WorldWideScience

Sample records for spin-polarized liquid 3he

  1. Spin polarized 3He: a ''new'' quantum fluid

    International Nuclear Information System (INIS)

    Lhuillier, C.; Laloe, F.

    1979-01-01

    The physical properties of a 3 He fluid are studied, in which all nuclear spins are parallel to each other (fully polarized 3 He). At low temperatures, significant differences can exist between this polarized fluid and normal 3 He. The origin of these differences is purely quantum mechanical and arises from the Pauli exclusion principle. At low densities, only the transport properties of the gas are modified. At higher densities. The equilibrium properties (virial coefficients) are also changed by the nuclear polarization. Changes of the liquid-vapour or liquid-solid equilibrium pressures, as well as modifications of the 3 He- 4 He mixture phase diagram are predicted. This article gives a preliminary theoretical study of these new effects. Experimental prospects are briefly discussed [fr

  2. Polarized (3) He Spin Filters for Slow Neutron Physics.

    Science.gov (United States)

    Gentile, T R; Chen, W C; Jones, G L; Babcock, E; Walker, T G

    2005-01-01

    Polarized (3)He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of (3)He spin filters for slow neutron physics. Besides the essential goal of maximizing the (3)He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize (3)He, but will focus on SE. We will discuss the recent demonstration of 75 % (3)He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping.

  3. Experiment on the melting pressure of spin polarized He3

    DEFF Research Database (Denmark)

    Chapellier, M.; Olsen, M.; Rasmussen, Finn Berg

    1981-01-01

    In liquid He in a Pomeranchuk cell, the melting curve has been observed to be suppressed, presumably in regions with a strong local spin polarization. In the temperature range 30-50 mK the observed suppression was 60-80 kPa. The corresponding local polarization is estimated, in a crude model...

  4. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  5. Polarized 3He Neutron Spin Filters

    Energy Technology Data Exchange (ETDEWEB)

    Sno, William Michael [Indiana Univ., Bloomington, IN (United States)

    2016-01-12

    The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3He neutron spin filter development is now sited at NIST and ORNL.

  6. Spin waves at the liquid 3He-4He interface

    International Nuclear Information System (INIS)

    Heff, A.; Candela, D.; Edwards, D.O.; Kumar, S.

    1987-01-01

    The properties of various interfaces in helium and, in particular, the interface between liquid 3 He and a solution of 3 He in 4 He, may be studied using spin waves. Assuming no transverse relaxation, the boundary condition for the transverse magnetization contains one complex kinetic coefficient, b. For the normal 3 He to 3 He- 4 He interface, b is related to the 3 He quasi-particle transmission probability antiτ, which we estimate from a simple model. A calculation of the spin wave absorption spectrum for a typical geometry shows that b and antiτ may be measured by NMR. Neither b nor antiτ is greatly affected when the pure 3 He enters the A phase, but both are strongly reduced in the B phase

  7. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  8. Realization of a broad band neutron spin filter with compressed, polarized 3He gas

    International Nuclear Information System (INIS)

    Surkau, R.; Otten, E.W.; Steiner, M.; Tasset, F.; Trautmann, N.

    1997-01-01

    The strongly spin dependent absorption of neutrons in nuclear spin polarized 3 -2pt vector He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3 He neutron spin filter (NSF) requires high 3 He nuclear polarization as well as a filter thickness corresponding to a gas amount of the order of 1 bar l. We realized such a filter using direct optical pumping of metastable 3 He * atoms in a 3 He plasma at 1 mbar. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3 He atoms. At present 3 x 10 18 3 He-atoms/s are polarized up to 64%. Subsequent polarization preserving compression by a two stage compressor system enables to prepare NSF cells of about 300 cm 3 volume with 3 bar of polarized 3 He within 2 h. 3 He polarizations up to 53% were measured in a cell with a filter length of about 15 cm. By this cell a thermal neutron beam from the Mainz TRIGA reactor was polarized. A wavelength selective polarization analysis by means of Bragg scattering revealed a neutron polarization of 84% at a total transmission of 12% for a neutron wavelength of 1 A. (orig.)

  9. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  10. Experimental considerations on producing highly polarized liquid 3He in a matrix of solid 4He

    International Nuclear Information System (INIS)

    Greenberg, A.S.; Hebral, B.; Papoular, M.; Beal-Monod, M.T.

    1980-01-01

    Two experiments are briefly reviewed in which droplets of 3 He were formed in solid 4 He. These experiments indicate such conditions are favorable for the production of quasi-stable highly polarized liquid 3 He. A solid solution of dilute 3 He in 4 He is proposed as a promising system to produce experimentally realizable highly polarized liquid 3 He using the Castaing-Nozieres decompression

  11. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  12. Polarimetry on dense samples of spin-polarized 3He by magnetostatic detection

    International Nuclear Information System (INIS)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R.

    1997-01-01

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized 3 He gas contained in spherical glass cells at pressures around several bars. The 3 He nuclear polarization can be extracted with high precision ΔP/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.)

  13. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  14. A method for the accurate determination of the polarization of a neutron beam using a polarized 3He spin filter

    International Nuclear Information System (INIS)

    Greene, G.L.; Thompson, A.K.; Dewey, M.S.

    1995-01-01

    A new method for the accurate determination of the degree of polarization of a neutron beam which has been polarized by transmission through a spin polarized 3 He cell is given. The method does not require the use of an analyzer or spin flipper nor does it require an accurate independent determination of the 3 He polarization. The method provides a continuous on-line determination of the neutron polarization. The method may be of use in the accurate determination of correlation coefficients in neutron beta decay which provide a test of the standard model for the electroweak interaction. The method may also provide an accurate procedure for the calibration of polarized 3 He targets used in medium and high energy scattering experiments. ((orig.))

  15. Polarimetry on dense samples of spin-polarized {sup 3}He by magnetostatic detection

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R. [Mainz Univ. (Germany). Inst. fuer Physik

    1997-12-21

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized {sup 3}He gas contained in spherical glass cells at pressures around several bars. The {sup 3}He nuclear polarization can be extracted with high precision {Delta}P/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.). 29 refs.

  16. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  17. Development of a compact in situ polarized 3He neutron spin filter at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Kadron, B. J.; Robertson, J. L.; Chi, S.; Christianson, A. D.; Winn, B. L.

    2014-01-01

    We constructed a compact in situ polarized 3 He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the 3 He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% 3 He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained

  18. Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion

    Science.gov (United States)

    Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.

    1992-01-01

    Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.

  19. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    International Nuclear Information System (INIS)

    Hayashida, H; Kira, H; Miyata, N; Akutsu, K; Mizusawa, M; Parker, J D; Matsumoto, Y; Oku, T; Sakai, K; Hiroi, K; Shinohara, T; Takeda, M; Yamazaki, D; Oikawa, K; Harada, M; Ino, T; Imagawa, T; Ohkawara, M; Ohoyama, K; Kakurai, K

    2016-01-01

    We have been developing a 3 He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3 He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3 He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3 He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3 He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3 He polarization reached 70% and was stable over one week. A demonstration of the 3 He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively. (paper)

  20. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  1. Magnetization-dependent viscosity in brute-force-polarized liquid 3He

    DEFF Research Database (Denmark)

    Vermeulen, G.A.; Schuhl, A.; Joffrin, J.

    1988-01-01

    A new method to measure the magnetization dependence of the viscosity in polarized liquid He3 is presented. The magnetization is obtained by "brute-force polarization" at 45 mK in magnetic fields up to 11 T; it is subsequently destroyed by saturation of the NMR signal. Our result, a relative...... increase of the viscosity of (31.5)×10-3 at 3.9% polarization and a pressure of 30 bars, disagrees with a prediction based on the "nearly metamagnetic" model....

  2. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  3. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  4. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  5. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  6. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  7. Spin-exchange and spin-destruction rates for the 3He-Na system

    International Nuclear Information System (INIS)

    Borel, P.I.; Soegaard, L.V.; Svendsen, W.E.; Andersen, N.

    2003-01-01

    Optically pumped Na is used as a spin-exchange partner to polarize 3 He. Polarizations around 20% have routinely been achieved in sealed spherical glass cells containing 3 He, N 2 , and a few droplets of Na. An optical technique has been developed to determine the Na- 3 He spin-exchange rate coefficient. By monitoring the Na spin relaxation ''in the dark,'' the average Na-Na spin-destruction cross section at 330 degree sign C is estimated to be around 5x10 -19 cm 2 . This value is 2-5 (15-30) times smaller than the previously reported values for the K-K (Rb-Rb) spin-relaxation cross section. In the temperature range 310-355 degree sign C the spin-exchange rate coefficient is found to be (6.1±0.6)x10 -20 cm 3 /s with no detectable temperature dependence. This value is in good agreement with a previous theoretical estimate reported by Walker and it is only slightly lower than the corresponding Rb- 3 He spin-exchange rate coefficient. The total Na- 3 He spin-destruction rate coefficient is, within errors, found to be the same as the Na- 3 He spin-exchange rate coefficient, thereby indicating that the maximum possible photon efficiency may approach unity for the Na- 3 He system. A technique, in which a charge-coupled device camera is used to take images of faint unquenched fluorescence light, has been utilized to allow for an instantaneous determination of the sodium number densities during the rate coefficient measurements

  8. Ring-diagram calculations of normal and spin-polarized 3He using the Aziz interactions

    International Nuclear Information System (INIS)

    Heyer, J.; Kiang, L.L.; Jiang, M.F.; Kuo, T.T.S.

    1991-01-01

    The authors calculate the ground-state energy of normal and spin-polarized 3 He within a model-space ring diagram framework where the particle-particle hole-hole (pphh) ring diagrams of the ground-state energy shift are summed up to all orders. The Aziz HFDHE2 and HFD-B(HE) interactions are employed. They first calculate a model space reaction matrix (G M ) whose intermediate states are required to be outside the chosen model space. The pphh ring diagrams with G M -matrix vertices are then summed within the model space by way of an RPA-type secular equation. The continuous single-particle spectrum of Mahaux is chosen. It is found that the inclusion of pphh ring diagrams gives a significant increase in the binding energy per particle (BE/A) as compared with Brueckner-Hartree-Fock calculations. For normal and spin-polarized 3 He their calculated values for BE/A and saturation densities are respectively (1.86 K, 0.72 angstrom -1 ) and (1.59 K, 0.91 angstrom -1 ), while the corresponding experimental values for normal 3 He are (2.47 K, 0.785 angstrom -1 ). 53 refs

  9. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    International Nuclear Information System (INIS)

    Lee, W.T.; Tong Xin; Rich, Dennis; Liu Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-01-01

    In recent years, polarized 3 He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3 He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3 He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3 He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3 He gas using the SEOP method.

  10. Accurate 3He polarimetry using the Rb Zeeman frequency shift due to the Rb-3He spin-exchange collisions

    International Nuclear Information System (INIS)

    Romalis, M.V.; Cates, G.D.

    1998-01-01

    We describe a method of 3 He polarimetry relying on the polarization-dependent frequency shift of the Rb Zeeman resonance. Our method is ideally suited for on-line measurements of the 3 He polarization produced by spin-exchange optical pumping. To calibrate the frequency shift we performed an accurate measurement of the imaginary part of the Rb- 3 He spin-exchange cross section in the temperature range typical for spin-exchange optical pumping of 3 He. We also present a detailed study of possible systematic errors in the frequency shift polarimetry. copyright 1998 The American Physical Society

  11. Test of sup 3 He-based neutron polarizers at NIST

    CERN Document Server

    Jones, G L; Thompson, A K; Chowdhuri, Z; Dewey, M S; Snow, W M; Wietfeldt, F E

    2000-01-01

    Neutron spin filters based on polarized sup 3 He are useful over a wide neutron energy range and have a large angular acceptance among other advantages. Two optical pumping methods, spin-exchange and metastability-exchange, can produce the volume of highly polarized sup 3 He gas required for such neutron spin filters. We report a test of polarizers based on each of these two methods on a new cold, monochromatic neutron beam line at the NIST Center for Neutron Research.

  12. Phase equilibrium in a polarized saturated 3He-4He mixture

    International Nuclear Information System (INIS)

    Rodrigues, A.; Vermeulen, G.

    1997-01-01

    We present experimental results on the phase equilibrium of a saturated 3 He- 4 He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a 4 He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated 3 He- 4 He mixture are equal at p = 2.60 ± 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase

  13. Opportunities for Polarized He-3 in RHIC and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  14. Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid

    International Nuclear Information System (INIS)

    Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.

    2007-01-01

    The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism

  15. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  16. Progress in Polarized 3He Ion Source at RCNP

    International Nuclear Information System (INIS)

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.; Plis, Yu. A.; Donets, E. D.

    2007-01-01

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an 'OPPIS' (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an 'EPPIS' (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, 'SEPIS' (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies in the 3He+ + Rb system. Next, we describe the present status of the SEPIS development: construction of a bench test device allowing the measurements of not only the spin-exchange cross sections σse but also the electron capture cross sections σec for the 3He+ + Rb system. The latest experimental data on σec are presented and compared with other previous experimental data and the theoretical calculations.Finally, a design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned

  17. 4He-impurity effects on normal liquid 3He at low temperatures I - preliminary ideas and calculations

    International Nuclear Information System (INIS)

    Ghassib, H.B.; Chatterjee, S.

    1982-02-01

    The effects of 4 He impurities on the low-temperature properties of normal liquid 3 He are explored. It is argued that these effects should manifest themselves in, among other properties, the liquid structure factor at very low temperatures and momentum transfers, the acoustic impedance near the transition region from the zero- to the first-sound regime, the propagation of sound, the phase diagram, and the magnetic properties - including the magnetokinetic coefficients of the spin-polarized system. Several experiments are suggested to detect these macroscopic manifestations. (author)

  18. Spin effects in medium-energy electron-3He scattering

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.; Alarcon, R.; Bauer, T.

    1998-01-01

    New physics can be accessed by scattering polarized electrons from a polarized 3 He internal gas target. It is discussed how the asymmetries for the reactions 3 vector He(vector e,e'), 3 vector He(vector e,e'p), 3 vector He(vector e,e'n), 3 vector He(vector e,e'd), and 3 vector He(vector e,e'pn) may provide precise information on the S' and the D-wave parts of the 3 He ground-state wave function, the neutron form factors, and the role of spin-dependent reaction mechanism effects. The experiment uses up to 900 MeV (polarized) electrons from the AmPS storage ring in Amsterdam, Netherlands, in combination with large acceptance electron and hadron detectors. (orig.)

  19. Recent Spin Pump Experiments on Superfluid 3He-A1

    Science.gov (United States)

    Yamaguchi, A.; Kamada, N.; Motoyama, G.; Sumiyama, A.; Aoki, Y.; Okuda, Y.; Kubota, M.; Kojima, H.

    2013-05-01

    The superfluid 3He A1 phase, containing a spin-polarized condensate allows us to explore the dynamics of superfluid spin current. In the mechano-spin effect (MSE), a mechanically applied pressure gradient and a superleak-spin filter enable one to directly boost spin polarization of 3He in a small chamber. We are developing new apparatus for achieving greater enhancement of spin density. A development of a new-type 3He-hydraulic actuator has been already reported. We present here the construction of new-type of superleak-spin-filter made of packed powder aluminum oxide (referred as PAP-SL). The PAP-SL is popular in the study of superfluid 4He, but has not been established for that of the superfluid 3He. The attempt to construct the PAP-SL for the spin pump experiment was made by using aluminum oxide powder with nominal 1 μm powder diameter and with packing fraction of 40 %. Before executing the experiment, the nuclear demagnetization cryostat of ISSP, Univ. Tokyo which has been used for this experimental activity, was heavily damaged by the 2011 Great East Japan (Higashi Nihon) Earthquake. The repair work and earthquake damage protection strengthening has just been accomplished.

  20. I. A model for the magnetic equation of state of liquid 3He. II. An induced interaction model for a two-component Fermi liquid

    International Nuclear Information System (INIS)

    Sanchez-Castro, C.R.

    1988-01-01

    This dissertation is divided in six chapters. Chapter 1 is an introduction to the rest of the dissertation. In it, the author presents the different models for the magnetic equation state of liquid 3 He, a derivation of the induced interaction equations for a one component Fermi liquid, and discuss the basic hamiltonian describing the heavy fermion compounds. In Chapter 2 and Chapter 3, he presents a complete discussion of the thermodynamics and Landau theory of a spin polarized Fermi liquid. A phenomenological model is then developed to predict the polarization dependence of the longitudinal Landau parameters in liquid 3 He. This model predicts a new magnetic equation of state and the possibility of liquid 3 He being 'nearly metamagnetic' at high pressures. Chapter 4 contains a microscopic calculation of the magnetic field dependence of the Landau parameters in a strongly correlated Fermi system using the induced interaction model. The system he studied consists of a single component Fermi liquid with parabolic energy bands, and a large on-site repulsive interaction. In Chapter 5, he presents a complete discussion of the Landau theory of a two component Fermi liquid. Then, he generalizes the induced interaction equations to calculate Landau parameters and scattering amplitudes for an arbitrary, spin polarized, two component Fermi liquid. The resulting equations are used to study a model for the heavy fermion Fermi liquid state: a two band electronic system with an antiferromagnetic interaction between the two bands. Chapter 6 contains the concluding remarks of the dissertation

  1. Specific heat of amorphous 3He films and confined liquid 3He

    International Nuclear Information System (INIS)

    Golov, A.; Pobell, F.

    1995-01-01

    We have measured the heat capacities of 3 He films and liquid 3 He in porous Vycor glass at 10 to 600 mK. With increasing the film thickness front 1 to 3 atomic layers , the specific heat evolves gradually from that typical to solid to that of liquid 3 He. At about 2 atomic layers, however, its low-temperature part is nearly temperature-independent; we interpret this as a result of gradual freezing of spins in an amorphous solid 3 He film with decreasing the temperature. The contribution of liquid 3 He in the center of the Vycor pores can be described as the specific heat of bulk liquid 3 He at corresponding pressures in the range 0 to 28 bar. The thickness of amorphous solid on the pore walls increases with external pressure roughly linearly. Preplating the walls with 4 He allows to determine the positions of 3 He atoms contributing to the surface specific heat at 10 to 50 mK. In addition, the contribution from the specific heat of 3 He- 4 He mixing at 100 to 600 mK is discussed as a function of pressure and amount of 4 He

  2. Production of highly polarized 3He using spectrally narrowed diode laser array bars

    International Nuclear Information System (INIS)

    Chann, B.; Babcock, E.; Anderson, L.W.; Walker, T.G.; Chen, W.C.; Smith, T.B.; Thompson, A.K.; Gentile, T.R.

    2003-01-01

    We have produced 70%-75% 3 He polarization by spin-exchange optical pumping in cells ≅100 cm 3 in volume. The polarization achieved is consistent with known spin-exchange and spin-relaxation rates, but only when the recently discovered temperature dependence of 3 He relaxation is included. Absolute 3 He polarization measurements were performed using two different methods in two different laboratories. The results were obtained with either a spectrally narrowed laser or one type of broadband laser. Based on tests of several larger cells at pressures near 1 bar, we find that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser. This last result indicates that spectrally narrowed lasers will be important for obtaining the highest polarization in large volume neutron spin filters. Polarization in excess of 55% as obtained in cells up to 640 cm 3 in volume and 70% polarization is anticipated with available increases in spectrally narrowed laser power

  3. Spin-polarized electron capture for the Na+3He2+ system at a 3He2+ impact energy of 5.33--9.33 keV/amu

    International Nuclear Information System (INIS)

    Tanaka, M.; Shimakura, N.; Ohshima, T.; Katori, K.; Fujiwara, M.; Ogata, H.; Kondo, M.

    1994-01-01

    3 He + atomic polarizations following the spin-polarized electron capture process for the N rvec a(3s)+ 3 He 2+ system were measured at 3 He 2+ impact energies from 5.33 to 9.33 keV/amu. The magnitude of the 3 He + atomic polarizations was deduced from the 3 He + nuclear polarization measured by means of beam-foil spectroscopy. The observed polarization transfer coefficient P T defined by the ratio of the 3 He + atomic polarization to the sodium one showed a pronounced reduction from unity, which was qualitatively explained by the prediction of a simple cascade photon decay model. Evidence for a further reduction of P T from the above model and a possible impact energy dependence of P T suggested an excessive depolarization due to the presence of the collision alignment parameter A 0 col of 3 He + formed by the electron capture process. In order to see this more closely, the observed P T 's were examined theoretically using the semiclassical impact parameter method, in which an 18-state molecular expansion was employed, and atomic-type electron translation effects were rigorously taken into account. Ensuring that both the absolute values and the impact energy dependence of the observed capture cross sections were remarkably well reproduced by the calculations in which the states up to 4f in 3 He + were introduced, it was demonstrated that the calculated results for P T qualitatively reproduced not only the absolute values of the observed P T 's but also their gentle decrease with increasing impact energy. Production of nuclear polarizations resulting from the polarized electron capture processes between multicharged heavy ions and alkaline-earth-metal atoms is an example of one use of the future project of universal polarized heavy-ion sources

  4. Metastability-exchange optical pumping of 3He for neutron polarizers

    International Nuclear Information System (INIS)

    Gentile, T.R.; Thompson, A.K.; Snow, W.M.

    1995-01-01

    Research is underway at NIST and IU to develop neutron polarizers that are based on polarized 3 He. Such polarizers rely on the strong spin dependence of the cross section for neutron capture by polarized 3 He. Two methods can produce the high density of polarized 3 He gas (10 19 -10 20 cm -3 ) required for an effective neutron polarizer: spin-exchange optical pumping, which is performed directly at high pressure (1-10 bar), and metastability-exchange optical pumping, in which the gas is polarized at low pressure (1 mbar) and then compressed. While we are pursuing both methods, progress in the metastable method will be discussed. The features of the metastable method are the high rate at which the gas can be polarized and the inherent separation of the optical pumping and target cells. In a landmark achievement, researchers at the Univ. of Mainz have developed a piston compressor that can fill a 130 cm 3 cell to a pressure of 7 bar of 45% polarized 3 He gas in 2 hours. We plan to develop a compressor and test it at the NIST Cold Neutron Research Facility. We have constructed a metastable-pumping apparatus at NIST and have obtained 76% polarization with a pumping rate of 1.2 x 10 18 atoms/sec in a 0.4 mbar, 270 cm 3 cell

  5. The SLAC high-density gaseous polarized 3He target

    International Nuclear Information System (INIS)

    Johnson, J.R.; Chupp, T.E.; Smith, T.B.; Cates, G.D.; Driehuys, B.; Middleton, H.; Newbury, N.R.; Hughes, E.W.; Meyer, W.

    1995-01-01

    A large-scale high-pressure gaseous 3 He polarized target has been developed for use with a high-intensity polarized electron beam at the Stanford Linear Accelerator Center. This target was used successfully in an experiment to study the spin structure of the neutron. The target provided an areal density of about 7x10 21 nuclei/cm 2 and operated at 3 He polarizations between about 30% and 40% for the six-week duration of the experiment. ((orig.))

  6. End-compensated magnetostatic cavity for polarized 3He neutron spin filters.

    Science.gov (United States)

    McIver, J W; Erwin, R; Chen, W C; Gentile, T R

    2009-06-01

    We have expanded upon the "Magic Box" concept, a coil driven magnetic parallel plate capacitor constructed out of mu-metal, by introducing compensation sections at the ends of the box that are tuned to limit end-effects similar to those of short solenoids. This ability has reduced the length of the magic box design without sacrificing any loss in field homogeneity, making the device far more applicable to the often space limited neutron beam line. The appeal of the design beyond affording longer polarized 3He lifetimes is that it provides a vertical guide field, which facilitates neutron spin transport for typical polarized beam experiments. We have constructed two end-compensated magic boxes of dimensions 28.4 x 40 x 15 cm3 (length x width x height) with measured, normalized volume-averaged transverse field gradients ranging from 3.3 x 10(-4) to 6.3 x 10(-4) cm(-1) for cell sizes ranging from 8.1 x 6.0 to 12.0 x 7.9 cm2 (diameter x length), respectively.

  7. Spin exchange optical pumping based polarized 3He filling station for the Hybrid Spectrometer at the Spallation Neutron Source.

    Science.gov (United States)

    Jiang, C Y; Tong, X; Brown, D R; Culbertson, H; Graves-Brook, M K; Hagen, M E; Kadron, B; Lee, W T; Robertson, J L; Winn, B

    2013-06-01

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60° horizontal and 15° vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized (3)He filling station based on the spin exchange optical pumping method. It is designed to supply polarized (3)He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the (3)He pressure with respect to the scattered neutron energies. The depolarized (3)He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  8. Polarization Observables for the Collinear dp → 3 Heπ0 Reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    1994-01-01

    Effects due to polarizations of both colliding particles have been analyzed in terms of two independent amplitudes which in the general case define the spin structure of the amplitude of the dp → 3 Heπ 0 reaction in collinear geometry. The energy dependence of spin-correlation C L , L , O , O due to longitudinal polarization of colliding particles is predicted using the moduli of amplitudes extracted from experimental data. The limit of possible deviations is obtained for spin-correlation C N , N , O , O due to transverse polarization of both particles. The value of these polarization observables at threshold are predicted. The behaviour of these polarization observables for the dp → 3 Heη 0 reaction, having the same spin structure, is discussed. 22 refs., 5 figs., 2 tabs

  9. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  10. Development of a compact in situ polarized ³He neutron spin filter at Oak Ridge National Laboratory.

    Science.gov (United States)

    Jiang, C Y; Tong, X; Brown, D R; Chi, S; Christianson, A D; Kadron, B J; Robertson, J L; Winn, B L

    2014-07-01

    We constructed a compact in situ polarized (3)He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the (3)He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% (3)He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.

  11. Calculations of static properties of spin-polarized 3He--4He mixtures

    International Nuclear Information System (INIS)

    Owers-Bradley, J.R.; Bowley, R.M.; Main, P.C.

    1985-01-01

    The theory of dilute mixtures of 3 He in 4 He that have been polarized by a strong magnetic field is developed. The interaction between the quasiparticles is taken to be constant, an approximation valid at low temperatures. The polarization of the mixture depends on the strength of the interaction. The internal energy, the specific heat, the osmotic pressure, and the velocity of second sound are also calculated. The specific heat is relatively insensitive to the interaction, but it does change significantly with magnetic field. The osmotic pressure is more sensitive to the effects of the interaction for some 3 He concentrations and temperatures. The velocity of second sound behaves qualitatively like the osmotic pressure. The measurement of these quantities as a function of temperature and magnetic field is discussed with a view to obtaining the strength of the interaction between quasiparticles

  12. Spin Superfluidity and Magnone BEC in He-3

    Science.gov (United States)

    Bunkov, Yury

    2011-03-01

    The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).

  13. Spin structure of the 3He from the dd → 3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    1995-01-01

    The polarization observables in the reaction dd → 3 Hen are considered. Their high sensitivity to the 3 He wave function at short distances is shown. Using of both polarized target and beam allows to extend sufficiently the number of possible experiments and to separate 3 He structure from the reaction mechanisms using different relative orientations of initial deuteron spins. 27 refs., 5 figs

  14. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  15. A polarized solid {sup 3}He target for neutron transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Roberson, N.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Wilburn, W.S. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    1995-04-01

    We describe the construction and operation of a solid {sup 3}He polarized nuclear target which we have used for measurements of the spin dependence of the n-{sup 3}He interaction at MeV energies. The target, which contains 0.4 mole of {sup 3}He was polarized to 38% at 12 mK in a field of 7 T. The target is suitable for nuclear physics measurements which are insensitive to the large magnetic field and produce beam heating of tenths of microwatts.We discuss refinements and paths to improved solid {sup 3}He targets at higher polarizations and lower fields. ((orig.)).

  16. Results on Double-polarization Asymmetries in Quasielastic Scattering from Polarized 3He

    Directory of Open Access Journals (Sweden)

    Sulkosky Vincent A.

    2016-01-01

    Full Text Available The 3He nucleus has become extremely important in the investigation of the neutron’s spin structure. When polarized, 3He acts as an effective polarized neutron target and hence facilitates our understanding of the neutron’s internal structure. However, to be used in this manner, our understanding of the internal structure of 3He is of extreme importance. As the precision of experiments has improved, the extraction of polarized neutron information from 3He leads to an ever larger share of the systematic uncertainty for these experiments. In these proceedings, I present a precise measurement of beam-target asymmetries in the He→3(e→ ,e′d${}^3\\overrightarrow {He} (\\vec e,e'd$ and He→3(e→,e′p${}^3\\overrightarrow {He} (\\vec e,e'p$ reactions. The former process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed around the quasi-elastic peak at Q2 = 0.25 (GeV/c2 and 0.35 (GeV/c2 for recoil momenta up to 270 MeV/c. The experimental apparatus, analysis and results were presented together with a comparison to state-of-the art Faddeev calculations.

  17. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  18. Recent on-beam tests of wide angle neutron polarization analysis with a 3He spin filter: Magic PASTIS on V20 at HZB

    Science.gov (United States)

    Babcock, E.; Salhi, Z.; Gainov, R.; Woracek, R.; Soltner, H.; Pistel, P.; Beule, F.; Bussmann, K.; Heynen, A.; Kämmerling, H.; Suxdorf, F.; Strobl, M.; Russina, M.; Voigt, J.; Ioffe, A.

    2017-06-01

    A complete XYZ polarization analysis solution is under development for the new thermal time of flight spectrometer TOPAS [1], to be operated in the coming east neutron guide hall at the MLZ. Polarization Analysis Studies on a Thermal Inelastic Spectrometer, commonly called PASTIS [2], is based on polarized 3He neutron spin filters and an XYZ field configuration for the sample environment and a polarization-preserving neutron guide field. The complete system was designed to provide adiabatic transport of the neutron polarization to the sample position while maintaining the homogeneity of the XYZ field. This system has now been tested on the polarized time-of-flight ESS test beam line V20 at HZB [3]. Down to the minimum wavelength of 1.6 Å on the instrument, the magnetic configuration worked ideally for neutron spin transport while giving full experimental freedom to change between the X, Y or Z field configuration. The 3He cell used was polarized at the 3He lab of the JCNS at the MLZ in Garching and transported to HZB in Berlin via car showing that such a transport is indeed feasible for such experiments. We present results of this test and the next steps forward.

