WorldWideScience

Sample records for spin-polarized hubbard chain

  1. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  2. Fibonacci-Hubbard chain at zero and finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanjay [Theoretical Condensed Matter (TCMP) Division, Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064 (India)]. E-mail: sanjay@cmp.saha.ernet.in; Sil, Shreekantha [Department of Physics, Vishwabharati, Shantiniketan, Birbhum (India); Bhattacharyya, Bibhas [Department of Physics, Scottish Church College, 1 and 3, Urquhart Square, Kolkata 700006 (India)

    2005-01-31

    We have studied finite-sized single band Hubbard chains with Fibonacci modulation for half-filling within a mean field approximation. The ground state properties, together with the DC conductivity both at zero and non-zero temperatures, are calculated for such quasiperiodic Hubbard chains. While a reduction in the conductivity is found due to strong electronic interaction or strong Fibonacci modulation, a competition between these two is observed to enhance the conductivity. The results at finite temperatures also illustrate some interesting features of such finite-sized systems.

  3. Mass-imbalanced ionic Hubbard chain

    Science.gov (United States)

    Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.

    2017-07-01

    A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U Uc they have different signs, and for U =Uc one gap parameter jumps from a positive to a negative value. The weakly first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system is reluctant to restore a symmetry that has been broken explicitly.

  4. Alternating chain with Hubbard-type interactions: renormalization group analysis

    International Nuclear Information System (INIS)

    Buzatu, F. D.; Jackeli, G.

    1998-01-01

    A large amount of work has been devoted to the study of alternating chains for a better understanding of the high-T c superconductivity mechanism. The same phenomenon renewed the interest in the Hubbard model and in its one-dimensional extensions. In this work we investigate, using the Renormalization Group (RG) method, the effect of the Hubbard-type interactions on the ground-state properties of a chain with alternating on-site atomic energies. The one-particle Hamiltonian in the tight binding approximation corresponding to an alternating chain with two nonequivalent sites per unit cell can be diagonalized by a canonical transformation; one gets a two band model. The Hubbard-type interactions give rise to both intra- and inter-band couplings; however, if the gap between the two bands is sufficiently large and the system is more than half-filled, as for the CuO 3 chain occurring in high-T c superconductors, the last ones can be neglected in describing the low energy physics. We restrict our considerations to the Hubbard-type interactions (upper band) in the particular case of alternating on-site energies and equal hopping amplitudes. The standard RG analysis (second order) is done in terms of the g-constants describing the elementary processes of forward, backward and Umklapp scatterings: their expressions are obtained by evaluating the Hubbard-type interactions (upper band) at the Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger and Luther-Emery, we can predict the low energy physics of our system. The ground-state phase diagrams in terms of the model parameters and at arbitrary band filling are determined, where four types of instabilities have been considered: Charge Density Waves (CDW), Spin Density Waves (SDW), Singlet Superconductivity (SS) and Triplet Superconductivity (TS). The 3/4-filled case in terms of some renormalized Hubbard constants is presented. The relevance of our analysis to the case of the undistorted 3/4-filled Cu

  5. Finite-temperature dynamics of the Mott insulating Hubbard chain

    Science.gov (United States)

    Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.

    2018-01-01

    We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.

  6. Superconducting correlations in Hubbard chains with correlated hopping

    Science.gov (United States)

    Arrachea, L.; Aligia, A. A.; Gagliano, E.; Hallberg, K.; Balseiro, C.

    1994-12-01

    We consider an extended one-dimensional Hubbard model in which the magnitude of the hopping between two sites for particles with given spin depends on the occupation of the states with opposite spin at both sites. Diagonalizing exactly finite-size chains, and using known results of conformal field theory we delimit the regions of parameters for which two particles bind and the pair superconducting correlation functions are the dominant ones at large distances. For Coulomb repulsion U smaller than a critical density-dependent value Uc and any density, there are ranges of the ratios of the hopping parameters for which the superconducting fluctuations dominate. At half filling, for parameters within this range, a transition from a regime with dominant superconducting correlations to an insulating state takes place as a function of U. We also study the model for parameters near a recently found exactly solvable limit in which the number of doubly occupied sites is conserved.

  7. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  8. On the correlation effect in Peierls-Hubbard chains

    Czech Academy of Sciences Publication Activity Database

    Málek, Jiří; Drechsler, S.L.; Flach, S.; Jeckelmann, E.; Kladko, K.

    2003-01-01

    Roč. 72, č. 9 (2003), s. 2277-2281 ISSN 0031-9015 R&D Projects: GA ČR GA202/01/0764 Institutional research plan: CEZ:AV0Z1010914 Keywords : Peierls-Hubbard model * dimerization * charge gap * spin gap * incremental expansion and bosonizationization techniques * polyacetylene Subject RIV: BE - The oretical Physics Impact factor: 1.903, year: 2003

  9. Spin-polarized inelastic tunneling through insulating barriers.

    Science.gov (United States)

    Lu, Y; Tran, M; Jaffrès, H; Seneor, P; Deranlot, C; Petroff, F; George, J-M; Lépine, B; Ababou, S; Jézéquel, G

    2009-05-01

    Spin-conserving hopping transport through chains of localized states has been evidenced by taking benefit of the high degree of spin-polarization of CoFeB-MgO-CoFeB magnetic tunnel junctions. In particular, our data show that relatively thick MgO barriers doped with boron favor the activation of spin-conserving inelastic channels through a chain of three localized states and leading to reduced magnetoresistance effects. We propose an extension of the Glazman-Matveev theory to the case of ferromagnetic reservoirs to account for spin-polarized inelastic tunneling through nonmagnetic localized states embedded in an insulating barrier.

  10. Spin-polarized ballistic conduction through correlated Au-NiMnSb-Au heterostructures

    KAUST Repository

    Morari, C.

    2017-11-20

    We examine the ballistic conduction through Au-NiMnSb-Au heterostructures consisting of up to four units of the half-metallic NiMnSb in the scattering region, using density functional theory (DFT) methods. For a single NiMnSb unit the transmission function displays a spin polarization of around 50% in a window of 1eV centered around the Fermi level. By increasing the number of layers, an almost complete spin polarization of the transmission is obtained in this energy range. Supplementing the DFT calculations with local electronic interactions, of Hubbard-type on the Mn sites, leads to a hybridization between the interface and many-body states. The significant reduction of the spin polarization seen in the density of states is not apparent in the spin polarization of the conduction electron transmission, which suggests that the hybridized interface and many-body induced states are localized.

  11. Exact solution of a Hubbard chain with bond-charge interaction

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.

    1994-10-01

    We obtain the exact solution of a general Hubbard chain with kinetic energy t, bond-charge interaction X, and on-site repulsion U with the only restriction t=X. At zero temperature and half filling, the model exhibits a Mott transition at U=4t. In the metallic phase and near half filling, superconducting states are part of the degenerate ground state and are favored for small U if the system is slightly perturbed.

  12. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  13. Spin polarization tuning in the graphene quantum dot by using in-plane external electric field

    International Nuclear Information System (INIS)

    Modarresi, M.; Roknabadi, M.R.; Shahtahmasebi, N.

    2014-01-01

    Electronic, magnetic and transport properties of a nano-graphene dot have been studied by using the DFT and tight binding methods. In the tight binding calculations, the interaction between electrons is modeled using the Hubbard Hamiltonian. By comparison between the eigen-values and density of states in the tight binding and DFT models, we tabulate a set of tight-binding parameters to describe graphene quantum dots for future works. The effects of a single vacancy and an in-plane external electric field on the spin-dependent transport of graphene quantum dot have been investigated. Transport through GQD between two GNR is studied by using Green's function formalism. Our results confirm an intrinsic spin-dependent current and relatively large spin polarization through the GQD in the presence of a single vacancy and zigzag edge. It is also shown that an in-plane external electric field controls the spin-polarization in graphene quantum dot. - Graphical abstract: We study the spin polarization in the presence of an external electric field. Highlights: • A tight binding study of transport through GNR/GQD/GNR is presented. • Our results show a relatively large spin polarization in the current–voltage curve. • Spin polarization is controlled by using an in-plane external electric field

  14. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  15. Adequacy of Si:P chains as Fermi-Hubbard simulators

    Science.gov (United States)

    Dusko, Amintor; Delgado, Alain; Saraiva, André; Koiller, Belita

    2018-01-01

    The challenge of simulating many-body models with analogue physical systems requires both experimental precision and very low operational temperatures. Atomically precise placement of dopants in Si permits the construction of nanowires by design. We investigate the suitability of these interacting electron systems as simulators of a fermionic extended Hubbard model on demand. We describe the single-particle wavefunctions as a linear combination of dopant orbitals (LCDO). The electronic states are calculated within configuration interaction (CI). Due to the peculiar oscillatory behavior of each basis orbital, properties of these chains are strongly affected by the interdonor distance R0, in a non-monotonic way. Ground state (T = 0 K) properties such as charge and spin correlations are shown to remain robust under temperatures up to 4 K for specific values of R0. The robustness of the model against disorder is also tested, allowing some fluctuation of the placement site around the target position. We suggest that finite donor chains in Si may serve as an analog simulator for strongly correlated model Hamiltonians. This simulator is, in many ways, complementary to those based on cold atoms in optical lattices—the trade-off between the tunability achievable in the latter and the survival of correlation at higher operation temperatures for the former suggests that both technologies are applicable for different regimes.

