WorldWideScience

Sample records for spin-polarized liquid 3he

  1. Microscopic theory of fully spin-polarized /sup 3/He

    Energy Technology Data Exchange (ETDEWEB)

    Glyde, H.R.; Hernadi, S.I.

    1983-01-01

    The ground state energy (E), Landau parameters (F) and single particle energy spectrum (epsilon(kappa) and m/sup */) in fully spin polarized liquid /sup 3/He (/sup 3/He) are calculated directly from the bare interatomic potential within the Galitskii-Feynmann T-matrix and Hartree-Fock (GFHF) approximations. The E agrees well with variational calculations, the F with model calculations and the epsilon(kappa) and m/sup */ with results expected from nuclear matter. This suggests the effective interaction in /sup 3/He is dominated by hard core repulsion and Fermi statistics and that these components of the full interaction can be well described from first principles by a GF T-matrix. 36 references, 3 figures, 1 table.

  2. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  3. Calculations of static properties of spin-polarized 3He--4He mixtures

    International Nuclear Information System (INIS)

    Owers-Bradley, J.R.; Bowley, R.M.; Main, P.C.

    1985-01-01

    The theory of dilute mixtures of 3 He in 4 He that have been polarized by a strong magnetic field is developed. The interaction between the quasiparticles is taken to be constant, an approximation valid at low temperatures. The polarization of the mixture depends on the strength of the interaction. The internal energy, the specific heat, the osmotic pressure, and the velocity of second sound are also calculated. The specific heat is relatively insensitive to the interaction, but it does change significantly with magnetic field. The osmotic pressure is more sensitive to the effects of the interaction for some 3 He concentrations and temperatures. The velocity of second sound behaves qualitatively like the osmotic pressure. The measurement of these quantities as a function of temperature and magnetic field is discussed with a view to obtaining the strength of the interaction between quasiparticles

  4. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  5. Microscopic theory of normal liquid 3He

    International Nuclear Information System (INIS)

    Nafari, N.; Doroudi, A.

    1994-03-01

    We have used the self-consistent scheme proposed by Singwi, Tosi, Land and Sjoelander (STLS) to study the properties of normal liquid 3 He. By employing the Aziz potential (HFD-B) and some other realistic pairwise interactions, we have calculated the static structure factor, the pair-correlation function, the zero sound frequencies as a function of wave-vector, and the Landau parameter F s 0 for different densities. Our results show considerable improvement over the Ng-Singwi's model potential of a hard core plus an attractive tail. Agreement between our results and the experimental data for the static structure factor and the zero sound frequencies is fairly good. (author). 30 refs, 6 figs, 2 tabs

  6. Surface study of liquid 3He using surface state electrons

    International Nuclear Information System (INIS)

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  7. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  8. A liquid 3He target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Abegg, R.; Murdoch, B.T.; Van Oers, W.T.H.; Postma, H.; Soukup, J.

    1981-01-01

    A liquid 3 He target system, with remote instrumentation and handling capabilities, has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. 3 He gas is liquified, by means of a 4 He cryostat, into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approx. equal to1.6 K. This provides an areal target density of approx. equal to2.7 x 10 22 3 He nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (orig.)

  9. Positive ion mobilities in normal liquid 3He at ultralow temperatures

    International Nuclear Information System (INIS)

    Alexander, P.W.

    1978-11-01

    The mobility has been measured of positive ions in liquid 3 he in the range 2.5 mK 3 sub(m)/sup(V) 5 sub(m)/sup(V). The effects of 500 p.p.m. 4 He in the 3 He were investigated. It was found that, at low temperatures, several stable ion species could be produced for 3 He pressures of 23 bar and above and, between 25 mK and 60 mK, time dependent conversion from one species of ion to another was observed at all pressures. The creation mechanism, mobility and stability of multiple positive ions were studied. Possible explanations of the phenomena are discussed. The measured drift field dependence of mobility is used to test the quasiparticle scattering model assumed for the liquid. (U.K.)

  10. Binding energy of one [sup 4]He impurity in liquid [sup 3]He

    Energy Technology Data Exchange (ETDEWEB)

    Boronat, J. (Universitat Politecnica de Catalunya, Barcelona (Spain)); Saavedra, F.A. de; Buendia, E. (Universidad de Granola (Spain)); Polls, A. (Universitat de Barcelona (Spain))

    1994-02-01

    A variational microscopic calculation of the binding energy of a [sup 4]He impurity ([mu][sub I]) in homogeneous liquid [sup 3]He at zero temperature is presented. Starting on an extended Jastrow-Slater wave function including three-body correlations, the expression for [mu][sub I] is derived and the appropriated FHNC formalism for this problem is reviewed. In the framework of the Average Correlation Approximation (ACA), it is proved that it is possible to obtain the chemical potential of the impurity only from liquid [sup 3]He magnitudes with a good accuracy. The results are consistent with both a recent experimental determination of [mu][sub I] at zero pressure and the non-solubility of [sup 4]He in [sup 3]He. However, numerical uncertainties preclude a firm conclusion about the latter property.

  11. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  12. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  13. Second sound, osmotic pressure, and Fermi-liquid parameters in 3He-4He solutions

    International Nuclear Information System (INIS)

    Corruccini, L.R.

    1984-01-01

    Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values for the Landau compressibility parameter F 0 /sup s/ in 3 He- 4 He solutions. Data are presented as a function of pressure and 3 He concentration, and are compared to theoretical predictions. The square of the second-sound velocity at finite temperature is found to be accurately proportional to the internal energy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk theory, the square of the velocity is found to separate into two parts: a temperature-dependent part characterized completely by ideal Fermi-gas behavior and a temperature-independent part containing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic pressure

  14. Nuclear Susceptibility of Normal Liquid ^3He at Saturated Vapor Pressure

    Science.gov (United States)

    Mikhalchuk, A. G.; White, K. S.; Bozler, H. M.; Gould, C. M.

    2001-03-01

    The authoritative reference for the nuclear susceptibility of liquid ^3He is work done 30 years ago at Duke University.(H. Ramm, P. Pedroni, J.R. Thompson, and H. Meyer, J. Low Temp. Phys.) 2, 539 (1970). However, recent work in Grenoble(S. Triqueneaux, E. Collin, R. Harakaly, C. Bäuerle, Yu.M. Bunkov, and H. Godfrin, QFS 2000 Proceedings (to be published).) and USC(A.G. Mikhalchuk, K.S. White, H.M. Bozler, and C.M. Gould, QFS 2000 Proceedings (to be published).) has called into question the precise temperature dependence of the liquid's susceptibility and its limiting value at zero temperature. This latter quantity directly affects the first antisymmetric Landau parameter of the normal Fermi liquid. We present here our conclusions regarding this problem.

  15. New data on the heat capacity of liquid /sup 3/He

    Energy Technology Data Exchange (ETDEWEB)

    Roach, P.R.; Eckstein, Y.; Meisel, M.W. (Argonne National Lab., IL (USA). Solid State Science Div.)

    Recent heat capacity measurements on liquid /sup 3/He by Haavasoja have shown much smaller values than previous measurements by Wheatley. We have measured Psub(v)(T) from which we can derive values for dCsub(v)/dv. A comparison with values of dCsub(v)/dv obtained from the actual heat capacity measurements shows agreement between our data and those from the heat capacities of Wheatley but disagreement with those from the heat capacities of Haavasoja. This suggest that the large discrepancy between the two sets of heat capacities originates with a problem in the data of Haavasoja.

  16. Collective classical and quantum fields in plasmas, superconductors, superfluid $^{3}$He, and liquid crystals

    CERN Document Server

    Hagen Kleinert

    2018-01-01

    This is an introductory book dealing with collective phenomena in many-body systems. A gas of bosons or fermions can show oscillations of various types of density. These are described by different combinations of field variables. Especially delicate is the competition of these variables. In superfluid 3He, for example, the atoms can be attracted to each other by molecular forces, whereas they are repelled from each other at short distance due to a hardcore repulsion. The attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations. The combination is what finally led to the discovery of superfluidity in 3He. In general, the competition between various channels can most efficiently be studied by means of a classical version of the Hubbard-Stratonovich transformation. A gas of electrons is controlled by the interplay of plasma oscillations and pair formation. In a system of rod- or disc-like molecules, liquid crystals are observed with directional orientations that behave in ...

  17. New data on the heat capacity of liquid /sup 3/He

    Energy Technology Data Exchange (ETDEWEB)

    Roach, P.R.; Eckstein, Y.; Meisel, M.W.

    1981-01-01

    Recent heat capacity measurements on liquid /sup 3/He by Haavasoja have shown much smaller values than previous measurements by Wheatley. We have measured P/sub v/(T) from which we can derive values for par. deltaC/sub v/par. delta v. A comparison with values of par. deltaC/sub v//par. delta v obtained from the actual heat capacity measurements shows agreement between our data and those from the heat capacities of Wheatley but disagreement with those from the heat capacities of Haavasoja. This suggests that the large discrepancy between the two sets of heat capacities originates with a problem in the data of Haavasoja.

  18. 3He impurity states on liquid 4He: From thin films to the bulk surface

    International Nuclear Information System (INIS)

    Pavloff, N.; Treiner, J.

    1991-01-01

    The structure of the states accessible to 3 He impurities in films of liquid 4 He on Nuclepore is investigated using a density functional approach with a finite-range effective interaction. In thick films, one finds that the two lowest states are localized in the surface region. For thinner films, the variation with film thickness of the first three states results from a delicate balance between the attractive tail of the substrate potential and the quantum finite-size effect. The existence of states localized in the second layer of the films is discussed. The energy difference between the ground state and the first excited state agrees with the recent determination of Higley, Sprague, and Hallock from magnetization measurements. The effective mass of the ground state has a structure similar to that obtained by Krotscheck and coworkers and exhibits a maximum for a 4 He coverage of 0.15 angstrom -2 , in agreement with the data of Gasparini and coworkers. A similar behavior is predicted for the effective mass of the first, second, and third excited states. The structure of the energy spectrum may also explain former results on third-sound measurements in thin mixture films by Laheurte et al. and by Hallock

  19. On the use of the cold time-of-flight spectrometer in Studsvik for liquid 3He measurements

    International Nuclear Information System (INIS)

    Faak, Bjoern.

    1989-01-01

    The time-of-flight spectrometer for cold neutrons at the R2 reactor in Studsvik has been reconstructed. The design and the performance of the instrument are briefly described. Improvements required for measurement of the neutron scattering function of liquid 3 He are discussed. (author)

  20. Dielectric constant of 3He near the liquid-vapor critical point

    International Nuclear Information System (INIS)

    Doiron, T.; Meyer, H.

    1978-01-01

    High-resolution measurements of the static dielectic constant epsilon along the critical isochore are reported for 3 He in the region of the critical point. The experiments were conducted at a frequency of 1000 Hz and the purpose was to observe a divergence of (partialepsilon/partialT)/sub rhoc/ as T/sub c/ is approached from above. No evidence for a critical anomaly was found, the estimated upper bound for its integrated value being deltaepsilon approx. 4 x 10 -8 which is consistent with the theoretical estimations. Hence the recently reported is not observed in 3 He. In the Appendix, some experimental questions arising in such constant-density experiments are discussed

  1. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  2. Nuclear magnetism of liquid 3He: new determination of the Landau parameter F0a

    International Nuclear Information System (INIS)

    Goudon, V.

    2006-10-01

    He 3 is a liquid Fermi model, isotropic, with an attainable Fermi temperature and the interaction between atoms can be controlled by changing the pressure of the liquid. In this document, we present accurate NMR measurements of the nuclear magnetic susceptibility of liquid He 3 as a function of temperature and pressure. The emphasis has been placed on reliable thermometry and on He 3 pressure measurements directly in the cell to increase the measuring range until solidification, and an accurate characterization of the NMR spectrometer. Our measurements give an effective Fermi temperature 5% lower than former results. The Landau parameter F 0 a depends on the effective mass, which is determined by specific heat measurements, and consequently on the temperature scale. The re-analysis of the specific heat measurements with the PLTS-2000 temperature scale yields an effective mass increase of 4.5%. In this document, F 0 a is determined for 2 temperature scales (PLTS-2000 and Greywall). Contrarily to former measurements, the F 0 a density dependence does not show any saturation at high pressures. (author)

  3. Magnetization-dependent viscosity in brute-force-polarized liquid 3He

    DEFF Research Database (Denmark)

    Vermeulen, G.A.; Schuhl, A.; Joffrin, J.

    1988-01-01

    A new method to measure the magnetization dependence of the viscosity in polarized liquid He3 is presented. The magnetization is obtained by "brute-force polarization" at 45 mK in magnetic fields up to 11 T; it is subsequently destroyed by saturation of the NMR signal. Our result, a relative...... increase of the viscosity of (31.5)×10-3 at 3.9% polarization and a pressure of 30 bars, disagrees with a prediction based on the "nearly metamagnetic" model....

  4. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  5. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-01-01

    Values of the concentration susceptibility (par. deltax/par. deltaΔ)/sub T,P/ near the lambda line and tricritical point in liquid mixtures of 3He and 4 He were calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambrs separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature

  6. Experiment on the melting pressure of spin polarized He3

    DEFF Research Database (Denmark)

    Chapellier, M.; Olsen, M.; Rasmussen, Finn Berg

    1981-01-01

    In liquid He in a Pomeranchuk cell, the melting curve has been observed to be suppressed, presumably in regions with a strong local spin polarization. In the temperature range 30-50 mK the observed suppression was 60-80 kPa. The corresponding local polarization is estimated, in a crude model, to ...

  7. First- and zero-sound velocity and Fermi liquid parameter F2s in liquid 3He determined by a path length modulation technique

    International Nuclear Information System (INIS)

    Hamot, P.J.; Lee, Y.; Sprague, D.T.

    1995-01-01

    We have measured the velocity of first- and zero-sound in liquid 3 He at 12.6 MHz over the pressure range of 0.6 to 14.5 bar using a path length modulation technique that we have recently developed. From these measurements, the pressure dependent value of the Fermi liquid parameter F 2 s was calculated and found to be larger at low pressure than previously reported. These new values of F 2 s indicate that transverse zero-sound is a propagating mode at all pressures. The new values are important for the interpretation of the frequencies of order parameter collective modes in the superfluid phases. The new acoustic technique permits measurements in regimes of very high attenuation with a sensitivity in phase velocity of about 10 ppm achieved by a feedback arrangement. The sound velocity is thus measured continuously throughout the highly attenuating crossover (ωt ∼ 1) regime, even at the lowest pressures

  8. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  9. Study of 3He Rabi nutations by optically-pumped cesium magnetometers

    Science.gov (United States)

    Koch, Hans-Christian; Bison, Georg; Grujić, Zoran Dragan; Heil, Werner; Kasprzak, Malgorzata; Knowles, Paul; Kraft, Andreas; Pazgalev, Anatoly; Schnabel, Allard; Voigt, Jens; Weis, Antoine

    2017-10-01

    We describe a method for recording the Rabi nutation of nuclear spin polarized 3He by optically pumped cesium magnetometers. The measurement is performed by detecting the time-dependent magnetic field produced by the 3He magnetization. The observed signals are compared to theoretical models and the results are used to precisely trace the evolution of the magnetization. This procedure represents a convenient way to control and measure the Rabi flip angle and the degree of spin polarization in experiments using 3He magnetometers. The method requires only very coarse knowledge of the applied magnetic field's magnitude.

  10. Polarized, compressed 3He-gas and its applications. Chapter 6

    International Nuclear Information System (INIS)

    Otten, E.

    1997-01-01

    Optical pumping of 3 He has been a subject of studies in atomic physics for very many years. With the advent of powerful pumping lasers it became possible and worthwhile to start a research and development program towards production of large quantities of spin polarized 3 He. Polarization preserving compression techniques as well as storage cells with relaxation times exceeding several days were developed. Production rates of order 1 bar liter/h were achieved at a polarization of about 50%. Such large amounts of spin polarized 3 He-gas are necessary and useful for interdisciplinary applications

  11. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  12. Neutron inelastic sattering from liquid 3He at 40 mK and at 1.2 K

    International Nuclear Information System (INIS)

    Skoeld, K.; Pelizzari, C.A.

    1978-01-01

    In a previous neutron scattering experiment on 3 He at T = 15 mK the present authors observed two peaks in the scattering function which were identified as the zero sound mode and the spin-fluctuation peak respectively. These results are different from those obtained by others at T = 0.63 K in which case no such structure was observed. In order to determine whether this discrepancy is due to the difference in the temperature of the two experiments, measurements have now been made at T = 40 mK and at T = 1.2 K. These results show that the two-peak structure persists at the higher temperature although measurable broadening is observed in the spin-fluctuation part of the spectrum. (author)

  13. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-06-01

    Values of the concentration susceptibility near the lambda line and tricritical point in liquid mixtures of 3 He and 4 He have been calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambers separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature. Osmotic equilibrium was established through a Vycor glass superleak, which for 3 He mole fraction x > 0.55 functions not only in the superfluid phase but in portions of the normal fluid region of the phase diagram as well. Measurements were made at four 3 He mole fractions, x = 0.59, x = 0.64, x = 0.68, and x = 0.70. In contrast with determinations from light scattering and vapor pressure measurements, the present measurements show a pronounced peak at the lambda transition for the two values of x less than the tricritical value (x/sub t/ = 0.675). The susceptibilities are consistent with α = 0 both above and below the lambda transition except at x = 0.64, where some combination of α and α' greater than zero seems to be preferred. (The result α = 0 corresponds to a logarithmic divergence.) It is possible that this positive value of α or α' represents the influence of tricritical effects. It should be emphasized that there is considerable ambiguity in our determination of α, with acceptable least-squares fits corresponding to values of α between 0.0 and 0.2 being found at both concentrations, both above and below T/sub lambda/. The results appear to be consistent with the results of other experiments away from the lambda line, and also to be consistent with a simple tricritical scaling relationship

  14. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  15. Van der Waals molecular dimers (He2)2 in solutions of the quantum liquids He3-He II

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1980-01-01

    Bound states of a pair of impurity He 3 quasiparticles produced as a result of van der Waals attraction at the free surface, in thin films, in narrow capillaries and at vortex filaments in superfluid He 4 are investigated. The contribution of bound states to the thermodynamics of the solution becomes predominant on lowering of the temperature. The inelastic absorption coefficient of first sound due to decay of the bound state in the field of an acoustic wave is calculated. For a system of impurity excitations in narrow capillaries or vortex filaments the existence of a resonance singularity (at a frequency corresponding to the threshold for bound state splitting) is predicted for which the absorption coefficient for monochromatic sound becomes infinite. The gas-liquid phase transition temperature and superfluid transition temperature are calculated for a Bose system of van der Waals (He 3 ) 2 pairs at the surface or in thin He II films. It is shown that the superfluid transition temperature may be of the order of 35 mK

  16. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  17. Differential osmotic pressure measurements of the concentration susceptibility of liquid 3He/4He mixtures near the lambda curve and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.; Zimmermann, W. Jr.

    1979-01-01

    Values of the concentration susceptibility (partial x/partial Δ)/sub T/,P of liquid 3 He/ 4 He mixtures have been determined near the lambda curve and tricritical point from measurements of the differential osmotic pressure as a function of temperature T at four values of the 3 He mole fraction, x = 0.594, x = 0.644, x = 0.680, and x = 0.706. Here Δ = μ 3 - μ 4 is the difference between molar chemical potentials and P is the pressure. Our results for the two values of x less than the tricritical value x/sub t/ = 0.675 show pronounced peaks at the lambda transition. For 3 x 10 -4 -2 , where t equals [T - T/sub lambda/(x)]/T/sub lambda/(x), these peaks may be characterized both above and below the transition by the form (A/sub plus-or-minus//α/sub plus-or-minus/) (vertical-bart vertical-bar/sup -alpha/ +- - 1) + B/sub plus-or-minus/, with exponents α/sub plus-or-minus/ lying in the range from approx. 0.0 to approx. 0.2. Except perhaps for x -1 [T-T/sub t//T/sub t/)/vertical-barx-x/sub t//x/sub t/vertical-bar], where f and Ψ are functions determined by experiment and T/sub t/ = 0.867 K is the tricritical value of T. With the aid of this scaling relationship, the behavior of (partialx/partialΔ)/sub T/,P along curves of constant Δ near the lambda curve has been constucted from our data at constant x

  18. Spin-polarized deuterium in magnetic traps

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.

    1987-01-01

    We have calculated the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero-temperature limit. Results indicate that a gas of low-field--seeking deuterium atoms trapped in a static magnetic field minimum decays rapidly into an ultrastable gas of doubly spin-polarized deuterium. We also discuss the temperature dependence of various effects

  19. Small objects in superfluid 3He

    International Nuclear Information System (INIS)

    Rainer, D.; Vuorio, M.

    1977-02-01

    Distortions in the superfluid order parameter around a small object in 3 He are calculated together with the supercurrents and the angular momentum induced by it in the liquid. The forces acting on the impurity by the liquid texture structure are also considered. (author)

  20. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  1. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  2. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  3. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  4. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    coupled to semi-empirical hardness theory proved effective in hardness prediction for the metal borides which agree well with the experimental values. These results would help to gain insight into the spin-polarized effect on the structural and bond hardness. Keywords. Iron boride; DFT; spin polarized; critical pressure; ...

  5. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  6. Detecting Spin-Polarized Currents in Ballistic Nanostructures

    DEFF Research Database (Denmark)

    Potok, R.; Folk, J.; M. Marcus, C.

    2002-01-01

    We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact....

  7. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  8. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  9. The 3He Supply Problem

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.

    2009-05-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the world’s 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

  10. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  11. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  12. A frozen spin polarized target for S134

    CERN Multimedia

    1974-01-01

    The CERN-ETH, Zurich-Helsinki-Imperial College-Southampton Collaboration used a frozen spin polarized target together with the ETH spectrometer magnet to study spin effects (S134). Beam was d31 in South Hall

  13. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  14. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  15. Quantum properties of spin polarized helium 3 optically oriented by a LNA laser

    International Nuclear Information System (INIS)

    Leduc, M.; Laloe, F.; Nacher, P.J.; Tastevin, G.; Daniels, J.M.; Betts, D.

    1986-01-01

    Spin polarized helium 3 (/sup 3/He increasing) and also atomic hydrogen (H decreasing) are systems exhibiting a number of unusual and interesting properties at low temperature. This is true even for dilute polarized gases in spite of the weakness of the nuclear magnetic interaction between atoms. The changes in the macroscopic properties of the gas with the nuclear polarization P are pure consequences of the indistinguishability of the particles and of the symmetrization principle in quantum mechanics. The transport properties of the gas, such as viscosity and thermal conductivity, have been calculated and found to be strongly dependent on P below a few kelvins. Spin transport in /sup 3/He increasing gives rise at low temperature to collective oscillatory modes: the transverse spin waves. Large changes are also expected with P in the case of more dense /sup 3/He fluids, such as an increase with P in the saturated vapor pressure. Optical pumping is a convenient technique for efficient polarization of the nuclear spins in /sup 3/He gas/sup 2/ making use of the 2/sup 3/S-2/sup 3/P atomic line at 1.08 μm. The arrival of cw tunable lasers in the near IR in the early 1980s gave a strong impulse to the buildup of experiments with a view to measuring quantum properties of /sup 3/He increasing at low temperature. Color center lasers (F/sup +//sub 2/ in NaF) provide P values up to 70%. They are now being replaced by more easy to handle LNA lasers which have given so far P in excess of 50% at room temperature. At low temperature, direct optical pumping of a /sup 3/He cell leads to poor P values; for that reason a different technique is used

  16. Spin polarized Auger electron spectroscopy of Fe and Ni

    Science.gov (United States)

    Anilturk, O. S.; Koymen, A. R.

    2001-06-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster-Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M23) threshold is observed on both samples.

  17. Spin polarized Auger electron spectroscopy of Fe and Ni

    International Nuclear Information System (INIS)

    Anilturk, O. S.; Koymen, A. R.

    2001-01-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster - Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M 23 ) threshold is observed on both samples. [copyright] 2001 American Institute of Physics

  18. Lagrangian of superfluid 3He

    International Nuclear Information System (INIS)

    Theodorakis, S.

    1988-01-01

    This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition

  19. Recent Spin Pump Experiments on Superfluid 3He-A1

    Science.gov (United States)

    Yamaguchi, A.; Kamada, N.; Motoyama, G.; Sumiyama, A.; Aoki, Y.; Okuda, Y.; Kubota, M.; Kojima, H.

    2013-05-01

    The superfluid 3He A1 phase, containing a spin-polarized condensate allows us to explore the dynamics of superfluid spin current. In the mechano-spin effect (MSE), a mechanically applied pressure gradient and a superleak-spin filter enable one to directly boost spin polarization of 3He in a small chamber. We are developing new apparatus for achieving greater enhancement of spin density. A development of a new-type 3He-hydraulic actuator has been already reported. We present here the construction of new-type of superleak-spin-filter made of packed powder aluminum oxide (referred as PAP-SL). The PAP-SL is popular in the study of superfluid 4He, but has not been established for that of the superfluid 3He. The attempt to construct the PAP-SL for the spin pump experiment was made by using aluminum oxide powder with nominal 1 μm powder diameter and with packing fraction of 40 %. Before executing the experiment, the nuclear demagnetization cryostat of ISSP, Univ. Tokyo which has been used for this experimental activity, was heavily damaged by the 2011 Great East Japan (Higashi Nihon) Earthquake. The repair work and earthquake damage protection strengthening has just been accomplished.

  20. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  1. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  2. Spin-polarized inelastic tunneling through insulating barriers.

    Science.gov (United States)

    Lu, Y; Tran, M; Jaffrès, H; Seneor, P; Deranlot, C; Petroff, F; George, J-M; Lépine, B; Ababou, S; Jézéquel, G

    2009-05-01

    Spin-conserving hopping transport through chains of localized states has been evidenced by taking benefit of the high degree of spin-polarization of CoFeB-MgO-CoFeB magnetic tunnel junctions. In particular, our data show that relatively thick MgO barriers doped with boron favor the activation of spin-conserving inelastic channels through a chain of three localized states and leading to reduced magnetoresistance effects. We propose an extension of the Glazman-Matveev theory to the case of ferromagnetic reservoirs to account for spin-polarized inelastic tunneling through nonmagnetic localized states embedded in an insulating barrier.

  3. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  4. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  5. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  6. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  7. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.

    1992-01-01

    This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range

  8. Spin-Polarized Semiconductor Induced by Magnetic Impurities in Graphene

    OpenAIRE

    Daghofer, Maria; Zheng, Nan; Moreo, Adriana

    2010-01-01

    Magnetic impurities adsorbed on graphene are coupled magnetically via the itinerant electrons. This interaction opens a gap in the band structure of graphene. The result strongly depends on how the magnetic impurities are distributed. While random doping produces a semiconductor, if all or most impurities are located in the same sublattice, the spin degeneracy is removed and a spin-polarized semiconductor arises.

  9. Spin polarization effects in low-energy elastic electron scattering

    International Nuclear Information System (INIS)

    Beerlage, M.J.M.

    1982-01-01

    This work describes experiments on the role of spin polarization in elastic electron scattering. Chapter I introduces the topic and in chapter II elastic scattering of 10-50 eV electrons from Ar and Kr in the angular range between 40 0 and 110 0 is studied. Noble gases have been chosen as targets in view of their relative theoretical simplicity. Below 25 eV scattered intensities measured by various authors exhibit severe disagreements. However, in the entire energy range, the spin polarization results can reasonably well be used to point out the shortcomings of the available theoretical data. The main topic of chapter III is the first attempt to determine the magnitude of a polarization phenomenon - in elastic electron scattering from the optically active camphor molecule - of which the existence has recently been predicted qualitatively from the absence of parity symmetry in such molecules. Besides these studies on gaseous targets the author has initiated a scattering experiment on crystal surfaces, using spin polarized electrons. Within the framework of this project a large new experimental arrangement has been built up. It consists of a spin polarized electron source and a LEED scattering chamber. Design, construction and test results, showing the usefulness of the set-up, are described in the last chapter. (Auth.)

  10. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  11. Universal spin-polarization fluctuations in one-dimensional wires with magnetic impurities

    DEFF Research Database (Denmark)

    Mortensen, Asger; Egues, J.C.

    2002-01-01

    -flip suppresses conductance fluctuations while enhancing spin-polarization fluctuations. More importantly, spin-polarization fluctuations attain a universal value 1/3 for large enough spin-flip strengths. This intrinsic spin-polarization fluctuation may pose a severe limiting factor to the realization of steady...

  12. Magnetic coupling between 3He and nuclei in a substrate A possible way to polarize bulk 3He

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Kovalev, A. I.; Mango, S.

    1995-02-01

    We have developed an apparatus which allows us to study the interaction of 3He with powder substrates at temperatures down to 50 mK. A Stycast cell has been filled with liquid or solid 3He, at pressures up to 65 bar, confined by fine powder that can be polarized in situ by dynamic nuclear polarization at 2.5 Tesla. A fast and accurate NMR/AFP system has been used to determine relaxation times. Different substrates have been investigated in search for polarizability and a strong enough surface interaction to eventually transmit their magnetization to bulk 3He.

  13. Magnetic coupling between {sup 3}He and nuclei in a substrate. A possible way to polarize bulk {sup 3}He

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow (Russian Federation); Hautle, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Konter, J.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kovalev, A.I. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Mango, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-03-01

    We have developed an apparatus which allows us to study the interaction of {sup 3}He with powder substrates at temperatures down to 50 mK. A Stycast cell has been filled with liquid or solid {sup 3}He, at pressures up to 65 bar, confined by fine powder that can be polarized in situ by dynamic nuclear polarization at 2.5 Tesla. A fast and accurate NMR/AFP system has been used to determine relaxation times. Different substrates have been investigated in search for polarizability and a strong enough surface interaction to eventually transmit their magnetization to bulk {sup 3}He. ((orig.))

  14. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  15. Tilted Foils Nuclear Spin Polarization at REX-ISOLDE

    CERN Document Server

    Törnqvist, Hans Toshihide

    2013-08-08

    This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...

  16. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 6. Effect of spin ... Volume 39 Issue 6 October 2016 pp 1427-1434 ... Spin-polarization calculations show that ferromagnetic state (FM) is stable for FexB structures and carry magnetic moment of 1.12, 1.83 and 2.03 μ B inFeB, Fe 2 B and Fe 3 B, respectively.

  17. Engineering the spin polarization of one-dimensional electrons

    Science.gov (United States)

    Yan, C.; Kumar, S.; Thomas, K.; See, P.; Farrer, I.; Ritchie, D.; Griffiths, J.; Jones, G.; Pepper, M.

    2018-02-01

    We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin–orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes.

  18. Dimerization of 3He in 3He-4He mixture films

    International Nuclear Information System (INIS)

    Bashkin, E.

    1994-01-01

    3 He atoms dissolved in superfluid 4 He may form dimers ( 3 He) 2 in two-dimensional geometries. Dimer formation is studied in films of dilute 3 He- 4 He mixture. After designing a schematic 3 He- 3 He interaction potential, the dimer binding energy is calculated for various substrates. It is shown that 3 He impurity states localized near the substrate give rise to the highest magnitudes of the binding energy. (author). 32 refs., 6 figs.,; 1 tab

  19. Nuclear magnetism of liquid {sup 3}He: new determination of the Landau parameter F{sub 0}{sup a}; Magnetisme nucleaire de l'{sup 3}He liquide: nouvelle determination du parametre de Landau F{sup a}{sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, V

    2006-10-15

    He{sup 3} is a liquid Fermi model, isotropic, with an attainable Fermi temperature and the interaction between atoms can be controlled by changing the pressure of the liquid. In this document, we present accurate NMR measurements of the nuclear magnetic susceptibility of liquid He{sup 3} as a function of temperature and pressure. The emphasis has been placed on reliable thermometry and on He{sup 3} pressure measurements directly in the cell to increase the measuring range until solidification, and an accurate characterization of the NMR spectrometer. Our measurements give an effective Fermi temperature 5% lower than former results. The Landau parameter F{sub 0}{sup a} depends on the effective mass, which is determined by specific heat measurements, and consequently on the temperature scale. The re-analysis of the specific heat measurements with the PLTS-2000 temperature scale yields an effective mass increase of 4.5%. In this document, F{sub 0}{sup a} is determined for 2 temperature scales (PLTS-2000 and Greywall). Contrarily to former measurements, the F{sub 0}{sup a} density dependence does not show any saturation at high pressures. (author)

  20. Subgap in the Surface Bound States Spectrum of Superfluid ^3 He-B with Rough Surface

    Science.gov (United States)

    Nagato, Y.; Higashitani, S.; Nagai, K.

    2017-12-01

    The subgap structure in the surface bound states spectrum of superfluid ^3 He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3 He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.

  1. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  2. Spin-polarization of an electro-static positron beam

    International Nuclear Information System (INIS)

    Kawasuso, A.; Maekawa, M.

    2008-01-01

    We constructed an electro-static positron beam apparatus. We fabricated a simple spin-polarimeter composed of a permanent magnet with a surface magnetic field of 0.65 T and an iron pole piece. The longitudinal spin-polarization of the positron beam was determined to be 0.3 by analyzing the magnetic field dependence of the Doppler broadening of annihilation radiation from a fused silica specimen. The effect of spin rotation was examined using an iron poly-crystal and a simple E x B filter

  3. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  4. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  5. RKKY interaction for the spin-polarized electron gas

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  6. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  7. Dynamics of phase-separated 3He-4He films

    International Nuclear Information System (INIS)

    Kurihara, Susumu

    1982-01-01

    A froehlich-type Hamiltonian is derived for third sound and 3 He quasi particles in phase-separated double layer of superfluid 4 He and normal 3 He liquid. It is stressed that our system is unique and valuable in that characteristic parameters can be varied in a wide range, simply by adjusting the film thickness. The effect of fermion-boson coupling on the velocity and damping of the third sound is examined. It is predicted that a rather drastic change in the third sound spectrum will occur when the Fermi velocity of 3 He system and the third sound velocity are nearly the same. It is pointed out that the system under consideration may show a variety of interesting phenomena, in addition to the softening of the third sound. (author)

  8. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.

    1976-01-01

    The latent heat for solidification of **3He has been measured along the **3He melting curve between 23 and 1 mK. A temperature scale is established which depends only on measurements of heat, pressure and volume, and on the condition that the entropy of solid **3He approaches R ln 2 at high...... temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...

  9. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  10. Direct injection of spin-polarized carriers across YBa 2 Cu 3 O 7- ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Direct injection of spin-polarized ... from the CMR layer is 38 mA. This clearly shows that spin-polarized quasiparticles injected from the CMR layer into the YBCO layer suppress the critical current of the superconductor via the pair-breaking phenomena.

  11. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  12. ESR and related experiments in spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Yperen, G.H. van.

