WorldWideScience

Sample records for spin-polarized scanning electron

  1. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  2. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  3. Versatile spin-polarized electron source

    Science.gov (United States)

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  4. Spin polarization of electrons in quantum wires

    OpenAIRE

    Vasilchenko, A. A.

    2013-01-01

    The total energy of a quasi-one-dimensional electron system is calculated using density functional theory. It is shown that spontaneous ferromagnetic state in quantum wire occurs at low one-dimensional electron density. The critical electron density below which electrons are in spin-polarized state is estimated analytically.

  5. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  6. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  7. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  8. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  9. Spin polarized electrons in surface science

    International Nuclear Information System (INIS)

    Siegmann, H.C.

    1983-01-01

    The potentialities of spin-polarised electron beams as a probe of surface magnetic properties are outlined. Elastic as well as inelastic scattering of electrons from solid surfaces are considered. (G.Q.)

  10. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  11. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  12. Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.

    Science.gov (United States)

    Bode, Matthias

    2012-01-01

    The principle of scanning tunneling microscopy, an imaging method with atomic resolution capability invented by Binnig and Rohrer in 1982, can be adapted for surface magnetism studies by using magnetic probe tips. The contrast mechanism of this so-called spin-polarized scanning tunneling microscopy, or SP-STM, relies on the tunneling magneto-resistance effect, i.e. the tip-sample distance as well as the differential conductance depend on the relative magnetic orientation of tip and sample. To illustrate the working principle and the unique capabilities of SP-STM, this compilation presents some key experiments which have been performed on various magnetic surfaces, such as the topological antiferromagnet Cr(001), a double-layer of Fe which exhibits a stripe- domain pattern with about 50 nm periodicity, and the Mn monolayer on W(110), where the combination of experiment and theory reveal an antiferromagnetic spin cycloid. Recent experimental results also demonstrate the suitability of SP-STM for studies of dynamic properties, such as the spin relaxation time of single magnetic nanostructures.

  13. POLARIZED BEAMS: 1 - Longitudinal electron spin polarization at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-09-15

    Wednesday 4 May marked a turning point in the art of the manipulation of spins in electron storage rings: longitudinal electron spin polarization (with the spins oriented along the electrons' direction of motion) was established in the electron ring of HERA, the electronproton collider at DESY in Hamburg. A polarization level of about 55% was obtained and polarizations of over 60% were reproducibly obtained in the following days. The beam energy was 27.52 GeV, corresponding to half integer spin tune of 62.5.

  14. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  15. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  16. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  17. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  18. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  19. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    Science.gov (United States)

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  20. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  1. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  2. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  3. Evaluation of radiative spin polarization in an electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W [Stanford Linear Accelerator Center, CA (USA)

    1981-02-15

    We have developed a matrix formalism that provides an accurate way of evaluating the degree of spin polarization built up through the process of synchrotron radiation under a wide variety of storage ring operation conditions.

  4. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  5. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Dirk, E-mail: sander@mpi-halle.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany); Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany)

    2013-08-15

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center.

  6. New insights into nano-magnetism by spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Sander, Dirk; Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen

    2013-01-01

    Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center

  7. Compact scanning tunneling microscope for spin polarization measurements.

    Science.gov (United States)

    Kim, Seong Heon; de Lozanne, Alex

    2012-10-01

    We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.

  8. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  9. Recent advances in atomic-scale spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Smith, Arthur R; Yang, Rong; Yang, Haiqiang; Dick, Alexey; Neugebauer, Joerg; Lambrecht, Walter R L

    2005-02-01

    The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures. (c) 2005 Wiley-Liss, Inc.

  10. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  11. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  12. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  13. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  14. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  15. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  16. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    International Nuclear Information System (INIS)

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-01-01

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  17. Cross sections and spin polarizations of electrons elastically scattered from oriented molecules (CH3I)

    International Nuclear Information System (INIS)

    Fink, M.; Ross, A.W.; Fink, R.J.

    1989-01-01

    Elastic differential cross sections and spin polarizations for electrons elastically scattered from CH 3 I are calculated using the independent atom model. Three molecular orientations with respect to the incident electron wavevector are considered - first, the molecule is oriented randomly, second, the electron wave front and molecular bond are parallel, and third, the wavefront and the bond axis are perpendicular. It will be seen to what extent orientational averaging weakens features of the cross section and spin polarization. The calculations show that cross section and spin polarization measurements are a possible tool for determining the degree of molecular orientation. There is no degeneracy between I-C and C-I in cross section and spin polarization measurements. The results presented here for 200 eV and 600 eV electrons scattered by CH 3 I should be considered as a case study and it should be possible to find molecules and electron energies for which even more dramatic differences between the various orientations between the molecules and the electrons can be expected. (orig.)

  18. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  19. On the theory of elastic scattering of spin polarized electrons from ferromagnets

    International Nuclear Information System (INIS)

    Helman, J.S.

    1984-01-01

    The first Born approximation supposedly inadequate for dealing with elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudopotential, it can describe the gross features of the ansisotropy. (Author) [pt

  20. On the theory of elastic scattering of spin polarized electrons from ferromagnets

    International Nuclear Information System (INIS)

    Helman, J.S.; Baltenspenger, W.

    1984-01-01

    The first Born approximation supposedly inadequate for dealing with the elastic scattering of spin polarized electrons on ferromagnets is reconsidered. It is found that when used in conjunction with a spin dependent pseudo-potential, it can describe the gross features of the anisotropy. (author) [pt

  1. The HERA polarimeter and the first observation of electron spin polarization at HERA

    International Nuclear Information System (INIS)

    Barber, D.P.; Bremer, H.D.; Boege, M.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, H.; Klanner, R.; Lewin, H.C.; Meyners, N.; Vogel, W.; Brueckner, W.; Buescher, C.; Dueren, M.; Gaul, H.G.; Muecklich, A.; Neunreither, F.; Rith, K.; Scholz, C.; Steffens, E.; Veltri, M.; Wander, W.; Zapfe, K.; Zetsche, F.; Chapman, M.; Milner, R.; Coulter, K.; Delheij, P.P.J.; Haeusser, O.; Henderson, R.; Levy, P.; Vetterli, M.; Gressmann, H.; Janke, T.; Micheel, B.; Westphal, D.; Kaiser, R.; Losev, L.; Nowak, W.D.

    1992-10-01

    Electron spin polarizations of about 8% were observed at HERA in November 1991. In runs during 1992 utilizing special orbit corrections, polarization values close to 60% have been achieved. In this paper the polarimeter, the machine conditions, the data analysis, the first results and plans for future measurements are described. (orig.)

  2. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  3. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  4. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  5. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  6. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong

    2016-01-01

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations

  7. Spin polarized electron source technology transferred from HE accelerators to electron microscopes

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2009-01-01

    For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)

  8. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  9. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    International Nuclear Information System (INIS)

    Figuera, Juan de la; Vergara, Lucía; N'Diaye, Alpha T.; Quesada, Adrian; Schmid, Andreas K.

    2013-01-01

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along directions. ► Magnetic domain wall structures include wide Néel-caps

  10. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  11. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  12. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto

    2007-01-01

    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  13. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  14. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  15. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  16. Complete snake and rotator schemes for spin polarization in proton rings and large electron rings

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-11-01

    In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)

  17. Dynamical nuclear spin polarization induced by electronic current through double quantum dots

    International Nuclear Information System (INIS)

    Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus

    2011-01-01

    We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.

  18. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  19. Correlation effects on spin-polarized electron-hole quantum bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Saini, L. K., E-mail: drlalitsaini75@gmail.com; Sharma, R. O., E-mail: sharmarajesh0387@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat – 395 007 (India); Nayak, Mukesh G. [Department of Physics, Silvassa College (Silvassa Institute of Higher Learning), Silvassa 396 230 (India)

    2016-05-06

    We present a numerical calculation for the intra- and interlayer pair-correlation functions, g{sub ll’}(r), of spin-polarized electron-hole quantum bilayers at zero temperature. The calculations of g{sub ll’}(r) are performed by including electron correlations within the dynamical version of the self-consistent mean-field approximation of Singwi, Tosi, Land and Sjölander (qSTLS). Our study reveals that the critical layer density decreases (increases) due to the inclusion of finite width (mass-asymmetry) effect during the phase-transition from charge-density wave to Wigner crystal ground-state by yielding the pronounced oscillatory behavior ing{sub ll}(r). The results are compared with recent findings of spin-polarized electron-hole quantum bilayers with mass-symmetry and zero width effects. To highlight the importance of dynamical character of correlations, we have also compared our results with the STLS results.

  20. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    Science.gov (United States)

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  1. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland

    2014-10-01

    The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.

  2. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  3. Contribution of vitamin K1 to the electron spin polarization in spinach photosystem I

    International Nuclear Information System (INIS)

    Rustandi, R.R.; Snyder, S.W.; Feezel, L.L.; Michalski, T.J.; Norris, J.R.; Thurnauer, M.C.; Biggins, J.

    1990-01-01

    The electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal observed in spinach photosystem I (PSI) particles was examined in preparations depleted of vitamin K1 by solvent extraction and following biological reconstitution by the quinone. The ESP EPR signal was not detected in the solvent-extracted PSI sample but was restored upon reconstitution with either protonated or deuterated vitamin K1 under conditions that also restored electron transfer to the terminal PSI acceptors. Reconstitution using deuterated vitamin K1 resulted in a line narrowing of the ESP EPR signal, supporting the conclusion that the ESP EPR signals in the reconstituted samples arise from a radical pair consisting of the oxidized PSI primary donor, P700+, and reduced vitamin K1

  4. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    Science.gov (United States)

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  6. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2006-01-01

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  7. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  8. Tuning the properties of an MgO layer for spin-polarized electron transport

    Science.gov (United States)

    Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua

    2014-08-01

    The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.

  9. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  10. Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces.

    Science.gov (United States)

    Schouteden, K; Muzychenko, D A; Van Haesendonck, C

    2008-07-01

    Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.

  11. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  12. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  13. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  14. Effect of the anisotropy of the electron g-factor in spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2010-02-15

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  15. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  16. Electron spin polarization induced by spin Hall effect in semiconductors with a linear in the momentum spin-orbit splitting of conduction band

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.

  17. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  18. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  19. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  20. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  1. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  2. Transient charging and discharging of spin-polarized electrons in a quantum dot

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Leao, S.A.; Gester, R. M.

    2007-01-01

    We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green ...

  3. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  4. Co on Pt(111) studied by spin-polarized scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, F.K.

    2006-07-01

    In this thesis the electronic properties of the bare Pt(111) surface, the structural, electronic, and magnetic properties of monolayer and double-layer high Co nanostructures as well as the spin-averaged electronic structure of single Co atoms on Pt(111) were studied by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The experiments on the bare Pt(111) surface and on single Co atoms have been performed in an STM facility operating at temperatures of down to 0.3 K and at magnetic fields of up to 14 T under ultra-high vacuum conditions. The facility has been taken into operation within the time period of this thesis and its specifications were tested by STS measurements. These characterization measurements show a very high stability of the tunneling junction and an energy resolution of about 100 {mu}eV, which is close to the thermal limit. The investigation of the electronic structure of the bare Pt(111) surface reveals the existence of an unoccupied surface state. By a comparison of the measured dispersion to first-principles electronic structure calculations the state is assigned to an sp-derived surface band at the lower boundary of the projected bulk band gap. The surface state exhibits a strong spin-orbit coupling induced spin splitting. The close vicinity to the bulk bands leads to a strong linear contribution to the dispersion and thus to a deviant appearance in the density of states in comparison to the surface states of the (111) surfaces of noble metals. A detailed study of Co monolayer and double-layer nanostructures on the Pt(111) surface shows that both kinds of nanostructures exhibit a highly inhomogeneous electronic structure which changes at the scale of only a few Aa due to a strong stacking dependence with respect to the Pt(111) substrate. With the help of first principles calculations the different spectroscopic appearance for Co atoms within the Co monolayer is assigned to a stacking dependent hybridization of Co states

  5. Effect of on-site Coulomb interaction on electronic and transport properties of 100% spin polarized CoMnVAs

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2017-08-01

    Highlights: • 100% spin-polarized material important for the application in spintronics. • Ferromagnetic nature. • Ductile in nature for mechanical applications. • Semiconducting behavior with a band gap of 0.55 eV in minority spin channel. • Possibly efficient thermoelectric material. - Abstract: The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y{sub 1} type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK{sup −1} at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.

  6. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  7. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  8. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  9. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  11. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  12. Observation of spin-polarized electron transport in Alq3 by using a low work function metal

    Science.gov (United States)

    Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.

    2012-09-01

    We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.

  13. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  14. Spontaneous spin polarization in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, A.A., E-mail: a_vas2002@mail.ru

    2015-12-04

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  15. Spontaneous spin polarization in quantum wires

    International Nuclear Information System (INIS)

    Vasilchenko, A.A.

    2015-01-01

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  16. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  17. Development of a LabVIEW-based surface with innovative controls for the control system of the spin-polarized electron test source Photo-CATCH

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Heidi Ayse; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Wagner, Markus [TU Darmstadt, Institut fuer Kernphysik (Germany)

    2016-07-01

    Operations of the spin-polarized electron source of the S-DALINAC will be supported by a photo-cathode activation, test and cleaning system, Photo-CATCH. Besides cathode-performance studies, this teststand produces spin-polarized electron bunches from a GaAs photo-cathode that are then transported, manipulated, and characterized by devices in a low-energy beam line. To set and monitor the various components of the beamline, a control system was developed, based on the EPICS framework. As interfaces, LabVIEW was used in combination with a gamepad as a controlling device.

  18. Generation of intense spin-polarized electron beams at the electron accelerator facility ELSA

    International Nuclear Information System (INIS)

    Heiliger, Dominik

    2014-08-01

    The inverted source of polarized electrons at the electron accelerator ELSA in Bonn routinely provides a pulsed and low energetic beam of polarized electrons (100 mA, 48 keV) by irradiating a GaAs strained-layer superlattice photocathode with laser light. Due to the beam energy of 48 keV the beam transport to the linear accelerator is strongly space charge dominated and the actual beam current has an impact on the beam dynamics. Thus, the optics of the transfer line to the linear accelerator must be optimized with respect to the chosen beam intensity. An intensity upgrade including numerical simulations of the beam transport as well as a generation and a transport of a beam current of nearly 200 mA was successfully operated. In order to enhance the reliability and uptime of the source, a new extreme high vacuum load lock system was installed and commissioned. It consists of an activation chamber for heat cleaning of the photocathodes and activation with cesium and oxygen, a storage in which different types of photocathodes can be stored and a loading chamber in which an atomic hydrogen source is used to remove nearly any remaining surface oxidation. The new cleaning procedure with atomic hydrogen was investigated regarding its potential to restore the initial quantum efficiency of the photocathode after many activations.

  19. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  20. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  1. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian; Mi, Wenbo; Wang, Xiaocha; Wang, Xuhui

    2015-01-01

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  2. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  3. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  4. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Science.gov (United States)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  5. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.; Bierman, John; Brachmann, Axel; Clendenin, James E.; Garwin, Edward; Kirby, Robert; Luh, Dah-An

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile. Preliminary measurements have been carried out on bulk and thin film GaAs. As expected, the yield change far from the bandgap is quite large for bulk material. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. The size of the bias to cause an appreciable effect is rather small reflecting the low drift kinetic energy in the zero bias case

  6. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  7. Measurement of transverse emittance at the source of spin-polarized electrons at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Barday, Roman; Bonnes, Uwe; Eichhorn, Ralf; Enders, Joachim; Hessler, Christoph; Patalakha, Oleksandr; Platz, Markus; Poltoratska, Yuliya; Rick, Wolfgang [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A new injector concept for 100 keV spin-polarized electrons (SPIN) at the S-DALINAC has been developed. The transverse emittance was measured for beam characterization. The emittance is a quantity concerning the quality of the beam, describing the phase space area. Determination of the emittance requires measurement of the beam profile and knowledge of the focal length of a beam focussing device. A wire scanner unit consisting of two 50 {mu}m diameter tungsten wires is used for the beam-profile measurement. Data analysis is performed by fitting a gaussian model distribution to estimate the 1{sigma} beam radius. Each determined beam width is correlated to the corresponding focal length of a magnetic lens, and a parabola fit is applied to calculate the parameters of the {sigma}-matrix. The square root of the determinant of the {sigma}-matrix defines the emittance. The results of the calculation are presented and the emittance is compared to theoretical estimates.

  8. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  9. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  10. Spin polarization of a magnetic electron gas induced by a van Vleck ion

    International Nuclear Information System (INIS)

    Palermo, L.; Silva, X.A. do

    1978-11-01

    The mutual polarization of a magnetic electron gas and a van Vleck ion, interacting via exchange, are theoretically investigated using the double-time Green function method. A pair of equations describing the dynamics of the electron gas and the ion are conveniently decoupled and an analytic expression for the electron gas polarization, which depends on the square of the exchange parameter, is obtained. Besides a RKKY-like term, a new term associated to the process of formation of the magnetic moment of the ion appears [pt

  11. Beamline for Photoemission Spectromicroscopy and Spin Polarized Microscopy with Slow Electrons at CESLAB

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk

    2008-01-01

    Roč. 15, č. 1 (2008), s. 111-112 ISSN 1210-8529 Institutional research plan: CEZ:AV0Z20650511 Keywords : CESLAB * beamline * LEEM/PEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Probing the 4p electron-spin polarization in NiO

    International Nuclear Information System (INIS)

    Neubeck, W.; Vettier, C.; Bergevin, F. de; Yakhou, F.; Mannix, D.; Bengone, O.; Alouani, M.; Barbier, A.

    2001-01-01

    K-edge resonant x-ray magnetic scattering experiments have been performed on antiferromagnetic NiO. The observation of two resonances at the K edge allows the construction of models to compare the electronic properties of NiO and the observed resonant magnetic x-ray scattering. From the polarization analysis of the scattered beam, a quadrupolar transition (1s-3d) and a dipolar transition (1s-4p) are identified. While the quadrupolar transition can be modeled using an atomic picture for the 3d electrons, the dipolar transition is associated to a broadband structure of p electrons and its energy profile is compared to electronic band-structure calculations

  13. Electron Spin Polarization and Detection in InAs Quantum Dots Through p-Shell Trions

    Science.gov (United States)

    2010-01-08

    optical control of spin states in quantum dots. II. EXPERIMENT The QD sample consists of 20 layers of InAs QDs, grown by molecular -beam epitaxy through...anisotropic 2D harmonic poten- tials. The electrons and holes are described by Fock- Darwin states harmonic oscillators with lateral sizes ax and ay in this

  14. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet.

    Science.gov (United States)

    Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R

    2009-10-09

    Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.

  15. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator

    International Nuclear Information System (INIS)

    Espig, Martin

    2016-02-01

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of _n_,_x=(1.7478(4).10"-"4.(r)/(μm)+2.8(18).10"-"5) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1.2) ps at a

  17. Injection of Spin-Polarized Electrons into a AlGaN/GaN Device from an Electrochemical Cell: Evidence for an Extremely Long Spin Lifetime.

    Science.gov (United States)

    Kumar, Anup; Capua, Eyal; Fontanesi, Claudio; Carmieli, Raanan; Naaman, Ron

    2018-04-24

    Spin-polarized electrons are injected from an electrochemical cell through a chiral self-assembled organic monolayer into a AlGaN/GaN device in which a shallow two-dimensional electron gas (2DEG) layer is formed. The injection is monitored by a microwave signal that indicates a coherent spin lifetime that exceeds 10 ms at room temperature. The signal was found to be magnetic field independent; however, it depends on the current of the injected electrons, on the length of the chiral molecules, and on the existence of 2DEG.