  16. Anisotropy crossover in the frustrated Hubbard model on four-chain cylinders

    Science.gov (United States)

    Ehlers, G.; Lenz, B.; Manmana, S. R.; Noack, R. M.

    2018-01-01

    Motivated by dimensional crossover in layered organic κ salts, we determine the phase diagram of a system of four periodically coupled Hubbard chains with frustration at half filling as a function of the interchain hopping t⊥/t and interaction strength U /t at a fixed ratio of frustration and interchain hopping t'/t⊥=-0.5 . We cover the range from the one-dimensional limit of uncoupled chains (t⊥/t =0.0 ) to the isotropic model (t⊥/t =1.0 ). For strong U /t , we find an antiferromagnetic insulator; in the weak-to-moderate-interaction regime, the phase diagram features quasi-one-dimensional antiferromagnetic behavior, an incommensurate spin density wave, and a metallic phase as t⊥/t is increased. We characterize the phases through their magnetic ordering, dielectric response, and dominant static correlations. Our analysis is based primarily on a variant of the density-matrix renormalization-group algorithm based on an efficient hybrid-real-momentum-space formulation, in which we can treat relatively large lattices albeit of a limited width. This is complemented by a variational cluster approximation study with a cluster geometry corresponding to the cylindrical lattice allowing us to directly compare the two methods for this geometry. As an outlook, we make contact with work studying dimensional crossover in the full two-dimensional system.

  17. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  18. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  19. Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain

    Science.gov (United States)

    Vitoriano, Carlindo; Coutinho-Filho, M. D.

    2010-09-01

    We investigate the ground-state and low-temperature properties of the integrable version of the Penson-Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary excitations and manifest differently in the four regions of the phase diagram U/t versus n , where U is the Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local pair formation, fractionalization of the average occupation number per orbital k , or U - and n -dependent average electric charge per orbital k . We also study the scaling behavior near the U -driven quantum phase transitions and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive- U regime for U

  20. Spin-polarized deuterium in magnetic traps

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.

    1987-01-01

    We have calculated the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero-temperature limit. Results indicate that a gas of low-field--seeking deuterium atoms trapped in a static magnetic field minimum decays rapidly into an ultrastable gas of doubly spin-polarized deuterium. We also discuss the temperature dependence of various effects

  1. Spin-polarized spin excitation spectroscopy

    International Nuclear Information System (INIS)

    Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2010-01-01

    We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.

  2. One-particle versus two-particle crossover in weakly coupled Hubbard chains and ladders: perturbative renormalization group approach

    International Nuclear Information System (INIS)

    Kishine, Jun-Ichiro; Yonemitsu, Kenji

    1998-01-01

    Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  3. Cooling and Autonomous Feedback in a Bose-Hubbard Chain with Attractive Interactions

    Science.gov (United States)

    Hacohen-Gourgy, S.; Ramasesh, V. V.; De Grandi, C.; Siddiqi, I.; Girvin, S. M.

    2015-12-01

    We engineer a quantum bath that enables entropy and energy exchange with a one-dimensional Bose-Hubbard lattice with attractive on-site interactions. We implement this in an array of three superconducting transmon qubits coupled to a single cavity mode; the transmons represent lattice sites and their excitation quanta embody bosonic particles. Our cooling protocol preserves the particle number—realizing a canonical ensemble—and also affords the efficient preparation of dark states which, due to symmetry, cannot be prepared via coherent drives on the cavity. Furthermore, by applying continuous microwave radiation, we also realize autonomous feedback to indefinitely stabilize particular eigenstates of the array.

  4. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  5. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    Science.gov (United States)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  6. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  7. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    coupled to semi-empirical hardness theory proved effective in hardness prediction for the metal borides which agree well with the experimental values. These results would help to gain insight into the spin-polarized effect on the structural and bond hardness. Keywords. Iron boride; DFT; spin polarized; critical pressure; ...

  8. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  9. Detecting Spin-Polarized Currents in Ballistic Nanostructures

    DEFF Research Database (Denmark)

    Potok, R.; Folk, J.; M. Marcus, C.

    2002-01-01

    We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact....

  10. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-s...

  11. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  12. Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss

    Science.gov (United States)

    Kiefer-Emmanouilidis, M.; Sirker, J.

    2017-12-01

    We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent—in a loose sense—of Hawking radiation.

  13. Anderson-Mott transition in a disordered Hubbard chain with correlated hopping

    Science.gov (United States)

    Battista, Francesca; Camjayi, Alberto; Arrachea, Liliana

    2017-07-01

    We study the ground-state phase diagram of the Anderson-Hubbard model with correlated hopping at half-filling in one dimension. The Hamiltonian has a local Coulomb repulsion U and a disorder potential with local energies randomly distributed in the interval (-W ,+W ) with equal probability, acting on the singly occupied sites. The hopping process which modifies the number of doubly occupied sites is forbidden. The hopping between nearest-neighbor singly occupied and empty sites or between singly occupied and doubly occupied sites has the same amplitude t . We identify three different phases as functions of the disorder amplitude W and Coulomb interaction strength U >0 . When U 4 t the Anderson-localized phase survives as long as disorder effects dominate on the interaction effects, otherwise a Mott-insulator phase (iii) arises. Phases (i) and (ii) are characterized by a finite density of doublons and a vanishing charge gap among the ground state and the excited states. Phase (iii) is characterized by the vanishing density of doublons and a finite gap for the charge excitations.

  14. Designing magnetic droplet soliton nucleation employing spin polarizer

    Science.gov (United States)

    Mohseni, Morteza; Mohseni, Majid

    2018-04-01

    We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.

  15. A frozen spin polarized target for S134

    CERN Multimedia

    1974-01-01

    The CERN-ETH, Zurich-Helsinki-Imperial College-Southampton Collaboration used a frozen spin polarized target together with the ETH spectrometer magnet to study spin effects (S134). Beam was d31 in South Hall

  16. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  17. Ground-state phase diagram of an extended Hubbard chain with correlated hopping at half-filling

    Science.gov (United States)

    Arrachea, Liliana; Gagliano, E. R.; Aligia, A. A.

    1997-01-01

    We consider a generalized Hubbard model with on-site interaction U, nearest-neighbor repulsion V, and nearest-neighbor hopping for spin σ, which depends on the sum of particles mσ-|Am with opposite spin in the two sites involved. The hopping matrix elements are denoted by tAA,tAB,tBB for mσ-|Am=0,1,2, respectively. For 0chains and quantum Monte Carlo. The results agree qualitatively with the exactly solvable limit of tAB=0. For 0

  18. Spin polarized Auger electron spectroscopy of Fe and Ni

    Science.gov (United States)

    Anilturk, O. S.; Koymen, A. R.

    2001-06-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster-Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M23) threshold is observed on both samples.

  19. Spin polarized Auger electron spectroscopy of Fe and Ni

    International Nuclear Information System (INIS)

    Anilturk, O. S.; Koymen, A. R.

    2001-01-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster - Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M 23 ) threshold is observed on both samples. [copyright] 2001 American Institute of Physics

  20. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  1. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  2. Spin-polarized photoemission from SiGe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Bottegoni, F.; Isella, G.; Cecchi, S.; Chrastina, D.; Finazzi, M.; Ciccacci, F. [LNESS-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-12-04

    We apply the principles of Optical Orientation to measure by Mott polarimetry the spin polarization of electrons photoemitted from different group-IV heterostructures. The maximum measured spin polarization, obtained from a Ge/Si{sub 0.31}Ge{sub 0.69} strained film, undoubtedly exceeds the maximum value of 50% attainable in bulk structures. The explanation we give for this result lies in the enhanced band orbital mixing between light hole and split-off valence bands as a consequence of the compressive strain experienced by the thin Ge layer.

  3. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  4. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  5. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  6. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.

    1992-01-01

    This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range

  7. Spin-Polarized Semiconductor Induced by Magnetic Impurities in Graphene

    OpenAIRE

    Daghofer, Maria; Zheng, Nan; Moreo, Adriana

    2010-01-01

    Magnetic impurities adsorbed on graphene are coupled magnetically via the itinerant electrons. This interaction opens a gap in the band structure of graphene. The result strongly depends on how the magnetic impurities are distributed. While random doping produces a semiconductor, if all or most impurities are located in the same sublattice, the spin degeneracy is removed and a spin-polarized semiconductor arises.

  8. Experiment on the melting pressure of spin polarized He3

    DEFF Research Database (Denmark)

    Chapellier, M.; Olsen, M.; Rasmussen, Finn Berg

    1981-01-01

    In liquid He in a Pomeranchuk cell, the melting curve has been observed to be suppressed, presumably in regions with a strong local spin polarization. In the temperature range 30-50 mK the observed suppression was 60-80 kPa. The corresponding local polarization is estimated, in a crude model, to ...

  9. Spin polarization effects in low-energy elastic electron scattering

    International Nuclear Information System (INIS)

    Beerlage, M.J.M.

