused by degeneration of the long axons of the cerebrospinal tracts, leading to locomotor impairment and additional neurological symptoms. There are more than 40 different causative genes, 24 of which have been identified, including SPG11 and SPG15 mutated in complex clinical forms. Since the vast majority of the causative mutations lead to loss of function of the corresponding proteins, we made use of morpholino-oligonucleotide (MO)-mediated gene knock-down to generate zebrafish models of both SPG11 and SPG15 and determine how invalidation of the causative genes (zspg11 and zspg15) during development might contribute to the disease. Micro-injection of MOs targeting each gene caused locomotor impairment and abnormal branching of spinal cord motor neurons at the neuromuscular junction. More severe phenotypes with abnormal tail developments were also seen. Moreover, partial depletion of both proteins at sub-phenotypic levels resulted in the same phenotypes, suggesting for the first time, in vivo, a genetic interaction between these genes. In conclusion, the zebrafish orthologues of the SPG11 and SPG15 genes are important for proper development of the axons of spinal motor neurons and likely act in a common pathway to promote their proper path finding towards the neuromuscular junction. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    Energy Technology Data Exchange (ETDEWEB)

    Genethliou, Nicholas; Panayiotou, Elena [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Gasperi, Rita De; Elder, Gregory [James J. Peters VA Medical Center, Research and Development (3F22), 130 West Kingsbridge Road, Bronx, NY 10468 (United States); Kessaris, Nicoletta; Richardson, William D. [Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Malas, Stavros, E-mail: smalas@cing.ac.cy [The Cyprus Institute of Neurology and Genetics, Airport Avenue, No. 6, Agios Dometios, 2370 Nicosia (Cyprus); Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  5. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain

    OpenAIRE

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J.W.; Li, Junfa; Fang, Li

    2007-01-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the ...

  6. Quantitative Study of NPY-Expressing GABAergic Neurons and Axons in Rat Spinal Dorsal Horn*

    OpenAIRE

    Polg?r, Erika; Sardella, Thomas CP; Watanabe, Masahiko; Todd, Andrew J

    2010-01-01

    Between 25?40% of neurons in laminae I?III are GABAergic, and some of these express neuropeptide Y (NPY). We previously reported that NPY-immunoreactive axons form numerous synapses on lamina III projection neurons that possess the neurokinin 1 receptor (NK1r). The aims of this study were to determine the proportion of neurons and GABAergic boutons in this region that contain NPY, and to look for evidence that they selectively innervate different neuronal populations. We found that 4?6% of ne...

  7. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Directory of Open Access Journals (Sweden)

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  8. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].

    Science.gov (United States)

    Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P

    2013-03-01

    We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.

  9. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Kjaerulff, O; Tresch, M C

    2000-01-01

    Motor neurons are endowed with intrinsic and conditional membrane properties that may shape the final motor output. In the first half of this paper we present data on the contribution of I(h), a hyperpolarization-activated inward cation current, to phase-transition in motor neurons during rhythmic...... firing. Motor neurons were recorded intracellularly during locomotion induced with a mixture of N-methyl-D-aspartate (NMDA) and serotonin, after pharmacological blockade of I(h). I(h) was then replaced by using dynamic clamp, a computer program that allows artificial conductances to be inserted into real...... neurons. I(h) was simulated with biophysical parameters determined in voltage clamp experiments. The data showed that electronic replacement of the native I(h) caused a depolarization of the average membrane potential, a phase-advance of the locomotor drive potential, and increased motor neuron spiking...

  10. ESTROGEN RECEPTOR-alpha IMMUNOREACTIVE NEURONS IN THE BRAINSTEM AND SPINAL CORD OF THE FEMALE RHESUS MONKEY : SPECIES-SPECIFIC CHARACTERISTICS

    NARCIS (Netherlands)

    Vanderhorst, V. G. J. M.; Terasawa, E.; Ralston, H. J.

    2009-01-01

    The distribution pattern of estrogen receptors in the rodent CNS has been reported extensively, but mapping of estrogen receptors in primates is incomplete. In this study we describe the distribution of estrogen receptor alpha immunoreactive (ER-alpha 1R) neurons in the brainstem and spinal cord of

  11. Dorsal border periaqueductal gray neurons project to the area directly adjacent to the central canal ependyma of the C4-T8 spinal cord in the cat

    NARCIS (Netherlands)

    Mouton, LJ; Kerstens, L; VanderWant, J; Holstege, G

    In a previous study horseradish peroxidase (HRP) injections in the upper thoracic and cervical spinal cord revealed some faintly labeled small neurons at the dorsal border of the periaqueductal gray (PAG). The present light microscopic and electronmicroscopic tracing study describes the precise

  12. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Z.; Danscher, G.; Jo, S.M.

    2001-01-01

    neurons have relatively short axons or boutons en passage close to the neuronal origin. Ultrastructurally, the retrogradely transported zinc selenide clusters were found in the lysosomes of ZEN somata and proximal dendrites. Electron microscopic studies also revealed two different kinds of ZEN terminals...

  13. Targeting the Full Length of the Motor End Plate Regions in the Mouse Forelimb Increases the Uptake of Fluoro-Gold into Corresponding Spinal Cord Motor Neurons

    Directory of Open Access Journals (Sweden)

    Andrew Paul Tosolini

    2013-05-01

    Full Text Available Lower motor neuron dysfunction is one of the most debilitating motor conditions. In this regard, transgenic mouse models of various lower motor neuron dysfunctions provide insight into the mechanisms underlying these pathologies and can also aid the development of new therapies. Viral-mediated gene therapy can take advantage of the muscle-motor neuron topographical relationship to shuttle therapeutic genes into specific populations of motor neurons in these mouse models. In this context, motor end plates (MEPs are highly specialised regions on the skeletal musculature that offer direct access to the pre-synaptic nerve terminals, henceforth to the spinal cord motor neurons. The aim of this study was two-folded. First it was to characterise the exact position of the MEP regions for several muscles of the mouse forelimb using acetylcholinesterase histochemistry. This MEP-muscle map was then used to guide a series of intramuscular injections of Fluoro-Gold (FG in order to characterise the distribution of the innervating motor neurons. This analysis revealed that the MEPs are typically organised in an orthogonal fashion across the muscle fibres and extending throughout the full width of each muscle. Furthermore, targeting the full length of the MEP regions gave rise to a seemingly greater number of labelled motor neurons that are organised into columns spanning through more spinal cord segments than previously reported. The present analysis suggests that targeting the full width of the muscles’ MEP regions with FG increases the somatic availability of the tracer. This process ensures a greater uptake of the tracer by the pre-synaptic nerve terminals, hence maximising the labelling in spinal cord motor neurons. This investigation should have positive implications for future studies involving the somatic delivery of therapeutic genes into motor neurons for the treatment of various motor dysfunctions.

  14. Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models.

    Science.gov (United States)

    O'Neill, Jessica; Sikandar, Shafaq; McMahon, Stephen B; Dickenson, Anthony H

    2015-09-01

    rat dorsal horn neurones and enhanced perceptual responses of human subjects to both mechanical and thermal stimulation. Additional heat rekindling produces markers of central sensitisation in both species, including enhanced receptive field sizes. Importantly, we also showed a correlation in the evoked activity of rat spinal neurones to human thermal pain thresholds. The parallel results in rats and humans validate the translational use of both models and the potential for such models for preclinical assessment of prospective analgesics in inflammatory pain states. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. Substantial Early, But Nonprogressive Neuronal Loss in Multiple Sclerosis (MS) Spinal Cord

    NARCIS (Netherlands)

    Schirmer, Lucas; Albert, Monika; Buss, Armin; Schulz-Schaeffer, Walter J.; Antel, Jack P.; Brueck, Wolfgang; Stadelmann, Christine

    2009-01-01

    Research in multiple sclerosis (MS) has recently been focusing on the extent of neuroaxonal damage and its contribution to disease outcome. In the present Study, we examined spinal cord tissue from 30 clinically well-characterized MS patients. MS, amyotrophic lateral sclerosis (ALS), and control

  16. Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury.

    Directory of Open Access Journals (Sweden)

    Ikuko Suzuki

    Full Text Available To evaluate the involvement of the mitogen-activated protein kinase (MAPK cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK in trigeminal spinal subnucleus caudalis (Vc neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI. The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.

  17. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.

    Science.gov (United States)

    Kabatas, S; Demir, C S; Civelek, E; Yilmaz, I; Kircelli, A; Yilmaz, C; Akyuva, Y; Karaoz, E

    2018-01-01

    This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining. In early post-injury (p.i) period, the ultrastructure of spinal cord tissue was preserved in Group 4. The majority of cells forming the ependymal region around the central canal were found to be hDP-NCSCs. While the grey-and-white-matter around the ependymal region was composed of e.g. GFP cells, with astrocytic-like appearance. The scores showed significant motor recovery in hind limb functions in Group 4. However, no obvious change was observed in other groups. Cells e.g., mesenchymal (Vimentin+) which express GFP+ cells in the gray-and-white-matter around the ependymal region could indicate the potential to self-renewal and plasticity. Thus, transplantation of hDP-NCSCs might be an effective strategy to improve functional recovery following spinal cord trauma (Fig. 10, Ref. 32).

  18. Spinal motor neuron neuroaxonal spheroids in chronic aluminum neurotoxicity contain phosphatase-resistant high molecular weight neurofilament (NFH).

    Science.gov (United States)

    Gaytan-Garcia, S; Kim, H; Strong, M J

    1996-04-15

    It has previously been shown that a single intracisternal inoculum of AlCl3 in young adult New Zealand white rabbits will induce a dose-dependent phosphatase resistance of high molecular weight neurofilament protein (NFH) that is proportionate to the extent of neurofilamentous inclusion formation (Strong and Jakowec, 1994). To determine if the potential for dissolution of aluminum-induced neurofilamentous inclusions was dependent on the degree of NFH phosphatase resistance, we have examined NFH phosphatase sensitivity in a reversible chronic model of aluminum neurotoxicity. Rabbits receiving repeated intracisternal inoculums of 100 microgram AlCl3 at 28 day intervals until day 267 develop spinal motor neuron perikaryal and neuroaxonal neurofilamentous aggregates in a stereotypic, dose-dependent fashion. In the rabbits receiving inoculums until day 156 with survival until day 267 without further aluminum exposure, neuroaxonal spheroids remained prominent while perikaryal inclusions largely resolved. Immunoreactivity to a monoclonal antibody recognizing phosphorylated NFH (SMI 31) was abolished in perikaryal aggregates at each time interval by dephosphorylation with bovine alkaline phosphatase. However, neuroaxonal spheroids maintained their immunoreactivity. Using time-course dephosphorylation studies of spinal cord homogenates, we observed a significant reduction in the rate of dephosphorylation of NFH following 267 days of AlCl3 exposure (P < 0.05). These observations suggest that neuroaxonal spheroids contain phosphatase-resistant NFH isoforms and that the potential for resolution of intraneuronal neurofilamentous inclusions correlates with the susceptibility of NF within these inclusions to enzymatic dephosphorylation.

  19. Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity.

    Science.gov (United States)

    Kras, J V; Kartha, S; Winkelstein, B A

    2015-11-01

    The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability

    DEFF Research Database (Denmark)

    Jimenez, Samuel; Mordillo-Mateos, Laura; Dileone, Michele

    2018-01-01

    obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short......Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS....... In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H...

  1. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis.

    Science.gov (United States)

    Etxebeste, Oier; Espeso, Eduardo A

    2016-09-01

    Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Chronic ethanol administration increases the binding of 3H Ro-15-4513 in primary cultured spinal cord neurons

    International Nuclear Information System (INIS)

    Mlatre, M.; Ticku, M.K.

    1989-01-01

    Ro 15-4513 (ethyl-8-azido-5, 6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5α], [1,4] benzodiazepine-3-carboxylate) is reported to be a selective ethanol antagonist in biochemical and behavioral studies. The effect of chronic ethanol treatment on the binding of [ 3 H]Ro 15-4513 was investigated in cultured spinal cord neurons, which are shown to possess all the elements of GABA benzodiazepine receptor complex. Chronic ethanol treatment (50 mM for 6 hr, 12 hr, 18 hr, 3 days, and 5 3 days) produced an increase in the specific binding of [ 3 H]Ro 15-4513. The increase in binding in these neurons was due to an increase in the number (B max ) of receptor sites. This effect was specific for Ro 15-4513, since identical ethanol treatment did not alter the binding of benzodiazepine antagonist [ 3 H]Ro 15-1788 or agonist [ 3 H]flunitrazepam or inverse agonist [ 3 H]methyl-β-carboline-3-carboxylate. Similar results have been reported following chronic ethanol treatment to rats. These results suggest that the Ro 15-4513 binding sites on the oligomeric GABA receptor complex are altered following chronic ethanol administration, and support the notion of a unique role of Ro 15-4513 as an ethanol antagonist

  3. Visual patch clamp recording of neurons in thick portions of the adult spinal cord

    DEFF Research Database (Denmark)

    Munch, Anders Sonne; Smith, Morten; Moldovan, Mihai

    2010-01-01

    The study of visually identified neurons in slice preparations from the central nervous system offers considerable advantages over in vivo preparations including high mechanical stability in the absence of anaesthesia and full control of the extracellular medium. However, because of their relative...... remain alive and capable of generating action potentials. By stimulating the lateral funiculus we can evoke intense synaptic activity associated with large increases in conductance of the recorded neurons. The conductance increases substantially more in neurons recorded in thick slices suggesting...... that the size of the network recruited with the stimulation increases with the thickness of the slices. We also find that that the number of spontaneous excitatory postsynaptic currents (EPSCs) is higher in thick slices compared with thin slices while the number of spontaneous inhibitory postsynaptic currents...

  4. A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Rodriguez, Moses

    2015-04-29

    Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.

  5. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    Science.gov (United States)

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-11-19

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm 2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm 2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Spinal motor neuron involvement in a patient with homozygous PRUNE mutation.

    Science.gov (United States)

    Iacomino, Michele; Fiorillo, Chiara; Torella, Annalaura; Severino, Mariasavina; Broda, Paolo; Romano, Catia; Falsaperla, Raffaele; Pozzolini, Giulia; Minetti, Carlo; Striano, Pasquale; Nigro, Vincenzo; Zara, Federico

    2018-05-01

    In the last few years, whole exome sequencing (WES) allowed the identification of PRUNE mutations in patients featuring a complex neurological phenotype characterized by severe neurodevelopmental delay, microcephaly, epilepsy, optic atrophy, and brain or cerebellar atrophy. We describe an additional patient with homozygous PRUNE mutation who presented with spinal muscular atrophy phenotype, in addition to the already known brain developmental disorder. This novel feature expands the clinical consequences of PRUNE mutations and allow to converge PRUNE syndrome with previous descriptions of neurodevelopmental/neurodegenerative disorders linked to altered microtubule dynamics. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord

    DEFF Research Database (Denmark)

    Ryge, Jesper; Westerdahl, Ann Charlotte; Alstøm, Preben

    2008-01-01

    Background: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal p...

  8. Diffusion tensor magnetic resonance imaging may show abnormalities in the normal-appearing cervical spinal cord from patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fernanda Miraldi

    2013-09-01

    Full Text Available Objective This study aims to evaluate “in vivo” the integrity of the normal-appearing spinal cord (NASC in patients with multiple sclerosis (MS compared to controls, using diffusion tensor MR imaging. Methods We studied 32 patients with MS and 17 without any neurologic disorder. Fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD and mean diffusivity (MD were calculated within regions of interest at C2 and C7 levels in the four columns of the spinal cord. Results At C2, FA value was decreased in MS patients. Besides, RD value was higher in MS than in controls. At C7, MD values were increased in MS. Conclusion The NASC in the right column of the cervical spinal cord showed abnormal FA, RD and MD values, which is possibly related to demyelination, since the FA abnormality was related to the RD and not to the AD.

  9. Expression of neuronal antigens and related ventral and dorsal proteins in the normal spinal cord and a surgically induced open neural tube defect of the spine in chick embryos: an immunohistochemical study.

    Science.gov (United States)

    Lee, Do-Hun; Phi, Ji Hoon; Chung, You-Nam; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu; Kim, Dong Won; Park, Moon-Sik; Wang, Kyu-Chang

    2010-05-01

    The aims of this study were to elucidate the processes of neuronal differentiation and ventrodorsal patterning in the spinal cord of the chick embryo from embryonic day (E) 3 to E17 and to study the effect of a prenatal spinal open neural tube defect (ONTD) on these processes. Expression patterns of neuronal antigens (neuronal nuclear antigen, neurofilament-associated protein (NAP), and synaptophysin) and related ventral markers [sonic hedgehog, paired box gene (PAX)6, and islet-1], and dorsal markers (bone morphogenetic protein, Notch homolog 1, and PAX7) were investigated in the normal spinal cord and in a surgically induced spinal ONTD in chick embryos. Four normal and ONTD chick embryos were used for each antigen group. There were no differences in the expression of neuronal and ventrodorsal markers between the control and ONTD groups. NAP and synaptophysin were useful for identifying dorsal structures in the distorted anatomy of the ONTD chicks.

  10. Segmental and laminar organization of the spinal neurons projecting to the periaqueductal gray (PAG) in the cat suggests the existence of at least five separate clusters of spino-PAG neurons

    NARCIS (Netherlands)

    Mouton, Leonora J.; Holstege, Gert

    2000-01-01

    The present retrograde tracing study in the cat describes the spinal cord projections to the periaqueductal gray (PAC), taking into account different regions of the PAG and all spinal segments. Results show that injecting different parts of the PAC leads to different laminar and segmental

  11. Changes in neuronal properties and spinal reflexes during development of spasticity following spinal cord lesions and stroke: studies in animal models and patients.

    Science.gov (United States)

    Hultborn, Hans

    2003-05-01

    It is a well-known fact that spinal reflexes may gradually change and often become enhanced following spinal cord lesions. Although these phenomena are known, the underlying mechanisms are still unknown and under investigation, mainly in animal models. Over the last twenty years, new methods have been developed that can reliably estimate the activity of specific spinal pathways in humans at rest and during voluntary movement. These methods now make it possible to describe components of the spinal pathophysiology in spasticity in humans following spinal lesions or stroke. We now know that spinal networks are capable of generating the basic pattern of locomotion in a large number of vertebrates, including the monkey--and in all likelihood, humans. Although spinal networks are capable of generating locomotor-like activity in the absence of afferent signals, functional gait is not possible without sensory feedback. The results of animal studies on the sensory control of and the transmitter systems involved in the spinal locomotor centers are now being used to improve rehabilitation of walking in persons with spinal cord injury and hemiplegia.

  12. Anatomical architecture and responses to acidosis of a novel respiratory neuron group in the high cervical spinal cord (HCRG) of the neonatal rat.