  18. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  19. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  20. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    Science.gov (United States)

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  1. Enhancement of spin polarization induced by Coulomb on-site repulsion between localized pz electrons in graphene embedded with line defects.

    Science.gov (United States)

    Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A

    2015-11-11

    It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

  2. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    Science.gov (United States)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  3. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Science.gov (United States)

    Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.

    2015-01-01

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.

  4. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    Science.gov (United States)

    2017-11-09

    Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early

  5. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  6. Spin-polarized semiconductors: tuning the electronic structure of graphene by introducing a regular pattern of sp3 carbons on the graphene plane.

    Science.gov (United States)

    Jing, Long; Huang, Ping; Zhu, Huarui; Gao, Xueyun

    2013-01-28

    First-principles calculations (generalized gradient approximation, density functional therory (DFT) with dispersion corrections, and DFT plus local atomic potential) are carried out on the stability and electronic structures of superlattice configurations of nitrophenyl diazonium functionalized graphene with different coverage. In the calculations, the stabilities of these structures are strengthened significantly since van der Waals interactions between nitrophenyl groups are taken into account. Furthermore, spin-polarized and wider-bandgap electronic structures are obtained when the nitrophenyl groups break the sublattice symmetry of the graphene. The unpaired quasi-localized p electrons are responsible for this itinerant magnetism. The results provide a novel approach to tune graphene's electronic structures as well as to form ferromagnetic semiconductive graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  8. Density-Imbalance Stability Diagram of the νT = 1 Bilayer Electron System at Full Spin Polarization

    International Nuclear Information System (INIS)

    Takase, Keiko; Muraki, Koji

    2011-01-01

    We investigate the evolution of the total Landau level filling factor ν T = 1 bilayer quantum Hall (QH) state versus density imbalance at full spin polarization under a tilted magnetic field. When the system is well below the compressible-incompressible transition point at the balanced density, the ν T = 1 QH state extends widely versus density imbalance, continuously merging into the single-layer ν = 1 QH state. In the vicinity of the transition point, the ν T = 1 QH state is only weakly developed at small imbalance but increases in strength toward ν T = 1/3 + 2/3, where it is clearly separated from the single-layer ν = 1 QH state. These results suggest that the system at the imbalance of Δν = 1/3 undergoes a transition from the correlated ν T = 1 QH state to single-layer fractional QH states with increasing density.

  9. Enhanced spin polarization of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend and low-lying shape resonance regions

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.

    1993-01-01

    Spin polarizations (SP's) of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend (RT) and low-lying shape resonance (SR) regions are calculated using a relativistic method. The detailed SP distributions both with scattering angle and with electron energy are presented via the energy- and angle-dependent surfaces of SP parameters. It is shown that the SP effects of the collisions of electrons with Ca, Sr, and Ba atoms in the RT region are significant in a considerable area on the energy-angle plane and that the spin-orbit interaction is well increased around the low-lying p-wave SR states of Be and Mg and the d-wave SR states of Ca, Sr, and Ba

  10. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Monir, M. El Amine.; Baltache, H. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Ahmed, Waleed K. [ERU, Faculty of Engineering, United Arab Emirates University, Al Ain (United Arab Emirates); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Seddik, T. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria)

    2015-01-15

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn{sub 1−x}V{sub x}Se (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the “d” electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) due to Se(4p)–V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 µ{sub B} and the minor atomic magnetic moment on Zn and Se are generated. - Highlights: • Half metallicity origins by doping V in ZnSe. • PBE-GGA+U approximation is employed to treat the “d” electrons properly. • s(p)-d Exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) are due to Se(4p)-V(3d) hybridization.

  11. Optical and electronic properties of 2 H -Mo S2 under pressure: Revealing the spin-polarized nature of bulk electronic bands

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.

    2018-05-01

    Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.

  12. The magnetic domain structures of Fe thin films on rectangular land-and-groove substrates studied by spin-polarized secondary electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan)]. E-mail: uedas@postman.riken.go.jp; Iwasaki, Y. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Micro Systems Network Company, Sony Corporation, Tagajo, Miyagi 985-0842 (Japan); Ushioda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2004-10-01

    The magnetic domain structures of Fe thin films on rectangular land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area in the magnetization reversal due to the difference in surface roughness between land and groove areas. The magnetic domain structure and domain wall pinning behavior during the reversal process depended on the direction of the magnetic field relative to the rectangles. These results show that the anisotropy induced by film geometry also contributes to the magnetization reversal process of thin magnetic films on land{sub a}nd{sub g}roove substrates.

  13. Strain effects on the spin polarized electron gas in ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures

    KAUST Repository

    Nazir, Safdar

    2013-04-11

    The spin polarized two dimensional electron gas in the correlated ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures is investigated by ab-initio calculations using density functional theory. Structural relaxation shows a strong buckling at and near the TiO2 terminated n-type interface (IFs) due to significant TiO6 octahedral distortions. We find in all cases, metallic states in a very narrow region of the SrTiO3, in agreement with experimental results. We demonstrate that the interface magnetism strongly reacts to the magnitude of the lattice strain. The orbital occupations and, hence, the charge carrier density change systematically as a function of the lattice mismatch between the component materials.

  14. Strain effects on the spin polarized electron gas in ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo

    2013-01-01

    The spin polarized two dimensional electron gas in the correlated ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures is investigated by ab-initio calculations using density functional theory. Structural relaxation shows a strong buckling at and near the TiO2 terminated n-type interface (IFs) due to significant TiO6 octahedral distortions. We find in all cases, metallic states in a very narrow region of the SrTiO3, in agreement with experimental results. We demonstrate that the interface magnetism strongly reacts to the magnitude of the lattice strain. The orbital occupations and, hence, the charge carrier density change systematically as a function of the lattice mismatch between the component materials.

  15. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  16. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  17. Antiresonance induced spin-polarized current generation

    Science.gov (United States)

    Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng

    2011-12-01

    According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.

  18. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  19. Intrinsic spin polarized electronic structure of CrO2 epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fujiwara, Hirokazu; Sunagawa, Masanori; Kittaka, Tomoko; Terashima, Kensei; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2015-01-01

    We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO 2 . We used CrO 2 epitaxial films on TiO 2 (100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO 2 . In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (E F ) with an energy gap of 0.5 eV below E F were observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO 2 film, constituting spectroscopic evidence for the half-metallicity of CrO 2 at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d

  20. Spin polarization of graphene and h -BN on Co(0001) and Ni(111) observed by spin-polarized surface positronium spectroscopy

    Science.gov (United States)

    Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.

    2018-05-01

    In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.

  1. Spin-polarized scanning tunneling microscopy experiments on the rough surface of a polycrystalline NiFe film with a fine magnetic tip sensitive to a well-defined magnetization component

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, H., E-mail: matsu@phys.sci.hokudai.ac.jp [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Nara, D.; Kageyama, R.; Honda, K.; Sato, T.; Kusanagi, K. [Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Srinivasan, E. [Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Koike, K. [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Creative Research Institution (CRIS), Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan)

    2016-03-15

    We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin image of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.

  2. Spin-polarized scanning tunneling microscopy experiments on the rough surface of a polycrystalline NiFe film with a fine magnetic tip sensitive to a well-defined magnetization component

    Directory of Open Access Journals (Sweden)

    H. Matsuyama

    2016-03-01

    Full Text Available We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin image of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.

  3. Electronic structure, magnetism, and exchange integrals in transition-metal oxides: Role of the spin polarization of the functional in DFT+U calculations

    Science.gov (United States)

    Keshavarz, Samara; Schött, Johan; Millis, Andrew J.; Kvashnin, Yaroslav O.

    2018-05-01

    Density functional theory augmented with Hubbard-U corrections (DFT+U ) is currently one of the most widely used methods for first-principles electronic structure modeling of insulating transition-metal oxides (TMOs). Since U is relatively large compared to bandwidths, the magnetic excitations in TMOs are expected to be well described by a Heisenberg model. However, in practice the calculated exchange parameters Ji j depend on the magnetic configuration from which they are extracted and on the functional used to compute them. In this work we investigate how the spin polarization dependence of the underlying exchange-correlation functional influences the calculated magnetic exchange constants of TMOs. We perform a systematic study of the predictions of calculations based on the local density approximation plus U (LDA+U ) and the local spin density approximation plus U (LSDA+U ) for the electronic structures, total energies, and magnetic exchange interactions Ji j extracted from ferromagnetic (FM) and antiferromagnetic (AFM) configurations of several transition-metal oxide materials. We report that for realistic choices of Hubbard U and Hund's J parameters, LSDA+U and LDA+U calculations result in different values of the magnetic exchange constants and band gap. The dependence of the band gap on the magnetic configuration is stronger in LDA+U than in LSDA+U and we argue that this is the main reason why the configuration dependence of Ji j is found to be systematically more pronounced in LDA+U than in LSDA+U calculations. We report a very good correspondence between the computed total energies and the parametrized Heisenberg model for LDA+U calculations, but not for LSDA+U , suggesting that LDA+U is a more appropriate method for estimating exchange interactions.

  4. Spin-polarized electron tunneling in bcc FeCo/MgO/FeCo(001) magnetic tunnel junctions.

    Science.gov (United States)

    Bonell, F; Hauet, T; Andrieu, S; Bertran, F; Le Fèvre, P; Calmels, L; Tejeda, A; Montaigne, F; Warot-Fonrose, B; Belhadji, B; Nicolaou, A; Taleb-Ibrahimi, A

    2012-04-27

    In combining spin- and symmetry-resolved photoemission, magnetotransport measurements and ab initio calculations we detangled the electronic states involved in the electronic transport in Fe(1-x)Co(x)(001)/MgO/Fe(1-x)Co(x)(001) magnetic tunnel junctions. Contrary to previous theoretical predictions, we observe a large reduction in TMR (from 530 to 200% at 20 K) for Co content above 25 atomic% as well as anomalies in the conductance curves. We demonstrate that these unexpected behaviors originate from a minority spin state with Δ(1) symmetry that exists below the Fermi level for high Co concentration. Using angle-resolved photoemission, this state is shown to be a two-dimensional state that occurs at both Fe(1-x)Co(x)(001) free surface, and more importantly at the interface with MgO. The combination of this interface state with the peculiar density of empty states due to chemical disorder allows us to describe in details the complex conduction behavior in this system.

  5. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  6. Structural stability, electronic and magnetic behaviour of spin-polarized YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Muhammad Nasir, E-mail: nasir4iub@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan); Javed, Athar [Department of Physics, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Muhammad Azhar; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan)

    2016-11-01

    The structural stability, electronic and magnetic behaviour of YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) Heusler alloys have been studied by first principle approach. Generalized gradient approximation (GGA) based on density functional theory (DFT) has been applied to investigate the properties of quaternary Heusler alloys. The YCoVSi, YCoVGe, YCoTiSi and YCoTiGe Heusler alloys of Type-3 structure are found to be stable in spin-polarized/magnetic phase. The YCoVSi and YCoVGe alloys exhibit nearly spin gapless semiconductor (SGS) behaviour while YCoTiSi and YCoTiGe alloys show half-metallic ferromagnetic (HMF) behaviour. For YCoVSi, YCoVGe, YCoTiSi and YCoTiGe alloys, the calculated energy band gaps in spin down (↓) channel are 0.60, 0.54, 0.68 and 0.44 eV, respectively. The YCoVZ and YCoTiZ alloys are found to have integral value of total magnetic moment (M{sub T}), thus obeying the Slater-Pauling rule, M{sub T} = (N{sub v}–18)μ{sub B}. - Highlights: • Four Heusler alloys i.e. YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) are studied. • Type-3 crystal structure of all four alloys is stable in magnetic phase. • The compressibility (S) follows the order: S{sub YCoVSi} > S{sub YCoTiSi} > S{sub YCoVGe} > S{sub YCoTiGe}. • Half metallic ferromagnetic behaviour is observed in all four alloys. • All four alloys obey the Slater-Pauling rule, M{sub T} = (N{sub v} – 18)μ{sub B}.

  7. Determination of the analyzing power of the A4 Compton-backscattering polarimeter for the measurement of the longitudinal spin polarization of the MAMI electron beam

    International Nuclear Information System (INIS)

    Diefenbacher, Juergen

    2010-01-01

    The A4 experiment determines the strange quark contribution to the electromagnetic from factors of the nucleon by measuring the parity violation in elastic electron nucleon scattering. These measurements are carried out using the spin polarized electron beam of the Mainzer Mikrotron (MAMI) with beam energies in the range from 315 to 1508 MeV. For the data analysis it is essential to determine the degree of polarization of the electron beam in order to extract the physics asymmetry from the measured parity violating asymmetry. For this reason the A4 collaboration has developed a novel type of Compton laser backscattering polarimeter that allows for a non-destructive measurement of the beam polarization in parallel to the running parity experiment. In the scope of this work the polarimeter was refined in order to enable reliable continuous operation of the polarimeter. The data acquisition system for the photon and electron detector was re-designed and optimized to cope with high count rates. A novel detector (LYSO) for the backscattered photons was commissioned. Furthermore, GEANT4 simulations of the detectors have been performed and an analysis environment for the extraction of Compton asymmetries from the backscattered photon data has been developed. The analysis makes use of the possibility to detect backscattered photons in coincidence with the scattered electrons, thus tagging the photons. The tagging introduces a differential energy scale which enables the precise determination of the analyzing power. In this work the analyzing power of the polarimeter has been determined. Therefore, at a beam current of 20 μA the product of electron and laser polarization can be determined, while the parity experiment is running, with a statistical accuracy of 1 % in 24 hours at 855 MeV or 2 =0.6 (GeV/c) 2 the analysis yields a raw asymmetry of A Roh PV =(-20.0±0.9 stat ) x 10 -6 at the moment. For a beam polarization of 80 % the total error would be 1,68 x 10 -6 with ΔP e

  8. Cu–Ni core–shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui [Nanjing Tech University, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis (IAS) (China)

    2017-02-15

    Bimetallic core–shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu–Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu{sub 12}@Ni{sub 42} is more stable than two-shell Cu{sub 13}@Ni{sub 42}, while two-shell Ni{sub 13}@Cu{sub 42} is more stable than three-shell Cu@Ni{sub 12}@Cu{sub 42}. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu–Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core–shell catalysts.

  9. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  10. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field.

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  11. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J.; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W.; Wegner, Daniel; Khajetoorians, Alexander A.

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  12. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  13. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  14. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  15. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  16. 2D Electron Gas with 100% Spin-Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain

    KAUST Repository

    Cossu, Fabrizio

    2014-07-28

    By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain. The (LaMnO3)2/(SrTiO3)2 superlattice is analysed with respect to its structure, magnetism, and electronic properties. Our results demonstrate that uniaxial strain in an experimentally accessible range, both tensile and compressive, can be used to induce half-metallicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  18. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  19. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  20. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  1. Electron spin polarization effects in low-energy electron diffraction, ion neutralization, and metastable-atom deexcitation at solid surfaces. Progress report No. 3, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1983-01-01

    The importance of electron spin polarization (ESP) effects in the various spectroscopies used to study solid surfaces has become increasingly apparent in recent years. Recent low energy electron diffraction (LEED) investigations in this laboratory and elsewhere have shown that a great deal of new information contributing to the understanding of the geometrical arrangements of atoms at a surface can be obtained if the polarization of the various LEED beams is measured, or if the incident electron beam is polarized. Polarized LEED studies have shown large polarization features that are very sensitive to the presence of adsorbed layers, surface reconstruction, etc. In addition, theory suggests that polarization measurements can provide a more sensitive test of many of the parameters used in a surface model than can conventional LEED intensity measurements alone. Polarized LEED has also been applied to the study of surface magnetism. In the present contract year, polarized LEED has been used, together with Auger analysis and LEED intensity measurements, as a diagnostic to characterize Ni(001) surfaces produced by laser annealing

  2. Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin—orbit couplings

    International Nuclear Information System (INIS)

    Liu Song; Yan Yu-Zhen; Hu Liang-Bin

    2012-01-01

    The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin—orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin—orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin—orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  4. Spin-polarized gapped Dirac spectrum of unsupported silicene

    Energy Technology Data Exchange (ETDEWEB)

    Podsiadły-Paszkowska, A., E-mail: agata.podsiadly@gmail.com; Krawiec, M., E-mail: mariusz.krawiec@umcs.pl

    2016-06-15

    Highlights: • Effects of spin–orbit interaction and atomic reconstruction of silicene on its electronic properties have been studied. • Spin-polarized gapped Dirac spectrum has been revealed. • Two different AFM phases have been obtained. - Abstract: We study effects of the spin–orbit interaction and the atomic reconstruction of silicene on its electronic spectrum. As an example we consider unsupported silicene pulled off from Pb(111) substrate. Using first principles density functional theory we show that the inversion symmetry broken arrangement of atoms and the spin–orbit interaction generate a spin-polarized electronic spectrum with an energy gap in the Dirac cone. These findings are particularly interesting in view of the quantum anomalous and quantum valley Hall effects and should be observable in weakly interacting silicene-substrate systems.

  5. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  6. Electron spin polarization effects in low energy electron diffraction, ion neutralization and metastable atom deexcitation at solid surfaces. Progress report No. 4, 1 January-31 December 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In the present contract year, a GaAs polarized electron source has been used to undertake a polarized LEED study of order-disorder transformations at Cu 3 Au (100) and (111) surfaces. A polarized LEED study of Cu (100) has also been initiated. A polarized MDS study of Ni(110) surface magnetism has been completed. Spin dependences in the Auger electron yield were observed that provide a measure of the surface magnetism and were used to probe the dependence of surface magnetism on temperature and adsorbate coverage. A similar study using a ferromagnetic glass is now underway. A Mott polarization analyzer, constructed to measure the ESP of the ejected electrons, is also being installed on the apparatus. Such measurements provide direct information concerning the dynamics of secondary electron ejection and the details of adsorbate-substrate bonding

  7. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  8. Influence of temperature on spin polarization dynamics in dilute nitride semiconductors—Role of nonparamagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, M.; Misiewicz, J. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wroclaw University of Technology, Wybrzeze, Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-10-21

    We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.

  9. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  10. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya; Benali Kanoun, Mohammed; Manchon, Aurelien; Schwingenschlö gl, Udo

    2013-01-01

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  11. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  12. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.

    2017-11-20

    We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of the half-metallic NiMnSb in the scattering region, using density functional theory (DFT) methods. For a single NiMnSb unit the transmission function displays a spin polarization of around 50% in a window of 1eV centered around the Fermi level. By increasing the number of layers, an almost complete spin polarization of the transmission is obtained in this energy range. Supplementing the DFT calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin polarization of the conduction electron transmission, which suggests that the hybridized interface and many-body induced states are localized.

  13. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    Science.gov (United States)

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  14. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  15. Modelization of nanospace interaction involving a ferromagnetic atom: a spin polarization effect study by thermogravimetric analysis.

    Science.gov (United States)

    Santhanam, K S V; Chen, Xu; Gupta, S

    2014-04-01

    Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy.

  16. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  17. Role of spin polarized tunneling in magnetoresistance and low

    Indian Academy of Sciences (India)

    Role of spin polarized tunneling in magnetoresistance and low temperature minimum of polycrystalline La1–KMnO3 ( = 0.05, 0.1, ... Manganites; magnetoresistance; low temperature resistivity; spin polarized tunneling. ... Current Issue

  18. Spin-polarized electron capture for the Na+3He2+ system at a 3He2+ impact energy of 5.33--9.33 keV/amu

    International Nuclear Information System (INIS)

    Tanaka, M.; Shimakura, N.; Ohshima, T.; Katori, K.; Fujiwara, M.; Ogata, H.; Kondo, M.