    1982-01-01

    This work describes experiments on the role of spin polarization in elastic electron scattering. Chapter I introduces the topic and in chapter II elastic scattering of 10-50 eV electrons from Ar and Kr in the angular range between 40 0 and 110 0 is studied. Noble gases have been chosen as targets in view of their relative theoretical simplicity. Below 25 eV scattered intensities measured by various authors exhibit severe disagreements. However, in the entire energy range, the spin polarization results can reasonably well be used to point out the shortcomings of the available theoretical data. The main topic of chapter III is the first attempt to determine the magnitude of a polarization phenomenon - in elastic electron scattering from the optically active camphor molecule - of which the existence has recently been predicted qualitatively from the absence of parity symmetry in such molecules. Besides these studies on gaseous targets the author has initiated a scattering experiment on crystal surfaces, using spin polarized electrons. Within the framework of this project a large new experimental arrangement has been built up. It consists of a spin polarized electron source and a LEED scattering chamber. Design, construction and test results, showing the usefulness of the set-up, are described in the last chapter. (Auth.)

  10. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  11. Universal spin-polarization fluctuations in one-dimensional wires with magnetic impurities

    DEFF Research Database (Denmark)

    Mortensen, Asger; Egues, J.C.

    2002-01-01

    -flip suppresses conductance fluctuations while enhancing spin-polarization fluctuations. More importantly, spin-polarization fluctuations attain a universal value 1/3 for large enough spin-flip strengths. This intrinsic spin-polarization fluctuation may pose a severe limiting factor to the realization of steady...

  12. Widespread spin polarization effects in photoemission from topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.; Analytis, J. G.; Rotundu, C. R.; Schmid, A. K.; Denlinger, J. D.; Chuang, Y.-D.; Lee, D.-H.; Fisher, I. R.; Birgeneau, R. J.; Shen, Z.-X.; Hussain, Z.; Lanzara, A.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations of photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.

  13. Tilted Foils Nuclear Spin Polarization at REX-ISOLDE

    CERN Document Server

    Törnqvist, Hans Toshihide

    2013-08-08

    This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...

  14. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 6. Effect of spin ... Volume 39 Issue 6 October 2016 pp 1427-1434 ... Spin-polarization calculations show that ferromagnetic state (FM) is stable for FexB structures and carry magnetic moment of 1.12, 1.83 and 2.03 μ B inFeB, Fe 2 B and Fe 3 B, respectively.

  15. Engineering the spin polarization of one-dimensional electrons

    Science.gov (United States)

    Yan, C.; Kumar, S.; Thomas, K.; See, P.; Farrer, I.; Ritchie, D.; Griffiths, J.; Jones, G.; Pepper, M.

    2018-02-01

    We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin–orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes.

  16. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  17. Spin-polarization of an electro-static positron beam

    International Nuclear Information System (INIS)

    Kawasuso, A.; Maekawa, M.

    2008-01-01

    We constructed an electro-static positron beam apparatus. We fabricated a simple spin-polarimeter composed of a permanent magnet with a surface magnetic field of 0.65 T and an iron pole piece. The longitudinal spin-polarization of the positron beam was determined to be 0.3 by analyzing the magnetic field dependence of the Doppler broadening of annihilation radiation from a fused silica specimen. The effect of spin rotation was examined using an iron poly-crystal and a simple E x B filter

  18. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  19. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  20. RKKY interaction for the spin-polarized electron gas

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  1. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  2. Strong-coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: Odd-integer Mott lobes and helical magnetic phases

    Science.gov (United States)

    Pixley, J. H.; Cole, William S.; Spielman, I. B.; Rizzi, Matteo; Das Sarma, S.

    2017-10-01

    We study the odd-integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a universality class with critical exponents associated with the divergence of the correlation length ν ≈2 /3 and the order-parameter susceptibility γ ≈1 /2 . We solve the effective spin model exactly using the density-matrix renormalization group, and compare with both a large-S classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.

  3. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  4. Direct injection of spin-polarized carriers across YBa 2 Cu 3 O 7- ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 5-6. Direct injection of spin-polarized ... from the CMR layer is 38 mA. This clearly shows that spin-polarized quasiparticles injected from the CMR layer into the YBCO layer suppress the critical current of the superconductor via the pair-breaking phenomena.

  5. Laser driven source of spin polarized atomic deuterium and hydrogen

    International Nuclear Information System (INIS)

    Poelker, M.; Coulter, K.P.; Holt, R.J.

    1993-01-01

    Optical pumping of potassium atoms in the presence of a high magnetic field followed by spin exchange collisions with deuterium (hydrogen) is shown to yield a high flux of spin polarized atomic deuterium (hydrogen). The performance of the laser driven source has been characterized as a function of deuterium (hydrogen) flow rate, potassium density, pump laser power, and magnetic field. Under appropriate conditions, the authors have observed deuterium atomic polarization as high as 75% at a flow rate 4.2x10 17 atoms/second. Preliminary results suggest that high nuclear polarizations are obtained in the absence of weak field rf transitions as a result of a spin temperature distribution that evolves through frequent H-H (D-D) collisions

  6. ESR and related experiments in spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Yperen, G.H. van.

    1984-01-01

    This thesis deals with some experiments in (gaseous) spin-polarized atomic hydrogen. One uses the expression 'stabilized' atomic hydrogen, meaning that by choosing suitable conditions one can suppress the tendency of atoms to recombine into H 2 molecules, such that the lifetime of the atomic state is extended by many orders of magnitude. Research is focused at the study of processes that determine the decay rate of polarized H samples, with the ultimate goal of preparing samples of sufficiently high density and at low enough temperature to observe experimentally the behaviour of the (degenerate) quantum gas. ESR (Electron Spin Resonance) appears to be a very suitable measurement technique to study the properties of polarized H. This work describes the introduction of ESR as detection technique, and the first results of an experiment in polarized H using this technique. (orig.)

  7. Microscopic theory of fully spin-polarized /sup 3/He

    Energy Technology Data Exchange (ETDEWEB)

    Glyde, H.R.; Hernadi, S.I.

    1983-01-01

    The ground state energy (E), Landau parameters (F) and single particle energy spectrum (epsilon(kappa) and m/sup */) in fully spin polarized liquid /sup 3/He (/sup 3/He) are calculated directly from the bare interatomic potential within the Galitskii-Feynmann T-matrix and Hartree-Fock (GFHF) approximations. The E agrees well with variational calculations, the F with model calculations and the epsilon(kappa) and m/sup */ with results expected from nuclear matter. This suggests the effective interaction in /sup 3/He is dominated by hard core repulsion and Fermi statistics and that these components of the full interaction can be well described from first principles by a GF T-matrix. 36 references, 3 figures, 1 table.

  8. Induced spin polarization effect in graphene by ferromagnetic nanocontact

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-03-07

    Chemically synthesized graphene contains large number of defects which act as localized spin moments at the defect sites. Cobalt nanosheets of variable thickness are grown on graphene surface to investigate spin/magnetotransport through graphene sheets containing large number of localized spins. Negative magnetoresistance (MR) is observed over the entire temperature range (5–300 K) for thin cobalt sheets, while a cross-over from negative to positive MR with increasing temperature is noticed for thicker cobalt sheets. The observed MR results are explained on the basis of recently reported spin polarization effect in graphene due to the presence of ferromagnetic atoms on the surface considering a spin valve like Co/graphene/Co nanostructures.

  9. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  10. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  11. Spin-polarization reversal at the interface between benzene and Fe(100)

    KAUST Repository

    Goumri-Said, Souraya

    2013-01-03

    The spin-polarization at the interface between Fe(100) and a benzene is investigated theoretically using density functional theory for two positions of the organic molecule: planar and perpendicular with respect to the substrate. The electronic and magnetic properties as well as the spin-polarization close to the Fermi level strongly depend on the benzene position on the iron surface. An inversion of the spin-polarization is induced by p-d hybridization and charge transfer from the iron to the carbon sites in both configurations.

  12. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  13. Spin Polarization Inversion at Benzene-Absorbed Fe4N Surface

    KAUST Repository

    Zhang, Qian

    2015-05-27

    We report a first-principle study on electronic structure and simulation of the spin-polarized scanning tunneling microscopy graphic of a benzene/Fe4N interface. Fe4N is a compound ferromagnet suitable for many spintronic applications. We found that, depending on the particular termination schemes and interface configurations, the spin polarization on the benzene surface shows a rich variety of properties ranging from cosine-type oscillation to polarization inversion. Spin-polarization inversion above benzene is resulting from the hybridizations between C pz and the out-of-plane d orbitals of Fe atom.

  14. Micromagnetic investigation of the dynamics of magnetization switching induced by a spin polarized current

    Science.gov (United States)

    Lee, Kyung-Jin; Dieny, Bernard

    2006-03-01

    Using micromagnetic modeling, we tested a prediction of single-domain spin-torque theory which switching current density depends only weakly on magnetic cell size. The switching time and current density are strongly affected by the cell size for low spin polarization. Larger samples with a small length-to-width ratio and small spin polarization can exhibit a nonmonotonous dependence of switching time on current. Excitation of incoherent spin waves caused by the circular Oersted field due to the current is responsible for this nonmonotonous dependence. However, the magnetic dynamics recovers a single-domain-like behavior when the spin polarization is high and/or the cell size is small.

  15. Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.