  19. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  20. Theory of the surface-induced magnetism in liquid 3He

    International Nuclear Information System (INIS)

    Jichu, Hisao; Kuroda, Yoshihiro

    1982-01-01

    A theory of the surface-induced magnetism of liquid 3 He confined in a restricted geometry is presented. In a general model, three different types of contributions to the effective exchange interactions among spins of the 3 He atoms in a solid layer adsorbed on a substrate are distinguished on the basis of the second order perturbation theory; one is from a direct process and the others are mediated by the spins of the 3 He atoms in the remaining bulk liquid. By using a simplified model, the exchange constants are calculated to find that an RKKY-type indirect exchange interaction appears to be most dominant and to explain the observed ferromagnetic tendency. (author)

  1. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  2. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  3. Separable interactions and liquid 3He

    International Nuclear Information System (INIS)

    Nijhoff, F.W.

    1984-01-01

    In this thesis, the different phases of liquid 3 He are studied in the presence and absence of magnetic field. It offers microscopic calculations starting from BCS hamiltonians with some additional terms (Zeeman-term to include the magnetic field; an Hubbard-term to include spin fluctuations). A systematic determination of the phase diagram is presented. (Auth.)

  4. Optical Pumping Spin Exchange 3He Gas Cells for Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, W.; Stepanyan, S. S.; Kim, A.; Jung, Y.; Woo, S.; Yurov, M.; Jang, J.

    2009-08-01

    We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping is used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the 3He-N2 mixture. The cells could be refilled. The 3He reaches around 50% polarization in 5-15 hours.

  5. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    Science.gov (United States)

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  6. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  7. Quantum properties of spin polarized helium 3 optically oriented by a LNA laser

    International Nuclear Information System (INIS)

    Leduc, M.; Laloe, F.; Nacher, P.J.; Tastevin, G.; Daniels, J.M.; Betts, D.

    1986-01-01

    Spin polarized helium 3 (/sup 3/He increasing) and also atomic hydrogen (H decreasing) are systems exhibiting a number of unusual and interesting properties at low temperature. This is true even for dilute polarized gases in spite of the weakness of the nuclear magnetic interaction between atoms. The changes in the macroscopic properties of the gas with the nuclear polarization P are pure consequences of the indistinguishability of the particles and of the symmetrization principle in quantum mechanics. The transport properties of the gas, such as viscosity and thermal conductivity, have been calculated and found to be strongly dependent on P below a few kelvins. Spin transport in /sup 3/He increasing gives rise at low temperature to collective oscillatory modes: the transverse spin waves. Large changes are also expected with P in the case of more dense /sup 3/He fluids, such as an increase with P in the saturated vapor pressure. Optical pumping is a convenient technique for efficient polarization of the nuclear spins in /sup 3/He gas/sup 2/ making use of the 2/sup 3/S-2/sup 3/P atomic line at 1.08 μm. The arrival of cw tunable lasers in the near IR in the early 1980s gave a strong impulse to the buildup of experiments with a view to measuring quantum properties of /sup 3/He increasing at low temperature. Color center lasers (F/sup +//sub 2/ in NaF) provide P values up to 70%. They are now being replaced by more easy to handle LNA lasers which have given so far P in excess of 50% at room temperature. At low temperature, direct optical pumping of a /sup 3/He cell leads to poor P values; for that reason a different technique is used

  8. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  9. Stabilization of He2(A(sup 3)Sigma(sub u)(+)) molecules in liquid helium by optical pumping for vacuum UV laser

    Science.gov (United States)

    Zmuidzinas, J. S. (Inventor)

    1978-01-01

    A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.

  10. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  11. A polarized sup 3 He internal target for storage rings

    CERN Document Server

    Poolman, H R; Bulten, H J; Doets, M; Ent, R; Ferro-Luzzi, M; Geurts, D G; Harvey, M; Mul, F A

    2000-01-01

    A polarized sup 3 He internal target was employed at the internal target facility of the Amsterdam electron Pulse Stretcher and Storage ring (AmPS) at the Dutch National Institute for Nuclear and High-Energy Physics (NIKHEF). The unique features of internal targets such as chemical and isotopic purity, high and rapidly reversible polarization, and the ability to manipulate the target spin orientation were successfully demonstrated. A nuclear polarization of 0.50 (0.42) at a sup 3 He gas flow of 1.0 (2.0)x10 sup 1 sup 7 at s sup - sup 1 could be obtained. Operation at a nominal flow of 1x10 sup 1 sup 7 at s sup - sup 1 resulted in a target thickness of 0.7x10 sup 1 sup 5 at cm sup - sup 2 at a target temperature of 17 K.

  12. Intermediate energy charge-exchange reactions induced by polarized 3He

    International Nuclear Information System (INIS)

    Kim, B.T.

    1998-01-01

    Spin polarization transfer is proven to be very useful in obtaining detailed information of the continuum nuclear responses. The data, taken for the (vector p,vector n) reactions, have enabled us to separate the response into the spin longitudinal and transverse components. These partial nuclear responses have been successfully used to make critical tests of nuclear structure models. In the present paper, we first summarize the results of the data and the theoretical analyses made so far. We then discuss information obtainable from the ( 3 vector He,vector t) reaction, emphasizing on the differences and similarities in comparison with the (vector p,vector n) reaction. The results of numerical calculations made for ( 3 vector He,vector t) reactions based on the microscopic distorted wave impulse approximation will also be reported. (orig.)

  13. Topics in low-temperature Fermi liquid theory

    International Nuclear Information System (INIS)

    Hess, D.W.

    1987-01-01

    Several topics in quantum liquids are discussed including the elementary excitation spectrum of 3 He under pressure, spin-polarized 3 He, and an early attempt to formulate a Fermi liquid theory to describe the low-temperature thermodynamic and transport properties of the heavy-electron systems UPt 3 . The elementary excitation spectrum of ordinary liquid 3 He is calculated at several pressures using the polarization potential theory of Aldrich and Pines together with a simple model to describe the effect of multipair excitation. The effective interactions between quasi particles in fully spin-polarized 3 He are obtained from physical arguments and sum rules. The interactions between two down-spin impurities and that between an up and down spin are also deduced. The regime of small polarization is considered next. Using the phenomenological model of Bedell and Sanchez-Castro together with an ansatz form for the spin-flip interaction, a large increase in the singlet scattering rate as a function of polarization is obtained

  14. Quasiclassical Theory of Spin Dynamics in Superfluid ^3He: Kinetic Equations in the Bulk and Spin Response of Surface Majorana States

    Science.gov (United States)

    Silaev, M. A.

    2018-06-01

    We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.

  15. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  16. Measurement of the polarized neutron---polarized 3He total cross section

    International Nuclear Information System (INIS)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1995-01-01

    The first measurements of polarized neutron--polarized 3 He scattering in the few MeV energy region are reported. The total cross section difference Δσ T for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of Δσ T using various descriptions of the 4 He continuum. A brute-force polarized target of solid 3 He has been developed for these measurements. The target is 4.3x10 22 atoms/cm 2 thick and is polarized to 38% at 7 Telsa and 12 mK. copyright 1995 American Institute of Physics

  17. Measurement of the Spin Structure Function of the Neutron G1(N) from Deep Inelastic Scattering of Polarized Electrons from Polarized Neutrons in He-3

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J

    2004-01-06

    Polarized electrons of energies 19.42, 22.67, and 25.5 GeV were scattered off a polarized {sup 3}He target at SLAC's End Station A to measure the spin asymmetry of the neutron. From this asymmetry, the spin dependent structure function g{sub 1}{sup n}(x) was determined over a range in x from 0.03 to 0.6 with an average Q{sup 2} of 2 (GeV/C){sup 2}. The value of the integral of g{sub 1}{sup n} over x is {integral}g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.009. The results were interpreted in the frame work of the Quark Parton Model (QPM) and used to test the Ellis-Jaffe and Bjorken sum rules. The value of the integral is 2.6 standard deviations from the Ellis-Jaffe prediction while the Bjorken sum rule was found to be in agreement with this data and proton data from SMC and E-143.

  18. Effective interactions, elementary excitations, and transport in the helium liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Polarization potentials, the self-consistent fields which describe the primary consequences of the strong atom-atom interaction in the helium liquids, are developed for liquid 4 He and 3 He. Emphasis is placed on the common physical origin of the effective interactions in all helium liquids, and the hierarchy of physical effects (very short-range atomic correlations, zero point motion, and the Pauli principle) which determine their strength is reviewed. An overview is then given of the application of polarization potential theory to experiment, including the phonon-maxon-roton spectra of 4 He and 3 He- 4 He mixtures, the phonon-maxon spectrum of normal and spin-polarized 3 He, and the transport properties of superfluid 4 He and of normal and spin-polarized 3 He

  19. Deep inelastic scattering of polarized electrons by polarized {sup 3} He and the study of the neutron spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R G; Bosted, P E; Dunne, J; Fellbaum, J; Keppel, C; Rock, S E; Spengos, M; Szalata, Z M; White, J L [Washington State Univ., Pullman, WA (United States); Breton, V; Fonvieille, H; Roblin, Y [Clermont-Ferrand-2 Univ., 63 - Aubiere (France); Shapiro, G [Lawrence Berkeley Lab., CA (United States); Hughes, E W [California Inst. of Tech., Pasadena, CA (United States); Borel, H; Lombard-Nelsen, R M; Marroncle, J; Morgenstern, J; Staley, F; Terrien, Y [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Petratos, G G [Kent State Univ., OH (United States); Anthony, P L; Dietrich, F S [Lawrence Livermore National Lab., CA (United States); Chupp, T E; Smith, T [Michigan Univ., Dearborn, MI (United States); Thompson, A K [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Kuhn, S E [Norfolk State Univ., VA (United States); Cates, G D; Middleton, H; Newbury, N R [Princeton Univ., NJ (United States); Anthony, P L; Gearhart, R; Hughes, E W; Maruyama, T; Meyer, W; Petratos, G G; Pitthan, R; Rokni, S H; Stuart, L M; White, J L; Woods, M; Young, C C [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Erbacher, R; Kawall, D; Kuhn, S E; Meziani, Z E [Stanford Univ., CA (United States); Holmes, R; Souder, P A; Xu, J [Syracuse Univ., NY (United States); Meziani, Z E [Temple Univ., Philadelphia, PA (United States); Band, H R; Johnson, J R; Maruyama, T; Prepost, R; Zapala, G [Wisconsin Univ., Madison, WI (United States)

    1997-12-31

    The neutron longitudinal and transverse asymmetries A{sub 1}{sup n} and A{sub 2}{sup n} have been extracted from deep inelastic scattering of polarized electrons by a polarized {sup 3}He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g{sub 1}{sup n}(x, Q{sup 2}) and g{sub 2}{sup n} (x, Q{sup 2}) over the range 0.03 < x < 0.6 at an average Q{sup 2} of 2 (GeV/c){sup 2}. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g{sub 1}{sup n} (x, Q{sup 2}) is small and negative within the range of our measurement, yielding an integral {integral}{sub 0.03}{sup 0.6} g{sub 1}{sup n} (x)dx - 0.028 {+-} 0.006 (stat) {+-} 0.006 (syst). Assuming Regge behavior at low x, we extract {Gamma}{sub 1}{sup n} {integral}{sub 0}{sup 1} g{sub 1}{sup n} (x)dx = - 0.031 {+-} 0.006 (stat) {+-} 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup n} = 0.160 {+-} 0.015 in agreement with the Bjorken sum rule prediction {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup p} 0.176 {+-} 0.008 at a Q{sup 2} value of 3 (GeV/c){sup 2} evaluated using {alpha}{sub s} 0.32 {+-} 0.05. (authors). 109 refs.

  20. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  1. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  2. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  3. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  4. Precise measurement of magnetic field gradients from free spin precession signals of He-3 and Xe-129 magnetometers

    NARCIS (Netherlands)

    Allmendinger, Fabian; Blümler, Peter; Doll, Michael; Grasdijk, Oliver; Heil, Werner; Jungmann, Klaus; Karpuk, Sergej; Krause, Hans-Joachim; Offenhäuser, Andreas; Repetto, Maricel; Schmidt, Ulrich; Sobolev, Yuri; Tullney, Kathlyne; Willmann, Lorenz; Zimmer, Stefan

    2017-01-01

    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized He-3 and (12)9Xe atoms in a spherical cell inside a magnetic guiding field

  5. Study of the nuclear structure of 3He by means of polarization observables

    International Nuclear Information System (INIS)

    Weinriefer, Markus

    2011-01-01

    With the possibility to measure several polarization degrees of freedom in the quasi-elastic electron scattering of 3 He is a new way to access small, but important partial wave contributions (S ' , D-wave) to the 3 He ground state. This gives direct access to a better understanding of the three-body-system. It also opens up a way to directly test the 3 He structure and dynamics. With this information it is possible to test ab initio calculations and to calculate corrections that are needed for different experiments (measurement of G en for example). Modern Faddeev-calculations do not only give a quantitative description of the 3 He ground state. They also give insight in so called spin dependent momentum distributions. A systematic experimental investigation is needed to get a good basis for tests of the theoretical models. A triple-polarization-experiment can give important data in this field. Also with the help of such an experiment one can investigate if polarized 3 He can be used as an effective polarized proton target by the method of ''deuteron-tagging''. The experiment presented in this work combines for the first time beam- and target-polarization as well as a measurement of the polarization of the outgoing proton. The measurement was done in summer of 2007 at the three spectrometer setup of the A1 collaboration at the MAMI accelerator. A beam energy of E=855 MeV was used and we measured at q 2 =-0.14 (GeV/c) 2 (ω=0.13 GeV, q=0.4 GeV/c). The measured cross section, as well as the beam-target- and triple-asymmetry were compared to a theoretical calculation by J. Golak (he gives a plane wave impulse approximation (PWIA) calculation and a calculation also taking final state interaction into account). The cross section was also compared to a model by de Forest that is using a measured spectral function. The comparison shows a good agreement between the measured cross section as well as the double and triple asymmetry and the theoretical calculations. The

  6. Spin-zero sound in one- and quasi-one-dimensional 3He

    International Nuclear Information System (INIS)

    Hernandez, E.S.

    2002-01-01

    The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension

  7. Spin-dependent electron emission from metals in the neutralization of He+ ions

    International Nuclear Information System (INIS)

    Alducin, M.; Roesler, M.; Juaristi, J.I.; Muino, R. Diez; Echenique, P.M.

    2005-01-01

    We calculate the spin-polarization of electrons emitted in the neutralization of He + ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He + ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He + ion neutralization process and on the electronic properties of the surface

  8. Optimum transmission for a 3He neutron polarizer

    International Nuclear Information System (INIS)

    Tasset, F.; Ressouche, E.

    1995-01-01

    Following recent achievements in polarizing gaseous 3 He targets by optical pumping at room temperature, polarized helium-3 is now the most promising polarizer for thermal and epithermal neutrons and should soon compete favorably with existing Heusler polarizing crystals. Because it is gaseous, a degree of freedom exists in such a filter: the pressure of the gas in the cell. This parameter allows a choice to be made in the filter design: for a given polarization of 3 He, one is able to increase the pressure, to favor neutron beam polarization, or to stay at relatively low pressure to favor the filter's transmission. In this paper, we discuss this point in the framework of a classical polarized neutron experiment, and we compare our more general results with the quality factor Q=P√(T), which is generally taken as standard for such a filter. (orig.)

  9. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  10. Experimental study of the spin structure of the neutron (3He) with low Q2: a relationship between the Bjorken and Gerasimov-Drell-Hearn sum rules

    International Nuclear Information System (INIS)

    Deur, A.

    2000-10-01

    This thesis presents an experimental study of the neutron (and 3 He) spin structure with a particular emphasis in the resonance domain (experiment E94010 that took place in 1997 at Jefferson Lab (TJNAF or formerly CEBAF) in Virginia). A polarized 3 He target was built in order to achieve this study since polarized 3 He nuclei can be seen as polarized neutrons. This target allowed the measurement of the polarized absolute cross sections σ 1/2 (Q 2 , ν) and σ 3/2 (Q 2 , ν) from the inclusive reaction → 3 He( → e, e')X for incident beam energies ranging from 0.86 GeV to 5.07 GeV at a scattering angle of 15.5 deg. The Q 2 evolution of the generalized Gerasimov-Drell-Hearn (GDH) integral on 3 He and on neutron was measured from 0.1 GeV 2 to 1.0 GeV 2 in order to understand the transition between perturbative QCD and non-perturbative QCD. The integration domain in ν (the energy loss of the scattered electron) is from the pion threshold to about 2.5 GeV which covers both the resonance region and the Deep Inelastic Scattering. The high precision of our data constrains the models giving the Q 2 evolution of the generalized GDH integral. The polarized quasi-elastic scattering was also measured. The cross section σ TT (Q 2 , ν) on 3 He and the spin structure functions g 1 3 He (Q 2 , ν) and g 2 3 He (Q 2 , ν) are presented. These data are an indication that the higher-twists are small in our kinematics domain and that the Bloom-Gilman duality seems to hold for the polarized spin structure functions. (author)

  11. Measurement of the Neutron (3He) Spin Structure at Low Q2 and the Extended Gerasimov-Drell-Hearn Sum Rule

    Energy Technology Data Exchange (ETDEWEB)

    Kominis, Ioannis [Princeton Univ., NJ (United States)

    2001-01-01

    This thesis presents the results of E-94010, an experiment at Thomas Jefferson National Accelerator Facility (TJNAF) designed to study the spin structure of the neutron at low momentum transfer, and to test the “extended” Gerasimov-Drell-Hearn (GDH) sum rule. The first experiment of its kind, it was performed in experimental Hall-A of TJNAF using a new polarized 3He facility. It has recently been shown that the GDH sum rule and the Bjorken sum rule are both special examples of a more general sum rule that applies to polarized electron scattering off nucleons. This generalized sum rule, due to Ji and Osborne, reduces to the GDH sum rule at Q2 = 0 and to the Bjorken sum rule at Q2 >> 1 GeV2. By studying the Q2 evolution of the extended GDH sum, one learns about the transition from quark-like behavior to hadronic-like behavior. We measured inclusive polarized cross sections by scattering high energy polarized electrons off the new TJNAF polarized 3He target with both longitudinal and transverse target orientations. The high density 3He target, based on optical pumping and spin exchange, was used as an effective neutron target. The target maintained a polarization of about 35% at beam currents as high as 151tA. We describe the precision 3He polarimetry leading to a systematic uncertainty of the target polarization of 4% (relative). A strained GaAs photocathode was utilized in the polarized electron gun, which provided an electron beam with a polarization of about 70%, known to 3% (relative). By using six different beam energies (between 0.86 and 5.06 GeV) and a fixed scattering angle of 15.5°, a wide kinematic coverage was achieved, with 0.02 GeV2< Q2 <1 GcV2 and 0.5 GeV< W < 2.5 GeV for the squared momentum transfer and invariant mass, respectively. From the measured cross sections we extract the 3He spin structure functions g$3 He

  12. Measurement of double polarized asymmetries in quasi-elastic processes ${}^3\\vec{He}(\\vec{e},e' d)$ and ${}^3\\vec{He}(\\vec{e},e' p)$

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovic, Miha [Univ. of Ljubljana (Slovenia)

    2012-01-01

    This thesis is dedicated to a study of a spin-isospin structure of the polarized 3He. First, an introduction to the spin structure of 3He is given, followed by a brief overview of past experiments. The main focus of the thesis is the E05-102 experiment at Jefferson Lab, in which the reactions ${}^3\\vec{He}(\\vec{e},e' d)$ and ${}^3\\vec{He}(\\vec{e},e' p)$ in the quasi-elastic region were studied. The purpose of this experiment was to better understand the effects of the S'- and D-state contributions to the 3He ground-state wave-functions by a precise measurement of beam-target asymmetries Ax and Az in the range of recoil momenta from 0 to about 300 MeV/c. The experimental equipment utilized in these measurements is described, with special attention devoted to the calibration of the hadron spectrometer, BigBite. Results on the measured asymmetries are presented, together with first attempts at their comparison to the state-of-the art Faddeev calculations. The remaining open problems and challenges for future work are also discussed.

  13. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  14. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  15. Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Delrieu, J.M.

    1981-08-01

    The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff

  16. Experimental study of the spin structure of the neutron ({sup 3}He) with low Q{sup 2}: a relationship between the Bjorken and Gerasimov-Drell-Hearn sum rules; Etude experimentale de la structure en spin du neutron ({sup 3}He) a bas Q{sup 2}: une connexion entre les regles de somme de Bjorken et Gerasimov-Drell-Hearn

    Energy Technology Data Exchange (ETDEWEB)

    Deur, A

    2000-10-01

    This thesis presents an experimental study of the neutron (and {sup 3}He) spin structure with a particular emphasis in the resonance domain (experiment E94010 that took place in 1997 at Jefferson Lab (TJNAF or formerly CEBAF) in Virginia). A polarized {sup 3}He target was built in order to achieve this study since polarized {sup 3}He nuclei can be seen as polarized neutrons. This target allowed the measurement of the polarized absolute cross sections {sigma}{sub 1/2}(Q{sup 2}, {nu}) and {sigma}{sub 3/2}(Q{sup 2}, {nu}) from the inclusive reaction {sup {sup {yields}}{sup 3}He}({sup {yields}}e, e')X for incident beam energies ranging from 0.86 GeV to 5.07 GeV at a scattering angle of 15.5 deg. The Q{sup 2} evolution of the generalized Gerasimov-Drell-Hearn (GDH) integral on {sup 3}He and on neutron was measured from 0.1 GeV{sup 2} to 1.0 GeV{sup 2} in order to understand the transition between perturbative QCD and non-perturbative QCD. The integration domain in {nu} (the energy loss of the scattered electron) is from the pion threshold to about 2.5 GeV which covers both the resonance region and the Deep Inelastic Scattering. The high precision of our data constrains the models giving the Q{sup 2} evolution of the generalized GDH integral. The polarized quasi-elastic scattering was also measured. The cross section {sigma}{sup TT}(Q{sup 2}, {nu}) on {sup 3}He and the spin structure functions g{sub 1}{sup {sup 3}He}(Q{sup 2}, {nu}) and g{sub 2}{sup {sup 3}He}(Q{sup 2}, {nu}) are presented. These data are an indication that the higher-twists are small in our kinematics domain and that the Bloom-Gilman duality seems to hold for the polarized spin structure functions. (author)

  17. Experimental study of the spin structure of the neutron ({sup 3}He) with low Q{sup 2}: a relationship between the Bjorken and Gerasimov-Drell-Hearn sum rules; Etude experimentale de la structure en spin du neutron ({sup 3}He) a bas Q{sup 2}: une connexion entre les regles de somme de Bjorken et Gerasimov-Drell-Hearn

    Energy Technology Data Exchange (ETDEWEB)

    Deur, A

    2000-10-01

    This thesis presents an experimental study of the neutron (and {sup 3}He) spin structure with a particular emphasis in the resonance domain (experiment E94010 that took place in 1997 at Jefferson Lab (TJNAF or formerly CEBAF) in Virginia). A polarized {sup 3}He target was built in order to achieve this study since polarized {sup 3}He nuclei can be seen as polarized neutrons. This target allowed the measurement of the polarized absolute cross sections {sigma}{sub 1/2}(Q{sup 2}, {nu}) and {sigma}{sub 3/2}(Q{sup 2}, {nu}) from the inclusive reaction {sup {sup {yields}}{sup 3}He}({sup {yields}}e, e')X for incident beam energies ranging from 0.86 GeV to 5.07 GeV at a scattering angle of 15.5 deg. The Q{sup 2} evolution of the generalized Gerasimov-Drell-Hearn (GDH) integral on {sup 3}He and on neutron was measured from 0.1 GeV{sup 2} to 1.0 GeV{sup 2} in order to understand the transition between perturbative QCD and non-perturbative QCD. The integration domain in {nu} (the energy loss of the scattered electron) is from the pion threshold to about 2.5 GeV which covers both the resonance region and the Deep Inelastic Scattering. The high precision of our data constrains the models giving the Q{sup 2} evolution of the generalized GDH integral. The polarized quasi-elastic scattering was also measured. The cross section {sigma}{sup TT}(Q{sup 2}, {nu}) on {sup 3}He and the spin structure functions g{sub 1}{sup {sup 3}He}(Q{sup 2}, {nu}) and g{sub 2}{sup {sup 3}He}(Q{sup 2}, {nu}) are presented. These data are an indication that the higher-twists are small in our kinematics domain and that the Bloom-Gilman duality seems to hold for the polarized spin structure functions. (author)

  18. Measurement of Single Spin Asymmetry in 3He↑(e, e'K±)X from a Transversely Polarized 3He Target

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuxiang [Univ. of Science and Technology, Hefei (China)

    2015-05-01

    Spin-dependent observables are a powerful tool to probe the internal structure of the nucleon and to study the dynamics of the strong interaction. Experimental study of the nucleon spin structure has provided us with many exciting and often surprising results. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to a worldwide effort to study the nucleon spin structure. However, this effort has been focused mainly on the nucleon's longitudinal spin structure. Recently, when the pioneer work revealed the significant role that transverse spin plays in understanding the full structure of the nucleon and in understanding the dynamics of the strong interaction, the study of the transverse spin structure became the new focus of the worldwide effort. Jefferson Lab (JLab) is located at Newport News, VA, US. It is equipped with the continuous electron beam accelerator facility (CEBAF) and four experimental halls: A, B, C and D. The accelerator can provide a continuous electron beam (2 ns beam bunch) with high polarization (up to ~ 90%) and high current (up to ~ 200μA) for fixed target experiments in all experimental halls. Hall A consists of two standard high-resolution spectrometers (HRS): left HRS (LHRS) and right HRS (RHRS). Another spectrometer, the BigBite spectrometer, can be installed on request by certain experiments. The experiment E06-010 ("Transversity Experiment") at JLab Hall A is the first measurement of the transverse spin structure of the neutron using a transversely polarized 3He target and a 5.89 GeV incident electron beam. The experiment measured target single spin asymmetries (SSA) and beam-target double-pin asymmetries (DSA) in semi-inclusive deep-inelastic scattering (SIDIS) and in deep-inelastic scattering (DIS) processes. It also collected inclusive hadron (pion, kaon and proton) production data parasitically. The scattered electrons were detected in the BigBite spectrometer with

  19. Measurement of "pretzelosity" asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized 3He target

    Science.gov (United States)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J. C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qiang, Y.; Rakhman, A.; Ransome, R. D.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, W. A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-11-01

    An experiment to measure single-spin asymmetries of semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3He target was performed at Jefferson Laboratory in the kinematic region of 0.16 3He, which are expressed as the convolution of the h1T ⊥ transverse-momentum-dependent distribution functions and the Collins fragmentation functions in the leading order, were measured for the first time. Under the effective polarization approximation, we extracted the corresponding neutron asymmetries from the measured 3He asymmetries and cross-section ratios between the proton and 3He. Our results show that both π± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  20. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    Science.gov (United States)

    Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, C.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Katich, J.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H.-J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z.-E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J.-C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Rakhman, A.; Ransome, R.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L.-G.; Tobias, A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y.; Zhang, Y.-W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.; Jefferson Lab Hall A Collaboration

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  1. NMR and superfluidity of 3He in 3He-4He solutions

    International Nuclear Information System (INIS)

    Ivanova, K.D.; Mejerovich, A.Eh.

    1986-01-01

    Two possibilities of determining the superfluid transition temperature for 3 He in a 3 He- 4 He solution by the NMR technique are discussed. One of the methods consists in measuring the spin diffusion coefficient in weak magnetic fields at ultralow temperatures, and the other in measuring the ratio of the spin diffusion coefficient to the spin wave absorption coefficient at not very low temperatures. The transition temperature is estimated on the basis of the available experimental data. The effect of the superfluid transition in a system of 3 He quasiparticles on the propagation of transverse spin waves and longitudinal spin-sound oscillations in 3 He- 4 He solutions is studied. It is shown that there is a range of weak magnetic field intensities restricted from both sides in which the propagation of weakly damped spin-sound waves is possible

  2. He 3 -Xe 129 Comagnetometery using Rb 87 Detection and Decoupling

    Science.gov (United States)

    Limes, M. E.; Sheng, D.; Romalis, M. V.

    2018-01-01

    We describe a He 3 -Xe 129 comagnetometer using Rb 87 atoms for noble-gas spin polarization and detection. We use a train of Rb 87 π pulses and σ+/σ- optical pumping to realize a finite-field Rb magnetometer with suppression of spin-exchange relaxation. We suppress frequency shifts from polarized Rb by measuring the He 3 and Xe 129 spin precession frequencies in the dark, while applying π pulses along two directions to depolarize Rb atoms. The plane of the π pulses is rotated to suppress the Bloch-Siegert shifts for the nuclear spins. We measure the ratio of He 3 to Xe 129 spin precession frequencies with sufficient absolute accuracy to resolve Earth's rotation without changing the orientation of the comagnetometer. A frequency resolution of 7 nHz is achieved after integration for 8 h without evidence of significant drift.

  3. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E. [Stanford Univ., CA (United States)

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results of the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.