    1984-01-01

    This thesis deals with some experiments in (gaseous) spin-polarized atomic hydrogen. One uses the expression 'stabilized' atomic hydrogen, meaning that by choosing suitable conditions one can suppress the tendency of atoms to recombine into H 2 molecules, such that the lifetime of the atomic state is extended by many orders of magnitude. Research is focused at the study of processes that determine the decay rate of polarized H samples, with the ultimate goal of preparing samples of sufficiently high density and at low enough temperature to observe experimentally the behaviour of the (degenerate) quantum gas. ESR (Electron Spin Resonance) appears to be a very suitable measurement technique to study the properties of polarized H. This work describes the introduction of ESR as detection technique, and the first results of an experiment in polarized H using this technique. (orig.)

  13. Induced spin polarization effect in graphene by ferromagnetic nanocontact

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-03-07

    Chemically synthesized graphene contains large number of defects which act as localized spin moments at the defect sites. Cobalt nanosheets of variable thickness are grown on graphene surface to investigate spin/magnetotransport through graphene sheets containing large number of localized spins. Negative magnetoresistance (MR) is observed over the entire temperature range (5–300 K) for thin cobalt sheets, while a cross-over from negative to positive MR with increasing temperature is noticed for thicker cobalt sheets. The observed MR results are explained on the basis of recently reported spin polarization effect in graphene due to the presence of ferromagnetic atoms on the surface considering a spin valve like Co/graphene/Co nanostructures.

  14. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  15. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  16. Photodisintegration of 3H and 3He

    International Nuclear Information System (INIS)

    Faul, D.D.

    1980-09-01

    The photoneutron cross sections for 3 H and 3 He have been measured from threshold to approx. 25 MeV with monoenergetic photons from the annihilation in flight of fast positrons at the LLL Electron-Positron Linear Accelerator facility. These reactions include the two-body breakup of 3 H and the three-body breakup of both 3 H and 3 He; these measurements for 3 H are the first to span the energy region across the peaks of the cross sections. An efficient BF 3 -tube-and-paraffin neutron detector and high-pressure gaseous samples of several moles each (the activity of the 3 H sample was approx. 200,000 Ci) were employed in these measurements. Measurements on 16 O and 2 H also were performed to verify the absolute cross-section scale. The results, when compared with each other and with results for the two-body breakup cross section for 3 He from the literature, show that the two-body breakup cross sections for 3 H and 3 He have nearly the same shape, but the one for 3 He lies lower in magnitude; the three-body breakup cross section for 3 He lies higher in magnitude and is broader in the peak region and also rises less sharply from threshold than that for 3 H; and these measured differences between the cross sections for the breakup modes largely compensate in their sum, so that the total photon absorption cross sections for 3 H and 3 He are nearly the same in both size and shape at energies near and above their peaks. Theoretical results from the literature disagree with the experimental results to a certain extent over the entire photon-energy region for which the photoneutron cross sections were measured. 50 figures, 7 tables

  17. Cosmogenic 3He in detrital gold

    Science.gov (United States)

    Stuart, Finlay; Yakubovich, Olga; Caracedo, Ana; Nesterenok, Alexander

    2017-04-01

    Since the measurement of cosmogenic He in an alluvial diamond by McConville and Reynolds (1996) the application of cosmogenic noble gases to individual detrital grains to quantify surface processes has not been vigorously pursued. The likely low rate of diffusion of cosmogenic He in native metals, and their resistance to weathering and disintegration during erosion and transport, makes them a potential record of long-term Earth surface processes. In an effort to assess the extent that detrital refractory metals record the exposure history during transport and storage we have undertaken a reconnaissance study of the He isotope composition in 18 grains (2-200 mg) of native gold, copper, silver, and PtPd, Pt3Fe and OsIr alloys from alluvial placer deposits from around the world. 4He is dominantly the result of U and Th decay within the grains, or decay of 190Pt in the Pt-rich alloys. 3He is measurable in 13 grains, concentrations range up to 2.7E+6 atoms/g. 3He/4He are always in excess of the crustal radiogenic ratio, up to 306 Ra. Although nucleogenic 3He produced by (n,α) reactions on 6Li, and 3He from trapped hydrothermal fluids, are present, the majority of the 3He is cosmogenic in origin. Using newly calculated cosmogenic 3He production rates in heavy metals, and a determination of the effect of implantation based on the stopping distances of spallogenic 3He and 3H, the grains have 3Hecos concentrations that are equivalent to 0.35 to 1.5 Ma exposure at Earth's surface. In a study of detrital gold grains from several sites in Scotland we have found that 10 % have 3He concentrations that are significantly in excess of that generated since the Last Glacial Maximum. These studies demonstrate that, with refinement, cosmogenic 3He in refractory detrital minerals can be used to quantify sediment transport and storage on the 1-10 Ma timescale. P. McConville & J.H. Reynolds (1989). Geochim. Cosmochim. Acta, 53, 2365-75.

  18. Energy dependence of the 3He(3He,π+)6Li reaction

    International Nuclear Information System (INIS)

    Le Bornec, Y.; Hibou, F.; Bimbot, L.; Hennino, T.; Jourdain, J.C.; Reide, F.; Tatischeff, B.; Willis, N.; Aslanides, E.; Bergdolt, G.; Fassnacht, P.; Racca, C.; Boudard, A.; Bruge, G.; Lugol, J.C.

    1983-01-01

    The 3 He( 3 He, π + ) 6 Li reaction has been studied as a function of energy using the 3 He beam at SATURNE. Cross sections for the 6 Li ground state (1 + ) and 2.18 MeV (3 + ) levels have been obtained at 350, 420, 500 and 600 MeV incident energies at angles THETAsub(π)(lab)=15 0 and 40 0 . These results are compared with two theoretical predictions. (orig.)

  19. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  20. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  1. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  2. Micromagnetic investigation of the dynamics of magnetization switching induced by a spin polarized current

    Science.gov (United States)

    Lee, Kyung-Jin; Dieny, Bernard

    2006-03-01

    Using micromagnetic modeling, we tested a prediction of single-domain spin-torque theory which switching current density depends only weakly on magnetic cell size. The switching time and current density are strongly affected by the cell size for low spin polarization. Larger samples with a small length-to-width ratio and small spin polarization can exhibit a nonmonotonous dependence of switching time on current. Excitation of incoherent spin waves caused by the circular Oersted field due to the current is responsible for this nonmonotonous dependence. However, the magnetic dynamics recovers a single-domain-like behavior when the spin polarization is high and/or the cell size is small.

  3. The UNH polarized 3He program

    International Nuclear Information System (INIS)

    Hersman, F. W.; Carrier, R. H.; Pomeroy, V. R.

    1998-01-01

    The UNH Nuclear Physics Group is developing polarized 3 He cells for use in approved experiments with electron beams and neutron beams. We also have begun to apply our expertise to magnetic resonance imaging experiments I list our projects and review several areas where we have been focusing our efforts

  4. Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.

    Science.gov (United States)

    Bode, Matthias

    2012-01-01

    The principle of scanning tunneling microscopy, an imaging method with atomic resolution capability invented by Binnig and Rohrer in 1982, can be adapted for surface magnetism studies by using magnetic probe tips. The contrast mechanism of this so-called spin-polarized scanning tunneling microscopy, or SP-STM, relies on the tunneling magneto-resistance effect, i.e. the tip-sample distance as well as the differential conductance depend on the relative magnetic orientation of tip and sample. To illustrate the working principle and the unique capabilities of SP-STM, this compilation presents some key experiments which have been performed on various magnetic surfaces, such as the topological antiferromagnet Cr(001), a double-layer of Fe which exhibits a stripe- domain pattern with about 50 nm periodicity, and the Mn monolayer on W(110), where the combination of experiment and theory reveal an antiferromagnetic spin cycloid. Recent experimental results also demonstrate the suitability of SP-STM for studies of dynamic properties, such as the spin relaxation time of single magnetic nanostructures.

  5. Spin-polarized semiconductor induced by magnetic impurities in graphene

    Science.gov (United States)

    Daghofer, Maria

    2011-03-01

    Magnetic impurities adsorbed on graphene sheets are coupled antiferromangetically via the itinerant electrons in the graphene. We study this interaction and its impact on the electrons' spectral density by use of unbiased Monte-Carlo simulations. The antiferromagnetic order breaks the symmetry between the sublattices, and a gap for the itinerant electrons opens. Our simulations show that the itinerant states below and above the gap are not dispersionless states trapped by the impurities, but are instead mobile states with a large dispersion. We compare various scenarios for the impurity distribution and find that random doping produces a standard semiconductor. If, on the other hand, all or most of the impurities are localized in the same sublattice, the spin degeneracy is lifted and the conduction band becomes spin-polarized. We also discuss the properties of edge states at edges or magnetic domain boundaries. M.~Daghofer, N.~Zheng, A.~Moreo; Phys.~Rev.~B 82, 121405(R) (2010) Supported by the DFG under the Emmy-Noether Program, and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE.

  6. Spin polarization and magnetic effects in radical reactions

    International Nuclear Information System (INIS)

    Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.

    1984-01-01

    Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)

  7. Spin-polarized magnetic tunnelling magnetoresistive effects in various junctions

    Science.gov (United States)

    Miyazaki, T.; Tezuka, N.; Kumagai, S.; Ando, Y.; Kubota, H.; Murai, J.; Watabe, T.; Yokota, M.

    1998-03-01

    Recent progress concerning spin-polarized magnetic tunnelling effects for (i) trilayer standard ferromagnet (F)/insulator (I)/ferromagnet (F) junctions, (ii) spin-valve-type junctions, (iii) trilayer or multilayer ferromagnet/granular/ferromagnet junctions and (iv) F/I/F junction with a `wedge-geometry' insulator is reviewed. Special emphasis is placed on the dependence of the tunnel magnetoresistance ratio on temperature and also the intensity of the applied voltage. It was found that the resistance for the saturation magnetization state, 0022-3727/31/6/009/img1, and the tunnelling magnetoresistance ratio, TMR, of an 0022-3727/31/6/009/img2 junction decreased rapidly with increasing temperature, whereas those of a 0022-3727/31/6/009/img3 junction were insensitive to temperature. Concerning the bias voltage dependence of 0022-3727/31/6/009/img1 and TMR, the same tendency with temperature was observed for 0022-3727/31/6/009/img2 and 0022-3727/31/6/009/img3 junctions. Spin-valve-type junction exchange biased by a FeMn layer exhibits a relatively large TMR ratio up to about 400 K.

  8. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  9. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.

    2017-11-20

    We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of the half-metallic NiMnSb in the scattering region, using density functional theory (DFT) methods. For a single NiMnSb unit the transmission function displays a spin polarization of around 50% in a window of 1eV centered around the Fermi level. By increasing the number of layers, an almost complete spin polarization of the transmission is obtained in this energy range. Supplementing the DFT calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin polarization of the conduction electron transmission, which suggests that the hybridized interface and many-body induced states are localized.

  10. Biaxial-stress-driven full spin polarization in ferromagnetic hexagonal chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang-Bo; Li, Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-15

    It is important to spintronics to achieve fully-spin-polarized magnetic materials that are stable and can be easily fabricated. Here, through systematical density-functional-theory investigations, we achieve high and even full spin polarization for carriers in the ground-state phase of CrTe by applying tensile biaxial stress. The resulting strain is tensile in the xy plane and compressive in the z axis. With the in-plane tensile strain increasing, the ferromagnetic order is stable against antiferromagnetic fluctuations, and a half-metallic ferromagnetism is achieved at an in-plane strain of 4.8%. With the spin-orbit coupling taken into account, the spin polarization is equivalent to 97% at the electronic transition point, and then becomes 100.0% at the in-plane strain of 6.0%. These make us believe that the full-spin-polarized ferromagnetism in this stable and easily-realizable hexagonal phase could be realized soon, and applied in spintronics. - Highlights: • Full spin polarization in the hexagonal ground-state phase of CrTe by biaxial stress. • The stress produces in-plane tensile strain and perpendicular compressive strain. • Reliable electronic structure is calculated with improved exchange functional. • Spin polarization is calculated with spin-orbit coupling taken into account.

  11. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  12. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  13. Effective interactions and elementary excitations in quantum liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    The effective interactions which provide a wavevector and frequency dependent restoring force for collective modes in quantum liquids are derived for the helium liquids by means of physical arguments and sum rule and continuity considerations. A simple model is used to take into account mode-mode coupling between collective and multiparticle excitations, and the results for the zero-temperature liquid 4 He phonon-maxon-roton spectrum are shown to compare favorably with experiment and with microscopic calculation. The role played by spin-dependent backflow in liquid 3 He is analyzed, and a physical interpretation of its variation with density and spin-polarization is presented. A progress report is given on recent work on effective interactions and elementary excitations in nuclear matter, with particular attention to features encountered in the latter system which have no counterparts in the helium liquids

  14. Dimerization of 3He in 3He-4He dilute mixtures filling narrow channels

    International Nuclear Information System (INIS)

    Bashkin, Eugene P.; Wojdylo, John

    2000-01-01

    We consider dimerization of 3 He in a dilute solution of 3 He in superfluid 4 He filling straight narrow channels that can be found in nanoscale porous media. Dimer formation is facilitated by the restricted geometry and occurs despite the fact that in bulk fluid the interparticle interaction is too weak to lead to a bound state. Dimerization results in the effective 'bosonization' of the system: a Bose quantum fluid of ( 3 He) 2 arises in place of the 3 He Fermi component. At high temperatures, when the 3 He impurity quasiparticles form a Maxwell-Boltzmann gas, a drastic change in the thermodynamics occurs due to the presence of dimers. The specific heat and magnetic susceptibility of the 3 He component, which we calculate at arbitrary degrees of dimerization, show a marked deviation from behavior expected of an undimerized 3 He component. We show that the binding energy--which depends on the channel width--is expected to be sufficiently high to make experimental observation feasible. The presence of ( 3 He) 2 dimers gives rise to an extra absorption mechanism for first sound propagating through the superfluid 4 He, due to resonant absorption and decay of dimers in the acoustic field. We have calculated the absorption coefficient. Several experiments suggest themselves, utilizing, perhaps, K-L zeolites or carbon nanotubes. If the dimers themselves turn out to be attractive, then quadrumers may appear: it may even be the case that a single 3 He polymer will form over the entire length of the channel

  15. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1986-01-01

    The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm

  16. A miniature adsorption3HE refrigerator

    International Nuclear Information System (INIS)

    Duband, L.; Ravex, A.; Lange, A.

    1991-01-01

    A self-contained, recyclable laboratory 3 He refrigerator has been developed. The refrigerator is very compact, portable and is designed to be safe and reliable. The unit can easily be installed on the cold plate of a superfluid 4 He cryostat. Once bolted on the cold plate, operation of the refrigerator is controlled by a single heater. In this new design the refrigerator has a cylindrical geometry. The adsorption pump is placed above the condensation point to prevent convection during the condensation phase and to improve the pumping speed. The inhibition of convection reduces the load on the 4 He bath and increases the condensation efficiency. This refrigeration technique has great potential for space applications. The absence of moving parts makes the system reliable and vibration free. Its simplicity and the absence of external components facilitate its integration on a cryostat. In fact, a rocket-borne 3 He refrigerator has already been successfully flown and has demonstrated the feasibility of this method

  17. Structure of the 3He in backward elastic p3He-scattering

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    Backward elastic p 3 He-scattering at incident proton kinetic energies T p > 1 GeV is investigated in the framework of the np-pair transfer mechanism and triangular diagram of one-pion exchange with a subprocess pd → 3 Heπ 0 using a realistic three-body wave function of the 3 He nucleus. It is found that the np-pair transfer mechanism dominates owing to a rich high momentum component of the 3 He wave function. We show that the experimental cross section of this process is defined mainly by the values of the Faddeev component of the 3 He wave function, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ≤ 0.1 GeV/c. The spin-spin correlation parameter is calculated in the framework of the dominating mechanism for the case of polarized target and beam. Rescatterings in the initial and final states are taken into account. Comparison with the pd → dp process is performed

  18. Spin polarization tuning in the graphene quantum dot by using in-plane external electric field

    International Nuclear Information System (INIS)

    Modarresi, M.; Roknabadi, M.R.; Shahtahmasebi, N.

    2014-01-01

    Electronic, magnetic and transport properties of a nano-graphene dot have been studied by using the DFT and tight binding methods. In the tight binding calculations, the interaction between electrons is modeled using the Hubbard Hamiltonian. By comparison between the eigen-values and density of states in the tight binding and DFT models, we tabulate a set of tight-binding parameters to describe graphene quantum dots for future works. The effects of a single vacancy and an in-plane external electric field on the spin-dependent transport of graphene quantum dot have been investigated. Transport through GQD between two GNR is studied by using Green's function formalism. Our results confirm an intrinsic spin-dependent current and relatively large spin polarization through the GQD in the presence of a single vacancy and zigzag edge. It is also shown that an in-plane external electric field controls the spin-polarization in graphene quantum dot. - Graphical abstract: We study the spin polarization in the presence of an external electric field. Highlights: • A tight binding study of transport through GNR/GQD/GNR is presented. • Our results show a relatively large spin polarization in the current–voltage curve. • Spin polarization is controlled by using an in-plane external electric field

  19. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  20. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  1. Electric field induced spin polarization oscillation in nonmagnetic benzene/Cu(100) interface: First principles calculations

    Science.gov (United States)

    Yuan, X. B.; Cai, L. L.; Tian, Y. L.; Hu, G. C.; Ren, J. F.

    2018-01-01

    First-principles calculation are presented to study the influences of external electric fields on the spin polarization properties of benzene/Cu(100) system which do not contain any magnetic atom. Our simulations show that an obvious spontaneous spin polarization oscillation occurred in the benzene molecule when the electric fields are applied. The density of states (DOS), spin density distributions, charge transfer properties are also obtained. It is found that the p-d orbital coupling between the benzene molecule and the electrode leads to spin non-degeneration of the DOS near the fermi energy, so the transferred charges from the Cu atoms to the molecule will fill these spin non-degenerate coupled orbitals, and then the benzene molecule becomes spin polarized. The strength of the p-d orbital coupling as well as the transferred charges oscillated with the external electric fields, which induce spin polarization oscillation. The results are favorable for the understanding of spin polarization properties in organic/nonmagnetic metal structures.

  2. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, Holly Caroline [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-07-01

    129Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 105times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13C signal of CO2 of xenon occluded in solid CO2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ~1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  3. Proton Spectra from ^{3}He+T and ^{3}He+^{3}He Fusion at Low Center-of-Mass Energy, with Potential Implications for Solar Fusion Cross Sections.

    Science.gov (United States)

    Zylstra, A B; Frenje, J A; Gatu Johnson, M; Hale, G M; Brune, C R; Bacher, A; Casey, D T; Li, C K; McNabb, D; Paris, M; Petrasso, R D; Sangster, T C; Sayre, D B; Séguin, F H

    2017-12-01

    Few-body nuclear physics often relies upon phenomenological models, with new efforts at the ab initio theory reported recently; both need high-quality benchmark data, particularly at low center-of-mass energies. We use high-energy-density plasmas to measure the proton spectra from ^{3}He+T and ^{3}He+^{3}He fusion. The data disagree with R-matrix predictions constrained by neutron spectra from T+T fusion. We present a new analysis of the ^{3}He+^{3}He proton spectrum; these benchmarked spectral shapes should be used for interpreting low-resolution data, such as solar fusion cross-section measurements.

  4. Proton Spectra from 3He + T and 3He + 3He Fusion at Low Center-of-Mass Energy, with Potential Implications for Solar Fusion Cross Sections

    Science.gov (United States)

    Zylstra, A. B.; Frenje, J. A.; Gatu Johnson, M.; Hale, G. M.; Brune, C. R.; Bacher, A.; Casey, D. T.; Li, C. K.; McNabb, D.; Paris, M.; Petrasso, R. D.; Sangster, T. C.; Sayre, D. B.; Séguin, F. H.

    2017-12-01

    Few-body nuclear physics often relies upon phenomenological models, with new efforts at the ab initio theory reported recently; both need high-quality benchmark data, particularly at low center-of-mass energies. We use high-energy-density plasmas to measure the proton spectra from 3He +T and 3He + 3He fusion. The data disagree with R -matrix predictions constrained by neutron spectra from T +T fusion. We present a new analysis of the 3He + 3He 3 proton spectrum; these benchmarked spectral shapes should be used for interpreting low-resolution data, such as solar fusion cross-section measurements.

  5. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  6. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  7. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  8. Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip

    International Nuclear Information System (INIS)

    Rastei, M V; Bucher, J P

    2006-01-01

    A massive Ni tip is used in spin polarized scanning tunnelling microscopy (SP STM) to explore the magnetization state of nanometre Co clusters, self-organized on the Au(111) surface. Constant current STM images taken at 4.6 K show a bimodal distribution of the cluster heights, accounting for the spin polarization of the STM junction. The spin polarization of the tunnel junction as a function of the bias voltage is found to depend on the local density of states of the sample examined. Changing the vacuum barrier parameters by bringing the tip closer to the surface leads to a reduction in the tunnelling magnetoresistance that may be attributed to spin flip effects. (letter to the editor)

  9. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  10. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  11. Defect-enhanced Rashba spin-polarized currents in carbon nanotubes

    Science.gov (United States)

    Santos, Hernán; Chico, Leonor; Alvarellos, J. E.; Latgé, A.

    2017-10-01

    The production of spin-polarized currents in pristine carbon nanotubes with Rashba spin-orbit interactions has been shown to be very sensitive to the symmetry of the tubes and the geometry of the setup. Here we analyze the role of defects on the spin quantum conductances of metallic carbon nanotubes due to an external electric field. We show that localized defects, such as adsorbed hydrogen atoms or pentagon-heptagon pairs, increase the Rashba spin-polarized current. Moreover, this enhancement takes place for energies closer to the Fermi energy as compared to the response of pristine tubes. Such increments can be even larger when several equally spaced defects are introduced into the system. We explore different arrangements of defects, showing that for certain geometries there are flips of the spin-polarized current and even transport suppression. Our results indicate that spin valve devices at the nanoscale may be achieved via defect engineering in carbon nanotubes.

  12. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2015-01-01

    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...... the color–flavor-locked phase and the spin-polarized phase is the first order by means of second-order perturbation theory.......It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  13. Strong Linear Dichroism in Spin-Polarized Photoemission from Spin-Orbit-Coupled Surface States.

    Science.gov (United States)

    Bentmann, H; Maaß, H; Krasovskii, E E; Peixoto, T R F; Seibel, C; Leandersson, M; Balasubramanian, T; Reinert, F

    2017-09-08

    A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.

  14. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J.; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr2VO3FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C4 (2 ×2 ) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C4 (2 ×2 ) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C4 state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  15. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  16. Peculiarities of spin polarization inversion at a thiophene/cobalt interface

    KAUST Repository

    Wang, Xuhui

    2013-03-20

    We perform ab initio calculations to investigate the spin polarization at the interface between a thiophene molecule and cobalt substrate. We find that the reduced symmetry in the presence of a sulfur atom (in the thiophene molecule) leads to a strong spatial dependence of the spin polarization of the molecule. The two carbon atoms far from the sulfur acquire a polarization opposite to that of the substrate, while the carbon atoms bonded directly to sulfur possess the same polarization as the substrate. We determine the origin of this peculiar spin interface property as well as its impact on the spin transport.

  17. Hardness and softness reactivity kernels within the spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul

    2005-01-01

    Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined

  18. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  19. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  20. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  1. Interplay between magnetism and conductivity derived from spin-polarized donor radicals.

    Science.gov (United States)

    Sugawara, Tadashi; Komatsu, Hideji; Suzuki, Kentaro

    2011-06-01

    Tutorial review: to achieve molecule-based spintronic devices, an organic conducting magnet that exhibits both conductivity and magnetism in a cooperative manner must be constructed. As a building block for such new materials, a spin-polarized donor radical, which serves as a molecular "spin-filter" in its singly oxidized state, was designed and synthesized. The resistivity of ion radical salts of selenium-substituted, tetrathiafulvalene-based spin-polarized donor radicals decreased substantially in the presence of a magnetic field, thus indicating cooperative conductivity and magnetism.

  2. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  3. Towards 100% spin-polarized charge-injection : The half-metallic NiMnSb/CdS interface

    NARCIS (Netherlands)

    de Wijs, G.A.; de Groot, R A

    2001-01-01

    Spin-electronics requires an electron source with a spin-polarization as high as possible. For this, half-metallic materials seem ideally suited as they exhibit 100% spin polarization. Because of its high Curie temperature and compatibility with existing semiconductor technology, NiMnSb is a most

  4. Spin polarized auger electron spectroscopy (SPAES): An element specific local magnetization probe of magnetic materials

    Science.gov (United States)

    Anilturk, Onder S.

    Spin Polarized Auger Electron Spectroscopy (SPAES) is found to have application for investigating fundamental properties as well as element specific local magnetization information on magnetic materials. By using the uniqueness of the UTA-SEMPA tool, one can obtain the surface magnetic domain microstructure and also perform SPAES studies by probing a single domain at the surface. In the current study, knowing the probed domain, spin polarization of electrons from super Coster-Kronig MVV Auger emissions on 3%Si-Fe sheets have been investigated. It is observed that on both sides of 180° domains, separated by a domain wall with an out-of-plane component of magnetization, the spin polarized Auger spectra exhibit similar distributions with high polarization structures, which are consistent with the published data. The element specificity of the system is applied to Gd-Co composite system. Details of 4d core hole initiated Auger transitions showed that the 5d states have enhanced spin polarization, confirming the coupling of moments in the composite system via 5d states of Gd. It is also unambiguously observed that Co magnetic moments are indeed aligned antiparallel to the Gd ones via 4f-5d positive exchange and 3d-5d hybridization.

  5. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  6. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  7. Spin polarization in top pair production in association with two photons at NLO+PS

    CERN Document Server

    Luisoni, Gionata

    2017-01-01

    This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.

  8. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low...

  9. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  10. Tunnel Spin Polarization Versus Energy for Clean and Doped Al2O3 Barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  11. Spin-polarized transport in a δ-doped magnetic-barrier nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuai; Lu, Mao-Wang, E-mail: maowanglu@126.com; Jiang, Ya-Qing; Chen, Sai-Yan

    2014-09-05

    We theoretically investigate the electron spin transport properties through a δ-doped magnetic-barrier nanostructure, which can be realized experimentally by depositing two identical ferromagnetic stripes with the opposite in-plane magnetization on the top of a semiconductor heterostructure in parallel configuration and by using atomic layer doping technique. The δ-doping dependent transmission, conductance and spin polarization are calculated exactly by analytically solving Schrödinger equation of the spin electron. It is found that the electronic spin-polarized behavior in this device can be manipulated by changing the weight and/or the position of the δ-doping. Therefore, such a device can be used as a controllable spin filter, which may be helpful for spintronics applications. - Highlights: • Spin-polarized transport in a δ-doped magnetic-barrier nanostructure is explored. • Both magnitude and sign of spin polarization depend on the δ-doping. • A controllable spin filter can be achieved for spintronics applications.

  12. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  13. Transient charging and discharging of spin-polarized electrons in a quantum dot

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Leao, S.A.; Gester, R. M.

    2007-01-01

    We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green...

  14. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  15. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator.

    Science.gov (United States)

    Ji, Q; Lin, C-J; Tindall, C; Garcia-Sciveres, M; Schenkel, T; Ludewigt, B A

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3 He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3 He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3 He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3 He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  16. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator

    Science.gov (United States)

    Ji, Q.; Lin, C.-J.; Tindall, C.; Garcia-Sciveres, M.; Schenkel, T.; Ludewigt, B. A.

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  17. Compact scanning tunneling microscope for spin polarization measurements.

    Science.gov (United States)

    Kim, Seong Heon; de Lozanne, Alex

    2012-10-01

    We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.

  18. Fusion ignition and burning of D-3He system

    International Nuclear Information System (INIS)

    Zeng Xiancai; Zhang Lifa; Gao Yaoming; Li Yunsheng

    1997-01-01

    The processes of ignition and burning in the fusion system of D- 3 He with a small number of neutrons have been analyzed and the corresponding conditions of ignition and burning have been given. Several typical physics models of D- 3 He reaction have also been simulated numerically. The results further demonstrate that the fusion system of D- 3 He is the optimum candidate of the fusion power with a small number of neutrons in future

  19. Pellet fusion gain calculations modified by electrostatic double layers and by spin polarized nuclei

    International Nuclear Information System (INIS)

    Hora, H.; Cicchitelli, L.; Elijah, J.S.; Ghatak, A.K.; Goldsworthy, M.T.; Lalousis, P.; Eliezer, S.

    1984-01-01

    All preceding hydrodynamic computations of plasmas are wrong if the thermal conductivity is essential because electronic thermal conductivity is decreased in plasma inhomogeneities due to electrostatic double layers. In the worst case, ionic conductivity remains. We compare this with a possible electronic conductivity by the fast tail of the energy distribution. Using the volume ignition for fusion gain computations, we study the increase of gain by spin-polarization of nuclei for the DT reaction especially in non-linear ranges. Gain can increase by a factor 3.1. Contents are the following: electrostatic fields and double layers in inhomogeneous plasma, change of thermal conduction by double layers, consequences for pellet fusion, gain calculation with spin polarized nuclei. (Mori, K.)

  20. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  1. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  2. Transport Properties of Spin-Polarized Atomic Hydrogen Using Generalized Scattering Theory

    Science.gov (United States)

    Joudeh, B. R.; Sandouqa, A. S.

    2018-02-01

    Our results for the scattering and thermophysical properties of spin-polarized atomic hydrogen (H{\\downarrow }) have been presented in the temperature range 0.01-10 K using the Galitskii-Migdal-Feynman formalism. These results include the quantum second virial coefficient, the average total and viscosity cross sections, the viscosity, the diffusion coefficient, and the thermal conductivity. The calculations have been undertaken using three triplet-state potentials: Morse-type, Silvera and Born-Oppenheimer potentials. The Morse potential is less attractive and very simple, but less accurate to describe spin-polarized atomic hydrogen. That explains the differences between it and the other two potentials, which are clearly better. From the results of the average total cross sections, it is concluded the H{\\downarrow } remains a gas even at low temperature. The viscosity, the thermal conductivity, and the diffusion coefficients of H{\\downarrow } increase in all cases with increasing temperature.

  3. Control of the spin polarization of photoelectrons/photoions using short laser pulses

    International Nuclear Information System (INIS)

    Nakajima, Takashi

    2004-01-01

    We present a generic pump-probe scheme to control spin polarization of photoelectrons/photoions by short laser pulses. By coherently exciting fine structure manifolds of a multi-valence-electron system by the pump laser, a superposition of fine structure states is created. Since each fine structure state can be further decomposed into a superposition of various spin states of valence electrons, each spin component evolves differently in time. This means that varying the time delay between the pump and probe lasers leads to the control of spin states. Specific theoretical results are presented for two-valence-electron atoms, in particular for Mg, which demonstrate that not only the degree of spin polarization but also its sign can be manipulated through time delay. Since the underline physics is rather general and transparent, the presented idea may be potentially applied to nanostructures such as quantum wells and quantum dots

  4. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  5. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  6. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  7. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  8. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes

    Science.gov (United States)

    Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.

    2017-09-01

    We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.

  9. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  10. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  11. 3He functions in tokamak-pumped laser systems

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-10-01

    3 He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the 3 He(n,p)T reaction, and thereby excite gaseous lasants mixed with the 3 He while simultaneously breeding tritium. The total 3 He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak

  12. /sup 3/He functions in tokamak-pumped laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  13. First doubly polarised photoproduction on 3He at the photon beam of MAMI

    International Nuclear Information System (INIS)

    Aguar Bartolome, Patricia

    2010-11-01

    A first experiment with a polarised 3 He target was carried out in July 2009 at the MAMI accelerator in Mainz in a photon energy range between 200 MeV and 800 MeV. The aim of this measurement was to investigate the Gerasimov-Drell-Hearn sum rule on the neutron. The use of the data obtained with the polarised 3 He target, compared to existing data on the deuteron, gives a complementary and more direct access to the neutron, due to the spin structure of the 3 He. The measurement of the helicity dependence of the inclusive total photoabsorption cross section required a beam of tagged circularly polarised photons incident on the longitudinally polarised 3 He target. The data were taken using the 4π Crystal Ball photon spectrometer in combination with TAPS as a forward wall and complemented by a threshold Cherenkov detector used to on-line suppress the background from electromagnetic events. The development and preparation of the different components of the 3 He experimental setup was an important part of this work and are described in detail in this thesis. The detector system and the analysis method were tested by the measurement of the unpolarised total inclusive photoabsorption cross section on liquid hydrogen. The results obtained are in good agreement with previous published data. Preliminary results of the unpolarised total photoabsorption cross section, as well as the helicity dependent photoabsorption cross section difference on 3 He compared with several theoretical models will also be presented. (orig.)

  14. Recent advances in atomic-scale spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Smith, Arthur R; Yang, Rong; Yang, Haiqiang; Dick, Alexey; Neugebauer, Joerg; Lambrecht, Walter R L

    2005-02-01

    The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures. (c) 2005 Wiley-Liss, Inc.

  15. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  16. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  17. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  18. Spin polarization in quantum dots by radiation field with circular polarization

    CERN Document Server

    Bulgakov, E N

    2001-01-01

    For circular quantum dot (QD) with account of the Razhba spin-orbit interaction (SOI) an exact energy spectrum is obtained. For the small SOI constant the Eigen functions of the QD are found. It is shown that application of radiation field with circular polarization lifts the Kramers degeneracy of the Eigen states of the QD. Effective spin polarization of transmitted electrons through the QD by radiation field with circular polarization is demonstrated

  19. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  20. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  1. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd.

    Science.gov (United States)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M Mofazzel; Zhu, Jian-Xin; Dimitri, Klauss; Xu, Su-Yang; Dhakal, Nagendra; Sankar, Raman; Belopolski, Ilya; Sanchez, Daniel S; Chang, Tay-Rong; Jeng, Horng-Tay; Miyamoto, Koji; Okuda, Taichi; Lin, Hsin; Bansil, Arun; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M Zahid; Durakiewicz, Tomasz

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of such spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.

  2. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  3. High-frequency dynamics of spin-polarized carriers and photons in a laser

    Science.gov (United States)

    Saha, D.; Basu, D.; Bhattacharya, P.

    2010-11-01

    The high-frequency dynamics of spin-polarized carriers and photons in a spin laser have been studied. The transient response of the device obtained from the rate equations is characterized by two sets of relaxation oscillations in the carrier and photon distributions corresponding to the two polarization modes. Consequently two distinct resonant peaks are observed in the small-signal modulation response. The calculated transient characteristics indicate that the best results are obtained from a spin laser when only the favored polarization mode, with lower threshold, is operational. Under this condition the small-signal modulation bandwidth is higher than that in a conventional laser, the threshold current is lower and the output polarization can be 100% with appropriate bias conditions, independent of the spin polarization of carriers in the active region. Measurements were made at 230 K on a InAs/GaAs quantum dot spin vertical cavity surface emitting laser. A time-averaged output polarization of 55% is measured with an active region spin polarization of 5-6% . The experimental results are in good agreement with calculated data.

  4. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Science.gov (United States)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  5. Accurate 3He polarimetry using the Rb Zeeman frequency shift due to the Rb-3He spin-exchange collisions

    International Nuclear Information System (INIS)

    Romalis, M.V.; Cates, G.D.