    Science.gov (United States)

    Bode, Matthias

    2012-01-01

    The principle of scanning tunneling microscopy, an imaging method with atomic resolution capability invented by Binnig and Rohrer in 1982, can be adapted for surface magnetism studies by using magnetic probe tips. The contrast mechanism of this so-called spin-polarized scanning tunneling microscopy, or SP-STM, relies on the tunneling magneto-resistance effect, i.e. the tip-sample distance as well as the differential conductance depend on the relative magnetic orientation of tip and sample. To illustrate the working principle and the unique capabilities of SP-STM, this compilation presents some key experiments which have been performed on various magnetic surfaces, such as the topological antiferromagnet Cr(001), a double-layer of Fe which exhibits a stripe- domain pattern with about 50 nm periodicity, and the Mn monolayer on W(110), where the combination of experiment and theory reveal an antiferromagnetic spin cycloid. Recent experimental results also demonstrate the suitability of SP-STM for studies of dynamic properties, such as the spin relaxation time of single magnetic nanostructures.

  16. Spin-polarized semiconductor induced by magnetic impurities in graphene

    Science.gov (United States)

    Daghofer, Maria

    2011-03-01

    Magnetic impurities adsorbed on graphene sheets are coupled antiferromangetically via the itinerant electrons in the graphene. We study this interaction and its impact on the electrons' spectral density by use of unbiased Monte-Carlo simulations. The antiferromagnetic order breaks the symmetry between the sublattices, and a gap for the itinerant electrons opens. Our simulations show that the itinerant states below and above the gap are not dispersionless states trapped by the impurities, but are instead mobile states with a large dispersion. We compare various scenarios for the impurity distribution and find that random doping produces a standard semiconductor. If, on the other hand, all or most of the impurities are localized in the same sublattice, the spin degeneracy is lifted and the conduction band becomes spin-polarized. We also discuss the properties of edge states at edges or magnetic domain boundaries. M.~Daghofer, N.~Zheng, A.~Moreo; Phys.~Rev.~B 82, 121405(R) (2010) Supported by the DFG under the Emmy-Noether Program, and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE.

  17. Spin polarization and magnetic effects in radical reactions

    International Nuclear Information System (INIS)

    Salikhov, K.M.; Molin, Yu.N.; Sagdeev, R.Z.; Buchachenko, A.L.

    1984-01-01

    Studies on the effects of chemically induced dynamic nuclear and electron polarizations (CIDNP and CIDEP), and magnetic effects in radical reactions, have given rise to a new rapidly-progressing field of chemical physics. It came into being about ten years ago and has been attracting the ever-growing attention of researchers in related areas. The present book is a fairly all-embracing review of the state of affairs in this field. The book presents the physical background (both theoretical and experimental) of CIDNP and CIDEP, of the effects of an external magnetic field and magnetic nuclear moment (magnetic isotope effects) on radical reactions in solutions. Great attention has been paid to the application of chemical spin polarization and magnetic effects to solving various problems of chemical kinetics, structural chemistry, molecular physics, magnetobiology, and radiospectroscopy. The book will be useful for physicists, chemists and biologists employing CIDNP, CIDEP and magnetic effects in their investigations, as well as for researchers in related fields of chemical physics. The book can be also recommended for postgraduates and senior undergraduate students. (Auth.)

  18. Spin-polarized magnetic tunnelling magnetoresistive effects in various junctions

    Science.gov (United States)

    Miyazaki, T.; Tezuka, N.; Kumagai, S.; Ando, Y.; Kubota, H.; Murai, J.; Watabe, T.; Yokota, M.

    1998-03-01

    Recent progress concerning spin-polarized magnetic tunnelling effects for (i) trilayer standard ferromagnet (F)/insulator (I)/ferromagnet (F) junctions, (ii) spin-valve-type junctions, (iii) trilayer or multilayer ferromagnet/granular/ferromagnet junctions and (iv) F/I/F junction with a `wedge-geometry' insulator is reviewed. Special emphasis is placed on the dependence of the tunnel magnetoresistance ratio on temperature and also the intensity of the applied voltage. It was found that the resistance for the saturation magnetization state, 0022-3727/31/6/009/img1, and the tunnelling magnetoresistance ratio, TMR, of an 0022-3727/31/6/009/img2 junction decreased rapidly with increasing temperature, whereas those of a 0022-3727/31/6/009/img3 junction were insensitive to temperature. Concerning the bias voltage dependence of 0022-3727/31/6/009/img1 and TMR, the same tendency with temperature was observed for 0022-3727/31/6/009/img2 and 0022-3727/31/6/009/img3 junctions. Spin-valve-type junction exchange biased by a FeMn layer exhibits a relatively large TMR ratio up to about 400 K.

  19. Biaxial-stress-driven full spin polarization in ferromagnetic hexagonal chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang-Bo; Li, Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-15

    It is important to spintronics to achieve fully-spin-polarized magnetic materials that are stable and can be easily fabricated. Here, through systematical density-functional-theory investigations, we achieve high and even full spin polarization for carriers in the ground-state phase of CrTe by applying tensile biaxial stress. The resulting strain is tensile in the xy plane and compressive in the z axis. With the in-plane tensile strain increasing, the ferromagnetic order is stable against antiferromagnetic fluctuations, and a half-metallic ferromagnetism is achieved at an in-plane strain of 4.8%. With the spin-orbit coupling taken into account, the spin polarization is equivalent to 97% at the electronic transition point, and then becomes 100.0% at the in-plane strain of 6.0%. These make us believe that the full-spin-polarized ferromagnetism in this stable and easily-realizable hexagonal phase could be realized soon, and applied in spintronics. - Highlights: • Full spin polarization in the hexagonal ground-state phase of CrTe by biaxial stress. • The stress produces in-plane tensile strain and perpendicular compressive strain. • Reliable electronic structure is calculated with improved exchange functional. • Spin polarization is calculated with spin-orbit coupling taken into account.

  20. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  1. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  2. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  3. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  4. Electric field induced spin polarization oscillation in nonmagnetic benzene/Cu(100) interface: First principles calculations

    Science.gov (United States)

    Yuan, X. B.; Cai, L. L.; Tian, Y. L.; Hu, G. C.; Ren, J. F.

    2018-01-01

    First-principles calculation are presented to study the influences of external electric fields on the spin polarization properties of benzene/Cu(100) system which do not contain any magnetic atom. Our simulations show that an obvious spontaneous spin polarization oscillation occurred in the benzene molecule when the electric fields are applied. The density of states (DOS), spin density distributions, charge transfer properties are also obtained. It is found that the p-d orbital coupling between the benzene molecule and the electrode leads to spin non-degeneration of the DOS near the fermi energy, so the transferred charges from the Cu atoms to the molecule will fill these spin non-degenerate coupled orbitals, and then the benzene molecule becomes spin polarized. The strength of the p-d orbital coupling as well as the transferred charges oscillated with the external electric fields, which induce spin polarization oscillation. The results are favorable for the understanding of spin polarization properties in organic/nonmagnetic metal structures.

  5. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  6. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  7. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  8. Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip

    International Nuclear Information System (INIS)

    Rastei, M V; Bucher, J P

    2006-01-01

    A massive Ni tip is used in spin polarized scanning tunnelling microscopy (SP STM) to explore the magnetization state of nanometre Co clusters, self-organized on the Au(111) surface. Constant current STM images taken at 4.6 K show a bimodal distribution of the cluster heights, accounting for the spin polarization of the STM junction. The spin polarization of the tunnel junction as a function of the bias voltage is found to depend on the local density of states of the sample examined. Changing the vacuum barrier parameters by bringing the tip closer to the surface leads to a reduction in the tunnelling magnetoresistance that may be attributed to spin flip effects. (letter to the editor)

  9. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  10. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  11. Defect-enhanced Rashba spin-polarized currents in carbon nanotubes

    Science.gov (United States)

    Santos, Hernán; Chico, Leonor; Alvarellos, J. E.; Latgé, A.

    2017-10-01

    The production of spin-polarized currents in pristine carbon nanotubes with Rashba spin-orbit interactions has been shown to be very sensitive to the symmetry of the tubes and the geometry of the setup. Here we analyze the role of defects on the spin quantum conductances of metallic carbon nanotubes due to an external electric field. We show that localized defects, such as adsorbed hydrogen atoms or pentagon-heptagon pairs, increase the Rashba spin-polarized current. Moreover, this enhancement takes place for energies closer to the Fermi energy as compared to the response of pristine tubes. Such increments can be even larger when several equally spaced defects are introduced into the system. We explore different arrangements of defects, showing that for certain geometries there are flips of the spin-polarized current and even transport suppression. Our results indicate that spin valve devices at the nanoscale may be achieved via defect engineering in carbon nanotubes.

  12. Spin polarization versus color–flavor locking in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2015-01-01

    It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...... the color–flavor-locked phase and the spin-polarized phase is the first order by means of second-order perturbation theory.......It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...

  13. Strong Linear Dichroism in Spin-Polarized Photoemission from Spin-Orbit-Coupled Surface States.

    Science.gov (United States)

    Bentmann, H; Maaß, H; Krasovskii, E E; Peixoto, T R F; Seibel, C; Leandersson, M; Balasubramanian, T; Reinert, F

    2017-09-08

    A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.

  14. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J.; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr2VO3FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C4 (2 ×2 ) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C4 (2 ×2 ) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C4 state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  15. Switching Magnetism and Superconductivity with Spin-Polarized Current in Iron-Based Superconductor.