    Science.gov (United States)

    Okada, Y; Yokota, S; Shinozaki, Y; Aoyama, R; Yasui, Y; Ishiguro, M; Oku, Y

    2009-01-01

    It has been postulated that there exists a neuronal mechanism that generates respiratory rhythm and modulates respiratory output pattern in the high cervical spinal cord. Recently, we have found a novel respiratory neuron group in the ventral portion of the high cervical spinal cord, and named it the high cervical spinal cord respiratory group (HCRG). In the present study, we analyzed the detailed anatomical architecture of the HCRG region by double immunostaining of the region using a neuron-specific marker (NeuN) and a marker for motoneurons (ChAT) in the neonatal rat. We found a large number of small NeuN-positive cells without ChAT-immunoreactivity, which were considered interneurons. We also found two and three clusters of motoneurons in the ventral portion of the ventral horn at C1 and C2 levels, respectively. Next, we examined responses of HCRG neurons to respiratory and metabolic acidosis in vitro by voltage-imaging together with cross correlation techniques, i.e., by correlation coefficient imaging, in order to understand the functional role of HCRG neurons. Both respiratory and metabolic acidosis caused the same pattern of changes in their spatiotemporal activation profiles, and the respiratory-related area was enlarged in the HCRG region. After acidosis was introduced, preinspiratory phase-dominant activity was recruited in a number of pixels, and more remarkably inspiratory phase-dominant activity was recruited in a large number of pixels. We suggest that the HCRG composes a local respiratory neuronal network consisting of interneurons and motoneurons and plays an important role in respiratory augmentation in response to acidosis.

  13. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    Science.gov (United States)

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  14. Co-expression of GAD67 and choline acetyltransferase in neurons in the mouse spinal cord: A focus on lamina X.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Yanagawa, Yuchio; Deuchars, Jim; Deuchars, Susan A

    2016-09-01

    Lamina X of the spinal cord is a functionally diverse area with roles in locomotion, autonomic control and processing of mechano and nociceptive information. It is also a neurochemically diverse region. However, the different populations of cells in lamina X remain to be fully characterised. To determine the co-localisation of the enzymes responsible for the production of GABA and acetylcholine (which play major roles in the spinal cord) in lamina X of the adult and juvenile mouse, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurons, combined with choline acetyltransferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurons were observed in lamina X of both adult and juvenile mice and in both age groups a population of cells containing both ChAT-IR and GAD67-GFP were observed in lumbar, thoracic and cervical spinal cord. Such dual labelled cells were predominantly located ventral to the central canal. Immunohistochemistry for vesicular acetylcholine transporter (VAChT) and GAD67 revealed a small number of double labelled terminals located lateral, dorsolateral and ventrolateral to the central canal. This study therefore describes in detail a population of ChAT-IR/GAD67-GFP neurons predominantly ventral to the central canal of the cervical, thoracic and lumbar spinal cord of adult and juvenile mice. These cells potentially correspond to a sub-population of the cholinergic central canal cluster cells which may play a unique role in controlling spinal cord circuitry. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    Science.gov (United States)

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  16. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Science.gov (United States)

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  17. Salmon and human thrombin differentially regulate radicular pain, glial-induced inflammation and spinal neuronal excitability through protease-activated receptor-1.

    Directory of Open Access Journals (Sweden)

    Jenell R Smith

    Full Text Available Chronic neck pain is a major problem with common causes including disc herniation and spondylosis that compress the spinal nerve roots. Cervical nerve root compression in the rat produces sustained behavioral hypersensitivity, due in part to the early upregulation of pro-inflammatory cytokines, the sustained hyperexcitability of neurons in the spinal cord and degeneration in the injured nerve root. Through its activation of the protease-activated receptor-1 (PAR1, mammalian thrombin can enhance pain and inflammation; yet at lower concentrations it is also capable of transiently attenuating pain which suggests that PAR1 activation rate may affect pain maintenance. Interestingly, salmon-derived fibrin, which contains salmon thrombin, attenuates nerve root-induced pain and inflammation, but the mechanisms of action leading to its analgesia are unknown. This study evaluates the effects of salmon thrombin on nerve root-mediated pain, axonal degeneration in the root, spinal neuronal hyperexcitability and inflammation compared to its human counterpart in the context of their enzymatic capabilities towards coagulation substrates and PAR1. Salmon thrombin significantly reduces behavioral sensitivity, preserves neuronal myelination, reduces macrophage infiltration in the injured nerve root and significantly decreases spinal neuronal hyperexcitability after painful root compression in the rat; whereas human thrombin has no effect. Unlike salmon thrombin, human thrombin upregulates the transcription of IL-1β and TNF-α and the secretion of IL-6 by cortical cultures. Salmon and human thrombins cleave human fibrinogen-derived peptides and form clots with fibrinogen with similar enzymatic activities, but salmon thrombin retains a higher enzymatic activity towards coagulation substrates in the presence of antithrombin III and hirudin compared to human thrombin. Conversely, salmon thrombin activates a PAR1-derived peptide more weakly than human thrombin. These

  18. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  19. Endomorphin-2 Inhibits the Activity of the Spinoparabrachial Projection Neuron through Presynaptic Mechanisms in the Spinal Dorsal Horn in Rats

    Directory of Open Access Journals (Sweden)

    Jun-Bin Yin

    2018-03-01

    Full Text Available Background/Aims: Spinal dorsal horn (SDH is one of the most important regions for analgesia produced by endomorphin-2 (EM2, which has a higher affinity and specificity for the µ-opioid receptor (MOR than morphine. Many studies have focused on substantia gelatinosa (SG, lamina II neurons to elucidate the cellular basis for its antinociceptive effects. However, the complicated types and local circuits of interneurons in the SG make it difficult to understand the real effects of EM2. Therefore, in the present study, we examined the effects of EM2 on projection neurons (PNs in lamina I. Methods: Tracing, immunofluoresence, and immunoelectron methods were used to examine the morphological connections between EM2-immunoreactive (-ir terminals and PNs. By using in vitro whole cell patch clamp recording technique, we investigated the functional effects of EM2 on PNs. Results: EM2-ir afferent terminals directly contacted PNs projecting to the parabrachial nucleus in lamina I. Their synaptic connections were further confirmed by immunoelectron microscopy, most of which were asymmetric synapses. It was found that EM2 had a strong inhibitory effect on the frequency, but not amplitude, of the spontaneous excitatory postsynaptic current (sEPSC of the spinoparabrachial PNs in lamina I, which could be reversed by MOR antagonist CTOP. However, their spontaneous inhibitory postsynaptic current (sIPSC and intrinsic properties were not changed after EM2 application. Conclusion: Applying EM2 to the SDH could produce analgesia through inhibiting the activities of the spinoparabrachial PNs in lamina I by reducing presynaptic neurotransmitters release from the primary afferent terminals.

  20. The effect of Bobath approach on the excitability of the spinal alpha motor neurones in stroke patients with muscle spasticity.

    Science.gov (United States)

    Ansari, N N; Naghdi, S

    2007-01-01

    A clinical study was performed to evaluate the efficacy of the Bobath approach on the excitability of the spinal alpha motor neurones in patients with poststroke spasticity. Ten subjects ranging in age from 37 through 76 years (average 60 years) with ankle plantarflexor spasticity secondary to a stroke were recruited and completed the trial. They had physiotherapy according to Bobath concept for ten treatment sessions, three days per week. Two repeated measures, one before and another after treatment, were taken to quantify clinical efficacy. The effect of this type of therapy on the excitability of alpha motor neurones (aMN) was assessed by measuring the latency of the Hoffmann reflex (H-reflex) and the Hmax/Mmax ratio. The original Ashworth scale and ankle range of motion were also measured. The mean HmaxlMmax ratio on the affected side at baseline was high in the study patients. However, there were no statistically significant differences in the HmaxlMmax ratio or in the H-reflex latency between the baseline values and those recorded after therapy intervention. Before treatment, the HmaxlMmax ratio was significantly higher in the affected side than in the unaffected side. However, it was similar at both sides after treatment. Following treatment, the significant reduction in spasticity was clinically detected as measured with the original Ashworth scale. The ankle joint active and passive range of motion was significantly increased. In conclusion, Bobath therapy had a statistically significant effect on the excitability of the aMN in the affected side compared to the unaffected side in stroke patients with muscle spasticity.

  1. Highly Efficient Differentiation and Enrichment of Spinal Motor Neurons Derived from Human and Monkey Embryonic Stem Cells

    Science.gov (United States)

    Wada, Tamaki; Honda, Makoto; Minami, Itsunari; Tooi, Norie; Amagai, Yuji; Nakatsuji, Norio; Aiba, Kazuhiro

    2009-01-01

    Background There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs) from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs) are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods. Methods/Principal Findings We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC) clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA) and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment. Conclusions and Significance The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved. PMID:19701462

  2. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  3. Effects of spinal transection on presynaptic markers for glutamatergic neurons in the rat

    International Nuclear Information System (INIS)

    Singer, H.S.; Coyle, J.T.; Frangia, J.; Price, D.L.

    1981-01-01

    To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release of L-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinity glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process for L-[3H]glutamate resulted in elevation of Vmax with no significant alteration in KT as compared to age-matched controls. Depolarization-induced release of L-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat

  4. Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Katja M. Piltti

    2017-06-01

    Full Text Available Multipotent human central nervous system-derived neural stem cells transplanted at doses ranging from 10,000 (low to 500,000 (very high cells differentiated predominantly into the oligodendroglial lineage. However, while the number of engrafted cells increased linearly in relationship to increasing dose, the proportion of oligodendrocytic cells declined. Increasing dose resulted in a plateau of engraftment, enhanced neuronal differentiation, and increased distal migration caudal to the transplantation sites. Dose had no effect on terminal sensory recovery or open-field locomotor scores. However, total human cell number and decreased oligodendroglial proportion were correlated with hindlimb girdle coupling errors. Conversely, greater oligodendroglial proportion was correlated with increased Ab step pattern, decreased swing speed, and increased paw intensity, consistent with improved recovery. These data suggest that transplant dose, and/or target niche parameters can regulate donor cell engraftment, differentiation/maturation, and lineage-specific migration profiles.

  5. Mice doubly-deficient in lysosomal hexosaminidase A and neuraminidase 4 show epileptic crises and rapid neuronal loss.

    Directory of Open Access Journals (Sweden)

    Volkan Seyrantepe

    2010-09-01

    Full Text Available Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts G(M2 to G(M3 ganglioside. Hexa(-/- mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2 ganglioside via a lysosomal sialidase into glycolipid G(A2, which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-;Hexa(-/- show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/- or Neu4(-/- siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2 ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/- mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/- mice.

  6. GLT1 overexpression reverses established neuropathic pain-related behavior and attenuates chronic dorsal horn neuron activation following cervical spinal cord injury.

    Science.gov (United States)

    Falnikar, Aditi; Hala, Tamara J; Poulsen, David J; Lepore, Angelo C

    2016-03-01

    Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. In our unilateral cervical contusion model of mouse SCI that is associated with ipsilateral forepaw heat hypersensitivity (a form of chronic at-level neuropathic pain-related behavior), we previously reported significant and long-lasting reductions in GLT1 expression and functional GLT1-mediated glutamate uptake in cervical spinal cord dorsal horn. To therapeutically address GLT1 dysfunction following cervical contusion SCI, we injected an adeno-associated virus type 8 (AAV8)-Gfa2 vector into the superficial dorsal horn to increase GLT1 expression selectively in astrocytes. Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI. © 2015 Wiley Periodicals, Inc.

  7. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord.

    Science.gov (United States)

    Antal, M; Polgár, E; Chalmers, J; Minson, J B; Llewellyn-Smith, I; Heizmann, C W; Somogyi, P

    1991-12-01

    The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat

  8. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  9. Tissue-specific models of spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult stages.

    Science.gov (United States)

    Laird, Angela S; Mackovski, Nikolce; Rinkwitz, Silke; Becker, Thomas S; Giacomotto, Jean

    2016-05-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  11. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates

    Science.gov (United States)

    Djenoune, Lydia; Khabou, Hanen; Joubert, Fanny; Quan, Feng B.; Nunes Figueiredo, Sophie; Bodineau, Laurence; Del Bene, Filippo; Burcklé, Céline; Tostivint, Hervé; Wyart, Claire

    2014-01-01

    Over 90 years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs) based on their morphology and location within the spinal cord. In more than 200 vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF). Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus), macaque (Macaca fascicularis) and zebrafish (Danio rerio). In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer–Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species. PMID:24834029

  12. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates

    Directory of Open Access Journals (Sweden)

    Lydia eDjenoune

    2014-05-01

    Full Text Available Over ninety years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs based on their morphology and location within the spinal cord. In more than two hundred vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF. Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus, macaque (Macaca fascicularis and zebrafish (Danio rerio. In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer-Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species.

  13. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales

    Science.gov (United States)

    Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L

    2015-01-01

    Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614

  14. Neurons in the inferior colliculus of the rat show stimulus-specific adaptation for frequency, but not for intensity

    Science.gov (United States)

    Duque, Daniel; Wang, Xin; Nieto-Diego, Javier; Krumbholz, Katrin; Malmierca, Manuel S.

    2016-01-01

    Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths. PMID:27066835

  15. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    Science.gov (United States)

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-03

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Synchronization of motor neurons during locomotion in the neonatal rat

    DEFF Research Database (Denmark)

    Tresch, Matthew C.; Kiehn, Ole

    2002-01-01

    We describe here the robust synchronization of motor neurons at a millisecond time scale during locomotor activity in the neonatal rat. Action potential activity of motor neuron pairs was recorded extracellularly using tetrodes during locomotor activity in the in vitro neonatal rat spinal cord....... Approximately 40% of motor neuron pairs recorded in the same spinal segment showed significant synchronization, with the duration of the central peak in cross-correlograms between motor neurons typically ranging between ∼ 30 and 100 msec. The percentage of synchronized motor neuron pairs was considerably higher...... between motor neurons persisted. On the other hand, both local and distant coupling between motor neurons were preserved after antagonism of gap junction coupling between motor neurons. These results demonstrate that motor neuron activity is strongly synchronized at a millisecond time scale during...

  17. Delayed Administration of VEGF Rescues Spinal Motor Neurons from Death with a Short Effective Time Frame in Excitotoxic Experimental Models in Vivo

    Directory of Open Access Journals (Sweden)

    Luis B Tovar-y-Romo

    2012-02-01

    Full Text Available VEGF (vascular endothelial growth factor prevents neuronal death in different models of ALS (amyotrophic lateral sclerosis, but few studies have addressed the efficacy of VEGF to protect motor neurons after the onset of symptoms, a critical point when considering VEGF as a potential therapeutic target for ALS. We studied the capability of VEGF to protect motor neurons after an excitotoxic challenge in two models of spinal neurodegeneration in rats induced by AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid administered either chronically with osmotic minipumps or acutely by microdialysis. VEGF was administered through osmotic minipumps in the chronic model or injected intracerebroventricularly in the acute model, and its effects were assessed by immunohistochemical and histological analyses and motor performance tests. In the chronic model, VEGF stopped the progression of the paralysis and protected motor neurons when administered after AMPA before the onset of the motor symptoms, whereas no protection was observed when administered after the onset. VEGF was also protective in the acute model, but with a short time window, since the protection was effective when administered 1 h but not 2 h after AMPA. Our results indicate that while VEGF has an indubitable neuroprotective effect, its therapeutic potential for halting or delaying the progression of motor neuron loss in ALS would likely have a short effective time frame.

  18. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons.

    Science.gov (United States)

    van den Hoogen, Nynke J; Patijn, Jacob; Tibboel, Dick; Joosten, Bert A; Fitzgerald, Maria; Kwok, Charlie H T

    2018-03-08

    Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  19. Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischaemic hearts

    NARCIS (Netherlands)

    Armour, JA; Linderoth, B; Arora, RC; DeJongste, MJL; Ardell, JL; Kingma, JG; Hill, M; Foreman, RD

    2002-01-01

    Electrical excitation of the dorsal aspect of the rostral thoracic spinal cord imparts long-term therapeutic benefits to patients with angina pectoris. Such spinal cord stimulation also induces short-term suppressor effects on the intrinsic cardiac nervous system. The purpose of this study was to

  20. High Content Analysis of Hippocampal Neuron-Astrocyte Co-cultures Shows a Positive Effect of Fortasyn Connect on Neuronal Survival and Postsynaptic Maturation

    NARCIS (Netherlands)

    van Deijk, Anne-Lieke F; Broersen, Laus M; Verkuyl, J Martin; Smit, August B; Verheijen, Mark H G

    2017-01-01

    Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis -docosahexaenoic acid (DHA), uridine and choline- has been shown to increase neurite outgrowth and synaptogenesis bothin vivoandin vitro. A role for

  1. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  2. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  3. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis.

    Science.gov (United States)

    Rahman, W; Patel, R; Dickenson, A H

    2015-10-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased functional

  4. Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity.

    Science.gov (United States)

    DʼMello, Richard; Sand, Claire A; Pezet, Sophie; Leiper, James M; Gaurilcikaite, Egle; McMahon, Stephen B; Dickenson, Anthony H; Nandi, Manasi

    2015-10-01

    Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetric dimethylarginine concentrations. Here, we show that the DDAH-1 isoform is constitutively active in the nervous system, specifically in the spinal dorsal horn. DDAH-1 was found to be expressed in sensory neurons within both the dorsal root ganglia and spinal dorsal horn; L-291 (NG-[2-Methoxyethyl]-L-arginine methyl ester), a DDAH-1 inhibitor, reduced NO synthesis in cultured dorsal root ganglia neurons. Spinal application of L-291 decreased N-methyl-D-aspartate-dependent postdischarge and windup of dorsal horn sensory neurons--2 measures of spinal hyperexcitability. Finally, spinal application of L-291 reduced both neuronal and behavioral measures of formalin-induced central sensitization. Thus, DDAH-1 may be a potential therapeutic target in neuronal disorders, such as chronic pain, where elevated NO is a contributing factor.

  5. Neurokinin-1 Receptor Immunoreactive Neuronal Elements in the Superficial Dorsal Horn of the Chicken Spinal Cord: With Special Reference to Their Relationship with the Tachykinin-containing Central Axon Terminals in Synaptic Glomeruli

    International Nuclear Information System (INIS)

    Sakamoto, Hiroshi; Kawate, Toyoko; Li, Yongnan; Atsumi, Saoko

    2009-01-01

    Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli

  6. Congenital Zika Virus Infection Induces Severe Spinal Cord Injury.

    Science.gov (United States)

    Ramalho, Fernando S; Yamamoto, Aparecida Y; da Silva, Luis L; Figueiredo, Luiz T M; Rocha, Lenaldo B; Neder, Luciano; Teixeira, Sara R; Apolinário, Letícia A; Ramalho, Leandra N Z; Silva, Deisy M; Coutinho, Conrado M; Melli, Patrícia P; Augusto, Marlei J; Santoro, Ligia B; Duarte, Geraldo; Mussi-Pinhata, Marisa M

    2017-08-15

    We report 2 fatal cases of congenital Zika virus (ZIKV) infection. Brain anomalies, including atrophy of the cerebral cortex and brainstem, and cerebellar aplasia were observed. The spinal cord showed architectural distortion, severe neuronal loss, and microcalcifications. The ZIKV proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons, and spinal cord samples were positive for ZIKV RNA. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the severity of the spinal muscular atrophy disease phenotype in model mice.