    1994-01-01

    3 He + atomic polarizations following the spin-polarized electron capture process for the N rvec a(3s)+ 3 He 2+ system were measured at 3 He 2+ impact energies from 5.33 to 9.33 keV/amu. The magnitude of the 3 He + atomic polarizations was deduced from the 3 He + nuclear polarization measured by means of beam-foil spectroscopy. The observed polarization transfer coefficient P T defined by the ratio of the 3 He + atomic polarization to the sodium one showed a pronounced reduction from unity, which was qualitatively explained by the prediction of a simple cascade photon decay model. Evidence for a further reduction of P T from the above model and a possible impact energy dependence of P T suggested an excessive depolarization due to the presence of the collision alignment parameter A 0 col of 3 He + formed by the electron capture process. In order to see this more closely, the observed P T 's were examined theoretically using the semiclassical impact parameter method, in which an 18-state molecular expansion was employed, and atomic-type electron translation effects were rigorously taken into account. Ensuring that both the absolute values and the impact energy dependence of the observed capture cross sections were remarkably well reproduced by the calculations in which the states up to 4f in 3 He + were introduced, it was demonstrated that the calculated results for P T qualitatively reproduced not only the absolute values of the observed P T 's but also their gentle decrease with increasing impact energy. Production of nuclear polarizations resulting from the polarized electron capture processes between multicharged heavy ions and alkaline-earth-metal atoms is an example of one use of the future project of universal polarized heavy-ion sources

  19. Comparison of Electron Transmittance and Tunneling Current through a Trapezoidal Potential Barrier with Spin Polarization Consideration by using Analytical and Numerical Approaches

    Science.gov (United States)

    Nabila, Ezra; Noor, Fatimah A.; Khairurrijal

    2017-07-01

    In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.

  20. Langmuir instability in partially spin polarized bounded degenerate plasma

    Science.gov (United States)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  1. Dual descriptors within the framework of spin-polarized density functional theory.

    Science.gov (United States)

    Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P

    2008-08-14

    Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.

  2. Unique spin-polarized transmission effects in a QD ring structure

    Science.gov (United States)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  3. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  4. Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip

    International Nuclear Information System (INIS)

    Rastei, M V; Bucher, J P

    2006-01-01

    A massive Ni tip is used in spin polarized scanning tunnelling microscopy (SP STM) to explore the magnetization state of nanometre Co clusters, self-organized on the Au(111) surface. Constant current STM images taken at 4.6 K show a bimodal distribution of the cluster heights, accounting for the spin polarization of the STM junction. The spin polarization of the tunnel junction as a function of the bias voltage is found to depend on the local density of states of the sample examined. Changing the vacuum barrier parameters by bringing the tip closer to the surface leads to a reduction in the tunnelling magnetoresistance that may be attributed to spin flip effects. (letter to the editor)

  5. SPIN-POLARIZED PHOTOCURRENT THROUGH QUANTUM DOT PHOTODETECTOR

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The theory of the photocurrent through the photodetector based on a two-level semiconductor quantum dot (QD is presented. The analytical expressions of the matrix elements of the electronic transitions generated by the absorption of the circularly polarized photons are derived in the lowest order of the perturbation theory with respect to the electron tunneling interaction as well as the electron-photon interaction. From these expressions the mechanism of the generation of the spin-polarized of electrons in the photocurrent is evident. It follows that the photodetector based on the two-level semiconductor QD can be used as the model of a source of highly spinpolarized electrons.

  6. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  7. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  8. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  9. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator; Entwicklung, Aufbau und Charakterisierung einer variabel repetierenden, spinpolarisierten Elektronenkanone mit invertierter Isolatorgeometrie

    Energy Technology Data Exchange (ETDEWEB)

    Espig, Martin

    2016-02-15

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of {sub n,x}=(1.7478(4).10{sup -4}.(r)/(μm)+2.8(18).10{sup -5}) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1

  10. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  11. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  12. Conductivity of a spin-polarized two-dimensional hole gas at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dlimi, S., E-mail: kaaouachi21@yahoo.fr; Kaaouachi, A. El, E-mail: kaaouachi21@yahoo.fr; Limouny, L., E-mail: kaaouachi21@yahoo.fr; Sybous, A.; Narjis, A.; Errai, M.; Daoudi, E. [Research Group ESNPS , Physics department, University Ibn Zohr, Faculty of Sciences, B.P 8106, Hay Dakhla, 80000 Agadir (Morocco); Idrissi, H. El [Faculté des Sciences et Techniques de Mohammedia, Département de physique. BP 146 Quartier Yasmina Mohammedia (Morocco); Zatni, A. [Laboratoire MSTI. Ecole de technologied' Agadir, B.P33/S Agadir (Morocco)

    2014-01-27

    In the ballistic regime where k{sub B}Tτ / ħ ≥1, the temperature dependence of the metallic conductivity in a two-dimensional hole system of gallium arsenide, is found to change non-monotonically with the degree of spin polarization. In particular, it fades away just before the onset of complete spin polarization, but reappears again in the fully spin-polarized state, being, however, suppressed relative to the zero magnetic field case. The analysis of the degree of suppression can distinguish between screening and interaction-based theories. We show that in a fully polarized spin state, the effects of disorder are dominant and approach a strong localization regime, which is contrary to the behavior of 2D electron systems in a weakly disordered unpolarized state. It was found that the elastic relaxation time correction, depending on the temperature, changed significantly with the degree of spin polarization, to reach a minimum just below the start of the spin-polarized integer, where the conductivity is practically independent of temperature.

  13. RKKY interaction in spin polarized armchair graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, Hamed, E-mail: rezania.hamed@gmail.com; Azizi, Farshad

    2016-11-01

    We present the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction. - Highlights: • Theoretical calculation of RKKY interaction of armchair graphene nanoribbon. • The investigation of the effect of spin polarization on RKKY interaction. • The investigation of electronic concentration on RKKY interaction of armchair graphene nanoribbon.

  14. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  15. Continuous control of spin polarization using a magnetic field

    Science.gov (United States)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  16. Continuous control of spin polarization using a magnetic field

    International Nuclear Information System (INIS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-01-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  17. Continuous control of spin polarization using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y., E-mail: tingyong.chen@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-05-23

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  18. Electronically-Scanned Pressure Sensors

    Science.gov (United States)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  19. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  20. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.; Appelt, W. H.; Ö stlin, A.; Prinz-Zwick, A.; Schwingenschlö gl, Udo; Eckern, U.; Chioncel, L.

    2017-01-01

    calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin

  1. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  2. Detecting Spin-Polarized Currents in Ballistic Nanostructures

    DEFF Research Database (Denmark)

    Potok, R.; Folk, J.; M. Marcus, C.

    2002-01-01

    We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact....

  3. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  4. Kinetic equation for spin-polarized plasmas

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Valeo, E.

    1984-07-01

    The usual kinetic description of a plasma is extended to include variables to describe the spin. The distribution function, over phase-space and the new spin variables, provides a sufficient description of a spin-polarized plasma. The evolution equation for the distribution function is given. The equations derived are used to calculate depolarization due to four processes, inhomogeneous fields, collisions, collisions in inhomogeneous fields, and waves. It is found that depolarization by field inhomogeneity on scales large compared with the gyroradius is totally negligible. The same is true for collisional depolarization. Collisions in inhomogeneous fields yield a depolarization rate of order 10 -4 S -1 for deuterons and a negligible rate for tritons in a typical fusion reactor design. This is still sufficiently small on reactor time scales. However, small amplitude magnetic fluctuations (of order one gauss) resonant with the spin precession frequency can lead to significant depolarization (depolarises triton in ten seconds and deuteron in a hundred seconds.)

  5. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  6. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  7. Investigation of spin-polarized transport in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, B D; Day, T E; Goodnick, S M [Department of Electrical Engineering and Center for Solid State Electronics Research Arizona State University, Tempe, AZ 85287-5706 (United States)], E-mail: brian.tierney@asu.edu

    2008-03-15

    A spin field effect transistor (spin-FET) has been fabricated that employs nanomagnets as components of quantum point contact (QPC) structures to inject spin-polarized carriers into the high-mobility two-dimensional electron gas (2DEG) of a GaAs quantum well and to detect them. A centrally-placed non-magnetic Rashba gate controls both the density of electrons in the 2DEG and the electronic spin precession. Initial results are presented for comparable device structures modeled with an ensemble Monte Carlo (EMC) method. In the EMC the temporal and spatial evolution of the ensemble carrier spin polarization is governed by a spin density matrix formalism that incorporates the Dresselhaus and Rashba contributions to the D'yakanov-Perel spin-flip scattering mechanism, the predominant spin scattering mechanism in AlGaAs/GaAs heterostructures from 77-300K.

  8. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid

    Science.gov (United States)

    Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.

    2012-07-01

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  9. Control of the spin polarization of photoelectrons/photoions using short laser pulses

    International Nuclear Information System (INIS)

    Nakajima, Takashi

    2004-01-01

    We present a generic pump-probe scheme to control spin polarization of photoelectrons/photoions by short laser pulses. By coherently exciting fine structure manifolds of a multi-valence-electron system by the pump laser, a superposition of fine structure states is created. Since each fine structure state can be further decomposed into a superposition of various spin states of valence electrons, each spin component evolves differently in time. This means that varying the time delay between the pump and probe lasers leads to the control of spin states. Specific theoretical results are presented for two-valence-electron atoms, in particular for Mg, which demonstrate that not only the degree of spin polarization but also its sign can be manipulated through time delay. Since the underline physics is rather general and transparent, the presented idea may be potentially applied to nanostructures such as quantum wells and quantum dots

  10. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  11. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  12. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  13. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    International Nuclear Information System (INIS)

    Galanakis, I.

    2015-01-01

    Half-metallic Co 2 MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co 2 MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co 2 MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co 2 MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices

  14. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  15. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  16. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  17. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  18. Spin polarization and magnetic effects in radical reactions

    International Nuclear Information System (INIS)

    Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.

    1984-01-01

    Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)

  19. Estimate of spin polarization for PEP using generalized transformation matrices

    International Nuclear Information System (INIS)

    Chao, A.W.

    1978-04-01

    The spin polarization for PEP has been estimated before by using simplified models. The main difficulty in the previous estimates is that the strength of depolarization effects caused by various electromagnetic field errors could not be specified accurately. To overcome this difficulty, a matrix formalism for depolarization calculation was developed recently. One basic ingredient of this theory is to represent an electron by an 8-dimensional state vector, X = (x,x',y,y',z,δ,α,β) where the first six coordinates are the usual transverse and longitudinal canonical coordinates, while α and β are the two components of the electron's spin vector perpendicular to the equilibrium direction of polarization /cflx n/. The degree of depolarization is specified by 1/2(α 2 + β 2 ). The state vector X will be transformed by an 8 x 8 matrix as the electron passes through a beam-line element such as a bending magnet or an rf cavity. From any position s, one multiplies successively the 8 x 8 matrices around one revolution of the storage ring to obtain the total transformation T(s). Any impulse perturbation ΔX to the electron's state vector occurring at s will be transformed repeatedly by T(s) as the electron circulates around the storage ring. Another basic ingredient is to decompose ΔX into 8 eigenstate components with eigenvectors determined from T(s). Six of these eigenstate components corresponding to the space states will be damped out by the usual radiation damping. The projections of ΔX onto the remaining two spin eigenstates are directly related to the loss of polarization due to the impulse perturbation ΔX. Depolarization effects can thus be calculated directly once all perturbations are specified. 7 refs., 4 figs

  20. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    Science.gov (United States)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  1. Spin-polarized hydrogen, deuterium, and tritium : I

    International Nuclear Information System (INIS)

    Haugen, M.; Ostgaard, E.

    1989-01-01

    The ground-state energy of spin-polarized hydrogen, deuterium and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D, however, we obtain theoretical results for the ground-state binding energy per particle from -0.4 K at an equilibrium particle density of 0.25 σ -3 or a molar volume of 121 cm 3 /mol to +0.32 K at an equilibrium particle density of 0.21 σ -3 or a molar volume of 142 cm 3 /mol, where σ = 3.69 A (1A = 10 -10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T, we obtain theoretical results for the ground-state binding energy per particle from -4.73 K at an equilibrium particle density of 0.41 σ -3 or a molar volume of 74 cm 3 /mol to -1.21 K at an equilibrium particle density of 0.28 σ -3 or a molar volume of 109 cm 3 /mol. (Author) 27 refs., 9 figs., tab

  2. Monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Rechberger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: Electron energy-loss spectroscopy (EELS) has developed into an established technique for chemical and structural analysis of thin specimens in the (scanning) transmission electron microscope (S)TEM. The energy resolution in EELS is largely limited by the stability of the high voltage supply, by the resolution of the spectrometer and by the energy spread of the source. To overcome this limitation a Wien filter monochromator was recently introduced with commercially available STEMs, offering the advantage to better resolve EELS fine structures, which contain valuable bonding information. The method of atomic resolution Z-contrast imaging within an STEM, utilizing a high-angle annular dark-field (HAADF) detector can perfectly complement the excellent energy resolution, since EELS spectra can be collected simultaneously. In combination with a monochromator microscope not only high spatial resolution images can be recorded but also high energy resolution EELS spectra are attainable. In this work we investigated the STEM performance of a 200 kV monochromated Tecnai F20 with a high resolution Gatan Imaging Filter (HR-GIF). (author)

  3. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  4. Spin-polarized inelastic tunneling through insulating barriers.

    Science.gov (United States)

    Lu, Y; Tran, M; Jaffrès, H; Seneor, P; Deranlot, C; Petroff, F; George, J-M; Lépine, B; Ababou, S; Jézéquel, G

    2009-05-01

    Spin-conserving hopping transport through chains of localized states has been evidenced by taking benefit of the high degree of spin-polarization of CoFeB-MgO-CoFeB magnetic tunnel junctions. In particular, our data show that relatively thick MgO barriers doped with boron favor the activation of spin-conserving inelastic channels through a chain of three localized states and leading to reduced magnetoresistance effects. We propose an extension of the Glazman-Matveev theory to the case of ferromagnetic reservoirs to account for spin-polarized inelastic tunneling through nonmagnetic localized states embedded in an insulating barrier.

  5. Experiment on the melting pressure of spin polarized He3

    DEFF Research Database (Denmark)

    Chapellier, M.; Olsen, M.; Rasmussen, Finn Berg

    1981-01-01

    In liquid He in a Pomeranchuk cell, the melting curve has been observed to be suppressed, presumably in regions with a strong local spin polarization. In the temperature range 30-50 mK the observed suppression was 60-80 kPa. The corresponding local polarization is estimated, in a crude model...

  6. Current-Induced Spin Polarization at a Single Heterojunction

    NARCIS (Netherlands)

    Silov, A.; Blajnov, P.; Wolter, J.H.; Hey, R.; Ploog, K.; Averkiev, N.S.; Menendez, J.; Walle, van der C.G.

    2005-01-01

    We have experimentally achieved spin-polarization by a lateral current in a single non-magnetic semiconductor heterojunction. The effect does not require an applied magnetic field or ferromagnetic contacts. The current-induced spin orientation can be seen as the inverse of the circular

  7. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  8. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.

    1992-01-01

    This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range

  9. Transmittance and Tunneling Current through a Trapezoidal Barrier under Spin Polarization Consideration

    Science.gov (United States)

    Noor, F. A.; Nabila, E.; Mardianti, H.; Ariani, T. I.; Khairurrijal

    2018-04-01

    The transmittance and tunneling current in heterostructures under spin polarization consideration were studied by employing a zinc-blended structure for the heterostructures. An electron tunnels through a potential barrier by applying a bias voltage to the barrier, which is called the trapezoidal potential barrier. In order to study the transmittance, an Airy wave function approach was employed to find the transmittance. The obtained transmittance was then utilized to compute the tunneling current by using a Gauss quadrature method. It was shown that the transmittances were asymmetric with the incident angle of the electron. It was also shown that the tunneling currents increased as the bias voltage increased.

  10. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    Science.gov (United States)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  11. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  12. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states

    International Nuclear Information System (INIS)

    Escano, M C; Nguyen, T Q; Nakanishi, H; Kasai, H

    2009-01-01

    The nature of electronic and chemical properties of an unstrained Pt monolayer on a 3d transition metal substrate, M (M = Cr, Mn, Fe), is studied using spin-polarized density functional theory calculations. High spin polarization of Pt d states is noted, verifying the magnetization induced on Pt, which is observed to be responsible for redirecting the analysis of bond formation on a metal surface towards a different perspective. While the shift in the Pt d band center (the average energy of the Pt d band, commonly used to predict the reactivity of surfaces) does give the expected trend in adsorbate (oxygen) chemisorption energy across the bimetallic surfaces in this work, our results show that for spin-polarized Pt d states, the variation in strength of adsorption with respect to the Fermi level density of states is more predictive of Pt chemisorption properties. Hence, this study introduces a scheme for analyzing trends in reactivity of bimetallic surfaces where adsorption energies are used as reactivity parameters and where spin polarization effects cannot be neglected. (fast track communication)

  13. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  14. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  15. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun; Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  16. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  17. Application of spin-polarized fuel to fusion reactions

    International Nuclear Information System (INIS)

    Wakuta, Y.; Nakao, Y.; Honda, T.; Honda, Y.; Nakashima, H.

    1990-01-01

    Studies on the application of the polarized fuel to the inertial fusion reaction have been carried out. It is shown that the use of the spin-polarized fuel D vector·T vector or D vector· 3 (He)vector reduces the irradiating laser power more than 50% compared with the use of the unpolarized fuel. The depolarization rate of the polarized fuel during the fusing process is found to be almost negligible. (author)

  18. Injection of spin-polarized current into semiconductor

    International Nuclear Information System (INIS)

    Vedyayev, A.V.; Dieny, B.; Ryzhanova, N.V.; Zhukov, I.V.; Zhuravlev, M.Ye.; Lutz, H.O.