    Science.gov (United States)

    Choi, Seokhwan; Choi, Hyoung Joon; Ok, Jong Mok; Lee, Yeonghoon; Jang, Won-Jun; Lee, Alex Taekyung; Kuk, Young; Lee, SungBin; Heinrich, Andreas J; Cheong, Sang-Wook; Bang, Yunkyu; Johnston, Steven; Kim, Jun Sung; Lee, Jhinhwan

    2017-12-01

    We explore a new mechanism for switching magnetism and superconductivity in a magnetically frustrated iron-based superconductor using spin-polarized scanning tunneling microscopy (SPSTM). Our SPSTM study on single-crystal Sr_{2}VO_{3}FeAs shows that a spin-polarized tunneling current can switch the Fe-layer magnetism into a nontrivial C_{4} (2×2) order, which cannot be achieved by thermal excitation with an unpolarized current. Our tunneling spectroscopy study shows that the induced C_{4} (2×2) order has characteristics of plaquette antiferromagnetic order in the Fe layer and strongly suppresses superconductivity. Also, thermal agitation beyond the bulk Fe spin ordering temperature erases the C_{4} state. These results suggest a new possibility of switching local superconductivity by changing the symmetry of magnetic order with spin-polarized and unpolarized tunneling currents in iron-based superconductors.

  16. Peculiarities of spin polarization inversion at a thiophene/cobalt interface

    KAUST Repository

    Wang, Xuhui

    2013-03-20

    We perform ab initio calculations to investigate the spin polarization at the interface between a thiophene molecule and cobalt substrate. We find that the reduced symmetry in the presence of a sulfur atom (in the thiophene molecule) leads to a strong spatial dependence of the spin polarization of the molecule. The two carbon atoms far from the sulfur acquire a polarization opposite to that of the substrate, while the carbon atoms bonded directly to sulfur possess the same polarization as the substrate. We determine the origin of this peculiar spin interface property as well as its impact on the spin transport.

  17. Hardness and softness reactivity kernels within the spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul

    2005-01-01

    Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined

  18. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  19. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  20. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  1. Interplay between magnetism and conductivity derived from spin-polarized donor radicals.

    Science.gov (United States)

    Sugawara, Tadashi; Komatsu, Hideji; Suzuki, Kentaro

    2011-06-01

    Tutorial review: to achieve molecule-based spintronic devices, an organic conducting magnet that exhibits both conductivity and magnetism in a cooperative manner must be constructed. As a building block for such new materials, a spin-polarized donor radical, which serves as a molecular "spin-filter" in its singly oxidized state, was designed and synthesized. The resistivity of ion radical salts of selenium-substituted, tetrathiafulvalene-based spin-polarized donor radicals decreased substantially in the presence of a magnetic field, thus indicating cooperative conductivity and magnetism.

  2. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  3. Towards 100% spin-polarized charge-injection : The half-metallic NiMnSb/CdS interface

    NARCIS (Netherlands)

    de Wijs, G.A.; de Groot, R A

    2001-01-01

    Spin-electronics requires an electron source with a spin-polarization as high as possible. For this, half-metallic materials seem ideally suited as they exhibit 100% spin polarization. Because of its high Curie temperature and compatibility with existing semiconductor technology, NiMnSb is a most

  4. Spin-polarized structural, elastic, electronic and magnetic properties of half-metallic ferromagnetism in V-doped ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Monir, M. El Amine.; Baltache, H. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria); Ahmed, Waleed K. [ERU, Faculty of Engineering, United Arab Emirates University, Al Ain (United Arab Emirates); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Seddik, T. [Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des Sciences, Université de Mascara, Mascara 29000 (Algeria)

    2015-01-15

    Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn{sub 1−x}V{sub x}Se (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the “d” electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) due to Se(4p)–V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 µ{sub B} and the minor atomic magnetic moment on Zn and Se are generated. - Highlights: • Half metallicity origins by doping V in ZnSe. • PBE-GGA+U approximation is employed to treat the “d” electrons properly. • s(p)-d Exchange constants N{sub 0}α (conduction band ) and N{sub 0}β (valence band) are due to Se(4p)-V(3d) hybridization.

  5. Spin polarized auger electron spectroscopy (SPAES): An element specific local magnetization probe of magnetic materials

    Science.gov (United States)

    Anilturk, Onder S.

    Spin Polarized Auger Electron Spectroscopy (SPAES) is found to have application for investigating fundamental properties as well as element specific local magnetization information on magnetic materials. By using the uniqueness of the UTA-SEMPA tool, one can obtain the surface magnetic domain microstructure and also perform SPAES studies by probing a single domain at the surface. In the current study, knowing the probed domain, spin polarization of electrons from super Coster-Kronig MVV Auger emissions on 3%Si-Fe sheets have been investigated. It is observed that on both sides of 180° domains, separated by a domain wall with an out-of-plane component of magnetization, the spin polarized Auger spectra exhibit similar distributions with high polarization structures, which are consistent with the published data. The element specificity of the system is applied to Gd-Co composite system. Details of 4d core hole initiated Auger transitions showed that the 5d states have enhanced spin polarization, confirming the coupling of moments in the composite system via 5d states of Gd. It is also unambiguously observed that Co magnetic moments are indeed aligned antiparallel to the Gd ones via 4f-5d positive exchange and 3d-5d hybridization.

  6. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  7. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  8. Spin polarization in top pair production in association with two photons at NLO+PS

    CERN Document Server

    Luisoni, Gionata

    2017-01-01

    This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.

  9. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low...

  10. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  11. Tunnel Spin Polarization Versus Energy for Clean and Doped Al2O3 Barriers

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the

  12. Spin-polarized transport in a δ-doped magnetic-barrier nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuai; Lu, Mao-Wang, E-mail: maowanglu@126.com; Jiang, Ya-Qing; Chen, Sai-Yan

    2014-09-05

    We theoretically investigate the electron spin transport properties through a δ-doped magnetic-barrier nanostructure, which can be realized experimentally by depositing two identical ferromagnetic stripes with the opposite in-plane magnetization on the top of a semiconductor heterostructure in parallel configuration and by using atomic layer doping technique. The δ-doping dependent transmission, conductance and spin polarization are calculated exactly by analytically solving Schrödinger equation of the spin electron. It is found that the electronic spin-polarized behavior in this device can be manipulated by changing the weight and/or the position of the δ-doping. Therefore, such a device can be used as a controllable spin filter, which may be helpful for spintronics applications. - Highlights: • Spin-polarized transport in a δ-doped magnetic-barrier nanostructure is explored. • Both magnitude and sign of spin polarization depend on the δ-doping. • A controllable spin filter can be achieved for spintronics applications.

  13. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  14. Transient charging and discharging of spin-polarized electrons in a quantum dot

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Leao, S.A.; Gester, R. M.

    2007-01-01

    We study spin-polarized transient transport in a quantum dot coupled to two ferromagnetic leads subjected to a rectangular bias voltage pulse. Time-dependent spin-resolved currents, occupations, spin accumulation, and tunneling magnetoresistance TMR are calculated using both nonequilibrium Green...

  15. Spin-filter scanning tunneling microscopy : a novel technique for the analysis of spin polarization on magnetic surfaces and spintronic devices

    NARCIS (Netherlands)

    Vera Marun, I.J.

    2010-01-01

    This thesis deals with the development of a versatile technique to measure spin polarization with atomic resolution. A microscopy technique that can measure electronic spin polarization is relevant for characterization of magnetic nanostructures and spintronic devices. Scanning tunneling microscopy

  16. Pellet fusion gain calculations modified by electrostatic double layers and by spin polarized nuclei

    International Nuclear Information System (INIS)

    Hora, H.; Cicchitelli, L.; Elijah, J.S.; Ghatak, A.K.; Goldsworthy, M.T.; Lalousis, P.; Eliezer, S.

    1984-01-01

    All preceding hydrodynamic computations of plasmas are wrong if the thermal conductivity is essential because electronic thermal conductivity is decreased in plasma inhomogeneities due to electrostatic double layers. In the worst case, ionic conductivity remains. We compare this with a possible electronic conductivity by the fast tail of the energy distribution. Using the volume ignition for fusion gain computations, we study the increase of gain by spin-polarization of nuclei for the DT reaction especially in non-linear ranges. Gain can increase by a factor 3.1. Contents are the following: electrostatic fields and double layers in inhomogeneous plasma, change of thermal conduction by double layers, consequences for pellet fusion, gain calculation with spin polarized nuclei. (Mori, K.)

  17. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  18. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  19. Transport Properties of Spin-Polarized Atomic Hydrogen Using Generalized Scattering Theory

    Science.gov (United States)

    Joudeh, B. R.; Sandouqa, A. S.

    2018-02-01

    Our results for the scattering and thermophysical properties of spin-polarized atomic hydrogen (H{\\downarrow }) have been presented in the temperature range 0.01-10 K using the Galitskii-Migdal-Feynman formalism. These results include the quantum second virial coefficient, the average total and viscosity cross sections, the viscosity, the diffusion coefficient, and the thermal conductivity. The calculations have been undertaken using three triplet-state potentials: Morse-type, Silvera and Born-Oppenheimer potentials. The Morse potential is less attractive and very simple, but less accurate to describe spin-polarized atomic hydrogen. That explains the differences between it and the other two potentials, which are clearly better. From the results of the average total cross sections, it is concluded the H{\\downarrow } remains a gas even at low temperature. The viscosity, the thermal conductivity, and the diffusion coefficients of H{\\downarrow } increase in all cases with increasing temperature.