  4. Nuclear reactivity control using laser induced polarization

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1990-01-01

    This patent describes a control element for reactivity control of a fission source provides an atomic density of 3 He in a control volume which is effective to control criticality as the 3 He is spin-polarized. Spin-polarization of the 3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the 3 He for spin-polarizing the 3 He. An alkali-metal vapor may be included with the 3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with 3 He to spin-polarize the 3 He atoms

  5. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  6. Stimulated polarization wave process in spin 3/2 chains

    International Nuclear Information System (INIS)

    Furman, G. B.

    2007-01-01

    Stimulated wave of polarization, triggered by a flip of a single spin, presents a simple model of quantum amplification. Recently, it has been demonstrated that, in an idealized one-dimensional Ising spin 1/2 chain with nearest-neighbor interactions and realistic spin 1/2 chain including the natural dipole-dipole interactions, irradiated by a weak resonant transverse field, a wave of flipped spins can be triggered by a single spin flip. Here we focuse on control of polarization wave in chain of spin 3/2, where the nuclear quadrupole interaction is dominant. Results of simulations for 1D spin chains and rings with up to five spins are presented.

  7. Application of spin-polarized fuel to fusion reactions

    International Nuclear Information System (INIS)

    Wakuta, Y.; Nakao, Y.; Honda, T.; Honda, Y.; Nakashima, H.

    1990-01-01

    Studies on the application of the polarized fuel to the inertial fusion reaction have been carried out. It is shown that the use of the spin-polarized fuel D vector·T vector or D vector· 3 (He)vector reduces the irradiating laser power more than 50% compared with the use of the unpolarized fuel. The depolarization rate of the polarized fuel during the fusing process is found to be almost negligible. (author)

  8. Growth and dissolution of liquid 3He droplets in solid 4He matrix

    International Nuclear Information System (INIS)

    Gan'shin, A.N.; Grigor'ev, V.N.; Majdanov, V.A.; Penzev, A.A.; Rudavskij, Eh.Ya.; Rybalko, A.S.

    2000-01-01

    The phase separation kinetics of solid 3 He - 4 He mixtures was investigated using pressure measurements in the conditions when the two-phase system formed consists of concentrated phase liquid droplets (almost pure 3 He) in the dilute phase crystal matrix (almost pure 4 He). It is shown that the liquid droplet growth may be described by a sum of two exponential processes with small and large time contacts as cooling down step by step. This is a result of the strong influence of strains which appear in the crystal at the phase separation due to a large difference in molar volume between the phases and probably give rise to plastic deformation of the matrix and to non-equilibrium 3 He concentration in it. The 3 He atom transfer occurs only to the extent of strain relaxation. It is found that the cyclic growth and dissolution of the liquid droplets affect the crystal quality and lead to pressure increase. The coexistence of liquid and solid phases in droplets is speculated to be possible

  9. Search for a spin-dependent short-range force between nucleons with a 3He/129Xe clock-comparison experiment

    International Nuclear Information System (INIS)

    Tullney, Kathlynne

    2014-01-01

    The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129

  10. Spin Interactions and Cross-checks of Polarization in NH$_{3}$ Target

    CERN Document Server

    Kiselev, Yu; Doshita, N; Gautheron, F; Hess, Ch; Iwata, T; Koivuniemi, J; Kondo, K; Magnon, A; Mallot, G; Michigami, T; Meyer, W; Reicherz, G

    2008-01-01

    We study the magnetic structure of irradiated ammonia (NH$_{3}$) polarized by Dynamic Nuclear Polarization method at 0.2 K and at 2.5 T field. In this material, the electron spins, induced by ionizing radiation, couple $^{14}$N and $^{1}$H spins by the indirect spin-spin interaction. As a result, the local frequencies of $^{1}$H-spins are varied depending on $^{14}$N spin polarizations and lead to an asymmetry in the proton signal. This asymmetry allowes a good detection of $^{14}$N spins directly on the proton Larmor frequency. In the long COMPASS target at CERN, we use the cross-checks between spectral asymmetries and integral polarizations to decrease the relative error for longitudinal target polarizations up to $\\pm$2.0%.

  11. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. π--induced single charge exchange on polarized 3He

    International Nuclear Information System (INIS)

    Zhao, Q.; Burleson, S.; Blanchard, T.

    1995-01-01

    Asymmetries, A y , for the (π - ,π 0 ) reaction on polarized 3 He were measured using the pion beam of the P3W channel at LAMPF. The π 0 were detected with the new Neutral Meson Spectrometer (NMS) in coincidence with recoiling tritons. The recoil detector consisted of scintillation-counter telescopes and a wire chamber that provided energy-loss and direction information, respectively. The polarized gaseous 3 He target developed at TRIUMF was modified and run with the use of two diode lasers. Polarizations were typically 50%. The A y taken at T π = 200 MeV between 60 and 105 degrees were found to be strongly angle-dependent. The results will be compared with the theoretical predictions

  13. Meaurement of the target single-spin asymmetry in quasi-elastic region from the reaction {sup 3}He{up_arrow}(e,e')

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yawei [Rutgers

    2013-10-01

    A measurement of the inclusive target single-spin asymmetry has been performed using the quasi-elastic {sup 3}He{up_arrow}(e,e') reaction with a vertically polarized {sup 3}He target at Q{sup 2} values of 0.13, 0.46 and 0.97 GeV{sup 2}. This asymmetry vanishes under the one photon exchange assumption. But the interference between two-photon exchange and one-photon exchange gives rise to an imaginary amplitude, so that a non-zero A{sub y} is allowed. The experiment, conducted in Hall A of Jefferson Laboratory in 2009, used two independent spectrometers to simultaneously measure the target single-spin asymmetry. Using the effective polarization approximation, the neutron single-spin asymmetries were extracted from the measured {sup 3}He asymmetries. The measurement is to establish a non-vanishing A{sub y}. Non-zero asymmetries were observed at all Q{sup 2} points, and the overall precision is an order of magnitude improved over the existing proton data. The data provide new constraints on Generalized Parton Distribution (GPD) models and new information on the dynamics of the two-photon exchange process.

  14. Kinetic energy of He atoms in liquid 4He-3He mixtures

    International Nuclear Information System (INIS)

    Senesi, R.; Andreani, C.; Fielding, A.L.; Mayers, J.; Stirling, W.G.

    2003-01-01

    Deep inelastic neutron scattering measurements on liquid 3 He- 4 He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≅120.0 A -1 . The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96 K isotherm for 3 He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies of 3 He and 4 He atoms as a function of x, (x), were extracted from the second moment of J(y). The present determinations of (x) confirm previous experimental findings for both isotopes and, in the case of 3 He, a substantial disagreement with theory is found. In particular (x) for the 3 He atoms is found to be independent of concentration yielding a value 3 (x=0.1)≅12 K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K

  15. The scattering of polarized neutrons from statically polarized solid {sup 3}He

    Energy Technology Data Exchange (ETDEWEB)

    Haase, D.G.; Keith, C.D.; Gould, C.R.; Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)]|[Duke University, Durham, NC 27708-0308 (United States)

    1998-01-11

    We have constructed a 0.4 mole solid {sup 3}He target, cryogenically polarized at 12 mK in a field of 7 T. The 0.04 atoms/b target reached a polarization of 38% in 35 h. Such a target may be applied to any experiment which is tolerant of the large ambient magnetic field and which produces target heating of less than a microwatt. High energy neutron and photon scattering experiments meet these requirements. The target`s figure of merit for neutron transmission measurement exceeds that of polarized gas targets by greater than 35. At the Triangle Universities Nuclear Laboratory we have used the target to measure the total cross section differences {Delta}{sigma}{sub T} and {Delta}{sigma}{sub L} for incident polarized neutrons of energies 2-8 MeV. The cross section difference is sensitive to the excited state structure of the n-{sup 3}He system. The results have been compared to a recent R-matrix analysis of A=4 scattering and reaction data, and provide support for the {sup 4}He level scheme derived from that analysis. (orig.). 11 refs.

  16. Spin-isospin excitation of 3He with three-proton final state

    Science.gov (United States)

    Ishikawa, Souichi

    2018-01-01

    Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.

  17. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  18. Spin dynamics of superfluid 3He-B in a slab geometry

    International Nuclear Information System (INIS)

    Ishikawa, O.; Sasaki, Y.; Mizusaki, T.; Hirai, A.; Tsubota, M.

    1989-01-01

    The spin dynamics and the spin relaxation mechanisms of the superfluid 3 He-B were studied by using the NMR method in a slab geometry, where the superfluid 3 He-B was confined between narrow parallel plates with a gap smaller than the healing length of the n-texture and the magnetic field was applied and to the plates. The relaxation parameter in the Leggett-Takagi (LT) equations was determined from a line width measurement of the transverse CW NMR. By using the pulsed NMR method, spin dynamics were studied in the nonlinear region. The observed spin dynamics were in good agreement with a numerical calculation of the LT equations together with the relaxation parameter determined by the CW NMR. When the tipping angle became larger than a certain critical value, the superfluid 3 He-B entered the Brinkman-Smith (BS) state. In this case, they observed the slow relaxation process in the BS state and then the rapid recovery process from the BS state to the initial non-Leggett configuration. The slow process in the BS state was attributed to the surface relaxation mechanism due to the torque from the surface-field energy

  19. Spin-isospin excitations studied by polarized beams

    International Nuclear Information System (INIS)

    Sakai, H.; Greenfield, M.B.; Hatanaka, K.

    1996-01-01

    The spin-parity J π of the spin dipole resonances (SDR) in 12 N and 12 B are investigated via the measurements of polarization observables, the transverse polarization transfer coefficient D NN for the (vector p, vector n) reaction at 197 and 295 MeV and the tensor analyzing power A xx for the (vector d, 2 He) reaction at 270 MeV. The polarization observables, D NN and A xx for the peak at 4.5 MeV are consistent with the DWIA prediction with 2 - but those for the peak at 7.5 MeV contradict the predictions with an expected J π =1 - . Neither polarization observables could detect any concentration of 0 - strength. The usefulness of these spin observables in identifying J π is shown. (orig.)

  20. Burn characteristics of compressed fuel pellets for D-3He inertial fusion

    International Nuclear Information System (INIS)

    Nakao, Y.; Honda, T.; Honda, Y.; Kudo, K.; Nakashima, H.

    1992-01-01

    In this paper, the feasibility of using D- 3 He fuel in inertial confinement fusion is examined by using a hydrodynamics code that includes neutron and charged-particle transport routines. The use of a small amount of deuterium-tritium (D-T) ignitor is indispensable. Burn simulations are made for quasi-isobaric D-T/D- 3 He pellet models compressed to 5000 times the liquid density. Substantial fuel gains (∼500) are obtained from pellets having parameters ρR D-T = 3 g/cm 2 and ρR total = 14 g/cm 2 and a central spark temperature of 5 keV. The amount of driver energy needed to achieve these gains is estimated to be ∼ 30 MJ when the coupling efficiency is 10%. The driver energy requirement can be reduced by using spin-polarized D-T and D- 3 He fuels

  1. POLARIZED-LIGHT EMISSION IN KEV HE2++NA(3S) COLLISIONS

    NARCIS (Netherlands)

    BODUCH, P; VANBUCHEM, J; BLIEK, FW; HOEKSTRA, R; MORGENSTERN, R; OLSON, RE

    1995-01-01

    We investigated l and m-distributions of He II (n = 4) states formed during 2-13.3 keV amu(-1) He2+ + Na(3s) collisions by measuring profiles and the linear polarization of the He II (4 --> 3) emission. We found that at these energies capture into He+(4f) dominates over capture into other He+(4l)

  2. Spin dependence in the neutralization of He+ ions in metals: An analysis of different contributions

    International Nuclear Information System (INIS)

    Alducin, M.

    2005-01-01

    We study the spin polarization of the Auger electrons produced during the neutralization of He + ions in a free electron gas. In this process, one metal electron decays to the unoccupied state and a second electron is promoted to a continuum excited state. Although the spin of the decaying electron is fixed, both spins are allowed for the excited one. The states of the electrons involved in this Auger capture process are described by the spin-dependent Kohn-Sham orbitals obtained from density functional theory and the local spin approximation. The Auger capture rates indicate a strong polarization of the excited electron. In a paramagnetic free electron gas, there are two mechanisms accounting for this effect, the spin-dependent screening and the interference between indistinguishable processes when the involved electrons are in the same spin state. In a spin-polarized medium, the difference in the density of spin-up and spin-down electrons is a new ingredient to be considered. As a result, the excited electrons preferably come from the majority band, even in the case of He + ions with spin opposite to that of the majority band embedded in a low spin-polarized free electron gas

  3. Distorted spin dependent spectral function of {sup 3}He and semi-inclusive deep inelastic scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)

    2014-03-01

    The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.

  4. Surface study of liquid 3He using surface state electrons

    International Nuclear Information System (INIS)

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  5. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  6. Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

    International Nuclear Information System (INIS)

    Patricia Solvignon

    2006-01-01

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F 2 of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g 1 and the virtual photon asymmetry A 1 at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron ( 3 He) in the moderate momentum transfer (Q 2 ) region, 1.0 2 2 ), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized 3 He target. Asymmetries and cross section differences were measured in order to extract the 3 He spin structure function g 1 and virtual photon asymmetry A 1 in the resonance region. A test of quark-hadron duality has then been performed for the 3 He and neutron structure functions. The study of spin duality for

  7. Development of a {sup 3}He magnetometer for a neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas; Heil, Werner; Lauer, Thorsten; Neumann, Daniel [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); Koch, Hans-Christian [Johannes Gutenberg University, Institute of Physics, Mainz (Germany); University of Fribourg, Physics Department, Fribourg (Switzerland); Daum, Manfred [Paul Scherrer Institute, Villigen (Switzerland); Pazgalev, Anatoly [Ioffe Institute, St Petersburg (Russian Federation); Sobolev, Yuri [Johannes Gutenberg University, Institute of Nuclear Chemistry, Mainz (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Weis, Antoine [University of Fribourg, Physics Department, Fribourg (Switzerland)

    2014-01-01

    We have developed a highly sensitive {sup 3}He magnetometer for the accurate measurement of the magnetic field in an experiment searching for an electric dipole moment of the neutron. By measuring the Larmor frequency of nuclear spin polarized {sup 3}He atoms a sensitivity on the femto-Tesla scale can be achieved. A {sup 3}He/Cs-test facility was established at the Institute of Physics of the Johannes Gutenberg University in Mainz to investigate the readout of {sup 3}He free induction decay with a lamp-pumped Cs magnetometer. For this we designed and built an ultra-compact and transportable polarizer unit which polarizes {sup 3}He gas up to 55% by metastability exchange optical pumping. The polarized {sup 3}He was successfully transfered from the polarizer into a glass cell mounted in a magnetic shield and the {sup 3}He free induction decay was detected by a lamp-pumped Cs magnetometer. (orig.)

  8. Effective interactions in dilute mixtures of 3He in 4He

    International Nuclear Information System (INIS)

    Hsu, W.; Pines, D.

    1985-01-01

    Nonlocal pseudopotentials which describe the effective interaction between 3 He quasiparticles, and between these quasiparticles and the background 4 He liquid, are obtained as a function of concentration and pressure by generalizing the Aldrich--Pines pseudopotentials for pure 3 He and 4 He to dilute mixtures. The hierarchy of physical effects which determine these pseudopotentials is established. Interaction-induced short-range correlations are the dominant physical feature; next in order of importance is the greater zero point motion associated with the replacement of a 4 He atom by a 3 He atom, while spin-duced ''Pauli principle'' correlations play a significantly smaller, albeit still important role. We find a consistent trend in the change of the effective direct quasiparticle interactions with increasing concentration, and show how the Aldrich-Pines pseudopotentials for pure 3 He quasiparticles represent a natural extension of our results for dilute mixtures. Our calculated nonlocal pseudopotential for 3 He quasiparticles is qualitatively similar to that proposed by Bardeen, Baym, and Pines; it changes sign at somewhat lower momentum transfers than the BBP result, varies little with concentration, and provides a physical basis for understanding the BBP result. The effective interaction between quasiparticles of parallel spin, here determined for the first time, is essentially repulsive in the very dilute limit; as the concentration increases, it becomes increasingly attractive at low momentum transfers, and resembles closely that between antiparallel spin quasiparticles at 5% concentration. The concentration-dependent transport properties calculated from these pseudopotentials (which involve only one phenomenological parameter) are in good agreement with experiment at saturated vapor pressure (SVP), 10 atm, and 20 atm

  9. Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}.

    Science.gov (United States)

    Baek, S-H; Do, S-H; Choi, K-Y; Kwon, Y S; Wolter, A U B; Nishimoto, S; van den Brink, Jeroen; Büchner, B

    2017-07-21

    We report a ^{35}Cl nuclear magnetic resonance study in the honeycomb lattice α-RuCl_{3}, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α-RuCl_{3} exhibits a magnetic-field-induced QSL. For fields larger than ∼10  T, a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ∼50  K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.

  10. Evidence for a Field-Induced Quantum Spin Liquid in α -RuCl3

    Science.gov (United States)

    Baek, S.-H.; Do, S.-H.; Choi, K.-Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; van den Brink, Jeroen; Büchner, B.

    2017-07-01

    We report a 35Cl nuclear magnetic resonance study in the honeycomb lattice α -RuCl3 , a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α -RuCl3 exhibits a magnetic-field-induced QSL. For fields larger than ˜10 T , a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ˜50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.

  11. Spin polarized electron source technology transferred from HE accelerators to electron microscopes

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2009-01-01

    For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)

  12. Slow modes in spin hydrodynamics of 3He-B

    International Nuclear Information System (INIS)

    Golo, V.L.; Kats, E.I.

    1986-01-01

    We study nonlinear interaction between sound and spin modes with the view of finding a means for detecting second sound pumped in a sample of 3 He-B. We find that the interaction could be tangible for second sound and spin-textual waves which are long wavelength spatial modulations of the WP mode of magnetic ringing. We show that within a thin layer close to the loudspeaker second sound generates the dephasing delta psi of the spin precession. We suggest that the mode of the w-oscillations could be detected with the technique for the propagating magnetic disturbance. Our numerical estimates indicate that in te temperature and pressure region 1 - T/Tsub(c) approximately equal to 0.01 and p=21.7 bar, and the frequency and power of second sound of order 100 Hz and 10 -3 erg/s, the dephasing of the spin precession may amount to 0.1 rad, and result in a swinging of the precession axis w

  13. The {sup 3}He neutron-spin filter at ILL

    Energy Technology Data Exchange (ETDEWEB)

    Tasset, F; Heil, W; Humblot, H; Lelievre-Berna, E; Roberts, T [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Neutron-Spin Filters (NSF) using gaseous polarised {sup 3}He have long been recognised as of enormous potential value in many polarised neutron-scattering applications and, accordingly, ILL started a development programme some years ago. This report gives an account of the present status of the project. (author). 13 refs.

  14. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  15. Specific features of kinetics of He3-He4 solid solution transformations at superlow temperatures

    International Nuclear Information System (INIS)

    Mikheev, V.A.; Majdanov, V.A.; Mikhin, N.P.

    1986-01-01

    The NMR data on the phase transition kinetics of 3 He- 4 He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm 2 /mol with a 3 He content of 0.54 %. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of 3 He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid

  16. Entanglement in 3D Kitaev spin liquids

    Science.gov (United States)

    Matern, S.; Hermanns, M.

    2018-06-01

    Quantum spin liquids are highly fascinating quantum liquids in which the spin degrees of freedom fractionalize. An interesting class of spin liquids are the exactly solvable, three-dimensional Kitaev spin liquids. Their fractionalized excitations are Majonara fermions, which may exhibit a variety of topological band structures—ranging from topologically protected Weyl semi-metals over nodal semi-metals to systems with Majorana Fermi surfaces. We study the entanglement spectrum of such Kitaev spin liquids and verify that it is closely related to the topologically protected edge spectrum. Moreover, we find that in some cases the entanglement spectrum contains even more information about the topological features than the surface spectrum, and thus provides a simple and reliable tool to probe the topology of a system.

  17. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  18. Polarization transfer in the 3H(rvec p,rvec n)3He reaction and the 0- level in 4He

    International Nuclear Information System (INIS)

    Walston, J.R.; Gould, C.R.; Haase, D.G.; Raichle, B.W.; Seely, M.L.; Walston, J.R.; Keith, C.D.; Gould, C.R.; Haase, D.G.; Raichle, B.W.; Seely, M.L.; Tornow, W.; Wilburn, W.S.; Keith, C.D.; Tornow, W.; Wilburn, W.S.; Hoffmann, G.W.; Penttilae, S.I.

    1998-01-01

    Longitudinal polarization-transfer coefficients for the 3 H(rvec p,rvec n) 3 He reaction have been measured at zero degrees for proton energies of 1.3 endash 2.8 MeV. The results show a striking resonance behavior for energies corresponding to excitation of the 0 - level in 4 He at 21.0 MeV. In agreement with R-matrix calculations, the value approaches unity at 1.52 MeV, the peak of the resonance. Near this same energy, at 1.62 MeV, the transverse polarization-transfer coefficient was measured to be consistent with zero. copyright 1998 The American Physical Society

  19. Effective mass of liquid 3He using the melting curve data

    International Nuclear Information System (INIS)

    Chaddah, P.; Simmons, R.O.; Illinois Univ., Urbana

    1980-01-01

    Measurements of dp/dt and of the liquid and solid molar volumes along the melting curve of 3 He can be used to obtain information about the Fermi liquid parameter Esub(f) = p 2 sub(f)/2m* of liquid 3 He. Data at temperatures reasonably far above the Neel temperature of the solid, but low enough so that the first finite-temperature correction term in Fermi liquid theory is not large are used. It is shown that in spite of uncertainties in the solid 3 He entropy because of uncertainties in the knowledge of the exchange mechanism, the melting curve data provide a check on the different sets of values for m* quoted in literature. The possible effect of ground state vacancies, whose existence in BCC 3 He has been speculated on this analysis is also discussed. (author)

  20. Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics

    Science.gov (United States)

    Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.

    Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.

  1. The 3He spectral function in light-front dynamics

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2016-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.

  2. Setup and taking into operation of a highly sensitive {sup 3}He magnetometer for a future experiment for the determination of an electric dipole moment of the free neutron; Aufbau und Inbetriebnahme eines hochsensitiven {sup 3}He-Magnetometers fuer ein zukuenftiges Experiment zur Bestimmung eines elektrischen Dipolmoments des freien Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Andreas

    2012-12-20

    The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized {sup 3}He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a {sup 3}He/Cs-test facility was built to investigate the readout of {sup 3}He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes {sup 3}He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. {sup 3}He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.

  3. Study of the short-range 3He structure from the dd→3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.V.

    1995-01-01

    An experiment on studying of the tensor analysing power C 0,NN,0,0 and spin correlation C N,N,0,0 due to the transverse polarization of both initial particles from the dd→ 3 Hen reaction has been proposed. Those polarization observables are very sensitive to the short-range 3 He structure. This experiment is proposed to be done at the LHE Accelerator Complex using both a polarized deuteron beam and a polarized deuterium target. 25 refs., 2 figs

  4. The Spin Structure of 3He and the Neutron at Low Q2: A Measurement of the Generalized GDH Integrand

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, Vincent [College of William and Mary, Williamsburg, VA (United States)

    2007-08-01

    Since the 1980's, the study of nucleon (proton or neutron) spin structure has been an active field both experimentally and theoretically. One of the primary goals of this work is to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction. In the high energy region of asymptotically free quarks, QCD has been verified. However, verifiable predictions in the low energy region are harder to obtain due to the complex interactions between the nucleon's constituents: quarks and gluons. In the non-pertubative regime, low-energy effective field theories such as chiral perturbation theory provide predictions for the spin structure functions in the form of sum rules. Spin-dependent sum rules such as the Gerasimov-Drell-Hearn (GDH) sum rule are important tools available to study nucleon spin structure. Originally derived for real photon absorption, the Gerasimov-Drell-Hearn (GDH) sum rule was first extended for virtual photon absorption in 1989. The extension of the sum rule provides a unique relation, valid at any momentum transfer ($Q^{2}$), that can be used to study the nucleon spin structure and make comparisons between theoretical predictions and experimental data. Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to examine the spin structure of the neutron and $^{3}$He. The Jefferson Lab longitudinally-polarized electron beam with incident energies between 1.1 and 4.4 GeV was scattered from a longitudinally or transversely polarized $^{3}$He gas target in the Hall A end station. Asymmetries and polarized cross-section differences were measured in the quasielastic and resonance regions to extract the spin structure functions $g_{1}(x,Q^{2})$ and $g_{2}(x,Q^{2})$ at low momentum transfers (0.02 $< Q^{2} <$ 0.3 GeV$^{2}$). The goal of the experiment was to perform a precise measurement of the $Q^{2}$ dependence of the extended GDH integral and of the moments of

  5. The new phases of liquid 3He

    International Nuclear Information System (INIS)

    Leggett, A.J.

    1976-01-01

    Comments are made on two new phases of liquid 3 He, referred to as 3 He-A and 3 He-B, discovered in the temperature region below 3 mk. It has been assumed that these new phases are anisotropic superfluids, and a general picture of them is presented, which has been successful in explaining at least qualitatively, many of the static, dynamic and transport properties of the new phases. Whilst the qualitative behaviour is in good agreement with theory there are, however, some quantitative discrepancies. In many cases these may be due to orientational and geometric effects not yet understood. One of the most fruitful areas for comparison of theory and experiment is the NMR behaviour and the dynamic nuclear magnetism. The anomalous behaviour observed arises because the nuclear dipole energy, although very small, can act coherently in the superfluid state. (U.K.)

  6. Nuclear spin dynamics in solid {sup 3}He at ultralow temperatures; Kernspindynamik in festem {sup 3}He bei ultratiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Kath, Matthias

    2009-11-06

    In this thesis the experimental study of the spin dynamics of solid {sup 3}He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with {theta}{sub W}{approx}2.1 mK and by this an order parameter of J={theta}{sub W}k{sub B}/{approx}-0.5 Kk{sub B} was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of {tau}{sub 1}(6 mK)=240 ms{+-}12 ms and {tau}{sub 1}(1 mK){approx} 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time {tau}{sub 2}(6 mK)=4540 {mu}s{+-}140 {mu}s. Furthermore neutron scattering studies were performed. (HSI)

  7. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  8. The scattering of polarized deuterons on 3He between 10 and 17 MeV

    International Nuclear Information System (INIS)

    Ohlsen, G.G.; Jarmie, N.; Haglund, R.H. Jr.; Brown, R.E.; Schmelzbach, P.A.

    1978-01-01

    Using the LASL polarized beam facility, the cross section and vector and tensor analysing powers for the 3 He(d vector,d) 3 He and 3 He(d vector,p) 4 He reactions have been measured in a large angular range at energies between 10 and 17 MeV. (orig./WL) [de

  9. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  10. Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy

    Science.gov (United States)

    Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph

    A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.

  11. Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

    Energy Technology Data Exchange (ETDEWEB)

    Solvignon, Patricia [Temple Univ., Philadelphia, PA (United States)

    2006-08-01

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F2 of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g1 and the virtual photon asymmetry A1 at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron (3He) in the moderate momentum transfer (Q2) region, 1.0 < Q2 < 4.0 (GeV/c2), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized 3He target. Asymmetries and cross section differences were measured in order to extract the 3He spin structure function g1 and virtual photon asymmetry A1 in the resonance region. A test

  12. Searches for Lorentz violation in {sup 3}He/{sup 129}Xe clock comparison experiments

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, F. [Universitaet Heidelberg, Physikalisches Institut (Germany); Burghoff, M. [Physikalisch-Technische Bundesanstalt (Germany); Heil, W., E-mail: wheil@uni-mainz.de; Karpuk, S. [Johannes-Gutenberg Universitaet, Institut fuer Physik (Germany); Kilian, W.; Knappe-Grueneberg, S.; Mueller, W. [Physikalisch-Technische Bundesanstalt (Germany); Schmidt, U. [Universitaet Heidelberg, Physikalisches Institut (Germany); Schnabel, A.; Seifert, F. [Physikalisch-Technische Bundesanstalt (Germany); Sobolev, Yu [Johannes-Gutenberg Universitaet, Institut fuer Physik (Germany); Trahms, L. [Physikalisch-Technische Bundesanstalt (Germany); Tullney, K. [Johannes-Gutenberg Universitaet, Institut fuer Physik (Germany)

    2013-03-15

    We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized {sup 3}He or {sup 129}Xe samples with a SQUID as magnetic flux detector. Characteristic spin precession times T{sub 2}{sup Asterisk-Operator} of up to 115 h were measured in low magnetic fields (about 1 {mu}T) and in the regime of motional narrowing. With the detection of the free precession of co-located {sup 3}He/{sup 129}Xe nuclear spins (clock comparison), the device can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out in the weighted frequency difference, i.e., {Delta}{omega} = {omega}{sub He} - {gamma}{sub He}/{gamma}{sub Xe}{center_dot}{omega}{sub Xe}. We report on searches for Lorentz violating signatures by monitoring the Larmor frequencies of co-located {sup 3}He/{sup 129}Xe spin samples as the laboratory reference frame rotates with respect to distant stars (sidereal modulation).

  13. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  14. Setup and taking into operation of a highly sensitive 3He magnetometer for a future experiment for the determination of an electric dipole moment of the free neutron

    International Nuclear Information System (INIS)

    Kraft, Andreas

    2012-01-01

    The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized 3 He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a 3 He/Cs-test facility was built to investigate the readout of 3 He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes 3 He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. 3 He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.

  15. Influence of the intermediate bcc phase on the evolution of superfluid inclusions in hcp matrix 3He-4He

    International Nuclear Information System (INIS)

    Birchenko, A.P.; Mikhin, N.P.; Neoneta, A.S.; Rudavskij, Eh.Ya.; Fisun, Ya.Yu.