    2003-01-01

    A quantum-statistical theory of injection of spin-polarized current into a semiconductor in ferromagnet/tunnel barrier/semiconductor system is presented. The presence of Schottky barrier in the semiconductor is taken into account. The case of degenerated and non-degenerated semiconductors are considered. Both the diffusive and ballistic transport regime are investigated. The dependence of current polarization on barrier thickness and temperature is calculated

  19. Photoinduced spin polarization and microwave technology

    International Nuclear Information System (INIS)

    Antipov, Sergey; Poluektov, Oleg; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang

    2013-01-01

    We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C 61 -butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on

  20. Composition controlled spin polarization in Co{sub 1-x}Fe{sub x}S{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, C [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Manno, M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Cady, A [Advanced Photon Source, Argonne National Laboratory (United States); Freeland, J W [Advanced Photon Source, Argonne National Laboratory (United States); Wang, L [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Umemoto, K [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Wentzcovitch, R M [Department of Chemical Engineering and Materials Science, University of Minnesota (United States); Chen, T Y [Department of Physics and Astronomy, Johns Hopkins University (United States); Chien, C L [Department of Physics and Astronomy, Johns Hopkins University (United States); Kuhns, P L [National High Magnetic Field Laboratory, Florida State University (United States); Hoch, M J R [National High Magnetic Field Laboratory, Florida State University (United States); Reyes, A P [National High Magnetic Field Laboratory, Florida State University (United States); Moulton, W G [National High Magnetic Field Laboratory, Florida State University (United States); Dahlberg, E D [School of Physics and Astronomy, University of Minnesota (United States); Checkelsky, J [Physics Department, Harvey Mudd College (United States); Eckert, J [Physics Department, Harvey Mudd College (United States)

    2007-08-08

    The transition metal (TM) chalcogenides of the form TMX{sub 2} (X = S or Se) have been studied for decades due to their interesting electronic and magnetic properties such as metamagnetism and metal-insulator transitions. In particular, the Co{sub 1-x}Fe{sub x}S{sub 2} alloys were the subject of investigation in the 1970s due to general interest in itinerant ferromagnetism. In recent years (2000-present) it has been shown, both by electronic structure calculations and detailed experimental investigations, that Co{sub 1-x}Fe{sub x}S{sub 2} is a model system for the investigation of highly spin polarized ferromagnetism. The radically different electronic properties of the two endpoint compounds (CoS{sub 2} is a narrow bandwidth ferromagnetic metal, while FeS{sub 2} is a diamagnetic semiconductor), in a system forming a substitutional solid solution allows for composition control of the Fermi level relative to the spin split bands, and therefore composition-controlled conduction electron spin polarization. In essence, the recent work has shown that the concept of 'band engineering' can be applied to half-metallic ferromagnets and that high spin polarization can be deliberately engineered. Experiments reveal tunability in both sign and magnitude of the spin polarization at the Fermi level, with maximum values obtained to date of 85% at low temperatures. In this paper we review the properties of Co{sub 1-x}Fe{sub x}S{sub 2} alloys, with an emphasis on properties of relevance to half-metallicity. Crystal structure, electronic structure, synthesis, magnetic properties, transport properties, direct probes of the spin polarization, and measurements of the total density of states at the Fermi level are all discussed. We conclude with a discussion of the factors that influence, or even limit, the spin polarization, along with a discussion of opportunities and problems for future investigation, particularly with regard to fundamental studies of spintronic devices.

  1. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  2. Spin polarization in rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Steenwijk, F.J. van

    1976-01-01

    In this thesis the results of Moessbauer experiments performed on a series of intermetallic compounds of europium and gadolinium are reported. For each of these compounds the magnetic hyperfine field, the electric field gradient at the nuclear site and the isomer shift were determined. For most of the compounds the magnetic ordering temperature was also measured. For some of the europium compounds (e.g. EuAu 5 , EuAg 5 , and EuCu 5 ) it could be derived from the measurements that the easy direction of magnetization falls along the crystallographic c-axis. In a number of compounds (e.g. EuCu 5 , EuZn 5 , EuAu 2 and GdCu 5 ), the various contributions to the magnetic hyperfine field were disentangled by the investigation of suitable pseudobinary compounds that are dilute in Eu. The neighbour contribution Hsub(N) and the paramagnetic Curie temperature thetasub(p) were compared with each other in terms of the RKKY model for EuCu 5 and GdCu 5 . Since the correspondence was found to be poor it was concluded that the magnetic behaviour in these compounds cannot be described by a simple free electron picture as is the basis for the RKKY model

  3. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    thin film Appl. Phys. Lett. 88 262503 [6] Thomas A, Meyners D, Ebke D, Liu N-N, Sacher M D, Schmalhorst J, Reiss G, Ebert H, and Hütten A 2006 Inverted spin polarization of Heusler alloys for spintronic devices Appl. Phys. Lett. 89 012502 [7] Hillebrands B and Felser C 2006 Editorial: High-spin polarization of Heusler alloys J. Phys. D: Appl. Phys. 39 issue 5 http://stacks.iop.org/0022-3727/39/i=5 [8] Galanakis I, Mavropoulos Ph and Dederichs P H 2006 Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles J. Phys. D: Appl. Phys. 39 765 J. Phys. D: Appl. Phys. 39 765 [9] Kandpal H C, Felser C and Seshadri R 2006 Covalent bonding and the nature of band gaps in some half-Heusler compounds J. Phys. D: Appl. Phys. 39 776 [10] Kallmayer M, Elmers H J, Balke B, Wurmehl S, Emmerling F, Fecher G H and Felser C 2006 Magnetic properties of Co2Mn1-xFexSi Heusler alloys J. Phys. D: Appl. Phys. 39 786 [11] Attema J J, de Wijs G A and de Groot R A 2006 The continuing drama of the half-metal/semiconductor interface J. Phys. D: Appl. Phys. 39 793 [12] Leziac M, Mavropoulos Ph, Bihlmayer G and Blügel S 2006 Scanning tunnelling microscopy of surfaces of half-metals: an ab-initio study on NiMnSb(001) J. Phys. D: Appl. Phys. 39 797 [13] Wurmehl S, Fecher G H, Kroth K, Kronast F, Dürr H A, Takeda Y, Saitoh Y, Kobayashi K, Lin H-J, Schönhense G and Felser C 2006 Electronic structure and spectroscopy of the quaternary Heusler alloy Co2Cr1-xFexAl J. Phys. D: Appl. Phys. 39 803 [14] Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tezuka N, Wojcik M and Jedryka E 2006 Structural and magnetic properties and tunnel magnetoresistance for Co2(Cr,Fe)Al and Co2FeSi full-Heusler alloys J. Phys. D: Appl. Phys. 39 816 [15] Yamamoto M, Marukame T, Ishikawa T, Matsuda K, Uemura T and Arita M 2006 Fabrication of fully epitaxial magnetic tunnel junctions using cobalt-based full-Heusler alloy thin film and their tunnel magnetoresistance

  4. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  5. Semiclassical theory of the tunneling anomaly in partially spin-polarized compressible quantum Hall states

    Science.gov (United States)

    Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.

    2018-05-01

    Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.

  6. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  7. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  8. Spatial distribution of spin polarization in a channel on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Zhou Xiaoying; Shao Huaihua; Liu Yiman; Tang Dongsheng; Zhou Guanghui

    2012-01-01

    We study the spatial distribution of electron spin polarization for a gate-controlled T-shaped channel on the surface of a three-dimensional topological insulator (3D TI). We demonstrate that an energy gap depending on channel geometry parameters is definitely opened due to the spatial confinement. Spin surface locking in momentum space for a uniform wide channel with Hamiltonian linearity in the wavevector is still kept, but it is broken with Hamiltonian nonlinearity in the wavevector, like that for two-dimensional surface states widely studied in the literature. However, the spin surface locking for a T-shaped channel is broken even with Hamiltonian linearity in the wavevector. Interestingly, the magnitude and direction of the in-plane spin polarization are spatially dependent in all regions due to the breaking of translational symmetry of the T-shaped channel system. These interesting findings for an electrically controlled nanostructure based on the 3D TI surface may be testable with the present experimental technique, and may provide further understanding the nature of 3D TI surface states. (paper)

  9. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  10. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  11. On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kuzubov, Alexander A. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Kovaleva, Evgenia A., E-mail: kovaleva.evgeniya1991@mail.ru [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Tomilin, Felix N.; Mikhaleva, Natalya S.; Kuklin, Artem V. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation)

    2015-12-15

    The interaction between armchair carbon and boron nitride nanotubes (NT) with ferromagnetic transition metal (TM) surfaces, namely, Ni(111) and Co(0001), was studied by means of density functional theory. Different configurations of composite compartments mutual arrangement were considered. Partial densities of states and spin density spatial distribution of optimized structures were investigated. Influence of ferromagnetic substrate on nanotubes’ electronic properties was discussed. The values of spin polarization magnitude at the Fermi level are also presented and confirm the patterns of spin density spatial distribution. - Highlights: • Interaction of armchair nanotubes with ferromagnetic metal surfaces was investigated. • Different configurations of nanotube's location were considered. • For all nanotubes the energy difference between configurations is negligible. • Nanotubes were found to be more or less spin-polarized regarding to the configuration. • BN nanotubes demonstrate vanishing of the band gap and contact-induced conductivity.

  12. Generation and detection of spin polarization in parallel coupled double quantum dots connected to four terminals

    International Nuclear Information System (INIS)

    An, Xing-Tao; Mu, Hui-Ying; Li, Yu-Xian; Liu, Jian-Jun

    2011-01-01

    A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.

  13. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  14. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  15. Tuning spin-polarized transport in organic semiconductors

    Science.gov (United States)

    Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.

  16. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  17. Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction

    International Nuclear Information System (INIS)

    Tian Hong-Yu; Wang Jun

    2012-01-01

    We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  19. Electron spin resonance scanning tunneling microscope

    International Nuclear Information System (INIS)

    Guo Yang; Li Jianmei; Lu Xinghua

    2015-01-01

    It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)

  20. Indigenous development of scanning electron microscope

    International Nuclear Information System (INIS)

    Ambastha, K.P.; Chaudhari, Y.V.; Pal, Suvadip; Tikaria, Amit; Pious, Lizy; Dubey, B.P.; Chadda, V.K.

    2009-01-01

    Scanning electron microscope (SEM) is a precision instrument and plays very important role in scientific studies. Bhabha Atomic Research Centre has taken up the job of development of SEM indigenously. Standard and commercially available components like computer, high voltage power supply, detectors etc. shall be procured from market. Focusing and scanning coils, vacuum chamber, specimen stage, control hardware and software etc. shall be developed at BARC with the help of Indian industry. Procurement, design and fabrication of various parts of SEM are in progress. (author)

  1. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  2. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    Science.gov (United States)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  3. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  4. Scanning electron microscopy of primary bone tumors

    International Nuclear Information System (INIS)

    Pool, R.R.; Kerner, B.

    1975-01-01

    Critical-point-drying of tumor tissue fixed in a glutaraldehyde-paraformaldehyde solution and viewed by scanning electron microscopy (SEM) provides a 3-dimensional view of tumor cells and their matrices. This report describes the SEM appearance of three primary bone tumors: a canine osteosarcoma of the distal radius, a feline chondrosarcoma of the proximal tibia and a canine fibrosarcoma of the proximal humerus. The ultrastructural morphology is compared with the histologic appearance of each tumor

  5. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  6. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...

  7. Highly spin-polarized materials and devices for spintronics∗.

    Science.gov (United States)

    Inomata, Koichiro; Ikeda, Naomichi; Tezuka, Nobuki; Goto, Ryogo; Sugimoto, Satoshi; Wojcik, Marek; Jedryka, Eva

    2008-01-01

    The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co 2 Cr 1 - x Fe x Al (CCFA( x )) and Co 2 FeSi 1 - x Al x (CFSA( x )) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co 2 FeSi 0.5 Al 0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L2 1 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe 2 film deposited on a MgO (001) single crystal substrate, wherein the spinel

  8. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  9. Anomalous scattering of neutrons in spin-polarized media

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1989-01-01

    A new exchange mechanism of inelastic scattering with spin flip for slow neutrons propagating through a spin-polarized medium is studied. The scattering is accompanied by emission or absorption of thermal fluctuations of the transverse magnetization of the medium; the weakly damped Larmor precession of nuclear spins in the external magnetic field plays the main role in these fluctuations. Under the conditions of giant opalescence the effect is enormous and the corresponding cross sections are significantly greater than the standard elastic scattering cross sections. Thus in the case of 29 Si↑ and 3 He↑ under typical experimental conditions the cross sections of these inelastic processes are of the order of 10 5 -10 6 b

  10. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    Science.gov (United States)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  11. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Berber, S. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)]. E-mail: berber@comas.frsc.tsukuba.ac.jp; Oshiyama, A. [Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571 (Japan)

    2006-04-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range {approx}4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes.

  12. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  13. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  14. Spin polarization of a non-magnetic high g-factor semiconductor at low magnetic field

    International Nuclear Information System (INIS)

    Lee, J.; Back, J.; Kim, K.H.; Kim, S.U.; Joo, S.; Rhie, K.; Hong, J.; Shin, K.; Lee, B.C.; Kim, T.

    2007-01-01

    We have studied the spin polarization of HgCdTe by measuring Shubnikov-de Haas oscillations. The magnetic field have been applied in parallel and perpendicular to the current. Relatively long spin relaxation time was observed since only spin conserved transition is allowed by selection rules. The electronic spin is completely polarized when the applied magnetic field is larger than 0.5 Tesla, which can be easily generated by micromagnets deposited on the surface of the specimen. Thus, the spin-manipulation such as spin up/down junction can be realized with this semiconductor. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    Science.gov (United States)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  16. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Cathodoluminescence in the scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kociak, M., E-mail: mathieu.kociak@u-psud.fr [Laboratoire de Physique des Solides, Université Paris-SudParis-Sud, CNRS-UMR 8502, Orsay 91405 (France); Zagonel, L.F. [“Gleb Wataghin” Institute of Physics University of Campinas - UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2017-05-15

    Cathodoluminescence (CL) is a powerful tool for the investigation of optical properties of materials. In recent years, its combination with scanning transmission electron microscopy (STEM) has demonstrated great success in unveiling new physics in the field of plasmonics and quantum emitters. Most of these results were not imaginable even twenty years ago, due to conceptual and technical limitations. The purpose of this review is to present the recent advances that broke these limitations, and the new possibilities offered by the modern STEM-CL technique. We first introduce the different STEM-CL operating modes and the technical specificities in STEM-CL instrumentation. Two main classes of optical excitations, namely the coherent one (typically plasmons) and the incoherent one (typically light emission from quantum emitters) are investigated with STEM-CL. For these two main classes, we describe both the physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments. We then compare STEM-CL with its better known sister techniques: scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy. We finish by comprehensively reviewing recent STEM-CL applications. - Highlights: • Reviews the field of STEM-CL. • Introduces the technical requirements and challenges for STEM-CL. • Introduces the different types of excitations probed by STEM-CL. • Gives comprehensive overview of the last fifteenth years in the field.

  18. Determination of the analyzing power of the A4 Compton-backscattering polarimeter for the measurement of the longitudinal spin polarization of the MAMI electron beam; Bestimmung der Analysierstaerke des A4-Compton-Rueckstreupolarimeters zur Messung der longitudinalen Spinpolarisation des MAMI-Elektronenstrahls

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbacher, Juergen

    2010-08-22

    The A4 experiment determines the strange quark contribution to the electromagnetic from factors of the nucleon by measuring the parity violation in elastic electron nucleon scattering. These measurements are carried out using the spin polarized electron beam of the Mainzer Mikrotron (MAMI) with beam energies in the range from 315 to 1508 MeV. For the data analysis it is essential to determine the degree of polarization of the electron beam in order to extract the physics asymmetry from the measured parity violating asymmetry. For this reason the A4 collaboration has developed a novel type of Compton laser backscattering polarimeter that allows for a non-destructive measurement of the beam polarization in parallel to the running parity experiment. In the scope of this work the polarimeter was refined in order to enable reliable continuous operation of the polarimeter. The data acquisition system for the photon and electron detector was re-designed and optimized to cope with high count rates. A novel detector (LYSO) for the backscattered photons was commissioned. Furthermore, GEANT4 simulations of the detectors have been performed and an analysis environment for the extraction of Compton asymmetries from the backscattered photon data has been developed. The analysis makes use of the possibility to detect backscattered photons in coincidence with the scattered electrons, thus tagging the photons. The tagging introduces a differential energy scale which enables the precise determination of the analyzing power. In this work the analyzing power of the polarimeter has been determined. Therefore, at a beam current of 20 {mu}A the product of electron and laser polarization can be determined, while the parity experiment is running, with a statistical accuracy of 1 % in 24 hours at 855 MeV or <1 % in 12 hours at 1508 MeV. Combining this with the determination of the laser polarization carried out in parallel work (Y. Imai), the uncertainty of the electron beam polarization in

  19. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Serpico, C.; d'Aquino, M.; Mayergoyz, I. D.; Bonin, R.

    2005-01-01

    Full text: Considerable interest has been generated in recent years by the discovery that a current of spin-polarized electrons can apply appreciable torques to a nanoscale ferromagnet. This mechanism was theoretically predicted and subsequently confirmed by a number of experiments which have shown that spin transfer can indeed induce switching or microwave oscillations of the magnetization. Significant efforts have been devoted to the explanation of these results, in view of the new physics involved and of the possible applications to new types of current-controlled memory cells or microwave sources and resonators . However, the precise nature of magnetization dynamics when spin-polarized currents and external magnetic fields are simultaneously present has not yet been fully understood. The spin-transfer-driven nanomagnet is a nonlinear open system that is forced far from equilibrium by the injection of the current. Thus, the appropriate framework for the study of the problem is nonlinear dynamical system theory and bifurcation theory. In this talk, it is shown that within this framework the complexity and subtlety of spin-torque effects are fully revealed and quantified, once it is recognized that both intrinsic damping and spin transfer can be treated as perturbations of the free precessional dynamics typical of ferromagnetic resonance. Complete stability diagrams are derived for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching; for the amplitude and frequency of magnetization self-oscillations; for the conditions leading to hysteretic transitions between self-oscillations and stationary states

  20. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  1. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  2. Implantation annealing by scanning electron beam

    International Nuclear Information System (INIS)

    Jaussaud, C.; Biasse, B.; Cartier, A.M.; Bontemps, A.

    1983-11-01

    Samples of ion implanted silicon (BF 2 , 30keV, 10 15 ions x cm -2 ) have been annealed with a multiple scan electron beam, at temperatures ranging from 1000 to 1200 0 C. The curves of sheet resistance versus time show a minimum. Nuclear reaction measurements of the amount of boron remaining after annealing show that the increase in sheet resistance is due to a loss of boron. The increase in junction depths, measured by spreading resistance on bevels is between a few hundred A and 1000 A [fr

  3. Scanning electron microscopy and micro-analyses

    International Nuclear Information System (INIS)

    Brisset, F.; Repoux, L.; Ruste, J.; Grillon, F.; Robaut, F.

    2008-01-01

    Scanning electron microscopy (SEM) and the related micro-analyses are involved in extremely various domains, from the academic environments to the industrial ones. The overall theoretical bases, the main technical characteristics, and some complements of information about practical usage and maintenance are developed in this book. high-vacuum and controlled-vacuum electron microscopes are thoroughly presented, as well as the last generation of EDS (energy dispersive spectrometer) and WDS (wavelength dispersive spectrometer) micro-analysers. Beside these main topics, other analysis or observation techniques are approached, such as EBSD (electron backscattering diffraction), 3-D imaging, FIB (focussed ion beams), Monte-Carlo simulations, in-situ tests etc.. This book, in French language, is the only one which treats of this subject in such an exhaustive way. It represents the actualized and totally updated version of a previous edition of 1979. It gathers the lectures given in 2006 at the summer school of Saint Martin d'Heres (France). Content: 1 - electron-matter interactions; 2 - characteristic X-radiation, Bremsstrahlung; 3 - electron guns in SEM; 4 - elements of electronic optics; 5 - vacuum techniques; 6 - detectors used in SEM; 7 - image formation and optimization in SEM; 7a - SEM practical instructions for use; 8 - controlled pressure microscopy; 8a - applications; 9 - energy selection X-spectrometers (energy dispersive spectrometers - EDS); 9a - EDS analysis; 9b - X-EDS mapping; 10 - technological aspects of WDS; 11 - processing of EDS and WDS spectra; 12 - X-microanalysis quantifying methods; 12a - quantitative WDS microanalysis of very light elements; 13 - statistics: precision and detection limits in microanalysis; 14 - analysis of stratified samples; 15 - crystallography applied to EBSD; 16 - EBSD: history, principle and applications; 16a - EBSD analysis; 17 - Monte Carlo simulation; 18 - insulating samples in SEM and X-ray microanalysis; 18a - insulating

  4. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  5. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  6. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X

    2011-01-01

    The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.