  20. Control of the spin polarization of photoelectrons/photoions using short laser pulses

    International Nuclear Information System (INIS)

    Nakajima, Takashi

    2004-01-01

    We present a generic pump-probe scheme to control spin polarization of photoelectrons/photoions by short laser pulses. By coherently exciting fine structure manifolds of a multi-valence-electron system by the pump laser, a superposition of fine structure states is created. Since each fine structure state can be further decomposed into a superposition of various spin states of valence electrons, each spin component evolves differently in time. This means that varying the time delay between the pump and probe lasers leads to the control of spin states. Specific theoretical results are presented for two-valence-electron atoms, in particular for Mg, which demonstrate that not only the degree of spin polarization but also its sign can be manipulated through time delay. Since the underline physics is rather general and transparent, the presented idea may be potentially applied to nanostructures such as quantum wells and quantum dots

  1. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  2. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  3. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  4. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  5. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  6. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes

    Science.gov (United States)

    Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.

    2017-09-01

    We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.

  7. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  8. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  9. Recent advances in atomic-scale spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Smith, Arthur R; Yang, Rong; Yang, Haiqiang; Dick, Alexey; Neugebauer, Joerg; Lambrecht, Walter R L

    2005-02-01

    The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures. (c) 2005 Wiley-Liss, Inc.

  10. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  11. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  12. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  13. Spin polarization in quantum dots by radiation field with circular polarization

    CERN Document Server

    Bulgakov, E N

    2001-01-01

    For circular quantum dot (QD) with account of the Razhba spin-orbit interaction (SOI) an exact energy spectrum is obtained. For the small SOI constant the Eigen functions of the QD are found. It is shown that application of radiation field with circular polarization lifts the Kramers degeneracy of the Eigen states of the QD. Effective spin polarization of transmitted electrons through the QD by radiation field with circular polarization is demonstrated

  14. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan, E-mail: liyuan12@semi.ac.cn; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai, E-mail: yhchen@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China); Niu, Zhichuan; Xiang, Wei; Hao, Hongyue [The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing (China)

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  15. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    International Nuclear Information System (INIS)

    Li, Yuan; Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-01-01

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed

  16. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd.

    Science.gov (United States)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M Mofazzel; Zhu, Jian-Xin; Dimitri, Klauss; Xu, Su-Yang; Dhakal, Nagendra; Sankar, Raman; Belopolski, Ilya; Sanchez, Daniel S; Chang, Tay-Rong; Jeng, Horng-Tay; Miyamoto, Koji; Okuda, Taichi; Lin, Hsin; Bansil, Arun; Kaczorowski, Dariusz; Chou, Fangcheng; Hasan, M Zahid; Durakiewicz, Tomasz

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of such spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.

  17. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  18. High-frequency dynamics of spin-polarized carriers and photons in a laser

    Science.gov (United States)

    Saha, D.; Basu, D.; Bhattacharya, P.

    2010-11-01

    The high-frequency dynamics of spin-polarized carriers and photons in a spin laser have been studied. The transient response of the device obtained from the rate equations is characterized by two sets of relaxation oscillations in the carrier and photon distributions corresponding to the two polarization modes. Consequently two distinct resonant peaks are observed in the small-signal modulation response. The calculated transient characteristics indicate that the best results are obtained from a spin laser when only the favored polarization mode, with lower threshold, is operational. Under this condition the small-signal modulation bandwidth is higher than that in a conventional laser, the threshold current is lower and the output polarization can be 100% with appropriate bias conditions, independent of the spin polarization of carriers in the active region. Measurements were made at 230 K on a InAs/GaAs quantum dot spin vertical cavity surface emitting laser. A time-averaged output polarization of 55% is measured with an active region spin polarization of 5-6% . The experimental results are in good agreement with calculated data.

  19. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Science.gov (United States)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  20. Investigation of Current Induced Spin Polarization in III-V Semiconductor Epilayers

    Science.gov (United States)

    Luengo-Kovac, Marta

    In the development of a semiconductor spintronics device, a thorough understanding of spin dynamics in semiconductors is necessary. In particular, electrical control of electron spins is advantageous for its compatibility with present day electronics. In this thesis, we will discuss the electrical modification of the electron g-factor, which characterizes the strength of the interaction between a spin and a magnetic field, as well as investigate electrically generated spin polarizations as a function of various material parameters. We report on the modification of the electron g-factor by an in-plane electric field in an InGaAs epilayer. We performed external magnetic field scans of the Kerr rotation of the InGaAs film in order to measure the g-factor independently of the spin-orbit fields. The g-factor increases from -0.4473(0.0001) at 0 V/cm to -0.4419( 0.0001) at 50 V/cm applied along the [110] crystal axis. A comparison of temperature and voltage dependent photoluminescence measurements indicate that minimal channel heating occurs at these voltages. Possible explanations for this g-factor modification are discussed, including an increase in the electron temperature that is independent of the lattice temperature and the modification of the donor-bound electron wave function by the electric field. The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InGaAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the spin polarization mechanism is extrinsic. Temperature-dependent measurements of the spin dephasing rates and mobilities were used to characterize the relative strengths of the intrinsic D

  1. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  2. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    International Nuclear Information System (INIS)

    The design, fabrication, operation, and performance of a 3/4 He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  3. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  4. Low energy spin polarized radioactive beams as a probe of thin films and interfaces

    CERN Document Server

    Kiefl, R F; Amaudruz, P A; Arseneau, D; Baartman, R; Beals, T R; Behr, J; Brewer, J; Daviel, S; Hatakeyama, A; Hitti, B; Kreitzman, S R; Levy, C D P; Miller, R; Olivo, M; Poutissou, R; Morris, G D; Dunsiger, S R; Heffner, R; Chow, K H; Hirayama, Y; Izumi, H; Bommas, C; Dumont, E; Greene, L H

    2003-01-01

    A spectrometer for beta-detected nuclear magnetic resonance (beta-NMR) has been commissioned at the ISAC facility at TRIUMF. A beam of low energy highly spin polarized sup 8 Li sup + can be decelerated and implanted into ultra-thin structures 6-400 nm thick. beta-NMR provides local information on the electronic and magnetic properties of materials which is similar to conventional NMR but can be used as a sensitive probe of ultra-thin films, interfaces and other nanostructures. We report here on the status of the spectrometer and preliminary results on a simple metal film.

  5. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  6. Observation of nuclear spin waves in spin-polarized atomic hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Johson, B.R.; Denker, J.S.; Bigelow, N.; Levy, L.P.; Freed, J.H.; Lee, D.M.

    1984-04-23

    We have observed narrow, distinct resonances in the NMR spectrum of dilute spin-polarized atomic hydrogen gas (nroughly-equal10/sup 16/ atoms/cm/sup 3/). The dependence of the observed spectra on temperature, density, polarization, and magnetic field gradient is consistent with theoretical predictions for spin-wave excitations damped by diffusion. We have measured the parameter ..mu.., which is a measure of the importance of exchange effects in spin transport processes, and the diffusion coefficient D/sub 0/, both of which are in reasonable agreement with theory.

  7. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  8. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  9. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  10. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  11. Multispin-assisted optical pumping of bulk 13C nuclear spin polarization in diamond

    Science.gov (United States)

    Pagliero, Daniela; Rao, K. R. Koteswara; Zangara, Pablo R.; Dhomkar, Siddharth; Wong, Henry H.; Abril, Andrea; Aslam, Nabeel; Parker, Anna; King, Jonathan; Avalos, Claudia E.; Ajoy, Ashok; Wrachtrup, Joerg; Pines, Alexander; Meriles, Carlos A.

    2018-01-01

    One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. Here we use field-cycled nuclear magnetic resonance to investigate the mechanisms of spin-polarization transfer from NVs to 13C spins in diamond at room temperature. We focus on the dynamics near 51 mT, where a fortuitous combination of energy-matching conditions between electron and nuclear spin levels gives rise to alternative polarization transfer channels. By monitoring the 13C spin polarization as a function of the applied magnetic field, we show 13C spin pumping takes place via a multispin cross-relaxation process involving the N V- spin and the electronic and nuclear spins of neighboring P1 centers. Further, we find that this mechanism is insensitive to the crystal orientation relative to the magnetic field, although the absolute level of 13C polarization—reaching up to ˜3 % under optimal conditions—can vary substantially depending on the interplay between optical pumping efficiency, photogenerated carriers, and laser-induced heating.

  12. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  13. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  14. Enhancing current-induced torques by abutting additional spin polarizer layer to nonmagnetic metal layer

    Science.gov (United States)

    Go, Gyungchoon; Lee, Kyung-Jin; Kim, Young Keun

    2017-04-01

    Recently, the switching of a perpendicularly magnetized ferromagnet (FM) by injecting an in-plane current into an attached non-magnet (NM) has become of emerging technological interest. This magnetization switching is attributed to the spin-orbit torque (SOT) originating from the strong spin-orbit coupling of the NM layer. However, the switching efficiency of the NM/FM structure itself may be insufficient for practical use, as for example, in spin transfer torque (STT)-based magnetic random access memory (MRAM) devices. Here we investigate spin torque in an NM/FM structure with an additional spin polarizer (SP) layer abutted to the NM layer. In addition to the SOT contribution, a spin-polarized current from the SP layer creates an extra spin chemical potential difference at the NM/FM interface and gives rise to a STT on the FM layer. We show that, using typical parameters including device width, thickness, spin diffusion length, and the spin Hall angle, the spin torque from the SP layer can be much larger than that from the spin Hall effect (SHE) of the NM.