    Science.gov (United States)

    Kim, Jeong-Ki; Caine, Charlotte; Awano, Tomoyuki; Herbst, Ruth; Monani, Umrao R

    2017-07-01

    Spinal muscular atrophy (SMA) is a common and often fatal neuromuscular disorder caused by low levels of the Survival Motor Neuron (SMN) protein. Amongst the earliest detectable consequences of SMN deficiency are profound defects of the neuromuscular junctions (NMJs). In model mice these synapses appear disorganized, fail to mature and are characterized by poorly arborized nerve terminals. Given one role of the SMN protein in orchestrating the assembly of spliceosomal snRNP particles and subsequently regulating the alternative splicing of pre-mRNAs, a plausible link between SMN function and the distal neuromuscular SMA phenotype is an incorrectly spliced transcript or transcripts involved in establishing or maintaining NMJ structure. In this study, we explore the effects of one such transcript-Z+Agrin-known to be a critical organizer of the NMJ. We confirm that low SMN protein reduces motor neuronal levels of Z+Agrin. Repletion of this isoform of Agrin in the motor neurons of SMA model mice increases muscle fiber size, enhances the post-synaptic NMJ area, reduces the abnormal accumulation of intermediate filaments in nerve terminals of the neuromuscular synapse and improves the innervation of muscles. While these effects are independent of changes in SMN levels or increases in motor neuron numbers they nevertheless have a significant effect on the overall disease phenotype, enhancing mean survival in severely affected SMA model mice by ∼40%. We conclude that Agrin is an important target of the SMN protein and that mitigating NMJ defects may be one strategy in treating human spinal muscular atrophy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model

    Directory of Open Access Journals (Sweden)

    Md. Sakirul Islam Khan

    2017-12-01

    Full Text Available Spina bifida aperta (SBA, one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABAergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.

  9. Distinct membrane effects of spinal nerve ligation on injured and adjacent dorsal root ganglion neurons in rats

    NARCIS (Netherlands)

    Sapunar, Damir; Ljubkovic, Marko; Lirk, Philipp; McCallum, J. Bruce; Hogan, Quinn H.

    2005-01-01

    Painful peripheral nerve injury results in disordered sensory neuron function that contributes to the pathogenesis of neuropathic pain. However, the relative roles of neurons with transected axons versus intact adjacent neurons have not been resolved. An essential first step is identification of

  10. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    2010-10-01

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  11. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Sims, T.J.

    1997-01-01

    This review summarises some of the major findings derived from studies using the model of a glia-depleted environment developed and characterised in this laboratory. Glial depletion is achieved by exposure of the immature rodent spinal cord to x-radiation which markedly reduces both astrocyte and oligodendrocyte populations and severely impairs myelination. This glia-depleted, hypomylinated state presents a unique opportunity to examine aspects of spinal cord maturation in the absence of a normal glial population. An associated sequela within 2-3 wk following irradiation is the appearance of Schwann cells in the dorsal portion of the spinal cord. Characteristics of these intraspinal Schwann cells, their patterns of myelination or ensheathment, and their interrelations with the few remaining central glia have been examined. A later sequela is the development of Schwann cells in the ventral aspect of the spinal cord where they occur predominantly in the grey matter. (author)

  12. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-03-01

    Full Text Available Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide

  13. A synthetic peptide shows retro- and anterograde neuronal transport before disrupting the chemosensation of plant-pathogenic nematodes.

    Science.gov (United States)

    Wang, Dong; Jones, Laura M; Urwin, Peter E; Atkinson, Howard J

    2011-03-07

    Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that

  14. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  15. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  16. CRISPR-Mediated Genomic Deletion of Sox2 in the Axolotl Shows a Requirement in Spinal Cord Neural Stem Cell Amplification during Tail Regeneration

    Directory of Open Access Journals (Sweden)

    Ji-Feng Fei

    2014-09-01

    Full Text Available The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs and clustered regularly interspaced short palindromic repeats (CRISPRs in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl.

  17. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice : Relationships to monoaminergic, cholinergic, and spinal projection systems

    NARCIS (Netherlands)

    VanderHorst, VGJM; Gustafsson, JA; Ulfhake, B

    2005-01-01

    For many populations of estrogen-sensitive neurons it remains unknown how they are associated with central nervous system circuitries that mediate estrogen-induced modulation of behavioral components. With the use of double-labeling immunohistochemistry and tracing techniques, the relationships of

  18. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice.

    Science.gov (United States)

    Uchida, Kenzo; Nakajima, Hideaki; Hirai, Takayuki; Yayama, Takafumi; Chen, Kebing; Guerrero, Alexander Rodriguez; Johnson, William Eustace; Baba, Hisatoshi

    2012-12-15

    The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of β-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS

  19. Histochemical alternations in the Nissl bodies and ribonucleic acid (RNA) in the spinal, gangalion neurones of gamma irradiated rats

    International Nuclear Information System (INIS)

    Mousa, Tohamy A.; Roushdy, Hamed M.; Raid, Nahed A.; Al-Zahaby, Al-Ahmady S.; Sanad, Samia M.

    1984-01-01

    Four groups of adult male albino rats were subjected to whole body gamma-irradiation at the exposure levels of 200, 400, 600 and 1000 rads and the spinal ganglia were dissected out after different intervals of 3 hr., 1, 3, 5, 7, 10, 15 and 30 days. Nissl bodies and ribonucleic acid were demonstrated histochemically. Gamma irradiation may cause a decrease in RNA synthesis which was reflected in a reduced amount of Nissl substance visible in toluidine blue stained you thick sections of spinal ganglion of gamma irradiated rats and in the total amount of cytoplasmic RNA in pyronin-methyl green stained sections compared with control animals

  20. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan

    2011-01-01

    The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4-11weeks...

  1. Origin and neurochemical properties of bulbospinal neurons projecting to the rat lumbar spinal cord via the medal longitudinal fasciculus and caudal ventrolateral medulla

    Directory of Open Access Journals (Sweden)

    Zilli eHuma

    2014-04-01

    Full Text Available Bulbospinal systems (BS originate from various regions of the brainstem and influence spinal neurons by classical synaptic and modulatory mechanisms. Our aim was to determine the brainstem locations of cells of origin of BS pathways passing through the medial longitudinal fasciculus (MLF and the caudal ventrolateral medulla (CVLM. We also examined the transmitter content of spinal terminations of the CVLM pathway. Six adult rats received Fluorogold (FG injections to the right intermediate grey matter of the lumbar cord (L1-L2 and the b-subunit of cholera toxin (CTb was injected either into the MLF or the right CVLM (3 animals each. Double-labelled cells were identified within brainstem structures with confocal microscopy and mapped onto brainstem diagrams. An additional 3 rats were injected with CTb in the CVLM to label axon terminals in the lumbar spinal cord. Double-labelled cells projecting via the MLF or CVLM were found principally in reticular regions of the medulla and pons but small numbers of cells were also located within the midbrain. CVLM projections to the lumbar cord were almost exclusively ipsilateral and concentrated within the intermediate grey matter. Most (62% of terminals were immunoreactive for the vesicular glutamate transporter 2 while 23% contained the vesicular GABA transporter. The inhibitory subpopulation was glycinergic, GABAergic or contained both transmitters. The proportions of excitatory and inhibitory axons projecting via the CVLM to the lumbar cord are similar to those projecting via the MLF. Unlike the MLF pathway, CVLM projections are predominantly ipsilateral and concentrated within intermediate grey but do not extend into motor nuclei or laminia VIII. Terminations of the CVLM pathway are located in a region of the grey matter that is rich in premotor interneurons; thus its primary function may be to coordinate activity of premotor networks.

  2. Light and electron microscopy of contacts between primary afferent fibres and neurones with axons ascending the dorsal columns of the feline spinal cord.

    Science.gov (United States)

    Maxwell, D J; Koerber, H R; Bannatyne, B A

    1985-10-01

    In addition to primary afferent fibres, the dorsal columns of the cat spinal cord contain ascending second-order axons which project to the dorsal column nuclei. The aim of the present study was to obtain morphological evidence that certain primary afferent axons form monosynaptic contacts with cells of origin of this postsynaptic dorsal column pathway. In ten adult cats, neurones with axons ascending the dorsal columns were retrogradely labelled with horseradish peroxidase using a pellet implantation method in the thoracic dorsal columns. In the lumbosacral regions of the same animals, primary afferent fibres were labelled intra-axonally with ionophoretic application of horseradish peroxidase. Tissue containing labelled axons was prepared for light and combined light and electron microscopy. Ultrastructural examination demonstrated that slowly adapting (Type I), hair follicle, Pacinian corpuscle and group Ia muscle spindle afferents formed monosynaptic contacts with labelled cells and light microscopical analysis suggested that they also received monosynaptic input from rapidly adapting (Krause) afferents. This evidence suggests that sensory information from large-diameter cutaneous and muscle spindle afferent fibres is conveyed disynaptically via the postsynaptic dorsal column pathway to the dorsal column nuclei. Some of the input to this pathway is probably modified in the spinal cord as the majority of primary afferent boutons forming monosynaptic contacts were postsynaptic to other axon terminals. The postsynaptic dorsal column system appears to constitute a major somatosensory pathway in the cat.

  3. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available Neonatal white matter injury (nWMI is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life

  4. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    Directory of Open Access Journals (Sweden)

    Karen S. Coughlan

    2016-09-01

    Full Text Available Transgenic transactivation response DNA-binding protein 43 (TDP-43 mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS; however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK activation at postnatal day (P80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS.

  5. TRPV1 receptors contribute to mediate paclitaxel-induced c-Fos expression in spinal cord dorsal horn neurons

    Czech Academy of Sciences Publication Activity Database

    Kalynovska, Nataliia; Adámek, Pavel; Paleček, Jiří

    2017-01-01

    Roč. 66, č. 3 (2017), s. 549-532 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LH15279; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : c-Fos * paclitaxel * TRPV1 * neuropathy * spinal cord Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 1.461, year: 2016

  6. Directly Converted Human Fibroblasts Mature to Neurons and Show Long-Term Survival in Adult Rodent Hippocampus

    Directory of Open Access Journals (Sweden)

    Natalia Avaliani

    2017-01-01

    Full Text Available Direct conversion of human somatic cells to induced neurons (iNs, using lineage-specific transcription factors has opened new opportunities for cell therapy in a number of neurological diseases, including epilepsy. In most severe cases of epilepsy, seizures often originate in the hippocampus, where populations of inhibitory interneurons degenerate. Thus, iNs could be of potential use to replace these lost interneurons. It is not known, however, if iNs survive and maintain functional neuronal properties for prolonged time periods in in vivo. We transplanted human fibroblast-derived iNs into the adult rat hippocampus and observed a progressive morphological differentiation, with more developed dendritic arborisation at six months as compared to one month. This was accompanied by mature electrophysiological properties and fast high amplitude action potentials at six months after transplantation. This proof-of-principle study suggests that human iNs can be developed as a candidate source for cell replacement therapy in temporal lobe epilepsy.

  7. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson's disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons.

    Science.gov (United States)

    Kong, Ping; Zhang, Ben-Shu; Lei, Ping; Kong, Xiao-Dong; Zhang, Shi-Shuang; Li, Dai; Zhang, Yun

    2015-08-01

    Parkinson's disease is a degenerative disorder of the central nervous system. In spite of extensive research, neither the cause nor the mechanisms have been firmly established thus far. One assumption is that certain toxic substances may exist in the cerebro-spinal fluid (CSF) of Parkinson's disease patients. To confirm the neurotoxicity of CSF and study the potential correlation between neurotoxicity and the severity of Parkinson's disease, CSF was added to cultured cells. By observation of cell morphology, changes in the levels of lactate dehydrogenase, the ratio of tyrosine hydroxylase-positive cells, and the expression of tyrosine hydroxylase mRNA and protein, the differences between the two groups were shown. The created in vitro model of dopaminergic neurons using primary culture of mouse embryonic mesencephalic tissue is suitable for the study of neurotoxicity. The observations of the present study indicated that CSF from Parkinson's disease patients contains factors that can cause specific injury to cultured dopaminergic neurons. However, no obvious correlation was found between the neurotoxicity of CSF and the severity of Parkinson's disease.

  8. In situ hybridization of nucleus basalis neurons shows increased β-amyloid mRNA in Alzheimer disease

    International Nuclear Information System (INIS)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.; Younkin, L.H.; Younkin, S.G.

    1988-01-01

    To determine which cells within the brain produce β-amyloid mRNA and to assess expression of the β-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that β-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more β-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the β-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease

  9. Spinal cellular and network properties modulate pain perception

    Directory of Open Access Journals (Sweden)

    Darbon Pascal

    2016-01-01

    Previously, it has been shown that high levels of plasma glucocorticoids give rise to analgesia. However to our knowledge nothing has been reported regarding a direct non genomic modulation of neuronal spinal activity by peripheral CORT. In the present study, we used combined in vivo and in vitro electrophysiology approaches, associated with the measure of nociceptive mechanical sensitivity and plasma corticosterone level measurement to assess the impact of circulating CORT on rat nociception. We showed that CORT plasma level elevation produced analgesia via the reduction of nociceptive fiber mediated spinal responses. CORT is spinally reduced in the neuroactive metabolite THDOC that specifically enhances lamina II GABAergic synaptic transmission. The main consequence is a reduction of lamina II network excitability reflecting a selective decrease in processing of nociceptive inputs. The depressed neuronal activity at the spinal level then in turn leads to a weaker nociceptive message transmission to supraspinal structures and hence to an alleviation of pain.

  10. Neurogenin3 restricts serotonergic neuron differentiation to the hindbrain.

    Science.gov (United States)

    Carcagno, Abel L; Di Bella, Daniela J; Goulding, Martyn; Guillemot, Francois; Lanuza, Guillermo M

    2014-11-12

    The development of the nervous system is critically dependent on the production of functionally diverse neuronal cell types at their correct locations. In the embryonic neural tube, dorsoventral signaling has emerged as a fundamental mechanism for generating neuronal diversity. In contrast, far less is known about how different neuronal cell types are organized along the rostrocaudal axis. In the developing mouse and chick neural tube, hindbrain serotonergic neurons and spinal glutamatergic V3 interneurons are produced from ventral p3 progenitors, which possess a common transcriptional identity but are confined to distinct anterior-posterior territories. In this study, we show that the expression of the transcription factor Neurogenin3 (Neurog3) in the spinal cord controls the correct specification of p3-derived neurons. Gain- and loss-of-function manipulations in the chick and mouse embryo show that Neurog3 switches ventral progenitors from a serotonergic to V3 differentiation program by repressing Ascl1 in spinal p3 progenitors through a mechanism dependent on Hes proteins. In this way, Neurog3 establishes the posterior boundary of the serotonergic system by actively suppressing serotonergic specification in the spinal cord. These results explain how equivalent p3 progenitors within the hindbrain and the spinal cord produce functionally distinct neuron cell types. Copyright © 2014 the authors 0270-6474/14/3415223-11$15.00/0.

  11. Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Bell, Andrew M; Marin, Alina; Taylor, Rebecca; Boyle, Kieran A; Furuta, Takahiro; Watanabe, Masahiko; Polgár, Erika; Todd, Andrew J

    2017-03-01

    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.

  12. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  13. Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs.

    Science.gov (United States)

    Munoz, Jessian L; Greco, Steven J; Patel, Shyam A; Sherman, Lauren S; Bhatt, Suresh; Bhatt, Rekha S; Shrensel, Jeffrey A; Guan, Yan-Zhong; Xie, Guiqin; Ye, Jiang-Hong; Rameshwar, Pranela; Siegel, Allan

    2012-09-01

    Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke. Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    Science.gov (United States)

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  15. DNA Methylation Profiling of Human Prefrontal Cortex Neurons in Heroin Users Shows Significant Difference between Genomic Contexts of Hyper- and Hypomethylation and a Younger Epigenetic Age

    Directory of Open Access Journals (Sweden)

    Alexey Kozlenkov

    2017-05-01

    Full Text Available We employed Illumina 450 K Infinium microarrays to profile DNA methylation (DNAm in neuronal nuclei separated by fluorescence-activated sorting from the postmortem orbitofrontal cortex (OFC of heroin users who died from heroin overdose (N = 37, suicide completers (N = 22 with no evidence of heroin use and from control subjects who did not abuse illicit drugs and died of non-suicide causes (N = 28. We identified 1298 differentially methylated CpG sites (DMSs between heroin users and controls, and 454 DMSs between suicide completers and controls (p < 0.001. DMSs and corresponding genes (DMGs in heroin users showed significant differences in the preferential context of hyper and hypo DM. HyperDMSs were enriched in gene bodies and exons but depleted in promoters, whereas hypoDMSs were enriched in promoters and enhancers. In addition, hyperDMGs showed preference for genes expressed specifically by glutamatergic as opposed to GABAergic neurons and enrichment for axonogenesis- and synaptic-related gene ontology categories, whereas hypoDMGs were enriched for transcription factor activity- and gene expression regulation-related terms. Finally, we found that the DNAm-based “epigenetic age” of neurons from heroin users was younger than that in controls. Suicide-related results were more difficult to interpret. Collectively, these findings suggest that the observed DNAm differences could represent functionally significant marks of heroin-associated plasticity in the OFC.

  16. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

    Directory of Open Access Journals (Sweden)

    Misa Oyama

    2017-03-01

    Full Text Available To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.

  17. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  18. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  19. Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration.

    Science.gov (United States)

    Gomez-Deza, Jorge; Lee, Youn-Bok; Troakes, Claire; Nolan, Matthew; Al-Sarraj, Safa; Gallo, Jean-Marc; Shaw, Christopher E

    2015-06-25

    Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected

  20. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones.

    Science.gov (United States)

    McLean, David L; Fetcho, Joseph R

    2009-10-28

    Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.

  1. Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity

    Directory of Open Access Journals (Sweden)

    Konstantin D. Bergmeister

    2017-07-01

    Full Text Available Modern robotic hands/upper limbs may replace multiple degrees of freedom of extremity function. However, their intuitive use requires a high number of control signals, which current man-machine interfaces do not provide. Here, we discuss a broadband control interface that combines targeted muscle reinnervation, implantable multichannel electromyographic sensors, and advanced decoding to address the increasing capabilities of modern robotic limbs. With targeted muscle reinnervation, nerves that have lost their targets due to an amputation are surgically transferred to residual stump muscles to increase the number of intuitive prosthetic control signals. This surgery re-establishes a nerve-muscle connection that is used for sensing nerve activity with myoelectric interfaces. Moreover, the nerve transfer determines neurophysiological effects, such as muscular hyper-reinnervation and cortical reafferentation that can be exploited by the myoelectric interface. Modern implantable multichannel EMG sensors provide signals from which it is possible to disentangle the behavior of single motor neurons. Recent studies have shown that the neural drive to muscles can be decoded from these signals and thereby the user's intention can be reliably estimated. By combining these concepts in chronic implants and embedded electronics, we believe that it is in principle possible to establish a broadband man-machine interface, with specific applications in prosthesis control. This perspective illustrates this concept, based on combining advanced surgical techniques with recording hardware and processing algorithms. Here we describe the scientific evidence for this concept, current state of investigations, challenges, and alternative approaches to improve current prosthetic interfaces.