    2016-01-01

    The evolution of liquid inclusions which are formed in the hcp matrix by rapid cooling of the 3 He- 4 He solution containing 1.05% 3 He was studied by pulse NMR. The diffusion coefficient of 3 He in the liquid was measured by two-pulses spin-echo method during evolution of the inclusions. Measurements were carried out at 1.67 K which corresponds to the bcc phase existence in the phase diagram, as well as at 1.38 K, where the bcc phase is absent. It is found that in the process of the evolution, in both cases the size of the liquid inclusions is less than diffusion length and so the diffusion is restricted. The measured restricted dif-fusion coefficient allowed to find the characteristic size of the inclusions. In the first case, during the evolution of liquid inclusions, dendrites of intermediate bcc phase is forming and the inclusions are separating into a lot of smaller droplets. Due to the rapid growth of the bcc dendrites, the droplet size decreases rapidly, and the process comes to disappearance of bcc phase and an amorphous state appearance. The results obtained by measuring the diffusion coefficient, correlated with the behavior of the spin-lattice relaxation time in such a system. In the second case at a lower temperature bcc phase is not formed, and the size of the liquid inclusions decreases very slow until the completion of their solidification.

  16. 3He impurities on liquid 4He: possible existence of excited states

    International Nuclear Information System (INIS)

    Pavloff, N.; Treiner, J.

    1989-01-01

    We study, using a density functional approach, the properties of the two dimensional system formed by 3 He atoms on the surface of liquid 4 He, as a function of 3 He coverage N s . We find that the excited state recently proposed by Dalfovo and Stringari in the case of infinite dilution does survive when the number of surface 3 He atoms increases. For small values of N s , the surface tension σ is, as expected, linear in N s 2 . For N s ≅0.035 atom per square-Angstrom, i.e. half a monolayer, a new type of surface state starts being occupied, and this feature manifests itself by a change in the slope of σ as a function of N s 2 and, more clearly, by a discontinuity in the surface specific heat, which increases by a factor of almost 2. These predictions call for experimental investigations

  17. Specific features of kinetics of He/sup 3/-He/sup 4/ solid solution transformations at superlow temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, V A; Majdanov, V A; Mikhin, N P

    1986-06-01

    The NMR data on the phase transition kinetics of /sup 3/He-/sup 4/He solid solutions at T=100 mK are considered. Studied are solid helium samples of a molecular volume of 20.55 cm/sup 2//mol with a /sup 3/He content of 0.54%. An unusually long phase transition time is found which is dependent on the prehistory of sample. The spin diffusion of /sup 3/He in the transformated solution concentrated phase is found to be of a quasi-one-dimensional nature with the diffusion coefficient value typical of liquid.

  18. Spin-polarized hydrogen, deuterium, and tritium : I

    International Nuclear Information System (INIS)

    Haugen, M.; Ostgaard, E.

    1989-01-01

    The ground-state energy of spin-polarized hydrogen, deuterium and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D, however, we obtain theoretical results for the ground-state binding energy per particle from -0.4 K at an equilibrium particle density of 0.25 σ -3 or a molar volume of 121 cm 3 /mol to +0.32 K at an equilibrium particle density of 0.21 σ -3 or a molar volume of 142 cm 3 /mol, where σ = 3.69 A (1A = 10 -10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T, we obtain theoretical results for the ground-state binding energy per particle from -4.73 K at an equilibrium particle density of 0.41 σ -3 or a molar volume of 74 cm 3 /mol to -1.21 K at an equilibrium particle density of 0.28 σ -3 or a molar volume of 109 cm 3 /mol. (Author) 27 refs., 9 figs., tab

  19. Cryogenic polarized target facility: status

    International Nuclear Information System (INIS)

    Gould, C.; Nash, H.K.; Roberson, N.; Schneider, M.; Seagondollar, W.; Soderstrum, J.

    1985-01-01

    The TUNL cryogenically polarized target facility consists of a 3 He- 4 He dilution refrigerator and a superconducting magnet, together capable of maintaining samples at between 10 and 20 mK in magnetic fields up to 7 Tesla. At these temperatures and magnetic fields brute-force nuclear orientation occurs. Polarizations from 20 to 60% are attainable in about twenty nonzero spin nuclei. Most are metals, ranging in mass from 6 Li to 209 Bi, but the nuclei 1 H and 3 He are also polarizable via this method. The main effort is directed towards a better determination of the effective spin-spin force in nuclei. These experiments are briefly described and the beam stabilization system, cryostat and polarized 3 He targets are discussed

  20. Interplay of nonsymmorphic symmetry and spin-orbit coupling in hyperkagome spin liquids: Applications to Na4Ir3O8

    Science.gov (United States)

    Huang, Biao; Kim, Yong Baek; Lu, Yuan-Ming

    2017-02-01

    Na4Ir3O8 provides a material platform to study three-dimensional quantum spin liquids in the geometrically frustrated hyperkagome lattice of Ir4 + ions. In this work, we consider quantum spin liquids on a hyperkagome lattice for generic spin models, focusing on the effects of anisotropic spin interactions. In particular, we classify possible Z2 and U (1 ) spin liquid states, following the projective symmetry group analysis in the slave-fermion representation. There are only three distinct Z2 spin liquids, together with 2 different U (1 ) spin liquids. The nonsymmorphic space group symmetry of the hyperkagome lattice plays a vital role in simplifying the classification, forbidding "π -flux" or "staggered-flux" phases in contrast to symmorphic space groups. We further prove that both U (1 ) states and one Z2 state among all 3 are symmetry-protected gapless spin liquids, robust against any symmetry-preserving perturbations. Motivated by the "spin-freezing" behavior recently observed in Na4Ir3O8 at low temperatures, we further investigate the nearest-neighbor spin model with the dominant Heisenberg interaction subject to all possible anisotropic perturbations from spin-orbit couplings. We find that a U (1 ) spin liquid ground state with spinon Fermi surfaces is energetically favored over Z2 states. Among all spin-orbit coupling terms, we show that only the Dzyaloshinskii-Moriya interaction can induce spin anisotropy in the ground state when perturbing from the isotropic Heisenberg limit. Our work paves the way for a systematic study of quantum spin liquids in various materials with a hyperkagome crystal structure.

  1. Positive ion mobilities in normal liquid 3He at ultralow temperatures

    International Nuclear Information System (INIS)

    Alexander, P.W.

    1978-11-01

    The mobility has been measured of positive ions in liquid 3 he in the range 2.5 mK 3 sub(m)/sup(V) 5 sub(m)/sup(V). The effects of 500 p.p.m. 4 He in the 3 He were investigated. It was found that, at low temperatures, several stable ion species could be produced for 3 He pressures of 23 bar and above and, between 25 mK and 60 mK, time dependent conversion from one species of ion to another was observed at all pressures. The creation mechanism, mobility and stability of multiple positive ions were studied. Possible explanations of the phenomena are discussed. The measured drift field dependence of mobility is used to test the quasiparticle scattering model assumed for the liquid. (U.K.)

  2. High-momentum response of liquid He3

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Boronat, J.; Casulleras, J.

    2004-01-01

    A final-state-effects formalism suitable to analyze the high-momentum response of Fermi liquids is presented and used to study the dynamic structure function of liquid He 3 . The theory, developed as a natural extension of the Gersch-Rodriguez formalism, incorporates the Fermi statistics explicitly through a new additive term which depends on the semidiagonal two-body density matrix. The use of a realistic momentum distribution, calculated using the diffusion Monte Carlo method, and the inclusion of this additive correction allows for good agreement with available deep-inelastic neutron scattering data

  3. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  4. Anisotropic magnetoresistance and spin polarization of La0.7Sr0.3MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Wang, L.M.; Guo, C.-C.

    2005-01-01

    The crystalline structure, anisotropic magnetoresistance (AMR), and magnetization of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 (LSMO/STO) superlattices grown by a rf sputtering system are systematically analyzed to study the spin polarization of manganite at interfaces. The presence of positive low-temperature AMR in LSMO/STO superlattices implies that two bands of majority and minority character contribute to the transport properties, leading to a reduced spin polarization. Furthermore, the magnetization of superlattices follows the T 3/2 law and decays more quickly as the thickness ratio d STO /d LSMO increases, corresponding to a reduced exchange coupling. The results clearly show that the spin polarization is strongly correlated with the influence of interface-induced strain on the structure

  5. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    Science.gov (United States)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  6. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  7. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  8. A new type of liquid-3He target system using small mechanical refrigerators

    International Nuclear Information System (INIS)

    Kato, S.; Kobayashi, K.; Maruyama, K.; Okuno, H.; Konno, O.; Suda, T.; Maki, T.; Asami, H.; Koizumi, T.

    1991-04-01

    A new type of liquid- 3 He target has been developed for photoabsorption experiments at intermediate energies. Using the cooling power of liquid 4 He at reduced vapour pressure, 3 He gas is liquefied into a cylindrical target cell of 180 ml and is maintained at 2.0 K during the experiment. Evaporated 4 He gas is evacuated by a rotary pump and returned into the 4 He bath in the cryostat, where two small mechanical refrigerators with cooling capacities of 3 W at 4.3 K and 10 W at 20 K are operated for the purpose of 4 He recondensation. A maintenance-free operation of more than 1,000 hours has become possible by adopting the 4 He circulation system. (author)

  9. A polarized {sup 3}He target for the photon beam at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Institut de Physique Nucleaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne cedex (France); Aguar Bartolome, P.; Ahrens, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Altieri, S. [INFN Sezione di Pavia, Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, Pavia (Italy); Arends, H.J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Heil, W.; Karpuk, S.; Otten, E.W. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Salhi, Z. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Thomas, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany)

    2011-08-21

    A polarized {sup 3}He target has been installed for the first time inside the 4{pi} Crystal Ball detector at the tagged photon beam of the MAinz MIcrotron (MAMI). It has been demonstrated that the system works reliably and that the polarization losses during handling of the polarized gas are under control. Initial polarization values up to 70% and total relaxation times up to 20 h could be obtained during a first test beam time devoted to the measurement of the double polarized photoabsorption cross-section in the {Delta}(1232) baryon resonance region.

  10. Microscopic equation of state calculations: 1. Nuclear matter. 2. Liquid helium 3

    International Nuclear Information System (INIS)

    Heyer, J.P.

    1989-01-01

    A new method for calculating the equation of state of extended Fermi systems is proposed and applied to nuclear matter and liquid 3 He. New techniques are developed for summing up the particle-particle (pp) and particle-hole (ph) ring diagrams to all orders in the calculation of the ground state shift ΔE 0 for many-body systems. Analytic expressions for ΔE pp P 0 , the contribution from all of the pp ring diagrams to ΔE 0 , and ΔE ph 0 , the corresponding contribution from all of the ph ring diagrams, have been obtained. It has been shown that the pp ring diagram sum may be written as an integral over frequency, involving the particle-particle Green's function. A similar integral expression is derived for the ph ring diagram sum. Two methods are developed for carrying out the frequency integrations, namely the multipole and transition amplitude methods. These methods have been tested on an exactly-solvable many-fermion model, a modified Lipkin model, and compared. The author has studied the instability of nuclear matter at both zero and finite temperature within the pp ring diagram framework. He has found using the Gogny D1 effective nucleon-nucleon interaction, complex eigenvalues of an RPA-type secular equation are obtained in a well-defined temperature-density region. When complex eigenvalues occur, the thermodynamic potential becomes complex. The possible connection between the occurrence of complex eigenvalues and liquid-gas phase separation is discussed. The pp ring diagrams are also found to lower the compression modulus of nuclear matter. Lastly, the pp ring diagram method is applied to the calculation of the ground state energy of normal and spin-polarized liquid 3 He. We have found a binding energy per particle (BE/A) of 1.45 degree K and 1.79 degree K for the normal and spin-polarized systems, respectively

  11. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  12. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  13. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  14. NMR investigations of surfaces and interfaces using spin-polarized xenon

    International Nuclear Information System (INIS)

    Gaede, H.C.; Lawrence Berkeley Lab., CA

    1995-07-01

    129 Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129 Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10 5 times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13 C signal of CO 2 of xenon occluded in solid CO 2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ∼1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6

  15. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  16. Effective interactions and elementary excitations in quantum liquids

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    The effective interactions which provide a wavevector and frequency dependent restoring force for collective modes in quantum liquids are derived for the helium liquids by means of physical arguments and sum rule and continuity considerations. A simple model is used to take into account mode-mode coupling between collective and multiparticle excitations, and the results for the zero-temperature liquid 4 He phonon-maxon-roton spectrum are shown to compare favorably with experiment and with microscopic calculation. The role played by spin-dependent backflow in liquid 3 He is analyzed, and a physical interpretation of its variation with density and spin-polarization is presented. A progress report is given on recent work on effective interactions and elementary excitations in nuclear matter, with particular attention to features encountered in the latter system which have no counterparts in the helium liquids

  17. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  18. Large-xF spin asymmetry in π0 production by 200-GeV polarized protons

    International Nuclear Information System (INIS)

    Adams, D.L.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Cossairt, J.D.; Read, A.L.; En'yo, H.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Krueger, K.W.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Pauletta, G.; Penzo, A.; Schiavon, P.; Zanetti, A.; Salvato, G.; Villari, A.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Yoshida, T.

    1992-01-01

    The spin asymmetry A N for inclusive π 0 production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range of x F , with 0.5 T F >0.3, the asymmetry rises with increasing x F and reaches a value of A N =0.15±0.03 in the region 0.6 F <0.8. This result provides new input regarding the question of the internal spin structure of transversely-polarized protons. (orig.)

  19. {gamma} decay of spin-isospin states in {sup 13}N via ({sup 3}He, t{gamma}) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, F; Akimune, H; Daito, I; Fujimura, H; Fujiwara, M; Inomata, T; Ishibashi, K; Yoshida, H [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Fujita, Y

    1998-03-01

    Spin-isospin states in {sup 13}N have been studied by means of the {sup 13}C ({sup 3}He,t) reaction at and near zero degree, at E({sup 3}He)=450 MeV. Decayed {gamma}-rays from each state were measured at backward angle in coincidence with the ejectile tritons. The branching ratio of {gamma} decay for some of spin-isospin states were determined and were compared to those from previous data. (author)

  20. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  1. In situ SEOP polarised {sup 3}He neutron spin filter for incident beam polarisation and polarisation analysis on neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Boag, S., E-mail: s.boag@rl.ac.u [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Babcock, E. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France); Juelich Centre for Neutron Science at FRM II, Lichtenbergstrae 1, 85747 Garching (Germany); Andersen, K.H.; Becker, M. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France); Charlton, T.R. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Chen, W.C. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Dalgliesh, R.M.; Elmore, S.D.; Frost, C.D. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Gentile, T.R. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Lopez Anton, R. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); ICMA, CSIC-Universidad de Zaragoza, Zaragoza 50009 (Spain); Parnell, S.R. [Academic Unit of Radiology, University of Sheffield, S10 2JF (United Kingdom); Petoukhov, A.K. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France); Skoda, M.W.A. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Soldner, T. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France)

    2009-09-01

    We discuss the development and characterisation of a new in situ spin exchange optical pumping (SEOP) based {sup 3}He neutron spin filter polarisation device. We present results from a recent test of the prototype system developed with the Institut Laue-Langevin. The polariser was installed on the polarised reflectometer CRISP at ISIS in the analyser position. The {sup 3}He was pumped continuously in situ on the beamline. The system also integrated a {sup 3}He adiabatic fast passage spin flipper that allowed reversal of the {sup 3}He and therefore neutron polarisation state, allowing for measurement of all four polarisation cross-sections. The system was run for a number of days reaching a {sup 3}He polarisation of 63%.

  2. Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X

    Energy Technology Data Exchange (ETDEWEB)

    Katich, Joseph; Qian, Xin; Zhao, Yuxiang; Allada, Kalyan; Aniol, Konrad; Annand, John; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Bradshaw, Elliott; Bosted, Peter; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Chen, Wei; Chirapatpimol, Khem; Chudakov, Eugene; Cisbani, Evaristo; Cornejo, Juan; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; De Leo, Raffaele; Deng, Xiaoyan; Deur, Alexandre; Ding, Huaibo; Dolph, Peter; Dutta, Chiranjib; Dutta, Dipangkar; El Fassi, Lamiaa; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gaskell, David; Gilad, Gilad; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Guo, Lei; Hamilton, David; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jijun; Huang, Min; Ibrahim Abdalla, Hassan; Iodice, Mauro; Jin, Ge; Jones, Mark; Kelleher, Aidan; Kim, Wooyoung; Kolarkar, Ameya; Korsch, Wolfgang; LeRose, John; Li, Xiaomei; Li, Y; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lu, Hai-jiang; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Munoz Camacho, Carlos; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Oh, Yoomin; Osipenko, Mikhail; Parno, Diana; Peng, Jen-chieh; Phillips, Sarah; Posik, Matthew; Puckett, Andrew; Qiang, Yi; Rakhman, Abdurahim; Ransome, Ronald; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Schulte, Elaine; Shahinyan, Albert; Hashemi Shabestari, Mitra; Sirca, Simon; Stepanyan, Stepan; Subedi, Ramesh; Sulkosky, Vincent; Tang, Liguang; Tobias, William; Urciuoli, Guido; Vilardi, Ignazio; Wang, Kebin; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Z; Yuan, Lulin; Zhan, Xiaohui; Zhang, Yi; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao; Zhu, Lingyan; Zhu, Xiaofeng; Zong, Xing

    2014-07-01

    We report the first measurement of the target single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3He{uparrow}(e,e')X on a 3He gas target polarized normal to the lepton plane. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.7polarization and measured proton-to-3He cross section ratios. The measured neutron asymmetries are negative with an average value of (−1.04+/-0.38)×10−2 for invariant mass W>2 GeV, which is non-zero at the 2.75sigma level. Theoretical calculations, which assume two-photon exchange with quasi-free quarks, predict a neutron asymmetry of O(10−4) when both photons couple to one quark, and O(10−2) for the photons coupling to different quarks. Our measured asymmetry agrees both in sign and magnitude with the prediction that uses input based on the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.

  3. Large solid-angle polarisation analysis at thermal neutron wavelengths using a sup 3 He spin filter

    CERN Document Server

    Heil, W; Cywinski, R; Humblot, H; Ritter, C; Roberts, T W; Stewart, J R

    2002-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarised sup 3 He opens up the possibility of polarising neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. In this paper we describe the first large solid-angle polarisation analysis measurement using a sup 3 He neutron spin filter at thermal neutron wavelengths (lambda=2.5 A). This experiment was performed on the two-axis diffractometer D1B at the Institut Laue-Langevin using a banana-shaped filter cell (530 cm sup 3 ) filled with sup 3 He gas with a polarisation of P=52% at a pressure of 2.7 bar. A comparison is made with a previous measurement on D7 using a cold neutron beam on the same sample, i.e. amorphous ErY sub 6 Ni sub 3. Using uniaxial polarisation analysis both the nuclear and magnetic cross-sections could be extracted over the range of scattering-vectors [0.5<=Q(A sup - sup 1)<=3.5]. The results are in qualitative and quantitative agreement with the D7-data, whe...

  4. Feasibility study of a sup 3 He-magnetometer for neutron electric dipole moment experiments

    CERN Document Server

    Borisov, Y; Leduc, M; Lobashev, V; Otten, E W; Sobolev, Y

    2000-01-01

    We report on a sup 3 He-magnetometer capable of detecting tiny magnetic field fluctuations of less than 10 sup - sup 1 sup 4 T in experiments for measuring the electric dipole moment (EDM) of the neutron. It is based on the Ramsey technique of separated oscillating fields and uses nuclear spin-polarized sup 3 He gas which is stored in two vessels of V approx =10 l in a sandwich-type arrangement around the storage bottle for ultra-cold neutrons (UCN). The gas is polarized by means of optical pumping in a separate, small discharge cell at pressures around 0.5 mbar and is then expanded into the actual magnetometer volume. To detect the polarization of sup 3 He gas at the end of the storage cycle the gas is pumped out by means of an oil-diffusion pump and compressed again into the discharge cell where optical detection of nuclear polarization is used.

  5. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  6. Cross sections and spin polarizations of electrons elastically scattered from oriented molecules (CH3I)

    International Nuclear Information System (INIS)

    Fink, M.; Ross, A.W.; Fink, R.J.

    1989-01-01

    Elastic differential cross sections and spin polarizations for electrons elastically scattered from CH 3 I are calculated using the independent atom model. Three molecular orientations with respect to the incident electron wavevector are considered - first, the molecule is oriented randomly, second, the electron wave front and molecular bond are parallel, and third, the wavefront and the bond axis are perpendicular. It will be seen to what extent orientational averaging weakens features of the cross section and spin polarization. The calculations show that cross section and spin polarization measurements are a possible tool for determining the degree of molecular orientation. There is no degeneracy between I-C and C-I in cross section and spin polarization measurements. The results presented here for 200 eV and 600 eV electrons scattered by CH 3 I should be considered as a case study and it should be possible to find molecules and electron energies for which even more dramatic differences between the various orientations between the molecules and the electrons can be expected. (orig.)

  7. Versatile spin-polarized electron source

    Science.gov (United States)

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  8. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  9. Specific features of concentrated phase under decomposition of weak solid /sup 3/He-/sup 4/He solution

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, V A; Majdamov, V A; Kal' noj, S E; Omelaenko, N I

    1988-06-01

    The decomposition of solid /sup 3/He-/sup 4/He solutuions is studied on the samples 0.54% /sup 3/He(V=20.55 cm/sup 3//mole) and 0.60% /sup 4/He (V=24.04-24.93 cm/sup 3//mole) using pulse NMR method. At T=100 mK the decomposition of a weak solution proceeds more than for 30 h, the decomposition rate and temperature being dependent on the sample prehistory. In the concentrated phase of the decomposed weak solution the spin diffraction of /sup 3/He is of the quasi-one-dimensional character with the diffusion coefficient D /similar to/ 10/sup -5/ cm/sup 2//sec typical of liquid /sup 3/He and exceeding that bulk solid /sup 3/He by two orders of magnitude. The longitudinal relaxation time in the quasi-one-dimensional phase (/similar to/ 1 sec) is characteristic of the solid state and coinsides with data for bulk /sup 3/He. The temperature behaviour of magnetization in the quasi-one-dimensional phase is well described by the Curie law.

  10. A liquid He-3 target system for use at intermediate energies

    International Nuclear Information System (INIS)

    Hassell, D.K.; Abegg, R.; Murdoch, B.T.; van Oers, W.J.H.; Soukup, J.

    1981-04-01

    A liquid 3 He target system with remote instrumentation and handling capabilities has been developed for experiments using the 180-525 MeV TRIUMF cyclotron. Helium-3 gas is liquefied by means of a 4 He cryostat into a cylindrical target cell (4.4 cm diameter, 1.6 cm thick) and maintained during operation at approximately 1.6 K. This provides an areal target density of approximately 2.7 x 10 22 He-3 nuclei/cm 2 (128 mg/cm 2 ), suitable for intermediate energy proton scattering. (author)

  11. POLARIZED BEAMS: 1 - Longitudinal electron spin polarization at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-09-15

    Wednesday 4 May marked a turning point in the art of the manipulation of spins in electron storage rings: longitudinal electron spin polarization (with the spins oriented along the electrons' direction of motion) was established in the electron ring of HERA, the electronproton collider at DESY in Hamburg. A polarization level of about 55% was obtained and polarizations of over 60% were reproducibly obtained in the following days. The beam energy was 27.52 GeV, corresponding to half integer spin tune of 62.5.

  12. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  13. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  14. Muonium spin exchange in spin-polarized media: Spin-flip and -nonflip collisions

    International Nuclear Information System (INIS)

    Senba, M.

    1994-01-01

    The transverse relaxation of the muon spin in muonium due to electron spin exchange with a polarized spin-1/2 medium is investigated. Stochastic calculations, which assume that spin exchange is a Poisson process, are carried out for the case where the electron spin polarization of the medium is on the same axis as the applied field. Two precession signals of muonium observed in intermediate fields (B>30 G) are shown to have different relaxation rates which depend on the polarization of the medium. Furthermore, the precession frequencies are shifted by an amount which depends on the spin-nonflip rate. From the two relaxation rates and the frequency shift in intermediate fields, one can determine (i) the encounter rate of muonium and the paramagnetic species, (ii) the polarization of the medium, and most importantly (iii) the quantum-mechanical phase shift (and its sign) associated with the potential energy difference between electron singlet and triplet encounters. Effects of spin-nonflip collisions on spin dynamics are discussed for non-Poisson as well as Poisson processes. In unpolarized media, the time evolution of the muon spin in muonium is not influenced by spin-nonflip collisions, if the collision process is Poissonian. This seemingly obvious statement is not true anymore in non-Poissonian processes, i.e., it is necessary to specify both spin-flip and spin-nonflip rates to fully characterize spin dynamics

  15. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  16. Designing Kitaev Spin Liquids in Metal-Organic Frameworks

    Science.gov (United States)

    Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki

    2017-08-01

    Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.

  17. Study of elastic scattering of polarized proton with 6He by folding model

    International Nuclear Information System (INIS)

    Iseri, Y.; Tanifuji, M.; Ishikawa, S.; Hiyama, E.; Yamamoto, Y.

    2005-01-01

    Experimental data of the elastic scattering of 6 He with polarized proton target has been analyzed using a simple folding model. As we regard 6 He as three bodies consisting of 4 He+n+n, the potential between the proton and 6 He is obtained by folding the two potentials, one between a proton and 4 He and another between a proton and a neutron, with the density distribution of 6 He. Calculated results of both the differential cross section and the vector analyzing power reproduce the experimental data satisfactorily. It is shown that the vector analyzing power of the p- 6 He scattering is mainly due to the spin orbit interaction between the proton and 4 He. (S. Funahashi)

  18. Second sound, osmotic pressure, and Fermi-liquid parameters in 3He-4He solutions

    International Nuclear Information System (INIS)

    Corruccini, L.R.

    1984-01-01

    Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values for the Landau compressibility parameter F 0 /sup s/ in 3 He- 4 He solutions. Data are presented as a function of pressure and 3 He concentration, and are compared to theoretical predictions. The square of the second-sound velocity at finite temperature is found to be accurately proportional to the internal energy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk theory, the square of the velocity is found to separate into two parts: a temperature-dependent part characterized completely by ideal Fermi-gas behavior and a temperature-independent part containing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic pressure

  19. Role of spin polarized tunneling in magnetoresistance and low

    Indian Academy of Sciences (India)

    Role of spin polarized tunneling in magnetoresistance and low temperature minimum of polycrystalline La1–KMnO3 ( = 0.05, 0.1, ... Manganites; magnetoresistance; low temperature resistivity; spin polarized tunneling. ... Current Issue

  20. Contactless friction and the {sup 3}He-{sup 4}He dimer. Studies with the atomic-beam spin-echo spectrometer; Kontaktlose Reibung und das {sup 3}He-{sup 4}He-Dimer. Untersuchungen mit dem Atomstrahlspinechospektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Matthias

    2016-04-20

    In this thesis the time of flight resolved atomic beam spin echo method (SEToF) is applied to a {sup 3}He-beam for the first time and studied systematically. This method is shown to be superior to the usual atomic beam spin echo technique. With SEToF it is possible to almost completely remove unpolarized background and to reach a beam polarisation close to 100%. The SEToF technique is shown to be crucial for the first experimental proof of the existence of the {sup 3}He-{sup 4}He dimer. This dimer is the weakest bound van-der-Waals-molecule known to date. Furthermore, a drag force between an atom and a dielectric surface is detected originating from the fluctuating dipole moment of the atom. Not only the measured friction coefficients match their theoretical predictions perfectly, but our data also shows the correct temperature dependence. A great many technological renewals and improvements were installed in the apparatus during this thesis work. They have become necessary or sensible due to the relocation of the physics institute. A few of them are documented and motivated in this thesis.

  1. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  2. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  3. Spontaneous spin polarization in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, A.A., E-mail: a_vas2002@mail.ru

    2015-12-04

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  4. Spontaneous spin polarization in quantum wires

    International Nuclear Information System (INIS)

    Vasilchenko, A.A.

    2015-01-01

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  5. The polarization of MeV neutrons elastically scattered from 4He

    International Nuclear Information System (INIS)

    Bond, J.E.; Firk, F.W.K.

    1976-01-01

    The analyzing power of 4 He for neutron elastic scattering has been measured at four angles between 20 0 and 80 0 (lab) throughout the energy range 1.5-6.0 MeV using a double-scattering method. The intense flux of polarized neutrons was generated via the reactions Pb(γ, n)→ 12 C(n, n(pol.) 12 C, and the magnitude of the polarization of the neutron beam measured absolutely in a separate double-scattering experiment. Neutron energies were determined with a nanosecond time-of-flight spectrometer, and the generalized neutron spin-precession method was used to minimize systematic uncertainties. (Auth.)

  6. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    Science.gov (United States)

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  7. Elastic scattering of polarized neutrons by 3He at low energy

    International Nuclear Information System (INIS)

    Drigo, L.; Tornielli, G.; Zannoni, G.

    1982-01-01

    Elastic scattering by 3 He for 1.67, 2.43, 3.0, 3.4 and 7.8 MeV neutron beams of known polarization was measured at seven angles from 25 0 to 155 0 using a high pressure gas scintillation counter. The geometrical and multiple scattering effects were accounted for by the Monte Carlo technique. The corrected results were compared with previous experimental data and with the existing predictions based on microscopic calculations and phenomenological analyses. (author)

  8. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  9. Dimensional crossover of effective orbital dynamics in polar distorted He 3 -A : Transitions to antispacetime

    Science.gov (United States)

    Nissinen, J.; Volovik, G. E.