  15. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  16. Tunable spin-polarized edge transport in inverted quantum-well junctions

    Science.gov (United States)

    Nanclares, Dimy; Lima, Leandro R. F.; Lewenkopf, Caio H.; da Silva, Luis G. G. V. Dias

    2017-10-01

    Inverted HgTe/CdTe quantum wells have been used as a platform for the realization of two-dimensional topological insulators, bulk insulator materials with spin-helical metallic edge states protected by time-reversal symmetry. This paper investigates the spectrum and the charge transport in HgTe/CdTe quantum well junctions both in the topological regime and in the absence of time-reversal symmetry. We model the system using the Bernevig-Hughes-Zhang effective Hamiltonian and compute the transport properties using recursive Green's functions with a finite differences' method. Specifically, we have studied the material's spatially resolved conductance in a setup with a gated central region, forming monopolar (n -n'-n ) and heteropolar (n -p -n , n -TI-n ) double junctions, which have been recently realized in experiments. We find regimes in which the edge states carry spin-polarized currents in the central region even in the presence of a small magnetic field, which breaks time-reversal symmetry. More interestingly, the conductance displays spin-dependent, Fabry-Perót-like oscillations as a function of the central gate voltage producing tunable, fully spin-polarized currents through the device.

  17. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  18. Improved Electron Yield and Spin-Polarization from III-V Photocathodes via Bias Enhanced Carrier Drift: Final Report

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.

    2006-01-01

    In this DOE STTR program, Saxet Surface Science, with the Stanford Linear Accelerator Center as partner, designed, built and tested photocathode structures such that optimal drift-enhanced spin-polarization from GaAs based photoemitters was achieved with minimal bias supply requirements. The forward bias surface grid composition was optimized for maximum polarization and yield, together with other construction parameters including doping profile. This program has culminated in a cathode bias structure affording increased electron spin polarization when applied to III-V based photocathodes. The optimized bias structure has been incorporated into a cathode mounting and biasing design for use in a polarized electron gun.

  19. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  20. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  1. Dark states in spin-polarized transport through triple quantum dot molecules

    Science.gov (United States)

    Wrześniewski, K.; Weymann, I.

    2018-02-01

    We study the spin-polarized transport through a triple-quantum-dot molecule weakly coupled to ferromagnetic leads. The analysis is performed by means of the real-time diagrammatic technique, including up to the second order of perturbation expansion with respect to the tunnel coupling. The emphasis is put on the impact of dark states on spin-resolved transport characteristics. It is shown that the interplay of coherent population trapping and cotunneling processes results in a highly nontrivial behavior of the tunnel magnetoresistance, which can take negative values. Moreover, a super-Poissonian shot noise is found in transport regimes where the current is blocked by the formation of dark states, which can be additionally enhanced by spin dependence of tunneling processes, depending on the magnetic configuration of the device. The mechanisms leading to those effects are thoroughly discussed.

  2. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  3. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  4. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  5. Reconstruction of mono-vacancies in carbon nanotubes: Atomic relaxation vs. spin polarization

    International Nuclear Information System (INIS)

    Berber, S.; Oshiyama, A.

    2006-01-01

    We have investigated the reconstruction of mono-vacancies in carbon nanotubes using density functional theory (DFT) geometry optimization and electronic structure calculations, employing a numerical basis set. We considered mono-vacancies in achiral nanotubes with diameter range ∼4-9A. Contrary to previous tight-binding calculations, our results indicate that mono-vacancies could have several metastable geometries, confirming the previous plane-wave DFT results. Formation energy of mono-vacancies is 4.5-5.5eV, increasing with increasing tube diameter. Net magnetic moment decreases from ideal mono-vacancy value after reconstruction, reflecting the reduction of the number of dangling bonds. In spite of the existence of a dangling bond, ground state of mono-vacancies in semiconducting tubes have no spin polarization. Metallic carbon nanotubes show net magnetic moment for most stable structure of mono-vacancy, except for very small diameter tubes

  6. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Science.gov (United States)

    Urrego-Blanco, J. P.; van den Brandt, B.; Bunyatova, E. I.; Galindo-Uribarri, A.; Hautle, P.; Konter, J. A.

    2005-12-01

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 μm and 100 μm based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  7. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Urrego-Blanco, J.P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Brandt, B. van den [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow (Russian Federation); Galindo-Uribarri, A. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States)]. E-mail: uribarri@mail.phy.ornl.gov; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Konter, J.A. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2005-12-15

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 {mu}m and 100 {mu}m based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  8. Observation of radiative spin-polarization at 60.6 GeV

    CERN Document Server

    Assmann, R W; Hildreth, M D; Matheson, J; Mugnai, G; Placidi, Massimo; Roncarolo, F; Torrence, E; Sonnemann, F; Uythoven, J; Wenninger, J; Blondel, A

    1999-01-01

    Radiative spin-polarization has been used extensively at LEP to accurately measure the beam energy around the Z resonance. As the LEP physics has moved on to the W boson the calibration based on polarization must be extended towards higher beam energies. This is difficult as the depolarizing effects of spin resonances grow rapidly with beam energy. At LEP it has been possible for the first time to measure transverse beam polarization at 60.6 GeV. To allow a build-up of polarization the tunes and the energy were chosen accurately. A low phase advance optics was used and careful orbit correction was carried out using dynamic beam based alignment data. Harmonic spin matching was applied both in a deterministic and a novel semi- empirical way. (11 refs).

  9. Confinement effect on spin-polarized edge states in graphene nanostructures

    Science.gov (United States)

    Ramos-Castillo, Carlos; de Coss, Romeo

    2014-03-01

    One of the most intriguing phenomena in condensed matter physics is the existence of edge states on the boundary of a 2D system. In graphene, the edge states have distinct properties from the bulk states and play important roles in the physicochemical properties of the material. In this work, we show ab-initio results of spin-polarized electronic edge states in graphene quantum dots of different sizes and shape. We found a critical size at which the singlet nonmagnetic ground state becomes singlet open-shell with antiferromagnetic order. We found that the critical size is strongly influenced by the shape of the quantum dot. We discuss this behavior based on energetics and electronic structure of the system under study. The calculations are base on the Density functional Theory (DFT). The Linear Combination of Atomic Orbital (LCAO) method for bases functions it was used. For exchange-correlation functional has been used the Generalized Gradient Approximation (GGA).

  10. TOPICAL REVIEW: Highly spin-polarized materials and devices for spintronics

    Directory of Open Access Journals (Sweden)

    Koichiro Inomata et al.

    2008-01-01

    Full Text Available The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co2Cr1 ? xFexAl (CCFA(x and Co2FeSi1 ? xAlx (CFSA(x and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs using Co2FeSi0.5Al0.5 (CFSA(0.5 Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5 at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD and nuclear magnetic resonance (NMR analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001 substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5 electrodes depends on the structure, and is significantly higher for L21 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe2 film deposited on a MgO (001 single crystal substrate, wherein the spinel structure of CoFe2O4 (CFO

  11. Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Menchero, Jose Gabriel [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.

  12. Coexistence of antiferromagnetism and spin polarization in double perovskite SrLaVMoO6

    International Nuclear Information System (INIS)

    Asano, H; Gotoh, H; Matsushima, H; Takeda, Y; Zhong, J; Rajanikanth, A; Hono, K

    2010-01-01

    The magnetic and transport properties of SrLaVMoO 6 bulk samples with an ordered double perovskite structure have been investigated. Magnetization measurements have indicated that the SrLaVMoO 6 compound exhibits a cusp at 125 K, which is attributable to an antiferromagnetic transition. Electrical resistivity ρ for the compound showed metallic temperature dependence from 10 to 300 K, and a spin polarization P value was measured to be 0.50 using the point-contact Andreev reflection (PCAR) technique. It has been found from X-ray photoemission spectroscopy (XPS) study that SrLaVMoO 6 closely resembles the half-metallic Sr 2 FeMoO 6 in the electronic state of the Mo.

  13. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  14. Dirac cone with helical spin polarization in ultrathin α-Sn(001) films.

    Science.gov (United States)

    Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina

    2013-11-22

    Spin-split two-dimensional electronic states have been observed on ultrathin Sn(001) films grown on InSb(001) substrates. Angle-resolved photoelectron spectroscopy (ARPES) performed on these films revealed Dirac-cone-like linear dispersion around the Γ¯ point of the surface Brillouin zone, suggesting nearly massless electrons belonging to 2D surface states. The states disperse across a band gap between bulklike quantum well states in the films. Moreover, both circular dichroism of ARPES and spin-resolved ARPES studies show helical spin polarization of the Dirac-cone-like surface states, suggesting a topologically protected character as in a bulk topological insulator (TI). These results indicate that a quasi-3D TI phase can be realized in ultrathin films of zero-gap semiconductors.

  15. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  16. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    Science.gov (United States)

    Ceeh, Hubert; Weber, Josef Andreas; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-16

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  17. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  18. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  19. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  20. New directions in the theory of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Koelman, J.M.V.A.