  2. Diagnosis of sports injuries of the spinal column. If the X-ray doesn't show enough, CT and MRI will fill the gaps

    International Nuclear Information System (INIS)

    Halbsguth, A.

    1996-01-01

    Exact anamnestic exploration is a key to the successful clarification of sports lesions of the spinal column. Today, X-ray diagnostics still is of the greatest importance. Should it be impossible to diagnose the clinical situation extensively by this method recourse should be taken to computed tomography (CT) and nuclear magnetic resonance tomography (NMRT). As a rule, CT is used to clarify bone pathology and NMRT to examine soft tissue lesions. Especially complex vertebral parts - the articlular process and adjacent parts of the transverse process and lamina often are difficult to assess by a sceleton scintigraphy, thus allowing a detailed search using other methods. (orig.) [de

  3. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    Science.gov (United States)

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Computed tomography of the spinal canal for the cervical spine and spinal cord injury

    International Nuclear Information System (INIS)

    Kimura, Isao; Niimiya, Hikosuke; Nasu, Kichiro; Shioya, Akihide; Ohhama, Mitsuru

    1983-01-01

    The cervical spinal canal and cervical spinal cord were measured in normal cases and 34 cases of spinal or spinal cord injury. The anteroposterior diameter and area of the normal cervical spinal canal showed a high correlation. The area ratio of the normal cervical spinal canal to the cervical spinal cord showed that the proportion of the cervical spinal cord in the spinal canal was 1/3 - 1/5, Csub(4,5) showing a particularly large proportion. In acute and subacute spinal or spinal cord injury, CT visualized in more details of the spinal canal in cases that x-ray showed definite bone injuries. Computer assisted myelography visualized more clearly the condition of the spinal cord in cases without definite findings bone injuries on x-ray. Demonstrating the morphology of spinal injury in more details, CT is useful for selection of therapy for injured spines. (Chiba, N.)

  5. Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones

    Directory of Open Access Journals (Sweden)

    Sian F. Irvine

    2018-04-01

    Full Text Available Perineuronal nets (PNNs are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones, PNNs using Wisteria floribunda agglutinin (WFA and chondroitin sulphate proteoglycans (CSPGs, including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns. CSPG-positive PNNs surrounded ~70–80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15–30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1 aggrecan labels spinal PNNs better than WFA, and (2 there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.

  6. Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of post-injury spasticity

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Westerdahl, Ann-Charlotte; Hultborn, Hans

    2010-01-01

    Spinal cord injury leads to severe problems involving impaired motor, sensory and autonomic functions. After spinal injury there is an initial phase of hypo-reflexia followed by hyper-reflexia, often referred to as spasticity. Previous studies have suggested a relationship between the reappearanc...

  7. Surgical reconstruction of spinal cord circuit provides functional return in humans

    Directory of Open Access Journals (Sweden)

    Thomas Carlstedt

    2017-01-01

    Full Text Available This mini review describes the current surgical strategy for restoring function after traumatic spinal nerve root avulsion in brachial or lumbosacral plexus injury in man. As this lesion is a spinal cord or central nervous injury functional return depends on spinal cord nerve cell growth within the central nervous system. Basic science, clinical research and human application has demonstrated good and useful motor function after ventral root avulsion followed by spinal cord reimplantation. Recently, sensory return could be demonstrated following spinal cord surgery bypassing the injured primary sensory neuron. Experimental data showed that most of the recovery depended on new growth reinnervating peripheral receptors. Restored sensory function and the return of spinal reflex was demonstrated by electrophysiology and functional magnetic resonance imaging of human cortex. This spinal cord surgery is a unique treatment of central nervous system injury resulting in useful functional return. Further improvements will not depend on surgical improvements. Adjuvant therapy aiming at ameliorating the activity in retinoic acid elements in dorsal root ganglion neurons could be a new therapeutic avenue in restoring spinal cord circuits after nerve root avulsion injury.

  8. New products tissue-engineering in the treatment of spinal cord injury

    Science.gov (United States)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  9. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development

    Directory of Open Access Journals (Sweden)

    Samuel Sances

    2018-04-01

    Full Text Available Summary: Human stem cell-derived models of development and neurodegenerative diseases are challenged by cellular immaturity in vitro. Microengineered organ-on-chip (or Organ-Chip systems are designed to emulate microvolume cytoarchitecture and enable co-culture of distinct cell types. Brain microvascular endothelial cells (BMECs share common signaling pathways with neurons early in development, but their contribution to human neuronal maturation is largely unknown. To study this interaction and influence of microculture, we derived both spinal motor neurons and BMECs from human induced pluripotent stem cells and observed increased calcium transient function and Chip-specific gene expression in Organ-Chips compared with 96-well plates. Seeding BMECs in the Organ-Chip led to vascular-neural interaction and specific gene activation that further enhanced neuronal function and in vivo-like signatures. The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition. : Sances et al. combine Organ-Chip technology with human induced pluripotent stem cell-derived spinal motor neurons to study the maturation effects of Organ-Chip culture. By including microvascular cells also derived from the same patient line, the authors show enhancement of neuronal function, reproduction of vascular-neuron pathways, and specific gene activation that resembles in vivo spinal cord development. Keywords: organ-on-chip, spinal cord, iPSC, disease modeling, amyotrophic lateral sclerosis, microphysiological system, brain microvascular endothelial cells, spinal motor neurons, vasculature, microfluidic device

  10. The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain.

    Directory of Open Access Journals (Sweden)

    Degang Yu

    Full Text Available Chronic pain is the most prominent and disabling symptom of osteoarthritis (OA. Clinical data suggest that subchondral bone lesions contribute to the occurrence of joint pain. The present study investigated the effect of the inhibition of subchondral bone lesions on joint pain.Osteoarthritic pain was induced by an injection of monosodium iodoacetate (MIA into the rat knee joint. Zoledronic acid (ZOL, a third generation of bisphosphonate, was used to inhibit subchondral bone lesions. Joint histomorphology was evaluated using X-ray micro computed tomography scanning and hematoxylin-eosin staining. The activity of osteoclast in subchondral bone was evaluated using tartrate-resistant acid phosphatase staining. Joint pain was evaluated using weight-bearing asymmetry, the expression of calcitonin gene-related peptide (CGRP in the dorsal root ganglion (DRG, and spinal glial activation status using glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule-1 (Iba-1 immunofluorescence. Afferent neurons in the DRGs that innervated the joints were identified using retrograde fluorogold labeling.MIA injections induced significant histomorphological alterations and joint pain. The inhibition of subchondral bone lesions by ZOL significantly reduced the MIA-induced weight-bearing deficit and overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn at 3 and 6 weeks after MIA injection; however, joint swelling and synovial reaction were unaffected.The inhibition of subchondral bone lesions alleviated joint pain. Subchondral bone lesions should be a key target in the management of osteoarthritic joint pain.

  11. Spinal Cord Stimulation (SCS) with Anatomically Guided (3D) Neural Targeting Shows Superior Chronic Axial Low Back Pain Relief Compared to Traditional SCS-LUMINA Study.

    Science.gov (United States)

    Veizi, Elias; Hayek, Salim M; North, James; Brent Chafin, T; Yearwood, Thomas L; Raso, Louis; Frey, Robert; Cairns, Kevin; Berg, Anthony; Brendel, John; Haider, Nameer; McCarty, Matthew; Vucetic, Henry; Sherman, Alden; Chen, Lilly; Mekel-Bobrov, Nitzan

    2017-08-01

    The aim of this study was to determine whether spinal cord stimulation (SCS) using 3D neural targeting provided sustained overall and low back pain relief in a broad routine clinical practice population. This was a multicenter, open-label observational study with an observational arm and retrospective analysis of a matched cohort. After IPG implantation, programming was done using a patient-specific, model-based algorithm to adjust for lead position (3D neural targeting) or previous generation software (traditional). Demographics, medical histories, SCS parameters, pain locations, pain intensities, disabilities, and safety data were collected for all patients. A total of 213 patients using 3D neural targeting were included, with a trial-to-implant ratio of 86%. Patients used seven different lead configurations, with 62% receiving 24 to 32 contacts, and a broad range of stimulation parameters utilizing a mean of 14.3 (±6.1) contacts. At 24 months postimplant, pain intensity decreased significantly from baseline (ΔNRS = 4.2, N = 169, P  pain subgroup (ΔNRS = 5.3, N = 91, P  low back pain also decreased significantly from baseline to 24 months (ΔNRS = 4.1, N = 70, P  pain responder rates of 51% (traditional SCS) and 74% (neural targeting SCS) and axial low back pain responder rates of 41% and 71% in the traditional SCS and neural targeting SCS cohorts, respectively. Lastly, complications occurred in a total of 33 of the 213 patients, with a 1.6% lead replacement rate and a 1.6% explant rate. Our results suggest that 3D neural targeting SCS and its associated hardware flexibility provide effective treatment for both chronic leg and chronic axial low back pain that is significantly superior to traditional SCS. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Blocking spinal CCR2 with AZ889 reversed hyperalgesia in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Vaillancourt François

    2010-12-01

    Full Text Available Abstract Background The CCR2/CCL2 system has been identified as a regulator in the pathogenesis of neuropathy-induced pain. However, CCR2 target validation in analgesia and the mechanism underlying antinociception produced by CCR2 antagonists remains poorly understood. In this study, in vitro and in vivo pharmacological approaches using a novel CCR2 antagonist, AZ889, strengthened the hypothesis of a CCR2 contribution to neuropathic pain and provided confidence over the possibilities to treat neuropathic pain with CCR2 antagonists. Results We provided evidence that dorsal root ganglia (DRG cells harvested from CCI animals responded to stimulation by CCL2 with a concentration-dependent calcium rise involving PLC-dependent internal stores. This response was associated with an increase in evoked neuronal action potentials suggesting these cells were sensitive to CCR2 signalling. Importantly, treatment with AZ889 abolished CCL2-evoked excitation confirming that this activity is CCR2-mediated. Neuronal and non-neuronal cells in the spinal cord were also excited by CCL2 applications indicating an important role of spinal CCR2 in neuropathic pain. We next showed that in vivo spinal intrathecal injection of AZ889 produced dose-dependent analgesia in CCI rats. Additionally, application of AZ889 to the exposed spinal cord inhibited evoked neuronal activity and confirmed that CCR2-mediated analgesia involved predominantly the spinal cord. Furthermore, AZ889 abolished NMDA-dependent wind-up of spinal withdrawal reflex pathway in neuropathic animals giving insight into the spinal mechanism underlying the analgesic properties of AZ889. Conclusions Overall, this study strengthens the important role of CCR2 in neuropathic pain and highlights feasibility that interfering on this mechanism at the spinal level with a selective antagonist can provide new analgesia opportunities.

  13. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  14. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.

    Directory of Open Access Journals (Sweden)

    Anne Jacobi

    Full Text Available BACKGROUND: Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. METHODOLOGY/PRINCIPAL FINDINGS: To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. CONCLUSIONS: Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the

  15. Sex matters: females in proestrus show greater diazepam anxiolysis and brain-derived neurotrophin factor- and parvalbumin-positive neurons than males.

    Science.gov (United States)

    Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany

    2018-04-01

    In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  17. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  18. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    Science.gov (United States)

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  19. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording

    NARCIS (Netherlands)

    Schaap, J.; Bos, N. P.; de Jeu, M. T.; Geurtsen, A. M.; Meijer, J. H.; Pennartz, C. M.

    1999-01-01

    The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological

  20. A Review of the Segmental Diameter of the Healthy Human Spinal Cord.

    Science.gov (United States)

    Frostell, Arvid; Hakim, Ramil; Thelin, Eric Peter; Mattsson, Per; Svensson, Mikael

    2016-01-01

    Knowledge of the average size and variability of the human spinal cord can be of importance when treating pathological conditions in the spinal cord. Data on healthy human spinal cord morphometrics have been published for more than a century using different techniques of measurements, but unfortunately, comparison of results from different studies is difficult because of the different anatomical landmarks used as reference points along the craniocaudal axis for the measurements. The aim of this review was to compute population estimates of the transverse and anteroposterior diameter of the human spinal cord by comparing and combining previously published data on a normalized craniocaudal axis. We included 11 studies presenting measurements of spinal cord cross-sectional diameters, with a combined sample size ranging from 15 to 488 subjects, depending on spinal cord level. Based on five published studies presenting data on the lengths of the segments of the spinal cord and vertebral column, we calculated the relative positions of all spinal cord neuronal segments and vertebral bony segments and mapped measurements of spinal cord size to a normalized craniocaudal axis. This mapping resulted in better alignment between studies and allowed the calculation of weighted averages and standard deviations (SDs) along the spinal cord. These weighted averages were smoothed using a generalized additive model to yield continuous population estimates for transverse and anteroposterior diameter and associated SDs. The spinal cord had the largest transverse diameter at spinal cord neuronal segment C5 (13.3 ± 2.2), decreased to segment T8 (8.3 ± 2.1), and increased slightly again to 9.4 ± 1.5 at L3. The anteroposterior diameter showed less variation in size along the spinal cord at C5 (7.4 ± 1.6), T8 (6.3 ± 2.0), and L3 (7.5 ± 1.6). All estimates are presented in millimeters ± 2 SDs. We conclude that segmental transverse and anteroposterior

  1. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression.

    Science.gov (United States)

    Carmichael, Stephen N; Bron, James E; Taggart, John B; Ireland, Jacqueline H; Bekaert, Michaël; Burgess, Stewart Tg; Skuce, Philip J; Nisbet, Alasdair J; Gharbi, Karim; Sturm, Armin

    2013-06-18

    Caligid copepods, also called sea lice, are fish ectoparasites, some species of which cause significant problems in the mariculture of salmon, where the annual cost of infection is in excess of €300 million globally. At present, caligid control on farms is mainly achieved using medicinal treatments. However, the continued use of a restricted number of medicine actives potentially favours the development of drug resistance. Here, we report transcriptional changes in a laboratory strain of the caligid Lepeophtheirus salmonis (Krøyer, 1837) that is moderately (~7-fold) resistant to the avermectin compound emamectin benzoate (EMB), a component of the anti-salmon louse agent SLICE® (Merck Animal Health). Suppression subtractive hybridisation (SSH) was used to enrich transcripts differentially expressed between EMB-resistant (PT) and drug-susceptible (S) laboratory strains of L. salmonis. SSH libraries were subjected to 454 sequencing. Further L. salmonis transcript sequences were available as expressed sequence tags (EST) from GenBank. Contiguous sequences were generated from both SSH and EST sequences and annotated. Transcriptional responses in PT and S salmon lice were investigated using custom 15 K oligonucleotide microarrays designed using the above sequence resources. In the absence of EMB exposure, 359 targets differed in transcript abundance between the two strains, these genes being enriched for functions such as calcium ion binding, chitin metabolism and muscle structure. γ-aminobutyric acid (GABA)-gated chloride channel (GABA-Cl) and neuronal acetylcholine receptor (nAChR) subunits showed significantly lower transcript levels in PT lice compared to S lice. Using RT-qPCR, the decrease in mRNA levels was estimated at ~1.4-fold for GABA-Cl and ~2.8-fold for nAChR. Salmon lice from the PT strain showed few transcriptional responses following acute exposure (1 or 3 h) to 200 μg L-1 of EMB, a drug concentration tolerated by PT lice, but toxic for S lice

  2. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  3. Neuronal involvement in cisplatin neuropathy

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...... of the foot evoked by a tactile probe showed similar changes to those observed in SNAPs evoked by electrical stimulation. At these doses, somatosensory evoked potentials (SEPs) from the tibial nerve had increased latencies of peripheral, spinal and central responses suggesting loss of central processes...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  6. A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons

    DEFF Research Database (Denmark)

    Borgius, Lotta; Restrepo, C. Ernesto; Leao, Richardson N.

    2010-01-01

    Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line...... showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior...... colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC...

  7. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    Science.gov (United States)

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  8. Neurogenesis and growth factors expression after complete spinal cord transection in Pleurodeles waltlii

    Directory of Open Access Journals (Sweden)

    Amira Z Zaky

    2015-01-01

    Full Text Available Following spinal lesion, connections between the supra-spinal centers and spinal neuronal networks can be disturbed, which causes the deterioration or even the complete absence of sublesional locomotor activity. In Mammals, possibilities of locomotion restoration are much reduced since descending tracts either have very poor regenerative ability or do not regenerate at all. However, in lower Vertebrates, there is spontaneous locomotion recuperation after complete spinal cord transection at the mid-trunk level. This phenomenon depends on a translesional descending axon re-growth originating from the brainstem. On the other hand, cellular and molecular mechanisms underlying spinal cord regeneration and in parallel, locomotion restoration of the animal, are not well known. FGF-2 plays an important role in different processes such as neural induction, neuronal progenitor proliferation and their differentiation. Studies had shown an over expression of this growth factor after tail amputation. Nestin, a protein specific for intermediate filaments, is considered as an early marker for neuronal precursors. It has been recently shown that its expression increases after tail transection in Urodeles. Using this marker and western blots, our results show that the increase in the number of FGF-2 and FGFR2 mRNAs is correlated with an increase in neurogenesis especially in the central canal lining cells immediately after lesion. This study also confirms that spinal cord re-growth through the lesion site initially follows a rostrocaudal direction. In addition to its role known in neuronal differentiation, FGF-2 could be implicated in the differentiation of ependymal cells into neuronal progenitors.