    2018-01-01

    Topologically protected superfluid phases of He 3 allow one to simulate many important aspects of relativistic quantum field theories and quantum gravity in condensed matter. Here we discuss a topological Lifshitz transition of the effective quantum vacuum in which the determinant of the tetrad field changes sign through a crossing to a vacuum state with a degenerate fermionic metric. Such a transition is realized in polar distorted superfluid He 3 -A in terms of the effective tetrad fields emerging in the vicinity of the superfluid gap nodes: the tetrads of the Weyl points in the chiral A-phase of He 3 and the degenerate tetrad in the vicinity of a Dirac nodal line in the polar phase of He 3 . The continuous phase transition from the A -phase to the polar phase, i.e., the transition from the Weyl nodes to the Dirac nodal line and back, allows one to follow the behavior of the fermionic and bosonic effective actions when the sign of the tetrad determinant changes, and the effective chiral spacetime transforms to antichiral "anti-spacetime." This condensed matter realization demonstrates that while the original fermionic action is analytic across the transition, the effective action for the orbital degrees of freedom (pseudo-EM) fields and gravity have nonanalytic behavior. In particular, the action for the pseudo-EM field in the vacuum with Weyl fermions (A-phase) contains the modulus of the tetrad determinant. In the vacuum with the degenerate metric (polar phase) the nodal line is effectively a family of 2 +1 d Dirac fermion patches, which leads to a non-analytic (B2-E2)3/4 QED action in the vicinity of the Dirac line.

  10. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT.

    Science.gov (United States)

    Kraayvanger, Ryan J; Bidinosti, Christopher P; Dominguez-Viqueira, William; Parra-Robles, Juan; Fox, Matthew; Lam, Wilfred W; Santyr, Giles E

    2010-11-01

    Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure. Copyright © 2010 Wiley-Liss, Inc.

  11. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  12. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    Science.gov (United States)

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  13. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  14. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  15. Tuning spin-polarized transport in organic semiconductors

    Science.gov (United States)

    Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.

  16. Measuring the Neutron and 3He Spin Structure at Low Q2

    International Nuclear Information System (INIS)

    Vince Sulkosky

    2005-01-01

    The spin structure of the nucleon has been of great interest over the past few decades. Sum rules, including the Gerasimov-Drell-Hearn (GDH), and moments of the spin structure functions are powerful tools for understanding nucleon structure. The GDH sum rule, originally derived for real photon absorption, has been generalized to nonzero Q 2 . The goal of Jefferson Lab experiment E97-110 is to perform a precise measurement of the Q 2 dependence of the generalized GDH integral and of the moments of the neutron and 3 He spin structure functions between 0.02 and 0.3 GeV 2 . This Q 2 range will allow us to test predictions of Chiral Perturbation Theory, and verify the GDH sum rule by extrapolating the integral to the real photon point. The measurement will also contribute to the understanding of nucleon resonances. The data have been taken in Hall A using a high resolution spectrometer with the addition of a septum magnet, which allowed us to access the low Q 2 region. The analysis's status, prospects and impact will be discussed

  17. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  18. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  19. Spin flipping a stored polarized proton beam

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Derbenev, Y.S.; Ellison, T.J.P.; Lee, S.Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Blinov, B.B.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Kaufman, W.A.; Krisch, A.D.; Nurushev, T.S.; Phelps, R.A.; Ratner, L.G.; Wong, V.K.; Ohmori, C.

    1994-01-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000±0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments

  20. Large-x sub F spin asymmetry in. pi. sup 0 production by 200-GeV polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D L; Corcoran, M D; Cranshaw, J; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Roberts, J B; Skeens, J; White, J L [Rice Univ., Houston, TX (United States). T.W. Bonner Nuclear Lab.; Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (United States). Dept. of Physics; Belikov, N I; Derevschikov, A A; Grachov, O A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Patalakha, D I; Rykov, V L; Solovyanov, V L; Vasiliev, A N [Inst. of High Energy Physics, Serpukhov (Russia); Bystricky, J; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (United States); En' yo, H; Funahashi, H; Goto, Y; Imai, K; Itow, Y; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Saito, N; Yamashita, S [Kyoto Univ. (Japan). Dept. of Physics; Grosnick, D P; Hill, D A; Laghai, M; Lopiano, D; Ohashi, Y; Spinka, H; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (United States); FNAL E704 Collaboration

    1992-10-01

    The spin asymmetry A{sub N} for inclusive {pi}{sup 0} production by 200-GeV transversely-polarized protons on a liquid hydrogen target has been measured at Fermilab over a wide range of x{sub F}, with 0.50.3, the asymmetry rises with increasing x{sub F} and reaches a value of A{sub N}=0.15{+-}0.03 in the region 0.6spin structure of transversely-polarized protons. (orig.).

  1. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  2. Superfluid 3He dynamcs in 3He - 4He solutions

    International Nuclear Information System (INIS)

    Mejerovich, A.Eh.

    1984-01-01

    The dynamics of a 3 He- 4 He superfluid solution with two condensates ( 3 He and 4 He) is investigated. Despite the fact that the hydrodynamics of the system is a three-velocity one (two superfluid and one normal velocity), all the thermo- and hydrodynamic functions are determined by the value of only a single linear combination of the velocities. 0n the basis of an analogy between a moving solution and a BCS system with coupling with a non-zero momentum, the dependence of the thermodynamic quantities on the velocities and critical velocities can easily be calculated for both homogeneous and inhomogeneous phases of the solution. In a magnetic field the temperature oscillations (analogue of second sound for a superfluid solution) are accompanied by oscillations of the magnetic moment. The velocity and damping of the spin-temperature waves are determined. The orienting action of a current on the inhomogeneous phases of the solution is discussed. It is shown that the energy and size of the vortexes in a superfluid solution are, due to drag effects, oscillating functions of the effective mass of the 3 He quasirartictes (pressure). At a pressure of the order of 10 atm a first order transition should take place in the vortex line which is accompanied by an abrupt change of the circulations of superfluid velocity of 3 He for a fixed circulation of the 4 He velocity

  3. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  4. Antiresonance induced spin-polarized current generation

    Science.gov (United States)

    Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng

    2011-12-01

    According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.

  5. Quantum Monte Carlo and the equation of state of liquid 3He

    International Nuclear Information System (INIS)

    Panoff, R.M.

    1987-01-01

    The author briefly reviews the present status of Monte Carlo technology as it applies to the study of the ground-state properties of strongly-interacting many-fermion systems in general, and to liquid 3 He at zero temperature in particular. Variational Monte Carlo methods are reviewed and the model many-body problem to be tackled is introduced. He outlines the domain Green's function Monte Carlo method with mirror potentials providing a coherent framework for discussing solutions to the fermion problem. He presents results for the zero-temperature equation of state of 3 He, along with other ground-state properties derived from the many-body wave function

  6. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  7. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  8. Quantization rules for point singularities in superfluid 3He and liquid crystals

    International Nuclear Information System (INIS)

    Blaha, S.

    1976-01-01

    It is shown that pointlike singularities can exist in superfluid 3 He. Integer quantum numbers are associated with these singularities. The quantization rules follow from the single valuedness of the order parameter and quantities derived from it. The results are also easily extended to the quantization of point singularities in nematic liquid crystals. The pointlike singularities in 3 He-A are experimentally accessible analogs of the magnetic monopole

  9. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  10. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  11. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  12. Spin polarization of graphene and h -BN on Co(0001) and Ni(111) observed by spin-polarized surface positronium spectroscopy

    Science.gov (United States)

    Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.

    2018-05-01

    In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.

  13. Structure and dynamics of molecular complex He2*(a3Σu+) in condensed phases of helium

    International Nuclear Information System (INIS)

    Kafanov, S.G.; Parshin, A.Ya.; Tadoshchenko, I.A.

    2000-01-01

    The absorption spectra of the helium triplet metastable molecules in the a 3 Σ u + states in the liquid 4 He and 3 He by various pressures and in the 3 He dense gas are studied. The analysis of the spectrum, corresponding to the a 3 Σ u + → c 3 Σ g + transition, proves the conclusion on the availability of a microscopic bubble, surrounding the molecule in the liquid helium. Simple approximation of the wave function of the molecule valent electron is proposed and the bubble parameters under various experimental conditions are determined. The coefficient conditions are determined. The coefficient of the molecular recombination in the liquid 3 He and 4 He by different pressures and in the 3 He cold gas is experimentally determined. The obtained results agree well with the mutual recombination theory. It is shown, that molecular polarization in the helium condensed phases under the magnetic field effect does not lead to their mutual recombination [ru

  14. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  15. Development of a liquid {sup 3}He target for experimental studies of antikaon-nucleon interaction at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Iio, M., E-mail: masami.iio@kek.jp [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sato, M. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Enomoto, S. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Hashimoto, T. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Suzuki, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Iwasaki, M. [RIKEN Nishina Center, RIKEN, Saitama 351-0198 (Japan); Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Hayano, R.S. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2012-09-21

    A liquid {sup 3}He target system was developed for experimental studies of kaonic atoms and kaonic nuclei at J-PARC. {sup 3}He gas is liquefied in a heat exchanger cooled below 3.2 K by decompression of liquid {sup 4}He. To maintain a large acceptance of the cylindrical detector system for decay particles of kaonic nuclei, efficient heat transport between the separate target cell and the main unit is realized using circulation of liquid {sup 3}He. To minimize the amount of material, a vacuum vessel containing a carbon fiber reinforced plastic cylinder having an inside diameter of 150 mm and a thickness of 1 mm was produced. A target cell made of pure beryllium and beryllium-aluminum alloy was developed not only to minimize the amount of material but also to obtain high X-ray transmission. During a cooling test, the target cell was kept at 1.3 K at a pressure of 33 mbar. The total estimated heat load to the components including the target cell and heat exchanger cooled by liquid {sup 4}He decompression, was 0.21 W, and the liquid {sup 4}He consumption rate was 50 L/day.

  16. Evidence for a Field-induced Quantum Spin Liquid in $\\alpha$-RuCl$_3$

    OpenAIRE

    Baek, S. -H.; Do, S. -H.; Choi, K. -Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; Brink, Jeroen van den; Büchner, B.

    2017-01-01

    We report a $^{35}$Cl nuclear magnetic resonance study in the honeycomb lattice, $\\alpha$-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that $\\alpha$-RuCl$_3$ exhibits a magnetic field-induced QSL. For fields larger than $\\sim 10$ T a spin-gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly...

  17. The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho

    International Nuclear Information System (INIS)

    Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1978-01-01

    The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)

  18. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  19. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  20. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  1. Anomalous Quasiparticle Reflection from the Surface of a ^{3}He-^{4}He Dilute Solution.

    Science.gov (United States)

    Ikegami, Hiroki; Kim, Kitak; Sato, Daisuke; Kono, Kimitoshi; Choi, Hyoungsoon; Monarkha, Yuriy P

    2017-11-10

    A free surface of a dilute ^{3}He-^{4}He liquid mixture is a unique system where two Fermi liquids with distinct dimensions coexist: a three-dimensional (3D) ^{3}He Fermi liquid in the bulk and a two-dimensional (2D) ^{3}He Fermi liquid at the surface. To investigate a novel effect generated by the interaction between the two Fermi liquids, the mobility of a Wigner crystal of electrons formed on the free surface of the mixture is studied. An anomalous enhancement of the mobility, compared with the case where the 3D and 2D systems do not interact with each other, is observed. The enhancement is explained by the nontrivial reflection of 3D quasiparticles from the surface covered with the 2D ^{3}He system.

  2. A Density Functional for Liquid 3He Based on the Aziz Potential

    Science.gov (United States)

    Barranco, M.; Hernández, E. S.; Mayol, R.; Navarro, J.; Pi, M.; Szybisz, L.

    2006-09-01

    We propose a new class of density functionals for liquid 3He based on the Aziz helium-helium interaction screened at short distances by the microscopically calculated two-body distribution function g(r). Our aim is to reduce to a minumum the unavoidable phenomenological ingredients inherent to any density functional approach. Results for the homogeneous liquid and droplets are presented and discussed.

  3. Symmetry fractionalization of visons in Z2 spin liquids

    Science.gov (United States)

    Qi, Yang; Cheng, Meng; Fang, Chen

    In this work we study symmetry fractionalization of vison excitations in topological Z2 spin liquids. We show that in the presence of the full SO (3) spin-rotational symmetry and if there is an odd number of spin-1/2 per unit cell, the symmetry fractionalization of visons is completely fixed. On the other hand, visons can have different classes of symmetry fractionalization if the spin-rotational symmetry is reduced. As a concrete example, we show that visons in the Balents-Fisher-Girvin Z2 spin liquid have crystal symmetry fractionalization classes which are not allowed in SO (3) symmetric spin liquids, due to the reduced spin-rotational symmetry.

  4. Measurements of the osmotic pressure in liquid mixtures of 3He and 4He near the lambda line and tricritical point

    International Nuclear Information System (INIS)

    Gearhart, C.A. Jr.

    1977-01-01

    Values of the concentration susceptibility (par. deltax/par. deltaΔ)/sub T,P/ near the lambda line and tricritical point in liquid mixtures of 3He and 4 He were calculated from measurements of osmotic pressure differences. Measurements were made by inducing a small 3 He mole fraction difference Δx between two chambrs separated by a pressure transducer, and measuring the resulting osmotic pressure difference as a function of temperature

  5. Microscopic theory of normal liquid 3He

    International Nuclear Information System (INIS)

    Nafari, N.; Doroudi, A.

    1994-03-01

    We have used the self-consistent scheme proposed by Singwi, Tosi, Land and Sjoelander (STLS) to study the properties of normal liquid 3 He. By employing the Aziz potential (HFD-B) and some other realistic pairwise interactions, we have calculated the static structure factor, the pair-correlation function, the zero sound frequencies as a function of wave-vector, and the Landau parameter F s 0 for different densities. Our results show considerable improvement over the Ng-Singwi's model potential of a hard core plus an attractive tail. Agreement between our results and the experimental data for the static structure factor and the zero sound frequencies is fairly good. (author). 30 refs, 6 figs, 2 tabs

  6. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto

    2007-01-01

    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  7. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  8. Polarization of a stored beam by spin filtering

    International Nuclear Information System (INIS)

    Weidemann, C.

    2014-01-01

    In 2011 the PAX Collaboration has performed a successful spin-filtering test using protons at Tp = 49.3 MeV at the COSY ring, which confirms that spin filtering is a viable method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The equipment and the procedures to produce stored polarized beams was successfully commissioned and are established. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons. (author)

  9. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    International Nuclear Information System (INIS)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs

  10. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of alpha-RuCl3

    OpenAIRE

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zhengxin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang

    2017-01-01

    $\\alpha$-RuCl$_3$ is a leading candidate material for theobservation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that $\\alpha$-RuCl$_3$ undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the $ab$ plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result...

  11. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  12. Lagrangian of superfluid 3He

    International Nuclear Information System (INIS)

    Theodorakis, S.

    1988-01-01

    This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition

  13. Classification and properties of quantum spin liquids on the hyperhoneycomb lattice

    Science.gov (United States)

    Huang, Biao; Choi, Wonjune; Kim, Yong Baek; Lu, Yuan-Ming

    2018-05-01

    The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate β -Li2IrO3 , we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric U (1 ) spin liquids (and 160 Z2 spin liquids), we identify eight "root" U (1 ) spin liquids in proximity to the ground state of the solvable Kitave model on the hyperhonecyomb lattice. These eight states are promising candidates for possible U (1 ) spin liquid ground states in pressurized β -Li2IrO3 . We further discuss physical properties of these eight U (1 ) spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.

  14. Recent progress on HYSPEC, and its polarization analysis capabilities

    Directory of Open Access Journals (Sweden)

    Winn Barry

    2015-01-01

    Full Text Available HYSPEC is a high-intensity, direct-geometry time-of-flight spectrometer at the Spallation Neutron Source, optimized for measurement of excitations in small single-crystal specimens with optional polarization analysis capabilities. The incident neutron beam is monochromated using a Fermi chopper with short, straight blades, and is then vertically focused by Bragg scattering onto the sample position by either a highly oriented pyrolitic graphite (unpolarized or a Heusler (polarized crystal array. Neutrons are detected by a bank of 3He tubes that can be positioned over a wide range of scattering angles about the sample axis. HYSPEC entered the user program in February 2013 for unpolarized experiments, and is already experiencing a vibrant research program. Polarization analysis will be accomplished by using the Heusler crystal array to polarize the incident beam, and either a 3He spin filter or a supermirror wide-angle polarization analyser to analyse the scattered beam. The 3He spin filter employs the spin-exchange optical pumping technique. A 60∘ wide angle 3He cell that matches the detector coverage will be used for polarization analysis. The polarized gas in the post-sample wide angle cell is designed to be periodically and automatically refreshed with an adjustable pressure of polarized gas, optically pumped in a separate cell and then transferred to the wide angle cell. The supermirror analyser has 960 supermirror polarizers distributed over 60∘, and has been characterized at the Swiss Spallation Neutron Source. The current status of the instrument and the development of its polarization analysis capabilities are presented.

  15. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    International Nuclear Information System (INIS)

    Jun-Qing, Zhao; Shi-Zhu, Qiao; Zhen-Feng, Jia; Ning-Yu, Zhang; Yan-Ju, Ji; Yan-Tao, Pang; Ying, Chen; Gang, Fu

    2008-01-01

    We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices

  16. Observation of spin-polarized electron transport in Alq3 by using a low work function metal

    Science.gov (United States)

    Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.

    2012-09-01

    We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.

  17. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  18. 3D Spin-Liquid State in an Organic Hyperkagome Lattice of Mott Dimers

    Science.gov (United States)

    Mizuno, Asato; Shuku, Yoshiaki; Matsushita, Michio M.; Tsuchiizu, Masahisa; Hara, Yuuki; Wada, Nobuo; Shimizu, Yasuhiro; Awaga, Kunio

    2017-08-01

    We report the first 3D spin liquid state of isotropic organic spins. Structural analysis, and magnetic and heat-capacity measurements were carried out for a chiral organic radical salt, (TBA) 1.5[(-)-NDI -Δ ] (TBA denotes tetrabutylammonium and NDI denotes naphthalene diimide), in which (-)-NDI -Δ forms a K4 structure due to its triangular molecular structure and an intermolecular π -π overlap between the NDI moieties. This lattice was identical to the hyperkagome lattice of S =1 /2 Mott dimers, and should exhibit 3D spin frustration. In fact, even though the high-temperature magnetic susceptibility followed the Curie-Weiss law with a negative Weiss constant of θ =-15 K , the low-temperature magnetic measurements revealed no long-range magnetic ordering down to 70 mK, and suggested the presence of a spin liquid state with a large residual paramagnetism χ0 of 8.5 ×10-6 emu g-1 at the absolute zero temperature. This was supported by the N 14 NMR measurements down to 0.38 K. Further, the low-temperature heat capacities cp down to 68 mK clearly indicated the presence of cp for the spin liquid state, which can be fitted to the power law of T0.62 in the wide temperature range 0.07-4.5 K.

  19. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride

    Science.gov (United States)

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-01

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF3 ) as a novel spin-polarized Dirac material by using first-principles calculations. MnF3 exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF3 possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF3 , CrF3 , and FeF3 ). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  20. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride.

    Science.gov (United States)

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-07

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF_{3}) as a novel spin-polarized Dirac material by using first-principles calculations. MnF_{3} exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF_{3} possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF_{3}, CrF_{3}, and FeF_{3}). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  1. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs.

  2. Quasiparticle Breakdown in a Quantum Spin Liquid

    International Nuclear Information System (INIS)

    Stone, Matthew B.; Zalinznyak, I.; Hong, T.; Broholm, C.L.; Reich, D.H.

    2006-01-01

    Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles -- fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter -- super-fluid 4 He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4 He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.

  3. Control phase shift of spin-wave by spin-polarized current and its application in logic gates

    International Nuclear Information System (INIS)

    Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2015-01-01

    We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates

  4. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  5. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  6. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    Science.gov (United States)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  7. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  8. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  9. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  10. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α-RuCl_{3}.

    Science.gov (United States)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α-RuCl_{3} is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α-RuCl_{3} undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the ab plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α-RuCl_{3}.

  11. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3

    Science.gov (United States)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .

  12. Structure properties of the 3He-4He mixture at T = O K

    International Nuclear Information System (INIS)

    Boronat, J.; Polls, A.; Fabrocini, A.

    1993-01-01

    The spatial structure properties of 3 He- 4 He mixtures at T = O K are investigated using the hypernetted-chain formalism. The variational wave function used to describe the ground-state of the mixture is a simple generalization of the trial wave functions for pure phases and contains two- and three-body correlations. The elementary diagrams are taken into account by means of an extension of the scaling approximation to the mixtures. The two-body distribution (g (α,β) (r)) and the structure functions (S (α,β) (k)) together with the different spin-spin distribution functions for the 3 He component in the mixture are analyzed for several concentrations of 3 He. Two sum-rules, for the direct and the exchange part of the g (3,3) (r), are used to ascertain the importance of the full treatment of the Fermi statistics in the calculation. The statistical correlations are found responsible for the main differences between the several components of the distribution function. Due to its low concentration, 3 He behaves as a quasi-free Fermi gas, as far as the statistical correlations are concerned, although it is strongly correlated with the 4 He atoms through the interatomic potential

  13. Nuclear magnetism of liquid 3He: new determination of the Landau parameter F0a

    International Nuclear Information System (INIS)

    Goudon, V.

    2006-10-01

    He 3 is a liquid Fermi model, isotropic, with an attainable Fermi temperature and the interaction between atoms can be controlled by changing the pressure of the liquid. In this document, we present accurate NMR measurements of the nuclear magnetic susceptibility of liquid He 3 as a function of temperature and pressure. The emphasis has been placed on reliable thermometry and on He 3 pressure measurements directly in the cell to increase the measuring range until solidification, and an accurate characterization of the NMR spectrometer. Our measurements give an effective Fermi temperature 5% lower than former results. The Landau parameter F 0 a depends on the effective mass, which is determined by specific heat measurements, and consequently on the temperature scale. The re-analysis of the specific heat measurements with the PLTS-2000 temperature scale yields an effective mass increase of 4.5%. In this document, F 0 a is determined for 2 temperature scales (PLTS-2000 and Greywall). Contrarily to former measurements, the F 0 a density dependence does not show any saturation at high pressures. (author)

  14. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  15. Polarizing a stored proton beam by spin flip?

    International Nuclear Information System (INIS)

    Oellers, D.; Barion, L.; Barsov, S.; Bechstedt, U.; Benati, P.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Dietrich, J.; Dolfus, N.; Dymov, S.; Engels, R.; Erven, W.; Garishvili, A.; Gebel, R.; Goslawski, P.

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin-flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  16. The order parameter equations of superfluid Fermi-liquid with spin-triplet pairing near Tc in magnetic field

    International Nuclear Information System (INIS)

    Tarasov, A.N.

    1995-01-01

    The article is devoted to description of equilibrium properties of superfluid phases of 3 He in magnetic field at temperatures near the normal-superfluid point T c . The Landau Fermi-liquid (F-L) approach generalized to superfluid Fermi-liquids (SFLs) is used. Equations for the order parameter paramagnetic SFL with spin-triplet pairing in static and uniform (DC) moderately strong magnetic field are derived without taking into account strong-coupling (SC) effects. An integro-differential equation is deduced for the order parameter in the general case of spin-triplet pairing (spin of a pair is s = 1, orbital moment l of a pair is any odd number). It is valid in the approximation of small space inhomogeneities of the SFL for external DC magnetic field at temperatures near T c . In the case of spin-triplet p-wave pairing a Ginzburg-Landau (GL) equation is derived for the order parameter A αj (complex 3 x 3 matrix). Corrections to the coefficients in the GL eq. are resulted from taking into account the influence of moderately strong DC magnetic field and spin-exchange F-L interaction by the theory of permutations. In such fields these corrections can be of the same order of magnitude as the so-called > SC corrections to the GL eq. (or even exceed them) and are much higher than the particle-hole asymmetric contribution. The above corrections are connected with deformation of the order parameter in moderate magnetic fields and are of interest at description of 3 He - B at low pressures

  17. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  18. Study of a model Fermi liquid interacting via a hard-core repulsive potential and an attractive tail

    International Nuclear Information System (INIS)

    Ng, Tai Kai; Singwi, K.S.

    1986-02-01

    In this paper we present an extensive microscopic study of the collective and single-particle properties of a model Fermi liquid whose particles interact via a repulsive hard-core potential and an attractive tail. The model system is intended to simulate liquid 3 He. The study is based on an approximate scheme of Singwi, Tosi, Land and Sjoelander (STLS) which was devised to treat correlations in Coulomb Fermi liquids. The primary aim of this study is to learn whether the model system is capable of reproducing some of the salient features observed in normal liquid 3 He, and about the role of the repulsive and attractive parts of the potential. We have calculated the Landau parameters F 0 /sup s/ and F 0 /sup a/ and their variation with pressure, the wave number and pressure dependence of the spin-symmetric and spin-anti-symmetric polarization potentials, pressure dependence of the dispersion of the zero sound, the static structure factors and the quasiparticle mass. Although we make no quantitative claims when comparing our calculations with experiments in real liquid 3 He, we do conclude that our model system within the framework of the STLS scheme can account qualitatively for the latter. Besides, since the theory is microscopic in nature and is parameter free, it has enabled us to understand better the role of the repulsive and the attractive parts of the bare potential in determining the properties of liquid 3 He. 27 figs., 2 tabs

  19. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    Science.gov (United States)

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.

  20. Liquid-State 13C Polarization of 30% through Photoinduced Nonpersistent Radicals

    DEFF Research Database (Denmark)

    Capozzi, Andrea; Karlsson, Magnus; Petersen, Jan Raagaard

    2018-01-01

    of the nuclear spin polarizationtogether with the constraint of having to polarize the spins nearthe MRI magnet. As recently demonstrated, the employment of UV-inducednonpersistent radicals represents an elegant solution to tacklingthese drawbacks. Nevertheless, since its introduction, the spreadof the technique......-radical technique. Under optimal conditions,it was possible to produce up to 60 mM radical in less than 5 minand reach maximum DNP enhancement with a buildup time constant ofapproximately 25 min at 6.7 T and 1 K, resulting in 30% 13C liquid-state polarization....

  1. Tunable Quantum Spin Liquidity in Mo3O13 Cluster Mott Insulators

    Science.gov (United States)

    Akbari-Sharbaf, Arash; Ziat, Djamel; Verrier, Aime; Quilliam, Jeffrey A.; Sinclair, Ryan; Zhou, Haidong D.; Sun, Xuefeng F.

    A study of a tunable quantum spin liquid (QSL) phase in the compound Li2In1- x ScxMo3O8 (x = 0.2, 0.4, 0.6, 0.8, 1) will be presented. Crystal structure of these compounds can be viewed as Mo ions arranged on an asymmetric Kagome lattice (KL), with two different Mo-Mo bond lengths, separated by nonmagnetic layers composed of Li, In, and Sc ions. Using X-ray diffraction spectroscopy, muon spin relaxation spectroscopy, bulk magnetic susceptibility and specific heat measurements we show that by changing the composition of the nonmagnetic layers we can drive the system from an ordered antiferromagnetic state to a quantum spin liquid state. The mechanism responsible for the tunability of the magnetic phase in this class of materials may be associated with the degree of asymmetry of the KL controlled by the composition of the nonmagnetic layers. For high degree of asymmetry the constraint on the electronic distribution leads to a configuration of Mo3O8 clusters with net spin-1/2 per cluster arrange on a triangular lattice and long range antiferromagnetic order. For low degree of asymmetry the electronic distribution leads to a magnetic phase with QSL character. We acknowledge support from NSERC and CFREF.

  2. Continuous control of spin polarization using a magnetic field

    Science.gov (United States)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-05-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  3. Continuous control of spin polarization using a magnetic field

    International Nuclear Information System (INIS)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.

    2016-01-01

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  4. Continuous control of spin polarization using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y., E-mail: tingyong.chen@asu.edu [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

    2016-05-23

    The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.

  5. Detecting Spin-Polarized Currents in Ballistic Nanostructures

    DEFF Research Database (Denmark)

    Potok, R.; Folk, J.; M. Marcus, C.

    2002-01-01

    We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact....

  6. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  7. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  8. Analyzing Power of 3He(n, n)3He Between 1.60 and 5.54 MeV

    International Nuclear Information System (INIS)

    Esterline, J.; Tornow, W.

    2013-01-01

    We report the measurements of the analyzing power A y (θ) of n- 3 He elastic scattering with unprecedented accuracy and angular coverage at five incident neutron energies between 1.60 and 5.54 MeV. To this end, we employed the polarization-transfer reactions 3 H(p, n) 3 He and 2 H(d, n) 3 He at 0 ° for neutron generation and a recently developed high-pressure 3 He gas scintillator as an active target, enabling neutron-time-of-flight and 3 He recoil-energy determinations. We obtained simultaneously the neutron polarization with a 4 He-based polarimeter, capitalizing on the well-known n- 4 He A y (θ). Our n- 3 He A y (θ) data are compared to rigorous four-nucleon calculations using high-precision nucleon–nucleon potential models. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. However, in comparison to the pure isotriplet p- 3 He system in the same energy region, the agreement between measured and calculated A y is much better for the mixed (isotriplet and isosinglet) n- 3 He system, indicating large and somewhat counterintuitive isospin effects. We note that the incorporation of a Δ-mediated three-nucleon force in calculations of n- 3 He scattering was found to affect A y (θ) negligibly, suggesting the need for the reconsideration of fundamental interactions in resolving the four-nucleon analyzing power puzzle first established about a decade ago in p- 3 He scattering. (author)

  9. Polarizing a stored proton beam by spin-flip?

    International Nuclear Information System (INIS)

    Oellers, Dieter Gerd Christian

    2010-01-01

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections σ parallel and σ perpendicular to are deduced using the likelihood method. (orig.)

  10. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  11. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  12. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  13. A spin-orbital-entangled quantum liquid on a honeycomb lattice

    Science.gov (United States)

    Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.

    2018-02-01

    The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.

  14. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.