    1998-01-01

    We describe a method of 3 He polarimetry relying on the polarization-dependent frequency shift of the Rb Zeeman resonance. Our method is ideally suited for on-line measurements of the 3 He polarization produced by spin-exchange optical pumping. To calibrate the frequency shift we performed an accurate measurement of the imaginary part of the Rb- 3 He spin-exchange cross section in the temperature range typical for spin-exchange optical pumping of 3 He. We also present a detailed study of possible systematic errors in the frequency shift polarimetry. copyright 1998 The American Physical Society

  6. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  7. The Cosmic Abundance of 3He: Green Bank Telescope Observations

    Science.gov (United States)

    Balser, Dana; Bania, Thomas

    2018-01-01

    The Big Bang theory for the origin of the Universe predicts that during the first ~1,000 seconds significant amounts of the light elements (2H, 3He, 4He, and 7Li) were produced. Many generations of stellar evolution in the Galaxy modifies these primordial abundances. Observations of the 3He+ hyperfine transition in Galactic HII regions reveals a 3He/H abundance ratio that is constant with Galactocentric radius to within the uncertainties, and is consistent with the primordial value as determined from cosmic microwave background experiments (e.g., WMAP). This "3He Plateau" indicates that the net production and destruction of 3He in stars is approximately zero. Recent stellar evolution models that include thermohaline mixing, however, predict that 3He/H abundance ratios should slightly decrease with Galactocentric radius, or in places in the Galaxy with lower star formation rates. Here we discuss sensitive Green Bank Telescope (GBT) observations of 3He+ at 3.46 cm in a subset of our HII region sample. We develop HII region models and derive accurate 3He/H abundance ratios to better constrain these new stellar evolution models.

  8. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  9. Angular dependence of the sup(6)Li(πsup(+),sup(3)He)sup(3)He reaction

    International Nuclear Information System (INIS)

    McParland, B.J.; Auld, E.G.; Couvert, P.

    1985-02-01

    Angular distributions of the differential cross sections for the pionic fission sup(6)Li(πsup(+),sup(3)He)sup(3)He have been measured at pion energies of 60 and 80 MeV. The differential cross section is found to decrease monotonically with cossup(2)thetasup(*) and is compared with a theoretical prediction

  10. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  11. On the 3He anomaly in hot subdwarf B stars

    Science.gov (United States)

    Schneider, David; Irrgang, Andreas; Heber, Ulrich; Nieva, Maria F.; Przybilla, Norbert

    2017-12-01

    Decades ago, 3He isotope enrichment in helium-weak B-type main-sequence, in blue horizontal branch and in hot subdwarf B (sdB) stars, i.e., helium-core burning stars of the extreme horizontal branch, were discovered. Diffusion processes in the atmosphere of these stars lead to the observed abundance anomalies. Quantitative spectral analyses of high-resolution spectra to derive photospheric isotopic helium abundance ratios for known 3He sdBs have not been performed yet. We present preliminary results of high-resolution and high S/N spectra to determine the 3He and 4He abundances of nine known 3He sdBs. We used a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars investigating multiple He i lines, including λ4922 Å and λ6678 Å, which show the strongest isotopic shifts in the optical spectral range.We also report the discovery of four new 3He sdBs from the ESO Supernova Progenitor survey. Most of the 3He sdBs cluster in a narrow temperature strip between ˜ 26000 K and ˜ 30000 K and have almost no atmospheric 4He at all. Interestingly, three 3He sdBs show evidence for vertical helium stratification.

  12. Study of two-nucleon wave functions in 3He

    International Nuclear Information System (INIS)

    Bracco, A.; Gubler, H.P.; Hasell, D.K.

    1983-01-01

    The reaction 3 He(p,2p)pn has been studied at 250 and 400 MeV in a quasifree scattering arrangement characterized by P(recoil) = 0 and various excitation or total energies E(recoil) of the unobserved p-n pair. The 3 He spectral function deduced in the framework of the plane-wave impulse approximation is compared to the predictions of Faddeev and variational calculations. Comparisons are also made with p-n relative-motion momentum distributions calculated as the overlap between plane waves for the p-n pair and Irving, Irving-Gunn, and Khanna wave functions for 3 He

  13. D-3He fuel cycles for neutron lean reactors

    International Nuclear Information System (INIS)

    Kernbichler, W.; Miley, G.H.; Heindler, M.

    1989-01-01

    The intrinsic potential of D-3He as a reactor fuel is investigated for a large range of 3He to D density ratios. A steady-state zero-dimensional reactor model is developed in which much care is attributed to a proper treatment of fast fusion products. Useful ranges of reactor parameters as well as temperature-density windows for driven and ignited operation are identified. Various figures of merit are calculated, such as power densities, net power production, neutron production, tritium load and radiative power. These results suggest several optimistic conclusions about the performance of D-3He as a reactor fuel

  14. Chiral symmetry breaking in superfluid 3He-A.

    Science.gov (United States)

    Ikegami, H; Tsutsumi, Y; Kono, K

    2013-07-05

    Spontaneous symmetry breaking is an important concept in many branches of physics. In helium-3 ((3)He), the breaking of symmetry leads to the orbital chirality in the superfluid phase known as (3)He-A. Chirality is a fundamental property of (3)He-A, but its direct detection has been challenging. We report direct detection of chirality by transport measurements of electrons trapped below a free surface of (3)He-A. In particular, we observed the so-called intrinsic Magnus force experienced by a moving electron; the direction of the force directly reflected the chirality. We further showed that, at the superfluid transition, the system selected either right- or left-handed chirality. The observation of such selection directly demonstrates chiral symmetry breaking.

  15. Toward precision polarimetry of dense polarized {sup 3}He targets

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M.V.; Bogorad, P.L.; Cates, G.D.; Kumar, K.S. [Princeton Univ., NJ (United States); Chupp, T.E.; Coulter, K.P.; Smith, T.B.; Welsh, R. [University of Michigan, Ann Arbor, MI 48109 (United States); Hughes, E.W. [California Inst. of Technol., Pasadena, CA (United States); Johnson, J.R. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States); Thompson, A.K. [National Institute of Standards and Technology, Gainesville, MD 20899 (United States)

    1998-01-11

    We describe several new measurement and analysis techniques used to determine the polarization of the {sup 3}He target in a recently completed measurement of the neutron spin structure function g{sup n}{sub 1} at SLAC (E-154). The polarization was determined using two independent methods. The first method used a standard technique of adiabatic fast passage, calibrated by a measurement of Boltzmann polarization in a sample of water. We describe several systematic effects affecting this calibration procedure. The second method used a shift of the Rb Zeeman resonance frequency due to the polarization of {sup 3}He. Implementation and calibration of this technique are discussed in detail. Finally, the density of {sup 3}He in the cell was measured using two independent methods, one of them based on the pressure broadening of Rb D{sub 1} and D{sub 2} lines due to {sup 3}He. (orig.). 21 refs.

  16. The SLAC E-154 {sup 3}He polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, E.W. [California Institute of Technology, Pasadena, California 91125 (United States); Chupp, T.E.; Coulter, K.P.; Smith, T.B.; Welsh, R. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Thompson, A.K. [National Institute of Standards and Technology, Gainesville, Maryland 20899 (United States); Romalis, M.V.; Bogorad, P.L.; Cates, G.D.; Kumar, K.S. [Princeton University, Princeton, New Jersey 08544 (United States); Johnson, J.R. [University of Wisconsin, Madison, Wisconsin 53706 (United States)

    1998-01-01

    We describe the NMR and Rb Zeeman frequency shift polarimeters used for determining the {sup 3}He polarization in a recent precision measurement of the neutron spin structure function g{sub 1} at SLAC (E-154). We performed a detailed study of the systematic errors associated with the calibration of the NMR polarimeter. A new technique was used for determining the {sup 3}He polarization from the frequency shift of the Rb Zeeman resonance. {copyright} {ital 1998 American Institute of Physics.}

  17. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    International Nuclear Information System (INIS)

    The design, fabrication, operation, and performance of a 3/4 He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  18. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  19. Low energy spin polarized radioactive beams as a probe of thin films and interfaces

    CERN Document Server

    Kiefl, R F; Amaudruz, P A; Arseneau, D; Baartman, R; Beals, T R; Behr, J; Brewer, J; Daviel, S; Hatakeyama, A; Hitti, B; Kreitzman, S R; Levy, C D P; Miller, R; Olivo, M; Poutissou, R; Morris, G D; Dunsiger, S R; Heffner, R; Chow, K H; Hirayama, Y; Izumi, H; Bommas, C; Dumont, E; Greene, L H

    2003-01-01

    A spectrometer for beta-detected nuclear magnetic resonance (beta-NMR) has been commissioned at the ISAC facility at TRIUMF. A beam of low energy highly spin polarized sup 8 Li sup + can be decelerated and implanted into ultra-thin structures 6-400 nm thick. beta-NMR provides local information on the electronic and magnetic properties of materials which is similar to conventional NMR but can be used as a sensitive probe of ultra-thin films, interfaces and other nanostructures. We report here on the status of the spectrometer and preliminary results on a simple metal film.

  20. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  1. Observation of nuclear spin waves in spin-polarized atomic hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Johson, B.R.; Denker, J.S.; Bigelow, N.; Levy, L.P.; Freed, J.H.; Lee, D.M.

    1984-04-23

    We have observed narrow, distinct resonances in the NMR spectrum of dilute spin-polarized atomic hydrogen gas (nroughly-equal10/sup 16/ atoms/cm/sup 3/). The dependence of the observed spectra on temperature, density, polarization, and magnetic field gradient is consistent with theoretical predictions for spin-wave excitations damped by diffusion. We have measured the parameter ..mu.., which is a measure of the importance of exchange effects in spin transport processes, and the diffusion coefficient D/sub 0/, both of which are in reasonable agreement with theory.

  2. Production of d, t, 3He, anti d, anti t and anti 3He by 200 GeV protons

    International Nuclear Information System (INIS)

    Bozzoli, W.; Giacomelli, G.; Rimondi, F.; Zylberajch, S.; Lesquoy, E.; Meunier, R.; Moscoso, L.; Muller, A.; Bussiere, A.

    1978-01-01

    Data are presented on the yields of d, t, 3 He, anti d, anti t, and anti 3 He with laboratory momenta between 12 and 37 GeV/c produced by 200 GeV protons on beryllium and aluminium. The production yield of nuclei depends significantly on the target nucleus, while the anti d production is independent of target material. The mass dependence of the production cross section is exponential for both nuclei and antinuclei

  3. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  4. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  5. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  6. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  7. Multispin-assisted optical pumping of bulk 13C nuclear spin polarization in diamond

    Science.gov (United States)

    Pagliero, Daniela; Rao, K. R. Koteswara; Zangara, Pablo R.; Dhomkar, Siddharth; Wong, Henry H.; Abril, Andrea; Aslam, Nabeel; Parker, Anna; King, Jonathan; Avalos, Claudia E.; Ajoy, Ashok; Wrachtrup, Joerg; Pines, Alexander; Meriles, Carlos A.

    2018-01-01

    One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. Here we use field-cycled nuclear magnetic resonance to investigate the mechanisms of spin-polarization transfer from NVs to 13C spins in diamond at room temperature. We focus on the dynamics near 51 mT, where a fortuitous combination of energy-matching conditions between electron and nuclear spin levels gives rise to alternative polarization transfer channels. By monitoring the 13C spin polarization as a function of the applied magnetic field, we show 13C spin pumping takes place via a multispin cross-relaxation process involving the N V- spin and the electronic and nuclear spins of neighboring P1 centers. Further, we find that this mechanism is insensitive to the crystal orientation relative to the magnetic field, although the absolute level of 13C polarization—reaching up to ˜3 % under optimal conditions—can vary substantially depending on the interplay between optical pumping efficiency, photogenerated carriers, and laser-induced heating.

  8. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  9. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  10. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    Science.gov (United States)

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  11. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  12. Tunable spin-polarized edge transport in inverted quantum-well junctions

    Science.gov (United States)

    Nanclares, Dimy; Lima, Leandro R. F.; Lewenkopf, Caio H.; da Silva, Luis G. G. V. Dias

    2017-10-01

    Inverted HgTe/CdTe quantum wells have been used as a platform for the realization of two-dimensional topological insulators, bulk insulator materials with spin-helical metallic edge states protected by time-reversal symmetry. This paper investigates the spectrum and the charge transport in HgTe/CdTe quantum well junctions both in the topological regime and in the absence of time-reversal symmetry. We model the system using the Bernevig-Hughes-Zhang effective Hamiltonian and compute the transport properties using recursive Green's functions with a finite differences' method. Specifically, we have studied the material's spatially resolved conductance in a setup with a gated central region, forming monopolar (n -n'-n ) and heteropolar (n -p -n , n -TI-n ) double junctions, which have been recently realized in experiments. We find regimes in which the edge states carry spin-polarized currents in the central region even in the presence of a small magnetic field, which breaks time-reversal symmetry. More interestingly, the conductance displays spin-dependent, Fabry-Perót-like oscillations as a function of the central gate voltage producing tunable, fully spin-polarized currents through the device.

  13. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  14. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  15. First doubly polarised photoproduction on {sup 3}He at the photon beam of MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Aguar Bartolome, Patricia

    2010-11-15

    A first experiment with a polarised {sup 3}He target was carried out in July 2009 at the MAMI accelerator in Mainz in a photon energy range between 200 MeV and 800 MeV. The aim of this measurement was to investigate the Gerasimov-Drell-Hearn sum rule on the neutron. The use of the data obtained with the polarised {sup 3}He target, compared to existing data on the deuteron, gives a complementary and more direct access to the neutron, due to the spin structure of the {sup 3}He. The measurement of the helicity dependence of the inclusive total photoabsorption cross section required a beam of tagged circularly polarised photons incident on the longitudinally polarised {sup 3}He target. The data were taken using the 4{pi} Crystal Ball photon spectrometer in combination with TAPS as a forward wall and complemented by a threshold Cherenkov detector used to on-line suppress the background from electromagnetic events. The development and preparation of the different components of the {sup 3}He experimental setup was an important part of this work and are described in detail in this thesis. The detector system and the analysis method were tested by the measurement of the unpolarised total inclusive photoabsorption cross section on liquid hydrogen. The results obtained are in good agreement with previous published data. Preliminary results of the unpolarised total photoabsorption cross section, as well as the helicity dependent photoabsorption cross section difference on {sup 3}He compared with several theoretical models will also be presented. (orig.)

  16. Phase equilibrium in a polarized saturated 3He-4He mixture

    International Nuclear Information System (INIS)

    Rodrigues, A.; Vermeulen, G.

    1997-01-01

    We present experimental results on the phase equilibrium of a saturated 3 He- 4 He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a 4 He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated 3 He- 4 He mixture are equal at p = 2.60 ± 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase

  17. Study of two-nucleon wave functions in 3He

    International Nuclear Information System (INIS)

    Bracco, A.; Gubler, H.P.; Hasell, D.K.

    1982-11-01

    The 3 He(p,2p)pn reaction has been studied in a quasi-free scattering arrangement characterized by (anti) p(recoil) = 0 and various excitation or total energies E(recoil) of the unobserved p-n pair. Data were obtained at 250 and 400 MeV at symmetric and asymmetric pairs of angles. The 3 He spectral function deduced in the framework of the plane wave impulse approximation is compared to the predictions of Faddeev and variational calculations. Comparisons are also made with p-n relative motion momentum distributions as the overlap between plane waves for the p-n pair and Irving, Irving-Gunn and Khanna wave functions for 3 He

  18. Neutron cross sections for 3He at epithermal energies

    International Nuclear Information System (INIS)

    Keith, C.D.; Chowdhuri, Z.; Rich, D.R.; Snow, W.M.; Bowman, J.D.; Penttilae, S.L.; Smith, D.A.; Leuschner, M.B.; Pomeroy, V.R.; Jones, G.L.; Sharapov, E.I.

    2004-01-01

    High accuracy, absolute measurements of the neutron total cross section for 3 He are reported for incident neutron energies 0.1-400 eV. The measurements were performed at the LANSCE short-pulse neutron spallation source. Using the previously determined cross section for neutron elastic scattering, 3.367±0.019 b, we extract a new value for the energy dependence of the 3 He(n,p) 3 He reaction cross section, σ np =(849.77±0.14±1.02)E -1/2 -(1.253±0.00± -0.049 +0.008 )b, where the neutron energy is expressed in eV. The first uncertainty is statistical, the second systematic.

  19. Studies on D-{sup 3}He fusion in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, Atsuo; Fujiwara, Masami; Okamoto, Masao [and others

    1996-03-01

    In LHD (Large Helical Device) studies on realization of D-D fusion burning has been carried out, where tritium burning is out of this plan. We propose experiments on D-{sup 3}He fusion in this plan. This fueled fusion has the reaction cross-section as large as D-D fusion, however the production rate of neutrons is quite low compared with other fueled fusions. This low production rate of neutrons mitigate limitations on experiments. Up to now, D-T burning with fusion output of 1-10 MW has been studied experimentally in TFTR and JET, however, fusion produced neutrons restrict physically detailed experiments in a short pulse operation. D-{sup 3}He burning experiments with about 0.1-1 MW fusion output in LHD promote the burning physics because of no limitations on experiments and may take the lead in performance of the steady and clean fusion. In this paper, we report the results of studies on D-{sup 3}He fusion plan in LHD. In the first section, the significance of this experiments and the basic data of D-{sup 3}He fueled fusion are presented. In Sec.2 and 3 the theoretical studies as well as the experimental plan in LHD are presented. In Sec.4 the development of a high energy beam source is discussed. In Sec.5 a D-{sup 3}He steady burning in LHD is studied. In Sec.6 we summarize and discuss the results of this plan. This plan is the first step of D-{sup 3}He fusion experiments and hereafter the innovative ideas may enrich this plan. (author)

  20. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2006-01-01

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  1. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  2. Motion of ions in normal and superfluid 3He

    International Nuclear Information System (INIS)

    Fetter, A.L.; Kurkijaervi, J.; Helsinki Univ. of Technology, Otaniemi

    1976-11-01

    The drag force on an ion in low-temperature 3 He is studied with a generalization of the Josephson-Lekner formalism, keeping higher-order terms in the velocity and coherence factors in the superfluid phase. In the normal state, a diffusive model for inelastic-scattering corrections provides an estimate of the onset velocity for nonlinearity in the drag force. Analytic calculations in 3 He-B for elastic scattering at low and high velocity (v Δ/psub(F)) agree qualitatively with the experimental observations near Tsub(c). (author)

  3. An internal polarized 3He target for electron storage rings

    International Nuclear Information System (INIS)

    Kramer, L.H.; Massachusetts Inst. of Tech., Cambridge, MA; DeSchepper, D.; Massachusetts Inst. of Tech., Cambridge, MA; Milner, R.G.; Massachusetts Inst. of Tech., Cambridge, MA; Pate, S.F.; Massachusetts Inst. of Tech., Cambridge, MA; Shin, T.; Massachusetts Inst. of Tech., Cambridge, MA

    1995-01-01

    We describe an internal polarized 3 He target currently under construction which will be used in several electron storage ring experiments. The target is based on the technique of metastability exchange laser optical pumping, where the polarized atoms flow into a cryogenically-cooled storage cell. This novel technique allows for high precision measurements where the beam interacts with the pure atomic species. Both the HERMES experiment at DESY and the BLAST detector at the MIT Bates Laboratory will use the polarized 3 He target in their measurements. Details of the target system, including the provisions needed to incorporate the target into the electron storage ring, are presented. (orig.)

  4. Real squashing mode in textures in 3He-B

    International Nuclear Information System (INIS)

    Mineev, V.P.

    1985-01-01

    The shape of the absorption line of ultrasound due to various components of the real squashing mode in textures in 3 He-B is investigated. An explanation is presented of the additional splitting of the absorption line for the M=0 component of the real squashing model in a magnetic field and of the absence of such splitting of lines with M=+-1, +-2 in the case of place geometry. The peculiarities of the shape of the ultrasound absorption lines for various components of the real squashing mode in a rotating cylindrical vessel with 3 He-B are discussed

  5. The electrodisintegration of 3He studied with the 3He(e,e'p)2H and 3He(e,e'd)1H reactions

    International Nuclear Information System (INIS)

    Keizer, P.H.M.

    1986-01-01

    The author presents a survey of experimental and theoretical results for the ground-state properties of 3 He. The formalism of the (e,e'p) and (e,e'd) reactions is presented. A short description of the instrumentation, in particular those elements which are typical for the present study, and of the data analysis is given. This includes a description of the elements required in the 'recoil detection' technique. The kinematics of the experiments and the results are presented. The results are discussed and compared with calculations. (Auth.)

  6. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.

    2008-01-01

    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  7. On the high frequency modes of 3He A

    International Nuclear Information System (INIS)

    Dombre, T.; Combescot, R.

    1981-01-01

    We show that there are no eigenfrequencies for most of the homogeneous fluctuations of the order parameter in 3 He A. The absorption of transverse sound is studied in the limit of zero temperature and is found to display a much broader structure than in the vicinity of the transition temperature. (orig.)

  8. The {sup 3}He neutron-spin filter at ILL

    Energy Technology Data Exchange (ETDEWEB)

    Tasset, F.; Heil, W.; Humblot, H.; Lelievre-Berna, E.; Roberts, T. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Neutron-Spin Filters (NSF) using gaseous polarised {sup 3}He have long been recognised as of enormous potential value in many polarised neutron-scattering applications and, accordingly, ILL started a development programme some years ago. This report gives an account of the present status of the project. (author). 13 refs.

  9. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  10. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  11. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  12. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  13. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  14. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Science.gov (United States)

    Urrego-Blanco, J. P.; van den Brandt, B.; Bunyatova, E. I.; Galindo-Uribarri, A.; Hautle, P.; Konter, J. A.

    2005-12-01

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 μm and 100 μm based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  15. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Urrego-Blanco, J.P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Brandt, B. van den [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow (Russian Federation); Galindo-Uribarri, A. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States)]. E-mail: uribarri@mail.phy.ornl.gov; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Konter, J.A. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2005-12-15

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 {mu}m and 100 {mu}m based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  16. Observation of radiative spin-polarization at 60.6 GeV

    CERN Document Server

    Assmann, R W; Hildreth, M D; Matheson, J; Mugnai, G; Placidi, Massimo; Roncarolo, F; Torrence, E; Sonnemann, F; Uythoven, J; Wenninger, J; Blondel, A

    1999-01-01

    Radiative spin-polarization has been used extensively at LEP to accurately measure the beam energy around the Z resonance. As the LEP physics has moved on to the W boson the calibration based on polarization must be extended towards higher beam energies. This is difficult as the depolarizing effects of spin resonances grow rapidly with beam energy. At LEP it has been possible for the first time to measure transverse beam polarization at 60.6 GeV. To allow a build-up of polarization the tunes and the energy were chosen accurately. A low phase advance optics was used and careful orbit correction was carried out using dynamic beam based alignment data. Harmonic spin matching was applied both in a deterministic and a novel semi- empirical way. (11 refs).

  17. Confinement effect on spin-polarized edge states in graphene nanostructures

    Science.gov (United States)

    Ramos-Castillo, Carlos; de Coss, Romeo

    2014-03-01

    One of the most intriguing phenomena in condensed matter physics is the existence of edge states on the boundary of a 2D system. In graphene, the edge states have distinct properties from the bulk states and play important roles in the physicochemical properties of the material. In this work, we show ab-initio results of spin-polarized electronic edge states in graphene quantum dots of different sizes and shape. We found a critical size at which the singlet nonmagnetic ground state becomes singlet open-shell with antiferromagnetic order. We found that the critical size is strongly influenced by the shape of the quantum dot. We discuss this behavior based on energetics and electronic structure of the system under study. The calculations are base on the Density functional Theory (DFT). The Linear Combination of Atomic Orbital (LCAO) method for bases functions it was used. For exchange-correlation functional has been used the Generalized Gradient Approximation (GGA).

  18. TOPICAL REVIEW: Highly spin-polarized materials and devices for spintronics

    Directory of Open Access Journals (Sweden)

    Koichiro Inomata et al.

    2008-01-01

    Full Text Available The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 ? xFexAl (CCFA(x and Co2FeSi1 ? xAlx (CFSA(x and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs using Co2FeSi0.5Al0.5 (CFSA(0.5 Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5 at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD and nuclear magnetic resonance (NMR analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001 substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5 electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001 single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO

  19. Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Menchero, Jose Gabriel [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.

  20. Coexistence of antiferromagnetism and spin polarization in double perovskite SrLaVMoO6

    International Nuclear Information System (INIS)

    Asano, H; Gotoh, H; Matsushima, H; Takeda, Y; Zhong, J; Rajanikanth, A; Hono, K

    2010-01-01

    The magnetic and transport properties of SrLaVMoO 6 bulk samples with an ordered double perovskite structure have been investigated. Magnetization measurements have indicated that the SrLaVMoO 6 compound exhibits a cusp at 125 K, which is attributable to an antiferromagnetic transition. Electrical resistivity ρ for the compound showed metallic temperature dependence from 10 to 300 K, and a spin polarization P value was measured to be 0.50 using the point-contact Andreev reflection (PCAR) technique. It has been found from X-ray photoemission spectroscopy (XPS) study that SrLaVMoO 6 closely resembles the half-metallic Sr 2 FeMoO 6 in the electronic state of the Mo.

  1. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  2. Dirac cone with helical spin polarization in ultrathin α-Sn(001) films.

    Science.gov (United States)

    Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina

    2013-11-22

    Spin-split two-dimensional electronic states have been observed on ultrathin Sn(001) films grown on InSb(001) substrates. Angle-resolved photoelectron spectroscopy (ARPES) performed on these films revealed Dirac-cone-like linear dispersion around the Γ¯ point of the surface Brillouin zone, suggesting nearly massless electrons belonging to 2D surface states. The states disperse across a band gap between bulklike quantum well states in the films. Moreover, both circular dichroism of ARPES and spin-resolved ARPES studies show helical spin polarization of the Dirac-cone-like surface states, suggesting a topologically protected character as in a bulk topological insulator (TI). These results indicate that a quasi-3D TI phase can be realized in ultrathin films of zero-gap semiconductors.

  3. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  4. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    Science.gov (United States)

    Ceeh, Hubert; Weber, Josef Andreas; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-16

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  5. Search for the K−pp bound state via the in-flight 3He(K−, n reaction

    Directory of Open Access Journals (Sweden)

    Sada Y.

    2014-01-01

    Full Text Available In the J-PARC E15 experiment, a K− pp search was performed via the 3He(K−, n reaction at 1.0 GeV/c. A forward-going neutron is detected by a neutron counter with 15 m flight length, and decay particles from K− pp are simultaneously measured by a cylindrical detector system that surrounds a liquid 3He target system. In March and May, 2013, we carried out the first physics data-taking with 5×109 incident kaons on the 3He target, and we have obtained a preliminary exclusive analysis result of 3He(K−, Λpn reaction.

  6. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  7. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  8. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  9. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  10. Modeling optically pumped NMR and spin polarization in GaAs/AlGaAs quantum wells

    Science.gov (United States)

    Saha, D.; Wood, R.; Tokarski, J. T.; McCarthy, L. A.; Bowers, C. R.; Sesti, E. L.; Hayes, S. E.; Kuhns, P. L.; McGill, S. A.; Reyes, A. R.; Sanders, G. D.; Stanton, C. J.

    2014-08-01

    Optically-pumped nuclear magnetic resonance (OPNMR) spectroscopy is an emerging technique to probe electronic and nuclear spin properties in bulk and quantum well semiconductors. In OPNMR, one uses optical pumping with light to create spin-polarized electrons in a semiconductor. The electron spin can be transferred to the nuclear spin bath through the Fermi contact hyperfine interaction which can then be detected by conventional NMR. The resulting NMR signal can be enhanced four to five orders of magnitude or more over the thermal equilibrium signal. In previous work, we studied OPNMR in bulk GaAs where we investigated the strength of the OPNMR signal as a function of the pump laser frequency. This allowed us to study the spin-split valence band. Here we report on OPNMR studies in GaAs/AlGaAs quantum wells. We focus on theoretical calculations for the average electron spin polarization at different photon energies for different values of external magnetic field in both unstrained and strained quantum wells. Our calculations allow us to identify the Landau level transitions which are responsible for the peaks in the photon energy dependence of the OPNMR signal intensity. The calculations are based on the 8- band Pidgeon-Brown model generalized to include the effects of the quantum confinement potential as well as pseudomorphic strain at the interfaces. Optical properties are calculated within the golden rule approximation. Detailed comparison to experiment allows one to accurately determine valence band spin splitting in the quantum wells including the effects of strain.

  11. Electron Bubbles in Superfluid (3) 3 He-A: Exploring the Quasiparticle-Ion Interaction

    Science.gov (United States)

    Shevtsov, Oleksii; Sauls, J. A.

    2017-06-01

    When an electron is forced into liquid ^3He, it forms an "electron bubble", a heavy ion with radius, R˜eq 1.5 nm, and mass, M˜eq 100 m_3, where m_3 is the mass of a ^3He atom. These negative ions have proven to be powerful local probes of the physical properties of the host quantum fluid, especially the excitation spectra of the superfluid phases. We recently developed a theory for Bogoliubov quasiparticles scattering off electron bubbles embedded in a chiral superfluid that provides a detailed understanding of the spectrum of Weyl Fermions bound to the negative ion, as well as a theory for the forces on moving electron bubbles in superfluid ^3He-A (Shevtsov and Sauls in Phys Rev B 94:064511, 2016). This theory is shown to provide quantitative agreement with measurements reported by the RIKEN group (Ikegami et al. in Science 341(6141):59, 2013) for the drag force and anomalous Hall effect of moving electron bubbles in superfluid ^3He-A. In this report, we discuss the sensitivity of the forces on the moving ion to the effective interaction between normal-state quasiparticles and the ion. We consider models for the quasiparticle-ion (QP-ion) interaction, including the hard-sphere potential, constrained random-phase-shifts, and interactions with short-range repulsion and intermediate-range attraction. Our results show that the transverse force responsible for the anomalous Hall effect is particularly sensitive to the structure of the QP-ion potential and that strong short-range repulsion, captured by the hard-sphere potential, provides an accurate model for computing the forces acting on the moving electron bubble in superfluid 3He-A.

  12. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  13. Direct injection of spin-polarized carriers across YBa2Cu3O7−δ ...

    Indian Academy of Sciences (India)

    In summary, we have shown that the direct injection of spin-polarized carriers from LCMO into YBCO suppresses the critical current of the YBCO layer due to the breaking of the time reversal symmetry of the Cooper pairs. Further, our experiments show that when the ferromagnetic LCMO layer is in direct contact with YBCO, ...

  14. Comparison of the 3He(p,2p)d and 3He(p,pd)p reactions

    International Nuclear Information System (INIS)

    Bracco, A.; Gubler, H.P.; Hasell, D.K.; Lee, W.P.; Oers, W.T.H. van; Epstein, M.B.; Krause, D.A.; Margaziotis, D.J.; Abegg, R.; Miller, C.A.; Stetz, A.W.

    1984-01-01

    The 3 He(p, 2p)d reaction has been measured at 300 MeV at the angel pair 70 0 -33 0 and at 450 MeV at the angle pairs 70 0 -30 0 and 46 0 -46 0 for recoil momenta larger than 350 MeV/c. For the 3 He(p, pd)p reaction energy sharing loci have been measured at 450 MeV for the angle pairs 25 0 -68 0 , and 50 0 -68 0 , yielding a recoil momentum range from 0 to 480 MeV/c. The proton-deuteron relative motion momentum distributions were deduced in the framework of the PWIA and are compared to existing 3 He(e, e'p)d results and to the momentum distribution calculated from the overlap integral between a Hulthen deuteron wave function and an Irving-Gunn 3 He wave function. Comparisons are also made with spectral functions calculated using the Faddeev equations and variational techniques. (orig.)

  15. Comparison of the 3He(p,2p)d and 3He(p,pd)p reactions

    International Nuclear Information System (INIS)

    Bracco, A.; Gubler, H.P.; Hasell, D.K.; Oers, W.T.H. van; Epstein, M.B.; Krause, D.A.; Margaziotis, D.J.; Abegg, R.; Miller, C.A.

    1984-01-01

    In the present experiment the 3 He(p, 2p)d reaction was measured at 300 MeV at the angle pair 70 0 -33 0 and at 450 MeV at the angle pairs 70 0 -30 0 and 46 0 -46 0 for recoil momenta larger than 350 MeV/c. For the 3 He(p, pd)p reaction energy sharing loci were measured at 450 MeV for the angle pairs 25 0 -68 0 and 50 0 -68 0 yielding a recoil momentum range from 0 to 480 MeV/c. In the framework of the PWIA the proton-deuteron relative motion momentum distributions extracted from 3 He(p, S2p)d and 3 He(p,pd)p should be identical. A comparison of the two reactions is therefore a useful tool to investigate the presence of competing processes such as multiple scattering, final state interaction and isobar configuration effects. (orig.)

  16. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  17. Evidence of Cluster Structure of $^9$Be from $^3$He+$^9$Be Reaction

    NARCIS (Netherlands)

    Lukyanov, S. M.; Harakeh, M. N.; Naumenko, M. A.; Xu, Yi; Trzaska, W. H.; Burjan, V.; Kroha, V.; Mrazek, J.; Glagolev, V.; Piskoř, Š.; Voskoboynik, E. I.; Khlebnikov, S. V.; Penionzhkevich, Yu E.; Skobelev, N. K.; Sobolev, Yu G.; Tyurin, G. P.; Kuterbekov, K.; Tuleushev, Yu

    2015-01-01

    The study of inelastic scattering and multi-nucleon transfer reactions was performed by bombarding a $^{9}$Be target with a $^3$He beam at an incident energy of 30 MeV. Angular distributions for $^9$Be($^3$He,$^3$He)$^{9}$Be, $^9$Be($^3$He,$^4$He)$^{8}$Be, $^9$Be($^3$He,$^5$He)$^{7}$Be,

  18. Spin effects in medium-energy electron-3He scattering

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.; Alarcon, R.; Bauer, T.

    1998-01-01

    New physics can be accessed by scattering polarized electrons from a polarized 3 He internal gas target. It is discussed how the asymmetries for the reactions 3 vector He(vector e,e'), 3 vector He(vector e,e'p), 3 vector He(vector e,e'n), 3 vector He(vector e,e'd), and 3 vector He(vector e,e'pn) may provide precise information on the S' and the D-wave parts of the 3 He ground-state wave function, the neutron form factors, and the role of spin-dependent reaction mechanism effects. The experiment uses up to 900 MeV (polarized) electrons from the AmPS storage ring in Amsterdam, Netherlands, in combination with large acceptance electron and hadron detectors. (orig.)

  19. A theory of low energy π-3He elastic scattering

    International Nuclear Information System (INIS)

    Geffen, F.M.M. van.