  9. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Simon, E-mail: simon.wells@adelaide.edu.au [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); The Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia 5005 (Australia); Conran, John G., E-mail: john.conran@adelaide.edu.au [Ecology and Evolutionary Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); Tamme, Richard, E-mail: rtamme@ttu.ee [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); Gaudin, Arnaud, E-mail: a.gaudin@uq.edu.au [School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Webb, Jonathan, E-mail: jonathan.webb@worc.ox.ac.uk [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); Lardelli, Michael, E-mail: michael.lardelli@adelaide.edu.au [Discipline of Genetics, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, South Australia 5005 (Australia); The Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, South Australia 5005 (Australia)

    2010-11-15

    The molecules and mechanisms involved in patterning the dorsoventral axis of the developing vertebrate spinal cord have been investigated extensively and many are well known. Conversely, knowledge of mechanisms patterning cellular distributions along the rostrocaudal axis is relatively more restricted. Much is known about the rostrocaudal distribution of motoneurons and spinal cord cells derived from neural crest but there is little known about the rostrocaudal patterning of most of the other spinal cord neurons. Here we report data from our analyses of the distribution of dorsal longitudinal ascending (DoLA) interneurons in the developing zebrafish spinal cord. We show that, although apparently distributed irregularly, these cells have cryptic organisation. We present a novel cell-labelling technique that reveals that DoLA interneurons migrate rostrally along the dorsal longitudinal fasciculus of the spinal cord during development. This cell-labelling strategy may be useful for in vivo analysis of factors controlling neuron migration in the central nervous system. Additionally, we show that DoLA interneurons persist in the developing spinal cord for longer than previously reported. These findings illustrate the need to investigate factors and mechanisms that determine 'irregular' patterns of cell distribution, particularly in the central nervous system but also in other tissues of developing embryos.

  10. Glioblastoma with spinal seeding

    International Nuclear Information System (INIS)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C.; Czech, T.; Diekmann, K.; Birner, P.; Hainfellner, J.A.; Prayer, D.

    2004-01-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  11. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  12. Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine

    OpenAIRE

    Bell, Andrew M; Gutierrez-Mecinas, Maria; Polg?r, Erika; Todd, Andrew J

    2016-01-01

    Background: Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphoryla...

  13. Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?

    International Nuclear Information System (INIS)

    Govers, N.; Beghin, J.; Goethem, J.W.M. van; Hauwe, L. van den; Vandervliet, E.; Parizel, P.M.; Michiels, J.

    2007-01-01

    Until recently, functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) contrast, was mainly used to study brain physiology. The activation signal measured with fMRI is based upon the changes in the concentration of deoxyhaemoglobin that arise from an increase in blood flow in the vicinity of neuronal firing. Technical limitations have impeded such research in the human cervical spinal cord. The purpose of this investigation was to determine whether a reliable fMRI signal can be elicited from the cervical spinal cord during fingertapping, a complex motor activity. Furthermore, we wanted to determine whether the fMRI signal could be spatially localized to the particular neuroanatomical location specific for this task. A group of 12 right-handed healthy volunteers performed the complex motor task of fingertapping with their right hand. T2*-weighted gradient-echo echo-planar imaging on a 1.5-T clinical unit was used to image the cervical spinal cord. Motion correction was applied. Cord activation was measured in the transverse imaging plane, between the spinal cord levels C5 and T1. In all subjects spinal cord responses were found, and in most of them on the left and the right side. The distribution of the activation response showed important variations between the subjects. While regions of activation were distributed throughout the spinal cord, concentrated activity was found at the anatomical location of expected motor innervation, namely nerve root C8, in 6 of the 12 subjects. fMRI of the human cervical spinal cord on an 1.5-T unit detects neuronal activity related to a complex motor task. The location of the neuronal activation (spinal cord segment C5 through T1 with a peak on C8) corresponds to the craniocaudal anatomical location of the neurons that activate the muscles in use. (orig.)

  14. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    Science.gov (United States)

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  16. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    Science.gov (United States)

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.

  17. Spatial Elucidation of Spinal Cord Lipid- and Metabolite- Regulations in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Hanrieder, Jörg; Ewing, Andrew G.

    2014-06-01

    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressing disease of the central nervous system that is characterized by motor neuron degeneration in the brain stem and the spinal cord. We employed time of flight secondary ion mass spectrometry (ToF-SIMS) to profile spatial lipid- and metabolite- regulations in post mortem human spinal cord tissue from ALS patients to investigate chemical markers of ALS pathogenesis. ToF-SIMS scans and multivariate analysis of image and spectral data were performed on thoracic human spinal cord sections. Multivariate statistics of the image data allowed delineation of anatomical regions of interest based on their chemical identity. Spectral data extracted from these regions were compared using two different approaches for multivariate statistics, for investigating ALS related lipid and metabolite changes. The results show a significant decrease for cholesterol, triglycerides, and vitamin E in the ventral horn of ALS samples, which is presumably a consequence of motor neuron degeneration. Conversely, the biogenic mediator lipid lysophosphatidylcholine and its fragments were increased in ALS ventral spinal cord, pointing towards neuroinflammatory mechanisms associated with neuronal cell death. ToF-SIMS imaging is a promising approach for chemical histology and pathology for investigating the subcellular mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis.

  18. A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

    Science.gov (United States)

    Eliava, Marina; Melchior, Meggane; Knobloch-Bollmann, H Sophie; Wahis, Jérôme; da Silva Gouveia, Miriam; Tang, Yan; Ciobanu, Alexandru Cristian; Triana Del Rio, Rodrigo; Roth, Lena C; Althammer, Ferdinand; Chavant, Virginie; Goumon, Yannick; Gruber, Tim; Petit-Demoulière, Nathalie; Busnelli, Marta; Chini, Bice; Tan, Linette L; Mitre, Mariela; Froemke, Robert C; Chao, Moses V; Giese, Günter; Sprengel, Rolf; Kuner, Rohini; Poisbeau, Pierrick; Seeburg, Peter H; Stoop, Ron; Charlet, Alexandre; Grinevich, Valery

    2016-03-16

    Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  20. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  1. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Science.gov (United States)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  2. A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Marini, Cecilia [CNR Institute of Bioimages and Molecular Physiology, Milan, Section of Genoa (Italy); University of Genoa, Nuclear Medicine, IRCCS San Martino IST, and Depth of Health Science, Genoa (Italy); IRCCS AOU San Martino-IST, CNR Institute of Bioimages and Molecular Physiology, Section of Genoa, C/o Nuclear Medicine, Genoa (Italy); Cistaro, Angelina; Fania, Piercarlo [Positron Emission Tomography Centre IRMET, Affidea, Turin (Italy); Campi, Cristina; Perasso, Annalisa; Massone, Anna Maria [SPIN Institute, CNR, Genoa (Italy); Calvo, Andrea; Moglia, Cristina; Canosa, Antonio; Cammarosano, Stefania; Chio, Adriano [University of Turin, ALS Center, ' ' Rita Levi Montalcini' ' Department of Neuroscience, Turin (Italy); AUO Citta della Salute e della Scienza, Turin (Italy); Caponnetto, Claudia; Nobili, Flavio Mariano; Novi, Giovanni; Scialo, Carlo; Mancardi, Gianluigi [IRCCS San Martino IST, Department of Neuroscience, Genoa (Italy); DINOGMI University of Genoa, Genoa (Italy); Beltrametti, Mauro C. [University of Genoa, Department of Mathematics (DIMA), Genoa (Italy); Buschiazzo, Ambra; Pomposelli, Elena; Morbelli, Silvia; Sambuceti, Gianmario [University of Genoa, Nuclear Medicine, IRCCS San Martino IST, and Depth of Health Science, Genoa (Italy); Bagnara, Maria Claudia [IRCCS AOU San Martino-IST, Medical Physics unit, Genoa (Italy); Bruzzi, Paolo [IRCCS AOU San Martino-IST, Statistics and Epidemiology Unit, Genoa (Italy); Piana, Michele [SPIN Institute, CNR, Genoa (Italy); University of Genoa, Department of Mathematics (DIMA), Genoa (Italy)

    2016-10-15

    In amyotrophic lateral sclerosis, functional alterations within the brain have been intensively assessed, while progression of lower motor neuron damage has scarcely been defined. The aim of the present study was to develop a computational method to systematically evaluate spinal cord metabolism as a tool to monitor disease mechanisms. A new computational three-dimensional method to extract the spinal cord from {sup 18}F-FDG PET/CT images was evaluated in 30 patients with spinal onset amyotrophic lateral sclerosis and 30 controls. The algorithm identified the skeleton on the CT images by using an extension of the Hough transform and then extracted the spinal canal and the spinal cord. In these regions, {sup 18}F-FDG standardized uptake values were measured to estimate the metabolic activity of the spinal canal and cord. Measurements were performed in the cervical and dorsal spine and normalized to the corresponding value in the liver. Uptake of {sup 18}F-FDG in the spinal cord was significantly higher in patients than in controls (p < 0.05). By contrast, no significant differences were observed in spinal cord and spinal canal volumes between the two groups. {sup 18}F-FDG uptake was completely independent of age, gender, degree of functional impairment, disease duration and riluzole treatment. Kaplan-Meier analysis showed a higher mortality rate in patients with standardized uptake values above the fifth decile at the 3-year follow-up evaluation (log-rank test, p < 0.01). The independence of this value was confirmed by multivariate Cox analysis. Our computational three-dimensional method enabled the evaluation of spinal cord metabolism and volume and might represent a potential new window onto the pathophysiology of amyotrophic lateral sclerosis. (orig.)

  3. A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Marini, Cecilia; Cistaro, Angelina; Fania, Piercarlo; Campi, Cristina; Perasso, Annalisa; Massone, Anna Maria; Calvo, Andrea; Moglia, Cristina; Canosa, Antonio; Cammarosano, Stefania; Chio, Adriano; Caponnetto, Claudia; Nobili, Flavio Mariano; Novi, Giovanni; Scialo, Carlo; Mancardi, Gianluigi; Beltrametti, Mauro C.; Buschiazzo, Ambra; Pomposelli, Elena; Morbelli, Silvia; Sambuceti, Gianmario; Bagnara, Maria Claudia; Bruzzi, Paolo; Piana, Michele

    2016-01-01

    In amyotrophic lateral sclerosis, functional alterations within the brain have been intensively assessed, while progression of lower motor neuron damage has scarcely been defined. The aim of the present study was to develop a computational method to systematically evaluate spinal cord metabolism as a tool to monitor disease mechanisms. A new computational three-dimensional method to extract the spinal cord from 18 F-FDG PET/CT images was evaluated in 30 patients with spinal onset amyotrophic lateral sclerosis and 30 controls. The algorithm identified the skeleton on the CT images by using an extension of the Hough transform and then extracted the spinal canal and the spinal cord. In these regions, 18 F-FDG standardized uptake values were measured to estimate the metabolic activity of the spinal canal and cord. Measurements were performed in the cervical and dorsal spine and normalized to the corresponding value in the liver. Uptake of 18 F-FDG in the spinal cord was significantly higher in patients than in controls (p < 0.05). By contrast, no significant differences were observed in spinal cord and spinal canal volumes between the two groups. 18 F-FDG uptake was completely independent of age, gender, degree of functional impairment, disease duration and riluzole treatment. Kaplan-Meier analysis showed a higher mortality rate in patients with standardized uptake values above the fifth decile at the 3-year follow-up evaluation (log-rank test, p < 0.01). The independence of this value was confirmed by multivariate Cox analysis. Our computational three-dimensional method enabled the evaluation of spinal cord metabolism and volume and might represent a potential new window onto the pathophysiology of amyotrophic lateral sclerosis. (orig.)

  4. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian, E-mail: zhijian_fu@163.com

    2014-11-01

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{sup 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.

  5. MR imaging and spinal cord injury

    International Nuclear Information System (INIS)

    Azar-Kia, B.; Fine, M.; Naheedy, M.; Elias, D.

    1987-01-01

    MR imaging has significantly improved diagnostic capability of spinal cord injuries. Other available diagnostic modalities such as plain films, myelography, CT, and post-CT myelography have failed to consistently show the secific evidence of spinal cord injuries and their true extent. The authors are presenting our experiences with MR imaging in spinal column injury. They have found MR imaging to be the procedure of choice for prognostic evaluation of spinal cord trauma. They are showing examples of recent and old spinal cord injury such as hematomyelia, myelomalacia, transection, spinal cord edema, and cavitation

  6. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  7. Spinal stenosis

    Science.gov (United States)

    ... in the spine that was present from birth Narrow spinal canal that the person was born with Herniated or slipped disk, which ... when you sit down or lean forward. Most people with spinal stenosis cannot walk for a long ... During a physical exam, your health care provider will try to ...

  8. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  9. Expression of calcium channel CaV1.3 in cat spinal cord: light and electron microscopic immunohistochemical study

    DEFF Research Database (Denmark)

    Zhang, Mengliang; Møller, Morten; Broman, Jonas

    2008-01-01

    in the cat spinal cord by light and electron microscopic immunohistochemistry. The results show that Ca(V)1.3-like immunoreactivity is widely distributed in all segments of the spinal cord but that the distribution in the different laminae of the spinal gray matter varies, with the highest density of labeled...... enlargements and the phrenic nucleus in cervical, Clarke's nucleus in lower thoracic and upper lumbar, and Onuf's nucleus in upper sacral segments. At the ultrastructural level, Ca(V)1.3-immunoreactive products were found in neuronal somata and dendrites of different sizes. In the soma, they were predominantly...

  10. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    Science.gov (United States)

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  11. Respiratory chain deficiency in aged spinal motor neurons☆

    Science.gov (United States)

    Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.

    2014-01-01

    Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792

  12. Characterisation of rebound depolarisation in mice deep dorsal horn neurons in vitro.

    Science.gov (United States)

    Rivera-Arconada, Ivan; Lopez-Garcia, Jose A

    2015-09-01

    Spinal dorsal horn neurons constitute the first relay for pain processing and participate in the processing of other sensory, motor and autonomic information. At the cellular level, intrinsic excitability is a factor contributing to network function. In turn, excitability is set by the array of ionic conductance expressed by neurons. Here, we set out to characterise rebound depolarisation following hyperpolarisation, a feature frequently described in dorsal horn neurons but never addressed in depth. To this end, an in vitro preparation of the spinal cord from mice pups was used combined with whole-cell recordings in current and voltage clamp modes. Results show the expression of H- and/or T-type currents in a significant proportion of dorsal horn neurons. The expression of these currents determines the presence of rebound behaviour at the end of hyperpolarising pulses. T-type calcium currents were associated to high-amplitude rebounds usually involving high-frequency action potential firing. H-currents were associated to low-amplitude rebounds less prone to elicit firing or firing at lower frequencies. For a large proportion of neurons expressing both currents, the H-current constitutes a mechanism to ensure a faster response after hyperpolarisations, adjusting the latency of the rebound firing. We conclude that rebound depolarisation and firing are intrinsic factors to many dorsal horn neurons that may constitute a mechanism to integrate somatosensory information in the spinal cord, allowing for a rapid switch from inhibited-to-excited states.

  13. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    Directory of Open Access Journals (Sweden)

    Ze-Min Ling

    Full Text Available Brachial plexus root avulsion (BPRA leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av treated with normal saline, Av+GM1 (treated with monosialoganglioside, and control. At time points of 3 day (d, 1 week (w, 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.

  14. Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury.

    Science.gov (United States)

    Weisshaar, Christine L; Dong, Ling; Bowman, Alex S; Perez, Federico M; Guarino, Benjamin B; Sweitzer, Sarah M; Winkelstein, Beth A

    2010-12-01

    There is growing evidence that neck pain is common in adolescence and is a risk factor for the development of chronic neck pain in adulthood. The cervical facet joint and its capsular ligament is a common source of pain in the neck in adults, but its role in adolescent pain remains unknown. The aim of this study was to define the biomechanics, behavioral sensitivity, and indicators of neuronal and glial activation in an adolescent model of mechanical facet joint injury. A bilateral C6-C7 facet joint distraction was imposed in an adolescent rat and biomechanical metrics were measured during injury. Following injury, forepaw mechanical hyperalgesia was measured, and protein kinase C-epsilon (PKCɛ) and metabotropic glutamate receptor-5 (mGluR5) expression in the dorsal root ganglion and markers of spinal glial activation were assessed. Joint distraction induced significant mechanical hyperalgesia during the 7 days post-injury (p capsule during injury were 32.8 ± 12.9%, which were consistent with the strains associated with comparable degrees of hypersensitivity in the adult rat. These results suggest that adolescents may have a lower tissue tolerance to induce pain and associated nociceptive response than do adults.

  15. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice.

    Science.gov (United States)

    Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori

    2011-11-01

    Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  17. Spinal Arachnoiditis as a Complication of Cryptococcal Meningoencephalitis in Non-HIV Previously Healthy Adults

    Science.gov (United States)

    Komori, Mika; Kosa, Peter; Khan, Omar; Hammoud, Dima A.; Rosen, Lindsey B.; Browne, Sarah K.; Lin, Yen-Chih; Romm, Elena; Ramaprasad, Charu; Fries, Bettina C.; Bennett, John E.; Bielekova, Bibiana; Williamson, Peter R.

    2017-01-01

    Background. Cryptococcus can cause meningoencephalitis (CM) among previously healthy non-HIV adults. Spinal arachnoiditis is under-recognized, since diagnosis is difficult with concomitant central nervous system (CNS) pathology. Methods. We describe 6 cases of spinal arachnoiditis among 26 consecutively recruited CM patients with normal CD4 counts who achieved microbiologic control. We performed detailed neurological exams, cerebrospinal fluid (CSF) immunophenotyping and biomarker analysis before and after adjunctive immunomodulatory intervention with high dose pulse corticosteroids, affording causal inference into pathophysiology. Results. All 6 exhibited severe lower motor neuron involvement in addition to cognitive changes and gait disturbances from meningoencephalitis. Spinal involvement was associated with asymmetric weakness and urinary retention. Diagnostic specificity was improved by MRI imaging which demonstrated lumbar spinal nerve root enhancement and clumping or lesions. Despite negative fungal cultures, CSF inflammatory biomarkers, sCD27 and sCD21, as well as the neuronal damage biomarker, neurofilament light chain (NFL), were elevated compared to healthy donor (HD) controls. Elevations in these biomarkers were associated with clinical symptoms and showed improvement with adjunctive high dose pulse corticosteroids. Conclusions. These data suggest that a post-infectious spinal arachnoiditis is an important complication of CM in previously healthy individuals, requiring heightened clinician awareness. Despite microbiological control, this syndrome causes significant pathology likely due to increased inflammation and may be amenable to suppressive therapeutics. PMID:28011613

  18. Making sense out of spinal cord somatosensory development

    Science.gov (United States)

    Seal, Rebecca P.

    2016-01-01

    The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits. PMID:27702783

  19. The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits.

    Science.gov (United States)

    Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi

    2003-06-01

    In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.

  20. Spinal injury

    Science.gov (United States)

    ... Dallas, TX: American Red Cross; 2016. Kaji AH, Newton EJ, Hockberger RS. Spinal injuries. In: Marx JA, ... member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www. ...

  1. The circulation of the cerebrospinal fluid (CSF) in the spinal canal

    Science.gov (United States)

    Sanchez, Antonio L.; Martinez-Bazan, Carlos; Lasheras, Juan C.