  7. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  8. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  9. Elemental mapping in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Lugg, N R; Findlay, S D; LeBeau, J M; Stemmer, S

    2010-01-01

    We discuss atomic resolution chemical mapping in scanning transmission electron microscopy (STEM) based on core-loss electron energy loss spectroscopy (EELS) and also on energy dispersive X-ray (EDX) imaging. Chemical mapping using EELS can yield counterintuitive results which, however, can be understood using first principles calculations. Experimental chemical maps based on EDX bear out the thesis that such maps are always likely to be directly interpretable. This can be explained in terms of the local nature of the effective optical potential for ionization under those imaging conditions. This is followed by an excursion into the complementary technique of elemental mapping using energy-filtered transmission electron microscopy (EFTEM) in a conventional transmission electron microscope. We will then consider the widely used technique of Z-contrast or high-angle annular dark field (HAADF) imaging, which is based on phonon excitation, where it has recently been shown that intensity variations can be placed on an absolute scale by normalizing the measured intensities to the incident beam. Results, showing excellent agreement between theory and experiment to within a few percent, are shown for Z-contrast imaging from a sample of PbWO 4 .

  10. Scanning probe methods applied to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlicek, Niko

    2013-08-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. An STM head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individual molecules in the future. Combined STM/AFM studies revealed a reversible molecular switch based on two stable configurations of DBTH molecules on ultrathin NaCl films. AFM experiments visualize the molecular structure in both states. Our experiments allowed to unambiguously determine the pathway of the switch. Finally, tunneling into and out of the frontier molecular orbitals of pentacene molecules has been investigated on different insulating films. These experiments show that the local symmetry of initial and final electron wave function are decisive for the ratio between elastic and vibration-assisted tunneling. The results can be generalized to electron transport in organic materials.

  11. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    Science.gov (United States)

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  12. Helium leak testing of scanning electron microscope

    International Nuclear Information System (INIS)

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  13. A cryogenic multichannel electronically scanned pressure module

    Science.gov (United States)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  14. Scanning electron microscopy of coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.R.; White, A.; Deegan, M.D.

    1986-02-01

    Individual macerals separated from some United Kingdom coals of Carboniferous age and bituminous rank were examined by scanning electron microscopy. In each case a specific morphology characteristic of the macerals studied could be recognized. Collinite (a member of the vitrinite maceral group) was recognizable in all samples by its angular shape and characteristic fracture patterns, the particles (30-200 ..mu..m) frequently showing striated or laminated surface. Sporinite particles had no well defined shape and were associated with more detrital material than were the other macerals studied. This detritus was shown by conventional light microscopy to be the maceral micrinite. Fusinite was remarkable in having a chunky needle form, with lengths of up to 200 ..mu..m. 8 references.

  15. Peculiarities of spin polarization inversion at a thiophene/cobalt interface

    KAUST Repository

    Wang, Xuhui; Manchon, Aurelien; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2013-01-01

    We perform ab initio calculations to investigate the spin polarization at the interface between a thiophene molecule and cobalt substrate. We find that the reduced symmetry in the presence of a sulfur atom (in the thiophene molecule) leads to a

  16. Nitrogen implantation with a scanning electron microscope.

    Science.gov (United States)

    Becker, S; Raatz, N; Jankuhn, St; John, R; Meijer, J

    2018-01-08

    Established techniques for ion implantation rely on technically advanced and costly machines like particle accelerators that only few research groups possess. We report here about a new and surprisingly simple ion implantation method that is based upon a widespread laboratory instrument: The scanning electron microscope. We show that it can be utilized to ionize atoms and molecules from the restgas by collisions with electrons of the beam and subsequently accelerate and implant them into an insulating sample by the effect of a potential building up at the sample surface. Our method is demonstrated by the implantation of nitrogen ions into diamond and their subsequent conversion to nitrogen vacancy centres which can be easily measured by fluorescence confocal microscopy. To provide evidence that the observed centres are truly generated in the way we describe, we supplied a 98% isotopically enriched 15 N gas to the chamber, whose natural abundance is very low. By employing the method of optically detected magnetic resonance, we were thus able to verify that the investigated centres are actually created from the 15 N isotopes. We also show that this method is compatible with lithography techniques using e-beam resist, as demonstrated by the implantation of lines using PMMA.

  17. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  18. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  19. The spin polarized linear response from density functional theory: Theory and application to atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.

  20. Muonium spin exchange in spin-polarized media: Spin-flip and -nonflip collisions

    International Nuclear Information System (INIS)

    Senba, M.

    1994-01-01

    The transverse relaxation of the muon spin in muonium due to electron spin exchange with a polarized spin-1/2 medium is investigated. Stochastic calculations, which assume that spin exchange is a Poisson process, are carried out for the case where the electron spin polarization of the medium is on the same axis as the applied field. Two precession signals of muonium observed in intermediate fields (B>30 G) are shown to have different relaxation rates which depend on the polarization of the medium. Furthermore, the precession frequencies are shifted by an amount which depends on the spin-nonflip rate. From the two relaxation rates and the frequency shift in intermediate fields, one can determine (i) the encounter rate of muonium and the paramagnetic species, (ii) the polarization of the medium, and most importantly (iii) the quantum-mechanical phase shift (and its sign) associated with the potential energy difference between electron singlet and triplet encounters. Effects of spin-nonflip collisions on spin dynamics are discussed for non-Poisson as well as Poisson processes. In unpolarized media, the time evolution of the muon spin in muonium is not influenced by spin-nonflip collisions, if the collision process is Poissonian. This seemingly obvious statement is not true anymore in non-Poissonian processes, i.e., it is necessary to specify both spin-flip and spin-nonflip rates to fully characterize spin dynamics

  1. Laser-assisted spin-polarized transport in graphene tunnel junctions

    International Nuclear Information System (INIS)

    Ding Kaihe; Zhu Zhengang; Berakdar, Jamal

    2012-01-01

    The Keldysh nonequilibrium Green’s function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency. (paper)

  2. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  3. Potential spin-polarized transport in gold-doped armchair graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pankaj, E-mail: pankajs@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015, MP (India); Dhar, Subhra [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015, MP (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM), Jabalpur 482005 (India)

    2015-04-17

    Based on NEGF-DFT computations, systematic investigation of electronic, magnetic and transport properties of AGNRs are done by employing Au through different doping mechanisms. Remarkable Au–AGNR bonding is observed in case of substitution due to the presence of impurity at the edges. Both substitution and adsorption of Au on AGNR surface induce significant changes in the electronic spin transport of the sp{sup 2} hybridized carbon sheets. AGNRs are semiconducting with lower total energy for the FM configuration, and the I–V characteristics reveal semiconductor to metal transition of Au-doped AGNR. The spin injection is voltage controlled in all the investigated Au-doped AGNRs. - Highlights: • Edge Au-substitution promotes semiconductor–metal transition in AGNR. • NDR due to bias-dependent transmission in Au-substituted AGNRs. • Voltage controlled spin injection in all investigated Au-doped AGNRs. • Strong spin polarization occurs at 0.5 V in Au-hole adsorbed AGNRs.

  4. Spontaneous spin polarization and charge localization in metal nanowires: the role of a geometric constriction

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Huerto, R; Ballone, P [Atomistic Simulation Centre, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2010-07-28

    An idealized jellium model of conducting nanowires with a geometric constriction is investigated by density functional theory (DFT) in the local spin density (LSD) approximation. The results reveal a fascinating variety of spin and charge patterns arising in wires of sufficiently low (r{sub s} {>=} 15) average electron density, pinned at the indentation by an apparent attractive interaction with the constriction. The spin-resolved frequency-dependent conductivity shows a marked asymmetry in the two spin channels, reflecting the spontaneous spin polarization around the wire neck. The relevance of the computational results is discussed in relation to the so-called 0.7 anomaly found by experiments in the low-frequency conductivity of nanowires at near-breaking conditions (see 2008 J. Phys.: Condens Matter 20, special issue on the 0.7 anomaly). Although our mean-field approach cannot account for the intrinsic many-body effects underlying the 0.7 anomaly, it still provides a diagnostic tool to predict impending transitions in the electronic structure.

  5. A hemispherical photoelectron spectrometer with 2-dimensional delay-line detector and integrated spin-polarization analysis

    International Nuclear Information System (INIS)

    Plucinski, L.; Oelsner, A.; Matthes, F.; Schneider, C.M.

    2010-01-01

    Photoelectron spectrometers usually allow detection of either spin-resolved energy-distribution curves (EDCs) at single emission angle, or 2D angle-vs.-energy images without spin-resolution. We have combined the two detection schemes into one spectrometer system which permits simultaneous detection of a 1D spin-resolved EDC and a 2D angular map. A state-of-the-art hemispherical analyzer is used as an energy filter. Its original scintillator detector has been replaced by a delay-line-detector (DLD), and part of the electron beam is allowed to pass through to reach the spin-polarized low energy electron diffraction (SPLEED) spin-detector mounted subsequently. The electron-optics between DLD and SPLEED contains a 90 o deflector to feature simultaneous detection of in-plane and out-of-plane spin components. These electron-optics have been optimized for high transmission to reduce acquisition times in the spin-resolved mode.

  6. Spin-polarized currents in the tunnel contact of a normal conductor and a two-dimensional topological insulator

    International Nuclear Information System (INIS)

    Sukhanov, A. A.; Sablikov, V. A.

    2013-01-01

    The spin filtering of electrons tunneling from the edge states of a two-dimensional topological insulator into a normal conductor under a magnetic field (external or induced due to proximity to a magnetic insulator) is studied. Calculations are performed for a tunnel contact of finite length between the topological insulator and an electronic multimode quantum strip. It is shown that the flow of tunneling electrons is split in the strip, so that spin-polarized currents arise in its left and right branches. These currents can be effectively controlled by the contact voltage and the chemical potential of the system. The presence of a magnetic field, which splits the spin subbands of the electron spectrum in the strip, gives rise to switching of the spin current between the strip branches

  7. Dental Wear: A Scanning Electron Microscope Study

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2014-01-01

    Full Text Available Dental wear can be differentiated into different types on the basis of morphological and etiological factors. The present research was carried out on twelve extracted human teeth with dental wear (three teeth showing each type of wear: erosion, attrition, abrasion, and abfraction studied by scanning electron microscopy (SEM. The study aimed, through analysis of the macro- and micromorphological features of the lesions (considering the enamel, dentin, enamel prisms, dentinal tubules, and pulp, to clarify the different clinical and diagnostic presentations of dental wear and their possible significance. Our results, which confirm current knowledge, provide a complete overview of the distinctive morphology of each lesion type. It is important to identify the type of dental wear lesion in order to recognize the contributing etiological factors and, consequently, identify other more complex, nondental disorders (such as gastroesophageal reflux, eating disorders. It is clear that each type of lesion has a specific morphology and mechanism, and further clinical studies are needed to clarify the etiological processes, particularly those underlying the onset of abfraction.

  8. Scanning electron microscopic studies on bone tumors

    International Nuclear Information System (INIS)

    Itoh, Motoya

    1978-01-01

    Surface morphological observations of benign and malinant bone tumors were made by the use of scanning electron microscopy. Tumor materials were obtained directly from patients of osteogenic sarcomas, chondrosarcomas, enchondromas, giant cell tumors and Paget's sarcoma. To compare with these human tumors, the following experimental materials were also observed: P 32 -induced rat osteogenic sarcomas with their pulmonary metastatic lesions, Sr 89 -induced transplantable mouse osteogenic sarcomas and osteoid tissues arising after artificial fractures in mice. One of the most outstanding findings was a lot of granular substances seen on cell surfaces and their intercellular spaces in osteoid or chondroid forming tissues. These substances were considered to do some parts in collaborating extracellular matrix formation. Protrusions on cell surface, such as mucrovilli were more or less fashioned by these granular substances. Additional experiments revealed these substances to be soluble in sodium cloride solution. Benign osteoid forming cells, such as osteoblasts and osteoblastic osteosarcoma cells had granular substances on their surfaces and their intercellular spaces. On the other hand, undifferentiated transplantable osteosarcoma which formed on osteoid or chondroid matrix had none of these granular substances. Consequently, the difference of surface morphology between osteosarcoma cells and osteoblasts was yet to be especially concluded. (author)

  9. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    International Nuclear Information System (INIS)

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13 C and 1 H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1 H and cross-polarized 13 C NMR signals from 15 N, 13 C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T 1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations

  10. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  11. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  12. Modeling all-electrical detection of the inverse Edelstein effect by spin-polarized tunneling in a topological-insulator/ferromagnetic-metal heterostructure

    Science.gov (United States)

    Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2018-04-01

    The spin-momentum locking of the surface states in a three-dimensional topological insulator (TI) allows a charge current on the surface of the TI induced by an applied spin current onto the surface, which is known as the inverse Edelstein effect (IEE), that could be achieved either by injecting pure spin current by spin-pumping from a ferromagnetic metal (FM) layer or by injecting spin-polarized charge current by direct tunneling of electrons from the FM to the TI. Here, we present a theory of the observed IEE effect in a TI-FM heterostructure for the spin-polarized tunneling experiments. If an electrical current is passed from the FM to the surface of the TI, because of density-of-states polarization of the FM, an effective imbalance of spin-polarized electrons occurs on the surface of the TI. Due to the spin-momentum helical locking of the surface states in the TI, a difference of transverse charge accumulation appears on the TI surface in a direction orthogonal to the direction of the magnetization of the FM, which is measured as a voltage difference. Here, we derive the two-dimensional transport equations of electrons on the surface of a diffusive TI, coupled to a FM, starting from the quantum kinetic equation, and analytically solve the equations for a rectangular geometry to calculate the voltage difference.

  13. Perfect tuning of spin-polarization in a ring-shaped multiple-quantum-dot nanostructure in the presence of Rashba spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, L., E-mail: Leslami@iust.ac.ir; Chaghari, Z.; Faizabadi, E.

    2013-09-02

    Spin-dependent electronic transport through an open multiple-quantum-dot ring threaded by a magnetic flux is theoretically investigated by using the single particle Green's function method. By introducing local Rashba spin–orbit interaction on an individual quantum dot and local magnetic moments on two of other quantum dots, we calculate the spin-polarization in the output lead. We find the spin-polarization can be tuned by manipulating magnetic moments, adjusting magnetic flux and setting the Rashba spin–orbit strength. It is also shown the system can operate as an efficient spin-inverter when the structure is adjusted properly. The analysis can be utilized in designing optimized nanodevices.

  14. Non-Dirac Chern insulators with large band gaps and spin-polarized edge states.

    Science.gov (United States)

    Xue, Y; Zhang, J Y; Zhao, B; Wei, X Y; Yang, Z Q

    2018-05-10

    Based on first-principles calculations and k·p models, we demonstrate that PbC/MnSe heterostructures are a non-Dirac type of Chern insulator with very large band gaps (244 meV) and exotically half-metallic edge states, providing the possibilities of realizing very robust, completely spin polarized, and dissipationless spintronic devices from the heterostructures. The achieved extraordinarily large nontrivial band gap can be ascribed to the contribution of the non-Dirac type electrons (composed of px and py) and the very strong atomic spin-orbit coupling (SOC) interaction of the heavy Pb element in the system. Surprisingly, the band structures are found to be sensitive to the different exchange and correlation functionals adopted in the first-principles calculations. Chern insulators with various mechanisms are acquired from them. These discoveries show that the predicted nontrivial topology in PbC/MnSe heterostructures is robust and can be observed in experiments at high temperatures. The system has great potential to have attractive applications in future spintronics.

  15. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    Science.gov (United States)

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  16. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  17. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  18. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  20. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  1. Time-Resolved Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Weber, Peter M

    2006-01-01

    .... The pulsed electron beam is obtained by rapidly switching the electron emission of a field emission tip using the AC electric field arising from exposure to the intense electromagnetic radiation...

  2. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  3. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  4. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  5. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  6. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  7. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  8. Generation and control of spin-polarized photocurrents in GaMnAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Anibal T., E-mail: anibal@df.ufscar.br; Farinas, Paulo F.; Studart, Nelson [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil); Castelano, Leonardo K. [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Degani, Marcos H.; Maialle, Marcelo Z. [Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, 13484-350 Limeira, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil)

    2014-01-13

    Photocurrents are calculated for a specially designed GaMnAs semiconductor heterostructure. The results reveal regions in the infrared range of the energy spectrum, in which the proposed structure is remarkably spin-selective. For such photon energies, the generated photocurrents are strongly spin-polarized. Application of a relatively small static bias in the growth direction of the structure is predicted to efficiently reverse the spin-polarization for some photon energies. This behavior suggests the possibility of conveniently simple switching mechanisms. The physics underlying the results is studied and understood in terms of the spin-dependent properties emerging from the particular potential profile of the structure.

  9. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  10. Hardness and softness reactivity kernels within the spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul

    2005-01-01

    Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined

  11. Peculiarities of spin polarization inversion at a thiophene/cobalt interface

    KAUST Repository

    Wang, Xuhui

    2013-03-20

    We perform ab initio calculations to investigate the spin polarization at the interface between a thiophene molecule and cobalt substrate. We find that the reduced symmetry in the presence of a sulfur atom (in the thiophene molecule) leads to a strong spatial dependence of the spin polarization of the molecule. The two carbon atoms far from the sulfur acquire a polarization opposite to that of the substrate, while the carbon atoms bonded directly to sulfur possess the same polarization as the substrate. We determine the origin of this peculiar spin interface property as well as its impact on the spin transport.

  12. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  13. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  14. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  15. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  16. Technology scan for electronic toll collection.

    Science.gov (United States)

    2008-06-01

    The purpose of this project was to identify and assess available technologies and methodologies for electronic toll collection (ETC) and to develop recommendations for the best way(s) to implement toll collection in the Louisville metropolitan area. ...

  17. Spin-polarized charge transport in HgTe/CdTe quantum well topological insulator under a ferromagnetic metal strip

    Science.gov (United States)

    Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong

    2018-02-01

    Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.

  18. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  19. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  20. Tunnel Spin Polarization Versus Energy for Clean and Doped Al2O3 Barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  1. Spin polarization in top pair production in association with two photons at NLO+PS

    CERN Document Server

    Luisoni, Gionata

    2018-01-01

    This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.

  2. Spin polarization in top pair production in association with two photons at NLO+PS

    CERN Document Server

    Luisoni, Gionata

    2017-01-01

    This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.

  3. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...

  4. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2015-01-01

    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  5. Scanning transmission low-energy electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Konvalina, Ivo; Unčovský, M.; Frank, Luděk

    2011-01-01

    Roč. 55, č. 4 (2011), 2:1-6 ISSN 0018-8646 R&D Projects: GA AV ČR IAA100650902; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : TEM * STEM * SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.723, year: 2011

  6. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... scanning electron microscopy evaluation of smear layer removal with chitosan and .... this compound has considerably increased its concentration in rivers and .... of the images was done by three investigators who calibrated ...

  7. Scanning electron microscopic evaluation of root canal surfaces ...

    African Journals Online (AJOL)

    Scanning electron microscopic evaluation of root canal surfaces prepared with three rotary endodontic systems: Lightspeed, ProTaper and EndoWave. ... fracture with LightSpeed (LS), ProTaper (PT) and EndoWave (Ew) rotary instruments.

  8. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  9. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  10. Spin-polarized ground state and exact quantization at ν=5/2

    Science.gov (United States)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  11. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  12. Shielded scanning electron microscope for radioactive samples

    International Nuclear Information System (INIS)

    Crouse, R.S.; Parsley, W.B.