    1991-01-01

    The main aim of this work is the construction of a first-order optical potential for the scattering of pions by 3 He at low energy with as few approximations as possible. In particular the Fermi motion is treated extremely carefully by using microscopic 3 He wave functions and by performing the complete Fermi-integral. Differential cross-sections and analyzing powers have been calculated. In a detailed comparison between the first-order optical with one which results from using the semi-factored approximation, it became clear that the latter has the following shortcomings: 1. the dependence of the subenergy on the pion-nucleus scattering angle, and 2. the independence of this energy on the relative motion of the spectator nucleons. (author). 101 refs.; 15 figs.; 3 tabs

  20. π--induced single charge exchange on polarized 3He

    International Nuclear Information System (INIS)

    Zhao, Q.; Burleson, S.; Blanchard, T.

    1995-01-01

    Asymmetries, A y , for the (π - ,π 0 ) reaction on polarized 3 He were measured using the pion beam of the P3W channel at LAMPF. The π 0 were detected with the new Neutral Meson Spectrometer (NMS) in coincidence with recoiling tritons. The recoil detector consisted of scintillation-counter telescopes and a wire chamber that provided energy-loss and direction information, respectively. The polarized gaseous 3 He target developed at TRIUMF was modified and run with the use of two diode lasers. Polarizations were typically 50%. The A y taken at T π = 200 MeV between 60 and 105 degrees were found to be strongly angle-dependent. The results will be compared with the theoretical predictions

  1. A polarized sup 3 He internal target for storage rings

    CERN Document Server

    Poolman, H R; Bulten, H J; Doets, M; Ent, R; Ferro-Luzzi, M; Geurts, D G; Harvey, M; Mul, F A

    2000-01-01

    A polarized sup 3 He internal target was employed at the internal target facility of the Amsterdam electron Pulse Stretcher and Storage ring (AmPS) at the Dutch National Institute for Nuclear and High-Energy Physics (NIKHEF). The unique features of internal targets such as chemical and isotopic purity, high and rapidly reversible polarization, and the ability to manipulate the target spin orientation were successfully demonstrated. A nuclear polarization of 0.50 (0.42) at a sup 3 He gas flow of 1.0 (2.0)x10 sup 1 sup 7 at s sup - sup 1 could be obtained. Operation at a nominal flow of 1x10 sup 1 sup 7 at s sup - sup 1 resulted in a target thickness of 0.7x10 sup 1 sup 5 at cm sup - sup 2 at a target temperature of 17 K.

  2. Electric dipole moment and spin supercurrent in superfluid 3He

    International Nuclear Information System (INIS)

    Mineev, V.P.; Volovik, G.E.

    1992-01-01

    The SU(2) gauge invariant theory of the relativistic interaction of the electrically neutral superfluid 3 He with electric and magnetic fields is formulated. The spin supercurrent response on the electric field is calculated for this interaction. The comparison with the nonrelativistic flexoelectric effect, arising due to the distortion of the atomic shell by the gradients of the superfluid order parameter, is made. 5 refs

  3. Does the excited state of the 3He nucleus exist?

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1994-01-01

    The suggestion is made that the excited state of the 3 He nucleus found out recently in the reaction has spin and parity 1/2 + and the same configuration that the ground open of 6 He. It is shown that in an elastic nd-scattering a resonance associated with the excited state may be absent due to destructive interference of potential and resonant scattering phases

  4. Superfluidity in 3He-4He mixture thin films

    International Nuclear Information System (INIS)

    Webster, E.

    1980-01-01

    All results from our experiments studying superfluidity in 3 He- 4 He mixture films are presented. Our measurements spanned the temperature range from 1.3 to 1.8K, and up to 30% 3 He molar concentration in the film. Films of up to 100 Angstroms thickness were studied. The experimental configuration and procedure are described. Relevant theories are reviewed. The areal superfluid mass density sigma/sub s/ is given in terms of an experimental measure of the film thickenss - sigma/rho(#betta#,T) - for all concentrations and temperatures studied. Detailed data from the onset regions are included. Precipitious onset phenomena were observed, and the Kosterlitz-Thouless-Nelson theory conclusively verified. However, no two-dimensional phase separation was observed, showing that mixture theories based on the X-Y model need additional refinement to correctly describe multilayer films. Experimental values of the superfluid onset and intercept (sigma/sub s/ extrapolated to zero) thicknesses of 3 He- 4 He mixture films are also exhibited. The latter (intercept) thickness is interpreted as a measure of the healing length, and alternatively as an excess normal fluid present in superfluid films. Analysis of our experimental evidence indicates that this excess normal fluid is due to surface roton excitations which exist at the substrate boundary, with an energy gap of 4.5 0 K

  5. 3He(p,p)3He scattering in the energy range 19 to 48 MeV

    International Nuclear Information System (INIS)

    Murdoch, B.T.; Hasell, D.K.; Sourkes, A.M.; van Oers, W.T.H.; Verheijen, P.J.T.; Brown, R.E.

    1984-01-01

    Differential cross sections for 3 He(p,p) 3 He elastic scattering have been measured at 11 energies in the laboratory energy range 19.5 to 47.5 MeV. The most forward c.m. angle for the angular distributions varies from 10.1 0 to 13.4 0 , and the most backward angle varies from 163.2 0 to 173.4 0 . The relative errors in the data are usually less than 2%, and the scale error is 1.5%. The present data, together with analyzing power and total reaction cross section data of others, have been subjected to an energy-dependent phase shift analysis. The extracted phase shifts and the differential cross sections are compared with the results of a simple resonating-group calculation

  6. The ARIES-III D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1992-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-III design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. In this paper, results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-I is included

  7. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1977-01-01

    The mobility of negative ions is shown to increase rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature independent mobility between 40 mK and T/sub c/ for all pressures between 0 and 28 bar. The increase of μ/sub N/ with increasing pressure is in agreement with the bubble model for the negative ion

  8. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1976-01-01

    We have found that the mobility of negative ions increases rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature-independent mobility between 30 mK and T/sub c/ for all pressures between 0 and 28 bars

  9. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  10. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  11. Spin-polarized supercurrents for spintronics: a review of current progress.

    Science.gov (United States)

    Eschrig, Matthias

    2015-10-01

    During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, [Formula: see text]-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.

  12. Perfect switching of the spin polarization in a ferromagnetic gapless graphene/superconducting gapped graphene junction

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Tang, I-Ming; Hoonsawat, Rassmidara

    2010-01-01

    With the fabrication of gapped graphene, interest in the tunneling spectroscopy in graphene-based FG/SG junctions in which one side consists of a gapless ferro-magnetic graphene (FG) and the other side, of a gapped superconducting graphene (SG) has arisen. The carriers in the gapless (gapped) graphene are 2D relativistic particles having an energy spectrum given by E=√(h 2 v F 2 k 2 +(mv F 2 ) 2 ) (where mv F 2 is the gap and v F is the Fermi velocity). The spin currents in this FG/SG junction are obtained within the framework of the extended Blonder-Tinkham-Klapwijk (BTK) formalism. The effects of the superconducting energy gap in SG, of the gap mv F 2 which opened in the superconducting graphene, of the exchange field in FG, of the spin-dependent specular Andreev reflection, of the effective Fermi energy (E FF ) of FG and of the bias voltage across the junction (V) are simulated. It is seen that by adjusting E FF or V, the spin polarization (defined as SP(%) = 100% x (G ↑ - G ↓ )/(G ↑ + G ↓ )) can be switched from a pure spin up (SP = +100%) state to pure spin down (SP = -100%) state.

  13. Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

    Science.gov (United States)

    Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.

    2018-04-01

    In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.

  14. Effect of the anisotropy of the electron g-factor in spin polarization

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Gray, E. MacA.

    2010-01-01

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency (Ω) and decay rate (β) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g e ) (i.e. unequal values of the longitudinal (g e|| ) and transverse (g e -perpendicular) components of g e ) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in Ω upon deviation of the magnetic field from the VC relates to the anisotropy of g e (g e|| and g e -perpendicular) resulting from the quantum confinement effect. However, the angular dependence on β is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  15. a Spinning Polarizer and Spinning Analyzer Method for Visualizing the Isochromates in Conoscopic Interferometers

    Science.gov (United States)

    Olorunsola, Oluwatobi; Dada, Oluwaseye; Wang, Pengqian

    2013-09-01

    We have developed a spinning polarizer and spinning analyzer (SPSA) method to visualize the whole isochromatic fringes in conoscopic interferometers for the study of optically anisotropic materials. This simple method completely eliminates the broad and dark isogyre fringes appearing in a conventional conoscopic interferometer where a linear polarizer and a linear analyzer (LPLA) are used. Our method allows the direct visualization of the isochromates on the viewing screen by eyes in real time, without the need of additional optics or detectors other than those used in a conventional conoscopic interferometer, and no additional computation is required. This method works at any polarization state of the input light, and at any wavelength permitted by the polarizers. In the case of polychromatic illumination our method reveals the isochromates of all colors indiscriminatively, in comparison to the method of circular polarizer and circular analyzer (CPCA), which is considerably subject to spectrum modulation due to the dispersion in the retardation of the quarter-wave plates. The proposed method is demonstrated in a lithium niobate (LiNbO3) crystal driven by an external electric field.

  16. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  17. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  18. Effect of the anisotropy of the electron g-factor in spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2010-02-15

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  19. Domain Wall Dynamics Driven by a Localized Injection of a Spin-Polarized Current

    Science.gov (United States)

    Finocchio, Giovanni; Maugeri, Natale; Torres, Luis; Azzerboni, Bruno

    2010-06-01

    This paper introduces an oscillator scheme based on the oscillations of magnetic domain walls due to spin-polarized currents, where the current is injected perpendicular to the sample plane in a localized part of a nanowire. Depending on the geometrical and physical characteristic of the system, we identify two different dynamical regimes (auto-oscillations) when an out-of-plane external field is applied. The first regime is characterized by nucleation of domain walls (DWs) below the current injection site and the propagation of those up to the end of the nanowire, we also found an oscillation frequency larger than 5GHz with a linear dependence on the applied current density. This simple system can be used as a tuneable steady-state domain wall oscillator. In the second dynamical regime, we observe the nucleation of two DWs which propagate back and forth in the nanowire with a sub-GHz oscillation frequency. The micromagnetic spectral mapping technique shows the spatial distribution of the output power is localized symmetrically in the nanowire. We suggest that this configuration can be used as micromagnetic transformer to decouple electrically two different circuits.

  20. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  1. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    Science.gov (United States)

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  2. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland

    2014-10-01

    The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.

  3. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  4. Thermally induced pure and spin polarized currents in a zigzag silicene nanoribbon based FM/normal/AFM junction

    Science.gov (United States)

    Ghanbari, Atousa; Esmaeilzadeh, Mahdi; Pournaghavi, Nezhat

    2018-01-01

    We study thermally induced spin resolved current in a zigzag silicene nanoribbon when the left and right leads are respectively affected by ferromagnetic (FM) and anti-ferromagnetic (AFM) exchange fields (FM/normal/AFM junction). We show that pure spin current is generated due to the leads temperature difference and the junction can work as a spin Seebeck diode. The pure spin current can be easily controlled by a perpendicular electric field and the junction, in this case, can work as a spin current switch. In addition, we study the effect of a single vacancy and show that the vacancy can slightly destroy the pure spin current property which leads to induce a weak spin polarized current. In the presence of both vacancy and electric field, current with high and tunable spin polarization can be achieved.

  5. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  6. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  7. Spin-polarized quasi-one-dimensional state with finite band gap on the Bi/InSb(001) surface

    Science.gov (United States)

    Kishi, J.; Ohtsubo, Y.; Nakamura, T.; Yaji, K.; Harasawa, A.; Komori, F.; Shin, S.; Rault, J. E.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Nurmamat, M.; Yamane, H.; Ideta, S.; Tanaka, K.; Kimura, S.

    2017-11-01

    One-dimensional (1D) electronic states were discovered on the 1D surface atomic structure of Bi fabricated on semiconductor InSb(001) substrates by angle-resolved photoelectron spectroscopy (ARPES). The 1D state showed steep, Dirac-cone-like dispersion along the 1D atomic structure with a finite direct band gap opening as large as 150 meV. Moreover, spin-resolved ARPES revealed the spin polarization of the 1D unoccupied states as well as that of the occupied states, the orientation of which inverted depending on the wave-vector direction parallel to the 1D array on the surface. These results reveal that a spin-polarized quasi-1D carrier was realized on the surface of 1D Bi with highly efficient backscattering suppression, showing promise for use in future spintronics and energy-saving devices.

  8. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  9. Longitudinal nuclear magnetic resonance of 3He-B superfluid

    International Nuclear Information System (INIS)

    Vibet, Claude.

    1979-06-01

    Experiments which contribute to a better understanding of the 3 He superfluid in the B phase are reported: a/ The first direct determinations of the gap parameter at zero temperature are given and the longitudinal N.M.R. frequency signal is measured for various pressures. b/ These experiments show a new saturation phenomenon in the ringing signal decay time Tsub(R)(T) at low temperatures. c/ Under conditions of slight non-linearity the excitation of 3 He-B longitudinal N.M.R. gives rise to a special system wherein the ringing signal decay is all the faster as the excitation is stronger. A so-called ''memory'' time is measured distinctly longer than the ringing time measured under quasi-linear excitation conditions. It was found that the ringing signal decay, at first exponential for weak excitations γH 1 approximately 7 10 -3 Ωsub(L), becomes quasi-linear when the excitation is about γH 1 approximately 10 -2 Ωsub(L). This abnormal behaviour cannot be explained by thermal effects related to N.M.R. excitation nor by inhomogeneity effects of the excitation magnetic field. Our interpretation is that excitations γH 1 approximately 10 -2 Ωsub(L) cause structural defects in the orientation of the vector n which are found to disappear according to an exponential law in times of around 10 ms [fr

  10. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  11. The 3H–3He Charge Radii Difference

    Directory of Open Access Journals (Sweden)

    Myers L. S.

    2016-01-01

    Full Text Available The upcoming E12-14-009 [1] experiment at Jefferson Lab will determine the ratio of the electric form factors for the A=3 mirror nuclei 3He and 3H. The measurement will use a 1.1 GeV electron beam, a special collimator plate to allow for simultaneous optics measurements, and the low-activity tritium target being prepared for Jefferson Lab. By observing the dependence of the form factor ratio as a function of Q2 over 0.05–0.09 GeV2, the dependence of the radii extraction on the shape of the form factors is minimized. As a result, we anticipate the uncertainty of the extracted charge radii difference to be 0.03 fm, a reduction of 70% from the current measurement. Using precise measurements of the 3He charge radius from isotopic shift or μHe measurements [2–4], we can deduce the absolute 3H charge radius. The results will provide a direct comparison to recent calculations of the charge radii.

  12. Influence of intrinsic spin-flip processes on spin-polarized transport through quantum dots in the cotunneling regime

    International Nuclear Information System (INIS)

    Weymann, I.; Barnas, J.

    2006-01-01

    The influence of intrinsic spin relaxation on spin-polarized cotunneling through quantum dots coupled to ferromagnetic leads is analyzed theoretically. It is shown that the zero bias anomaly, which occurs due to the interplay of single-barrier and double-barrier cotunneling processes, becomes suppressed by spin relaxation processes on the dot. Diode-like features of the transport characteristics in the cotunneling regime have been found in asymmetrical systems. These features are also suppressed by the spin relaxation processes

  13. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  14. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  15. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  16. 3He(e,e'p)2H breakup process

    International Nuclear Information System (INIS)

    van Meijgaard, E.; Tjon, J.A.

    1990-04-01

    The coincidence cross section of the electron-induced two-body breakup reaction 3 He(e,e'p)d is studied at various kinematic configurations. Nucleonic final-state interactions are treated exactly by solving the Faddeev equations for the relevant scattering states. The essential kinematic parameter in analyzing the results for the various kinematic regions is the missing momentum of the struck nucleon. At missing momenta below 250 MeV/c the s-wave analysis gives an adequate description of the experimental data. At missing momenta beyond 350 MeV/c a pure s-wave analysis is not sufficient. Contributions from the d-state components in the trinucleon wave functions to the disconnected graphs are considered. (Author) 12 refs., 15 figs., tab

  17. Direct energy conversion system for D(3)-He fusion

    Science.gov (United States)

    Tomita, Y.; Shu, L. Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D(3)-He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC'. The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DEC's bring about the high efficient fusion plant.

  18. Reflection and transformation of acoustic waves at the interface in superfluid 3He-A

    International Nuclear Information System (INIS)

    Kekutiya, Sh.E.; Chkhaidze, N.D.

    1997-01-01

    Reflection and transformation of acoustic waves in 3 He-A and 3 He-A 1 are considered for two cases: (1) at the boundary with a solid impermeable wall at an arbitrary angle of incidence of a wave and (2) for normal incidence of waves on the interface between a free liquid and a system of periodic plane-parallel capillaries filling the semi-space. For the first case we have calculated the reflection coefficients of the first and the second sounds and spin and spin-temperature waves as well as the coefficients of transformation of these waves into each other. It is shown that the longitudinal wave undergoes no transformation into other waves, there occurs instead its complete reflection from the solid wall. The angle of incidence at which the energy attenuation coefficient of the first sound is maximum, and the interval of angles corresponding to the attenuation and the total interval reflection of the second sound are estimated. For the second case we have obtained: the coefficients of excitation of the fourth sound and the magneto-acoustic wave by the first and the second sounds; the reflection coefficients for the first and the second sounds and the longitudinal spin wave; the coefficient of transformation of the first sound into the second one and vice versa; the coefficient of reflection of the fourth sound from the capillary system - free liquid interface; the coefficient of excitation of longitudinal spin wave in free helium by the same wave in a capillary

  19. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    The development of magnetic Heusler compounds, specifically designed as materials for spintronic applications, has made tremendous progress in the very recent past [1-21]. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% [1]. These materials are exceptionally well suited for applications in magnetic tunnel junctions acting, for example, as sensors for magnetic fields. The tunnelling magneto-resistance (TMR) effect is the relative change in the electrical resistance upon application of a small magnetic field. Tunnel junctions with a TMR effect of 580% at 4 K were reported by the group of Miyazaki and Ando [1], consisting of two Co2MnSi Heusler electrodes. High Curie temperatures were found in Co2 Heusler compounds with values up to 1120 K in Co2FeSi [2]. The latest results are for a TMR device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a TMR effect of 174% [3]. The first significant magneto-resistance effect was discovered in Co2Cr0.6Fe0.4Al (CCFA) in Mainz [4]. With the classical Heusler compound CCFA as one electrode, the record TMR effect at 4 K is 240% [5]. Positive and negative TMR values at room temperature utilizing magnetic tunnel junctions with one Heusler compound electrode render magnetic logic possible [6]. Research efforts exist, in particular, in Japan and in Germany. The status of research as of winter 2005 was compiled in a recent special volume of Journal of Physics D: Applied Physics [7-20]. Since then specific progress has been made on the issues of (i) new advanced Heusler materials, (ii) advanced characterization, and (iii) advanced devices using the new materials. In Germany, the Mainz and Kaiserslautern based Research Unit 559 `New Materials with High Spin Polarization', funded since 2004 by the Deutsche Forschungsgemeinschaft, is a basic science approach to Heusler compounds, and it addresses the first two topics in particular

  20. Production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange

    International Nuclear Information System (INIS)

    Redsun, S.G.

    1990-01-01

    The first part of this work is a study of the production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange optical pumping. A tunable ring dye laser is used to polarize rubidium atoms by optical pumping. The cell containing the rubidium vapor is coated with paraffin in order to reduce spin relaxation due to wall collisions. Hydrogen gas is dissociated in an inductive discharge and flows continuously through the cell, in which the hydrogen atoms are polarized by spin-exchange collisions with the polarized rubidium atoms. The hydrogen polarization is determined by a combination of fluorescence monitoring and magnetic resonance spectroscopy. Atomic hydrogen polarization as high as 2 z > H = 0.72(6) has been observed, which is the highest degree of polarization yet produced by this method. However, the polarization may be limited to this value due to the depolarization of the rubidium by radiation trapping. The spin-relaxation rate of atomic hydrogen on a paraffin-coated cell is also measured for the first time, and corresponds to about 3,800 wall bounces before electron-spin randomization. The second part of this work is a theoretical analysis of the problem of radiation trapping in a dense optically pumped alkali vapor. A Monte Carlo routine is used to simulate the trajectories of multiply scattered photons. The average spin angular momentum transfer from the photons to the vapor is used to determine the equilibrium polarization of the vapor as a function of the alkali density and the frequency of the pumping light

  1. Nuclear spin dynamics in solid {sup 3}He at ultralow temperatures; Kernspindynamik in festem {sup 3}He bei ultratiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Kath, Matthias

    2009-11-06

    In this thesis the experimental study of the spin dynamics of solid {sup 3}He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with {theta}{sub W}{approx}2.1 mK and by this an order parameter of J={theta}{sub W}k{sub B}/{approx}-0.5 Kk{sub B} was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of {tau}{sub 1}(6 mK)=240 ms{+-}12 ms and {tau}{sub 1}(1 mK){approx} 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time {tau}{sub 2}(6 mK)=4540 {mu}s{+-}140 {mu}s. Furthermore neutron scattering studies were performed. (HSI)

  2. Polarized 3He Neutron Spin Filters at Oak Ridge National Laboratory

    Science.gov (United States)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Lee, W. T.; Ambaye, H.; Craig, J. W.; Crow, L.; Culbertson, H.; Goyette, R.; Graves-Brook, M. K.; Hagen, M. E.; Kadron, B.; Lauter, V.; McCollum, L. W.; Robertson, J. L.; Winn, B.; Vandegrift, A. E.

    The unique advantages of using polarized 3He as neutron spin filters, such as broadband and wide angular acceptance of neutron beams, have made it widely used in most neutron facilities. Over the last several years, we have developed a polarized 3He program to meet the increasing needs of 3He based neutron spin filters at the Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). At ORNL, polarized 3He is produced using Spin Exchange Optical Pumping (SEOP). We have constructed a 3He cell fabrication station to produce 3He cells of different pressures and dimensions. Two optical pumping stations have been built in the lab to perform ex situ pumping of 3He. A compact in situ3He analyzer has been constructed and installed for the Magnetism Reflectometer (MAGICS) at SNS. A novel polarized 3He filling station for the Hybrid Spectrometer (HYSPEC) at SNS is under development.

  3. Search for a spin-dependent short-range force between nucleons with a 3He/129Xe clock-comparison experiment

    International Nuclear Information System (INIS)

    Tullney, Kathlynne

    2014-01-01

    The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129

  4. Analyzing powers of 3He(p vector,p)3He elastic scattering between 30 and 50 MeV

    International Nuclear Information System (INIS)

    Birchall, J.; van Oers, W.T.H.; Conzett, H.E.; von Rossen, P.; Larimer, R.M.; Watson, J.; Brown, R.E.

    1980-01-01

    Analyzing power data have been obtained for 3 He(p vector,p) 3 He elastic scattering at seven energies between 30 and 50 MeV at laboratory angles between 20 0 and 160 0 . Errors are typically less than 0.01. These results supplement earlier differential and total reaction cross-section and analyzing power data and new data obtained with a polarized 3 He target

  5. Slow modes in spin hydrodynamics of 3He-B

    International Nuclear Information System (INIS)

    Golo, V.L.; Kats, E.I.

    1986-01-01

    We study nonlinear interaction between sound and spin modes with the view of finding a means for detecting second sound pumped in a sample of 3 He-B. We find that the interaction could be tangible for second sound and spin-textual waves which are long wavelength spatial modulations of the WP mode of magnetic ringing. We show that within a thin layer close to the loudspeaker second sound generates the dephasing delta psi of the spin precession. We suggest that the mode of the w-oscillations could be detected with the technique for the propagating magnetic disturbance. Our numerical estimates indicate that in te temperature and pressure region 1 - T/Tsub(c) approximately equal to 0.01 and p=21.7 bar, and the frequency and power of second sound of order 100 Hz and 10 -3 erg/s, the dephasing of the spin precession may amount to 0.1 rad, and result in a swinging of the precession axis w

  6. 3H(p,n)3He differential cross sections below 5 MeV and the n-3He cross sections

    International Nuclear Information System (INIS)

    Drosg, M.

    1980-07-01

    Complete angular distributions for the 3 H(p,n) 3 He reaction were measured at 2.5 and 4.0 MeV with the 1 H(t,n) 3 He reaction used to obtain the backward yields. Because the distributions are peaked about 17% more strongly in the backward direction than the best previous elevation suggests (based on extrapolated data), the 3 H(p,n) 3 He reaction cross sections below 5 MeV were re-evaluated without the extrapolated data. The results were compared with recent total n- 3 He cross-section results. 3 figures, 4 tables

  7. Direct observation of hopping induced spin polarization current in oxygen deficient Co-doped ZnO by Andreev reflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kung-Shang; Huang, Tzu-Yu; Dwivedi, G.D. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lin, Lu-Kuei; Lee, Shang-Fan [Taiwan Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, Kaohsiung, Taiwan (China); Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-07-01

    Highlights: • Co-doped ZnO thin-films were grown with varying V{sub O} concentartion. • PCAR measurements were done to study the SPC. • High spin polarization was observed above a certain V{sub O} concentartion. • High V{sub O} samples provide a high density of completed percolation path. • This complete percolation path gives rise to high SPC. - Abstract: Oxygen vacancy induced ferromagnetic coupling in diluted magnetic oxide (DMO) semiconductors have been reported in several studies, but technologically more crucial spin-polarized current (SPC) is still under-developed in DMOs. Few studies have claimed that VRH mechanism can originate the SPC, but, how VRH mechanism associated with percolation path, is not clearly understood. We used Point-contact Andreev reflection (PCAR) technique to probe the SPC in Co-doped ZnO (CZO) films. Since the high resistance samples cause broadening in conductance(G)-voltage(V) curves, which may result in an unreliable evaluation of spin polarization, we include two extra parameters, (i) effective temperature and (ii) spreading resistance, for the simulation to avoid the uncertainty in extracting spin polarization. The effective G-V curves and higher spin polarization can be obtained above a certain oxygen vacancy concentration. The number of completed and fragmentary percolation paths is proportional to the concentration of oxygen vacancies. For low oxygen vacancy samples, the Pb-tip has a higher probability of covering fragmentary percolation paths than the complete ones, due to its small contact size. The completed paths may remain independent of one another and get polarized in different directions, resulting in lower spin-polarization value. High oxygen vacancy samples provide a high density of completed path, most of them link to one another by crossing over, and gives rise to high spin-polarization value.

  8. Dimensionality effects on spin-polarized quantum beats in ferromagnetic hosts with a pair of side-coupled impurities

    Energy Technology Data Exchange (ETDEWEB)

    Guessi, L.H.; Leandro, S.C.; Seridonio, A.C.; Siqueira, E.C. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Fisico Quimica; Souza, F.M.; Vernek, E. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Yoshida, M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Rio Claro, SP (Brazil); Figueira, M.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica

    2012-07-01

    Full text: In this work, we report a theoretical description of the differential conductance in the low bias regime, for a normal scanning tunneling microscope (STM) probe in the presence of ferromagnetic (FM) hosts with impurities. The hosts are treated as a spin-polarized electron gas hybridized to a pair of side-coupled impurities. Two setups of different dimensionalities are considered, a quantum wire (QW) and a metallic surface (MS). In order to deal with the non-interacting and the Coulomb blockade regimes of these systems, the analysis is done in the framework of the two-impurity Anderson model (TIAM) in combination with the equation of motion (EOM) approach for the Hamiltonian Green functions (GFs). The Fano effect appears in such setups, due to the quantum interference between the transport channels composed by the spin-polarized conduction bands and the electron tunneling into (or out of) the impurities. Thus the conductance of the STM reveals as a function of the probe position, a Fano interference strong dependent on the host dimensionality. It leads to the emergence of spin-polarized quantum beats in the Friedel oscillations for the conductance signal, which are uniform in the QW system in opposite to those found in the MS case, characterized by a long-range damped behavior. We remark that, the energy levels of the impurities and the Coulomb repulsion, modulate these beats. As a result, they establish a scenario where the interplay between the Coulomb blockade and the ferromagnetism of a metallic environment, can be useful for future quantum computation devices. (author)

  9. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  10. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  11. Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces.

    Science.gov (United States)

    Schouteden, K; Muzychenko, D A; Van Haesendonck, C

    2008-07-01

    Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.

  12. Spin-polarized relativistic linear-muffin-tin-orbital method: Volume-dependent electronic structure and magnetic moment of plutonium

    International Nuclear Information System (INIS)

    Solovyev, I.V.; Liechtenstein, A.I.; Gubanov, V.A.; Antropov, V.P.; Andersen, O.K.

    1991-01-01

    The linear-muffin-tin-orbital method is generalized to the case of relativistic and spin-polarized self-consistent band calculations. Our formalism is analogous to the standard orthogonal--linear-muffin-tin-orbital formalism, except that the potential functions and the potential parameters are now matrices. The method is used to perform density-functional calculations for fcc plutonium with different atomic volumes. The formation of spin and orbital magnetic moments, as well as the changes in the energy bands for volume changes corresponding to the α-δ transition, are investigated. The calculated magnetic moments agree quite well with the experimental ones

  13. Comment on "Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis".

    Science.gov (United States)

    Balser, Dana S; Rood, Robert T; Bania, T M

    2007-08-31

    Eggleton et al. (Reports, 8 December 2006, p. 1580) reported on a deep-mixing mechanism in low-mass stars caused by a Rayleigh-Taylor instability that destroys all of the helium isotope 3He produced during the star's lifetime. Observations of 3He in planetary nebulae, however, indicate that some stars produce prodigious amounts of 3He. This is inconsistent with the claim that all low-mass stars should destroy 3He.

  14. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  15. Oliver E. Buckley Prize Talk: Spin polarized tunneling and tunnel magnetoresistance -- Learning from the past and moving forward

    Science.gov (United States)

    Moodera, Jagadeesh

    2009-03-01

    Electron tunneling phenomenon has contributed enormously to our understanding of various branches of physics over the years. The technique of spin polarized tunneling (SPT), sensing the spin polarization of tunneling electrons using a superconducting spin detector, discovered by Meservey and Tedrow in the early seventies has been successfully utilized over the years to understand many aspects of magnetism and superconductivity. Electrical spin injection/detection in a semiconductor is strongly believed to succeed through such an approach. The successful observation of a large change in tunnel current in magnetic tunnel junctions (MTJ) in the mid nineties has brought extreme activity in this field -- both from fundamental study as well as extensive application in mind (as sensors, nonvolatile memory devices, logic elements etc). From the early history of this field that led to the discovery of room temperature TMR effect to the observation of many novel phenomena to the exciting recent work on spin filtering, spin transport in semiconductors to toggling of the superconducting state with spin current will be highlighted and reviewed. Work done in collaboration with Drs. Meservey and Tedrow, PhD students, postdoctorals, as well as high school students and undergraduates. NSF, ONR, DARPA and KIST-MIT project funds supported the research over the years.

  16. New-type spin polarized electron source and its applications; Atarashii spin henkyoku denshi sengen to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Saka, T.; Kato, T. [Daido Steel Co. Ltd., Nagoya (Japan); Nakanishi, T.; Okumi, S. [Nagoya University, Nagoya (Japan); Horinaka, H. [Osaka Prefectural University, Osaka (Japan). College of Engineering

    1998-08-20

    This paper reveals that using distorted thin GaAs film can realize high polarization in spin polarized electron ray, and introduces properties of the developed ray source. The paper also touches on the application thereof to property physics. Realization of the high spin polarization is based on use of the `optical polarization method`. With this method, electrons in specific spin state are excited into a conduction band by utilizing the selection law used when valency electrons of zincblende type crystal such as GaAs absorb circular polarization. These electrons are taken out into vacuum and used as polarized electron beams. In order to realize uniformly distorted GaAs film, a method was discussed, with which the thin GaAs films are grown on substrates with different lattice constants, and the films are distorted by means of lattice mismatch. GaAs(1-x)Px was used for the substrates. GaAs(1-x)Px has the lattice constant decrease as the P`s mixed crystal ratio `x` increases. If a thin GaAs film is grown on this substrate, it is possible to obtain GaAs which is subjected to compression stress in the direction parallel with the growing surface, and tensile stress in the vertical direction. 13 refs., 5 figs., 1 tab.

  17. Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree-Fock exchange

    KAUST Repository

    Wang, Hao

    2014-07-01

    The metal-insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (α) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12.5%≤α≤20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that α=10% is the best possible choice for spin-polarized VO2 calculations. © 2014 Elsevier B.V. All rights reserved.

  18. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  19. Efficient3He/4He separation in a nanoporous graphenylene membrane.

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-08-16

    Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.

  20. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  1. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  2. Anisotropic magnetoresistance and spin polarization of La0.7Sr0.3MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Wang, L.M.; Guo, C.-C.

    2005-01-01

    The crystalline structure, anisotropic magnetoresistance (AMR), and magnetization of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 (LSMO/STO) superlattices grown by a rf sputtering system are systematically analyzed to study the spin polarization of manganite at interfaces. The presence of positive low-temperature AMR in LSMO/STO superlattices implies that two bands of majority and minority character contribute to the transport properties, leading to a reduced spin polarization. Furthermore, the magnetization of superlattices follows the T 3/2 law and decays more quickly as the thickness ratio d STO /d LSMO increases, corresponding to a reduced exchange coupling. The results clearly show that the spin polarization is strongly correlated with the influence of interface-induced strain on the structure

  3. Effect of container walls on vibrating wire in {sup 3}He-{sup 4}He mixtures in the ballistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, Timo H; Thuneberg, Erkki V [Department of Physical Sciences, University of Oulu (Finland)], E-mail: timo.virtanen@oulu.fi

    2009-02-01

    We study linearized kinetic equations describing mixtures of {sup 3}He and {sup 4}He at such low temperatures, that all of {sup 4}He is superfluid. The {sup 3}He part is described by Landau's Fermi liquid theory, in the form derived by Khalatnikov in the case of mixtures. Here we apply the theory to the case of vibrating wire. The linearized Landau-Boltzmann kinetic equation with relaxation time approximation needs to be solved numerically at finite temperatures. In the ballistic limit, the collision term in the equation vanishes, enabling an analytic approach. There are many features affecting the system, including the coupling of {sup 3}He to the superfluid {sup 4}He, the effect of Fermi liquid interactions, and the dependence on the frequency {omega} of the vibrating wire. Also, the type of scattering of the quasiparticles from the surface of the wire can be either specular or diffusive. In this paper, we consider the effects of chamber walls near the wire. It has been speculated that the nearness of the container walls has affected the experimental results of Martikainen et al.. We find that the presence of container walls near a slowly moving wire increases the dissipation experienced by the wire.