    2016-11-01

    Cerebrospinal Fluid (CSF) is secreted in the choroid plexus in the lateral sinuses of the brain and fills the subarachnoid space bathing the external surfaces of the brain and the spinal canal. Absence of CSF circulation has been shown to impede its physiological function that includes, among others, supplying nutrients to neuronal and glial cells and removing the waste products of cellular metabolism. Radionuclide scanning images published by Di Chiro in 1964 showed upward migration of particle tracers from the lumbar region of the spinal canal, thereby suggesting the presence of an active bulk circulation responsible for bringing fresh CSF into the spinal canal and returning a portion of it to the cranial vault. However, the existence of this slow moving bulk circulation in the spinal canal has been a subject of dispute for the last 50 years. To date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk motion. We present a perturbation analysis of the flow in an idealized model of the spinal canal and show how steady streaming could be responsible for the establishment of such a circulation. The results of this analysis are compared to flow measurements conducted on in-vitro models of the spinal canal of adult humans.

  2. Spinal infections

    International Nuclear Information System (INIS)

    Tali, E. Turgut; Gueltekin, Serap

    2005-01-01

    Spinal infections have an increasing prevalence among the general population. Definitive diagnosis based solely on clinical grounds is usually not possible and radiological imaging is used in almost all patients. The primary aim of the authors is to present an overview of spinal infections located in epidural, intradural and intramedullary compartments and to provide diagnostic clues regarding different imaging modalities, particularly MRI, to the practicing physicians and radiologists. (orig.)

  3. Spinal cysticercosis

    International Nuclear Information System (INIS)

    Goedert, A.V.; Silva, S.H.F.

    1990-01-01

    Spinal cysticercosis is an extremely uncommon condition. We have examined four patients with complaints that resembled nervous root compression by disk herniation. Myelography was shown to be an efficient method to evaluate spinal involvement, that was characterized by findings of multiple filling defect images (cysts) plus signs of adhesive arachnoiditis. One cyst was found to be mobile. Because of the recent development of medical treatment, a quick and precise diagnosis is of high importance to determine the prognosis of this condition. (author)

  4. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  5. /sup 125/I-labelled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS

    Energy Technology Data Exchange (ETDEWEB)

    Dimpfel, W; Neale, J H; Habermann, E [Giessen Univ. (F.R. Germany). Pharmakologisches Inst.; National Inst. of Child Health and Human Development, Bethesda, Md. (USA). Behavioural Biology Branch)

    1975-01-01

    Primary cultures derived from embryonic mouse brain and spinal cord were exposed to /sup 125/I-labelled tetanus toxin and subjected to autoradioraphy. Cells with neuronal, but not glial, morphology selectively accumulated the toxin. The distribution of the grains over these cells and their processes was not uniform, discrete processes showing heavier labelling.

  6. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    Science.gov (United States)

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients

    Directory of Open Access Journals (Sweden)

    Meng-Lu Liu

    2016-01-01

    Full Text Available Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS. Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  10. Anatomical recovery of the GABAergic system after a complete spinal cord injury in lampreys.

    Science.gov (United States)

    Romaus-Sanjurjo, D; Valle-Maroto, S M; Barreiro-Iglesias, A; Fernández-López, B; Rodicio, M C

    2018-03-15

    Lampreys recover locomotion spontaneously several weeks after a complete spinal cord injury. Dysfunction of the GABAergic system following SCI has been reported in mammalian models. So, it is of great interest to understand how the GABAergic system of lampreys adapts to the post-injury situation and how this relates to spontaneous recovery. The spinal cord of lampreys contains 3 populations of GABAergic neurons and most of the GABAergic innervation of the spinal cord comes from these local cells. GABAB receptors are expressed in the spinal cord of lampreys and they play important roles in the control of locomotion. The aims of the present study were to quantify: 1) the changes in the number of GABAergic neurons and innervation of the spinal cord and 2) the changes in the expression of the gabab receptor subunits b1 and b2 in the spinal cord of the sea lamprey after SCI. We performed complete spinal cord transections at the level of the fifth gill of mature larval lampreys and GABA immunohistochemistry or gabab in situ hybridization experiments. Animals were analysed up to 10 weeks post-lesion (wpl), when behavioural analyses showed that they recovered normal appearing locomotion (stage 6 in the Ayer's scale of locomotor recovery). We observed a significant decrease in the number of GABA-ir cells and fibres 1 h after lesion both rostral and caudal to the lesion site. GABA-ir cell numbers and innervation were recovered to control levels 1 to 2 wpl. At 1, 4 and 10 wpl the expression of gabab1 and gabab2 transcripts was significantly decreased in the spinal cord compared to control un-lesioned animals. This is the first study reporting the quantitative long-term changes in the number of GABAergic cells and fibres and in the expression of gabab receptors in the spinal cord of any vertebrate following a traumatic SCI. Our results show that in lampreys there is a full recovery of the GABAergic neurons and a decrease in the expression of gabab receptors when functional

  11. Descending Command Neurons in the Brainstem that Halt Locomotion

    DEFF Research Database (Denmark)

    Bouvier, Julien; Caggiano, Vittorio; Leiras, Roberto

    2015-01-01

    identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord....... Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic...

  12. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    Science.gov (United States)

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  13. Effects of Sex Steroids on the Spinal Gastrin-Releasing Peptide System Controlling Male Sexual Function in Rats.

    Science.gov (United States)

    Oti, Takumi; Takanami, Keiko; Ito, Saya; Ueda, Takashi; Matsuda, Ken Ichi; Kawata, Mitsuhiro; Soh, Jintetsu; Ukimura, Osamu; Sakamoto, Tatsuya; Sakamoto, Hirotaka

    2018-04-01

    The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord controls male sexual function in rats. In contrast, in female rats, GRP neurons could scarcely be detected around puberty when circulating ovarian steroid hormones such as estradiol and progesterone levels are increasing. However, little information is available on feminizing or demasculinizing effects of ovarian steroids on the central nervous system in female puberty and adulthood. In this study, to visualize the spinal GRP neurons in vivo, we generated a GRP-promoter-Venus transgenic (Tg) rat line and studied the effects of the sex steroid hormones on GRP expression in the rat lumbar cord by examining the Venus fluorescence. In these Tg rats, the sexually dimorphic spinal GRP neurons controlling male sexual function were clearly labeled with Venus fluorescence. As expected, Venus fluorescence in the male lumbar cord was markedly decreased after castration and restored by chronic androgen replacement. Furthermore, androgen-induced Venus expression in the spinal cord of adult Tg males was significantly attenuated by chronic treatment with progesterone but not with estradiol. A luciferase assay using a human GRP-promoter construct showed that androgens enhance the spinal GRP system, and more strikingly, that progesterone acts to inhibit the GRP system via an androgen receptor-mediated mechanism. These results demonstrate that circulating androgens may play an important role in the spinal GRP system controlling male sexual function not only in rats but also in humans and that progesterone could be an important feminizing factor in the spinal GRP system in females during pubertal development.

  14. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  15. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Fandel, Thomas M; Trivedi, Alpa; Nicholas, Cory R; Zhang, Haoqian; Chen, Jiadong; Martinez, Aida F; Noble-Haeusslein, Linda J; Kriegstein, Arnold R

    2016-10-06

    Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that 6 months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals show improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The corticospinal tract lesion of amyotrophic lateral sclerosis. Magnetic resonance imaging of the spinal cord

    International Nuclear Information System (INIS)

    Terao, Shin-ichi; Sobue, Gen; Mitsuma, Terunori; Yasuda, Takeshi; Kachi, Teruhiko.

    1994-01-01

    Magnetic resonance imaging by gradient echo method demonstrated lesions of the lateral corticospinal tract at cervical cord levels in three ALS patients. Patient 1 was a 43-year-old woman with common from of ALS. She developed right-side predominant pyramidal signs, and right-side predominant prolongation of central motor conduction time. MRI showed hypersignal intensity areas in the dorsal region of the lateral column at the 4th and 5th cervical segments with right-side predominacy. Patient 2 was a 65-year-old man with pseudopolyneuritic from of ALS, who showed lower motor neuron signs without a pyramidal sign. MRI of the 3rd and 4th cervical cord segments demonstrated bilateral hypersignal intensity areas in the dorsal part of the lateral column. Patient 3 was a 62-year-old man with common form of ALS, who showed marked bilateral pyramidal signs with Babinski's sign. MRI of the 5th cervical spinal cord segment demonstrated bilateral hypersignal intensity areas in the dorsolateral column. MR images of the spinal cord thus obtained corresponded well to the postmortem confirmed degeneration of the spinal corticospinal tract. MRI of the spinal cord performed by gradient echo method would provide additional information on the upper motor neuron involvement in ALS. (author)

  17. The corticospinal tract lesion of amyotrophic lateral sclerosis. Magnetic resonance imaging of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Shin-ichi; Sobue, Gen; Mitsuma, Terunori (Aichi Medical Univ., Nagakute (Japan)); Yasuda, Takeshi; Kachi, Teruhiko

    1994-09-01

    Magnetic resonance imaging by gradient echo method demonstrated lesions of the lateral corticospinal tract at cervical cord levels in three ALS patients. Patient 1 was a 43-year-old woman with common from of ALS. She developed right-side predominant pyramidal signs, and right-side predominant prolongation of central motor conduction time. MRI showed hypersignal intensity areas in the dorsal region of the lateral column at the 4th and 5th cervical segments with right-side predominacy. Patient 2 was a 65-year-old man with pseudopolyneuritic from of ALS, who showed lower motor neuron signs without a pyramidal sign. MRI of the 3rd and 4th cervical cord segments demonstrated bilateral hypersignal intensity areas in the dorsal part of the lateral column. Patient 3 was a 62-year-old man with common form of ALS, who showed marked bilateral pyramidal signs with Babinski's sign. MRI of the 5th cervical spinal cord segment demonstrated bilateral hypersignal intensity areas in the dorsolateral column. MR images of the spinal cord thus obtained corresponded well to the postmortem confirmed degeneration of the spinal corticospinal tract. MRI of the spinal cord performed by gradient echo method would provide additional information on the upper motor neuron involvement in ALS. (author).

  18. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  19. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    Science.gov (United States)

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-06

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. Copyright © 2014 the authors 0270-6474/14/3410765-05$15.00/0.

  20. Clinico-epidemiologic characteristics of spinal muscular atrophy ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    Deletion;. Chromosome 5;. Mutations. Abstract Spinal muscular atrophy (SMA) is characterized by progressive hypotonia and muscular weakness because of progressive degeneration of alpha motor neuron from anterior horn cells in the spinal cord. It is inherited by an autosomal recessive pattern. The precise frequency of ...

  1. Optogenetics of the Spinal Cord: Use of Channelrhodopsin Proteins for Interrogation of Spinal Cord Circuits.

    Science.gov (United States)

    Rahman, Habibur; Nam, Youngpyo; Kim, Jae-Hong; Lee, Won-Ha; Suk, Kyoungho

    2017-12-29

    Spinal cord circuits play a key role in receiving and transmitting somatosensory information from the body and the brain. They also contribute to the timing and coordination of complex patterns of movement. Under disease conditions, such as spinal cord injury and neuropathic pain, spinal cord circuits receive pain signals from peripheral nerves, and are involved in pain development via neurotransmitters and inflammatory mediators released from neurons and glial cells. Despite the importance of spinal cord circuits in sensory and motor functions, many questions remain regarding the relationship between activation of specific cells and behavioral responses. Optogenetics offers the possibility of understanding the complex cellular activity and mechanisms of spinal cord circuits, as well as having therapeutic potential for addressing spinal cord-related disorders. In this review, we discuss recent findings in optogenetic research employing the channelrhodopsin protein to assess the function of specific neurons and glia in spinal cord circuits ex vivo and in vivo. We also explore the possibilities and challenges of employing optogenetics technology in future therapeutic strategies for the treatment of spinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Spinal tuberculosis.

    Science.gov (United States)

    Dunn, R N; Ben Husien, M

    2018-04-01

    Tuberculosis (TB) remains endemic in many parts of the developing world and is increasingly seen in the developed world due to migration. A total of 1.3 million people die annually from the disease. Spinal TB is the most common musculoskeletal manifestation, affecting about 1 to 2% of all cases of TB. The coexistence of HIV, which is endemic in some regions, adds to the burden and the complexity of management. This review discusses the epidemiology, clinical presentation, diagnosis, impact of HIV and both the medical and surgical options in the management of spinal TB. Cite this article: Bone Joint J 2018;100-B:425-31.

  3. Post spinal meningitis and asepsis.

    Science.gov (United States)

    Videira, Rogerio L R; Ruiz-Neto, P P; Brandao Neto, M

    2002-07-01

    Post spinal meningitis (PSM) is a complication still currently being reported. After two PSM cases in our hospital an epidemiological study was initiated, which included a survey of techniques for asepsis that are applied in our department. Cases defined as PSM comprised meningitis within a week after spinal anesthesia. Anesthesia records, anesthesia complication files and the records of the Hospital Commission for Infection Control from 1997 to 2000 were reviewed. Asepsis techniques applied were surveyed by a questionnaire answered by all our department's anesthesiologists. The equipment and procedures for spinal anesthesia were listed. Current anesthesia textbooks were reviewed for recommendations regarding asepsis techniques in conjunction with spinal anesthesia. Three cases of PSM were identified following 38,128 spinal anesthesias whereas none was observed in 12,822 patients subjected to other types of regional or general anesthesia (P>0.05). Culture of cerebrospinal fluid yielded Streptococcus in two patients and was negative in the other patient. The asepsis technique applied by the anesthesiologists varied considerably. The literature review showed that aspects on asepsis for spinal anesthesia are poorly covered. The incidence of meningitis was similar in patients subjected to spinal anesthesia and in those subjected to other anesthetic techniques. Asepsis techniques were found to differ considerably among our staff members, reflecting the lack of well-defined published standards for this procedure. We recommend that asepsis for spinal anesthesia should not be less rigorous than for surgical asepsis.

  4. CT diagnosis of acute spinal injury

    International Nuclear Information System (INIS)

    Ohhama, Mitsuru; Niimiya, Hikosuke; Kimura, Ko; Yamazaki, Gyoji; Nasu, Yoshiro; Shioya, Akihide

    1982-01-01

    CT pictures of 22 acute spinal injuries with damage of the spinal cord were evaluated. In the cases of spinal cord damage with bone injury, changes in the vertebral canal were fully observed by CT. In some of spinal cord damages without bone injury, narrowing of the vertebral canal was demonstrated by CT combined with CT myelography and reconstruction. Evaluation of CT number showed a high density area in damaged spinal cord in some cases. CT was thus considered to be useful as an adjunct diagnostic aid. (Ueda, J.)

  5. IGF-1: elixir for motor neuron diseases.

    Science.gov (United States)

    Papanikolaou, Theodora; Ellerby, Lisa M

    2009-08-13

    Modulation of testosterone levels is a therapeutic approach for spinal and bulbar muscular atrophy (SBMA), a polyglutamine disorder that affects the motor neurons. The article by Palazzolo et al. in this issue of Neuron provides compelling evidence that the expression of insulin growth hormone is a potential therapeutic for SBMA.

  6. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.

    Science.gov (United States)

    Li, Y Q; Wong, C S

    2000-09-01

    This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2-T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were

  7. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    2007-11-01

    Full Text Available The blood-brain barrier (BBB, blood-spinal cord barrier (BSCB, and blood-cerebrospinal fluid barrier (BCSFB control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.Evans Blue (EB dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.

  8. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Martin, G F; Terman, J R; Wang, X M

    2000-11-15

    Opossums are born in an immature, fetal-like state, making it possible to lesion their spinal cord early in development without intrauterine surgery. When the thoracic spinal cord of the North American opossum, Didelphis virginiana, is transected on postnatal day 5, and injections of Fast Blue (FB) are made caudal to the lesion site 30-40 days or 6 months later, neurons are labeled in all of the spinal and supraspinal areas that are labeled after comparable injections in age-matched, unlesioned controls. Double-labeling studies document that regeneration of cut axons contributes to growth of axons through the lesion site and behavioral studies show that animals lesioned on postnatal day 5 use their hindlimbs in normal appearing locomotion as adults. The critical period for developmental plasticity of descending spinal axons extends to postnatal day 26, although axons which grow through the lesion site become fewer in number and more restricted as to origin with increasing age. Animals lesioned between postnatal day 12 and 26 use the hindlimbs better than animals lesioned as adults, but hindlimb function is markedly abnormal and uncoordinated with that of the forelimbs. We conclude that restoration of anatomical continuity occurs after transection of the spinal cord in developing opossums, that descending axons grow through the lesion site, that regeneration of cut axons contributes to such growth, and that animals lesioned early enough in development have relatively normal motor function as adults.

  9. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  10. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  11. Involvement of AMPA receptor GluR2 and GluR3 trafficking in trigeminal spinal subnucleus caudalis and C1/C2 neurons in acute-facial inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Makiko Miyamoto

    Full Text Available To evaluate the involvement of trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR GluR2 and GluR3 subunits in an acute inflammatory orofacial pain, we analyzed nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK and Fos expression in Vi/Vc, Vc and C1/C2 in GluR2 delta7 knock-in (KI, GluR3 delta7 KI mice and wild-type mice. We also studied Vc neuronal activity to address the hypothesis that trafficking of GluR2 and GluR3 subunits plays an important role in Vi/Vc, Vc and C1/C2 neuronal activity associated with orofacial inflammation in these mice. Late nocifensive behavior was significantly depressed in GluR2 delta7 KI and GluR3 delta7 KI mice. In addition, the number of pERK-immunoreactive (IR cells was significantly decreased bilaterally in the Vi/Vc, Vc and C1/C2 in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice at 40 min after formalin injection, and was also significantly smaller in GluR3 delta7 KI compared to GluR2 delta7 KI mice. The number of Fos protein-IR cells in the ipsilateral Vi/Vc, Vc and C1/C2 was also significantly smaller in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice 40 min after formalin injection. Nociceptive neurons functionally identified as wide dynamic range neurons in the Vc, where pERK- and Fos protein-IR cell expression was prominent, showed significantly lower spontaneous activity in GluR2 delta7 KI and GluR3 delta7 KI mice than wild-type mice following formalin injection. These findings suggest that GluR2 and GluR3 trafficking is involved in the enhancement of Vi/Vc, Vc and C1/C2 nociceptive neuronal excitabilities at 16-60 min following formalin injection, resulting in orofacial inflammatory pain.

  12. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Learning About Time Within the Spinal Cord II: Evidence that Temporal Regularity is Encoded by a Spinal Oscillator

    Directory of Open Access Journals (Sweden)

    Kuan Hsien Lee

    2016-02-01

    Full Text Available How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock is applied and the interval between shock pulses is varied (unpredictable, it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail. Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2 region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.