    1977-01-01

    A small commercial SEM had been successfully shielded for examining radioactive materials transferred directly from a remote handling facility. Relatively minor mechanical modifications were required to achieve excellent operation. Two inches of steel provide adequate shielding for most samples encountered. However, samples reading 75 rad/hr γ have been examined by adding extra shielding in the form of tungsten sample holders and external lead shadow shields. Some degradation of secondary electron imaging was seen but was adequately compensated for by changing operating conditions

  13. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  14. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  15. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  16. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    International Nuclear Information System (INIS)

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-01-01

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve

  17. Study of Hydrated Lime in Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Rovnaníková, P.

    2013-01-01

    Roč. 19, S2 (2013), s. 1644-1645 ISSN 1431-9276 R&D Projects: GA ČR GAP102/10/1410; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Hydrated Lime * Environmental Scanning Electron Microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.757, year: 2013

  18. Characterization of Polycaprolactone Films Biodeterioration by Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Voberková, S.; Hermanová, S.; Krzyžánek, Vladislav

    2014-01-01

    Roč. 20, S3 (2014), s. 1950-1951 ISSN 1431-9276 R&D Projects: GA MŠk EE.2.3.20.0103; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : polycaprolactone films * biodeterioration * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  19. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources.

    Science.gov (United States)

    Pincelli, T; Petrov, V N; Brajnik, G; Ciprian, R; Lollobrigida, V; Torelli, P; Krizmancic, D; Salvador, F; De Luisa, A; Sergo, R; Gubertini, A; Cautero, G; Carrato, S; Rossi, G; Panaccione, G

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  20. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    International Nuclear Information System (INIS)

    Pincelli, T.; Rossi, G.; Petrov, V. N.; Brajnik, G.; Carrato, S.; Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G.; Lollobrigida, V.; Sergo, R.; Gubertini, A.; Cautero, G.

    2016-01-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  1. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Science.gov (United States)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  2. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G. [Dipartimento di Fisica, Università degli studi di Milano, Via Celoria 16, 20133 Milano (Italy); Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Petrov, V. N. [Saint Petersburg State Polytechnical University, Politechnicheskaya Street 29, 195251 Saint Petersburg (Russian Federation); Brajnik, G.; Carrato, S. [Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Lollobrigida, V. [Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Sergo, R.; Gubertini, A.; Cautero, G. [Sincrotrone Trieste S.C.p.A, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy)

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  3. Scanning Electron Microscopy with Samples in an Electric Field

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    Roč. 5, č. 12 (2012), s. 2731-2756 ISSN 1996-1944 R&D Projects: GA ČR GAP108/11/2270; GA TA ČR TE01020118; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * slow electrons * low energy SEM * low energy STEM * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.247, year: 2012

  4. Spin polarization of a Ferromagnetic Narrow Gap p-(In,Mn)As Obtained from Andreev Reflection Spectroscopy

    International Nuclear Information System (INIS)

    Akazaki, T.; Munekata, H.; Yokoyama, T.; Tanaka, Y.; Takayanagi, H.

    2011-01-01

    Spin-polarized carrier transport across Nb/p-(In,Mn)As junctions has been studied. Suppressions of conductance in the superconductor sub-gap region and conductance peaks at the bias voltage around the edge of the sub-gap are observed. These features are well reproduced by a newly modified BTK model including both spin polarization and the inverse proximity effect. The value of spin polarization in p-(In,Mn)As extracted by the calculation is P = 0.725 at 0.5 K with Z = 0.25

  5. Pure spin polarized current through a full magnetic silicene junction

    Science.gov (United States)

    Lorestaniweiss, Zeinab; Rashidian, Zeinab

    2018-06-01

    Using the Landauer-Buttiker formula, we investigate electronic transport in silicene junction composed of ferromagnetic silicene. The direction of magnetization in the middle region may change in a plane perpendicular to the junction, whereas the magnetization direction keep fixed upward in silicene electrodes. We investigate how the various magnetization directions in the middle region affect the electronic transport. We demonstrate that conductance depends on the orientation of magnetizations in the middle region. It is found that by changing the direction of the magnetization in the middle region, a pure spin up current can be achieved. This achievement makes this full magnetic junction a good design for a full spin-up current polarizer.

  6. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  7. Comments on spin operators and spin-polarization states of 2+1 fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P.; Tomazelli, J.L. [Departamento Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil)

    2005-02-01

    In this brief article we discuss spin-polarization operators and spin-polarization states of 2+1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2+1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2+1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory. (orig.)

  8. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    International Nuclear Information System (INIS)

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  9. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  10. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  11. Antihydrogen atom formation in a CUSP trap towards spin polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, N., E-mail: kuroda@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Y. [RIKEN Advanced Science Institute (Japan); Michishio, K. [Tokyo University of Science, Department of Physics (Japan); Kim, C. H. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Higaki, H. [Hiroshima University, Graduate School of Advanced Science of Matter (Japan); Nagata, Y.; Kanai, Y. [RIKEN Advanced Science Institute (Japan); Torii, H. A. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Venturelli, L.; Zurlo, N. [Universita di Brescia and Instituto Nazionale di Fisica Nucleare, Dipartimento di Chimica e Fisica per l' Ingegneria e per i Materiali (Italy); Fujii, K.; Ohtsuka, M.; Tanaka, K. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Imao, H. [RIKEN Nishina Center for Accelerator-Based Science (Japan); Nagashima, Y. [Tokyo University of Science, Department of Physics (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Juhasz, B. [Stefan Meyer Institut fuer Subatomare Physik (Austria); and others

    2012-12-15

    The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.

  12. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  13. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  14. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes

    Science.gov (United States)

    Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.

    2017-09-01

    We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.

  15. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  16. Spin-polarized quantum transport properties through flexible phosphorene

    Science.gov (United States)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.

  17. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  18. Spin-polarized neutron matter at different orders of chiral effective field theory

    OpenAIRE

    Sammarruca, F.; Machleidt, R.; Kaiser, N.

    2015-01-01

    Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...

  19. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  20. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  1. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride

    Science.gov (United States)

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-01

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF3 ) as a novel spin-polarized Dirac material by using first-principles calculations. MnF3 exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF3 possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF3 , CrF3 , and FeF3 ). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  2. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride.

    Science.gov (United States)

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-07

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF_{3}) as a novel spin-polarized Dirac material by using first-principles calculations. MnF_{3} exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF_{3} possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF_{3}, CrF_{3}, and FeF_{3}). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  3. Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion

    Science.gov (United States)

    Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.

    1992-01-01

    Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.

  4. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Science.gov (United States)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  5. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  6. Tuning Fermi level of Cr{sub 2}CoZ (Z=Al and Si) inverse Heusler alloys via Fe-doping for maximum spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh-160014 (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Reshak, Ali H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2014-12-15

    We report full potential treatment of electronic and magnetic properties of Cr{sub 2−x}Fe{sub x}CoZ (Z=Al, Si) Heusler alloys where x=0.0, 0.25, 0.5, 0.75 and 1.0, based on density functional theory (DFT). Both parent alloys (Cr{sub 2}CoAl and Cr{sub 2}CoSi) are not half-metallic frromagnets. The gradual replacement of one Cr sublattice with Fe induces the half-metallicity in these systems, resulting maximum spin polarization. The half-metallicity starts to appear in Cr{sub 2−x}Fe{sub x}CoAl and Cr{sub 2−x}Fe{sub x}CoSi with x=0.50 and x=0.25, respectively, and the values of minority-spin gap and half-metallic gap or spin-flip gap increase with further increase of x. These gaps are found to be maximum for x=1.0 for both cases. An excellent agreement between the structural properties of CoFeCrAl with available experimental study is obtained. The Fermi level tuning by Fe-doping makes these alloys highly spin polarized and thus these can be used as promising candidates for spin valves and magnetic tunnelling junction applications. - Highlights: • Tuning of E{sub F} in Cr{sub 2}CoZ (Z=Al, Si) has been demonstrated via Fe doping. • Effect of Fe doping on half-metallicity and magnetism have been discussed. • The new alloys have a potential of being used as spin polarized electrodes.

  7. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  8. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  9. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  10. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Müller, E., E-mail: erich.mueller@kit.edu; Gerthsen, D.

    2017-02-15

    The contrast of backscattered electron (BSE) images in scanning electron microscopy (SEM) depends on material parameters which can be exploited for composition quantification if some information on the material system is available. As an example, the In-concentration in thin In{sub x}Ga{sub 1−x}As layers embedded in a GaAs matrix is analyzed in this work. The spatial resolution of the technique is improved by using thin electron-transparent specimens instead of bulk samples. Although the BSEs are detected in a comparably small angular range by an annular semiconductor detector, the image intensity can be evaluated to determine the composition and local thickness of the specimen. The measured intensities are calibrated within one single image to eliminate the influence of the detection and amplification system. Quantification is performed by comparison of experimental and calculated data. Instead of using time-consuming Monte-Carlo simulations, an analytical model is applied for BSE-intensity calculations which considers single electron scattering and electron diffusion. - Highlights: • Sample thickness and composition are quantified by backscattered electron imaging. • A thin sample is used to achieve spatial resolution of few nanometers. • Calculations are carried out with a time-saving electron diffusion model. • Small differences in atomic number and density detected at low electron energies.

  11. Multi-channel electronically scanned cryogenic pressure sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  12. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  13. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental design: Thirty ...

  14. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  15. A Small Crack Length Evaluation Technique by Electronic Scanning

    International Nuclear Information System (INIS)

    Cho, Yong Sang; Kim, Jae Hoon

    2009-01-01

    The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detectability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination

  16. Improved coating and fixation methods for scanning electron microscope autoradiography

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens

  17. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group).

  18. A Comparative Scanning Electron Microscopy Evaluation of Smear ...

    African Journals Online (AJOL)

    The aim of the present study was to compare the efficacy of chitosan and MTAD for the smear layer removal from the root canal through a scanning electron microscope (SEM). Thirty teeth were randomly divided into three groups according to the final irrigants: 0.2% chitosan, MTAD, saline (control group). After the ...

  19. Scanning electron microscope facility for examination of radioactive materials

    International Nuclear Information System (INIS)

    Gibson, J.R.; Braski, D.N.

    1985-02-01

    An AMRAY model 1200B scanning electron microscope was modified to permit remote examination of radioactive specimens. Features of the modification include pneumatic vibration isolation of the column, motorized stage controls, improvements for monitoring vacuum, and a system for changing filaments without entering the hot cell

  20. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  1. Very low energy scanning electron microscopy in nanotechnology

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Hovorka, Miloš; Mika, Filip; Mikmeková, Eliška; Mikmeková, Šárka; Pokorná, Zuzana; Frank, Luděk

    2012-01-01

    Roč. 9, 8/9 (2012), s. 695-716 ISSN 1475-7435 R&D Projects: GA MŠk OE08012; GA MŠk ED0017/01/01; GA AV ČR IAA100650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : scanning electron microscopy * very low energy electrons * cathode lens * grain contrast * strain contrast * imaging of participates * dopant contrast * very low energy STEM * graphene Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.087, year: 2012

  2. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  4. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  5. Stereoscopic and photometric surface reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Scherer, S.

    2000-01-01

    The scanning electron microscope (SEM) is one of the most important devices to examine microscopic structures as it offers images of a high contrast range with a large depth of focus. Nevertheless, three-dimensional measurements, as desired in fracture mechanics, have previously not been accomplished. This work presents a system for automatic, robust and dense surface reconstruction in scanning electron microscopy combining new approaches in shape from stereo and shape from photometric stereo. The basic theoretical assumption for a known adaptive window algorithm is shown not to hold in scanning electron microscopy. A constraint derived from this observation yields a new, simplified, hence faster calculation of the adaptive window. The correlation measure itself is obtained by a new ordinal measure coefficient. Shape from photometric stereo in the SEM is formulated by relating the image formation process with conventional photography. An iterative photometric ratio reconstruction is invented based on photometric ratios of backscatter electron images. The performance of the proposed system is evaluated using ground truth data obtained by three alternative shape recovery devices. Most experiments showed relative height accuracy within the tolerances of the alternative devices. (author)

  6. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  7. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

    International Nuclear Information System (INIS)

    Behan, G; Nellist, P D

    2008-01-01

    The use of spherical aberration correctors in the scanning transmission electron microscope (STEM) has the effect of reducing the depth of field of the microscope, making three-dimensional imaging of a specimen possible by optical sectioning. Depth resolution can be improved further by placing aberration correctors and lenses pre and post specimen to achieve an imaging mode known as scanning confocal electron microscopy (SCEM). We present the calculated incoherent point spread functions (PSF) and optical transfer functions (OTF) of a STEM and SCEM. The OTF for a STEM is shown to have a missing cone region which results in severe blurring along the optic axis, which can be especially severe for extended objects. We also present strategies for reconstruction of experimental data, such as three-dimensional deconvolution of the point spread function.

  8. Permanent magnet finger-size scanning electron microscope columns

    Energy Technology Data Exchange (ETDEWEB)

    Nelliyan, K., E-mail: elenk@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Khursheed, A. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-07-21

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  9. Permanent magnet finger-size scanning electron microscope columns

    International Nuclear Information System (INIS)

    Nelliyan, K.; Khursheed, A.

    2011-01-01

    This paper presents permanent magnet scanning electron microscope (SEM) designs for both tungsten and field emission guns. Each column makes use of permanent magnet technology and operates at a fixed primary beam voltage. A prototype column operating at a beam voltage of 15 kV was made and tested inside the specimen chamber of a conventional SEM. A small electrostatic stigmator unit and dedicated scanning coils were integrated into the column. The scan coils were wound directly around the objective lens iron core in order to reduce its size. Preliminary experimental images of a test grid specimen were obtained through the prototype finger-size column, demonstrating that it is in principle feasible.

  10. Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)

    2017-04-15

    By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.

  11. Evolution with Composition of the d-Band Density of States at the Fermi Level in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Kuhns, P. L.; Hoch, M. J. R.; Reyes, A. P.; Moulton, W. G.; Wang, L.; Leighton, C.

    2006-04-01

    Highly spin polarized (SP) and half-metallic ferromagnetic systems are of considerable current interest and of potential importance for spintronic applications. Recent work has demonstrated that Co1-xFexS2 is a highly polarized ferromagnet (FM) where the spin polarization can be tuned by alloy composition. Using Co59 FM-NMR as a probe, we have measured the low-temperature spin relaxation in this system in magnetic fields from 0 to 1.0 T for 0≤x≤0.3. The Co59 spin-lattice relaxation rates follow a linear T dependence. Analysis of the data, using expressions for a FM system, permits information to be obtained on the d-band density of states at the Fermi level. The results are compared with independent density of states values inferred from electronic specific heat measurements and band structure calculations. It is shown that FM-NMR can be an important method for investigating highly SP systems.

  12. The possibility to determine a constant of spin-orbit interaction by scanning tunneling microscopy method

    International Nuclear Information System (INIS)

    Khotkevich, N.V.; Kolesnichenko, Yu.A.; Vovk, N.P.

    2016-01-01

    The electron tunneling from the quasi-two-dimensional (surface) states with the spin-orbit interaction into bulk-mode states is studied in the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier. The influence of the scattering of quasi-two-dimensional electrons by a single magnetic defect on the tunnel current is analyzed. Analytic formulas for the conductance of a tunnel point-contact as a function of its distance from the defect are obtained. It is shown that the analysis of the local magnetization density around the defect by means of spin-polarized scanning tunneling microscopy allows finding the constant of spin orbit interaction.

  13. Examination of living fungal spores by scanning electron microscopy

    International Nuclear Information System (INIS)

    Read, N.D.; Lord, K.M.

    1991-01-01

    Ascospores of Sordaria macrospora germinated and produced hyphae exhibiting normal growth and differentiation after examination by scanning electron microscopy and following numerous, different preparative protocols. Seventy-nine to ninety-nine percent of the ascospores retained normal viability after being observed in the fully frozen-hydrated, partially freeze-dried, and vacuum-dried states at accelerating voltages of 5 and 40 keV. Hyphae did not survive these treatments. From these observations it is concluded that ascospores of S. macrospora can remain in a state of suspended animation while being observed in the scanning electron microscope. The ascospores also survived, but with reduced viability: 6 h in glutaraldehyde and formaldehyde, 6 h in OsO4, or 2 h in glutaraldehyde and formaldehyde followed by 2 h in OsO 4 . However, the ascospores did not germinate after dehydration in ethanol. (author)

  14. Realizing stable fully spin polarized transport in SiC nanoribbons with dopant

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xixi; Wang, Xianlong; Zheng, Xiaohong, E-mail: xhzheng@theory.issp.ac.cn; Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Hao, Hua [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-06

    Intrinsic half-metallicity recently reported in zigzag edged SiC nanoribbons is basically undetectable due to negligible energy difference between the antiferromagnetic (AFM) and ferromagnetic (FM) configurations. In this Letter, by density functional theory calculations, we demonstrate a scheme of N doping at the carbon edge to selectively close the edge state channel at this edge and achieve 100% spin filtering, no matter whether it is in an AFM state or FM state. This turns SiC nanoribbon into a promising material for obtaining stable and completely spin polarized transport and may find application in spintronic devices.

  15. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  16. Role of scanning electron microscope )SEM) in metal failure analysis

    International Nuclear Information System (INIS)

    Shaiful Rizam Shamsudin; Hafizal Yazid; Mohd Harun; Siti Selina Abd Hamid; Nadira Kamarudin; Zaiton Selamat; Mohd Shariff Sattar; Muhamad Jalil

    2005-01-01

    Scanning electron microscope (SEM) is a scientific instrument that uses a beam of highly energetic electrons to examine the surface and phase distribution of specimens on a micro scale through the live imaging of secondary electrons (SE) and back-scattered electrons (BSE) images. One of the main activities of SEM Laboratory at MINT is for failure analysis on metal part and components. The capability of SEM is excellent for determining the root cause of metal failures such as ductility or brittleness, stress corrosion, fatigue and other types of failures. Most of our customers that request for failure analysis are from local petrochemical plants, manufacturers of automotive components, pipeline maintenance personnel and engineers who involved in the development of metal parts and component. This paper intends to discuss some of the technical concepts in failure analysis associated with SEM. (Author)

  17. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  18. Practical Use of Scanning Low Energy Electron Microscope (SLEEM)

    Czech Academy of Sciences Publication Activity Database

    Müllerová, Ilona; Mikmeková, Eliška; Mikmeková, Šárka; Konvalina, Ivo; Frank, Luděk

    2016-01-01

    Roč. 22, S3 (2016), s. 1650-1651 ISSN 1431-9276 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : scanning low energy * SLEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  19. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  20. Spin polarization and magnetization of conduction-band dilute-magnetic-semiconductor quantum wells with non-step-like density of states

    International Nuclear Information System (INIS)

    Simserides, Constantinos

    2005-01-01

    We study the magnetization, M, and the spin polarization, ζ, of n-doped non-magnetic-semiconductor (NMS)/narrow to wide dilute-magnetic-semiconductor (DMS)/n-doped NMS quantum wells, as a function of the temperature, T, and the in-plane magnetic field, B. Under such conditions the density of states (DOS) deviates from the occasionally stereotypic step-like form, both quantitatively and qualitatively. The DOS modification causes an impressive fluctuation of M in cases of vigorous competition between spatial and magnetic confinement. At low T, the enhanced electron spin-splitting, U oσ , acquires its bigger value. At higher T, U oσ decreases, augmenting the influence of the spin-up electrons. Increasing B, U oσ increases and accordingly electrons populate spin-down subbands while they abandon spin-up subbands. Furthermore, due to the DOS modification, all energetically higher subbands become gradually depopulated

  1. Advanced radiographic scanning, enhancement and electronic data storage

    International Nuclear Information System (INIS)

    Savoie, C.; Rivest, D.