  4. Fabrication of highly spin-polarized Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Vahidi, M.; Zhang, S. K.; Yu, L.; Huang, M.; Newman, N., E-mail: Nathan.Newman@asu.edu [School of Materials, Arizona State University, Tempe, Arizona 85287-8706 (United States); Gifford, J. A.; Chen, T. Y. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Krishnamurthy, S.; Yu, Z. G. [SRI International, 301-64, Menlo Park, California 94025 (United States); Youngbull, C. [The Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-04-01

    Ferromagnetic Heusler Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} epitaxial thin-films have been fabricated in the L2{sub 1} structure with saturation magnetizations over 1200 emu/cm{sup 3}. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  5. Development of a LabVIEW-based surface with innovative controls for the control system of the spin-polarized electron test source Photo-CATCH

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Heidi Ayse; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Wagner, Markus [TU Darmstadt, Institut fuer Kernphysik (Germany)

    2016-07-01

    Operations of the spin-polarized electron source of the S-DALINAC will be supported by a photo-cathode activation, test and cleaning system, Photo-CATCH. Besides cathode-performance studies, this teststand produces spin-polarized electron bunches from a GaAs photo-cathode that are then transported, manipulated, and characterized by devices in a low-energy beam line. To set and monitor the various components of the beamline, a control system was developed, based on the EPICS framework. As interfaces, LabVIEW was used in combination with a gamepad as a controlling device.

  6. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

    Science.gov (United States)

    Bang, W.; Barbui, M.; Bonasera, A.; Quevedo, H. J.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Consoli, F.; De Angelis, R.; Andreoli, P.; Barbarino, M.; Kimura, S.; Mazzocco, M.; Natowitz, J. B.; Ditmire, T.

    2013-09-01

    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,3He)n, D(d,t)p, and 3He(d,p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,3He)n and 3He(d,p)4He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

  7. The cross section of {sup 3}He({sup 3}He,2p){sup 4}He measured at solar energies

    Energy Technology Data Exchange (ETDEWEB)

    Junker, M.; Arpesella, C.; Bellotti, E.; Broggini, C.; Corvisiero, P.; D' Alessandro, A.; Fiorentini, G.; Fubini, A.; Gervino, G.; Greife, U.; Gustavino, C.; Lambert, J.; Prati, P.; Rodney, W.S.; Rolfs, C.; Trautvetter, H.P.; Zavatarelli, S

    1999-01-01

    We report on the status of the {sup 3}He({sup 3}He,2p){sup 4}He experiment at the underground accelerator facility LUNA (Gran Sasso). The lowest projectile energies for the measured cross section correspond already to energies below the center of the solar Gamow peak (E{sub 0}=22 keV). The data provide no evidence for the existence of a hypothetical resonance in the energy range investigated. Although no extrapolation is needed anymore (except for energies at the low-energy tail of the Gamow peak), the data must be corrected for the effects of electron screening, clearly observed the first time for the {sup 3}He({sup 3}He,2p){sup 4}He reaction. The effects are however larger than expected and not understood, leading presently to the largest uncertainty on the quoted S(0) value for bare nuclides (= 5.40 MeVb)

  8. Electronic Structures of Magnetic Iron and Cobalt Thin Films on TUNGSTEN(001): a Spin-Polarized Inverse Photoemission Study

    Science.gov (United States)

    Cai, Qing

    Electronic structure is a central question in metallic magnetism as well as in magnetic materials research. The electronic properties in a two-dimensional system such as thin films of a few atomic layers is an important issue in surface science. The epitaxial thin film preparation and morphology are of special technological interests. In this thesis, these questions are addressed. Spin-polarized inverse photoemission spectroscopy is used to study the unoccupied electron band states in magnetic thin film magnets of Fe and Co epitaxially grown on W(001) surface. The clean W(001) surface was studied by angle -resolved inverse photoemission spectroscopy and the bulk band dispersion was determined. Ultrathin Fe overlayers on W(001) show a square lateral crystal structure similar to the bcc-Fe(001) surface. The electronic structure develops into a structure that is close to that of bulk Fe at about four atomic layers. In the normal-incidence spin polarized inverse photoemission spectra, direct transitions to the majority and minority final states near the H^'_ {25} point are identified in good agreement with the theoretical calculations. One Fe monolayer, or multilayers less than four, showed behavior corresponding to a gradually reduced Curie temperature. When the film thickness is reduced, the spin-resolved spectral behavior show that the majority spin signal peak moves from near the Fermi energy to about 1.3 eV while the minority peak stays at about the same position near 1.3 eV. The results are used to examine the spatial correlation of the spin fluctuations in the system in comparison with a theoretical spectral calculation, and favors the disordered-local-moment picture in the contemporary theory of itinerant magnetism. The Co overlayer shows an overlayer structure that consists of equivalent, mutually rotated domains of distorted hexagonal lateral structure. For one atomic layer of Co in that structure, which has a nominal lateral atomic density twice that of the

  9. A 3He Cryostat for Scientific Measurements in Pulsed High Magnetic Fields

    Science.gov (United States)

    Wang, Shaoliang; Li, Liang; Liu, Mengyu; Zuo, Huakun; Peng, Tao

    A top loading 3He cryostat has been developed for scientific experiments with a 60 T pulsed magnetic field facility at Wuhan National High Magnetic Field Center. The cryostat consists of a 4He bath cryostat, a 3He insert and a closed circulation system for 3He gas handling. To eliminate the eddy current heating during the pulse, the tail of the 3He insert with a vacuum space at the bottom is made from fiberglass tubing coated with epoxy. The 3He bath is separated from the 4He bath with the vacuum space. The 4He bath cryostat provides cooling power to condense 3He gas by a neck tube on top of the tail. Experimental results have shown that the sample can be cooled down to 385 mK and kept cold for more than 150 second by one-shot cooling, which is sufficiently long for an experiment in a pulsed high magnetic field.

  10. Field neutron spectrometer using 3He, TEPC, and multisphere detectors

    International Nuclear Information System (INIS)

    Brackenbush, L.W.

    1991-01-01

    Since the last DOE Neutron Dosimetry Workshop, there have been a number of changes in radiation protection standards proposed by national and international advisory bodies. These changes include: increasing quality factors for neutrons by a factor of two, defining quality factors as a function of lineal energy rather than linear energy transfer (see ACCRUE-40; Joint Task Group 1986), and adoption of effective dose equivalent methodologies. In order to determine the effects of these proposed changes, it is necessary to know the neutron energy spectrum in the work place. In response to the possible adoption of these proposals, the Department of Energy (DOE) initiated a program to develop practical neutron spectrometry systems for use by health physicists. One part of this program was the development of a truly portable, battery operated liquid scintillator spectrometer using proprietary electronics developed at Lawrence Livermore National Laboratory (LLNL); this instrument will be described in the following paper. The second part was the development at PNL of a simple transportable spectrometer based on commercially available electronics. This open-quotes field neutron spectrometerclose quotes described in this paper is intended to be used over a range of neutron energies extending from thermal to 20 MeV

  11. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-01-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 10 6 %. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents. (paper)

  12. Spin-polarized charge transport in HgTe/CdTe quantum well topological insulator under a ferromagnetic metal strip

    Science.gov (United States)

    Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong

    2018-02-01

    Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.

  13. Effects of Be acceptors on the spin polarization of carriers in p-i-n resonant tunneling diodes

    Energy Technology Data Exchange (ETDEWEB)

    Awan, I. T.; Galvão Gobato, Y. [Departamento de Física, Universidade Federal de São Carlos (UFSCAR) 13560-905, São Carlos, SP (Brazil); Galeti, H. V. A. [Departamento de Engenharia Elétrica, Universidade Federal de São Carlos 13560-905, São Carlos, SP (Brazil); Brasil, M. J. S. P. [Institute of Physics Gleb Wataghin, UNICAMP, Campinas (Brazil); Taylor, D.; Henini, M. [School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-08-07

    In this paper, we have investigated the effect of Be acceptors on the electroluminescence and the spin polarization in GaAs/AlAs p-i-n resonant tunneling diodes. The quantum well emission comprise two main lines separated by ∼20 meV attributed to excitonic and Be-related transitions, which intensities show remarkably abrupt variations at critical voltages, particularly at the electron resonant peak where it shows a high-frequency bistability. The circular-polarization degree of the quantum-well electroluminescence also shows strong and abrupt variations at the critical bias voltages and it attains relatively large values (of ∼−75% at 15 T). These effects may be explored to design novel devices for spintronic applications such as a high-frequency spin-oscillators.

  14. Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: comparison of H- and halogen-atom polarizations.

    Science.gov (United States)

    Sofikitis, Dimitris; Rubio-Lago, Luis; Bougas, Lykourgos; Alexander, Andrew J; Rakitzis, T Peter

    2008-10-14

    Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the a(0)(1)(perpendicular) parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the Re[a(1)(1)(parallel, perpendicular)] parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K.

  15. Tailoring electronic structure of α-AlH3 to enhance spin polarization: Insights from density functional calculations

    Science.gov (United States)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Sun, Lili; Zhao, Hui; Wu, Ping

    2017-09-01

    The effects of 3d transition metals doping on the structural, electronic, and magnetic properties of aluminum hydride were investigated based on spin-polarized first-principles calculations. The studies indicated that V, Cr, Mn, and Fe doping could produce polarization of high-spin state, while Co and Ni doping would induce polarization of low-spin state. It was found that the magnetic ground state depended on the distance between two substitutions and the long-range ferromagnetic coupling was achieved upon doping V, Mn, and Fe. The present work indicated that the introduced 3d-block dopants could tailor aluminum hydride into either a potential half-metallic or n-type magnetic semiconductor by tuning the valence electrons of the impurities. The main findings of this work pointed out the possibilities of the applications of hydrides in future hydride electronics and spintronics.

  16. Self-energy-part resummed quark and gluon propagators in a spin-polarized quark matter and generalized Boltzmann equations

    International Nuclear Information System (INIS)

    Niegawa, A.

    2003-01-01

    We construct perturbative frameworks for studying nonequilibrium spin-polarized quark matter. We employ the closed-time-path formalism and use the gradient approximation in derivative expansion. After constructing self-energy-part resummed quark and gluon propagators, we formulate two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the initial-particle distribution function, and the second one is formulated on the basis of a 'physical' particle distribution function. In the course of the construction of the second framework, the generalized Boltzmann equations and their relatives directly come out, which describe the evolution of the system. The frameworks are relevant to the study of a magnetic character of quark matter, e.g., possible quark stars

  17. Study of the /sup 50/V nucleus with the (/sup 3/He,d), (/sup 3/He,. cap alpha. ), (/sup 3/He,p), and (/sup 3/He,p. gamma. ) reactions. [Angular distribution, 13 and 22 MeV, analog states, DWBA, J,. pi. , spectroscopic factors, angular momentum, transitions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J W

    1971-06-01

    The nucleus /sup 50/V with a ground-state configuration (..pi..f/sub 7/2/)/sup 3/(..nu..f/sub 7/2/)/sup -1/ was studied with the /sup 49/Ti(/sup 3/He,d)/sup 50/V, /sup 51/V)/sup 3/He,..cap alpha..)/sup 50/V, and /sup 48/Ti(/sup 3/He,p)/sup 50/V, and /sup 48/Ti(/sup 3/He,p..gamma..)/sup 50/V reactions induced by the /sup 3/He/sup + +/ beam from the tandem Van de Graaff at the Argonne National Laboratory. The angular distributions from (/sup 3/He,d), (/sup 3/He,..cap alpha..), and (/sup 3/He,p) reactions induced by 22-MeV /sup 3/He were studied with overall energy resolution widths of 20, 30, and 42 keV, respectively. The reactions (/sup 3/He,p) and (/sup 3/He,p..gamma..) were also studied at an incident energy of 13 MeV to obtain the ..gamma.. decay of /sup 50/V levels (including two 0/sup +/ isobaric analog states) in which the neutron-proton pair is transferred with zero angular momentum. The angular distributions of the charged-particle reactions were analyzed with the distorted-wave Born approximation (DWBA), and spectroscopic factors have been extracted for the one-nucleon transfer reactions. The two-nucleon transfer reaction (/sup 3/He,p) was analyzed with the DWBA on the assumption that the neutron-proton pair is transferred as a deuteron. The angular momentum L/sub np/ of the transferred deuteron is established for most of the levels, and the possibility that several levels might have spin and parity 1/sup +/ is discussed.

  18. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  19. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  20. 3He-MRI in follow-up of lung transplant recipients

    International Nuclear Information System (INIS)

    Gast, Klaus Kurt; Zaporozhan, Julia; Ley, Sebastian; Biedermann, Alexander; Knitz, Frank; Eberle, Balthasar; Schmiedeskamp, Joerg; Heussel, Claus-Peter; Mayer, Eckhard; Schreiber, Wolfgang Guenter; Thelen, Manfred; Kauczor, Hans-Ulrich

    2004-01-01

    The aim of this study was to evaluate the possible contribution of 3 He-MRI to detect obliterative bronchiolitis (OB) in the follow-up of lung transplant recipients. Nine single- and double-lung transplanted patients were studied by an initial and a follow-up 3 He-MRI study. Images were evaluated subjectively by estimation of ventilation defect area and quantitatively by individually adapted threshold segmentation and subsequent calculation of ventilated lung volume. Bronchiolitis obliterans syndrome (BOS) was diagnosed using pulmonary function tests. At 3 He-MRI, OB was suspected if ventilated lung volume had decreased by 10% or more at the follow-up MRI study compared with the initial study. General accordance between pulmonary function testing and 3 He-MRI was good, although subjective evaluation of 3 He-MRI underestimated improvement in ventilation as obtained by pulmonary function tests. The 3 He-MRI indicated OB in 6 cases. According to pulmonary function tests, BOS was diagnosed in 5 cases. All diagnoses of BOS were also detected by 3 He-MRI. In 2 of these 5 cases, 3 He-MRI indicated OB earlier than pulmonary function tests. The results support the hypothesis that 3 He-MRI may be sensitive for early detection of OB and emphasize the need for larger prospective follow-up studies. (orig.)

  1. Extraordinary sensitivity of the internal Doppler effect in a superfluid 4-3He admixture

    Science.gov (United States)

    Nepomnyashchy, Y. A.; Gov, N.; Mann, A.; Revzen, M.

    1995-09-01

    Recently, a nontrivial T (temperature) behavior was found for the Doppler shift of the fourth and first sounds in superfluid 4He with internal motion: a plateau in the phonon region and a sharp peak in the beginning of the roton region of the Doppler parameters Γ4,1 (T)=(Δu4,1/vs)v=0. The situation is similar to the case of second sound investigated long ago for Γ2(T)=(Δu2/vn)v=0, but the signs and values of plateaus and peaks indicated some kinds of Doppler anomalies: the ``outstripping effect'' (OEF), in addition to the ``back-entrainment effect'' (BEF) described by Khalatnikov (Δui is the Doppler shift of ith sound; vs, vn, v are the velocities of superfluid and normal components and of the liquid as a whole, respectively). The Doppler anomalies mean the breaking of some ``natural'' suppositions: that Δui is intermediate between vn and vs, and that the sign of (Δui-v) is determined by the velocity of the ``dominant'' component (at low T this is the superfluid component for first and fourth sounds, vd=vs, and the normal one for second sound, vd=vn). The direction of (Δui-v) can be opposite to the direction of (vd-v) (BEF) and the center of spreading sound can move faster than the flowing dominant component when the other component is stationary: Δui>vd (OEF). The Doppler anomalies as well as the very existence of the nonkinematic (internal) Doppler shift Δui-v≠0, and its nontrivial T behavior are special manifestations of the superfluidity. Here we investigate the Doppler phenomenon in the 4-3He mixture. We find strong sensitivity of the T behavior of the Doppler shift and of the Doppler anomalies to the 3He admixture. At low T this is associated with a general peculiarity of the 4-3He mixture: the nonanalyticity of its characteristics, i.e., the inequivalence of T-->0, X-->0 to X-->0, T-->0 (X is the concentration of 3He). We find some ``key derivatives:'' ∂ρ/∂w2, ∂σ/∂w2, crucial for the T behavior of Γi whose role changes at X≠0 (ρ and

  2. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  3. Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.

    2008-01-01

    Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnet...

  4. $\\beta$-NMR of copper isotopes in ionic liquids

    CERN Multimedia

    We propose to test the feasibility of spin-polarization and $\\beta$-NMR studies on several short-lived copper isotopes, $^{58}$ Cu, $^{74}$Cu and $^{75}$Cu in crystals and liquids. The motivation is given by biological studies of Cu with $\\beta$-NMR in liquid samples, since Cu is present in a large number of enzymes involved in electron transfer and activation of oxygen. The technique is based on spin-polarization via optical pumping in the new VITO beamline. We will use the existing lasers, NMR magnet and NMR chambers and we will prepare a new optical pumping system. The studies will be devoted to tests of achieved $\\beta$-asymmetry in solid hosts, the behaviour of asymmetry when increasing vacuum, and finally NMR scans in ionic liquids. The achieved spin polarization will be also relevant for the plans to measure with high precision the magnetic moments of neutron-rich Cu isotopes.

  5. Temperature Measurements of Fusion Plasmas Produced by Laser-Irradiated D2-3 He or CD4-3 He Clustering Gases

    Science.gov (United States)

    Bang, W.; Ditmire, T.; Quevedo, H.; Dyer, G.; Bernstein, A. C.; Donovan, M.; Gaul, E.; Barbui, M.; Bonasera, A.; Hagel, K.; Natowitz, J. B.

    2014-10-01

    We report on experiments in which a mixture of D2 or CD4 clusters and 3He gas was irradiated by a petawatt-laser pulse, generating nuclear fusion reactions such as D(d, 3He) n, D(d, t) p , and 3He(d, p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model. The plasma temperature was determined by two different methods. In the first, it was derived from time-of-flight data of deuterium ions ejected from exploding D2 or CD4 clusters. In the second, it was measured from the ratio of neutron yield to proton yield from D(d, 3He) n and 3He(d, p)4He reactions, respectively. The temperatures determined by these two methods agree well, indicating (i) the ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; (ii) the kinetic energy of deuterium ions, especially the hottest part responsible for nuclear fusion, is well described by a near-Maxwellian distribution.

  6. Hyperpolarised 3He MRI versus HRCT in COPD and normal volunteers: PHIL trial

    DEFF Research Database (Denmark)

    van Beek, E J R; Dahmen, A M; Stavngaard, T

    2009-01-01

    The aim of the present study was to apply hyperpolarised (HP) (3)He magnetic resonance imaging (MRI) to identify patients with chronic obstructive pulmonary disease (COPD) and alpha(1)-antitrypsin deficiency (alpha(1)-ATD) from healthy volunteers and compare HP (3)He MRI findings with high-resolu....... We showed the feasibility of a multicentre study using different magnetic resonance systems....

  7. Spin structure of the 3He from the dd → 3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    1995-01-01

    The polarization observables in the reaction dd → 3 Hen are considered. Their high sensitivity to the 3 He wave function at short distances is shown. Using of both polarized target and beam allows to extend sufficiently the number of possible experiments and to separate 3 He structure from the reaction mechanisms using different relative orientations of initial deuteron spins. 27 refs., 5 figs

  8. Measurement of fast minority /sub 3/He/sup + +/ energy distribution during ICRF heating

    Science.gov (United States)

    Post, D.E. Jr.; Grisham, L.R.; Medley, S.S.

    A method and means for measuring the fast /sub 3/He/sup + +/ distribution during /sub 3/He/sup + +/ minority Ion Cyclotron Resonance Frequency (ICRF) heating is disclosed. The present invention involves the use of 10 to 100 keV beams of neutral helium atoms to neutralize the fast /sub 3/He/sup + +/ ions in a heated plasma by double charge exchange (/sub 3/He/sup + +/ + /sub 4/He/sup 0/ ..-->.. /sub 3/He/sup 0/ + /sub 4/He/sup + +/). The neutralized fast /sub 3/He/sup 0/ atoms then escape from the hot plasma confined by a magnetic field and are detected by conventional neutral particle analyzing means. This technique permits the effectiveness of the coupling of the ion cyclotron waves to the /sub 3/He/sup + +/ minority ions to be accurately measured. The present invention is particularly adapted for use in evaluating the effectiveness of the intermediate coupling between the RF heating and the /sub 3/He/sup + +/ in an energetic toroidal plasma.

  9. HD 185330 — chemically peculiar 3He star in the Kepler field

    Science.gov (United States)

    Niemczura, E.; Vennes, S.; Różański, T.; Pigulski, A.; Hełminiak, K.; Lehmann, H.

    2018-01-01

    We analyzed high-resolution spectra of the chemically peculiar 3He star HD 185330. We determined its atmospheric parameters (Teff, log g, ξ) and constrained its rotation velocity and abundance pattern. In particular, we found a large (×100) phosphorus abundance excess and evidence of 3He and 4He abundance stratification in the atmosphere.

  10. Towards the observation of the magnetic structure of solid 3He

    International Nuclear Information System (INIS)

    Rufin, D.

    1982-03-01

    Experiments involving neutron scattering by 3 He for which thermalization problems have been solved, along with the development of novel measurement techniques (density, magnetization, temperature) by polarized neutron transmission, crystallization experiments with 3 He and 4 He: a single crystal of helium have been obtained within a sintered metal in which the pore size is less than a micron are presented [fr

  11. /sup 3/He breakup reaction by 65 MeV protons in the FSI region

    Energy Technology Data Exchange (ETDEWEB)

    Okihana, A.; Takashima, R.; Fukunaga, K.; Kakigi, S.; Ohsawa, T.; Sekioka, T.; Yokota, H.

    1987-02-16

    The angular distributions of the differential cross sections and the analyzing powers for the /sup 3/He(p,p)dp and /sup 3/He(p,pd)/sup 1/H reactions have been measured in the FSI region. The multiple scattering calculation including to double scattering terms has reproduced the differential cross sections well.

  12. Burnup of fusion produced tritons and 3He ions in PLT and PDX

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Chrien, R.E.; Strachan, J.D.

    1982-09-01

    The d(d,p)t and d(d,n) 3 He fusion reactions produce 1 MeV tritons and 0.8 MeV 3 He ions which can subsequently undergo d(t,n)α and d( 3 He,p)α fusion reactions. The magnitude of this triton and 3 He ion burnup was measured on the PLT and PDX tokamaks by detection of the 14 MeV neutron and 15 MeV proton emission. In discharges with B/sub phi/ greater than or equal to 2 T, the measured 3 He burnup agrees well with predictions based on classical theories of ion confinement and slowing down, while the triton burnup was about four times lower than theoretically predicted. In discharges with weaker toroidal fields, the burnup of both ions fell by more than a factor of ten

  13. Bubble nucleation dynamics in 3He/4He mixture by holographic interferometry

    International Nuclear Information System (INIS)

    Morikawa, M; Abe, H; Nomura, R; Okuda, Y

    2009-01-01

    We were able to nucleate a gas bubble in the diluted phase of 3 He- 4 He mixture by a 1 ms width strong sound pulse. The nucleated bubble became large and detached from the bottom transducer and was pushed out to the bulk liquid by the acoustic wave pulse. The bubble then repeatedly expanded and contracted a few times and finally disappeared. The overall motion of the bubble was traced by a high speed camera with a time resolution of 1 ms. We are attempting to investigate the small density fluctuation around the bubble by incorporating holographic interferometry technology. The measurement was done at T=0.35 K for the phase separated mixture at saturated vapor pressure. An acoustic wave transducer was located at the bottom of the cell, so the bubble was nucleated in the dilute phase of the mixture. We resolved the density fluctuation as small as Δρ/ρ = 2 x 10 -6 in the dilute phase with the sample width of 25 mm, which could not be obtained by other methods. It was found that there appeared a less dense region of -Δρ/ρ ∼ 1.46 x 10 -3 just above the bubble. The bubble appeared just after the pulse was turned off, but this less dense region appeared prior to the emergence of the bulk bubble. It should be an important information about the bubble nucleation mechanism. This very high sensitivity of holographic interferometry with respect to the density fluctuation could be widely used in quantum liquid.

  14. The cosmological density of baryons from observations of 3He+ in the Milky Way.

    Science.gov (United States)

    Bania, T M; Rood, Robert T; Balser, Dana S

    2002-01-03

    Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.

  15. Regional and temporal variations in CO2/3He, 3He/4He and δ13C along the North Anatolian Fault Zone, Turkey

    International Nuclear Information System (INIS)

    Leeuw, G.A.M. de; Hilton, D.R.; Guelec, N.; Mutlu, H.

    2010-01-01

    New He and C relative abundance, isotope and concentration results from nine geothermal locations situated along an 800-km transect of the North Anatolian Fault Zone (NAFZ), Turkey, that were monitored during the period November 2001-November 2004, are reported. The geothermal waters were collected every 3-6 months to study possible links between temporal geochemical variations and seismic activity along the NAFZ. At the nine sample locations, the He isotope ratios range from 0.24 to 2.3R A , δ 13 C values range from -4.5 to +5.8 per mille, and CO 2 / 3 He ratios range from 5 x 10 9 to 5 x 10 14 . The following geochemical observations are noted: (1) the highest 3 He/ 4 He ratios are found near the Galatean volcanic region, in the central section of the NAFZ, (2) at each of the nine sample locations, the 3 He/ 4 He ratios are generally constant; however, CO 2 / 3 He ratios and He contents both show one order of magnitude variability, and δ 13 C values show up to ∼4 per mille variability, and (3) at all locations (except Resadiye), δ 13 C values show positive correlations with CO 2 contents. The results indicate that at least three processes are necessary to account for the geochemical variations: (1) binary mixing between crustal and mantle-derived volatiles can explain the general characteristics of 3 He/ 4 He ratios, δ 13 C values, and CO 2 / 3 He ratios at the nine sample locations; (2) preferential degassing of He from the geothermal waters is responsible for variations in CO 2 / 3 He values and He contents at each sample location; and (3) CO 2 dissolution followed by calcite precipitation is responsible for variations in CO 2 contents and δ 13 C values at most locations. For each of the geochemical parameters, anomalies are defined in the temporal record by values that fall outside two standard deviations of average values at each specific location. Geochemical anomalies that may be related to seismic activity are recorded on June 28, 2004 at Yalova

  16. Neutron energy spectra of sup 2 sup 5 sup 2 Cf, Am-Be source and of the D(d,n) sup 3 He reaction

    CERN Document Server

    Sang Tae Park

    2003-01-01

    The neutron energy spectrum of the following sources were measured using a fast neutron spectrometer with the NE-213 liquid scintillator: sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He reaction from a 3 MeV Pelletron accelerator in Tokyo Institute of Technology. The measured proton recoil pulse height data of sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He were unfolded using the mathematical program to obtain the neutron energy spectrum. The sup 2 sup 5 sup 2 Cf and Am-Be neutron energy spectra were measured and the results obtained showed a good agreement with the spectra usually published in the literature. The neutron energy spectrum from D(d,n) sup 3 He was measured and the results obtained also showed a good agreement with the calculation by time of flight (TOF) methods. (author)

  17. Triton-3He relative and differential flows and the high density behavior of nuclear symmetry

    International Nuclear Information System (INIS)

    Yong, Gaochan; Li, Baoan; Chen, Liewen

    2010-01-01

    Using a transport model coupled with a phase-space coalescence after-burner we study the triton- 3 He relative and differential transverse flows in semi-central 132 Sn + 124 Sn reactions at a beam energy of 400 MeV/nucleon. We find that the triton- 3 He pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy. (author)

  18. The (3He,α) reaction mechanism. A study of the angular momentum transfer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Bergholt, L.; Ingebretsen, F.; Loevhoeiden, G.; Messelt, S.; Rekstad, J.; Tveter, T.S.; Helstrup, H.; Thorsteinsen, T.F.

    1994-01-01

    The γ-rays emitted after the 163 Dy( 3 He,αxn) reactions at E( 3 He) = 45 MeV have been measured. The transferred angular momentum in the reaction is deduced from the side-feeding γ-intensities of the ground bands in the residual 162-x Dy isotopes. With decreasing α-energy the average spin transfer increases from similar 5h to similar 11h. The ( 3 He,α) reaction at these energies is dominated by direct processes. Even at the highest spin transfer the contribution from the compound reaction channel is negligible. ((orig.))

  19. Intermediate energy charge-exchange reactions induced by polarized 3He

    International Nuclear Information System (INIS)

    Kim, B.T.

    1998-01-01

    Spin polarization transfer is proven to be very useful in obtaining detailed information of the continuum nuclear responses. The data, taken for the (vector p,vector n) reactions, have enabled us to separate the response into the spin longitudinal and transverse components. These partial nuclear responses have been successfully used to make critical tests of nuclear structure models. In the present paper, we first summarize the results of the data and the theoretical analyses made so far. We then discuss information obtainable from the ( 3 vector He,vector t) reaction, emphasizing on the differences and similarities in comparison with the (vector p,vector n) reaction. The results of numerical calculations made for ( 3 vector He,vector t) reactions based on the microscopic distorted wave impulse approximation will also be reported. (orig.)

  20. Regular and irregular dynamics of spin-polarized wavepackets in a mesoscopic quantum dot at the edge of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Khomitsky, D. V., E-mail: khomitsky@phys.unn.ru; Chubanov, A. A.; Konakov, A. A. [Lobachevsky National Research State University of Nizhny Novgorod, Department of Physics (Russian Federation)

    2016-12-15

    The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.

  1. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    CERN Document Server

    Bastrukov, S I; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameter...

  2. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G. [Dipartimento di Fisica, Università degli studi di Milano, Via Celoria 16, 20133 Milano (Italy); Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Petrov, V. N. [Saint Petersburg State Polytechnical University, Politechnicheskaya Street 29, 195251 Saint Petersburg (Russian Federation); Brajnik, G.; Carrato, S. [Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Lollobrigida, V. [Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Sergo, R.; Gubertini, A.; Cautero, G. [Sincrotrone Trieste S.C.p.A, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy)

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  3. Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator

    International Nuclear Information System (INIS)

    Roy, Urmimala; Dey, Rik; Pramanik, Tanmoy; Ghosh, Bahniman; Register, Leonard F.; Banerjee, Sanjay K.

    2015-01-01

    We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory

  4. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Science.gov (United States)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  5. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  6. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    CERN Document Server

    Mulhollan, Gregory A; Brachmann, Axel; Clendenin, James E; Garwin, Edward; Kirby, Robert; Luh Dah An; Maruyama, Takashi; Prepost, Richard

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile Preliminary measurements have been carried out on bulk GaAs. As expected, the yield change far from the bandgap is quite large. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. For a bias which enhances emission, the yield nearly doubles. For a bias which diminishes emission, the yield is a...

  7. Measurement of transverse emittance at the source of spin-polarized electrons at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Barday, Roman; Bonnes, Uwe; Eichhorn, Ralf; Enders, Joachim; Hessler, Christoph; Patalakha, Oleksandr; Platz, Markus; Poltoratska, Yuliya; Rick, Wolfgang [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A new injector concept for 100 keV spin-polarized electrons (SPIN) at the S-DALINAC has been developed. The transverse emittance was measured for beam characterization. The emittance is a quantity concerning the quality of the beam, describing the phase space area. Determination of the emittance requires measurement of the beam profile and knowledge of the focal length of a beam focussing device. A wire scanner unit consisting of two 50 {mu}m diameter tungsten wires is used for the beam-profile measurement. Data analysis is performed by fitting a gaussian model distribution to estimate the 1{sigma} beam radius. Each determined beam width is correlated to the corresponding focal length of a magnetic lens, and a parabola fit is applied to calculate the parameters of the {sigma}-matrix. The square root of the determinant of the {sigma}-matrix defines the emittance. The results of the calculation are presented and the emittance is compared to theoretical estimates.

  8. Hyperpolarized 3He MRI and 81mKr SPECT in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Stavngaard, Trine; Søgaard, Lise; Mortensen, J

    2005-01-01

    . The three scans were scored visually as percentage of non-ventilated/diseased lung, and a computer-based objective measure of the ventilated volume in HP 3He MRI and 81mKr SPECT and an emphysema index in HRCT were calculated. RESULTS: We found a good correlation between HP 3He MRI and 81mKr SPECT for both......PURPOSE: During recent years, magnetic resonance imaging (MRI) using hyperpolarised (HP) 3He gas has emerged as a promising new method for the imaging of lung ventilation. However, systematic comparisons with nuclear medicine techniques have not yet been performed. The aim of this study...... was to compare ventilation imaging methods in 26 patients with chronic obstructive pulmonary disease (COPD) and nine lung healthy volunteers. METHODS: HP 3He MRI, 81mKr single-photon emission computed tomography (SPECT), high-resolution computed tomography (HRCT) and pulmonary function tests were performed...

  9. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  10. Discovery of superfluid 3He phases wins 1996 nobel prize in physics

    International Nuclear Information System (INIS)

    Yan Shousheng

    1997-01-01

    The 1996 Nobel prize in physics was awarded to David M. Lee, Douglas D. Osheroff and Robert C. Richardson for their discovery of superfluidity in 3 He in 1971. A short account of the discovery and its importance is given

  11. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  12. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  13. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  14. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  15. Hyperpolarized 3He magnetic resonance imaging: Preliminary evaluation of phenotyping potential in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Mathew, Lindsay; Kirby, Miranda; Etemad-Rezai, Roya; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2011-01-01

    Rationale and objectives: Emphysema and small airway obstruction are the pathological hallmarks of chronic obstructive pulmonary disease (COPD). The aim of this pilot study in a small group of chronic obstructive pulmonary disease (COPD) patients was to quantify hyperpolarized helium-3 ( 3 He) magnetic resonance imaging (MRI) functional and structural measurements and to explore the potential role for 3 He MRI in detecting the lung structural and functional COPD phenotypes. Materials and methods: We evaluated 20 ex-smokers with stage I (n = 1), stage II (n = 9) and stage III COPD (n = 10). All subjects underwent same-day plethysmography, spirometry, 1 H MRI and hyperpolarized 3 He MRI at 3.0 T. 3 He ventilation defect percent (VDP) was generated from 3 He static ventilation images and 1 H thoracic images and the 3 He apparent diffusion coefficient (ADC) was derived from diffusion-weighted MRI. Results: Based on the relative contribution of normalized ADC and VDP, there was evidence of a predominant 3 He MRI measurement in seven patients (n = 3 mainly ventilation defects or VDP dominant (VD), n = 4 mainly increased ADC or ADC dominant (AD)). Analysis of variance (ANOVA) showed significantly lower ADC for subjects with predominantly elevated VDP (p = 0.02 compared to subjects with predominantly elevated ADC; p = 0.008 compared to mixed group) and significantly decreased VDP for subjects with predominantly elevated ADC (p = 0.003, compared to mixed group). Conclusion: In this small pilot study, a preliminary analysis shows the potential for 3 He MRI to categorize or phenotype COPD ex-smokers, providing good evidence of feasibility for larger prospective studies.

  16. {sup 3}He spectrum at small atmospheric depths for different geomagnetic cutoff values

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    It is carried out a calculation to determine the energy spectra of secondary {sup 3}He at small atmospheric depths. It is produced in the spallation reaction of primary helium and heavier nuclei in the overlying atmosphere. It is examined the effect of the geomagnetic cut-off on the spectral shape of the secondary {sup 3}He nuclei. The calculations are being carried out for both solar minimum and maximum periods. Results from these calculations will be presented at the Conference.

  17. Bulk damping of sound in superfluid 3He--4He under stagnation of the normal component

    International Nuclear Information System (INIS)

    Karchava, T.A.; Sanikidze, D.G.; Chkhaidze, N.D.