  15. Spin-polarized inelastic tunneling through insulating barriers.

    Science.gov (United States)

    Lu, Y; Tran, M; Jaffrès, H; Seneor, P; Deranlot, C; Petroff, F; George, J-M; Lépine, B; Ababou, S; Jézéquel, G

    2009-05-01

    Spin-conserving hopping transport through chains of localized states has been evidenced by taking benefit of the high degree of spin-polarization of CoFeB-MgO-CoFeB magnetic tunnel junctions. In particular, our data show that relatively thick MgO barriers doped with boron favor the activation of spin-conserving inelastic channels through a chain of three localized states and leading to reduced magnetoresistance effects. We propose an extension of the Glazman-Matveev theory to the case of ferromagnetic reservoirs to account for spin-polarized inelastic tunneling through nonmagnetic localized states embedded in an insulating barrier.

  16. Rotatable spin-polarized electron source for inverse-photoemission experiments

    International Nuclear Information System (INIS)

    Stolwijk, S. D.; Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-01

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces

  17. Spin-polarized ground state and exact quantization at ν=5/2

    Science.gov (United States)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  18. Lowest vibrational states of 4He3He+: Non-Born-Oppenheimer calculations

    International Nuclear Information System (INIS)

    Stanke, Monika; Bubin, Sergiy; Kedziera, Dariusz; Molski, Marcin; Adamowicz, Ludwik

    2007-01-01

    Very accurate quantum mechanical calculations of the first five vibrational states of the 4 He 3 He + molecular ion are reported. The calculations have been performed explicitly including the coupling of the electronic and nuclear motions [i.e., without assuming the Born-Oppenheimer (BO) approximation]. The nonrelativistic non-BO wave functions were used to calculate the α 2 relativistic mass velocity, Darwin, and spin-spin interaction corrections. For the lowest vibrational transition, whose experimental energy is established with high precision, the calculated and the experimental results differ by only 0.16 cm -1

  19. Measurements of the Double-Spin Asymmetry A1 on Helium-3: Toward a Precise Measurement of the Neutron A1

    International Nuclear Information System (INIS)

    Parno, Diana Seymour

    2011-01-01

    The spin structure of protons and neutrons has been an open question for nearly twenty-five years, after surprising experimental results disproved the simple model in which valence quarks were responsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought to bear on the problem, but a shortage of precise data - especially on neutron spin structure - has prevented a thorough understanding. Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportunity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson Laboratory's highly polarized electron beam, combined with Hall A's facilities for a high-density, highly polarized 3 He target, allowed a high-luminosity double-polarized experiment, while the large acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 2 2 . From these data, we extract the longitudinal asymmetry in virtual photon-nucleon scattering, A 1 , on the 3 He nucleus. Combined with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymmetry A n 1 that will extend the kinematic range of the data available to test models of spin-dependent parton distributions in the nucleon

  20. Proximate Kitaev quantum spin liquid behavior in α-RuCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, Stephen [Quantum Condensed Matter Division, Oak Ridge National Laboratory (United States)

    2016-07-01

    The magnetic semiconductor α-RuCl{sub 3} is composed of very weakly coupled honeycomb layers of edge-sharing RuCl{sub 6} octahedra. The Ru{sup 3+} ion has 5d electrons in a low spin state, and the system is expected to have an effective J = 1/2 single ion ground state with an interacting spin Hamiltonian containing Kitaev-like terms. Inelastic neutron scattering on powders and single crystals has been used to determine the energy scale of the magnetic interactions and the overall form of the magnetic fluctuations. The results indicate that the Kitaev term is significant. Moreover, detailed measurements of the response show evidence for the fractionalized excitations that are characteristic of the Kitaev Quantum Spin-liquid.

  1. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  2. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  3. He3 cryostat

    International Nuclear Information System (INIS)

    Novichkova, L.G.; Kulikov, Yu.V.; Stashkova, N.M.

    1992-01-01

    An effective cryostat featuring a one-cycle He 3 refrigerator with a cryosorption pump is described. Gaseous He 3 in contained in a low-pressure vessel having a common wall with a liquid N 2 bath. Due to this, the gas is cooled before sorption and the sorption rate increases approximately by a factor of ten. The cryostat is provided with a needle valve which cuts off the ballast volume of the pipelines from the refrigerator. As a result, the pressure of He 3 vapours increases before condensation and with refrigerator dimensions selected properly, the liquefaction coefficient reaches approximately 80%. Test results of the cryostat and its specifications are presented. (Author)

  4. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  5. 3He(d,p)4He reaction calculation with three-body Faddeev equations

    International Nuclear Information System (INIS)

    Oryu, S.; Uzu, E.; Sunahara, H.; Yamada, T.; Tabaru, G.; Hino, T.

    1998-01-01

    In order to investigate the 3 He-n-p system as a three-body problem, we have formulated 3 He-n and 3 H-p effective potentials using both a microscopic treatment and a phenomenological approach. In the microscopic treatment, potentials are generated by means of the resonating group method (RGM) based on the Minnesota nucleon-nucleon potential. These potentials are converted into separable form by means of the microscopic Pauli correct (MPC) method. The MPC potentials are properly formulated to avoid Pauli forbidden states. The phenomenological potentials are obtained by modifying parameters of the EST approximation to the Paris nucleon-nucleon potential, such that they fit the low-energy 3 He-n, 3 H-p, and 3 He-p phase shifts. Therefore, they describe the 3 He-n differential cross section, the polarization observables, and the energy levels of 4 He. The 3 He-n-p Faddeev equations are solved numerically. We reproduce correctly the ground state and the first excited state of 5 Li. Furthermore, the Paris-type potential is used to investigate the 3 He(d,p) 4 He reaction at a deuteron bombarding energy of 270 MeV, where the system is treated as a three-body problem. Results for the polarized and unpolarized differential cross sections demonstrate convergence of the Born series. (orig.)

  6. Current-induced spin transfer torque in ferromagnet-marginal Fermi liquid double tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zheng Qingrong; Jin Biao; Su Gang

    2005-01-01

    Current-induced spin transfer torque through a marginal Fermi liquid (MFL) which is connected to two noncollinearly aligned ferromagnets via tunnel junctions is discussed in terms of the nonequilibrium Green function method. It is found that in the absence of the spin-flip scattering, the magnitude of the torque increases with the polarization and the coupling constant λ of the MFL, whose maximum increases with λ linearly, showing that the interactions between electrons tend to enhance the spin torque. When the spin-flip scattering is included, an additional spin torque is induced. It is found that the spin-flip scattering enhances the spin torque and gives rise to a nonlinear angular shift

  7. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  8. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  9. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  10. Unique spin-polarized transmission effects in a QD ring structure

    Science.gov (United States)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  11. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  12. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  13. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  14. Study of the multiple exchange frequencies in bcc 3He by thermodynamic measurements

    International Nuclear Information System (INIS)

    Bernier, M.; Suaudeau, E.; Roger, M.

    1987-08-01

    To study the multiple exchange hamiltonian of solid 3 He we measured the contribution of the spin exchange to the pressure of bcc solid in various magnetic fields (O≤ H≤ 7.5T). Due to the nature of the atomic exchange of a fermion system this contribution is a strong function of the spin polarization. The characteristic frequencies of the exchange hamiltonian are obtained by fitting the pressure measurements with the results of a statistical calculation using a high temperature series expansion of the hamiltonian in a temperature range where both the magnetic effect is significant and the expansion converges (7mK < T < 30mK). We discuss the results obtained for two molar volumes

  15. Spectral simulations of polar diatomic molecules immersed in He clusters: application to the ICl (X) molecule

    International Nuclear Information System (INIS)

    Villarreal, P; Lara-Castells, M P de; Prosmiti, R; Delgado-Barrio, G; Lopez-Duran, D; Gianturco, F A; Jellinek, J

    2007-01-01

    A recently developed quantum-chemistry-like methodology to study molecules solvated in atomic clusters is applied to the ICl (iodine chloride) polar diatomic molecule immersed in clusters of He atoms. The atoms of the solvent clusters are treated as the 'electrons' and the solvated molecule as a structured 'nucleus' of the combined solvent-solute system. The helium-helium and helium-dopant interactions are represented by parametrized two-body and ab initio three-body potentials, respectively. The ground-state wavefunctions are used to compute the infrared (IR) spectra of the solvated molecule. In agreement with the experimental observations, the computed spectra exhibit considerable differences depending on whether the solvent cluster is comprised of bosonic ( 4 He) or fermionic ( 3 He) atoms. The source of these differences is attributed to the different spin-statistics of the solvent clusters. The bosonic versus fermionic nature of the solvent is reflected in the IR absorption selection rules. Only P and R branches with single state transitions appear in the spectrum when the molecule is solvated in a bosonic cluster. On the other hand, when the solvent represents a fermionic environment, quasi-degenerate multiplets of spin states contribute to each branch and, in addition, the Q-branch becomes also allowed. Combined, these two factors explain the more congested nature of the spectrum in the fermionic case

  16. Partially spin-polarized Josephson tunneling between non-centrosymmetric superconductors like CePt3Si

    International Nuclear Information System (INIS)

    Mandal, S.S.; Mukherjee, S.P.

    2007-01-01

    Full text: The recent discovery of the superconductivity in the heavy fermionic compound CePt 3 Si have attracted much of the attention of the physics community. The presence of strong Rashba kind of spin-orbit coupling in them split the otherwise degenerate electronic band into two nondegenerate bands. This peculiarity in the band structure gives rise to complicated kind of order parameter whose exact nature is unknown till date. Traditionally Josephson junctions in superconductors draw interest both scientifically and its applicability in making devices. It has been used in several cases as a probe to the order parameter symmetry of the superconductor. It has also been studied in unconventional superconductors like spin-singlet cuprate and spin-triplet Sr 2 RuO 4 superconductors. However no Josephson junction between nonmagnetic superconductors is known to generate spin-polarized current. The purpose of this work is to theoretically show that the direction dependent tunneling matrix element across the junction between two recently discovered non-centrosymmetric superconductors like CePt 3 Si, leads to tunneling of both spin-singlet and spin-triplet Cooper pairs. As a consequence, nonvanishing spin-Josephson current is viable along with the usual charge-Josephson current. This novel spin-Josephson current depends on the relative angle xi between the axes of non-centrosymmetry {n} L and that {n} R in the left and right side of the junction respectively. This angular dependence may be used to make Josephson spin switch. (authors)

  17. Electrodynamics of quantum spin liquids

    Science.gov (United States)

    Dressel, Martin; Pustogow, Andrej

    2018-05-01

    Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.

  18. Spin dependence in superelastic electron scattering from Na(3P)

    International Nuclear Information System (INIS)

    McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1985-01-01

    Measurements are presented of spin asymmetries for superelastic scattering of 10-eV spin polarized electrons from the excited Na(3P/sub 3/2/) state created by linearly polarized laser optical pumping. Asymmetries as large as 16% are observed in scattering from a state which is not spin-polarized. Results are shown both as a function of scattering angle with fixed laser polarization direction, and as a function of the laser polarization direction at a fixed scattering angle

  19. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  20. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  1. SANS polarization analysis at V4 SANS instrument of HMI Berlin

    International Nuclear Information System (INIS)

    Keiderling, U; Wiedenmann, A; Rupp, A; Klenke, J; Heil, W

    2008-01-01

    The V4 instrument has recently been upgraded with a 3 He spin filter cell, placed directly in the homogeneous field B of the sample magnet, to enhance the SANSPOL option for polarization analysis. The prototype setup was still affected by: (a) a quick relaxation of the 3 He nuclear polarization in the cell with a time constant of only ≈130 min which significantly changes the spin filter transmissions T + and T − for neutrons polarized parallel I + and anti-parallel I − to B, and (b) the absence of a flipping aid behind the sample. The usual polarization analysis procedure, expecting virtually time-independent transmissions and a second flipping device, is therefore not applicable. We present an alternative way of polarization analysis, developed especially for this case of a spin filter cell with insufficient time stability, and not requiring a second flipper. A concentrated Co-ferrofluid sample 'MFT3N' was measured with the spin filter cell for 5.5 h. From the time-dependent change of I + and I − caused by the change of T + and T − , the spin-flip and non-spin-flip components of the scattering were calculated by fitting procedures. The two-dimensional flip patterns obtained represent the purely magnetic scattering contribution, featuring the typical (sin αcos α) 2 angular behavior expected for superparamagnetic systems

  2. A high field optical-pumping spin-exchange polarized deuterium source

    International Nuclear Information System (INIS)

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  3. Reflection and transformation of acoustic waves at the interface in superfluid 3He-A

    International Nuclear Information System (INIS)

    Kekutiya, Sh.E.; Chkhaidze, N.D.

    1997-01-01

    Reflection and transformation of acoustic waves in 3 He-A and 3 He-A 1 are considered for two cases: (1) at the boundary with a solid impermeable wall at an arbitrary angle of incidence of a wave and (2) for normal incidence of waves on the interface between a free liquid and a system of periodic plane-parallel capillaries filling the semi-space. For the first case we have calculated the reflection coefficients of the first and the second sounds and spin and spin-temperature waves as well as the coefficients of transformation of these waves into each other. It is shown that the longitudinal wave undergoes no transformation into other waves, there occurs instead its complete reflection from the solid wall. The angle of incidence at which the energy attenuation coefficient of the first sound is maximum, and the interval of angles corresponding to the attenuation and the total interval reflection of the second sound are estimated. For the second case we have obtained: the coefficients of excitation of the fourth sound and the magneto-acoustic wave by the first and the second sounds; the reflection coefficients for the first and the second sounds and the longitudinal spin wave; the coefficient of transformation of the first sound into the second one and vice versa; the coefficient of reflection of the fourth sound from the capillary system - free liquid interface; the coefficient of excitation of longitudinal spin wave in free helium by the same wave in a capillary

  4. Elastic scattering of polarized protons on helium three at 800 MeV

    International Nuclear Information System (INIS)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p- 3 He elastic scattering over the range of q .7 to 4.2 fm -1 . The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since 3 He is one of the simplest nuclei, polarized p- 3 He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for 3 He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs

  5. Elastic scattering of polarized protons on helium three at 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  6. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  7. Absence of magnetic long range order in Ba3ZnRu2O9. A spin-liquid candidate in the S = 3/2 dimer lattice

    International Nuclear Information System (INIS)

    Terasaki, Ichiro; Igarashi, Taichi; Nagai, Takayuki

    2017-01-01

    We have discovered a novel candidate for a spin liquid state in a ruthenium oxide composed of dimers of S = 3/2 spins of Ru 5+ , Ba 3 ZnRu 2 O 9 . This compound lacks a long range order down to 37 mK, which is a temperature 5000-times lower than the magnetic interaction scale of around 200 K. Partial substitution for Zn can continuously vary the magnetic ground state from an antiferromagnetic order to a spin-gapped state through the liquid state. This indicates that the spin-liquid state emerges from a delicate balance of inter- and intra-dimer interactions, and the spin state of the dimer plays a vital role. This unique feature should realize a new type of quantum magnetism. (author)

  8. Spinning superfluid 4He nanodroplets

    Science.gov (United States)

    Ancilotto, Francesco; Barranco, Manuel; Pi, Martí

    2018-05-01

    We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.

  9. Peculiarities of spin polarization inversion at a thiophene/cobalt interface

    KAUST Repository

    Wang, Xuhui

    2013-03-20

    We perform ab initio calculations to investigate the spin polarization at the interface between a thiophene molecule and cobalt substrate. We find that the reduced symmetry in the presence of a sulfur atom (in the thiophene molecule) leads to a strong spatial dependence of the spin polarization of the molecule. The two carbon atoms far from the sulfur acquire a polarization opposite to that of the substrate, while the carbon atoms bonded directly to sulfur possess the same polarization as the substrate. We determine the origin of this peculiar spin interface property as well as its impact on the spin transport.

  10. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  11. Coherent deeply virtual Compton scattering off 3He and neutron generalized parton distributions

    Directory of Open Access Journals (Sweden)

    Rinaldi Matteo

    2014-06-01

    Full Text Available It has been recently proposed to study coherent deeply virtual Compton scattering (DVCS off 3He nuclei to access neutron generalized parton distributions (GPDs. In particular, it has been shown that, in Impulse Approximation (IA and at low momentum transfer, the sum of the quark helicity conserving GPDs of 3He, H and E, is dominated by the neutron contribution. This peculiar result makes the 3He target very promising to access the neutron information. We present here the IA calculation of the spin dependent GPD H See Formula in PDF of 3He. Also for this quantity the neutron contribution is found to be the dominant one, at low momentum transfer. The known forward limit of the IA calculation of H See Formula in PDF , yielding the polarized parton distributions of 3He, is correctly recovered. The extraction of the neutron information could be anyway non trivial, so that a procedure, able to take into account the nuclear effects encoded in the IA analysis, is proposed. These calculations, essential for the evaluation of the coherent DVCS cross section asymmetries, which depend on the GPDs H,E and H See Formula in PDF , represent a crucial step for planning possible experiments at Jefferson Lab.

  12. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  13. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  14. Polarized proton target with horizontal spin orientation

    International Nuclear Information System (INIS)

    Bunyatova, Eh.I.; Kiselev, Yu.F.; Kozlenko, N.G.

    1988-01-01

    Proton target, the polarization vector of which may be arbitrary oriented in horizontal plane relatively to the beam, is developed and tested. 70% value of polarization is obtained. 0.6 K temperature is acquired through 3 He pumping out continuous cycle. 1.2-propylene glycol - Cr(V) was used as working medium. Magnetic system is made in the form of Helmholtz sperconducting coils with working curren close to critical one. Target polarization is measured by NMR technique using original system of proton signal processing

  15. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  16. Collective effects in spin polarized plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Cowley, S.; Detragiache, P.; Kulsrud, R.; Pegoraro, F.

    1984-10-01

    A fusing plasma with coherently polarized spin nuclei can be subject to instabilities due to the anisotropy of the reaction product distributions in velocity space, which is a result of their polarization. The characteristics of these instabilities depend strongly on the plasma spatial inhomogeneities and a significant rate of spin depolarization can be produced by them if adequate fluctuation amplitudes are reached. The results of the relevant analysis are, in addition, of interest for plasma heating processes with frequencies in the range of the cyclotron frequencies of the considered nuclei

  17. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  18. Polarized Emission from Conjugated Polymer Chains Aligned by Epitaxial Growth during Off-Center Spin-Coating

    Directory of Open Access Journals (Sweden)

    Takuya Anzai

    2017-01-01

    Full Text Available Due to their macromolecular nature, conjugated polymers can be relatively easily aligned by applying a variety of processes resulting in either elongation or ordering of their conjugated backbones. Processes that induce chain alignment include electrospinning, mechanical rubbing, epitaxial growth, and nanoconfinement and unidirectional deposition techniques such as off-center spin-coating. In this study, we compare these deposition techniques by applying them to a green-emitting conjugated polymer material that exhibits liquid crystalline phase behavior. Our study reveals that while methods such as electrospinning and mechanical rubbing can be useful to locally generate polymer chain alignment, the combination of epitaxial growth using 1,3,5-trichlorobenzene as crystallizing agent with off-center spin-coating results in the formation of anisotropic nanofiber-like structures with enhanced crystallinity degree and polarized light-emission properties. The unidirectional epitaxial growth was also applied to a red-emitting polymer that exhibits polarization ratios up to 4.1. Our results emphasize that this simple solution formulation and process can be used for the fabrication of polarized thin films of a variety of conjugated polymers with potential applications in the advanced display technologies or analytical equipment fields.

  19. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  20. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  1. Unusual Thermal Hall Effect in a Kitaev Spin Liquid Candidate α -RuCl3

    Science.gov (United States)

    Kasahara, Y.; Sugii, K.; Ohnishi, T.; Shimozawa, M.; Yamashita, M.; Kurita, N.; Tanaka, H.; Nasu, J.; Motome, Y.; Shibauchi, T.; Matsuda, Y.

    2018-05-01

    The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity κx y measurements in α -RuCl3 , a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction JK/kB˜80 K , positive κx y develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at TN=7 K , the sign, magnitude, and T dependence of κx y/T at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.

  2. Small-angle neutron polarization for the 2H(d vector,n vector)3He reaction near Esub(d) = 8MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Woye, W.; Mack, G.

    1981-01-01

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction 2 H(d vector,n vector) 3 He at a reaction angle of theta = 0 0 . To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle Δtheta of 20 0 (lab) centered about theta = 0 0 . In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction 2 H(d vector,n vector) 3 He has been studied with Δtheta of about 3 0 in 3 0 steps out to theta = 20 0 (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0 0 and theta = 10 0 (lab). (orig.)

  3. Dual descriptors within the framework of spin-polarized density functional theory.

    Science.gov (United States)

    Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P

    2008-08-14

    Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.

  4. NNΔ resonance and pd → 3He πo reaction

    International Nuclear Information System (INIS)

    Ueda, T.

    1988-01-01

    On the basis of the I = 1, JP = 2+ resonant NΔ interaction (the pp 1D2 dibaryon), one argues that in NNΔ system a three-body resonance is generated. With a clustering binding energy of a few 10 MeV between the N and the Δ making the dibaryon and another binding energy of about 10 MeV between the NΔ cluster and the spectator N due to the attractive interaction of the Δ exchange between the cluster and spectator, the NNΔ system is bound about 40 - 60 MeV below the NNΔ threshold. Because of the Δ decay width the NNΔ bound state is actually a resonant state. The case where the spins of all the particles align in the same direction is most favorable to be bound, since the driving term is largest here. Assigning the zero orbital angular momenta, the spin-parity of the NNΔ resonance is JP = (5/2)+ . The resonance couples with NNN system through NN(1D2)-NΔ(5S2). Thus the total spin of the NNN system which couples easily with the NNΔ resonance is 1/2. Namely the spin doublet pd channel creates the NNΔ resonance. Similar argument applies to NΔΔ system. Then one summarize: NNΔ resonance : M = 3.07 GeV, JP = (5/2)+. NΔΔ resonance : M = 3.36 GeV, JP = (7/2)+. Both are easy to couple with the spin-doublet pd channel. Assuming the NNΔ and NΔΔ resonance terms, combined with the background ones which are mild in the energy dependence, one analyses the differential cross section and the deuteron tensor polarization of pd → 3 He π o at deuteron incident energy 410 ∼ 2200 MeV at θ = 0 and π. The remarkable energy-dependent structure of the tensor polarization is fairly explained by the existence of the NNΔ and NΔΔ resonances. (author)

  5. Spin current and electrical polarization in GaN double-barrier structures

    OpenAIRE

    Litvinov, V. I.

    2007-01-01

    Tunnel spin polarization in a piezoelectric AlGaN/GaN double barrier structure is calculated. It is shown that the piezoelectric field and the spontaneous electrical polarization increase an efficiency of the tunnel spin injection. The relation between the electrical polarization and the spin orientation allows engineering a zero magnetic field spin injection manipulating the lattice-mismatch strain with an Al-content in the barriers.

  6. NMR study of hyper-polarized 129Xe and applications to liquid-phase NMR experiments

    International Nuclear Information System (INIS)

    Marion, D.

    2008-07-01

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  7. Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3.

    Science.gov (United States)

    Furukawa, Tetsuya; Kobashi, Kazuhiko; Kurosaki, Yosuke; Miyagawa, Kazuya; Kanoda, Kazushi

    2018-01-22

    The Mott metal-insulator transition-a manifestation of Coulomb interactions among electrons-is known as a discontinuous transition. Recent theoretical studies, however, suggest that the transition is continuous if the Mott insulator carries a spin liquid with a spinon Fermi surface. Here, we demonstrate the case of a quasi-continuous Mott transition from a Fermi liquid to a spin liquid in an organic triangular-lattice system κ-(ET) 2 Cu 2 (CN) 3 . Transport experiments performed under fine pressure tuning have found that as the Mott transition is approached, the Fermi liquid coherence temperature continuously falls to the scale of kelvins, with a divergent quasi-particle decay rate on the metal side, and the charge gap continuously closes on the insulator side. A Clausius-Clapeyron analysis provides thermodynamic evidence for the extremely weak first-order nature of the transition. These results provide additional support for the existence of a spinon Fermi surface, which becomes an electron Fermi surface when charges are delocalized.

  8. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  9. Quantum dot spin-V(E)CSELs: polarization switching and periodic oscillations

    Science.gov (United States)

    Li, Nianqiang; Alexandropoulos, Dimitris; Susanto, Hadi; Henning, Ian; Adams, Michael

    2017-09-01

    Spin-polarized vertical (external) cavity surface-emitting lasers [Spin-V(E)CSELs] using quantum dot (QD) material for the active region, can display polarization switching between the right- and left-circularly polarized fields via control of the pump polarization. In particular, our previous experimental results have shown that the output polarization ellipticity of the spin-V(E)CSEL emission can exhibit either the same handedness as that of the pump polarization or the opposite, depending on the experimental operating conditions. In this contribution, we use a modified version of the spin-flip model in conjunction with combined time-independent stability analysis and direct time integration. With two representative sets of parameters our simulation results show good agreement with experimental observations. In addition periodic oscillations provide further insight into the dynamic properties of spin-V(E)CSELs.

  10. Recent advances in atomic-scale spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Smith, Arthur R; Yang, Rong; Yang, Haiqiang; Dick, Alexey; Neugebauer, Joerg; Lambrecht, Walter R L

    2005-02-01

    The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures. (c) 2005 Wiley-Liss, Inc.

  11. Polarized internal targets for electronuclear experiments

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.

    1993-01-01

    Polarized internal gas targets represent a unique opportunity for the measurement of spin observables in electro-nuclear physics. Two measurements will be discussed. First, spin observables have been measured in elastic and quasi-free scattering of 45, 200, 300, and 415 MeV polarized protons from a polarized 3 He internal gas target at the Indiana University Cyclotron Facility Cooler Ring. The data obtained constitute the first measurement of spin correlation parameters using a storage ring with polarized beam and polarized internal gas target. Second, a quasi-free (e,e'p) experiment using tensor polarized deuterium will be discussed. Here, the goal is the measurement of the S- and D-state parts of the proton spectral function by scattering 700 MeV electrons from an atomic beam source. Large acceptance detectors have been used in both experiments. The internal-target technique has broad applicability in nuclear and particle physics

  12. Nuclear magnetism of liquid {sup 3}He: new determination of the Landau parameter F{sub 0}{sup a}; Magnetisme nucleaire de l'{sup 3}He liquide: nouvelle determination du parametre de Landau F{sup a}{sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, V

    2006-10-15

    He{sup 3} is a liquid Fermi model, isotropic, with an attainable Fermi temperature and the interaction between atoms can be controlled by changing the pressure of the liquid. In this document, we present accurate NMR measurements of the nuclear magnetic susceptibility of liquid He{sup 3} as a function of temperature and pressure. The emphasis has been placed on reliable thermometry and on He{sup 3} pressure measurements directly in the cell to increase the measuring range until solidification, and an accurate characterization of the NMR spectrometer. Our measurements give an effective Fermi temperature 5% lower than former results. The Landau parameter F{sub 0}{sup a} depends on the effective mass, which is determined by specific heat measurements, and consequently on the temperature scale. The re-analysis of the specific heat measurements with the PLTS-2000 temperature scale yields an effective mass increase of 4.5%. In this document, F{sub 0}{sup a} is determined for 2 temperature scales (PLTS-2000 and Greywall). Contrarily to former measurements, the F{sub 0}{sup a} density dependence does not show any saturation at high pressures. (author)

  13. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian; Mi, Wenbo; Wang, Xiaocha; Wang, Xuhui

    2015-01-01

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  14. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  15. Nonsequential multiphoton double ionization of He in intense laser - a QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Mazumder, Mina; Chakrabarti, J.; Faisal, F.H.M.

    2010-01-01

    The non-sequential muItiphoton double ionization (NSDI) of He in intense laser field is not yet completely understood, more so for spin resolved currents. We are tempted to use QED and Feynman diagram to obtain spin polarized currents. Hartree-Fock (HF) ground-state correlated wave function of He atom is considered in circularly polarized laser. In QED approach one of the electrons is directly ionized by photon absorption while the second electron is shaken off due to the change in the internal potential of the atom. In He-atom the two ionized electrons can only be in the singlet spin state. Spin-symmetric and spin-flip transitions are eventually possible for the direct and the shake-off electrons. In an ensemble of (HF type) He-atoms the ionized Volkov electrons may acquire 4 pairs of momenta indicating e-e correlation in the final state. Coulomb correction is taken care off through the Sommerfeld factor

  16. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  17. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  18. 3He impurity states on liquid 4He: From thin films to the bulk surface

    International Nuclear Information System (INIS)

    Pavloff, N.; Treiner, J.

    1991-01-01

    The structure of the states accessible to 3 He impurities in films of liquid 4 He on Nuclepore is investigated using a density functional approach with a finite-range effective interaction. In thick films, one finds that the two lowest states are localized in the surface region. For thinner films, the variation with film thickness of the first three states results from a delicate balance between the attractive tail of the substrate potential and the quantum finite-size effect. The existence of states localized in the second layer of the films is discussed. The energy difference between the ground state and the first excited state agrees with the recent determination of Higley, Sprague, and Hallock from magnetization measurements. The effective mass of the ground state has a structure similar to that obtained by Krotscheck and coworkers and exhibits a maximum for a 4 He coverage of 0.15 angstrom -2 , in agreement with the data of Gasparini and coworkers. A similar behavior is predicted for the effective mass of the first, second, and third excited states. The structure of the energy spectrum may also explain former results on third-sound measurements in thin mixture films by Laheurte et al. and by Hallock

  19. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    Science.gov (United States)

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  1. Optimising neutron polarizers--measuring the flipping ratio and related quantities

    CERN Document Server

    Goossens, D J

    2002-01-01

    The continuing development of gaseous spin polarized sup 3 He transmission filters for use as neutron polarizers makes the choice of optimum thickness for these filters an important consideration. The 'quality factors' derived for the optimisation of transmission filters for particular measurements are general to all neutron polarizers. In this work optimisation conditions for neutron polarizers are derived and discussed for the family of studies related to measuring the flipping ratio from samples. The application of the optimisation conditions to sup 3 He transmission filters and other types of neutron polarizers is discussed. Absolute comparisons are made between the effectiveness of different types of polarizers for this sort of work.