    2003-01-01

    It is a well-known fact that radiographs deteriorate with time. Substantial cost is attributed to cataloguing and storage. To eliminate deterioration issues and save time retrieving radiographs, laser scanning techniques were developed in conjunction with viewing and enhancement software. This will allow radiographs to be successfully scanned and stored electronically for future reference. Todays radiographic laser scanners are capable Qf capturing images with an optical density of up to 4.1 at 256 grey levels and resolutions up to 4096 pixels per line. An industrial software interface was developed for the nondestructive testing industry so that, certain parameters such as scan resolution, number of scans, file format and location to be saved could be adjusted as needed. Once the radiographs have been scanned, the tiff images are stored, or retrieved into Radiance software (developed by Rivest Technologies Inc.), which will help to properly interpret the radiographs. Radiance was developed to allow the user to quickly view the radiographs correctness or enhance its defects for comparison and future evaluation. Radiance also allows the user to zoom, measure and annotate areas of interest. Physical cost associated with cataloguing, storing and retrieving radiographs can be eliminated. You can now successfully retrieve and view your radiographs from CD media or dedicated hard drive at will. For continuous searches and/or field access, dedicated hard drives controlled by a server would be the media of choice. All scanned radiographs will be archived to CD media (CD-R). Laser scanning with a proper acquisition interface and easy to use viewing software will permit a qualified user to identify areas of interest and share this information with his/her colleagues via e-mail or web data access. (author)

  2. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    Science.gov (United States)

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  3. Regular and irregular dynamics of spin-polarized wavepackets in a mesoscopic quantum dot at the edge of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Khomitsky, D. V., E-mail: khomitsky@phys.unn.ru; Chubanov, A. A.; Konakov, A. A. [Lobachevsky National Research State University of Nizhny Novgorod, Department of Physics (Russian Federation)

    2016-12-15

    The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.

  4. Partially spin-polarized Josephson tunneling between non-centrosymmetric superconductors like CePt3Si

    International Nuclear Information System (INIS)

    Mandal, S.S.; Mukherjee, S.P.

    2007-01-01

    Full text: The recent discovery of the superconductivity in the heavy fermionic compound CePt 3 Si have attracted much of the attention of the physics community. The presence of strong Rashba kind of spin-orbit coupling in them split the otherwise degenerate electronic band into two nondegenerate bands. This peculiarity in the band structure gives rise to complicated kind of order parameter whose exact nature is unknown till date. Traditionally Josephson junctions in superconductors draw interest both scientifically and its applicability in making devices. It has been used in several cases as a probe to the order parameter symmetry of the superconductor. It has also been studied in unconventional superconductors like spin-singlet cuprate and spin-triplet Sr 2 RuO 4 superconductors. However no Josephson junction between nonmagnetic superconductors is known to generate spin-polarized current. The purpose of this work is to theoretically show that the direction dependent tunneling matrix element across the junction between two recently discovered non-centrosymmetric superconductors like CePt 3 Si, leads to tunneling of both spin-singlet and spin-triplet Cooper pairs. As a consequence, nonvanishing spin-Josephson current is viable along with the usual charge-Josephson current. This novel spin-Josephson current depends on the relative angle xi between the axes of non-centrosymmetry {n} L and that {n} R in the left and right side of the junction respectively. This angular dependence may be used to make Josephson spin switch. (authors)

  5. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  6. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    Science.gov (United States)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  7. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  8. Ring-diagram calculations of normal and spin-polarized 3He using the Aziz interactions

    International Nuclear Information System (INIS)

    Heyer, J.; Kiang, L.L.; Jiang, M.F.; Kuo, T.T.S.

    1991-01-01

    The authors calculate the ground-state energy of normal and spin-polarized 3 He within a model-space ring diagram framework where the particle-particle hole-hole (pphh) ring diagrams of the ground-state energy shift are summed up to all orders. The Aziz HFDHE2 and HFD-B(HE) interactions are employed. They first calculate a model space reaction matrix (G M ) whose intermediate states are required to be outside the chosen model space. The pphh ring diagrams with G M -matrix vertices are then summed within the model space by way of an RPA-type secular equation. The continuous single-particle spectrum of Mahaux is chosen. It is found that the inclusion of pphh ring diagrams gives a significant increase in the binding energy per particle (BE/A) as compared with Brueckner-Hartree-Fock calculations. For normal and spin-polarized 3 He their calculated values for BE/A and saturation densities are respectively (1.86 K, 0.72 angstrom -1 ) and (1.59 K, 0.91 angstrom -1 ), while the corresponding experimental values for normal 3 He are (2.47 K, 0.785 angstrom -1 ). 53 refs

  9. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  10. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas

    Science.gov (United States)

    Lou, Janet W.; Cranch, Geoffrey A.

    2018-02-01

    The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.

  11. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  12. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  13. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  14. Aberration-corrected scanning transmission electron microscopy of semiconductors

    International Nuclear Information System (INIS)

    Krivanek, O L; Dellby, N; Murfitt, M F

    2011-01-01

    The scanning transmission electron microscope (STEM) has been able to image individual heavy atoms in a light matrix for some time. It is now able to do much more: it can resolve individual atoms as light as boron in monolayer materials; image atomic columns as light as hydrogen, identify the chemical type of individual isolated atoms from the intensity of their annular dark field (ADF) image and by electron energy loss spectroscopy (EELS); and map elemental composition at atomic resolution by EELS and energy-dispersive X-ray spectroscopy (EDXS). It can even map electronic states, also by EELS, at atomic resolution. The instrumentation developments that have made this level of performance possible are reviewed, and examples of applications to semiconductors and oxides are shown.

  15. Detecting spin polarization of nano-crystalline manganese doped zinc oxide thin film using circular polarized light

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com

    2016-02-01

    The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.

  16. Vacuum Analysis of Scanning Horn of Electron Beam Machine

    International Nuclear Information System (INIS)

    Suprapto; Sukidi; Sukaryono; Setyo Atmojo; Djasiman

    2003-01-01

    Vacuum analysis of scanning horn of electron beam machine (EBM) has been carried out. In EBM, electron beam produced by the electron gun is accelerated by the accelerating tube toward the target via scanning horn and window. To avoid the disturbance of electron beam trajectory in side the EBM, it is necessary to evacuate the EBM. In designing and constructing the scanning horn, vacuum analysis must be carried out to find the ultimate vacuum grade based on the analysis as well as on the test resulted by the vacuum pump. The ultimate vacuum grade is important and affecting the electron trajectory from electron gun to the target. The yield of the vacuum analysis show that the load gas to be evacuated were the outgassing, permeation and leakages where each value were 5.96487x10 -6 Torr liter/sec, 6.32083x10 -7 Torr liter/sec, and 1.3116234x10 -4 Torr liter/sec respectively, so that the total gas load was 1.377587x10 -4 Torr liter/sec. The total conductivity according to test result was 15.769 liter/sec, while the effective pumping rate and maximum vacuum obtained by RD 150 pump were 14.269 Torr liter/sec and 9.65x10 -6 Torr respectively, The vacuum steady state indicated by the test result was 3.5x10 -5 Torr. The pressure of 3.5x10 -5 Torr showed by the test is close to the capability of vacuum pump that is 2x10 -5 Torr. The vacuum test indicated a good result and that there was no leakage along the welding joint. In the latter of installation it considered to be has a pressure of 5x10 -6 Torr, because the aluminum gasket will be used to seal the window flanges and will be evacuated by turbomolecular pump with pumping rate of 500 liter/sec and ultimate vacuum of -10 Torr. (author)

  17. Detection of current-induced spin polarization in BiSbTeSe{sub 2} toplogical insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Ghatak, Subhamoy; Taskin, Alexey; Ando, Yoichi [Institute of Physics II, University of Cologne (Germany); Ando, Yuichiro [Department of Electronic Science and Engineering, Kyoto University (Japan)

    2016-07-01

    Topological insulators (TIs) are a class of quantum matter which possess spin-momentum-locked Dirac Fermions on the surfaces. Due to the spin-momentum locking, spin polarization will be induced when a charge current flows through the surface of a TI. Such spin polarization can be detected by using a ferromagnetic tunneling contact as a detector. In this talk, we present our results measured in devices fabricated from BiSbTeSe{sub 2} flakes. Spin signals were observed in both n-type and p-type BiSbTeSe{sub 2} samples.

  18. Analysis of archaeological materials through Scanning electron microscopy

    International Nuclear Information System (INIS)

    Camacho, A.; Tenorio C, D.; Elizalde, S.; Mandujano, C.; Cassiano, G.

    2005-01-01

    With the purpose to know the uses and the chemical composition of some cultural objects in the pre hispanic epoch this work presents several types of analysis for identifying them by means of the Scanning electron microscopy and its techniques as the Functional analysis of artifacts based on the 'tracks of use' analysis, also the X-ray spectroscopy and the X-ray dispersive energy (EDS) are mentioned, all of them allowing a major approach to the pre hispanic culture in Mexico. (Author)

  19. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  20. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  1. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  2. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  3. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  4. Electronic structure classifications using scanning tunneling microscopy conductance imaging

    International Nuclear Information System (INIS)

    Horn, K.M.; Swartzentruber, B.S.; Osbourn, G.C.; Bouchard, A.; Bartholomew, J.W.

    1998-01-01

    The electronic structure of atomic surfaces is imaged by applying multivariate image classification techniques to multibias conductance data measured using scanning tunneling microscopy. Image pixels are grouped into classes according to shared conductance characteristics. The image pixels, when color coded by class, produce an image that chemically distinguishes surface electronic features over the entire area of a multibias conductance image. Such open-quotes classedclose quotes images reveal surface features not always evident in a topograph. This article describes the experimental technique used to record multibias conductance images, how image pixels are grouped in a mathematical, classification space, how a computed grouping algorithm can be employed to group pixels with similar conductance characteristics in any number of dimensions, and finally how the quality of the resulting classed images can be evaluated using a computed, combinatorial analysis of the full dimensional space in which the classification is performed. copyright 1998 American Institute of Physics

  5. Resizing metal-coated nanopores using a scanning electron microscope.

    Science.gov (United States)

    Chansin, Guillaume A T; Hong, Jongin; Dusting, Jonathan; deMello, Andrew J; Albrecht, Tim; Edel, Joshua B

    2011-10-04

    Electron beam-induced shrinkage provides a convenient way of resizing solid-state nanopores in Si(3) N(4) membranes. Here, a scanning electron microscope (SEM) has been used to resize a range of different focussed ion beam-milled nanopores in Al-coated Si(3) N(4) membranes. Energy-dispersive X-ray spectra and SEM images acquired during resizing highlight that a time-variant carbon deposition process is the dominant mechanism of pore shrinkage, although granular structures on the membrane surface in the vicinity of the pores suggest that competing processes may occur. Shrinkage is observed on the Al side of the pore as well as on the Si(3) N(4) side, while the shrinkage rate is observed to be dependent on a variety of factors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Head-facial hemangiomas studied with scanning electron microscopy.

    Science.gov (United States)

    Cavallotti, Carlo; Cavallotti, Chiara; Giovannetti, Filippo; Iannetti, Giorgio

    2009-11-01

    Hemangiomas of the head or face are a frequent vascular pathology, consisting in an embryonic dysplasia that involves the cranial-facial vascular network. Hemangiomas show clinical, morphological, developmental, and structural changes during their course. Morphological, structural, ultrastructural, and clinical characteristics of head-facial hemangiomas were studied in 28 patients admitted in our hospital. Nineteen of these patients underwent surgery for the removal of the hemangiomas, whereas 9 patients were not operated on. All the removed tissues were transferred in our laboratories for the morphological staining. Light microscopy, transmission electron microscopy, and scanning electron microscopy techniques were used for the observation of all microanatomical details. All patients were studied for a clinical diagnosis, and many were subjected to surgical therapy. The morphological results revealed numerous microanatomical characteristics of the hemangiomatous vessels. The observation by light microscopy shows the afferent and the efferent vessels for every microhemangioma. All the layers of the arterial wall are uneven. The lumen of the arteriole is entirely used by a blood clot. The observation by transmission electron microscopy shows that it was impossible to see the limits of the different layers (endothelium, medial layer, and adventitia) in the whole wall of the vessels. Moreover, both the muscular and elastic components are disarranged and replaced with connective tissue. The observation by scanning electron microscopy shows that the corrosion cast of the hemangioma offers 3 periods of filling: initially with partial filling of the arteriolar and of the whole cast, intermediate with the entire filling of the whole cast (including arteriole and venule), and a last period with a partial emptying of the arteriolar and whole cast while the venule remains totally injected with resin. Our morphological results can be useful to clinicians for a precise

  7. Morphological classification of bioaerosols from composting using scanning electron microscopy

    International Nuclear Information System (INIS)

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-01-01

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors

  8. Scanning Electron Microscopic Hair Shaft Analysis in Ectodermal Dysplasia Syndromes.

    Science.gov (United States)

    Hirano-Ali, Stefanie A; Reed, Ashley M; Rowan, Brandon J; Sorrells, Timothy; Williams, Judith V; Pariser, David M; Hood, Antoinette F; Salkey, Kimberly

    2015-01-01

    The objective of the current study was to catalog hair shaft abnormalities in individuals with ectodermal dysplasia (ED) syndromes using scanning electron microscopy (SEM) and to compare the findings with those in unaffected controls. This is the second of a two-part study, the first of which used light microscopy as the modality and was previously published. Scanning electron microscopy was performed in a blinded manner on hair shafts from 65 subjects with seven types of ED syndromes and 41 unaffected control subjects. Assessment was performed along the length of the shaft and in cross section. Hair donations were collected at the 28th Annual National Family Conference held by the National Foundation for Ectodermal Dysplasia. Control subjects were recruited from a private dermatology practice and an academic children's hospital outpatient dermatology clinic. SEM identified various pathologic hair shaft abnormalities in each type of ED and in control patients. When hairs with all types of ED were grouped together and compared with those of control patients, the difference in the presence of small diameter and shallow and deep grooves was statistically significant (p < 0.05). When the EDs were separated according to subtype, statistically significant findings were also seen. SEM is a possible adjuvant tool in the diagnosis of ED syndromes. There are significant differences, with high specificity, between the hairs of individuals with ED and those of control subjects and between subtypes. © 2015 Wiley Periodicals, Inc.

  9. Scanning electron microscope autoradiography of critical point dried biological samples

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1980-01-01

    A technique has been developed for the localization of isotopes in the scanning electron microscope. Autoradiographic studies have been performed using a model system and a unicellular biflagellate alga. One requirement of this technique is that all manipulations be carried out on samples that are maintained in a liquid state. Observations of a source of radiation ( 125 I-ferritin) show that the nuclear emulsion used to detect radiation is active under these conditions. Efficiency measurement performed using 125 I-ferritin indicate that 125 I-SEM autoradiography is an efficient process that exhibits a 'dose dependent' response. Two types of labeling methods were used with cells, surface labeling with 125 I and internal labeling with 3 H. Silver grains appeared on labeled cells after autoradiography, removal of residual gelatin and critical point drying. The location of grains was examined on a flagellated green alga (Chlamydomonas reinhardi) capable of undergoing cell fusion. Fusion experiments using labeled and unlabeled cells indicate that 1. Labeling is specific for incorporated radioactivity; 2. Cell surface structure is preserved in SEM autoradiographs and 3. The technique appears to produce reliable autoradiographs. Thus scanning electron microscope autoradiography should provide a new and useful experimental approach

  10. Morphological classification of bioaerosols from composting using scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tamer Vestlund, A. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW (United Kingdom); Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T. [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom); Drew, G.H., E-mail: g.h.drew@cranfield.ac.uk [Institute for Energy and Resource Technology, Environmental Science and Technology Department, School of Applied Sciences, Cranfield University, Building 40, Bedfordshire MK43 0AL (United Kingdom)

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  11. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  12. Field Emission Scanning Electron Microscope (FESEM) Facility in BTI

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Foo, C.T.; Nor Azillah Fatimah Othman

    2015-01-01

    Field Emission Scanning Electron Microscope (FE-SEM) provides ultra-high resolution imaging at low accelerating voltages and small working distances. The GeminisSEM 500, a new FESEM imaging facility will be installed soon in MTEC, BTI. It provides resolution of the images is as low as 0.6 nm at 15 kV and 1.2 nm at 1 kV, allowing examination of the top surface of nano powders, nano film and nano fiber in the wide range of applications such as mineralogy, ceramics, polymer, metallurgy, electronic devices, chemistry, physics and life sciences. This system is equipped with several detectors to detect various signals such as secondary electrons (SE) detector for topographic information and back-scattered electrons (BSE) detector for materials composition contrast. Energy dispersive x-ray spectroscopy (EDS) with detector energy resolution of < 129 eV and detection limit in the range of 1000-3000 ppm coupled with FE-SEM is used to determine the chemical composition of micro-features including boron (B) to uranium (U). Wavelength dispersive x-ray spectroscopy (WDS) which has detector resolution of 2-20 eV and detection limit of 30-300 ppm coupled with FE-SEM is used to detect elements that cannot be resolved with EDS. The ultra-high resolution imaging combined with the high sensitivity WDS helps to resolve the thorium and rare earth elemental analysis. (author)

  13. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  14. Change of cobalt magnetic anisotropy and spin polarization with alkanethiolates self-assembled monolayers

    International Nuclear Information System (INIS)

    Campiglio, Paolo; Breitwieser, Romain; Repain, Vincent; Guitteny, Solène; Chacon, Cyril; Bellec, Amandine; Lagoute, Jérôme; Girard, Yann; Rousset, Sylvie; Sassella, Adele; Imam, Mighfar; Narasimhan, Shobhana

    2015-01-01

    We demonstrate that the deposition of a self-assembled monolayer of alkanethiolates on a 1 nm thick cobalt ultrathin film grown on Au(111) induces a spin reorientation transition from in-plane to out-of-plane magnetization. Using ab initio calculations, we show that a methanethiolate layer changes slightly both the magnetocrystalline and shape anisotropy, both effects almost cancelling each other out for a 1 nm Co film. Finally, the change in hysteresis cycles upon alkanethiolate adsorption could be assigned to a molecular-induced roughening of the Co layer, as shown by STM. In addition, we calculate how a methanethiolate layer modifies the spin density of states of the Co layer and we show that the spin polarization at the Fermi level through the organic layer is reversed as compared to the uncovered Co. These results give new theoretical and experimental insights for the use of thiol-based self-assembled monolayers in spintronic devices. (paper)

  15. Polarimetry on dense samples of spin-polarized {sup 3}He by magnetostatic detection

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R. [Mainz Univ. (Germany). Inst. fuer Physik

    1997-12-21

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized {sup 3}He gas contained in spherical glass cells at pressures around several bars. The {sup 3}He nuclear polarization can be extracted with high precision {Delta}P/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.). 29 refs.

  16. Polarimetry on dense samples of spin-polarized 3He by magnetostatic detection

    International Nuclear Information System (INIS)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R.

    1997-01-01

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized 3 He gas contained in spherical glass cells at pressures around several bars. The 3 He nuclear polarization can be extracted with high precision ΔP/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.)

  17. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  18. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  19. Cold Attractive Spin Polarized Fermi Lattice Gases and the Doped Positive U Hubbard Model

    International Nuclear Information System (INIS)

    Moreo, Adriana; Scalapino, D. J.