    1983-01-01

    The propagation of waves in superfluid 3 He-- 4 He solutions is considered under partial stagnation of the normal component. The wave processes in capillaries are presented as a superposition of the first sound, second sound, and viscous and diffusion waves. The damping coefficients are calculated for the modified first sound and for the thermal wave in superfluid 3 He-- 4 He solutions and related to the viscosity, thermal conductivity, diffusion, barodiffusion, and thermodiffusion coefficients

  18. Tritium/3He measurements in young groundwater: Progress in applications to complex hydrogeological systems

    Science.gov (United States)

    Schlosser, Peter; Shapiro, Stephanie D.; Stute, Martin; Plummer, Niel

    2000-01-01

    Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.Tritium/3He dating has been applied to many problems in groundwater hydrology including, for example, determination of circulation patterns, mean residence times, recharge rates, or bank infiltration. Here, we discuss recent progress in the application of the tritium/3He dating method to sites with complex hydrogeological settings. Specifically, we report on tritium/3He dating at sites with (a) river infiltration into the basaltic fractured rock aquifer of the Eastern Snake River Plain, and (b) river infiltration through sinkholes into the karstic limestone Upper Floridian aquifer near Valdosta, Georgia.

  19. Possibilities for breakeven and ignition of D-3He fusion fuel in a near term tokamak

    International Nuclear Information System (INIS)

    Emmert, G.A.; El-Guebaly, L.; Kulcinski, G.L.; Santarius, J.F.; Scharer, J.E.; Sviatoslavsky, I.N.; Walstrom, P.L.; Klinghoefer, R.; Wittenberg, J.L.

    1988-09-01

    The recent realization that the moon contains a large amount of the isotope 3 He has rekindled interest in the D- 3 He fuel cycle. In this study we consider the feasibility of investigating D- 3 He reactor plasma conditions in a tokamak of the NET/INTOR class. We have found that, depending on the energy confinement scaling law, energy breakeven may be achieved without significant modification to the NET design. The best results are for the more optimistic ASDEX H-mode scaling law. Kaye-Goldston scaling with a modest improvement due to the H-mode is more pessimistic and makes achieving breakeven more difficult. Significant improvement in Q (ratio of the fusion power to the injected power), or the ignition margin, can be achieved by taking advantage of the much reduced neutron production of the D- 3 He fuel cycle. Removal of the tritium producing blanket and replacing the inboard neutron shield by a thinner shield optimized for the neutron spectrum in D- 3 He allows the plasma to be increased without changing the magnetic field at the toroidal field magnet. This allows the plasma to achieve higher beta and Q values up to about 3. The implications of D- 3 He operation for fast ion loss, neutron shielding, heat loads on the first wall and divertor, plasma refuelling, changes to the poloidal field coil system, and pumping of the helium from the vacuum chamber are considered in the report. (orig.)

  20. Terrestrial cosmogenic 3He: where are we 30 years after its discovery?

    Science.gov (United States)

    Blard, Pierre-Henri; Pik, Raphaël; Farley, Kenneth A.; Lavé, Jérôme; Marrocchi, Yves

    2016-04-01

    It is now 30 years since cosmogenic 3He has been detected for the first time in a terrestrial sample (Kurz, 1986). 3He is now a widely used geochemical tool in many fields of Earth sciences: volcanology, tectonics, paleoclimatology. 3He has the advantage to have a high "production rate" to "detection limit" ratio, allowing surfaces as young as hundred of years to be dated. Although its nuclear stability implies several limitations, it moreover represents a useful alternative to 10Be in mafic environments. This contribution is a review of the progresses that have been accomplished since this discovery, and discuss strategies to improve both the accuracy and the precision of this geochronometer. 1) Measurement of cosmogenic 3He Correction of magmatic 3He. To estimate the non-cosmogenic magmatic 3He, Kurz (1986) invented a two steps method involving crushing of phenocrysts (to analyze the isotopic ratio of the magmatic component), followed by a subsequent melting of the sample, to extract the remaining components, including the cosmogenic 3He: 3Hec = 3Hemelt -4Hemelt x (3He/4He)magmatic (1) Several studies suggested that the preliminary crushing may induce a loss of cosmogenic 3He (Hilton et al., 1993; Yokochi et al., 2005; Blard et al., 2006), implying an underestimate of the cosmogenic 3He measurement. However, subsequent work did not replicate these observations (Blard et al., 2008; Goerhing et al., 2010), suggesting an influence of the used apparatus. An isochron method (by directly melting several phenocrysts aliquots) is an alternative to avoid the preliminary crushing step (Blard and Pik, 2008). Atmospheric contamination. Protin et al. (in press) provides robust evidences for a large and irreversible contamination of atmospheric helium on silicate surfaces. This unexpected behavior may reconcile the contrasted observations about the amplitude of crushing loss. This undesirable atmospheric contamination is negligible if grain fractions smaller than 150 mm are

  1. Spin-dependent scattering and the spin polarization of a diffusive current in partly disordered L10 epitaxial FePd

    International Nuclear Information System (INIS)

    Seemann, K M; Hickey, M C; Baltz, V; Hickey, B J; Marrows, C H

    2010-01-01

    We report magnetic domain wall (DW) resistance in epitaxial films of FePd. When equal numbers of Fe and Pd atoms are present, this material forms an ordered structure with alternating crystal planes of Fe and Pd. We prepared films enriched with Pd to varying degrees, gradually degrading this structure. As might be expected, this increased the electrical resistivity of the films by introducing extra defects that can scatter electrons. However, unexpectedly, the additional resistance arising from the ∼10 nm thick DWs rose as a proportion of the overall resistivity, roughly doubling when halving the degree of chemical ordering-as determined from x-ray diffraction measurements-within the films. These data can be used to infer a rise in the spin polarization of the current flowing in the layers when extra Pd atoms are introduced. On the other hand, a separate measurement of spin polarization using a superconducting point contact technique that is insensitive to electron scattering revealed no changes as extra Pd was introduced. We conclude that Pd atoms scatter electrons of one spin far more strongly than the other, suggesting a possible means of producing highly spin-polarized currents for use in spintronic devices.

  2. Spin-exchange and spin-destruction rates for the 3He-Na system

    International Nuclear Information System (INIS)

    Borel, P.I.; Soegaard, L.V.; Svendsen, W.E.; Andersen, N.

    2003-01-01

    Optically pumped Na is used as a spin-exchange partner to polarize 3 He. Polarizations around 20% have routinely been achieved in sealed spherical glass cells containing 3 He, N 2 , and a few droplets of Na. An optical technique has been developed to determine the Na- 3 He spin-exchange rate coefficient. By monitoring the Na spin relaxation ''in the dark,'' the average Na-Na spin-destruction cross section at 330 degree sign C is estimated to be around 5x10 -19 cm 2 . This value is 2-5 (15-30) times smaller than the previously reported values for the K-K (Rb-Rb) spin-relaxation cross section. In the temperature range 310-355 degree sign C the spin-exchange rate coefficient is found to be (6.1±0.6)x10 -20 cm 3 /s with no detectable temperature dependence. This value is in good agreement with a previous theoretical estimate reported by Walker and it is only slightly lower than the corresponding Rb- 3 He spin-exchange rate coefficient. The total Na- 3 He spin-destruction rate coefficient is, within errors, found to be the same as the Na- 3 He spin-exchange rate coefficient, thereby indicating that the maximum possible photon efficiency may approach unity for the Na- 3 He system. A technique, in which a charge-coupled device camera is used to take images of faint unquenched fluorescence light, has been utilized to allow for an instantaneous determination of the sodium number densities during the rate coefficient measurements

  3. Results on Double-polarization Asymmetries in Quasielastic Scattering from Polarized 3He

    Directory of Open Access Journals (Sweden)

    Sulkosky Vincent A.

    2016-01-01

    Full Text Available The 3He nucleus has become extremely important in the investigation of the neutron’s spin structure. When polarized, 3He acts as an effective polarized neutron target and hence facilitates our understanding of the neutron’s internal structure. However, to be used in this manner, our understanding of the internal structure of 3He is of extreme importance. As the precision of experiments has improved, the extraction of polarized neutron information from 3He leads to an ever larger share of the systematic uncertainty for these experiments. In these proceedings, I present a precise measurement of beam-target asymmetries in the He→3(e→ ,e′d${}^3\\overrightarrow {He} (\\vec e,e'd$ and He→3(e→,e′p${}^3\\overrightarrow {He} (\\vec e,e'p$ reactions. The former process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed around the quasi-elastic peak at Q2 = 0.25 (GeV/c2 and 0.35 (GeV/c2 for recoil momenta up to 270 MeV/c. The experimental apparatus, analysis and results were presented together with a comparison to state-of-the art Faddeev calculations.

  4. Coherent deeply virtual Compton scattering off 3He and neutron generalized parton distributions

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2014-06-01

    Full Text Available It has been recently proposed to study coherent deeply virtual Compton scattering (DVCS off 3He nuclei to access neutron generalized parton distributions (GPDs. In particular, it has been shown that, in Impulse Approximation (IA and at low momentum transfer, the sum of the quark helicity conserving GPDs of 3He, H and E, is dominated by the neutron contribution. This peculiar result makes the 3He target very promising to access the neutron information. We present here the IA calculation of the spin dependent GPD H See Formula in PDF of 3He. Also for this quantity the neutron contribution is found to be the dominant one, at low momentum transfer. The known forward limit of the IA calculation of H See Formula in PDF , yielding the polarized parton distributions of 3He, is correctly recovered. The extraction of the neutron information could be anyway non trivial, so that a procedure, able to take into account the nuclear effects encoded in the IA analysis, is proposed. These calculations, essential for the evaluation of the coherent DVCS cross section asymmetries, which depend on the GPDs H,E and H See Formula in PDF , represent a crucial step for planning possible experiments at Jefferson Lab.

  5. Spectroscopy of 6Be by the 3He(7Be,α)6Be reaction

    International Nuclear Information System (INIS)

    Pampa Condori, R.; Lichtenthaeler Filho, R.; Guimares, V.; Lepine-Szily, A.; Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Kurihara, Y.; Yoo, J.S.; Iwasa, N.; Kato, S.

    2011-01-01

    The structure of the energy levels of light nuclei has still many states unknown. In particular in the triplet 6 Li, 6 He, and 6 Be. There are several excited states identified in the 6 Li and 6 He but only a few states in the isobar 6 Be. In addition to the interest in nuclear structure of these states, the importance of the excited states in the 6 Be below and above the 3 He - 3 He threshold at 11:48 MeV resides mainly in the astrophysics. The possible existence of resonances near to this threshold could have strong implications in the p-p burning captures in the p-p chain. The idea here was to use a reaction 3 He( 7 Be, α) 6 Be to populate the 6 Be levels. The experiment was performed at CRIB-RIKEN using a pure 7 Be beam and a 3 He gas target. The 7 Be beam of intensity of about 3-5x10 5 pps and E lab 53.4MeV was produced by the primary reaction 7 Li(p; n) 7 Be using the cryogenic H 2 target at CRIB. In this work we analyze data from this 3 He( 7 Be, α) 6 Be reaction and show results of the searching for resonances in 6 Be. (author)

  6. 3He in extreme conditions: from fundamental physics to applications in astrophysics

    International Nuclear Information System (INIS)

    Elbs, J.

    2007-11-01

    This work is composed of three different parts: in the first part, a long term project on a dark matter detector prototype based on superfluid 3 He (ULTIMA) is continued, and several precious observations for the operation of a future large detector are presented. The importance of covering the bolometer cell surfaces with 4 He, as solid layers of 3 He drastically reduce the sensitivity, is demonstrated. The systematic measurement of the influence of the magnetic field on the energy calibration is presented. Most importantly, a difference of the pulse shape for different incident particles has been observed and studied. This is likely to provide a powerful discrimination criterion for a future dark matter detector. In a second part, the existing setup is used to do measurements on fundamental 3 He physics. First, the heat capacity of adsorbed layers of 3 He is measured at ultra low temperatures and in the presence of magnetic fields. Secondly, the fast transition from the normal to the superfluid phase after a local heating by a neutron capture reaction is studied. The results are interpreted in terms of the Kibble-Zurek vortex creation scenario. In the third part, the influence on the superfluid states of the confinement of 3 He in anisotropic aerogel is studied. Using NMR techniques, predictions of the appearance of a new phase labeled polar phase are tested, and evidence for the observation of a new precessing mode is presented. (author)

  7. Interspecies Ion Diffusion Studies using DT, DT(3He), and DT(H) Implosions

    Science.gov (United States)

    Kim, Y.; Herrmann, H. W.; Schmitt, M. J.; Kagan, G.; McEvoy, A. M.; Hoffman, N. M.; Gales, S.; Leatherland, A.; Gatu Johnson, M.; Frenje, J.; Glevov, V. Yu; Forrest, C.

    2015-11-01

    Anomalous ICF yield degradation has been observed from gas fills containing mixtures (i.e., D(3He), DT(3He), D(Ar), and even DT). Interspecies ion diffusion theory has been suggested as a possible cause resulting from gradient-driven diffusion (i.e., pressure, electric potential, and temperature) which forces lower mass ions away from core and higher mass ions toward core. The theory predicts hydrogen addition to deuterium or tritium should result in increased yield compared to expected yield, which is opposite to 3He addition. At Omega laser facility, we have tested hydro-equivalent fills of DT, DT(3He), and DT(H) with the assumption that same fuel mass and particle pressure will provide identical convergence. Preliminary results verify a factor of 2 yield reduction relative to scaling when 3He added to DT. At DT(H) case, however, no significant yield degradation or a slight yield enhancement was observed which agrees with the interspecies ion diffusion theory. Detailed experiment results and simulation are needed to confirm the initial observation.

  8. Elastic scattering of pions from 3H and 3He into the backwards hemisphere

    International Nuclear Information System (INIS)

    Matthews, S.K.; Briscoe, W.J.; Barlow, D.B.; Bennhold, C.; Berman, B.L.; Caress, R.W.; Dhuga, K.S.; Dragic, S.N.; Greene, S.J.; Isenhower, L.D.; Nefkens, B.M.K.; Nicholas, N.J.; Pillai, C.; Price, J.W.; Sadler, M.E.; Slaus, I.; Supek, I.; Taragin, M.F.

    1995-01-01

    We have measured differential cross sections for the elastic scattering of charged pions from 3 H and 3 He into the backward hemisphere. Near the peak of the delta resonance, at Tπ=180 MeV, an angular distribution covering 114 degree to 168 degree in the laboratory extends our earlier measurements. At T π =142, 180, 220, and 256 MeV, we have measured an excitation function at angles approaching 170 degree. The cross sections for the reactions 3 He(π + ,π + ) 3 He and 3 H(π - ,π - ) 3 H show a rise at back angles which is not seen for 3 He(π - ,π - ) 3 He and 3 H(π + ,π + ) 3 H. There is a dip in the cross sections near 130 degree, for T π =180 MeV. We also present the values of the charge symmetric ratios r 1 and r 2 , which cross each other near 120 degree and maintain this new relationship in the backwards hemisphere. copyright 1995 American Institute of Physics

  9. ASSOCIATION OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLES WITH LARGE-SCALE CORONAL WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Innes, Davina E. [Max-Planck-Institut für Sonnensystemforschung, D-37077, Göttingen (Germany); Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, Mark E., E-mail: bucik@mps.mpg.de [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-12-10

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory ( STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.

  10. Oxygen-sensitive 3He-MRI in bronchiolitis obliterans after lung transplantation

    International Nuclear Information System (INIS)

    Gast, Klaus K.; Biedermann, Alexander; Herweling, Annette; Schreiber, Wolfgang G.; Schmiedeskamp, Joerg; Mayer, Eckhard; Heussel, Claus P.; Markstaller, Klaus; Eberle, Balthasar; Kauczor, Hans-Ulrich

    2008-01-01

    Oxygen-sensitive 3 He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO 2 ) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3 He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acquired on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3 He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO 2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (-1.75 mbar/s versus -0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3 He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3 He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients. (orig.)

  11. Two-body electrodisintegration of 3He at large recoil momentum

    International Nuclear Information System (INIS)

    Keizer, P.H.M.; Brand, J.F.J. van den; Herder, J.W.A. den; Jans, E.; Lapikas, L.; Quint, E.N.M.; Witt Huberts, P.K.A. de; Postma, H.

    1987-01-01

    The two-body breakup of 3 He by 390 MeV electrons has been studied with good missing energy resolution for recoil momenta p R of 200 up to 500 MeV/c. Both the 3 He(e,e'p) 2 H and 3 He(e,e'd) 1 H channel were employed to obtain the data. We discuss a possible excess of high momentum components in the framework of two theoretical treatments of the reaction that include the final state interaction and employ Faddeev bound-state wave functions. Within the context of these models no clear indication for such an excess in the two-body breakup channel can be assessed. (orig.)

  12. Random textures of the order parameter of superfluid sup 3 He-B in aerogel

    CERN Document Server

    Fomin, Yu A

    2002-01-01

    The scheme for describing the properties of the superfluid sup 3 He in the aerogel is proposed in accordance with the Ginzburg and Landau theory. The aerogel effect on the order parameter is described by the random tensor field. This field exerts desorientation effect on the order parameter in the sup 3 He A-phase, but it does not influence the order parameter orientation in the B-phase, if there is no magnetic field. The change in the order parameter texture, originating in the B-phase in the aerogel in the magnetic field, is considered. Fluctuations of the sup 3 He-B anisotropy axis direction are correlated on the length, inversely proportional to the field intensity and having the macroscopic scale

  13. Study of the (p,d3He) reaction as a quasi-free reaction process

    International Nuclear Information System (INIS)

    Cowley, A.A.; Roos, P.G.; Chant, N.S.; Woody, R. III; Holmgren, H.D.; Goldberg, D.A.

    1976-11-01

    The (p,d 3 He) reaction on 6 Li, 7 Li, 9 Be, and 12 C has been investigated in conjunction with studies of the (p,pα) reaction on the same targets. Coincident data for all four targets were obtained at a bombarding energy of 100 MeV for numerous angle pairs in order to test the reaction mechanism. Comparisons of the (p,d 3 He) data to both (p,pα) data and distorted wave impulse approximation calculations (DWIA) indicate a dominance of the direct quasi-free reaction process (p + alpha yields d + 3 He). The absolute alpha-particle spectroscopic factors extracted using DWIA analysis are in agreement with the values obtained in the (p,pα) reaction

  14. Measurement of weak rates for stellar evolution via the (t,3He) reaction

    International Nuclear Information System (INIS)

    Zegers, R.G.T.

    2007-01-01

    The (t, 3 He) charge-exchange reaction has been developed as a tool to extract Gamow-Teller strengths on nuclei of importance for stellar evolution. A secondary triton beam of 115 MeV/nucleon is used, either produced from a primary α beam, or, since recently, from a primary 16 O beam. Here, the (t, 3 He) reaction is used to study the Gamow-Teller strength distribution in 58 Co via the 58 Ni(t, 3 He) reaction. The experimental results are compared with calculations in large-scale shell models using the kb3g and gxpf1 interactions, as well as existing data from 58 Ni(n, p) and 58 Ni(d, 2 He) experiments. The differences between the data and theoretical models are studied in terms of electron-capture rates in the pre-collapse stages of core-collapse supernovae

  15. d-3He reaction measurements during fast wave minority heating in PLT

    International Nuclear Information System (INIS)

    Chrien, R.E.; Strachan, J.D.

    1983-01-01

    Time- and energy-resolved d- 3 He fusion reactions have been measured to infer the energy of the d + or He ++ minority ions heated near their cyclotron frequency by the magnetosonic fast wave. The average energy of the reacting 3 He ions during 3 He minority heating is in the range of 100 to 400 keV, as deduced from the magnitude of the reaction rate, its decay time, and the energy spread of the proton reaction products. The observed reaction rate and its scaling with wave power and electron density and temperature are in qualitative agreement with a radial reaction rate model using the minority distribution predicted from quasilinear velocity space diffusion. Oscillations in the reaction rate are observed concurrent with sawtooth and m = 2 MHD activity in the plasma

  16. Boron-coated straws as a replacement for {sup 3}He-based neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey L., E-mail: jlacy@proportionaltech.com [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States); Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B. [Proportional Technologies, Inc., 8022 El Rio Street, Houston, TX 77054 (United States)

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of {sup 3}He gas. It is estimated that the annual demand of {sup 3}He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on {sup 3}He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of {sup 10}B-enriched boron carbide ({sup 10}B{sub 4}C). In addition to the high abundance of boron on Earth and low cost of {sup 10}B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional {sup 3}He-based detectors, and alternate technologies such as {sup 10}BF{sub 3} tubes and {sup 10}B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed {sup 3}He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter {sup 3}He tube, 187 cm long, pressurized to 3 atm.

  17. Boron-coated straws as a replacement for 3He-based neutron detectors

    International Nuclear Information System (INIS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-01-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3 He gas. It is estimated that the annual demand of 3 He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3 He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10 B-enriched boron carbide ( 10 B 4 C). In addition to the high abundance of boron on Earth and low cost of 10 B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3 He-based detectors, and alternate technologies such as 10 BF 3 tubes and 10 B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3 He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3 He tube, 187 cm long, pressurized to 3 atm.

  18. Boron-coated straws as a replacement for 3He-based neutron detectors

    Science.gov (United States)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  19. Measurement of the polarized neutron—polarized 3He total cross section

    Science.gov (United States)

    Keith, C. D.; Gould, C. R.; Haase, D. G.; Seely, M. L.; Huffman, P. R.; Roberson, N. R.; Tornow, W.; Wilburn, W. S.

    1995-05-01

    The first measurements of polarized neutron-polarized 3He scattering in the few MeV energy region are reported. The total cross section difference ΔσT for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of ΔσT using various descriptions of the 4He continuum. A brute-force polarized target of solid 3He has been developed for these measurements. The target is 4.3×1022 atoms/cm2 thick and is polarized to 38% at 7 Telsa and 12 mK.

  20. Nonlinear second- and first-sound wave equations in 3He-4He mixtures

    International Nuclear Information System (INIS)

    Mohazzab, Masoud; Mulders, Norbert

    2000-01-01

    We derive nonlinear Burgers equations for first and second sound in mixtures of 3 He- 4 He, using a reductive perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a diffusion equation for a coupled temperature-concentration mode. The amplitude of first (second) sound generated from second (first) sound in mixtures is also derived. Our derivation includes the dependence of thermodynamical quantities on temperature, pressure, and 3 He concentration, and is valid up to a first order in terms of the isobaric expansion coefficient. We show that close to the λ line the nonlinearity of second sound in mixtures is enhanced as compared with pure 4 He

  1. Pion production in 3He collisions on complex nuclei: a comparison of theory with experiment

    International Nuclear Information System (INIS)

    Fulcher, L.P.; Banerjee, M.K.

    1976-01-01

    The BLSZ theory of inclusive pion production is applied to the (p,π + ) and the ( 3 He,π 0 ) reactions on 12 C. The calculations are based on plane waves for the projectile and pion wave functions and are compared with experiments. The effects of distortion are considered. The magnitudes of the (p,π + ) reaction cross sections are comparable to the experimental values, but for the ( 3 He,π 0 ) case the theoretical results are four or five orders of magnitude larger than the experiments

  2. D and $^{3}He$ production in $\\sqrt{s}$ = 130 GeV Au + Au collisions

    CERN Document Server

    Adler, C; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J T; Barannikova, O Yu; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A B; Cadman, R V; Caines, H; Calderón de la Barca-Sanchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Cormier, T M; Cramer, J G; Crawford, H J; De Mello, M; Deng, W S; Derevshchikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Finch, E; Fisyak, Yu; Flierl, D; Foley, Kenneth J; Fu, J; Gagunashvili, N D; Gans, J; Gaudichet, L; Germain, M; Geurts, F J M; Ghazikhanian, V; Grabski, J; Grachov, O A; Greiner, D E; Grigoriev, V; Guedon, M; Guschin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Kisiel, A; Klay, J L; Klein, S R; Klyachko, A A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Krämer, M; Kravtsov, P; Krüger, K; Kuhn, C; Kulikov, A V; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamas-Valverde, J; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T J; Lednicky, R; Leontiev, V M; Le Vine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; Lo Curto, G; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lynn, D; Majka, R; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnik, Yu M; Meshchanin, A P; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Oson, D; Paic, G; Pandey, S U; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevozchikov, V; Peryt, W; Petrov, V A; Platner, E D; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E V; Prindle, D J; Pruneau, C A; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Russ, D; Rykov, V L; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schröder, L S; Schüttauf, A; Schweda, K; Seger, J E; Seliverstov, D M; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimansky, S S; Shvetcov, V S; Skoro, G P; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, Reinhard; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Struck, C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T A; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T S; Underwood, D G; Van Buren, G; Van der Molen, A; Vanyashin, A V; Vasilevski, I M; Vasilev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Wenaus, T J; Westfall, G D; Whitten, C; Wieman, H H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevsky, Yu V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N; 10.1103/PhysRevLett.87.262301

    2001-01-01

    The first measurements of light antinucleus production in Au + Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d and /sup 3/He are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the 3He freeze-out volume is smaller than the d freeze-out volume. (22 refs).

  3. Geometrical aspects of reaction cross sections for 3He, 4He and 12C projectiles

    International Nuclear Information System (INIS)

    Ingemarsson, A.; Lantz, M.

    2003-04-01

    A black-disc model combined with accurate matter densities has been used for an investigation of reaction cross sections for 3 He, 4 He and 12 C projectiles. A simple relation is derived between the energy dependence of the reaction cross sections and the strength of the nucleon-nucleon interaction. A comparison is also made of the reaction cross sections for 3 He and 4 He for six different nuclei 12 C, 16 O, 40 Ca, 58,60 Ni and 208 Pb

  4. Spectroscopic information from (3He, 7Be) reaction on 12C and 24Mg

    International Nuclear Information System (INIS)

    Rahman, Md.A.; Sen Gupta, H.M.

    1986-01-01

    The reaction ( 3 He, 7 Be) on 12 C and 24 Mg has been analysed using four discrete potential families for 7 Be channel and one discrete potential family for 3 He channel to extract alpha spectroscopic factors. It is shown that the relative spectroscopic factors are reliable if they are calculated staying within one potential family (S( 24 Mg/ 12 C) approx. 0.12). But, changing the potential family between 12 C and 24 Mg, one obtains the extreme cases, such as S( 24 Mg/ 12 C) = 0.025 and 0.51, i.e. 1:20

  5. Sound and dissipation coefficients in the phonon-impurity system of 3He-4He solutions

    International Nuclear Information System (INIS)

    Adamenko, I.N.; Rudavskii, E.Y.; Tsyganok, V.I.; Chagovets, V.K.

    1988-01-01

    The phonon-impurity system of dilute solutions of 3 He in 4 He is studied experimentally and theoretically using an acoustic technique. The sound velocity and absorption measurements make it possible to identify the theoretically predicted new mechanism of phonon relaxation with anomalous dispersion in the presence of impurities. A kinetic problem for arbitrary frequencies is solved, which also enables the authors to obtain all the dissipation coefficients of the solutions and to explain the experimental data on second-sound absorption, thermal conductivity, and heat pulse propagation. The relation is considered between relaxation processes in a phonon-impurity system and the phonon spectrum dispersion in 3 He- 4 solutions

  6. Calculated and measured efficiency of a man-portable 3He neutron detector

    International Nuclear Information System (INIS)

    O'Dell, A.A.

    1976-01-01

    A small man-portable neutron detector was constructed using 18 3 He proportional counters arranged in three layers within a polyethylene moderator. Each counter is 25 mm in diameter by 340 mm long (sensitive length) and is filled with highly-purified 3 He to a pressure of 400 kPa (4 atm). Efficiency measurements were made using a 252 Cf neutron source. Detailed calculations of the detector efficiency were done using the TART Monte Carlo transport code. Calculations and measurements were compared for several source/detector configurations

  7. The relation between temperature and concentration gradients in superfluid sup 3 He- sup 4 He solutions

    CERN Document Server

    Zadorozhko, A A; Rudavskij, E Y; Chagovets, V K; Sheshin, G A

    2003-01-01

    The temperature and concentration gradients nabla T and nabla x in a superfluid sup 3 He- sup 4 He mixture with an initial concentration 9,8 % of sup 3 He are measured in a temperature range 70-500 mK. The gradients are produced by a steady thermal flow with heating from below. It is shown that the value of nabla x/nabla T observed in the experiment is in good agreement with the theoretical model derived from the temperature and concentration dependences of osmotic pressure. The experimental data permitted us to obtain a thermal diffusion ratio of the solution responsible for the thermal diffusion coefficient.

  8. Measurement of p+d→3He+γ and comparison with the inverse reaction

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Bauer, T.S.; Baba, K.; Boudard, A.; Briscoe, W.J.; Bruge, G.; Faure, J.L.; Gosset, J.; Hegerath, A.; Lugol, J.C.; Silverman, B.H.; Terrien, Y.

    1980-01-01

    Seven differential cross sections of the reaction p+d→ 3 He+γ have been measured at T/sub p/=450 and 550 MeV between 52 0 and 92 0 (theta/sub γ/ c.m.). 3 He's were analyzed by the SPES I spectrometer in coincidence with photons detected by Cerenkov counters. The results are about twice the cross sections of the inverse reaction measured recently by Hegerath et al. and by Argan et al. The data are consistent, however, with the γ+ 3 Hearrow-right-leftp+d data of Heusch et al

  9. Testing on novel neutron detectors as alternative to 3He for security applications

    Science.gov (United States)

    Peerani, Paolo; Tomanin, Alice; Pozzi, Sara; Dolan, Jennifer; Miller, Eric; Flaska, Marek; Battaglieri, Marco; De Vita, Raffaella; Ficini, Luisa; Ottonello, Giacomo; Ricco, Giovanni; Dermody, Geraint; Giles, Calvin

    2012-12-01

    Detection of illicit trafficking of nuclear material relies on the detection of the radiation emitted. In the case of plutonium, one of the characteristic signatures derives from neutron emission. For this reason, neutron detectors cover an important role in detection systems. Most current neutron detection systems used for nuclear security are based on the 3He technology. Unfortunately, in the last few years the market of 3He has encountered huge problems in matching the supply and the demand. The need has grown significantly due to the increasing demand of instrumentation for security. This has caused an exponential increase of the price from one side and on the other side a serious strategic problem of resources. In order to guarantee the availability of detection systems for nuclear security, it is necessary to develop alternative detection systems based on technologies different from 3He. Many research projects have been devoted for the development of novel neutron detectors both by research organisations and by industries. Scientists from the PERLA laboratory of the Joint Research Centre (JRC) in Ispra, Italy, and their collaborators have tested several of these novel concepts in the last couple of years. This paper describes the detector systems tested at JRC and preliminary results on detectors that can be considered as promising alternatives to 3He.

  10. Hyperpolarised 3He gas production for magnetic resonance imaging of the human air ways

    International Nuclear Information System (INIS)

    Fichele, Stanislao

    2002-01-01

    This thesis describes the experimental techniques, and methods employed in hyperpolarised 3 He gas production and magnetic resonance imaging of the human air-ways, using spin-echo sequences and MR tagging techniques. An in-house polariser utilising the metastability optical pumping technique was constructed. The main results of this work are concerned with engineering difficulties involved in compressing HP 3 He and a large proportion of this PhD thesis details the design, construction, and performance of an in-house built peristaltic compressor. In preliminary imaging experiments using RARE, high signal to noise projection images of the lungs were acquired using less than 0.5 cm 3 (STP) of purely polarised HP gas. Later, increased HP gas quantities (typically 10 cm 3 ) were obtained by employing the peristaltic compressor. Consequently we could acquire 10 mm thick slices spanning the entire lung following a single 3 He gas bolus administration. Finally, the first results using MR tagging techniques in conjunction with 3 He imaging to track gas flow during an inspiratory and expiratory manoeuvre are presented. (author)

  11. Two-fluid effects in the convective instability of 3He-4He superfluid mixtures

    International Nuclear Information System (INIS)

    Steinberg, V.; Brand, H.R.

    1983-01-01

    The influence of two-fluid effects on the onset of convection in 3 He- 4 He mixtures is discussed. The differences and similarities between the descriptions of Steinberg and Fetter are pointed out. The connections with recent experiments are also considered

  12. Study of the charge-exchange reaction 24 Mg(t,3 He)

    International Nuclear Information System (INIS)

    Gareev, F.A.; Semchenkov, A.G.

    1994-01-01

    The charge-exchange reaction 24 Mg(t, 3 He) in the region of Δ-isobar excitation at initial momentum 9.15 GeV/c is analyzed using (π + ρ + g')-model and effective number formalism. Contribution from different topologies and their influence on Δ-isobar inclusive peak are considered. (author). 15 refs., 9 figs., 3 tabs

  13. Possibility of using the /sup 3/He//sup 4/He ratio in earthquake prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Mamyrin, B.A.; Tolstikhin, I.N.; Khabarin, L.V.

    1979-03-01

    The possibility, on principle, of using the /sup 3/He//sup 4/He ratio for earthquake prognosis was shown. This method is based upon the phenomenon of addition to stationary helium flow, the helium contained in rocks and minerals and characterized by essentially different isotopy at the time preceeding the earthquake events.

  14. Elastic and charge-exchange scattering of pions from 3He and 3H

    International Nuclear Information System (INIS)

    Gibson, B.F.; Hess, A.T.

    1976-04-01

    We have examined (1) the elastic scattering of pions from the isodoublet 3 He and 3 H and (2) the single charge-exchange reaction 3 H(π + ,π 0 ) 3 He using a formalism which incorporates the π-N multiple scattering to all orders. Emphasis is placed on numerical results which illustrate those features of the differential cross sections that are expected to be of interest to the experimentalist. Realistic nuclear densities corresponding to the form factors of elastic electron scattering were used. Charge-exchange cross sections are presented in terms of angular distributions for both the π 0 and the recoil nucleus. In elastic scattering, Coulomb-nuclear interference effects are significant at incident pion kinetic energies of less than 100 MeV; form factor effects are apparent at large momentum transfer. Comparison of data and theory for π + - 3 He with that for π - - 3 He (or the conjugate π + - 3 H) will provide a test of the convergence of the fixed scatterer, multiple-scattering formalism utilized in this report. 21 figures

  15. Experimental simulation on direct energy converter for D-3He fusion using RF traveling wave

    Science.gov (United States)

    Yasaka, Yasuyoshi; Kawasaki, Akio; Takeno, Hiromasa; Tomita, Yukihiro; Momota, Hiromu

    2001-10-01

    A small-scale experiment is performed to prove and evaluate the principle of a direct energy converter for D-3He fusion reactor. Discrimination of charged particles by using a cusp magnetic field and energy conversion from the ion beam simulating fusion protons by using traveling RF waves are demonstrated and are compared with calculations.

  16. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    Science.gov (United States)

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-08

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  17. Supercurrents and hydrodynamic modes in 3He-A1 in an electric field

    International Nuclear Information System (INIS)

    Makhlin, Yu.G.

    1994-01-01

    The authors consider the supercurrent in superfluid 3 He in an electric field. The possibility to generate hydrodynamic modes (first and second sound) in the A 1 -phase by an oscillating electric field is proposed. It is shown that the resonance technique can amplify the small amplitude of the second-sound wave. The possibility of measurement is also discussed

  18. 3He(α,γ7Be cross section measured using complementary techniques

    Directory of Open Access Journals (Sweden)

    Carmona-Gallardo M.