  14. Hereditary motor neuropathies and motor neuron diseases: which is which.

    Science.gov (United States)

    Hanemann, Clemens O; Ludolph, Albert C

    2002-12-01

    When Charcot first defined amyotrophic lateral sclerosis (ALS) he used the clinical and neuropathological pattern of vulnerability as a guideline. Similarly other motor neuron diseases such as the spinal muscular atrophies (SMA) and the motor neuropathies (MN) were grouped following clinical criteria. However, ever since the etiology of these diseases has started to be disclosed by genetics, we have learnt that the limits of the syndromes are not as well defined as our forefathers thought. A mutation leading to ALS can also be associated with the clinical picture of spinal muscular atrophy; even more unexpected is the overlap of the so-called motor neuropathies with the clinical syndrome of slowly progressive ALS or that primary lateral sclerosis (PLS) can be caused by the same gene as that responsible for some cases of ALS. In this review we summarise recent work showing that there is a considerable overlap between CMT, MN, SMA, ALS and PLS. Insights into these phenotypes should lead to study of the variants of motor neuron disease and possibly to a reclassification. This comprehensive review should help to improve understanding of the pathogenesis of motor neuron degeneration and finally may aid the research for urgently needed new treatment strategies, perhaps with validity for the entire group of motor neuron diseases.

  15. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  16. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassaemia: MRI

    International Nuclear Information System (INIS)

    Aydingoez, Ue.; Oto, A.; Cila, A.

    1997-01-01

    Spinal epidural extramedullary haematopoiesis is very rare in thalassaemia. A 27-year-old man with thalassaemia intermedia presented with symptoms and signs of spinal cord compression. MRI showed a thoracic spinal epidural mass, representing extramedullary haematopoietic tissue, compressing the spinal cord. Following radiotherapy, serial MRI revealed regression of the epidural mass and gradual resolution of spinal cord oedema. (orig.)

  17. Model-Based Design of Stimulus Trains for Selective Microstimulation of Targeted Neuronal Populations

    National Research Council Canada - National Science Library

    McIntyre, Cameron

    2001-01-01

    ... that accurately reproduced the dynamic firing properties of mammalian neurons, The neuron models were coupled to a three-dimensional finite element model of the spinal cord that solved for the potentials...

  18. Preimplantation genetic diagnosis of spinal muscular atrophy

    NARCIS (Netherlands)

    Dreesen, JCFM; Bras, M; de Die-Smulders, C; Dumoulin, JCM; Cobben, JM; Evers, JLH; Smeets, HJM; Geraedts, JPM

    After Duchenne muscular dystrophy, spinal muscular atrophy (SMA) is the most common severe neuromuscular disease in childhood. Since 1995, homozygous deletions in exon 7 of the survival motor neuron (SMN) gene have been described in >90-95% of SMA patients. However, the presence of a highly

  19. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    Science.gov (United States)

    2017-12-01

    tracts originating from cortex, we may eventually be able to use cell transplantation as a bridge to promote targeted, functional axon regeneration ...13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS autonomic dysreflexia, spinal cord injury, transplantation, axon regeneration 16. SECURITY...different root causes – i.e. using neural precursor cells to restore more normal innervation of sympathetic preganglionic neurons and

  20. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.

    Science.gov (United States)

    Caldeira, Vanessa; Dougherty, Kimberly J; Borgius, Lotta; Kiehn, Ole

    2017-01-27

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2 Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow What kind of surgery is common after a spinal cord injury? play_ ... How soon after a spinal cord injury should surgery be performed? play_arrow Is it common to ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... L Sarah Harrison, OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury ... a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury ... Jennifer Piatt, PhD David Chen, MD Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 David ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 ...

  8. Spinal Cord Diseases

    Science.gov (United States)

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  10. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation.

    Directory of Open Access Journals (Sweden)

    Michael P Hefferan

    Full Text Available Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1 causes an inherited form of Amyotrophic Lateral Sclerosis (ALS. Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs into the lumbar spinal cord of SOD1(G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1(G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1(G93A animals.Presymptomatic SOD1(G93A rats (60-65 days old received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1(G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1(G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1(G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50-65% loss of large caliber descending motor axons.These data demonstrate that in order to achieve a more

  11. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    Science.gov (United States)

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  12. Spinal cord contusion.

    Science.gov (United States)

    Ju, Gong; Wang, Jian; Wang, Yazhou; Zhao, Xianghui

    2014-04-15

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  13. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    Science.gov (United States)

    Marcol, Wiesław; Slusarczyk, Wojciech; Sieroń, Aleksander L; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cord injury and 3 as well as 7 days later. Neurons in brain stem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of experiment. Functional outcome and morphological features of regeneration were analyzed during 12-week follow-up. The lesions were characterized by means of MRI. Maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. Rats treated with stem cells presented significant improvement of locomotor performance and spinal cord morphology when compared to the control group. Distance covered by stem cells was 7 mm from the epicenter of the injury. Number of brain stem and motor cortex FG-positive neurons in experimental group was significantly higher than in control. Obtained data showed that bone marrow stem cells are able to induce the repair of injured spinal cord white matter. The route of cells application via cisterna magna appeared to be useful for their delivery in spinal cord injury therapy. PMID:26628950

  14. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    International Nuclear Information System (INIS)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon; Bae, Sang Jin

    2004-01-01

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance (ρ > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury

  15. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Bae, Sang Jin [Sanggyepaik Hospital, Inje University, Seoul (Korea, Republic of)

    2004-12-15

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance ({rho} > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury.

  16. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.

    Science.gov (United States)

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-12-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Copyright © 2011 AlphaMed Press.

  17. Morphological changes in neurons of the central nervous system in response to experimental influence of centimeter-range electromagnetic waves on the body

    Energy Technology Data Exchange (ETDEWEB)

    Belokrinitskiy, V.S.

    1982-08-01

    Experiments on cats and dogs exposed to electromagnetic waves at thermal intensities of 400 to 500 mV/cm/sup 2/ for 1, 10, 20, or 30 days were used to study the effects on brain and spinal cord. Changes occurred in the neurons of animals immediately after irradiation, increasing in magnitude on the 10th, 20th, and 30th day of the study. In the brain, changes were observed in the size and shape of neurons and their components (nuclei, nucleoli, and processes therein), and in the density and location of chromophil and chromatin. The changes varied among neurons located in different regions of the brain. Immediately after irradiation and after prolonged exposure neuron changes were also observed in all sections of the spinal cord. However, each section of the spinal cord was uniquely affected by electromagnetic waves regarding type and number of altered neurons. By the 10th day after irradiation many neurons were in a state of total disintegration, and shadow cells were detected. Beginning with the 7th day after irradiation, the overall condition of the animals gradually worsened. The animals became less active and showed signs of depression. The symptoms were more pronounced in cats than in dogs. None of the animals survived.

  18. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.

    Science.gov (United States)

    Ozturk, Anil Murat; Sozbilen, Murat Celal; Sevgili, Elvin; Dagci, Taner; Özyalcin, Halit; Armagan, Guliz

    2018-03-22

    Spinal cord injury (SCI) leads to vascular damage and disruption of blood-spinal cord barrier which participates in secondary nerve injury. Epidermal growth factor (EGF) is an endogenous protein which regulates cell proliferation, growth and differention. Previous studies reported that EGF exerts neuroprotective effect in spinal cord after SCI. However, the molecular mechanisms underlying EGF-mediated protection in different regions of nervous system have not shown yet. In this study, we aimed to examine possible anti-apoptotic and protective roles of EGF not only in spinal cord but also in brain following SCI. Twenty-eight adult rats were divided into four groups of seven animals each as follows: sham, trauma (SCI), SCI + EGF and SCI + methylprednisolone (MP) groups. The functional neurological deficits due to the SCI were assessed by behavioral analysis using the Basso, Beattie and Bresnahan (BBB) open-field locomotor test. The alterations in pro-/anti-apoptotic protein levels and antioxidant enzyme activities were measured in spinal cord and frontal cortex. In our study, EGF promoted locomotor recovery and motor neuron survival of SCI rats. EGF treatment significantly decreased Bax and increased Bcl-2 protein expressions both in spinal cord and brain when compared to SCI group. Moreover, antioxidant enzyme activities including catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased following EGF treatment similar to MP treatment. Our experiment also suggests that alteration of the ratio of Bcl-2 to Bax may result from decreased apoptosis following EGF treatment. As a conclusion, these results show, for the first time, that administration of EGF exerts its protection via regulating apoptotic and oxidative pathways in response to spinal cord injury in different regions of central nervous system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of Fenugreek Seed Extract (Trigonella Foenum-graecum on Brachial Region of the Spinal Cord of an 18-Day Old Rat Offspring with Diabetes

    Directory of Open Access Journals (Sweden)

    Z Khaksar

    2013-08-01

    Full Text Available Abstract Background & aim: Diabetes can affect the spinal cord, an important part of the central nervous system. Fenugreek seed has been suggested to have potential antidiabetic effects. This study was conducted to assess the effects of Fenugreek seed extract (trigonella foenum-graecum on fetal spinal cord structure, specifically in the brachial enlargement cord in an 18-day old fetus of diabetic mothers treated with extracts in comparison with the control groups' mothers. Methods: In the present cross-sectional study, sixteen healthy female rats were randomly divided into four equal groups: Healthy control, Diabetes control, Fenugreek control, Fenugreek treatment. Diabetes was induced by intraperitoneal injection of Streptozotcin (50 mg/kg. All four groups became pregnant by natural mating. After formation of the nervous system, two fetuses from each group were expelled by cesarean after performing anesthesia on the animals on 18th day of pregnancy furthermore their brachial enlargement spinal cord samples were taken. Finally, the tissue sections were prepared by routine procedures and diverse histological parameters were examined. The collected data were analyzed by one-way ANOVA. Results: results showed that fetal body weight on the diabetic control group was significantly higher compared to the other groups (P≤ 0/05. Moreover, significant reductions in the transvers and vertical diameters in central channel of the spinal cord and as well in the number of neurons of the spinal cord gray matter in the diabetic control groups in comparison with the other groups were observed (P≤0/05. Conclusion: The hyperglycemic effect of maternal diabetes during fetal period causes abnormalities, especially in the brachial enlargement of spinal cord, including changes in the spinal cord and neurons number in the gray matter. Disorders occurring in the prenatal remains and may perhaps cause lack of ability to perform certain physical activities. Key words

  20. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  1. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young; Crooks, Daniel R.; Wilson-Ollivierre, Hayden; Ghosh, Manik C.; Sougrat, Rachid; Lee, Jaekwon; Cooperman, Sharon; Mitchell, James B.; Beaumont, Carole; Rouault, Tracey A.

    2011-01-01

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  2. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young

    2011-10-07

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  3. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice.

    Directory of Open Access Journals (Sweden)

    Suh Young Jeong

    Full Text Available Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2, which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  4. Contrast enhanced CT of spinal cord angioma

    International Nuclear Information System (INIS)

    Nakamura, Takahiko; Ebitani, Tsutomu; Honma, Takao; Sofue, Muroto; Nakamura, Shigeru

    1982-01-01

    Contrast enhanced CT on 6 patients with spinal cord angioma showed enhancement in 2 of them. The conditions to produce contrast enhancement were the window width of 100 - 200, and the window level of 0 - 50. In spinal cord angioma, contrast enhanced CT is presently only an adjunct to angiography and myelography. Nevertheless, contrast enhanced CT is useful in the screening test for spinal cord angioma, in the patients who are nonindicated to angiography, and in the postoperative follow-up. (Ueda, J.)

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... What is a spinal cord injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  6. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein.

    Directory of Open Access Journals (Sweden)

    Miyabi Hirano

    Full Text Available The development of gene therapy techniques to introduce transgenes that promote neuronal survival and protection provides effective therapeutic approaches for neurological and neurodegenerative diseases. Intramuscular injection of adenoviral and adeno-associated viral vectors, as well as lentiviral vectors pseudotyped with rabies virus glycoprotein (RV-G, permits gene delivery into motor neurons in animal models for motor neuron diseases. Recently, we developed a vector with highly efficient retrograde gene transfer (HiRet by pseudotyping a human immunodeficiency virus type 1 (HIV-1-based vector with fusion glycoprotein B type (FuG-B or a variant of FuG-B (FuG-B2, in which the cytoplasmic domain of RV-G was replaced by the corresponding part of vesicular stomatitis virus glycoprotein (VSV-G. We have also developed another vector showing neuron-specific retrograde gene transfer (NeuRet with fusion glycoprotein C type, in which the short C-terminal segment of the extracellular domain and transmembrane/cytoplasmic domains of RV-G was substituted with the corresponding regions of VSV-G. These two vectors afford the high efficiency of retrograde gene transfer into different neuronal populations in the brain. Here we investigated the efficiency of the HiRet (with FuG-B2 and NeuRet vectors for retrograde gene transfer into motor neurons in the spinal cord and hindbrain in mice after intramuscular injection and compared it with the efficiency of the RV-G pseudotype of the HIV-1-based vector. The main highlight of our results is that the HiRet vector shows the most efficient retrograde gene transfer into both spinal cord and hindbrain motor neurons, offering its promising use as a gene therapeutic approach for the treatment of motor neuron diseases.

  7. Midcervical neuronal discharge patterns during and following hypoxia

    Science.gov (United States)

    Sandhu, M. S.; Baekey, D. M.; Maling, N. G.; Sanchez, J. C.; Reier, P. J.

    2014-01-01

    Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3–C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3–C4 lamina I–IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3–C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia. PMID:25552641

  8. Anatomy of the Spinal Meninges.

    Science.gov (United States)

    Sakka, Laurent; Gabrillargues, Jean; Coll, Guillaume

    2016-06-01

    The spinal meninges have received less attention than the cranial meninges in the literature, although several points remain debatable and poorly understood, like their phylogenesis, their development, and their interactions with the spinal cord. Their constancy among the chordates shows their crucial importance in central nervous system homeostasis and suggests a role far beyond mechanical protection of the neuraxis. This work provides an extensive study of the spinal meninges, from an overview of their phylogenesis and embryology to a descriptive and topographic anatomy with clinical implications. It examines their involvement in spinal cord development, functioning, and repair. This work is a review of the literature using PubMed as a search engine on Medline. The stages followed by the meninges along the phylogenesis could not be easily compared with their development in vertebrates for methodological aspects and convergence processes throughout evolution. The distinction between arachnoid and pia mater appeared controversial. Several points of descriptive anatomy remain debatable: the functional organization of the arterial network, and the venous and lymphatic drainages, considered differently by classical anatomic and neuroradiological approaches. Spinal meninges are involved in neurodevelopment and neurorepair producing neural stem cells and morphogens, in cerebrospinal fluid dynamics and neuraxis functioning by the synthesis of active molecules, and the elimination of waste products of central nervous system metabolism. The spinal meninges should be considered as dynamic functional formations evolving over a lifetime, with ultrastructural features and functional interactions with the neuraxis remaining not fully understood.

  9. Spinal dermoid cyst

    International Nuclear Information System (INIS)

    Miyamoto, Yoshihisa; Makita, Yasumasa; Nabeshima, Sachio; Tei, Taikyoku; Keyaki, Atsushi; Takahashi, Jun; Kawamura, Junichiro

    1987-01-01

    A 25-year-old male complained of intermittent, sharp pains about the left eye and in the left side of the chest. Neurological examination revealed paresthesia and impaired perception of touch and pin-pricks in the dermatomes of Th8 and Th9 on the left side. In all four extremities, the muscle stretch reflexes were equal and slightly hyperactive, without weakness or sensory deficits. Metrizamide myelography showed defective filling at the level between the upper 8th and 9th thoracic vertebrae. The lesion was also demonstrated by computed tomography (CT) scan performed 1 hour later, appearing as an oval, radiolucent mass in the left dorsal spinal canal, which compressed the spinal cord forward and toward the right. Serial sections of the spinal canal revealed the lesion to be partly filled with contrast medium. Repeat CT scan 24 hours after metrizamide myelography showed more contrast medium in the periphery of the lesion, giving it a doughnut-shaped appearance. At surgery a smooth-surfaced cyst containing sebum and white hair was totally removed from the intradural extramedullary space. The histological diagnosis was dermoid cyst. There have been a few reported cases of intracranial epidermoid cyst in which filling of the cyst was suggested on metrizamide CT myelography. These findings may complicate the differential diagnosis of arachnoid cyst and dermoid or epidermoid cyst when only CT is used. (author)

  10. Spinal pain

    International Nuclear Information System (INIS)

    Izzo, R.; Popolizio, T.; D’Aprile, P.; Muto, M.

    2015-01-01

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  11. Spinal pain

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R., E-mail: roberto1766@interfree.it [Neuroradiology Department, A. Cardarelli Hospital, Naples (Italy); Popolizio, T., E-mail: t.popolizio1@gmail.com [Radiology Department, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Fg) (Italy); D’Aprile, P., E-mail: paoladaprile@yahoo.it [Neuroradiology Department, San Paolo Hospital, Bari (Italy); Muto, M., E-mail: mutomar@tiscali.it [Neuroradiology Department, A. Cardarelli Hospital, Napoli (Italy)

    2015-05-15

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  12. The Protective Effect of Spinal Cord Stimulation Postconditioning Against Spinal Cord Ischemia/Reperfusion Injury in Rabbits.

    Science.gov (United States)

    Li, Huixian; Dong, Xiuhua; Jin, Mu; Cheng, Weiping

    2018-01-18

    Delayed paraplegia due to spinal cord ischemia/reperfusion injury (IRI) remains one of the most severe complications of thoracoabdominal aneurysm surgery, for which effective prevention and treatment is still lacking. The current study investigates whether spinal cord stimulation (SCS) postconditioning has neuroprotective effects against spinal cord IRI. Ninety-six New Zealand white male rabbits were randomly divided into four groups as follows: a sham group and three experimental groups (C group, 2 Hz group, and 50 Hz group) n = 24/group. Spinal cord ischemia was induced by transient infrarenal aortic balloon occlusion for 28 min, after which rabbits in group C underwent no additional intervention, while rabbits in the other two experimental groups underwent 2 Hz or 50 Hz epidural SCS for 30 min at the onset of reperfusion and then daily until sacrifice. Hind limb neurologic function of rabbits was assessed using Jacob scale. Lumbar spinal cords were harvested immediately after sacrifice for histological examination and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The number of viable α-motor neurons in ventral horn was counted and TUNEL-positive rate of α-motor neurons was calculated. Spinal cord IRI was caused by transient infrarenal aorta occlusion for 28 min. Both 2 Hz and 50 Hz SCS postconditioning had neuroprotective effects, particularly the 2 Hz SCS postconditioning. Comparing to C group and 50 Hz group, rabbits in the 2 Hz group demonstrated better hind limb motor function and a lower rate of TUNEL-positive α-motor neuron after eight hours, one day, three days, and seven days of spinal cord reperfusion. More viable α-motor neurons were preserved after one and three days of spinal cord reperfusion in 2 Hz group rabbits than in C group and 50 Hz group rabbits. SCS postconditioning at 2 Hz protected the spinal cord from IRI. © 2018 International Neuromodulation Society.

  13. Protective Effects of Butyrate-based Compounds on a Mouse Model for Spinal Muscular Atrophy

    Science.gov (United States)

    Butchbach, Matthew E. R.; Lumpkin, Casey J.; Harris, Ashlee W.; Saieva, Luciano; Edwards, Jonathan D.; Workman, Eileen; Simard, Louise R.; Pellizzoni, Livio; Burghes, Arthur H. M.