  2. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  3. Homogeneous nucleation in phase separation of solid 3He-4He mixtures

    International Nuclear Information System (INIS)

    Poole, M.; Smith, A.; Maidanov, V.A.; Rudavskii, E.Ya.; Grigor'ev, V.N.; Slezov, V.V.; Saunders, J.; Cowan, B.

    2003-01-01

    NMR and pressure have been measured during phase separation in solid 3 He- 4 He mixtures. Spin echoes were used to observe bounded diffusion and to estimate the diffusion coefficient, size and nuclei concentration in the 3 He-enriched phase. The characteristic phase separation time constant of the mixture was found from pressure measurements. The results argue convincingly for homogeneous nucleation. The surface tension of the nuclei is found independently from NMR and from pressure measurements; the two determinations agree well and yield a surface tension coefficient of 4.9x10 -6 J m -2

  4. Quasielastic nucleon scattering using polarized beams and targets

    International Nuclear Information System (INIS)

    Haeusser, O.

    1990-07-01

    Inelastic scattering of polarized intermediate energy nucleons to continuum nuclear states is discussed with emphasis on recent results. Spin momentum correlations of protons in polarized targets of 3 He were observed for the first time. Complete spin observables in (p,p') show effects of the nuclear spin-isospin response and of an NN interaction modified by the nuclear medium. A comparison of Gamow Teller and isovector M1 giant resonance strengths in the sd shell provides evidence for large meson exchange current effects in the M1. (Author) (37 refs., 2 tabs., 9 figs.)

  5. Comments on spin operators and spin-polarization states of 2+1 fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P.; Tomazelli, J.L. [Departamento Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil)

    2005-02-01

    In this brief article we discuss spin-polarization operators and spin-polarization states of 2+1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2+1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2+1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory. (orig.)

  6. Spin-Orbital Quantum Liquid on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Philippe Corboz

    2012-11-01

    Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.

  7. Quantum spin liquid signatures in Kitaev-like frustrated magnets

    Science.gov (United States)

    Gohlke, Matthias; Wachtel, Gideon; Yamaji, Youhei; Pollmann, Frank; Kim, Yong Baek

    2018-02-01

    Motivated by recent experiments on α -RuCl3 , we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the K -Γ model, where K and Γ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group, we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer-matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of a quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite-size cluster computations and show that the results resemble the scattering continuum seen in neutron-scattering experiments on α -RuCl3 . We discuss these results in light of recent and future experiments.

  8. The g-u interference oscillations observed in the emission cross sections and the optical polarizations in He+-He collisions

    International Nuclear Information System (INIS)

    Tani, M.; Hishikawa, A.; Okasaka, R.

    1991-01-01

    We have observed emission radiation from helium atoms excited in He + -He collisions by the direct and electron capture processes over the energy range 0.5-20 keV. The relative emission cross sections for transitions 2 1,3 P-3 1,3 S, 2 1,3 S-3 1,3 P and 2 1,3 P-2 1,3 D have been determined. Degrees of optical polarization have also been determined for the P- and D-state excitations. The emission cross section of the direct excitation and that of the electron capture excitation show oscillations against impact energy, which are in antiphase with each other. The polarization degrees for both processes are nearly the same magnitude and show weak oscillations in antiphase with each other. The oscillations of the cross section and those of the polarization degree are in phase in some cases and in antiphase in other cases. These oscillations are interpreted as due to the interference between the gerade and ungerade states of the helium quasimolecular ion. From the amplitude ratio and the phase correlation between the oscillations of the cross section and those of the polarization degree we find that the predominant g-u interference pair is Π g -Π u . (author)

  9. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  10. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  11. Electron spin polarization induced by spin Hall effect in semiconductors with a linear in the momentum spin-orbit splitting of conduction band

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that spin Hall effect creates uniform spin polarization of electrons in semiconductor with a linear in the momentum spin splitting of conduction band. In turn, the profile of the non-uniform spin polarization accumulated at the edge of the sample oscillates in space even in the absence of an external magnetic field.

  12. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  13. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  14. Studies of ultrathin magnetic films and particle-surface interactions with spin-sensitive electron spectroscopies

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1991-06-01

    Research during the current grant year has focused on: Investigation of probing depth in electron scattering from epitaxially grown paramagnetic films by means of Spin-Polarized Electron Energy Loss Spectroscopy; and studies of the dynamics of metastable He(2 3 S) deexcitation at surfaces utilizing Spin-Polarized Metastable Deexcitation Spectroscopy . This report discussed this research

  15. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  16. Liquid-4He target with a small refrigerator

    International Nuclear Information System (INIS)

    Kato, S.; Kitami, T.; Maruyama, K.; Murata, Y.; Endo, S.; Niki, K.; Morita, T.

    1989-10-01

    A liquid- 4 He target system with a small refrigerator has been developed for the first time to study γ 4 He reactions at intermediate energies. The density of the target is controlled within an accuracy of 3 %. The target system has been operated successfully for more than 1,000 hours of the experiment using the π-sr TAGX spectrometer at the 1.3-GeV Tokyo electron synchrotron. (author)

  17. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  18. Low-temperature H2-4He and H2-3He targets for operation on an electron beam

    International Nuclear Information System (INIS)

    Gol'dshtejn, V.A.; Lubyanyj, V.V.

    1981-01-01

    Structures and basic characteristics of H 2 - 4 He and H 2 - 3 He low temperature targets are given. Technique of 3 He target filling is described. Initial target cooling up to liquid 4 He temperature and its filling up take near approximately 1 h, at that 4 He flow rate equals 15 l. Repeated filling up of 4 He takes 20 min, and target filling up with 3 He - 10-15 min. Good thermal insulation of a cryostat and targets permits the 4 He target to be operated with an electron beam of a mean current of up to 0.5 μA without filling up 4 He for 70 h. At that flow rate of liquid 4 He amounts to 0.2 l/h, and liquid hydrogen - 0.04 l/h. It is concluded that H 2 - 4 He and H 2 - 3 He targets are reliable and simple in operation and permit to work with accelerated particle beams of intensity corresponding to power release >= 0.5 W without corrections for density change [ru

  19. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  20. Dynamics of phase-separated 3He-4He films

    International Nuclear Information System (INIS)

    Kurihara, Susumu

    1982-01-01

    A froehlich-type Hamiltonian is derived for third sound and 3 He quasi particles in phase-separated double layer of superfluid 4 He and normal 3 He liquid. It is stressed that our system is unique and valuable in that characteristic parameters can be varied in a wide range, simply by adjusting the film thickness. The effect of fermion-boson coupling on the velocity and damping of the third sound is examined. It is predicted that a rather drastic change in the third sound spectrum will occur when the Fermi velocity of 3 He system and the third sound velocity are nearly the same. It is pointed out that the system under consideration may show a variety of interesting phenomena, in addition to the softening of the third sound. (author)

  1. Spin-rotation interaction of alkali-metal endash He-atom pairs

    International Nuclear Information System (INIS)

    Walker, T.G.; Thywissen, J.H.; Happer, W.

    1997-01-01

    A treatment of the spin-rotation coupling between alkali-metal atoms and He atoms is presented. Rotational distortions are accounted for in the wave function using a Coriolis interaction in the rotating frame. The expectation value of the spin-orbit interaction gives values of the spin-rotation coupling that explain previous experimental results. For spin-exchange optical pumping, the results suggest that lighter alkali-metal atoms would be preferred spin-exchange partners, other factors being equal. copyright 1997 The American Physical Society

  2. Polarization reversal of proton spins in solid-state targets by superradiance effects

    International Nuclear Information System (INIS)

    Reichertz, L.A.

    1991-02-01

    Scattering experiments with polarized targets are prepared at the Bonn accelerator ELSA. The new Bonn frozen spin target (BOFROST) developed for real photon experiments at the PHOENICS detector has been tested in the laboratory. Proton polarization values of -99% and +94% in ammonia, -96% and +90% in butanol have been achieved at a magnetic field of 3.5 Tesla. At a temperature of 70 mK and a magnetic field of 0.35 Tesla a very fast spontaneous polarization reversal has been observed. This effect occured at negative polarization only and has been identified as a self-induced superradiance effect in the proton spin system. This work describes the polarization and relaxation measurements at BOFROST and detailed experiments concerning the superradiance effect. (orig.) [de

  3. Investigation of spin-polarized transport in GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, B D; Day, T E; Goodnick, S M [Department of Electrical Engineering and Center for Solid State Electronics Research Arizona State University, Tempe, AZ 85287-5706 (United States)], E-mail: brian.tierney@asu.edu

    2008-03-15

    A spin field effect transistor (spin-FET) has been fabricated that employs nanomagnets as components of quantum point contact (QPC) structures to inject spin-polarized carriers into the high-mobility two-dimensional electron gas (2DEG) of a GaAs quantum well and to detect them. A centrally-placed non-magnetic Rashba gate controls both the density of electrons in the 2DEG and the electronic spin precession. Initial results are presented for comparable device structures modeled with an ensemble Monte Carlo (EMC) method. In the EMC the temporal and spatial evolution of the ensemble carrier spin polarization is governed by a spin density matrix formalism that incorporates the Dresselhaus and Rashba contributions to the D'yakanov-Perel spin-flip scattering mechanism, the predominant spin scattering mechanism in AlGaAs/GaAs heterostructures from 77-300K.

  4. SPIN EFFECTS IN THE FRAGMENTATION OF TRANSVERSELY POLARIZED AND UNPOLARIZED QUARKS

    International Nuclear Information System (INIS)

    ANSELMINO, M.; BOER, D.; DALESIO, U.; MURGIA, F.

    2001-01-01

    We study the fragmentation of a transversely polarized quark into a non-collinear (kperpendicular ≠ 0) spinless hadron and the fragmentation of an unpolarized quark into a non collinear transversely polarized spin 1/2 baryon. These nonperturbative properties are described by spin and kperpendicular dependent fragmentation functions and are revealed in the observation of single spin asymmetries. Recent data on the production of pions in polarized semi-inclusive DIS and long known data on A polarization in unpolarized p-N processes are considered: these new fragmentation functions can describe the experimental results and the single spin effects in the quark fragmentation turn out to be surprisingly large

  5. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  6. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  7. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  8. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  9. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  10. Misjudging frustrations in spin liquids from oversimplified use of Curie-Weiss law

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Abhishek, E-mail: msan@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Ray, Sugata [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2017-02-15

    Absence of a single smoking-gun experiment to identify a quantum spin liquid, has kept their characterisation difficult till date. Featureless dc magnetic susceptibility and large antiferromagnetic frustration are always considered as the essential pointers to these systems. However, we show that the amount of frustration estimated by using generalised Curie-Weiss law on these susceptibility data are prone to errors and thus should be dealt with caution. We measure and analyse susceptibility data of Ba{sub 3}ZnIr{sub 2}O{sub 9}, a spin orbital liquid candidate and Gd{sub 2}O{sub 3}, a 1.5 K antiferromagnet and show the distinguishing features between them. A continuous and significant change in Curie and Weiss constants is seen to take place in Ba{sub 3}ZnIr{sub 2}O{sub 9} and other reported spin liquids with the change in the range of fitting temperatures showing the need of a temperature ‘range-of-fit’ analysis before commenting on the Weiss constants of spin liquids. The variation observed is similar to fluctuations among topological sectors persisting over a range of temperature in spin-ice candidates. On the other hand, even though we find correlations to exist at even 100 times the ordering temperature in Gd{sub 2}O{sub 3}, no such fluctuation is observed which may be used as an additional distinguishing signature of spin liquids over similarly featureless correlated paramagnets. - Highlights: • Curie-Weiss fitting may give erroneous frustration parameters in spin-liquids. • The results depend upon choice of fitting method and temperature range used. • More appropriate method is to use a ʽrange of fit’ analysis. • Can distinguish between spin-liquids and correlated paramagnets.

  11. Precise measurement of the neutron magnetic form factor from quasielastic 3 rvec He(rvec e,e')

    International Nuclear Information System (INIS)

    Gao, H.

    1997-01-01

    Polarized 3 He targets have proven to be a useful tool for studying the electric and magnetic form factors of the neutron, and the spin structure of the neutron. The neutron magnetic form factor at low Q 2 was determined previously at MIT-Bates from the quasielastic 3 rvec He(rvec e, e ' ) process. New experiment was planned at TJNAF to systematically measure the inclusive 3 He quasielastic transverse asymmetry, A T ' , at Q 2 = 0.1 - 0.5 (GeV/c) 2 with high statistical and systematic accuracy. A 2% statistical uncertainty is aimed at all the pro- posed values of Q 2 , and 3% systematic uncertainty for A T ' can be achieved for this experiment. The precise data will constrain theoretical calculations of 3 He quasielastic asymmetry. Furthermore, the neutron magnetic form factor at Q 2 = 0.1 - 0.5 (GeV/c) 2 will be extracted from the measured asymmetries with an overall uncertainty of 2%. Precise measurements of G n M at low Q 2 will resolve the discrepancy among the existing data in the same Q 2 region

  12. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF3

    International Nuclear Information System (INIS)

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-01-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF 3 and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF 3 is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs

  13. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  14. Apparent violation of isospin symmetry in the 3H(3He,2H)4He reaction

    International Nuclear Information System (INIS)

    Rai, G.; Blyth, C.O.; England, J.B.A.; Farooq, A.; Karban, O.; Rawas, E.; Roman, S.; Vlastou, R.

    1988-01-01

    Angular distributions of the vector analyzing powers for the 3 H( 3 He, 2 H) 4 He reaction have been measured over the incident energy range 18--33 MeV. The measurements centered about 18 MeV display a deviation from the antisymmetric shape expected from isospin symmetry. Concentrating on the explanation of the 90 0 analyzing powers, we report the results of a distorted-wave Born approximation (DWBA) analysis which includes the direct and exchange processes and the spin-orbit potential. It is shown that the anomalous behavior of the 90 0 vector analyzing powers can be largely explained by the effect of a single F-wave potential resonance which leads to the magnification of the short-range differences between the 3 He and 3 H wave functions

  15. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  16. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  17. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  18. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  19. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    International Nuclear Information System (INIS)

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13 C and 1 H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1 H and cross-polarized 13 C NMR signals from 15 N, 13 C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T 1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations

  20. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  1. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  2. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  3. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  4. Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical

    International Nuclear Information System (INIS)

    Wu Qiu-Hua; Zhao Peng; Liu De-Sheng

    2016-01-01

    We investigate theoretically the spin caloritronic transport properties of a stable 1,3,5-triphenylverdazyl (TPV) radical sandwiched between Au electrodes through different connection fashions. Obvious spin Seebeck effect can be observed in the para-connection fashion. Furthermore, a pure spin current and a completely spin-polarized current can be realized by tuning the gate voltage. Furthermore, a 100% spin polarization without the need of gate voltage can be obtained in the meta-connection fashion. These results demonstrate that TPV radical is a promising material for spin caloritronic and spintronic applications. (paper)

  5. Polarized 3He gas circulating technologies for neutron analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David W. [Xemed, LLC, Durham, NH (United States)

    2017-10-02

    We outline our project to develop a circulating polarized helium-3 system for developing of large, quasi-continuously operating neutron analyzers. The project consisted of four areas: 1) Development of robust external cavity narrowed diode laser output with spectral line width < 0.17 nm and power of 2000 W. 2) Development of large glass polarizing cells using cell surface treatments to obtain long relaxation lifetimes. 3) Refinements of the circulation system with an emphasis on gas purification and materials testing. 4) Design/fabrication of a new polarizer system. 5) Preliminary testing of the new polarizer. 1. Developed Robust High-Power Narrowed Laser The optical configuration of the laser was discussed in the proposal and will be reviewed in the body of this report. The external cavity is configured to mutually lock the wavelength of five 10-bar laser stacks. All the logistical milestones were been met and critical subsystems- laser stack manifold and power divider, external laser cavity, and output telescope- were assembled and tested at low power. Each individual bar is narrowed to ~0.05 nm; when combined the laser has a cumulative spectral width of 0.17 nm across the entire beam due to variations of the bars central wavelength by +/- 0.1 nm, which is similar to that of Volume Bragg Grating narrowed laser bars. This configuration eliminates the free-running “pedestal” that occurs in other external cavity diode lasers. The full-scale laser was completed in 2016 and was used in both the older and newer helium polarizers. This laser was operated at 75% power for periods of up to 8 hours. Once installed, the spectrum became slightly broader (~.25 nm) at full power; this is likely due to very slight misalignments that occurred during handling. 2. Developed the processes to create uniform sintered sol-gel coatings. Our work on cell development comprised: 1) Production of large GE180 cells and explore different means of cell preparation, and 2) Development of

  6. Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6

    Science.gov (United States)

    Slagle, Kevin; Choi, Wonjune; Chern, Li Ern; Kim, Yong Baek

    2018-03-01

    We propose a theoretical model for a gapless spin liquid phase that may have been observed in a recent experiment on H3LiIr2O6 . Despite the insulating and nonmagnetic nature of the material, the specific heat coefficient C /T ˜1 /√{T } in zero magnetic field and C /T ˜T /B3 /2 with finite magnetic field B have been observed. In addition, the NMR relaxation rate shows 1 /(T1T ) ˜(C/T ) 2 . Motivated by the fact that the interlayer/in-plane lattice parameters are reduced/elongated by the hydrogen intercalation of the parent compound Li2IrO3 , we consider four layers of the Kitaev honeycomb lattice model with additional interlayer exchange interactions. It is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic mode is split into four Majorana cones with the velocity v ˜B3 /4 . We suggest that the spin liquid phase in these "defect" layers, placed between different stacking patterns of the honeycomb layers, can explain the major phenomenology of the experiment, which can be taken as evidence that the Kitaev interaction plays the primary role in the formation of a quantum spin liquid in this material.

  7. Anomalous scattering of neutrons in spin-polarized media

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1989-01-01

    A new exchange mechanism of inelastic scattering with spin flip for slow neutrons propagating through a spin-polarized medium is studied. The scattering is accompanied by emission or absorption of thermal fluctuations of the transverse magnetization of the medium; the weakly damped Larmor precession of nuclear spins in the external magnetic field plays the main role in these fluctuations. Under the conditions of giant opalescence the effect is enormous and the corresponding cross sections are significantly greater than the standard elastic scattering cross sections. Thus in the case of 29 Si↑ and 3 He↑ under typical experimental conditions the cross sections of these inelastic processes are of the order of 10 5 -10 6 b

  8. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X

    2011-01-01

    The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.

  9. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  10. Spin dependent fragmentation functions for heavy flavor baryons and single heavy hyperon polarization

    CERN Document Server

    Goldstein, G R

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.

  11. Small-angle neutron polarization for the /sup 2/H(d vector,n vector)/sup 3/He reaction near Esub(d) = 8MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Woye, W.; Mack, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Walter, R.L.; Floyd, C.E.; Guss, P.P.; Byrd, R.C. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1981-12-15

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction /sup 2/H(d vector,n vector)/sup 3/He at a reaction angle of theta = 0/sup 0/. To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle ..delta..theta of 20/sup 0/ (lab) centered about theta = 0/sup 0/. In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction /sup 2/H(d vector,n vector)/sup 3/He has been studied with ..delta..theta of about 3/sup 0/ in 3/sup 0/ steps out to theta = 20/sup 0/ (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0/sup 0/ and theta = 10/sup 0/ (lab).

  12. Motion of particles and spin in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2003-01-01

    The equations of the particle and spin motion in media with polarized electrons placed in external fields are found. The exchange interaction affects the motion of electrons and their spin, and the annihilation interaction affects the motion of positrons and their spin. The second-order terms in spin are taken into account for particles with spin S ≥ 1. The found equations can be used for the description of the particle and spin motion in both magnetic and nonmagnetic media [ru

  13. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    Directory of Open Access Journals (Sweden)

    Mathieu Taillefumier

    2017-12-01

    Full Text Available Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho_{2}Ti_{2}O_{7} and Dy_{2}Ti_{2}O_{7} exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related “quantum spin-ice” materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  14. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  15. A new frozen-spin target for 4π particle detection

    International Nuclear Information System (INIS)

    Bradtke, Ch.; Dutz, H.; Peschel, H.; Goertz, S.; Harmsen, J.; Hasegawa, S.; Horikawa, N.; Iwata, T.; Kageya, T.; Matsuda, T.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Rohlof, Ch.; Thomas, A.; Wakai, A.

    1999-01-01

    A new frozen-spin target has been developed, that allows the detection of emitted particles in an angular acceptance of almost 4π in the laboratory frame. The central part of this new target represents a 3 He/ 4 He dilution refrigerator that is installed horizontally along the beam axis. The refrigerator includes an internal superconducting holding coil to maintain the nucleon polarization in the frozen-spin mode longitudinally to the beam. The design of the dilution refrigerator and the use of an internal holding coil enabled for the first time the measurement of a spin-dependent total cross section in combination with a polarized solid state target. This new frozen-spin target was used successfully to measure the helicity asymmetry of the total photoabsorption cross-section at the Mainz accelerator facility MAMI. This experiment has been performed in order to verify for the first time the GDH sum rule

  16. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  17. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures

  18. Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids

    Science.gov (United States)

    van den Brink, Jeroen

    The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.

  19. Spin flipping a stored polarized proton beam at the IUCF cooler ring

    International Nuclear Information System (INIS)

    Phelps, R.A.

    1995-01-01

    We recently studied the spin flip of a vertically polarized 139 MeV proton beam stored in the IUCF Cooler Ring. We used an rf solenoid to induce a depolarizing resonance in the ring; we flipped the spin by varying the solenoid field's frequency through this resonance. We found a polarization loss after multiple spin flips less than 0.1% per flip; we also found that this loss increased for very slow frequency changes. This spin flip could reduce systematic errors in stored polarization beam experiments by allowing frequent beam polarization reversals during the experiment. copyright 1995 American Institute of Physics

  20. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    Directory of Open Access Journals (Sweden)

    Ichikawa Y.

    2014-03-01

    Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  1. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Science.gov (United States)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  2. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  3. Spin-flip processes in low-energy Fe17+ + He collisions

    International Nuclear Information System (INIS)

    Bruch, R.; Altick, P.L.; Rauscher, E.; Wang, H.; Schneider, D.

    1993-01-01

    Spin-nonconserving electron transfer processes violating the ''Wigner rule'' have been studied for slow multiply charged ion-atom collisions. Experimentally a strong population of highly metastable sodium-like quartet states in low energy Fe 17+ + He single collision events has been observed. The possibility of double-electron capture plus spin-flip mechanisms has been discussed experimentally and theoretically, Our theoretical model using time dependent perturbation theory predicts that spin-flip processes are as likely as no spin flip under the conditions of our experiment

  4. Detecting spin polarization of nano-crystalline manganese doped zinc oxide thin film using circular polarized light

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com

    2016-02-01

    The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.

  5. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    Science.gov (United States)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  6. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  7. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  8. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  9. Neutron resonance spins of 159Tb from experiments with polarized neutrons and polarized nuclei

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Ivanenko, A.I.; Lason', L.; Mareev, Yu.D.; Ovchinnikov, O.N.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1976-01-01

    Spins of 27 neutron resonances of 159 Tb with energies up to 114 eV have been measured using polarized neutrons and nuclei beams in the modernized time-of-flight spectrometer of the IBR-30 pulse reator. The direct measurements of the terbium resonances spins performed using polarized neutrons reaffirm the conclusion that there are no unstationary effects in the behaviour of 159 Tb neutron resonances in the energy range

  10. Conductivity of a spin-polarized two-dimensional hole gas at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dlimi, S., E-mail: kaaouachi21@yahoo.fr; Kaaouachi, A. El, E-mail: kaaouachi21@yahoo.fr; Limouny, L., E-mail: kaaouachi21@yahoo.fr; Sybous, A.; Narjis, A.; Errai, M.; Daoudi, E. [Research Group ESNPS , Physics department, University Ibn Zohr, Faculty of Sciences, B.P 8106, Hay Dakhla, 80000 Agadir (Morocco); Idrissi, H. El [Faculté des Sciences et Techniques de Mohammedia, Département de physique. BP 146 Quartier Yasmina Mohammedia (Morocco); Zatni, A. [Laboratoire MSTI. Ecole de technologied' Agadir, B.P33/S Agadir (Morocco)

    2014-01-27

    In the ballistic regime where k{sub B}Tτ / ħ ≥1, the temperature dependence of the metallic conductivity in a two-dimensional hole system of gallium arsenide, is found to change non-monotonically with the degree of spin polarization. In particular, it fades away just before the onset of complete spin polarization, but reappears again in the fully spin-polarized state, being, however, suppressed relative to the zero magnetic field case. The analysis of the degree of suppression can distinguish between screening and interaction-based theories. We show that in a fully polarized spin state, the effects of disorder are dominant and approach a strong localization regime, which is contrary to the behavior of 2D electron systems in a weakly disordered unpolarized state. It was found that the elastic relaxation time correction, depending on the temperature, changed significantly with the degree of spin polarization, to reach a minimum just below the start of the spin-polarized integer, where the conductivity is practically independent of temperature.

  11. Current activities and plans for polarized neutron instruments of the JSNS/J-PARC project

    International Nuclear Information System (INIS)

    Furusaka, M.

    2005-01-01

    Neutron polarization is one of the key technologies for the next generation megawatt-class pulsed spallation neutron sources, such as SNS in the US and the JSNS in Japan. To polarize or analyze neutron spin, several techniques are under development in Japan: a small d-spacing magnetic multilayer mirror, spin exchange type He-3 filter and a dynamical proton polarizer. Several application techniques related to polarized neutrons are also under development, such as, a microwave-induced optical nuclear polarization technique, which allows us to polarize protons in naphtalene doped with pentacene at 77 K; neutron focusing-SANS instrument utilizing a focusing magnet; a Drabkin spin-filter instrument that has two filters in series for neutron-pulse shaping

  12. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  13. General topological features and instanton vacuum in quantum Hall and spin liquids

    International Nuclear Information System (INIS)

    Pruisken, A.M.M.; Shankar, R.; Surendran, Naveen

    2005-01-01

    We introduce the concept of superuniversality in quantum Hall liquids and spin liquids. This concept has emerged from previous studies of the quantum Hall effect and states that all the fundamental features of the quantum Hall effect are generically displayed as general topological features of the θ parameter in nonlinear σ models in two dimensions. To establish superuniversality in spin liquids we revisit the mapping by Haldane who argued that the antiferromagnetic Heisenberg spin-s chain in 1+1 space-time dimensions is effectively described by the O(3) nonlinear σ model with a θ term. By combining the path integral representation for the dimerized spin s=1/2 chain with renormalization-group decimation techniques we generalize the Haldane approach to include a more complicated theory, the fermionic rotor chain, involving four different renormalization-group parameters. We show how the renormalization-group calculation technique can be used to build a bridge between the fermionic rotor chain and the O(3) nonlinear σ model with the θ term. As an integral and fundamental aspect of the mapping we establish the topological significance of the dangling spin at the edge of the chain. The edge spin in spin liquids is in all respects identical to the massless chiral edge excitations in quantum Hall liquids. We consider various different geometries of the spin chain such as open and closed chains, chains with an even and odd number of sides. We show that for each of the different geometries the θ term has a distinctly different physical meaning. We compare each case with a topologically equivalent quantum Hall liquid

  14. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  15. Measuring absolute spin polarization in dissolution-DNP by Spin PolarimetrY Magnetic Resonance (SPY-MR).

    OpenAIRE

    Vuichoud , Basile; Milani , Jonas; Chappuis , Quentin; Bornet , Aurélien; Bodenhausen , Geoffrey; Jannin , Sami

    2015-01-01

    Dynamic nuclear polarization at 1.2 K and 6.7 T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (Delta E < kT) is violated for the nuclear Zeeman interaction Delta E = gamma B(0)h/(2 pi) of most isotopes. Provided that, after rapid dissolution and transfer to an NMR or MRI system, the hyperpolarized molecules contain at least two nuclear spins I and S with a scalar coupling J(IS), the polarization of spin I (short for 'inve...

  16. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  17. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya; Benali Kanoun, Mohammed; Manchon, Aurelien; Schwingenschlö gl, Udo

    2013-01-01

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  18. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  19. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  20. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  1. Application of the three-body model to the reactions 6Li(3He,t 3He)3He and 6Li(3He,3He3He)3H

    International Nuclear Information System (INIS)

    Haftel, M.I.; Allas, R.G.; Beach, L.A.; Bondelid, R.O.; Petersen, E.L.; Slaus, I.; Lambert, J.M.; Treado, P.A.

    1977-01-01

    Experimental and theoretical cross sections are presented for the 6 Li( 3 He, 3 He 3 He) 3 H and 6 Li( 3 He,t 3 He) 3 He reactions for the symmetric angle pairs 20 0 -20 0 , 28.3 0 -28.3 0 , and 35 0 -35 0 . The theoretical cross sections are calculated in a three-body model where the trions (i.e., mass-3 nuclei) are treated as elementary particles with 6 Li being a 3 He- 3 H bound state. The trion-trion interaction is represented by S wave separable potentials with the breakup cross sections calculated with the tree-body Haftel-Ebenhoeh code. the Coulomb interaction is taken into account by fitting the separable potential parameters to the trion-trion scattering data and is included approximately in the breakup code. The experimental cross sections are compared with both the plane-wave impulse approximation and the three-body model predictions. The plane-wave impulse approximation predicts both the shapes and magnitudes poorly (10 to 20 times experiment). Without Coulomb corrections the three-body model gives good agreement with experiment for the shapes of the spectra with the magnitudes generally being about 40% of experiment for 6 Li( 3 He, 3 He 3 He) 3 H and about 80% for 6 Li( 3 He,t 3 He) 3 He. The Coulomb corrections improve the magnitudes predicted by the three-body model but not the shapes. It is observed that for these reactions S wave separable potentials describe the breakup data much better than they do the two-body trion-trion scattering data. This result should encourage further three-body treatment of these and similar reactions

  2. Small objects in superfluid 3He

    International Nuclear Information System (INIS)

    Rainer, D.; Vuorio, M.