    2014-03-01

    Full Text Available The astrophysical S-factor for the 3He(α,γ7Be reaction plays an important role in the Solar Standard Model and in the Big Bang Nucleosynthesis scenario. The advances from two recent experiments performed using complementary techniques at center of mass (C.M. energies between 1 and 3 MeV are discussed.

  19. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    International Nuclear Information System (INIS)

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-01-01

    Low-mass stars, ∼ 1-2 solar masses, near the Main Sequence are efficient at producing 3 He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3 He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that 3 He production in low-mass stars poses to the Big Bang nucleosynthesis of 3 He

  20. Scattering Theory on Surface Majorana Fermions by an Impurity in ^{3}He-B.

    Science.gov (United States)

    Tsutsumi, Yasumasa

    2017-04-07

    We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.

  1. The osmotic pressure of 3He-4He mixtures along the phase separation curve

    NARCIS (Netherlands)

    van de Klundert, L.J.M.; Bos, M.R.E.; van der Meij, J.A.M.; Steffens, H.A.

    1977-01-01

    The osmotic pressure of 3He-4He mixtures was measured along the phase separation curve at temperatures up to 500 mK by balancing it with the fountain pressure of pure 4He. The usefullness of the secondary osmotic pressure thermometer was reinvestigated.

  2. Precision measurement of thermal neutron beam densities using a 3He proportional counter

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Bahnsen, A.; Brown, W.K.

    1967-01-01

    of ±0.4%. Fundamental advantages of the method include the 1ν dependence of the 3He(n, p)T cross section up to 1 keV, and the assurance of homogeneity even for very small macroscopic cross sections, because of the gaseous detector material. Although the method requires a relatively clean neutron beam...

  3. Microscopic description of 3He - α scattering with density dependent interaction

    International Nuclear Information System (INIS)

    Moraes, M.M.W. de.

    1987-01-01

    The elastic scattering for a light nuclear system 3 He - α is analysed within the Generating Coordinates Method using a procedure formulated by Piza and Passos. The same numerical technique is used to describe the bond states and scattering properties. (A.C.A.S.) [pt

  4. The 4He(p,d)3He reaction at 770 MeV

    International Nuclear Information System (INIS)

    Bauer, T.; Boudard, A.; Catz, H.; Chaumeaux, A.; Couvert, P.; Garcon, M.; Guyot, J.; Legrand, D.; Lugol, J.C.; Matoba, M.; Mayer, B.; Tabet, J.P.; Terrien, Y.

    1977-01-01

    The differential cross section of the 4 He(p,d) 3 He pick-up reaction has been measured at Esub(p)=770MeV. The data are analysed in the framework of the DWBA; both one-nucleon and one-N* transfers are considered. (Auth.)

  5. Regional ventilation changes in severe asthma after bronchial thermoplasty with (3)He MR imaging and CT.

    Science.gov (United States)

    Thomen, Robert P; Sheshadri, Ajay; Quirk, James D; Kozlowski, Jim; Ellison, Henry D; Szczesniak, Rhonda D; Castro, Mario; Woods, Jason C

    2015-01-01

    To quantify regional lung ventilation in healthy volunteers and patients with severe asthma (both before and after thermoplasty) by using a combination of helium 3 ((3)He) magnetic resonance (MR) imaging and computed tomography (CT), with the intention of developing more effective image-guided treatments for obstructive lung diseases. With approval of the local institutional review board, informed consent, and an Investigational New Drug Exemption, six healthy volunteers and 10 patients with severe asthma were imaged in compliance with HIPAA regulations by using both multidetector CT and (3)He MR imaging. Individual bronchopulmonary segments were labeled voxel by voxel from the CT images and then registered to the (3)He MR images by using custom software. The (3)He signal intensity was then analyzed by evaluating the volume-weighted fraction of total-lung signal intensity present in each segment (segmental ventilation percentage [ SVP segmental ventilation percentage ]) and by identifying the whole-lung defect percentage and the segmental defect percentage. Of the 10 patients with asthma, seven received treatment with bronchial thermoplasty and were imaged with (3)He MR a second time. Changes in segmental defect percentages and whole-lung defect percentages are presented. Ventilation measures for healthy volunteers yielded smaller segment-to-segment variation (mean SVP segmental ventilation percentage , 100% ± 18 [standard deviation]) than did the measures for patients with severe asthma (mean SVP segmental ventilation percentage , 97% ± 23). Patients with asthma also demonstrated larger segmental defect percentages (median, 13.5%; interquartile range, 8.9%-17.8%) than healthy volunteers (median, 6%; interquartile range, 5.6%-6.3%). These quantitative results confirm what is visually observed on the (3)He images. A Spearman correlation of r = -0.82 was found between the change in whole-lung defect percentage and the number of days between final treatment and

  6. Regional Ventilation Changes in Severe Asthma after Bronchial Thermoplasty with 3He MR Imaging and CT

    Science.gov (United States)

    Thomen, Robert P.; Sheshadri, Ajay; Quirk, James D.; Kozlowski, Jim; Ellison, Henry D.; Szczesniak, Rhonda D.; Castro, Mario

    2015-01-01

    Purpose To quantify regional lung ventilation in healthy volunteers and patients with severe asthma (both before and after thermoplasty) by using a combination of helium 3 (3He) magnetic resonance (MR) imaging and computed tomography (CT), with the intention of developing more effective image-guided treatments for obstructive lung diseases. Materials and Methods With approval of the local institutional review board, informed consent, and an Investigational New Drug Exemption, six healthy volunteers and 10 patients with severe asthma were imaged in compliance with HIPAA regulations by using both multidetector CT and 3He MR imaging. Individual bronchopulmonary segments were labeled voxel by voxel from the CT images and then registered to the 3He MR images by using custom software. The 3He signal intensity was then analyzed by evaluating the volume-weighted fraction of total-lung signal intensity present in each segment (segmental ventilation percentage [SVPsegmental ventilation percentage]) and by identifying the whole-lung defect percentage and the segmental defect percentage. Of the 10 patients with asthma, seven received treatment with bronchial thermoplasty and were imaged with 3He MR a second time. Changes in segmental defect percentages and whole-lung defect percentages are presented. Results Ventilation measures for healthy volunteers yielded smaller segment-to-segment variation (mean SVPsegmental ventilation percentage, 100% ± 18 [standard deviation]) than did the measures for patients with severe asthma (mean SVPsegmental ventilation percentage, 97% ± 23). Patients with asthma also demonstrated larger segmental defect percentages (median, 13.5%; interquartile range, 8.9%–17.8%) than healthy volunteers (median, 6%; interquartile range, 5.6%–6.3%). These quantitative results confirm what is visually observed on the 3He images. A Spearman correlation of r = −0.82 was found between the change in whole-lung defect percentage and the number of days between

  7. Tuning Fermi level of Cr{sub 2}CoZ (Z=Al and Si) inverse Heusler alloys via Fe-doping for maximum spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh-160014 (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Reshak, Ali H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2014-12-15

    We report full potential treatment of electronic and magnetic properties of Cr{sub 2−x}Fe{sub x}CoZ (Z=Al, Si) Heusler alloys where x=0.0, 0.25, 0.5, 0.75 and 1.0, based on density functional theory (DFT). Both parent alloys (Cr{sub 2}CoAl and Cr{sub 2}CoSi) are not half-metallic frromagnets. The gradual replacement of one Cr sublattice with Fe induces the half-metallicity in these systems, resulting maximum spin polarization. The half-metallicity starts to appear in Cr{sub 2−x}Fe{sub x}CoAl and Cr{sub 2−x}Fe{sub x}CoSi with x=0.50 and x=0.25, respectively, and the values of minority-spin gap and half-metallic gap or spin-flip gap increase with further increase of x. These gaps are found to be maximum for x=1.0 for both cases. An excellent agreement between the structural properties of CoFeCrAl with available experimental study is obtained. The Fermi level tuning by Fe-doping makes these alloys highly spin polarized and thus these can be used as promising candidates for spin valves and magnetic tunnelling junction applications. - Highlights: • Tuning of E{sub F} in Cr{sub 2}CoZ (Z=Al, Si) has been demonstrated via Fe doping. • Effect of Fe doping on half-metallicity and magnetism have been discussed. • The new alloys have a potential of being used as spin polarized electrodes.

  8. Inclusive measurements of pion double charge exchange and inelastic scattering on 3He

    International Nuclear Information System (INIS)

    Yuly, M.E.

    1993-06-01

    A measurement was made at the Los Alamos Meson Physics Facility (LAMPF) of the doubly differential cross sections for three inclusive pion reactions on 3 He: π - double charge exchange (DCX), and π + and π - inelastic scattering. The cross sections for DCX were measured at incident energies of 120, 180, 210, and 240 MeV, and at angles of 25, 50, 80, 105, and 130 degrees, while inelastic scattering cross sections were measured at 120, 180, and 240 MeV and scattering angles of 50, 80, 105, and 130 degrees. The final pion energy spectrum was measured from 10 MeV up to the kinematic limit. In the Δ resonance region, where the isospin T = 3/2 channel dominates, the inelastic π - scattering should be almost entirely from the lone neutron in 3 He. The π + inelastic scattering was expected to have significant contributions from both single and double scattering, because the T = 3/2 channel favors π + -p scattering from the two protons in 3 He. The 3 He DCX spectra are similar to those observed for DCX in 4 He. The forward angle double peaks can be understood as a consequence of sequential single charge exchange (SSCX). Calculations using the SSCX model are in rough agreement with the measured shape of the 3 He DCX spectra. The doubly differential cross sections measured for the inelastic scattering reactions exhibit a strong enhancement near the kinematics for free π - -p scattering. The ratios of π + to π - scattering cross sections may indicate multiple scattering, as well as the agreement of the low outgoing energy part of the π + inelastic scattering spectra with the corresponding properly scaled DCX spectra. A distorted-wave impulse-approximation (DWIA) calculation of the quasielastic cross sections has been performed and a comparison made with the measured inelastic cross sections

  9. Anomalous Hall effect and current spin polarization in Co2Fe X Heusler compounds (X =Al , Ga , In , Si , Ge , and Sn ): A systematic ab initio study

    Science.gov (United States)

    Huang, Hung-Lung; Tung, Jen-Chuan; Guo, Guang-Yu

    2015-04-01

    Co-based Heusler compounds are ferromagnetic with a high Curie temperature and a large magnetization density, and thus are promising for spintronic applications. In this paper, we perform a systematic ab initio study of two principal spin-related phenomena, namely, anomalous Hall effect and current spin polarization, in Co2-based Heusler compounds Co2Fe X (X =Al , Ga , In , Si , Ge , Sn ) in the cubic L2 1 structure within the density functional theory with the generalized gradient approximation (GGA). The accurate all-electron full-potential linearized augmented plane-wave method is used. First, we find that the spin polarization of the longitudinal current (PL) in Co2Fe X (X =Al , Ga , In , Al0.5Si0.5 , and Sn ) is ˜100 % even though that of the electronic states at the Fermi level (PD) is not. Further, the other compounds also have a high current spin polarization with PL>85 %. This indicates that all the Co2Fe X compounds considered are promising for spin-transport devices. Interestingly, PD is negative in Co2Fe X (X =Si , Ge , and Sn ), differing in sign from the PL as well as that from the transport experiments. Second, the calculated anomalous Hall conductivities (AHCs) are moderate, being within 200 S/cm, and agree well with the available experiments on a highly L2 1 ordered Co2FeSi specimen although they differ significantly from the reported experiments on other compounds where the B2 antisite disorders were present. Surprisingly, the AHC in Co2FeSi decreases and then changes sign when Si is replaced by Ge and finally by Sn. Third, the calculated total magnetic moments agree well with the corresponding experimental ones in all the studied compounds except Co2FeSi where a difference of 0.3 μB/f .u . exists. We also perform the GGA plus on-site Coulomb interaction U calculations in the GGA + U scheme. We find that including the U affects the calculated total magnetic moment, spin polarization and AHC significantly, and in most cases, unfortunately

  10. Excitation of Self-Localized Spin-Wave Bullets by Spin-Polarized Current in In-Plane Magnetized Magnetic Nano-Contacts: A Micromagnetic Study

    Science.gov (United States)

    2007-10-08

    excitation of microwave spin waves.3,10,11 The analytical theory of spin-wave excitation in magnetic nanocontacts by spin-polarized current performed...linear theory ,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L... Oersted magnetic field, and/or by any other small interaction, neglected in the micromagnetic model. To make the excitation of subcritical modes12,15

  11. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator

    International Nuclear Information System (INIS)

    Espig, Martin

    2016-02-01

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of n,x =(1.7478(4).10 -4 .(r)/(μm)+2.8(18).10 -5 ) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1.2) ps at a

  12. Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO0.55F0.45BiS2.

    Science.gov (United States)

    Wu, Shi-Long; Sumida, Kazuki; Miyamoto, Koji; Taguchi, Kazuaki; Yoshikawa, Tomoki; Kimura, Akio; Ueda, Yoshifumi; Arita, Masashi; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Okuda, Taichi

    2017-12-04

    Conventional Rashba spin polarization is caused by the combination of strong spin-orbit interaction and spatial inversion asymmetry. However, Rashba-Dresselhaus-type spin-split states are predicted in the centrosymmetric LaOBiS 2 system by recent theory, which stem from the local inversion asymmetry of active BiS 2 layer. By performing high-resolution spin- and angle-resolved photoemission spectroscopy, we have investigated the electronic band structure and spin texture of superconductor LaO 0.55 F 0.45 BiS 2 . Here we present direct spectroscopic evidence for the local spin polarization of both the valence band and the conduction band. In particular, the coexistence of Rashba-like and Dresselhaus-like spin textures has been observed in the conduction band. The finding is of key importance for fabrication of proposed dual-gated spin-field effect transistor. Moreover, the spin-split band leads to a spin-momentum locking Fermi surface from which superconductivity emerges. Our demonstration not only expands the scope of spintronic materials but also enhances the understanding of spin-orbit interaction-related superconductivity.

  13. Energy spectrum, the spin polarization, and the optical selection rules of the Kronig-Penney superlattice model with spin-orbit coupling

    Science.gov (United States)

    Li, Rui

    2018-02-01

    The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.

  14. Very efficient spin polarization analysis (VESPA): new exchange scattering-based setup for spin-resolved ARPES at APE-NFFA beamline at Elettra.

    Science.gov (United States)

    Bigi, Chiara; Das, Pranab K; Benedetti, Davide; Salvador, Federico; Krizmancic, Damjan; Sergo, Rudi; Martin, Andrea; Panaccione, Giancarlo; Rossi, Giorgio; Fujii, Jun; Vobornik, Ivana

    2017-07-01

    Complete photoemission experiments, enabling measurement of the full quantum set of the photoelectron final state, are in high demand for studying materials and nanostructures whose properties are determined by strong electron and spin correlations. Here the implementation of the new spin polarimeter VESPA (Very Efficient Spin Polarization Analysis) at the APE-NFFA beamline at Elettra is reported, which is based on the exchange coupling between the photoelectron spin and a ferromagnetic surface in a reflectometry setup. The system was designed to be integrated with a dedicated Scienta-Omicron DA30 electron energy analyzer allowing for two simultaneous reflectometry measurements, along perpendicular axes, that, after magnetization switching of the two targets, allow the three-dimensional vectorial reconstruction of the spin polarization to be performed while operating the DA30 in high-resolution mode. VESPA represents the very first installation for spin-resolved ARPES (SPARPES) at the Elettra synchrotron in Trieste, and is being heavily exploited by SPARPES users since autumn 2015.

  15. Measurement of 3He/4He ratio in cosmic rays with the AMS experiment

    CERN Document Server

    Xiong Zhao Hua; Chen Gang; Chen He Sheng; Lü Yu Sheng; Tang, Xiaowei; Yang Chang Gen; Yang Min; Zhuang, Honglin

    2003-01-01

    The cosmic-ray 3He/4He ratios from 0.09 to 1.2 GeV per nucleon are measured by Alpha Magnetic Spectrometer (AMS) at its precursor mission on broad the space shuttle Discovery during flight STS-91 in June 1998. Taking unique advantage of AMS data collected from large region covering the earth equator, we also studied the magnetic latitude effect on the ratios. Our analysis shows that the relative abundances of 3He and 4He in cosmic rays depend weakly on the magnetic latitude, and given present uncertainties, the observed isotopic compositions are generally consistent with the predictions of the standard propagation model of cosmic rays.

  16. Measurement of 3He/4He ratio in cosmic rays with the AMS experiment

    Science.gov (United States)

    Xiong, Zhaohua; Chen, Hesheng; Yang, Changgen; Yang, Min; Chen, Guomeng; Chen, Gang; Lü, Yusheng; Zhuang, Honglin; Tang, Xiaowei

    2003-11-01

    The cosmic-ray 3He/4He ratios from 0.09 to 1.2 GeV per nucleon are measured by Alpha Magnetic Spectrometer (AMS) at its precursor mission on board the space shuttle Discovery during the flight STS-91 in June 1998. Taking unique advantage of AMS data collected from a large region covering the earth equator, we also studied the magnetic latitude effect on the ratios. Our analysis shows that the relative abundances of 3He and 4He in cosmic rays depend weakly on the magnetic latitude, and given present uncertainties, the observed isotopic composition is generally consistent with the predictions of the standard propagation model of cosmic rays.

  17. Measurement of the polarized neutron---polarized {sup 3}He total cross section

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L. [North Carolina State University, Raleigh, North Carolina 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Duke University, Durham, North Carolina 27708 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States)

    1995-05-10

    The first measurements of polarized neutron--polarized {sup 3}He scattering in the few MeV energy region are reported. The total cross section difference {Delta}{sigma}{sub {ital T}} for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of {Delta}{sigma}{sub {ital T}} using various descriptions of the {sup 4}He continuum. A brute-force polarized target of solid {sup 3}He has been developed for these measurements. The target is 4.3{times}10{sup 22} atoms/cm{sup 2} thick and is polarized to 38% at 7 Telsa and 12 mK. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Apparent violation of isospin symmetry in the 3H(3He,2H)4He reaction

    International Nuclear Information System (INIS)

    Rai, G.; Blyth, C.O.; England, J.B.A.; Farooq, A.; Karban, O.; Rawas, E.; Roman, S.; Vlastou, R.

    1988-01-01

    Angular distributions of the vector analyzing powers for the 3 H( 3 He, 2 H) 4 He reaction have been measured over the incident energy range 18--33 MeV. The measurements centered about 18 MeV display a deviation from the antisymmetric shape expected from isospin symmetry. Concentrating on the explanation of the 90 0 analyzing powers, we report the results of a distorted-wave Born approximation (DWBA) analysis which includes the direct and exchange processes and the spin-orbit potential. It is shown that the anomalous behavior of the 90 0 vector analyzing powers can be largely explained by the effect of a single F-wave potential resonance which leads to the magnification of the short-range differences between the 3 He and 3 H wave functions

  19. Cross section calculations of medical 103Pd radioisotope using α and 3He induced reactions

    Directory of Open Access Journals (Sweden)

    Demir Bayram

    2016-01-01

    Full Text Available One of the most popular radioisotopes used in the prostate brachytherapy is Palladium-103 (103Pd. The radioactive plaque is sewn onto the eye as to cover the intraocular tumor shadow with a 2-3 mm margin. These plaques are temporary and radiation is continuously delivered over 5 to 7 days. At the end of treatment, the plaque is removed from eye. In this study, production cross–section calculations of 103Pd radionuclide used in brachytherapy produced by 101Ru(α,2n, 100Ru(α,n, 102Ru(3He,2n and 101Ru(3He,n reactions have been investigated in the different incident energy range up to 35 MeV. Twocomponent Exciton model and Generalized Superfluid model of the TALYS 1.6 code used to perform calculations and calculation results were compared with experimental results reported in the literature.

  20. Studies on the response of 3He and 4He proportional counters to monoenergetic fast neutrons

    International Nuclear Information System (INIS)

    Manolopoulou, M.; Fragopoulou, M.; Stoulos, S.; Koukorava, C.; Spyrou, A.; Perdikakis, G.; Hashemi-Nezhad, S.R.; Zamani, M.

    2006-01-01

    Two helium filled proportional counters ( 3 He and 4 He) were studied to establish the optimum operating conditions when these counters are used for fast neutron measurements, as well as to examine the linearity of the pulse height with neutron energy. The detectors were irradiated with mono-energetic neutrons in the energy range of 230 keV-22 MeV, produced via 7 Li(n,p) 7 Be, 2 H(d,n) 3 He and 3 H(d,n) 4 He reactions in a Tandem Van de Graff accelerator. The gamma ray contribution to the obtained pulse height distribution and the resolution of the counters as a function of shaping time constant and applied high voltage were studied

  1. First results from Tyrex, the new polarized-3He filling station at ILL

    International Nuclear Information System (INIS)

    Andersen, K.H.; Chung, R.; Guillard, V.; Humblot, H.; Jullien, D.; Lelievre-Berna, E.; Petoukhov, A.; Tasset, F.

    2005-01-01

    A new filling station for nuclear polarisation of 3 He gas has been constructed at the ILL, Grenoble. The 'Tyrex' machine uses metastability-exchange optical pumping for polarising the 3 He gas at about 1 mbar pressure. The gas is then compressed up to several bars via a hydraulic titanium-alloy piston compressor. The machine can provide about 1.5 bar-l/h of polarised gas--an order-of-magnitude increase over the first filling station installed at the ILL in 1996. The compressed, polarised gas is used for polarising neutron beams for condensed-matter and fundamental physics experiments. First results are presented and examples of implementations on existing neutron instruments at ILL are described

  2. Observation of Intrinsic Magnus Force and Direct Detection of Chirality in Superfluid 3He-A

    Science.gov (United States)

    Ikegami, Hiroki; Tsutsumi, Yasumasa; Kono, Kimitoshi

    2015-04-01

    We report details of the observation of the intrinsic Magnus (IM) force acting on negative and positive ions trapped just below a free surface of the A phase of superfluid 3He (3He-A). From the transport measurements of the ions along the surface, we found that the IM force acts on both the negative and positive ions. We also demonstrate that the transport measurements could distinguish whether the surface is composed of a chiral monodomain or multiple chiral domains. For multiple chiral domains, the current of the ions was found to be irreproducible and unstable, which was reasonably explained by the formation of the chiral domain structure and the dynamics of the chiral domain walls. For chiral monodomains, the appearance ratio of chirality emerging upon cooling through the superfluid transition temperature was found to depend on the direction of the external magnetic field, which implies the existence of an unknown coupling between the chirality and the magnetic field.

  3. Spin echo small angle neutron scattering using a continuously pumped (3)He neutron polarisation analyser.

    Science.gov (United States)

    Parnell, S R; Washington, A L; Li, K; Yan, H; Stonaha, P; Li, F; Wang, T; Walsh, A; Chen, W C; Parnell, A J; Fairclough, J P A; Baxter, D V; Snow, W M; Pynn, R

    2015-02-01

    We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously operating neutron spin filter polarised by Rb spin-exchange optical pumping of (3)He. We describe the performance of the analyser along with a study of the (3)He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.

  4. [sup 3]He neutron detector performance in mixed neutron gamma environments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N. H. (Nathan H.); Beddingfield, D. H. (David H.)

    2002-01-01

    A test program of the performance of 3He neutron proportional detectors with varying gas pressures, and their response to lligh level gamma-ray exposure in a mixed neutrodgamma environment, ha$ been performed Our intent was to identie the optimal gas pressure to reduce the gamma-ray sensitivity of these detectors. These detectors were manufxtured using materials to minimize their gamma response. Earlier work focused on 3He fill pressures of four atmospheres and above, whereas the present work focuses on a wider range of pressures. Tests have shown that reducing the .filling pressure will M e r increase the gamma-ray dose range in which the detectors can be operated.

  5. On the optimisation of the use of {sup 3}He in radiation portal monitors

    Energy Technology Data Exchange (ETDEWEB)

    Tomanin, Alice [European Commission, Joint Research Centre, ITU—Ispra (Italy); University of Ghent, Engineering Faculty, B-9052 Gent-Zwijnaarde (Belgium); Peerani, Paolo, E-mail: paolo.peerani@jrc.ec.europa.eu [European Commission, Joint Research Centre, ITU—Ispra (Italy); Janssens-Maenhout, Greet [University of Ghent, Engineering Faculty, B-9052 Gent-Zwijnaarde (Belgium)

    2013-02-01

    Radiation Portal Monitors (RPMs) are used to detect illicit trafficking of nuclear or other radioactive material concealed in vehicles, cargo containers or people at strategic check points, such as borders, seaports and airports. Most of them include neutron detectors for the interception of potential plutonium smuggling. The most common technology used for neutron detection in RPMs is based on {sup 3}He proportional counters. The recent severe shortage of this rare and expensive gas has created a problem of capacity for manufacturers to provide enough detectors to satisfy the market demand. In this paper we analyse the design of typical commercial RPMs and try to optimise the detector parameters in order either to maximise the efficiency using the same amount of {sup 3}He or minimise the amount of gas needed to reach the same detection performance: by reducing the volume or gas pressure in an optimised design.

  6. Combined He3 cryostats and He3-He4 dilution refrigerators

    International Nuclear Information System (INIS)

    Kovac, L.; Balla, J.

    1974-07-01

    A modular set of equipment was designed, which consists of a 4 He Dewar vessel with a very low evaporation rate, having a pumped 4 He bath in which either a 3 He cryostat or a dilution refrigerator within removable inserts can be placed. Any of them can be simply and rapidly connected to the versatile Dewar, auxiliary 4 He-, vacuum; and 3 He- 4 He systems. Two such sets have already been completed and can be used at temperatures from 1.5K to 0.05K for thermodynamic and neutron diffraction measurements. The performance of all inserts was stable and reliable, differences between the cryostats and runs were small - nearly all within the accuracy of temperature determination. The construction of a lot of parts is identical, allowing rapid manufacture. Assembling and repairs are simple, all parts are easily accessible. (K.A.)

  7. Inclusive electron scattering on 3H and 3He with full inclusion of final state interactions

    International Nuclear Information System (INIS)

    Golak, J.; Wital, H.; Kamada, H.; Hueber, D.; Ishikawa, S.; Gloeckle, W.

    1995-01-01

    Inclusive electron scattering data on 3 He and 3 H are analyzed under full treatment of the final state interactions (FSI) using realistic nucleon-nucleon forces. The data are well described. We use two different methods, one where we calculate the pd and ppn breakup contributions separately and another one which is related to the optical theorem for Compton scattering. Both rely on precise solutions of Faddeev-like equations and agree perfectly. The importance of FSI and the inclusion of total isospin T=3/2 for the full breakup of 3 He is demonstrated. We also comment on the Coulomb sum rule and the extraction of the proton-proton correlation function

  8. Primary populations of metastable antiprotonic $^{4}He$ and $^{3}He$ atoms

    CERN Document Server

    Hori, Masaki; Hayano, R S; Ishikawa, T; Sakuguchi, J; Tasaki, T; Widmann, E; Yamaguchi, H; Torii, H A; Juhász, B; Horváth, D; Yamazaki, T

    2002-01-01

    Initial population distributions of metastable antiprotonic **4He and **3He atoms over principal and angular momentum quantum numbers were investigated using laser spectroscopy. The total fractions of antiprotons captured into the metastable states of the atoms were deduced. Cascade calculations were performed using the measure populations to reproduce the delayed annihilation time spectrum. Results showed agreement between the simulated and measured spectra. (Edited abstract) 30 Refs.

  9. [sup 3]He([gamma],[ital pd]) cross sections with tagged photons below the [Delta] resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, N.R.; Cairns, E.B.; Hackett, E.D.; Korkmaz, E.; Nakano, T.; Opper, A.K.; Quraan, M.A.; Rodning, N.L.; Rozon, F.M. (Centre for Subatomic Research, University of Alberta, Edmonton, Alberta, T6G 2N5 (Canada)); Asai, J.; Feldman, G.; Hallin, E.; O' Rielly, G.V.; Pywell, R.E.; Skopik, D.M. (Saskatchewan Accelerator Laboratory, Saskatoon, Saskatchewan, S7N 0W0 (Canada))

    1994-05-01

    The reaction cross section for [sup 3]He([gamma],[ital pd]) has been measured using the Saskatchewan-Alberta Large Acceptance Detector (SALAD) with tagged photons in the energy range from 166 to 213 MeV. The energy and angle of the proton and the deuteron were measured with SALAD while the tagger determined the photon energy. Differential cross sections have been determined for 40[degree][lt][theta][sub [ital p

  10. (3He,α) reaction mechanism at high energy and neutron inner shell structure

    International Nuclear Information System (INIS)

    Wiele, J. van de.

    1980-01-01

    The ( 3 He,α) reaction on 12 C, 16 O, 28 Si, 58 Ni, 90 Zr, 118 Sn, 124 Sn and 208 Pb targets has been studied at Esub( 3 He) = 217 MeV (or 205 MeV) in order to investigate the reaction mechanism at high energy and large momentum transfer. The reaction yields large cross sections at very forward angles and strongly enhances the largest orbital momentum transfer. The angular distribution shapes are well reproduced in the frame-work of the Z-R- D.W.B.A. analysis if we use a unique empirical α-potential: Vsub(α)(Esub(α)) = Vsub( 3 He)(3/4 Esub(α)) + Vsub(n)(1/4 Esub(α)). The excitation energy spectra have been measured up to 100 MeV in the residual light and medium nuclei and up to about 16 MeV in heavy nuclei. In addition to the well-known low-lying levels, peaks or broad structures are observed for each nucleus at higher excitation energies. They are attributed to pick up from inner shells: 1s( 11 C and 15 O), 1p( 27 Si), 1d5/2 + 1p( 57 Ni), 1f7/2( 89 Zr) 1g9/2 117 Sn, 123 Sn and 1h11/2( 207 Pb). Selectivity and localization of direct and indirect pick up ( 3 He,α) reactions were studied. Finite range calculations show that this reaction is not very sensitive to the details of the range from function but only to D 0 coefficient and range R. A microscopic α-nucleus optical potential calculated with n-n dependent and independent density forces is able to reproduce both elastic scattering and pick up reaction angular distributions [fr

  11. (p,3He) reactions on 1p shell nuclei at 41 and 45 MeV

    International Nuclear Information System (INIS)

    Rapp, V.

    1982-01-01

    In the present thesis the (p, 3 He) reactions on target nuclei of the 1p shell were studied. The measurements were performed at the isochronous cyclotron of the KFA Juelich. Angular distribution at 41 and 45 MeV to residual nuclear states in 7 Li, 8 Be, 9 Be, 10 B, 11 B, 12 C, 13 C, and 14 N. were evaluated. (orig.) [de

  12. Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1976-01-01

    Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt

  13. Three-critical phenomena in the He3-He4 mixture

    International Nuclear Information System (INIS)

    Carvalho Filho, C.A.A. de.

    1976-07-01

    A review of the phenomenology of tricritical behaviour in He 3 -He 4 mixtures is made. Starting from a model proposed by Blume, Emery and Griffiths the tricritical transition is investigated by means of the Renormalization Group making use of the Callan-Symanzik equation and usual perturbative methods of Relativistic Quantum Field Theory. Mean-field tricritical exponents and logarithmic corrections are found in a sup(n) unified context. The structure of scaling laws is also studied. (author) [pt

  14. Experimental research of the radiative capture of thermal neutrons in 3He

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Enik, T.L.; Gerasimov, V.V.; Grebenyuk, V.M.; Kobzev, A.P.; Kublikov, R.V.; Parzhitskij, S.S.; Pavlov, V.N.; Salamatin, A.V.; Shvetsov, V.N.; Slepnev, V.M.; Strelkov, A.V.; Zamyatin, N.I.; Bystritskij, V.M.; Filipowicz, M.; Nesvizhevskij, V.V.; Popov, N.P.; Wozniak, J.

    2006-01-01

    A project of an experiment on measurement of the cross sections of radiative thermal neutron capture by 3 He nuclei with production of one and two γ-quanta (n th + 3 He→α+γ(2γ)) is presented. The interest in studying the processes is dictated by the following factors: a possibility of obtaining information on parameters of the nucleon N-N potential and structure of exchange meson currents; a possibility of verifying the model of the mechanism for nucleon capture by the nucleus 3 He in the low-energy region; necessity to solve some questions existing in astrophysics. The experiment is planned to be carried out on the PF1B beam of the ILL reactor (Grenoble). The target is a hollow cylinder of pure aluminium (diam. 140x80 mm) filled with 3 He and 4 He (background experiment) at the pressure 2 atm. Registration of the γ-quanta is carried out by four BGO crystal (diam. 100x70 mm) detectors. According to the calculations the experiment, with 400-500 h of the PF1B beam running time, will allow cross sections for the above reactions to be measured for the first time with an accuracy of 2-4% (one-quantum process) and 7-10 % (two-quantum process), which quite meets the purposes of the project

  15. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    Young, P.; Sun, D.; Larson, D.; Pasquinelli, R.; Anderson, K.; Bieniosek, F.; Schmidt, C.W.; Popovic, M.; McCrory, E.; Webber, R.; Link, J.; Krohn, K.; Bida, J.

    1996-01-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production of radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (1 MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ's. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research. (author)

  16. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    1996-09-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (I MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ'S. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research

  17. Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI

    International Nuclear Information System (INIS)

    Swift, Andrew J.; Wild, Jim M.; Fichele, Stan; Woodhouse, Neil; Fleming, Sally; Waterhouse, Judith; Lawson, Rod A.; Paley, Martyn N.J.; Van Beek, Edwin J.R.

    2005-01-01

    Introduction: This study aims to quantify global and regional changes of diffusive motion of 3 He gas within the lung, as determined by hyperpolarized 3 He MR apparent diffusion coefficient (ADC) measurement, in non-smokers, smokers and chronic obstructive pulmonary disease (COPD) patients. Methods: Age-matched groups of six healthy non-smokers, five healthy smokers and five patients with COPD. The experiments were performed with approval from the local Research Ethics Committee. Diffusion imaging was performed following hyperpolarized 3 He gas inhalation, producing ADC maps. Mean and standard deviation of the ADCs were used to compare the subject groups and assess regional variations within individuals. Results: The intra-individual standard deviation of ADC in the healthy smokers was significantly larger than that of the non-smoking group (P < 0.02). Compared to the non-smoking group, COPD patients had significantly higher mean and standard deviation of ADC (P < 0.01). The mean ADC in the anterior half of the chest was systematically higher than in the posterior half in the healthy non-smoking subject group. Discussion: This study suggests that there are regional trends in the ADC values of healthy volunteers that may have implications for the clinical interpretation of ADC values. Less homogeneous ADC values have been detected in asymptomatic smokers, indicative of damage to the distal air spaces

  18. A global analysis of the elastic 3He scattering in the framework of the optical model

    International Nuclear Information System (INIS)

    Trost, H.J.