    2016-01-01

    Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analogue (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs—glyceryl tributyrate (BA3G) and VX563—on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favourable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling. PMID:26892876

  14. A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Belousov, Andrei B; Nishimune, Hiroshi; Denisova, Janna V; Fontes, Joseph D

    2018-02-14

    Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1 G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Superficial dorsal horn neurons with double spike activity in the rat.

    Science.gov (United States)

    Rojas-Piloni, Gerardo; Dickenson, Anthony H; Condés-Lara, Miguel

    2007-05-29

    Superficial dorsal horn neurons promote the transfer of nociceptive information from the periphery to supraspinal structures. The membrane and discharge properties of spinal cord neurons can alter the reliability of peripheral signals. In this paper, we analyze the location and response properties of a particular class of dorsal horn neurons that exhibits double spike discharge with a very short interspike interval (2.01+/-0.11 ms). These neurons receive nociceptive C-fiber input and are located in laminae I-II. Double spikes are generated spontaneously or by depolarizing current injection (interval of 2.37+/-0.22). Cells presenting double spike (interval 2.28+/-0.11) increased the firing rate by electrical noxious stimulation, as well as, in the first minutes after carrageenan injection into their receptive field. Carrageenan is a polysaccharide soluble in water and it is used for producing an experimental model of semi-chronic pain. In the present study carrageenan also produces an increase in the interval between double spikes and then, reduced their occurrence after 5-10 min. The results suggest that double spikes are due to intrinsic membrane properties and that their frequency is related to C-fiber nociceptive activity. The present work shows evidence that double spikes in superficial spinal cord neurones are related to the nociceptive stimulation, and they are possibly part of an acute pain-control mechanism.

  16. Serotonin neuron development: shaping molecular and structural identities.

    Science.gov (United States)

    Deneris, Evan; Gaspar, Patricia

    2018-01-01

    The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and

  17. Spinal stenosis

    International Nuclear Information System (INIS)

    Beale, S.; Pathria, M.N.; Ross, J.S.; Masaryk, T.J.; Modic, M.T.

    1988-01-01

    The authors studied 50 patients who had spinal stenosis by means of MR imaging. All patients had undergone myelography and CT. Thirty patients underwent surgery. MR imaging included T1-weighted spin echo sequences with repetition time = 600 msec, echo time = 20 (600/20) sagittal and axial sections 4 mm thick with 2 mm gap. T2-weighted 2,000/60 axial images were obtained on 14 patients. Examinations were retrospectively evaluated for central stenosis, lateral recess narrowing, and foraminal encroachment. Measurements of sagittal, interpedicular, interfacet, and recess dimensions were made at L3-5. On MR images, 20 patients had single-level and 30 had multiple-level stenosis. There was excellent agreement between modalities with central canal stenosis, but a discrepancy in six patients with bony foraminal stenosis. MR imaging was an accurate method for assessment of lumbar stenosis, but CT appears marginally better for detection of bony foraminal stenosis in certain cases

  18. Spinal antinflammatory action of Diclofenac.

    Science.gov (United States)

    Sandri, Alberto

    2016-06-01

    Diclofenac is a non-steroidal antinflammatory drug (NSAID) that finds indication in the treatment of debilitating pathologies characterized by chronic pain sustained by inflammation, such as in rheumatic disease (rheumatoid arthritis or osteoarthritis) or periarthritis, bursitis, tendonitis, myositis and sciatica. Its properties differentiate it from other NSAIDs. In fact, diclofenac's increased effect on spinal nociception and chronic neuro-inflammatory pain may be referred to: 1) its synergistic effects on peroxisome proliferator-activated receptor-γ (PPAR- γ) activation and prostaglandin synthesis inhibition (COX-2 inhibition); 2) its capacity of suppressing neuronal hyperexcitability through the blockage of neuronal K+ channels in a concentration-dependant manner; and 3) its facility to cross the blood-brain barrier.

  19. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog.

    Science.gov (United States)

    Ohuchi, Kazuki; Funato, Michinori; Kato, Zenichiro; Seki, Junko; Kawase, Chizuru; Tamai, Yuya; Ono, Yoko; Nagahara, Yuki; Noda, Yasuhiro; Kameyama, Tsubasa; Ando, Shiori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki; Kaneko, Hideo

    2016-02-01

    established, which showed that the thyrotropin releasing hormone (TRH) analog promoted transcriptional activation of the SMN2 gene and inhibition of GSK-3β activity, resulting in the increase and stabilization of the SMN protein and axon elongation of spinal motor neurons. These results reveal the potential efficacy of TRH analog treatment for SMA. ©AlphaMed Press.

  20. Neuron-Derived ADAM10 Production Stimulates Peripheral Nerve Injury-Induced Neuropathic Pain by Cleavage of E-Cadherin in Satellite Glial Cells.

    Science.gov (United States)

    Li, Jian; Ouyang, Qing; Chen, Cheng-Wen; Chen, Qian-Bo; Li, Xiang-Nan; Xiang, Zheng-Hua; Yuan, Hong-Bin

    2017-09-01

    Increasing evidence suggests the potential involvement of metalloproteinase family proteins in the pathogenesis of neuropathic pain, although the underlying mechanisms remain elusive. Using the spinal nerve ligation model, we investigated whether ADAM10 proteins participate in pain regulation. By implementing invitro methods, we produced a purified culture of satellite glial cells to study the underlying mechanisms of ADAM10 in regulating neuropathic pain. Results showed that the ADAM10 protein was expressed in calcitonin gene-related peptide (CGRP)-containing neurons of the dorsal root ganglia, and expression was upregulated following spinal nerve ligation surgery invivo. Intrathecal administration of GI254023X, an ADAM10 selective inhibitor, to the rats one to three days after spinal nerve ligation surgery attenuated the spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia. Intrathecal injection of ADAM10 recombinant protein simulated pain behavior in normal rats to a similar extent as those treated by spinal nerve ligation surgery. These results raised a question about the relative contribution of ADAM10 in pain regulation. Further results showed that ADAM10 might act by cleaving E-cadherin, which is mainly expressed in satellite glial cells. GI254023X reversed spinal nerve ligation-induced downregulation of E-cadherin and activation of cyclooxygenase 2 after spinal nerve ligation. β-catenin, which creates a complex with E-cadherin in the membranes of satellite glial cells, was also downregulated by spinal nerve ligation surgery in satellite glial cells. Finally, knockdown expression of β-catenin by lentiviral infection in purified satellite glial cells increased expression of inducible nitric oxide synthase and cyclooxygenase 2. Our findings indicate that neuron-derived ADAM10 production stimulates peripheral nerve injury-induced neuropathic pain by cleaving E-cadherin in satellite glial cells. © 2017 American Academy of Pain Medicine

  1. Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse

    Directory of Open Access Journals (Sweden)

    Shang Yuze

    2008-04-01

    Full Text Available Abstract Neuronal plasticity along the pathway for sensory transmission including the spinal cord and cortex plays an important role in chronic pain, including inflammatory and neuropathic pain. While recent studies indicate that microglia in the spinal cord are involved in neuropathic pain, a systematic study has not been performed in other regions of the central nervous system (CNS. In the present study, we used heterozygous Cx3cr1GFP/+mice to characterize the morphological phenotypes of microglia following common peroneal nerve (CPN ligation. We found that microglia showed a uniform distribution throughout the CNS, and peripheral nerve injury selectively activated microglia in the spinal cord dorsal horn and related ventral horn. In contrast, microglia was not activated in supraspinal regions of the CNS, including the anterior cingulate cortex (ACC, prefrontal cortex (PFC, primary and secondary somatosensory cortex (S1 and S2, insular cortex (IC, amygdala, hippocampus, periaqueductal gray (PAG and rostral ventromedial medulla (RVM. Our results provide strong evidence that nerve injury primarily activates microglia in the spinal cord of adult mice, and pain-related cortical plasticity is likely mediated by neurons.

  2. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...... that an explicit function may be derived which expresses the force that the spindle contractile elements must produce to exactly counter spindle unloading during muscle shortening. This information was used to calculate the corresponding "optimal" °-motoneuronal activity level. For some simple arm movement tasks...

  3. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-03-01

    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  4. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  5. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

    Science.gov (United States)

    2011-01-01

    Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain. PMID:21255465

  6. Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector

    Directory of Open Access Journals (Sweden)

    Riccardo De Santis

    2018-05-01

    Full Text Available Human pluripotent stem cells (PSCs are widely used for in vitro disease modeling. One of the challenges in the field is represented by the ability of converting human PSCs into specific disease-relevant cell types. The nervous system is composed of a wide variety of neuronal types with selective vulnerability in neurodegenerative diseases. This is particularly relevant for motor neuron diseases, in which different motor neurons populations show a different susceptibility to degeneration. Here we developed a fast and efficient method to convert human induced Pluripotent Stem Cells into cranial motor neurons of the branchiomotor and visceral motor subtype. These populations represent the motor neuron subgroup that is primarily affected by a severe form of amyotrophic lateral sclerosis with bulbar onset and worst prognosis. This goal was achieved by stable integration of an inducible vector, based on the piggyBac transposon, allowing controlled activation of Ngn2, Isl1 and Phox2a (NIP. The NIP module effectively produced electrophysiologically active cranial motor neurons. Our method can be easily extended to PSCs carrying disease-associated mutations, thus providing a useful tool to shed light on the cellular and molecular bases of selective motor neuron vulnerability in pathological conditions. Keywords: Spinal motor neuron, Cranial motor neuron, Induced pluripotent stem cells, Amyotrophic lateral sclerosis, Phox2a, piggyBac

  7. Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment

    Science.gov (United States)

    Park, Jae Hong; Kim, Chang-Eop; Shin, Jaewoo; Im, Changkyun; Koh, Chin Su; Seo, In Seok; Kim, Sang Jeong; Shin, Hyung-Cheul

    2013-10-01

    Objective. Chronic monitoring of the state of the bladder can be used to notify patients with urinary dysfunction when the bladder should be voided. Given that many spinal neurons respond both to somatic and visceral inputs, it is necessary to extract bladder information selectively from the spinal cord. Here, we hypothesize that sensory information with distinct modalities should be represented by the distinct ensemble activity patterns within the neuronal population and, therefore, analyzing the activity patterns of the neuronal population could distinguish bladder fullness from somatic stimuli. Approach. We simultaneously recorded 26-27 single unit activities in response to bladder distension or tactile stimuli in the dorsal spinal cord of each Sprague-Dawley rat. In order to discriminate between bladder fullness and tactile stimulus inputs, we analyzed the ensemble activity patterns of the entire neuronal population. A support vector machine (SVM) was employed as a classifier, and discrimination performance was measured by k-fold cross-validation tests. Main results. Most of the units responding to bladder fullness also responded to the tactile stimuli (88.9-100%). The SVM classifier precisely distinguished the bladder fullness from the somatic input (100%), indicating that the ensemble activity patterns of the unit population in the spinal cord are distinct enough to identify the current input modality. Moreover, our ensemble activity pattern-based classifier showed high robustness against random losses of signals. Significance. This study is the first to demonstrate that the two main issues of electroneurographic monitoring of bladder fullness, low signals and selectiveness, can be solved by an ensemble activity pattern-based approach, improving the feasibility of chronic monitoring of bladder fullness by neural recording.

  8. Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat

    Directory of Open Access Journals (Sweden)

    Marchand Fabien

    2011-11-01

    Full Text Available Abstract Background Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP, a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. Results Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs following formalin administration. In addition, Complete Freund's Adjuvant (CFA-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. Conclusions These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation.

  9. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  10. New Treatments for Spinal Nerve Root Avulsion Injury

    Directory of Open Access Journals (Sweden)

    Thomas Carlstedt

    2016-08-01

    Full Text Available Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries.

  11. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    Science.gov (United States)

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons.

    Science.gov (United States)

    Satou, Chie; Kimura, Yukiko; Hirata, Hiromi; Suster, Maximiliano L; Kawakami, Koichi; Higashijima, Shin-ichi

    2013-09-01

    The developing nervous system consists of a variety of cell types. Transgenic animals expressing reporter genes in specific classes of neuronal cells are powerful tools for the study of neuronal network formation. We generated a wide variety of transgenic zebrafish that expressed reporter genes in specific classes of neurons or neuronal progenitors. These include lines in which neurons of specific neurotransmitter phenotypes expressed fluorescent proteins or Gal4, and lines in which specific subsets of the dorsal progenitor domain in the spinal cord expressed fluorescent proteins. Using these, we examined domain organization in the developing dorsal spinal cord, and found that there are six progenitor domains in zebrafish, which is similar to the domain organization in mice. We also systematically characterized neurotransmitter properties of the neurons that are produced from each domain. Given that reporter gene expressions occurs in a wide area of the nervous system in the lines generated, these transgenic fish should serve as powerful tools for the investigation of not only the neurons in the dorsal spinal cord but also neuronal structures and functions in many other regions of the nervous system.

  13. Improved Neural Regeneration with Olfactory Ensheathing Cell Inoculated PLGA Scaffolds in Spinal Cord Injury Adult Rats

    Directory of Open Access Journals (Sweden)

    Changxing Wang

    2017-03-01

    Full Text Available Background/Aims: Every year, around the world, between 250000 and 500000 people suffer from spinal cord injury (SCI. This study investigated the potential for poly (lactic-co-glycolic acid (PLGA complex inoculated with olfactory ensheathing cells (OECs to treat spinal cord injury in a rat model. Methods: OECs were identified by immunofluorescence based on the nerve growth factor receptor (NGFR p75. The Basso, Beattie, and Bresnahan (BBB score, together with an inclined plane (IP test were used to detect functional recovery. Nissl staining along with the luxol fast blue (LFB staining were independently employed to illustrate morphological alterations. More so, immunofluorescence labeling of the glial fibrillary acidic protein (GFAP and the microtubule-associated protein-2 (MAP-2, representing astrocytes and neurons respectively, were investigated at time points of weeks 2 and 8 post-operation. Results: The findings showed enhanced locomotor recovery, axon myelination and better protected neurons post SCI when compared with either PLGA or untreated groups (P < 0.05. Conclusion: PLGA complexes inoculated with OECs improve locomotor functional recovery in transected spinal cord injured rat models, which is most likely due to the fact it is conducive to a relatively benevolent microenvironment, has nerve protective effects, as well as the ability to enhance remyelination, via a promotion of cell differentiation and inhibition of astrocyte formation.

  14. Neurochemical phenotypes of cardiorespiratory neurons.

    Science.gov (United States)

    Pilowsky, Paul M

    2008-12-10

    Interactions between the cardiovascular and respiratory systems have been known for many years but the functional significance of the interactions is still widely debated. Here I discuss the possible role of metabotropic receptors in regulating cardiorespiratory neurons in the brainstem and spinal cord. It is clear that, although much has been discovered, cardiorespiratory regulation is certainly one area that still has a long way to go before its secrets are fully divulged and their function in controlling circulatory and respiratory function is revealed.

  15. Hoxb1 controls anteroposterior identity of vestibular projection neurons.

    Science.gov (United States)

    Chen, Yiju; Takano-Maruyama, Masumi; Fritzsch, Bernd; Gaufo, Gary O

    2012-01-01

    The vestibular nuclear complex (VNC) consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r) origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP) identity of precursors that contribute to the lateral vestibular nucleus (LVN). Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis.

  16. Hoxb1 controls anteroposterior identity of vestibular projection neurons.

    Directory of Open Access Journals (Sweden)

    Yiju Chen

    Full Text Available The vestibular nuclear complex (VNC consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP identity of precursors that contribute to the lateral vestibular nucleus (LVN. Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis.

  17. Spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Lieberman, Andrew P

    2018-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an adult-onset degenerative disorder of the neuromuscular system resulting in slowly progressive weakness and atrophy of the proximal limb and bulbar muscles. The disease is caused by the expansion of a CAG/glutamine tract in the amino-terminus of the androgen receptor. That SBMA exclusively affects males reflects the fact that critical pathogenic events are hormone-dependent. These include translocation of the polyglutamine androgen receptor from the cytoplasm to the nucleus and unfolding of the mutant protein. Studies of the pathology of SBMA subjects have revealed nuclear aggregates of the mutant androgen receptor, loss of lower motor neurons in the brainstem and spinal cord, and both neurogenic and myopathic changes in skeletal muscle. Mechanisms underlying disease pathogenesis include toxicity in both lower motor neurons and skeletal muscle, where effects on transcription, intracellular transport, and mitochondrial function have been documented. Therapies to treat SBMA patients remain largely supportive, although experimental approaches targeting androgen action or promoting degradation of the mutant androgen receptor protein or the encoding RNA are under active study. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Recurrent Primary Spinal Hydatid Cyst

    Directory of Open Access Journals (Sweden)

    Okan Turk

    2015-03-01

    Full Text Available Primary hydatid disease of spine is rare and spinal hydatitosis constitute only 1% of all hydatitosis. We report a case of recurrent primary intraspinal extradural hydatid cyst of the thoracic region causing progressive paraparesis. The patient was operated 16 years ago for primary spinal hydatid disease involvement and was instrumented dorsally for stabilization. The magnetic resonance imaging (MRI of thoracic spine showed a cystic lesion at T11-12 level and compressed spinal cord posterolaterally. Intraspinal cyst was excised through T11-12 laminectomy which made formerly. The early postoperative period showed a progressive improvement of his neurological deficit and he was discharged with antihelmintic treatment consisting of albendazole and amoxicillin-sulbactam combination. [Cukurova Med J 2015; 40(Suppl 1: 84-89

  19. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    Science.gov (United States)

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  20. Effectiveness of L2 spinal nerve infiltration for selective discogenic low back pain patients

    International Nuclear Information System (INIS)

    Ohtori, Seiji; Nakamura, Shinichiro; Koshi, Takana

    2010-01-01

    It has been reported that rat L5/6 lumbar discs are innervated mainly by L2 dorsal root ganglion neurons. We previously reported that L2 spinal nerve infiltration was effective for discogenic low back pain (DLBP) patients, although the diagnosis was based only on the results of physical examination, plain films, and magnetic resonance imaging (MRI). The purpose of the current study was to evaluate L2 spinal nerve block for DLBP patients retrospectively based on MRI findings and surgical results. A total of 62 patients with only LBP and no accompanying radicular pain were investigated. Patients had only one level of disc degeneration on MRI. When pain was provoked during discography, we performed surgery at the next stage (40 patients). In all, 22 patients were excluded owing to negative discography results. Of the 40 patients, we evaluated 25 strictly selected patients suffering from DLBP. DLBP was diagnosed when the patient experienced pain relief at least 2 years after anterior lumbar interbody fusion. Fifteen patients who did not show pain relief after surgery were used for the non-DLBP group. L2 spinal nerve infiltration using 1.5 ml of lidocaine was performed in all 40 patients before surgery. The visual analogue scale (VAS) score after L2