    2007-01-01

    Experiments on polarized fermion gases performed by trapping ultracold atoms in optical lattices allow the study of an attractive Hubbard model for which the strength of the on-site interaction is tuned by means of a Feshbach resonance. Using a well-known particle-hole transformation we discuss how results obtained for this system can be reinterpreted in the context of a doped repulsive Hubbard model. In particular, we show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state corresponds to the striped state of the two-dimensional doped positive U Hubbard model. We then use the results of numerical studies of the striped state to relate the periodicity of the FFLO state to the spin polarization. We also comment on the relationship of the d x 2 -y 2 superconducting phase of the doped 2D repulsive Hubbard model to a d-wave spin density wave state for the attractive case

  20. Vacancy-induced ferromagnetism in ZnO probed by spin-polarized positron annihilation spectroscopy

    Science.gov (United States)

    Maekawa, Masaki; Abe, Hiroshi; Miyashita, Atsumi; Sakai, Seiji; Yamamoto, Shunya; Kawasuso, Atsuo

    2017-04-01

    We investigated the ferromagnetism of ZnO induced by oxygen implantation by using spin-polarized positron annihilation spectroscopy together with magnetization measurements. The magnetization measurements showed the appearance of ferromagnetism after oxygen implantation and its disappearance during post-implantation annealing at temperatures above 573 K. The Doppler broadening of annihilation radiation (DBAR) spectrum showed asymmetry upon field reversal after oxygen implantation. The obtained differential DBAR spectrum between positive and negative magnetic fields was well-explained with a theoretical calculation considering zinc vacancies. The disappearance of the field-reversal asymmetry of the DBAR spectrum as a result of annealing agreed with the observations of ferromagnetism by magnetization measurements. These results suggest the radiation-induced zinc vacancies to be the source of the observed ferromagnetism of ZnO.

  1. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard; Pemmaraju, C. D.; Sanvito, Stefano; Ruiz, Eliseo

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green's function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  2. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  3. Studies of magnetism and exchange scattering in solids using synchroton radiation and spin-polarized photoemission. Progress report, June 1, 1982-May 31, 1983

    International Nuclear Information System (INIS)

    Rothberg, G.M.

    1983-01-01

    Some of the experiments necessary for proving the existence of Spin Polarized EXAFS (SPEXAFS) and for establishing it as a useful techncique for studying magnetism in solids have been carried out at the Stanford Synchrotron Radiation Laboratory (SSRL) and the National Synchrotron Light Source (NSLS). Transmission EXAFS, which does not depend on electron spin, has been measured in several manganese compounds. The 3s photopeaks of Mn 2 + in MnF 2 have been shown to display EXAFS-like oscillations. The pin dependence of these oscillations will next be studied. Observations of the 3p photopeaks of iron metal on a palladium substrate have shown anomalous intensity variations with varying photon energy. This phenomenon will also be studied further. The existence of Cooper minima in the iron 3s and 3p photoabsorption cross sections has been sought, and this investigation will continue

  4. Digital acquisition and processing of electron micrographs using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Engel, A.; Christen, F.; Michel, B.

    1981-01-01

    A digital acquisition system that collects multichannel information from a scanning transmission electron microscope (STEM) and its application are described. The hardware comprises (i) single electron counting detectors, (ii) a digital scan generator, (iii) a digital multi-channel on-line processor, (iv) an interface to a minicomputer, and (v) a display system. Experimental results characterizing these components are presented, and their performance is discussed. The software includes assembler coded programs for dynamic file maintenance and fast acquisition of image data, a display driver, and FORTRAN coded application programs. The usefulness of digitized STEM is illustrated by a variety of biological applications. (orig.)

  5. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  6. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  7. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  8. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  9. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  10. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  11. Enzymatic hydrolysis of Amaranth flour - differential scanning calorimetry and scanning electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Barba de la Rosa, A.P.; Paredes-Lopez, O.; Carabez-Trejo, A.; Ordorica-Falomir, C. (Instituto Politecnico Nacional, Irapuato (Mexico). Centro de Investigacion y de Estudios Avanzados)

    1989-11-01

    High-protein amaranth flour (HPAF) and carbohydrate rich fraction (CRF) were produced from raw flour in a single-step process using a heat-stable alpha-amylase preparation. Protein content of flour increased from 15 to about 30 or 39% at liquefaction temperatures of 70 or 90{sup 0}C, respectively and 30 min hydrolysis time. CRF exhibited 14-22 DE. Enzymatic action at 70{sup 0}C increased endotherm temperature and gelatinization enthalpy of HPAF, in relation to gelatinized flour, as assessed by differential scanning calorimetry (DSC). Hydrolysis at 90{sup 0}C did not affect significantly (P > 0.05) DSC peak temperature. It is suggested that these changes in DSC performance might result from differences in amount and type of low-molecular weight carbohydrates and residual starch. Scanning electron microscopy (SEM) demonstrated that hydrolysis temperature changed substantially the structural appearance of flour particles. HPAF and CRF might find applications as dry milk extender and sweetener, respectively. (orig.).

  12. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy.

    Science.gov (United States)

    van Berkel, A M; van Marle, J; Groen, A K; Bruno, M J

    2005-08-01

    Endoscopic insertion of plastic biliary endoprostheses is a well-established treatment for obstructive jaundice. The major limitation of this technique is late stent occlusion. In order to compare events involved in biliary stent clogging and identify the distribution of bacteria in unblocked stents, confocal laser scanning (CLS) and scanning electron microscopy (SEM) were carried out on two different stent materials - polyethylene (PE) and hydrophilic polymer-coated polyurethane (HCPC). Ten consecutive patients with postoperative benign biliary strictures were included in the study. Two 10-Fr stents 9 cm in length, one made of PE and the other of HCPC, were inserted. The stents were electively exchanged after 3 months and examined using CLS and SEM. No differences were seen between the two types of stent. The inner stent surface was covered with a uniform amorphous layer. On top of this layer, a biofilm of living and dead bacteria was found, which in most cases was unstructured. The lumen was filled with free-floating colonies of bacteria and crystals, surrounded by mobile laminar structures of mucus. An open network of large dietary fibers was seen in all of the stents. The same clogging events occurred in both PE and HCPC stents. The most remarkable observation was the identification of networks of large dietary fibers, resulting from duodenal reflux, acting as a filter. The build-up of this intraluminal framework of dietary fibers appears to be a major factor contributing to the multifactorial process of stent clogging.

  13. Trichomes of Cannabis sativa as viewed with scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, M C; Krikorian, A D

    1975-06-01

    Direct examination of fresh, unfixed and uncoated specimens from vegetative and floral parts of Cannabis sativa with the scanning electron microscope enables one to obtain a faithful representation of their surface morphology. The presence of two major types of trichomes has been confirmed: a glandular type comprising or terminating in a globoid structure, and a conically-shaped nonglandular type. Moreover, three or possibly four distinct glandular types can be distinguished: sessile globoid, small-stalked and large-stalked globoid, and a peltate type. The nonglandular trichomes can be distinguished by the nature of their surfaces: those with a warty surface, and those which are relatively smooth. The range of size and distribution, and the special features of all these types of trichomes are also provided.

  14. Conditioning of mealybug (Hemiptera: Pseudococcidae) by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Palma-Jimenez, Melissa; Blanco-Meneses, Monica

    2015-01-01

    The cleaning and correct observation of the mealybug specimens was determined by the conditioning methodology. The research was done in the Laboratorio del Centro de Investigacion en Estructuras Microscopicas (CIEMIC) of the Universidad de Costa Rica during the year 2012. A gradual improvement for the observation of the ultrastructures through the Scanning Electron Microscope was evidenced by the implementation of four types of methodologies. Each process was described in detail. The incorporation of 10% xylene (in some cases have been viable using ethanol at 95-100% ) was allowed to remove the wax from the body of the insect, to avoid this the collapse and to observe specific ultrastructures of the individual, they were the best results. The methodology used has reduced the time and costs in future taxonomic research of mealybug. (author) [es

  15. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    Science.gov (United States)

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  16. Optimization of permanganic etching of polyethylenes for scanning electron microscopy

    International Nuclear Information System (INIS)

    Naylor, K.L.; Phillips, P.J.

    1983-01-01

    The permanganic etching technique has been studied as a function of time, temperature, and concentration for a series of polyethylenes. Kinetic studies show that a film of reaction products builds up on the surface, impeding further etching, an effect which is greatest for the lowest-crystallinity polymers. SEM studies combined with EDS show that the film contains sulfur, potassium and some manganese. An artifact is produced by the etching process which is impossible to remove by washing procedures if certain limits of time, temperature, and concentration are exceeded. For lower-crystallinity polyethylenes multiple etching and washing steps were required for optimal resolution. Plastic deformation during specimen preparation, whether from scratches or freeze fracturing, enhances artifact formation. When appropriate procedures are used, virtually artifact-free surfaces can be produced allowing a combination of permanganic etching and scanning electron microscopy to give a rapid method for detailed morphological characterization of bulk specimens

  17. Scanning electron microscopy of cells from periapical lesions.

    Science.gov (United States)

    Farber, P A

    1975-09-01

    Examination of lymphocytes from peripheral blood with the scanning electron microscope (SEM) has shown differences between B cells and T cells on the basis of their surface architecture. This study was initiated to determine whether the cellular components of periapical lesions could be identified with the use of similar criteria. Cells were dispersed from lesions by aspiration of fragments of tissue through syringe needles of decreasing diameters. The liberated cells were filtered on silver-coated Flotronic membranes and examined under the SEM. Lymphocytes, macrophages, epithelial cells, and mast cells were observed in granulomas and cysts. Most of the lymphocytes had smooth surfaces similar to that of T cells; others had villous projections similar to that of B cells. Epithelial nests were seen in the cyst linings while the cyst fluid was rich in lymphocytes. These findings suggest that SEM examination of periapical lesions can be a useful adjunct in studying cellular composition and possible immunological reactions in these tissues.

  18. In situ ion etching in a scanning electron microscope

    International Nuclear Information System (INIS)

    Dhariwal, R.S.; Fitch, R.K.

    1977-01-01

    A facility for ion etching in a scanning electron microscope is described which incorporates a new type of electrostatic ion source and viewing of the specimen is possible within about 30 sec after terminating the ion bombardment. Artefacts produced during etching have been studied and cone formation has been followed during its growth. The instrument has provided useful structural information on metals, alloys, and sinters. However, although insulating materials, such as plastics, glass and resins, have been successfully etched, interpretation of the resultant micrographs is more difficult. Ion etching of soft biological tissues, such as the rat duodenum was found to be of considerable interest. The observed structural features arise from the selective intake of the heavy fixation elements by different parts of the tissue. Hard biological materials, such as dental tissues and restorative materials, have also been studied and the prismatic structure of the enamel and the form and distribution of the dentinal tubules have been revealed. (author)

  19. A scanning electron microscopic investigation of ceramic orthodontic brackets

    International Nuclear Information System (INIS)

    McDonald, F.; Toms, A.P.

    1990-01-01

    Ceramic brackets were introduced to overcome the esthetic disadvantages of stainless steel brackets. The clinical impression of these brackets is very favorable. However, the sliding mechanics used in the Straightwire (A Company, San Diego, CA, USA) system appear to produce slower tooth movements with ceramic compared to stainless steel brackets. To determine whether this was due to any obvious mechanical problem in the bracket slot, Transcend (Unitek Corporation/3M, Monrovia, CA, USA) ceramic brackets were examined by a scanning electron microscope and compared to stainless steel brackets.Consistently, large surface defects were found in the ceramic bracket slots that were not present in the metal bracket slots. These irregularities could obviously hinder the sliding mechanics of the bracket slot-archwire system and create a greater demand on anchorage. Conversely, the fitting surface of the Transcend ceramic bracket showed extremely smooth surface characteristics, and it would seem advisable for the manufacturers to incorporate this surface within the bracket slot. (author)

  20. Contained scanning electron microscope facility for examining radioactive materials

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1986-03-01

    At the Savannah River Laboratory (SRL) radioactive solids are characterized with a scanning electron microscope (SEM) contained in a glove box. The system includes a research-grade Cambridge S-250 SEM, a Tracor Northern TN-5500 x-ray and image analyzer, and a Microspec wavelength-dispersive x-ray analyzer. The containment facility has a glove box train for mounting and coating samples, and for housing the SEM column, x-ray detectors, and vacuum pumps. The control consoles of the instruments are located outside the glove boxes. This facility has been actively used since October 1983 for high alpha-activity materials such as plutonium metal and plutonium oxide powders. Radioactive defense waste glasses and contaminated equipment have also been examined. During this period the facility had no safety-related incidents, and personnel radiation exposures were maintained at less than 100 mrems

  1. Automated rapid particle investigation using scanning electron microscopy

    Science.gov (United States)

    Wilkins, Jerod Laurence

    The chemical composition of fly ash particles has been known to vary significantly depending on a number of factors. Current bulk methods of investigation including X-Ray Fluorescence and X-Ray Diffraction are thought to be inadequate in determining the performance of fly ash in concrete. It is the goal of this research to develop a method of Automated Rapid Particle Investigation that will not look at fly ash as a bulk material but as individual particles. By examining each particle individually scientists and engineers will have the ability to study the variation in chemical composition by comparing the chemistry present in each particle. The method of investigation developed by this research provides a practical technique that will allow the automated chemical analysis of hundreds, or even thousands, of fly ash particles in a matter of minutes upon completion of sample preparation and automated scanning electron microscope (ASEM) scanning. This research does not examine the significance of the chemical compounds discovered; rather, only the investigation methodology is discussed. Further research will be done to examine the importance of the chemistry discovered with this automated rapid particle investigation technique.

  2. Scanning electron microscopy of Strongylus spp. in zebra.

    Science.gov (United States)

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  4. Cathodoluminescence of semiconductors in the scanning electron microscope

    International Nuclear Information System (INIS)

    Noriegas, Javier Piqueras de

    2008-01-01

    Full text: Cathodoluminescence (CL) in the scanning electron microscope (SEM) is a nondestructive technique, useful for characterization of optical and electronic properties of semiconductors, with spatial resolution. The contrast in the images of CL is related to the presence of crystalline defects, precipitates or impurities and provides information on their spatial distribution. CL spectra allows to study local energy position of localized electronic states. The application of the CL is extended to semiconductor very different characteristics, such as bulk material, heterostructures, nanocrystalline film, porous semiconductor, nanocrystals, nanowires and other nano-and microstructures. In the case of wafers, provides information on the homogeneity of their electronic characteristics, density of dislocations, grain sub frontiers, distribution of impurities and so on. while on the study of heterostructures CL images can determine, for example, the presence of misfit dislocations at the interface between different sheets, below the outer surface of the sample. In the study of other low dimensional structures, such as nanocrystalline films, nanoparticles and nano-and microstructures are observed elongated in some cases quantum confinement effects from the CL spectra. Moreover, larger structures, the order of hundreds of nanometers, with forms of wires, tubes or strips, is that in many semiconductor materials, mainly oxides, the behavior of luminescence is different from bulk material. The microstructures have a different structure of defects and a greater influence of the surface, which in some cases leads to a higher emission efficiency and a different spectral distribution. The presentation describes the principle of the CL technique and examples of its application in the characterization of a wide range of both semiconductor materials of different composition, and of different sizes ranging from nanostructures to bulk samples

  5. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    International Nuclear Information System (INIS)

    Eslami, Leila; Esmaeilzadeh, Mahdi

    2014-01-01

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted

  6. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Science.gov (United States)

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  7. Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark Schulz

    2011-08-01

    Full Text Available Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables.

  8. Scanning transmission electron microscopy: Albert Crewe's vision and beyond

    International Nuclear Information System (INIS)

    Krivanek, Ondrej L.; Chisholm, Matthew F.; Murfitt, Matthew F.; Dellby, Niklas

    2012-01-01

    Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5 Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples. -- Highlights: ► TV-rate STEM imaging of heavy atoms is demonstrated. ► DNA sequencing by STEM dark field imaging should be possible at a rate of 10 6 bases/s. ► Individual silicon atom impurities in graphene are imaged atom-by-atom. ► Single atoms of nitrogen and boron incorporated in graphene are imaged spectroscopically. ► Bonding of individual atoms can be probed by analyzing the fine structures of their EEL spectra.

  9. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  10. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  11. Studies of ultrathin magnetic films and particle-surface interactions with spin-sensitive electron spectroscopies

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1991-06-01

    Research during the current grant year has focused on: Investigation of probing depth in electron scattering from epitaxially grown paramagnetic films by means of Spin-Polarized Electron Energy Loss Spectroscopy; and studies of the dynamics of metastable He(2 3 S) deexcitation at surfaces utilizing Spin-Polarized Metastable Deexcitation Spectroscopy . This report discussed this research

  12. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  13. Onset of Spin Polarization in Four-Gate Quantum Point Contacts

    Science.gov (United States)

    Jones, Alex

    A series of simulations which utilize a Non-equilibrium Green's function (NEGF) formalism is suggested which can provide indirect evidence of the fine and non-local electrostatic tuning of the onset of spin polarization in two closely spaced quantum point contacts (QPCs) that experience a phenomenon known as lateral spin-orbit coupling (LSOC). Each of the QPCs that create the device also has its own pair of side gates (SGs) which are in-plane with the device channel. Numerical simulations of the conductance of the two closely spaced QPCs or four-gate QPC are carried out for different biasing conditions applied to two leftmost and rightmost SGs. Conductance plots are then calculated as a function of the variable, Vsweep, which is the common sweep voltage applied to the QPC. When Vsweep is only applied to two of the four side gates, the plots show several conductance anomalies, i.e., below G0 = 2e2/h, characterized by intrinsic bistability, i.e., hysteresis loops due to a difference in the conductance curves for forward and reverse common voltage sweep simulations. The appearance of hysteresis loops is attributed to the co-existence of multistable spin textures in the narrow channel of the four-gate QPC. The shape, location, and number of hysteresis loops are very sensitive to the biasing conditions on the four SGs. The shape and size of the conductance anomalies and hysteresis loops are shown to change when the biasing conditions on the leftmost and rightmost SGs are swapped, a rectifying behavior providing an additional indirect evidence for the onset of spontaneous spin polarization in nanoscale devices made of QPCs. The results of the simulations reveal that the occurrence and fine tuning of conductance anomalies in QPC structures are highly sensitive to the non-local action of closely spaced SGs. It is therefore imperative to take into account this proximity effect in the design of all electrical spin valves making use of middle gates to fine tune the spin

  14. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  15. Optically Polarized Conduction-Band Electrons in Tungsten Observed by Spin-Polarized Photoemission

    DEFF Research Database (Denmark)

    Zürcher, P.; Meier, F.; Christensen, N. E.

    1979-01-01

    Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV......Along the (100) direction of tungsten, interband transitions induced by circularly polarized light of energy 1.5 eV...

  16. Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Brenneis Christian

    2006-11-01

    Full Text Available Abstract Background The mechanisms leading to death and functional impairments due to cerebral malaria (CM are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM so far. The present study investigates the neuropathological features of murine CM by applying SEM. Methods C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. Results Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. Conclusion The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies.

  17. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  18. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  19. An overview on bioaerosols viewed by scanning electron microscopy

    International Nuclear Information System (INIS)

    Wittmaack, K.; Wehnes, H.; Heinzmann, U.; Agerer, R.

    2005-01-01

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 μm. The collected particles, sampled for short periods (∼15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C 60 or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces

  20. In situ fatigue loading stage inside scanning electron microscope

    Science.gov (United States)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.