    1981-01-01

    The elastic scattering of 3 He at projetile energies from 10 MeV to 220 MeV on target nuclei in the mass range 10 to 208 is coherently studied in the framework of the simple optical model. It succeeds to obtain in the whole range a reasonable description by means of the usual Woods-Saxon potentials. This is illustrated by the presentation of a global mass and energy dependent potential. The light target nuclei are included in these systematics without the introduction of any special procedures. The omission of the antisymmetrization by the use of a purely local potential and the spin-orbit interaction have no important influence in the determination of the central potential. The cancelling of the discerte ambiguity is globally guaranted by the presented parametrization. The tradional sum rule 'number of projectile nucleons multiplied by nucleon-nucleus potential is equal to nucleus-nuclear potential' is not fulfilled. Starting from existing theoretical papers the properties of the global 3 He potential can be quantitatively explained. On the base of the 3 He potentials determined here and existing nucleon and deuteron potentials finally an approach to a projectile systematic is indicated. (orig.) [de

  19. 3He-rich Solar Energetic Particles in Helical Jets on the Sun

    Science.gov (United States)

    Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.; Wiedenbeck, Mark E.; Gómez-Herrero, Raúl; Nitta, Nariaki V.

    2018-01-01

    Particle acceleration in stellar flares is ubiquitous in the universe; however, our Sun is the only astrophysical object where energetic particles and their source flares can both be observed. The acceleration mechanism in solar flares, tremendously enhancing (up to a factor of 10,000) rare elements like 3He and ultra-heavy nuclei, has been puzzling for almost 50 years. Here we present some of the most intense 3He- and Fe-rich solar energetic particle events ever reported. The events were accompanied by nonrelativistic electron events and type-III radio bursts. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. The helical jets originated in relatively small, compact active regions, located at the coronal-hole boundary. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. The helical jets may be a distinct feature of these intense events that is related to the production of high 3He and Fe enrichments.

  20. Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods

    Science.gov (United States)

    Wang, C. L.; Funk, L. L.; Riedel, R. A.; Berry, K. D.

    2017-05-01

    3He gas based neutron Linear-Position-Sensitive Detectors (LPSDs) have been used for many neutron scattering instruments. Traditional Pulse-height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (NGD ratio) on the order of 105-106. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher Linear Discriminant Analysis (FLDA) and three Multivariate Analyses (MVAs) of the features were performed. The NGD ratios are improved by about 102-103 times compared with the traditional PHA method. Our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.

  1. Production of highly polarized 3He using spectrally narrowed diode laser array bars

    International Nuclear Information System (INIS)

    Chann, B.; Babcock, E.; Anderson, L.W.; Walker, T.G.; Chen, W.C.; Smith, T.B.; Thompson, A.K.; Gentile, T.R.

    2003-01-01

    We have produced 70%-75% 3 He polarization by spin-exchange optical pumping in cells ≅100 cm 3 in volume. The polarization achieved is consistent with known spin-exchange and spin-relaxation rates, but only when the recently discovered temperature dependence of 3 He relaxation is included. Absolute 3 He polarization measurements were performed using two different methods in two different laboratories. The results were obtained with either a spectrally narrowed laser or one type of broadband laser. Based on tests of several larger cells at pressures near 1 bar, we find that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser. This last result indicates that spectrally narrowed lasers will be important for obtaining the highest polarization in large volume neutron spin filters. Polarization in excess of 55% as obtained in cells up to 640 cm 3 in volume and 70% polarization is anticipated with available increases in spectrally narrowed laser power

  2. X-ray Debye-Waller factor measurements of solid 3He and 4He

    International Nuclear Information System (INIS)

    Arms, D.A.; Shah, R.S.; Simmons, R.O.

    2003-01-01

    X-ray synchrotron radiation was used to measure Debye-Waller factors of helium crystals for both 3 He and 4 He in both hcp and fcc phases. To our knowledge, there are no previous measurements for 3 He. The ranges studied for 3 He and 4 He crystals were 11.52-12.82 and 10.95-12.13 cm 3 , respectively, and 11.5-18.2 and 12.0-20.3 K. With small uncertainty, only a Gaussian dependence upon momentum transfer Q was found, and no anisotropy was detected in the hcp phase. Mean square atomic deviations, 2 >, and Lindemann ratios were obtained. Large Lindemann ratios confirm that these solids are highly anharmonic. The 2 > values agree within an average 1% with computations of Draeger and Ceperley from path integral Monte Carlo methods including unusual extrapolations to the thermodynamic limit. Because the path-integral Monte Carlo (PIMC) computations exhibit a T 3 dependence for 2 >, which also depends upon molar volume, an empirical analysis was made of the present data as well as of published x-ray and neutron data on hcp 4 He. The volume dependencies are similar to those found from calorimetry, over a large volume range, and the temperature dependencies show similar systematic variations with molar volume both in x-ray data and PIMC results

  3. Surface-sensitive molecular interferometry: beyond 3He spin echo experiments

    Science.gov (United States)

    Cantin, Joshua T.; Krems, Roman V.; Godsi, Oded; Maniv, Tsofar; Alexandrowicz, Gil

    2017-04-01

    3 He atoms can be used as surface-sensitive atomic interferometers in 3He spin echo experiments to measure surface morphology, molecular and atomic surface diffusion dynamics, and surface vibrations. However, using the hyperfine states of molecules gives experiments the potential to be less expensive, be more sensitive, and include angle-dependent interactions. The manifold of hyperfine states of molecules is large in comparison to the two nuclear spin states used in 3He spin echo experiments and allows for increased precision, while simultaneously complicating experimental interpretation. Here, we present the theoretical formulation required to interpret these experiments. In particular, we show how to determine the effect of magnetic lensing on the molecular hyperfine states and use a modified form of the transfer matrix method to quantum mechanically describe molecular propagation throughout the experiment. We also discuss how to determine the scattering matrix from the experimental observables via machine learning techniques. As an example, we perform numerical calculations using nine hyperfine states of ortho-hydrogen and compare the results to experiment. This work was funded by NSERC of Canada and the European Research Council under the European Union's seventh framework program (FP/2007-2013)/ERC Grant 307267.

  4. Total photoabsorption cross sections for 1H, 2H and 3He from 200 to 800 MeV

    International Nuclear Information System (INIS)

    Mac Cormick, M.; Audit, G.; Altieri, S.; Braghieri, A.; Pavia Univ.; Ahrens, J.; Beck, R.; Annand, J.R.M.; Crawford, R.A.; Dolbilkin, B.; Zabrodin, A.

    1996-01-01

    The total photoabsorption cross sections for 1 H, 2 H and 3 He have been measured for incident photon energies ranging from 200 to 800 MeV. The results show clearly the changes in the nucleon resonances in going from 1 H to 3 He. In particular, for the D 13 region the behaviour for 3 He is intermediate between that for 1 H, 2 H and heavier nuclei. (author)

  5. Calibration of cosmogenic 3He and 10Be production rates in the High Tropics

    Science.gov (United States)

    Blard, Pierre-Henri; Martin, Léo; Lavé, Jérôme; Charreau, Julien; Condom, Thomas; Lupker, Maarten; Braucher, Régis; Bourlès, Didier

    2014-05-01

    It is critical to refine both the accuracy and the precision of the in situ cosmogenic dating tool, especially for establishing reliable glacial chronologies that can be compared to other paleoclimatic records. Recent cross-calibrations of cosmogenic 3He in pyroxene and 10Be in quartz [1, 2] showed that, both at low (1300 m) and high elevation (4850 m), the 3He/10Be production ratio was probably ~40% higher than the value of ~23 initially defined in the 90's. This recent update is consistent with the last independent determinations of the sea level high latitude production rates of 10Be and 3He, that are about 4 and 125 at.g-1.yr-1, respectively [e.g. 3, 4]. However, major questions remain about these production rates at high elevation, notably because existing calibration sites for both 3He and 10Be are scarce above 2000 m. It is thus crucial to produce new high precision calibration data at high elevation. Here we report cosmogenic 10Be data from boulders sampled on a glacial fan located at 3800 m in the Central Altiplano (Bolivia), whose age is independently constrained by stratigraphic correlations and radiocarbon dating at ca. 16 ka. These data can be used to calibrate the production rate of 10Be at high elevation, in the Tropics. After scaling to sea level and high latitude, these data yield a sea level high latitude P10 ranging from 3.8 to 4.2 at.g-1.yr-1, depending on the used scaling scheme. These new calibration data are in good agreement with recent absolute and cross-calibration of 3He in pyroxenes and 10Be in quartz, from dacitic moraines located at 4850 m in the Southern Altiplano (22° S, Tropical Andes) [2,5]. The so-obtained 3He/10Be production ratio of 33.3±0.9 (1σ) combined with an absolute 3He production rate locally calibrated in the Central Altiplano, at 3800 m, indeed yielded a sea level high latitude P10 ranging from 3.7±0.2 to 4.1±0.2 at.g-1.yr-1, depending on the scaling scheme [2,5]. These values are also consistent with the 10Be

  6. Safety analysis of high pressure 3He-filled micro-channels for thermal neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Ferko, Scott M.; Galambos, Paul C.; Derzon, Mark Steven; Renzi, Ronald F.

    2008-11-01

    This document is a safety analysis of a novel neutron detection technology developed by Sandia National Laboratories. This technology is comprised of devices with tiny channels containing high pressure {sup 3}He. These devices are further integrated into large scale neutron sensors. Modeling and preliminary device testing indicates that the time required to detect the presence of special nuclear materials may be reduced under optimal conditions by several orders of magnitude using this approach. Also, these devices make efficient use of our {sup 3}He supply by making individual devices more efficient and/or extending the our limited {sup 3}He supply. The safety of these high pressure devices has been a primary concern. We address these safety concerns for a flat panel configuration intended for thermal neutron detection. Ballistic impact tests using 3 g projectiles were performed on devices made from FR4, Silicon, and Parmax materials. In addition to impact testing, operational limits were determined by pressurizing the devices either to failure or until they unacceptably leaked. We found that (1) sympathetic or parasitic failure does not occur in pressurized FR4 devices (2) the Si devices exhibited benign brittle failure (sympathetic failure under pressure was not tested) and (3) the Parmax devices failed unacceptably. FR4 devices were filled to pressures up to 4000 + 100 psig, and the impacts were captured using a high speed camera. The brittle Si devices shattered, but were completely contained when wrapped in thin tape, while the ductile FR4 devices deformed only. Even at 4000 psi the energy density of the compressed gas appears to be insignificant compared to the impact caused by the incoming projectile. In conclusion, the current FR4 device design pressurized up to 4000 psi does not show evidence of sympathetic failure, and these devices are intrinsically safe.

  7. Four-body wave function of π3He-system at the threshold energy

    International Nuclear Information System (INIS)

    Pupyshev, V.V.; Rakityanskij, S.A.

    1985-01-01

    On the basis of approximate four-body equations the wave function of π 3 He-system is calculated at zero kinetic energy of the pion. In the case when distances between all four particles are comparable with the nucleus size a strong distortion of the wave function of (3N)-subsystem caused by the presence of the pion is found. The calculated four-body function is represented in a semianalytical form, which makes it possible to apply it in different calculations

  8. The reaction d-vector p→3Heπ0 near threshold

    International Nuclear Information System (INIS)

    Nikulin, V.N.; Boudard, A.; Fabbro, B.; Garcon, M.; Mayer, B.; Clajus, M.; Kessler, R.S.; Nefkens, B.M.K.; Plouin, F.

    1996-06-01

    Angular distributions for the differential cross section and three deuteron analyzing powers iT 11 , T 20 and T 22 of the reaction d-vector p → 3 Heπ 0 have been measured over the whole angular domain at 20 energies close to threshold (0.03 π cm 20 both show strong variation in energy and angle due to interference between S and P-wave pion production, whereas iT 11 and T 22 remain consistent with zero over the whole experimental range. (author)

  9. Study of the short-range 3He structure from the dd→3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.V.

    1995-01-01

    An experiment on studying of the tensor analysing power C 0,NN,0,0 and spin correlation C N,N,0,0 due to the transverse polarization of both initial particles from the dd→ 3 Hen reaction has been proposed. Those polarization observables are very sensitive to the short-range 3 He structure. This experiment is proposed to be done at the LHE Accelerator Complex using both a polarized deuteron beam and a polarized deuterium target. 25 refs., 2 figs

  10. The ARIES-III D-3He tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1991-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-3 design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. Results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-1 is included. 11 refs., 5 figs

  11. Studies Of Submicron 3He Slabs Using A High Precision Torsional Oscillator

    International Nuclear Information System (INIS)

    Corcoles, Antonio; Casey, Andrew; Cowan, Brian; Saunders, John; Parpia, Jeevak; Bowley, Roger

    2006-01-01

    A high precision torsional oscillator has been used to study 3He films of thickness in the range 100 to 350 nm. In previous work we found that the films decoupled from the oscillator motion below 60 mK, in the Knudsen limit. This precluded observation of the superfluid transition. Here we report measurements using a torsional oscillator whose highly polished inner surfaces have been decorated with a low density of silver particles to act as random elastic scattering centres. This modification locks the normal film to the surface. A superfluid transition of the film is observed

  12. Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. II. Cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Martin, F.; Mendez, L.; Riera, A.; Yanez, M.

    1986-05-15

    Using the wave functions calculated in the preceding article, and a common translation factor, the charge exchange cross section for the Li/sup 3 +/+He(1s/sup 2/) reaction is calculated, and the mechanism of the process discussed. We show how small deviations from the Landau--Zener model, which are unrelated to Nikitin's conditions for its validity, lead to a minimum of the cross section at an impact energy Eapprox. =1 keV, and to larger values of sigma at intermediate nuclear velocities.

  13. Neutron sensitivity and detection efficiency of 3He and 10BF3 counters

    International Nuclear Information System (INIS)

    Khokonov, A. Kh.; Savoiskii, Yu. V.; Kamarzaev, A. V.

    2010-01-01

    An analytic relationship between the efficiency, sensitivity, and the coefficient of working-isotope utilization is established for gas-filled cylindrical thermal-neutron counters. This dependence is expressed in terms of the ratio of the characteristic length of a counter to its diameter. The characteristic size is introduced as the ratio of the total absorption cross section to the length of the counter. The parameters of basic 3 He and 10 BF 3 counters used in NM-64 neutron monitors are calculated.

  14. The (3He,t) and (d,2He)reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brockstedt, A.

    1987-09-01

    The ( 3 He,t) reaction has been studied at 0.6-2.3 GeV at small scattering angles, 0-7 degrees, on various nuclei ( 12 C, 13 C, 26 Mg, 40 Ca, 48 Ca, 54 Fe, 90 Zr, 159 Tb, 208 Pb) including a proton target. The reaction is a single-step reaction and selects the spin-isospin channel. Angular distributions for low-lying states in 12 N are well described by DWIA calculations. From 13 C to 13 N transitions the ratio J στ /J τ , at momentum transfer, q, close to zero, is derived. The ratio remains roughly constant in the region 300 - 700 MeV/nucleon. The position of the quasi-free peak is shifted compared with free nucleon-nucleon scattering. The shift is towards higher excitation energies at q approx 1.4 fm -1 , and towards lower excitation energies at q approx 2.5 fm -1 . The p( 3 He,t)Δ ++ reaction is analysed as one-pion exchange and the ( 3 He,t) form factor is extracted. The shape and position of the Δ resonance seem to be independent of target mass for the targets studied. Compared with the p to Δ ++ transition the position is shifted towards lower excitation energy in nuclei. The (d,2p[ 1 S 0 ]) reaction, with the two protons in an 1 S 0 state labelled 2 He, is studied at 0.65 and 2.0 GeV at small angles, 0-4 degrees, on some of the targets used in the ( 3 He,t) experiment (p, 12 C, 40 Ca, 54 Fe). This reaction is also a one-step reaction that can be used for studies of spin-isospin excitations. Cross sections and tensor analysing powers are determined for the p(d, 2 He)n reaction. These results are compared with PWIA calculations. The Δ resonance in carbon is also here shifted down in excitation energy compared with the proton target. (author)

  15. Horizontal strain, 3He/4He ratio and intraplate earthquake swarms

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka

    2011-01-01

    Roč. 8, č. 3 (2011), s. 303-308 ISSN 1214-9705 R&D Projects: GA MŠk(CZ) LC506; GA MŠk 1P05ME781; GA AV ČR 1QS300460551 Institutional research plan: CEZ:AV0Z30460519 Keywords : horizontal strain * 3He/4He ratio * intra-plate earthquake swarms Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/03_11/11_Schenkovi.pdf

  16. Survey of the (3He,t) reaction: Excitation of the isobaric analog of the giant dipole resonance

    International Nuclear Information System (INIS)

    Tabor, S.L.; Chang, C.C.; Collins, M.T.; Wagner, G.J.; Wu, J.R.; Halderson, D.W.; Petrovich, F.

    1982-01-01

    The ( 3 He,t) reaction at 130 and 170 MeV has been investigated on targets of 12 C, 16 O, 27 Al, 28 Si, 40 Ca, 46 Ti, and 90 Zr. Data for the ( 3 He, 3 He') reaction were measured simultaneously for reference purposes. Structure is observed in the spectra from the ( 3 He, 3 He') and ( 3 He,t) reaction at the expected positions of the giant quadrupole resonance and the isobaric analog of the giant dipole resonance, respectively. An angular distribution was measured for the suspected giant dipole resonance structure in the 40 Ca( 3 He,t) 40 Sc reaction at 130 MeV. The data are reasonably described by a collective model calculation based on the Goldhaber-Teller model for the giant dipole resonance. Several other strong peaks at excitation energies below the giant dipole resonance are observed in the ( 3 He,t) spectra. Most notable of these are the ones at the expected positions for analogs of well known 1 + states and 1hω stretched states in the targets

  17. Spin-polarized semiconductors: tuning the electronic structure of graphene by introducing a regular pattern of sp3 carbons on the graphene plane.

    Science.gov (United States)

    Jing, Long; Huang, Ping; Zhu, Huarui; Gao, Xueyun

    2013-01-28

    First-principles calculations (generalized gradient approximation, density functional therory (DFT) with dispersion corrections, and DFT plus local atomic potential) are carried out on the stability and electronic structures of superlattice configurations of nitrophenyl diazonium functionalized graphene with different coverage. In the calculations, the stabilities of these structures are strengthened significantly since van der Waals interactions between nitrophenyl groups are taken into account. Furthermore, spin-polarized and wider-bandgap electronic structures are obtained when the nitrophenyl groups break the sublattice symmetry of the graphene. The unpaired quasi-localized p electrons are responsible for this itinerant magnetism. The results provide a novel approach to tune graphene's electronic structures as well as to form ferromagnetic semiconductive graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet.

    Science.gov (United States)

    Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R

    2009-10-09

    Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.

  19. Strain effects on the spin polarized electron gas in ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures

    KAUST Repository

    Nazir, Safdar

    2013-04-11

    The spin polarized two dimensional electron gas in the correlated ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures is investigated by ab-initio calculations using density functional theory. Structural relaxation shows a strong buckling at and near the TiO2 terminated n-type interface (IFs) due to significant TiO6 octahedral distortions. We find in all cases, metallic states in a very narrow region of the SrTiO3, in agreement with experimental results. We demonstrate that the interface magnetism strongly reacts to the magnitude of the lattice strain. The orbital occupations and, hence, the charge carrier density change systematically as a function of the lattice mismatch between the component materials.

  20. Relativistic spin-polarized KKR theory for superconducting heterostructures: Oscillating order parameter in the Au layer of Nb/Au/Fe trilayers

    Science.gov (United States)

    Csire, Gábor; Deák, András; Nyári, Bendegúz; Ebert, Hubert; Annett, James F.; Újfalussy, Balázs

    2018-01-01

    The fully relativistic spin-polarized multiple-scattering theory is developed for inhomogeneous superconductors, including superconducting/normal-metal/ferromagnet heterostructures. The method allows the solution of the first-principles Dirac-Bogoliubov-de Gennes equations combined with a semiphenomenological parametrization of the exchange-correlation functional. Simple conditions are derived for the case when the right-hand-side and left-hand-side solutions must be treated separately when setting up the corresponding Green's function. As an application of the theory, we calculate the order parameters of Nb/Fe and Nb/Au/Fe systems. We find Fulde-Ferrell-Larkin-Ovchinnikov-like oscillations in the iron layers, but more interestingly an oscillatory behavior is observed in the gold layers as well. The band-structure calculations suggest that this is the consequence of an interplay between the quantum-well states and ferromagnetism.

  1. Thomas-Fermi-von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas

    Science.gov (United States)

    van Zyl, B. P.; Zaremba, E.; Pisarski, P.

    2013-04-01

    We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi-von Weizsäcker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions and provide physical insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.

  2. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  3. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  4. 4He(γ,dd and 3He(γ,pd reactions in nonlocal covariant model

    Directory of Open Access Journals (Sweden)

    Kasatkin Yu. A.

    2014-03-01

    Full Text Available Photonuclear reaction research is of great interest to obtain information about the structure of nuclei. The investigation of structural effects requires certain insights into the reaction mechanisms, that have to be identified on the basis of the fundamental principles of covariance and gauge invariance. The major achievement of the chosen model is the ability to reproduce the cross-section dependence using the minimal necessary set of parameters. We analyze the two-particle disintegration of 3He nuclei by photons. Our interest was raised by the fact that 3He is the simplest many-particle system which admits an exact solutions. We also consider the process 4He(γ, dd. This process comes at the expense of the quadrupole absorption of γ-rays, while the dipole transition is suppressed. This property is a consequence of the isospin selection as well as the identity of the particles in the final state. Obtained results describe the energy range from threshold (20 MeV to 140 MeV. Therefore, the model mentioned in the paper has the peculiarity to be valid not only for the low-energy regime, but also for higher energies. Present paper is devoted to determine the roles of different reaction mechanisms and to solve problems above.

  5. D-3He tokamak reactor with inductive a.c. and unidirectional current operation

    International Nuclear Information System (INIS)

    Mitarai, O.

    1995-01-01

    We propose inductively operated D- 3 He tokamak reactors (R=9.5m, a=2.8 and 3.2m, B t =10 and 7.5T, and I p =53.6 and 52.5MA respectively) with an a.c. or unidirectional current (UDC) mode, operated in the first stability regime, with a small current drive power of about 500kW in the plasma side, and about 2MW in the transformer side. The high electron temperature T e (0)∼62.5keV together with a high bootstrap current fraction greater than 70% decreases the plasma resistance (to less than 1nΩ) and the loop voltage (less than 10mV range) and then prolongs the pulse length to more than 15h. The ignition characteristics of a D- 3 He tokamak reactor are analyzed by the operation path method on the P ht τ E 2 -T plane and POPCON for different confinement scalings. ((orig.))

  6. Discussion on data correction for Polarization Analysis with a 3He spin filter analyzer

    Science.gov (United States)

    Babcock, Earl; Salhi, Zahir; Kentzinger, Emmanuel; Mattauch, Stefan; Ioffe, Alexander

    2017-06-01

    Fully polarized neutron reflectometry and grazing incidence small angle neutron scattering are effective methods to explore magnetic structures on the nm to μm length scales. This paper is an outline of how to fully correct for the polarization analysis (PA) inefficiencies of such an instrument and to determine the error contributions of the neutron polarizer and analyzer. This discussion considers the exact case of the polarization analysis instrumentation used on the MARIA neutron reflectometer at the MLZ or for a general polarized neutron scattering instrument using at least one 3He neutron spin filter that has the capability for adiabatic fast passage nuclear magnetic resonance flipping of the 3He polarization. This paper will work to build a conceptual understanding of how the inefficiencies of neutron polarization elements affect measured data in order to stress and encourage the application of PA corrections and to help perform successful measurements. Then, using data from a fully polarized neutron reflectometer test measurement we show how it is possible to recover signals on the order of, or even smaller than, the inefficiencies, or bleed-through, of the neutron polarization devices used.

  7. Safety in the ARIES-III D-3He tokamak reactor design

    International Nuclear Information System (INIS)

    Herring, J.S.; Dolan, T.J.

    1992-01-01

    This paper reports on the ARIES-III reactor study, an extensive examination of the viability of a D- 3 He-fueled commercial tokamak powder reactor. Because neutrons are produced only through side reactions (D+D- 3 HE+N; and D+D-T+p followed by D+T- 4 He+n), the reactor has the significant advantages of reduced activation of the first wall and shield, low afterheat and Class A or C low level waste disposal. Since no tritium is required for operation, no lithium-containing breeding blanket is necessary. A ferritic steel shield behind the first wall protects the magnets from gamma and neutron heating and from radiation damage. The authors explored the potential for isotopically tailoring the 4 mm tungsten layer on the divertor in order to reduce the offsite doses should a tungsten aerosol be released from the reactor after an accident. The authors also modeled a loss-of-cooling accident (LOCA) in which the organic coolant was burning in order to estimate the amount of radionuclides released from the first wall. Because the maximum temperature is low, degree C, release fractions are small. The authors analyzed the disposition of the 20 g/day of tritium that is produced by D-D reactions and removed by the vacuum pumps

  8. Light Higgs channel of the resonant decay of magnon condensate in superfluid (3)He-B.

    Science.gov (United States)

    Zavjalov, V V; Autti, S; Eltsov, V B; Heikkinen, P J; Volovik, G E

    2016-01-08

    In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid (3)He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in (3)He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model.

  9. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    Science.gov (United States)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  10. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Monir, M. El Amine.; Baltache, H. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Ahmed, Waleed K. [ERU, Faculty of Engineering, United Arab Emirates University, Al Ain (United Arab Emirates); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Seddik, T. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria)

    2015-01-15

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn{sub 1−x}V{sub x}Se (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the “d” electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) due to Se(4p)–V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 µ{sub B} and the minor atomic magnetic moment on Zn and Se are generated. - Highlights: • Half metallicity origins by doping V in ZnSe. • PBE-GGA+U approximation is employed to treat the “d” electrons properly. • s(p)-d Exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) are due to Se(4p)-V(3d) hybridization.

  11. K-edge x-ray dichroism investigation of Fe1-xCoxSi: Experimental evidence for spin polarization crossover

    Science.gov (United States)

    Hearne, G. R.; Diguet, G.; Baudelet, F.; Itié, J.-P.; Manyala, N.

    2015-04-01

    Both Fe and Co K-edge x-ray magnetic circular dichroism (XMCD) have been employed as element-specific probes of the magnetic moments in the composition series of the disordered ferromagnet Fe1-xCoxSi (for x=0.2, 0.3, 0.4, 0.5). A definitive single peaked XMCD profile occurs for all compositions at both Fe and Co K-edges. The Fe 4p orbital moment, deduced from the integral of the XMCD signal, has a steep dependence on x at low doping levels and evolves to a different (weaker) dependence at x≥0.3, similar to the behavior of the magnetization in the Co composition range studied here. It is systematically higher, by at least a factor of two, than the corresponding Co orbital moment for most of the composition series. Fine structure beyond the K-edge absorption (limited range EXAFS) suggests that the local order (atomic environment) is very similar across the series, from the perspective of both the Fe and Co absorbing atom. The variation in the XMCD integral across the Co composition range has two regimes, that which occurs below x=0.3 and then evolves to different behavior at higher doping levels. This is more conspicuously present in the Fe contribution. This is rationalized as the evolution from a half-metallic ferromagnet at low Co doping to that of a strong ferromagnet at x>0.3 and as such, spin polarization crossover occurs. The Fermi level is tuned from the majority spin band for x<0.3 where a strongly polarized majority spin electron gas prevails, to a regime where minority spin carriers dominate at higher doping. The evolution of the Fe-derived spin polarized (3d) bands, indirectly probed here via the 4p states, is the primary determinant of the doping dependence of the magnetism in this alloy series.

  12. Interaction of a 29 MeV 3He particle beam with a Cl4C vapour target

    International Nuclear Information System (INIS)

    Lleo Morilla, A.

    1963-01-01

    The interactions of a 29 MeV 3 H e particles beam on a Cl 4 C vapour target have been studied using the photographic method. differential cross-sections for the Cl( 3 He, 3 He)Cl elastic scattering and 1 2C( 3 He, α) 1 1C pick-up reaction are shown; the corresponding angular distributions in the centre-of-mass system have been compared with the predictions of optical model and A.B.M. theories. (Author) 21 refs

  13. The γ-decays of 210Po-levels from the (3He,d*γγ)-reaction

    International Nuclear Information System (INIS)

    Klein, H.; Wiedenhoever, I.; Tiesler, H.; Meise, H.; Fitzler, A.; Dewald, A.; Thomas, H.G.; Weisshaar, D.; Brentano, P. von

    1999-01-01

    An in-beam experiment with the subcoulomb reaction 209 Bi( 3 He,d * γγ) 210 Po at 20.5 MeV was performed with two EUROBALL CLUSTER detectors in Cologne. It closed the gap between the low energy levels of the level-scheme and the high energy levels found in 209 Bi( 3 He,d) 210 Po and 208 Pb( 4 He,t) 210 Po particle experiments. New branchings have been found and the ( 3 He, d * γγ) reaction below the coulomb-barrier has been used successfully. (orig.)

  14. High-momentum components in 3He(e,e') and (e,e'p)

    International Nuclear Information System (INIS)

    Sick, I.

    1984-01-01

    In this talk, the author discusses the properties of the 3 He spectral function S(K,E) at large momentum K and large separation energy E. He deals in particular with the question how to measure S, and how to understand the physics connected to it. As experimental input he uses (e,e') data. He starts by discussing how to understand (e,e') in terms of properties of S(K,E). For this purpose, an extensive discussion of the scaling function F(y) is needed. When once it is found out how to exploit inclusive scattering, he comes back to exclusive reactions and discusses the relative merits of (e,e'p) and (e,e') in order to investigate how these tools can best complement each other. Some conclusions on the properties of S(K,E) at large K and E, together with some suggestions for future activities follows. (Auth.)

  15. 3He(γ,pd) cross sections with tagged photons below the Δ resonance

    International Nuclear Information System (INIS)

    Kolb, N.R.; Cairns, E.B.; Hackett, E.D.; Korkmaz, E.; Nakano, T.; Opper, A.K.; Quraan, M.A.; Rodning, N.L.; Rozon, F.M.; Asai, J.; Feldman, G.; Hallin, E.; O'Rielly, G.V.; Pywell, R.E.; Skopik, D.M.

    1994-01-01

    The reaction cross section for 3 He(γ,pd) has been measured using the Saskatchewan-Alberta Large Acceptance Detector (SALAD) with tagged photons in the energy range from 166 to 213 MeV. The energy and angle of the proton and the deuteron were measured with SALAD while the tagger determined the photon energy. Differential cross sections have been determined for 40 degree p * <150 degree. The results are in agreement with the Bonn and Saclay photodisintegration measurements. The most recent photodisintegration measurement performed at Bates is higher by a factor of 1.3, which is just within the combined errors of the experiments. The proton capture results differ by a factor of 1.7 from the present experiment. Comparisons are made with microscopic calculations of the cross sections

  16. Torsional oscillator studies of rotating 3He-A in a slab

    International Nuclear Information System (INIS)

    Walmsley, P.M.Paul M.; Cousins, D.J.Derek J.; Hall, H.E.Henry E.; Golov, A.I.Andrei I.

    2003-01-01

    Using a rotating cryostat we have manipulated l-textures of 3 He-A in a 0.26 mm-thick slab contained in a torsional oscillator. Application of a magnetic field or a counterflow due to rotation lead to a sudden distortion of a uniform texture. The uniformity of the initial texture can be characterized by the resulting shift in frequency and bandwidth of the torsional resonance. With a certain density of vortices induced by rotation a uniform texture can be stabilized even in presence of magnetic. The optimal speed of rotation to prepare a uniform texture while cooling through T c was found. The critical velocities for the flow-induced textural transition and vortex nucleation are determined

  17. On the derivation of quasi-classical equations for superconductors or 3He

    International Nuclear Information System (INIS)

    Shelankov, A.L.

    1984-11-01

    We present a method for the derivation of the quasi-classical equations for Keldysh Green function of a superconductor or superfluid 3 He. It is shown that Green functions on the classical trajectories g(Y 1 ,Y 2 ) which depend on two trajectory coordinates y 1 and y 2 , give the full description of the system within quasi-classical accuracy. The equation of motion for g(y 1 ,y 2 ) is obtained. it is shown that g(y)=g(y+0,y)+g(y-0,y) is equal to the Green function in momentum space integrated with respect to xi=vsub(F)(p-psub(F)). The normalization condition (g(y)) 2 =1 is proved in a direct manner using the properties of g(y 1 ,y 2 ) with y 1 not=Y 2 . The different methods of introducing the distribution function are discussed. (orig.)

  18. Design of a 1 MeV 3He+ RFQ for the SAIC PET accelerator facility

    International Nuclear Information System (INIS)

    Cornelius, W.D.; Young, P.E.

    1993-01-01

    The novel design of a 1 MeV 3 He + radiofrequency quadrupole (RFQ) accelerator is discussed. This RFQ is the first segment of an accelerator for the production of radioisotopes for positron emission tomography (PET) applications. This RFQ is unusual in that two specific innovations were incorporated into the design. The mechanical design is a hybrid of conventional four-vane and four-rod geometries. This hybridization reduces the physical dimensions of the accelerator without sacrificing too much in rf efficiency and has the added benefit of reducing the sensitivity to mechanical alignment errors. In addition, the beam dynamics of the last few cells was modified to tailor the output beam parameters to improve the beam transport through the next accelerator section. The details of the mechanical structure, the mechanical and electrical alignment experiences, and a comparison of the theoretical and experimental performance of this accelerator are also discussed. (orig.)

  19. Coupling of Rayleigh-like waves with zero-sound modes in normal 3He

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Ketterson, J.B.

    1985-01-01

    The Landau kinetic equation is solved in the collisionless regime for a sample of normal 3 He excited by a surface perturbation of arbitrary ω and k. The boundary condition for the nonequilibrium particle distribution is determined for the case of specular reflection of the elementary excitations at the interface. Using the above solution, the energy flux through the boundary is obtained as a function of the surface wave velocity ω/k. The absorption spectrum and its frequency derivative are calculated numerically for typical values of temperature and pressure. The spectrum displays a sharp, resonant-like maximum concentrated at the longitudinal sound velocity and a sharp maximum of the derivative concentrated at the transverse sound velocity. The energy transfer is cut off discontinuously below the Fermi velocity. An experimental measurement of the energy transfer spectrum would permit a determination of both zero-sound velocities and the Fermi velocity with spectroscopic precision

  20. 3He(α, γ7Be cross section in a wide energy range

    Directory of Open Access Journals (Sweden)

    Szücs Tamás

    2017-01-01

    Full Text Available The reaction rate of the 3He(α,γ7 Be reaction is important both in the Big Bang Nucleosynthesis (BBN and in the Solar hydrogen burning. There have been a lot of experimental and theoretical efforts to determine this reaction rate with high precision. Some long standing issues have been solved by the more precise investigations, like the different S(0 values predicted by the activation and in-beam measurement. However, the recent, more detailed astrophysical model predictions require the reaction rate with even higher precision to unravel new issues like the Solar composition. One way to increase the precision is to provide a comprehensive dataset in a wide energy range, extending the experimental cross section database of this reaction. This paper presents a new cross section measurement between Ecm = 2.5 − 4.4 MeV, in an energy range which extends above the 7Be proton separation threshold.