    1977-02-01

    Distortions in the superfluid order parameter around a small object in 3 He are calculated together with the supercurrents and the angular momentum induced by it in the liquid. The forces acting on the impurity by the liquid texture structure are also considered. (author)

  3. The (3He,t) and (d,2He)reactions at intermediate energies

    International Nuclear Information System (INIS)

    Brockstedt, A.

    1987-09-01

    The ( 3 He,t) reaction has been studied at 0.6-2.3 GeV at small scattering angles, 0-7 degrees, on various nuclei ( 12 C, 13 C, 26 Mg, 40 Ca, 48 Ca, 54 Fe, 90 Zr, 159 Tb, 208 Pb) including a proton target. The reaction is a single-step reaction and selects the spin-isospin channel. Angular distributions for low-lying states in 12 N are well described by DWIA calculations. From 13 C to 13 N transitions the ratio J στ /J τ , at momentum transfer, q, close to zero, is derived. The ratio remains roughly constant in the region 300 - 700 MeV/nucleon. The position of the quasi-free peak is shifted compared with free nucleon-nucleon scattering. The shift is towards higher excitation energies at q approx 1.4 fm -1 , and towards lower excitation energies at q approx 2.5 fm -1 . The p( 3 He,t)Δ ++ reaction is analysed as one-pion exchange and the ( 3 He,t) form factor is extracted. The shape and position of the Δ resonance seem to be independent of target mass for the targets studied. Compared with the p to Δ ++ transition the position is shifted towards lower excitation energy in nuclei. The (d,2p[ 1 S 0 ]) reaction, with the two protons in an 1 S 0 state labelled 2 He, is studied at 0.65 and 2.0 GeV at small angles, 0-4 degrees, on some of the targets used in the ( 3 He,t) experiment (p, 12 C, 40 Ca, 54 Fe). This reaction is also a one-step reaction that can be used for studies of spin-isospin excitations. Cross sections and tensor analysing powers are determined for the p(d, 2 He)n reaction. These results are compared with PWIA calculations. The Δ resonance in carbon is also here shifted down in excitation energy compared with the proton target. (author)

  4. A new frozen-spin target for 4 pi particle detection

    CERN Document Server

    Bradtke, C; Peschel, H; Görtz, S; Harmsen, J; Hasegawa, S; Horikawa, N; Iwata, T; Kageya, T; Matsuda, T; Meier, A; Meyer, Werner T; Radtke, E; Reicherz, G; Rohlof, C; Thomas, A; Wakai, A

    1999-01-01

    A new frozen-spin target has been developed, that allows the detection of emitted particles in an angular acceptance of almost 4 pi in the laboratory frame. The central part of this new target represents a sup 3 He/ sup 4 He dilution refrigerator that is installed horizontally along the beam axis. The refrigerator includes an internal superconducting holding coil to maintain the nucleon polarization in the frozen-spin mode longitudinally to the beam. The design of the dilution refrigerator and the use of an internal holding coil enabled for the first time the measurement of a spin-dependent total cross section in combination with a polarized solid state target. This new frozen-spin target was used successfully to measure the helicity asymmetry of the total photoabsorption cross-section at the Mainz accelerator facility MAMI. This experiment has been performed in order to verify for the first time the GDH sum rule.

  5. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  6. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  7. Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit

    International Nuclear Information System (INIS)

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V.; Skyba, P.

    2006-01-01

    We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 μK. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to ∼200 μK. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid

  8. Achievement of transportable polarized D, in solid HD, with a one day passively maintained polarization

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Wei, X.; Yu, Y.Y.

    1993-01-01

    At a previous workshop, we discussed evaporating solid HD with spin-polarized deuterons to produce a high density polarized deuteron gaseous internal target. Since then, we have achieved in solid HD 38% polarized D, whose spin-lattice relaxation time at 1.5 K in a field of 0.1 T is of the order of a day. Optimization of the procedure with the present apparatus should result in 60% D polarization, and longer polarization holding times. The polarized sample of approximately 0.2 cm 3 volume used here is extractable from the dilution refrigerator with a cold-transfer apparatus which maintains the sample at or below 5 K, insuring retention of the high polarization. It is subsequently insertable into a variety of systems, and employable as a polarized solid, liquid, or gas. We are exploring the possibility of extending the polarization maintenance time to about a month (with a matched 1 month preparation time), of polarizing metastably H as well as D, and of producing much larger samples, of the order of 100 cm 3

  9. Can there be a T3 ln T kind of behaviour of the low temperature specific heat of liquid 3He without the paramagnons?

    International Nuclear Information System (INIS)

    Tripathy, D.N.; Mishra, S.

    1996-01-01

    It is shown that even without invoking the concepts like paramagnons, the temperature dependence of the interparticle correlations in a system of liquid 3 He can give rise a T 3 ln T kind of behaviour of its low temperature fermionic specific heat. It is found to be coming from the self-energy corrections to the bare single particle energy involving the particle-hole propagator. Looking at the similar kind of behaviour observed by us recently for an electron liquid, one may conclude that the T 3 ln T behaviour is perhaps universal for all fermi systems, although for liquid 3 He the very dependence also follows from the paramagnon effects. It is interesting to see that unlike earlier theories, an extremely good fit is obtained with the experimental data over the entire range of low temperatures. (orig.)

  10. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Science.gov (United States)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  11. Current-Induced Spin Polarization at a Single Heterojunction

    NARCIS (Netherlands)

    Silov, A.; Blajnov, P.; Wolter, J.H.; Hey, R.; Ploog, K.; Averkiev, N.S.; Menendez, J.; Walle, van der C.G.

    2005-01-01

    We have experimentally achieved spin-polarization by a lateral current in a single non-magnetic semiconductor heterojunction. The effect does not require an applied magnetic field or ferromagnetic contacts. The current-induced spin orientation can be seen as the inverse of the circular

  12. Effects of magnetic impurity scattering on superfluid 3He in aerogel

    Science.gov (United States)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    We investigate impurity effects on superfluid 3He in aerogel whose surface is not coated with 4He, different from most experimental situations. In systems with no 4He coating, spins of solid 3He absorbed on the aerogel surface are active and interact with spins of quasiparticles relevant to superfluidity and, for this reason, such an aerogel is treated as magnetic scatterers. It is found that, in the ABM pairing state affected by magnetic scatterings, not only the l-vector but also the d-vector has no long-ranged orientational order, and that the strong-coupling correction due to impurity scatterings is less suppressed than that in the nonmagnetic case, implying an expansion of the A-like phase region.

  13. Elastic scattering of polarized protons from 3He at intermediate energies

    International Nuclear Information System (INIS)

    Hasell, D.K.; Bracco, A.; Gubler, H.P.

    1982-09-01

    Using the polarized proton beam facility of the TRIUMF cyclotron, differential cross sections and analyzing powers have been measured in the angular range 20 0 - 150 0 c.m. for proton elastic scattering from 3 He at incident proton energies of 200, 300, 415 and 515 MeV. The differential cross sections exhibit a minimum at t = -0.33 (GeV/c) 2 which becomes more pronounced with increasing energy. There is evidence for the onset of a second minimum corresponding to the interference between double and triple scattering amplitudes. Large analyzing powers are observed at the lower energies. The data from the present analysis, together with data obtained from the literature in the energy range 100-1000 MeV, have been analyzed within the framework of the Glauber multiple scattering formalism. Nucleon-nucleon scattering parameters were taken from a global phase shift analysis of nucleon-nucleon elastic scattering data. Reasonable agreement with the data is obtained

  14. Spin physics with polarized electrons at the SLC [Stanford Linear Collider

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1990-11-01

    The Stanford Linear Collider was designed to accommodate polarized electron beams. A gallium arsenide-based photon emission source will provide a beam of longitudinally polarized electrons of about 40 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positions. A system to monitor the polarization based on Moeller and Compton scattering will be used. Spin physics with longitudinally polarized electrons uses the measurement of the left-right asymmetry to provide tests of the Standard Model. The uncertainty in the measurement is precise enough to be sensitive to the effects of particles which can not be produced directly in the machines we have today. 5 refs

  15. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    Science.gov (United States)

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  16. The (3He,α) reaction mechanism. A study of the angular momentum transfer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Bergholt, L.; Ingebretsen, F.; Loevhoeiden, G.; Messelt, S.; Rekstad, J.; Tveter, T.S.; Helstrup, H.; Thorsteinsen, T.F.

    1994-01-01

    The γ-rays emitted after the 163 Dy( 3 He,αxn) reactions at E( 3 He) = 45 MeV have been measured. The transferred angular momentum in the reaction is deduced from the side-feeding γ-intensities of the ground bands in the residual 162-x Dy isotopes. With decreasing α-energy the average spin transfer increases from similar 5h to similar 11h. The ( 3 He,α) reaction at these energies is dominated by direct processes. Even at the highest spin transfer the contribution from the compound reaction channel is negligible. ((orig.))

  17. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  18. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    International Nuclear Information System (INIS)

    Fischer, W.; Bazilevsky, A.

    2011-01-01

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. (bar P)), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g. ).

  19. Neutron inelastic sattering from liquid 3He at 40 mK and at 1.2 K

    International Nuclear Information System (INIS)

    Skoeld, K.; Pelizzari, C.A.

    1978-01-01

    In a previous neutron scattering experiment on 3 He at T = 15 mK the present authors observed two peaks in the scattering function which were identified as the zero sound mode and the spin-fluctuation peak respectively. These results are different from those obtained by others at T = 0.63 K in which case no such structure was observed. In order to determine whether this discrepancy is due to the difference in the temperature of the two experiments, measurements have now been made at T = 40 mK and at T = 1.2 K. These results show that the two-peak structure persists at the higher temperature although measurable broadening is observed in the spin-fluctuation part of the spectrum. (author)

  20. One-body density matrix and the momentum density in 4He and 3He

    International Nuclear Information System (INIS)

    Whitlock, P.A.; Panoff, R.M.

    1984-01-01

    The one-body density matrix and the momentum density for liquid and solid 4 He, determined from Green's Function Monte Carlo calculations using the HFDHE2 pair potential, are described. Values for the condensate fraction and the kinetic energy derived from these calculations are given and compared to recent experimental results. Preliminary results from variational Monte Carlo calculations on n(r) and n(k) for liquid 3 He are also reported

  1. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  2. The OSIRIS diffractometer and polarisation analysis spectrometer at ISIS. New developments and 3He spin-filter polarisation analysis

    International Nuclear Information System (INIS)

    Andersen, Ken H.; Marero, David Martin y; Barlow, Michael J.

    2001-01-01

    OSIRIS combines a long-wavelength powder diffractometer with a polarisation analysis backscattering spectrometer. The diffractometer can access wavelengths up to 70 A with a resolution of better than 1% Δd/d. The very high counting-rate at shorter wavelengths is ideal for in-situ, real-time and parametric experiments. The spectroscopy section incorporates an array of graphite crystals arranged in near-backscattering to give a high counting rate with 25 μeV energy resolution. The incident beam is polarised using a supermirror bender and the scattered beam is polarisation-analysed by a 3 He spin-filter in the process of being constructed. The spin-filter system consists of a fibre laser, a peristaltic pump and a wide-angle banana-shaped quartz cell in a continuous-flow setup. The scattered beam passes twice through the spin-filter cell, thus doubling the optical path length in the cell. The aim is to achieve 70% nuclear polarisation with no variation in time. (author)

  3. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  4. RKKY interaction in spin polarized armchair graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, Hamed, E-mail: rezania.hamed@gmail.com; Azizi, Farshad

    2016-11-01

    We present the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction. - Highlights: • Theoretical calculation of RKKY interaction of armchair graphene nanoribbon. • The investigation of the effect of spin polarization on RKKY interaction. • The investigation of electronic concentration on RKKY interaction of armchair graphene nanoribbon.

  5. Comparison of analyzing power and polarization in the reaction 3H(p,n)3He. Pt. 2

    International Nuclear Information System (INIS)

    Tornow, W.; Byrd, R.C.; Lisowski, P.W.; Walter, R.L.; Donoghue, T.R.

    1981-01-01

    The polarization Psup(y) for the 3 H(p,n) 3 He reaction was measured for energies between 2 and 4 MeV. Special care was given to minimizing the effects of background and to interpreting the experimental spectra. The new values for Psup(y) are significantly higher than previous values, and comparison to the available data for the analyzing power Asub(y) for the same reaction now shows that in this energy range Psup(y) ad Asub(y) are equal within experimental uncertainties. This equality negates earlier conclusions that sizeable differences existed between these observables. In particular, our new results demonstrate that in this reaction the effects of charge symmetry breaking on differences between these observables must be small. (orig.)

  6. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland

    2014-10-01

    The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.

  7. Probing spin-polarized edge state superconductivity by Andreev reflection in in-plane magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reinthaler, Rolf W.; Tkachov, Grigory; Hankiewicz, Ewelina M. [Faculty of Physics and Astrophysics, University of Wuerzburg, Wuerzburg (Germany)

    2015-07-01

    Finding signatures of unconventional superconductivity in Quantum Spin Hall systems is one of the challenges of solid state physics. Here we induce superconductivity in a 3D topological insulator thin film to cause the formation of helical edge states, which are protected against backscattering even in finite magnetic fields. Above a critical in-plane magnetic field, which is much smaller than the critical field of typical superconductors, the quasi-particle gap closes, giving rise to energy-dependent spin polarization. In this regime the spin-polarized edge state superconductivity can be detected by Andreev reflection. We propose measurement setups to experimentally observe the spin-dependent excess current and dI/dV characteristics.

  8. Measurement of Double-Polarization Asymmetries in the Quasielastic He3→(e → ,e'd ) Process

    Science.gov (United States)

    Mihovilovič, M.; Jin, G.; Long, E.; Zhang, Y.-W.; Allada, K.; Anderson, B.; Annand, J. R. M.; Averett, T.; Boeglin, W.; Bradshaw, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J. P.; Chudakov, E.; De Leo, R.; Deng, X.; Deltuva, A.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Frullani, S.; Garibaldi, F.; Gao, H.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golak, J.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, J.; Ibrahim, H.; de Jager, C. W.; Jensen, E.; Jiang, X.; Jones, M.; Kang, H.; Katich, J.; Khanal, H. P.; Kievsky, A.; King, P.; Korsch, W.; LeRose, J.; Lindgren, R.; Lu, H.-J.; Luo, W.; Marcucci, L. E.; Markowitz, P.; Meziane, M.; Michaels, R.; Moffit, B.; Monaghan, P.; Muangma, N.; Nanda, S.; Norum, B. E.; Pan, K.; Parno, D.; Piasetzky, E.; Posik, M.; Punjabi, V.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Qui, X.; Riordan, S.; Saha, A.; Sauer, P. U.; Sawatzky, B.; Schiavilla, R.; Schoenrock, B.; Shabestari, M.; Shahinyan, A.; Širca, S.; Skibiński, R.; John, J. St.; Subedi, R.; Sulkosky, V.; Tobias, W. A.; Tireman, W.; Urciuoli, G. M.; Viviani, M.; Wang, D.; Wang, K.; Wang, Y.; Watson, J.; Wojtsekhowski, B.; Witała, H.; Ye, Z.; Zhan, X.; Zhang, Y.; Zheng, X.; Zhao, B.; Zhu, L.; Jefferson Lab Hall A Collaboration

    2014-12-01

    We present a precise measurement of double-polarization asymmetries in the He3→(e → ,e'd ) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in 3He and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasielastic kinematics at Q2=0.25 (GeV /c )2 for missing momenta up to 270 MeV /c . The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on pm and ω , but are systematically offset. Beyond the region of the quasielastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two-and/or three-body dynamics is required.

  9. Dominant spin-flip effects for the hadronic-produced J/ψ polarization at the Tevatron

    International Nuclear Information System (INIS)

    Wu Xinggang; Fang Zhenyun

    2009-01-01

    Dominant spin-flip effects for the direct and prompt J/ψ polarizations at Tevatron run II with collision energy 1.96 TeV and rapidity cut |y J/ψ | 8 [ 3 S 1 ] into J/ψ is especially discussed with care. It is found that the spin-flip effect shall always dilute the J/ψ polarization, and with a suitable choice of the parameters a 0,1 and c 0,1,2 , the J/ψ polarization puzzle can be solved to a certain degree. At large transverse momentum p t , α for the prompt J/ψ is reduced by ∼50% for f 0 =v 2 and by ∼80% for f 0 =1. We also study the indirect J/ψ polarization from the b decays, which however is slightly affected by the same spin-flip effect and then shall provide a better platform to determine the color-octet matrix elements.

  10. RHIC spin: The first polarized proton collider

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    The very successful program of QCD and electroweak tests at the high energy hadron colliders have shown that the perturbative QCD has progressed towards becoming a ''precision'' theory. At the same time, it has been shown that with the help of Siberian Snakes it is feasible to accelerate polarized protons to high enough energies where the proven methods of collider physics can be used to probe the spin content of the proton but also where fundamental tests of the spin effects in the standard model are possible. With Siberian Snakes the Relativistic Heavy Ion Collider (RHIC) will be the first collider to allow for 250 GeV on 250 GeV polarized proton collisions

  11. Velocity barrier-controlled of spin-valley polarized transport in monolayer WSe2 junction

    Science.gov (United States)

    Qiu, Xuejun; Lv, Qiang; Cao, Zhenzhou

    2018-05-01

    In this work, we have theoretically investigated the influence of velocity barrier on the spin-valley polarized transport in monolayer (ML) WSe2 junction with a large spin-orbit coupling (SOC). Both the spin-valley resolved transmission probabilities and conductance are strong dependent on the velocity barrier, as the velocity barrier decreases to 0.06, a spin-valley polarization of exceeding 90% is observed, which is distinct from the ML MoS2 owing to incommensurable SOC. In addition, the spin-valley polarization is further increased above 95% in a ML WSe2 superlattice, in particular, it's found many extraordinary velocity barrier-dependent transport gaps for multiple barrier due to evanescent tunneling. Our results may open an avenue for the velocity barrier-controlled high-efficiency spin and valley polarizations in ML WSe2-based electronic devices.

  12. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  13. Tunnel Spin Polarization Versus Energy for Clean and Doped Al2O3 Barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  14. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  15. Improved results for the 2H(d, n)3He transverse vector polarization-transfer coefficient Kyy'(0o) at low energies

    International Nuclear Information System (INIS)

    Roper, C.D.; Dunham, J.D.; Clegg, T.B.; Mendez, A.J.; Tornow, W.; Walter, R.L.

    2010-01-01

    Measurements of the 2 H(d, n) 3 He transverse vector polarization-transfer coefficient K y y' at 0 o . are reported for 29 outgoing neutron energies between 3.94 and 8.47 MeV. Our new results determine K y y' (0 o ) more accurately than previous data, especially for neutron energies below 5 MeV. Low-energy data for this reaction are important both as a high-intensity source of highly polarized neutrons for nuclear physics studies with polarized neutron beams, and as a test of the emerging theoretical descriptions of the four-body system, where recently substantial progress has been made. (author)

  16. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  17. The S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Burandt, Christoph; Eichhorn, Ralf; Enders, Joachim; Espig, Martin; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany); Aulenbacher, Kurt [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2011-07-01

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  18. Local Electronic and Magnetic Structure of Ni below and above TC: A Spin-Resolved Circularly Polarized Resonant Photoemission Study

    NARCIS (Netherlands)

    Sinkovic, B.; Tjeng, L.H.; Brookes, N.B.; Goedkoop, J.B.; Hesper, R.; Pellegrin, E.; Groot, F.M.F. de; Altieri, S.; Hulbert, S.L.; Shekel, E.; Sawatzky, G.A.

    1997-01-01

    We report the measurement of the local Ni 3d spin polarization, not only below but also above the Curie temperature (TC), using the newly developed spin-resolved circularly polarized 2p (L3) resonant photoemission technique. The experiment identifies the presence of 3d8 singlets at high energies

  19. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  20. Spin-orbital quantum liquid on the honeycomb lattice

    Science.gov (United States)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  1. BROOKHAVEN: Spin rotator to boost polarization

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Alternating Gradient Synchrotron (AGS) at Brookhaven holds the world record energy for spin polarized proton beams at 22 GeV. However this required a complicated two-week commissioning effort to overcome 39 imperfection depolarizing resonances and six intrinsic depolarizing resonances

  2. Electron and nuclear spin system polarization in semiconductors by light

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, B; Flejsher, V

    1981-02-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.

  3. Electron and nuclear spin system polarization in semiconductors by light

    International Nuclear Information System (INIS)

    Zakharchenya, B.; Flejsher, V.

    1981-01-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)

  4. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  5. Dimerization of 3He in 3He-4He mixture films

    International Nuclear Information System (INIS)

    Bashkin, E.

    1994-01-01

    3 He atoms dissolved in superfluid 4 He may form dimers ( 3 He) 2 in two-dimensional geometries. Dimer formation is studied in films of dilute 3 He- 4 He mixture. After designing a schematic 3 He- 3 He interaction potential, the dimer binding energy is calculated for various substrates. It is shown that 3 He impurity states localized near the substrate give rise to the highest magnitudes of the binding energy. (author). 32 refs., 6 figs.,; 1 tab

  6. Errors and corrections in the separation of spin-flip and non-spin-flip thermal neutron scattering using the polarization analysis technique

    International Nuclear Information System (INIS)

    Williams, W.G.

    1975-01-01

    The use of the polarization analysis technique to separate spin-flip from non-spin-flip thermal neutron scattering is especially important in determining magnetic scattering cross-sections. In order to identify a spin-flip ratio in the scattering with a particular scattering process, it is necessary to correct the experimentally observed 'flipping-ratio' to allow for the efficiencies of the vital instrument components (polarizers and spin-flippers), as well as multiple scattering effects in the sample. Analytical expressions for these corections are presented and their magnitudes in typical cases estimated. The errors in measurement depend strongly on the uncertainties in the calibration of the efficiencies of the polarizers and the spin-flipper. The final section is devoted to a discussion of polarization analysis instruments

  7. Langmuir instability in partially spin polarized bounded degenerate plasma

    Science.gov (United States)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  8. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  9. Symmetry-protected topological superfluids and superconductors. From the basics to 3He

    International Nuclear Information System (INIS)

    Mizushima, Takeshi; Tsutsumi, Yasumasa; Kawakami, Takuto; Sato, Masatoshi; Ichioka, Masanori; Machida, Kazushige

    2016-01-01

    In this article, we give a comprehensive review of recent progress in research on symmetry-protected topological superfluids and topological crystalline superconductors, and their physical consequences such as helical and chiral Majorana fermions. We start this review article with the minimal model that captures the essence of such topological materials. The central part of this article is devoted to the superfluid 3 He, which serves as a rich repository of novel topological quantum phenomena originating from the intertwining of symmetries and topologies. In particular, it is emphasized that the quantum fluid confined to nanofabricated geometries possesses multiple superfluid phases composed of the symmetry-protected topological superfluid B-phase, the A-phase as a Weyl superfluid, the nodal planar and polar phases, and the crystalline ordered stripe phase. All these phases generate noteworthy topological phenomena, including topological phase transitions concomitant with spontaneous symmetry breaking, Majorana fermions, Weyl superfluidity, emergent supersymmetry, spontaneous edge mass and spin currents, topological Fermi arcs, and exotic quasiparticles bound to topological defects. In relation to the mass current carried by gapless edge states, we also briefly review a longstanding issue on the intrinsic angular momentum paradox in 3 He-A. Moreover, we share the current status of our knowledge on the topological aspects of unconventional superconductors, such as the heavy-fermion superconductor UPt 3 and superconducting doped topological insulators, in connection with the superfluid 3 He. (author)

  10. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  11. The ground state energy of 3He droplet in the LOCV framework

    International Nuclear Information System (INIS)

    Modarres, M.; Motahari, S.; Rajabi, A.

    2012-01-01

    The (extended) lowest order constrained variational method was used to calculate the ground state energy of liquid helium 3 ( 3 He) droplets at zero temperature. Different types of density distribution profiles, such as the Gaussian, the Quasi-Gaussian and the Woods-Saxon were used. It was shown that at least, on average, near 20 3 He atoms are needed to get the bound state for 3 He liquid droplet. Depending on the choice of the density profiles and the atomic radius of 3 He, the above estimate can increase to 300. Our calculated ground state energy and the number of atoms in liquid 3 He droplet were compared with those of Variational Monte Carlo method, Diffusion Monte Carlo method and Density Functional Theory, for which a reasonable agreement was found.

  12. First doubly polarised photoproduction on 3He at the photon beam of MAMI

    International Nuclear Information System (INIS)

    Aguar Bartolome, Patricia

    2010-11-01

    A first experiment with a polarised 3 He target was carried out in July 2009 at the MAMI accelerator in Mainz in a photon energy range between 200 MeV and 800 MeV. The aim of this measurement was to investigate the Gerasimov-Drell-Hearn sum rule on the neutron. The use of the data obtained with the polarised 3 He target, compared to existing data on the deuteron, gives a complementary and more direct access to the neutron, due to the spin structure of the 3 He. The measurement of the helicity dependence of the inclusive total photoabsorption cross section required a beam of tagged circularly polarised photons incident on the longitudinally polarised 3 He target. The data were taken using the 4π Crystal Ball photon spectrometer in combination with TAPS as a forward wall and complemented by a threshold Cherenkov detector used to on-line suppress the background from electromagnetic events. The development and preparation of the different components of the 3 He experimental setup was an important part of this work and are described in detail in this thesis. The detector system and the analysis method were tested by the measurement of the unpolarised total inclusive photoabsorption cross section on liquid hydrogen. The results obtained are in good agreement with previous published data. Preliminary results of the unpolarised total photoabsorption cross section, as well as the helicity dependent photoabsorption cross section difference on 3 He compared with several theoretical models will also be presented. (orig.)

  13. Generation and detection of spin polarization in parallel coupled double quantum dots connected to four terminals

    International Nuclear Information System (INIS)

    An, Xing-Tao; Mu, Hui-Ying; Li, Yu-Xian; Liu, Jian-Jun

    2011-01-01

    A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.

  14. Injection of spin-polarized current into semiconductor

    International Nuclear Information System (INIS)

    Vedyayev, A.V.; Dieny, B.; Ryzhanova, N.V.; Zhukov, I.V.; Zhuravlev, M.Ye.; Lutz, H.O.

    2003-01-01

    A quantum-statistical theory of injection of spin-polarized current into a semiconductor in ferromagnet/tunnel barrier/semiconductor system is presented. The presence of Schottky barrier in the semiconductor is taken into account. The case of degenerated and non-degenerated semiconductors are considered. Both the diffusive and ballistic transport regime are investigated. The dependence of current polarization on barrier thickness and temperature is calculated

  15. ESR studies on the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3: Anomalous response below T=8 K

    International Nuclear Information System (INIS)

    Padmalekha, K.G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Schlueter, J.A.; Dressel, M.

    2015-01-01

    The organic conductor κ-(BEDT-TTF) 2 Cu 2 (CN) 3 seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of κ-(BEDT-TTF) 2 Cu 2 (CN) 3 single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound

  16. ESR studies on the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3: Anomalous response below T=8 K

    Science.gov (United States)

    Padmalekha, K. G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Schlueter, J. A.; Dressel, M.

    2015-03-01

    The organic conductor κ-(BEDT-TTF)2Cu2(CN)3 seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of κ-(BEDT-TTF)2Cu2(CN)3 single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound.

  17. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  18. On the use of the cold time-of-flight spectrometer in Studsvik for liquid 3He measurements

    International Nuclear Information System (INIS)

    Faak, Bjoern.

    1989-01-01

    The time-of-flight spectrometer for cold neutrons at the R2 reactor in Studsvik has been reconstructed. The design and the performance of the instrument are briefly described. Improvements required for measurement of the neutron scattering function of liquid 3 He are discussed. (author)

  19. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  20. Theoretical interpretation of the nuclear magnetic properties of solid 3He in the context of a four-spin exchange model

    International Nuclear Information System (INIS)

    Roger, Michel.

    1980-06-01

    The model presented in this thesis, with only two adjustable parameters, is alone able to account quantitatively for all the results described in chapter I and interpreted in chapter II. The development of this model was based originally on two essential ideas: - the simple model given in introduction suggests that in a hard-sphere quantum solid, three- and four-particle exchanges may be as important and even more favourable than two-atom exchanges. - By accounting for four-spin exchange terms in the Hamiltonian of the system, fourth power terms of the order parameter (polarisation) liable to give first-order transitions are introduced into the equation of free energy in a molecular field. On the basis of these two ideas the thesis is arranged in two parts: 1) Part one (ch. III to VIII) analyses the consequences, from the viewpoint of magnetic and thermodynamic properties, of a phenomenological Hamiltonian including four-spin exchanges. 2) The aim of part two is to estimate from microscopic equations the hierarchy amongst 2, 3 and 4-particle exchanges. A new approach, due to J.M. Delrieu, is proposed for a realistic wave function approximation accounting for the geometric correlations between hard cores. Reasons are given to justify the existence of a strong four-particle exchange in body-centred cubic 3 He. In a compact hexagonal lattice on the other hand the three-particle exchange is shown to be predominant. However three-particle exchanges promote ferromagnetism, so an ordered ferromagnetic phase is foreseen for compact hexagonal 3 He. A crucial test for our model would be to measure the sign of the Curie-Weiss constant in c.h. 3 He [fr