    1988-01-01

    The three chapters of this thesis dealing with collisions between hydrogen (or deuterium) atoms in their ground state, each treat a different development in the theory of atomic hydrogen or deuterium gas. The decay due to interatomic collisions hindered till now all attempts to reach the low temperature, high-density regime where effects due to degeneracy are expected to show up. In ch. 2 a simple way out is presented for the case of Fermi gases: In spin-polarized Fermi systems at very low temperatures collisions are much effective than in Bose systems. For the Fermi gas, consisting of magnetically confined deuterium atoms, it appears that fast spin-exchange collisions automatically lead to a completely spin-polarized gas for which the spin-relaxation limited lifetime increases dramatically with decreasing temperature. As also the ratio of internal thermalization rate over decay rate increases with decreasing temperature, this gas can be cooled by forced evaporation down to very low temperatures. In ch. 3 it iis shown that the nuclear spin dynamics due to the hyperfine interaction during collisions, strongly limits the improvement in frequency stability attainable by H masers operating at low temperatures. In ch. 4 the phenomenon of spin waves is studied. It is shown that, despite the fact that interactions between two atoms are nuclear-spin independent, the outcome of a scattering event does not depend on the nuclear spins involved due to the particle indistinguishability effects at low collision energies. This effect gives rise to quantum phenomena on a macroscopic scale via the occurrence of spin waves. (author). 185 refs.; 34 figs

  1. Modeling optically pumped NMR and spin polarization in GaAs/AlGaAs quantum wells

    Science.gov (United States)

    Saha, D.; Wood, R.; Tokarski, J. T.; McCarthy, L. A.; Bowers, C. R.; Sesti, E. L.; Hayes, S. E.; Kuhns, P. L.; McGill, S. A.; Reyes, A. R.; Sanders, G. D.; Stanton, C. J.

    2014-08-01

    Optically-pumped nuclear magnetic resonance (OPNMR) spectroscopy is an emerging technique to probe electronic and nuclear spin properties in bulk and quantum well semiconductors. In OPNMR, one uses optical pumping with light to create spin-polarized electrons in a semiconductor. The electron spin can be transferred to the nuclear spin bath through the Fermi contact hyperfine interaction which can then be detected by conventional NMR. The resulting NMR signal can be enhanced four to five orders of magnitude or more over the thermal equilibrium signal. In previous work, we studied OPNMR in bulk GaAs where we investigated the strength of the OPNMR signal as a function of the pump laser frequency. This allowed us to study the spin-split valence band. Here we report on OPNMR studies in GaAs/AlGaAs quantum wells. We focus on theoretical calculations for the average electron spin polarization at different photon energies for different values of external magnetic field in both unstrained and strained quantum wells. Our calculations allow us to identify the Landau level transitions which are responsible for the peaks in the photon energy dependence of the OPNMR signal intensity. The calculations are based on the 8- band Pidgeon-Brown model generalized to include the effects of the quantum confinement potential as well as pseudomorphic strain at the interfaces. Optical properties are calculated within the golden rule approximation. Detailed comparison to experiment allows one to accurately determine valence band spin splitting in the quantum wells including the effects of strain.

  2. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Fu Xi; Chen Zeshun; Zhong Feng; Zhou Guanghui

    2010-01-01

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G ↑ and G ↓ , total conductance G and spin polarization P z for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G ↑ and G ↓ and form spin polarization P z . Moreover, the conductances present quantized plateaus, the plateaus and P z show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (P z ∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  3. Direct injection of spin-polarized carriers across YBa2Cu3O7−δ ...

    Indian Academy of Sciences (India)

    In summary, we have shown that the direct injection of spin-polarized carriers from LCMO into YBCO suppresses the critical current of the YBCO layer due to the breaking of the time reversal symmetry of the Cooper pairs. Further, our experiments show that when the ferromagnetic LCMO layer is in direct contact with YBCO, ...

  4. Spin-polarized scanning tunneling microscopy and spectroscopy study of chromium on a Cr(001) surface.

    Science.gov (United States)

    Lagoute, J; Kawahara, S L; Chacon, C; Repain, V; Girard, Y; Rousset, S

    2011-02-02

    Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

  5. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  6. Spin-polarized supercurrents for spintronics: a review of current progress.

    Science.gov (United States)

    Eschrig, Matthias

    2015-10-01

    During the past 15 years a new field has emerged, which combines superconductivity and spintronics, with the goal to pave a way for new types of devices for applications combining the virtues of both by offering the possibility of long-range spin-polarized supercurrents. Such supercurrents constitute a fruitful basis for the study of fundamental physics as they combine macroscopic quantum coherence with microscopic exchange interactions, spin selectivity, and spin transport. This report follows recent developments in the controlled creation of long-range equal-spin triplet supercurrents in ferromagnets and its contribution to spintronics. The mutual proximity-induced modification of order in superconductor-ferromagnet hybrid structures introduces in a natural way such evasive phenomena as triplet superconductivity, odd-frequency pairing, Fulde-Ferrell-Larkin-Ovchinnikov pairing, long-range equal-spin supercurrents, [Formula: see text]-Josephson junctions, as well as long-range magnetic proximity effects. All these effects were rather exotic before 2000, when improvements in nanofabrication and materials control allowed for a new quality of hybrid structures. Guided by pioneering theoretical studies, experimental progress evolved rapidly, and since 2010 triplet supercurrents are routinely produced and observed. We have entered a new stage of studying new phases of matter previously out of our reach, and of merging the hitherto disparate fields of superconductivity and spintronics to a new research direction: super-spintronics.

  7. Perfect switching of the spin polarization in a ferromagnetic gapless graphene/superconducting gapped graphene junction

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Tang, I-Ming; Hoonsawat, Rassmidara

    2010-01-01

    With the fabrication of gapped graphene, interest in the tunneling spectroscopy in graphene-based FG/SG junctions in which one side consists of a gapless ferro-magnetic graphene (FG) and the other side, of a gapped superconducting graphene (SG) has arisen. The carriers in the gapless (gapped) graphene are 2D relativistic particles having an energy spectrum given by E=√(h 2 v F 2 k 2 +(mv F 2 ) 2 ) (where mv F 2 is the gap and v F is the Fermi velocity). The spin currents in this FG/SG junction are obtained within the framework of the extended Blonder-Tinkham-Klapwijk (BTK) formalism. The effects of the superconducting energy gap in SG, of the gap mv F 2 which opened in the superconducting graphene, of the exchange field in FG, of the spin-dependent specular Andreev reflection, of the effective Fermi energy (E FF ) of FG and of the bias voltage across the junction (V) are simulated. It is seen that by adjusting E FF or V, the spin polarization (defined as SP(%) = 100% x (G ↑ - G ↓ )/(G ↑ + G ↓ )) can be switched from a pure spin up (SP = +100%) state to pure spin down (SP = -100%) state.

  8. Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

    Science.gov (United States)

    Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.

    2018-04-01

    In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.

  9. Effect of the anisotropy of the electron g-factor in spin polarization

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Gray, E. MacA.

    2010-01-01

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency (Ω) and decay rate (β) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g e ) (i.e. unequal values of the longitudinal (g e|| ) and transverse (g e -perpendicular) components of g e ) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in Ω upon deviation of the magnetic field from the VC relates to the anisotropy of g e (g e|| and g e -perpendicular) resulting from the quantum confinement effect. However, the angular dependence on β is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  10. a Spinning Polarizer and Spinning Analyzer Method for Visualizing the Isochromates in Conoscopic Interferometers

    Science.gov (United States)

    Olorunsola, Oluwatobi; Dada, Oluwaseye; Wang, Pengqian

    2013-09-01

    We have developed a spinning polarizer and spinning analyzer (SPSA) method to visualize the whole isochromatic fringes in conoscopic interferometers for the study of optically anisotropic materials. This simple method completely eliminates the broad and dark isogyre fringes appearing in a conventional conoscopic interferometer where a linear polarizer and a linear analyzer (LPLA) are used. Our method allows the direct visualization of the isochromates on the viewing screen by eyes in real time, without the need of additional optics or detectors other than those used in a conventional conoscopic interferometer, and no additional computation is required. This method works at any polarization state of the input light, and at any wavelength permitted by the polarizers. In the case of polychromatic illumination our method reveals the isochromates of all colors indiscriminatively, in comparison to the method of circular polarizer and circular analyzer (CPCA), which is considerably subject to spectrum modulation due to the dispersion in the retardation of the quarter-wave plates. The proposed method is demonstrated in a lithium niobate (LiNbO3) crystal driven by an external electric field.

  11. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  12. Laser-driven source of spin-polarized atomic hydrogen and deuterium

    International Nuclear Information System (INIS)

    Poelker, M.

    1995-01-01

    A laser-driven source of spin-polarized hydrogen (H) and deuterium (D) that relies on the technique of optical pumping spin exchange has been constructed. In this source, H or D atoms and potassium atoms flow continuously through a drifilm-coated spin-exchange cell where potassium atoms are optically pumped with circularly-polarized laser light in a high magnetic field. The H or D atoms become polarized through spin-exchange collisions with polarized potassium atoms. High electron polarization (∼80%) has been measured for H and D atoms at flow rates ∼2x10 17 atoms/s. Lower polarization values are measured for flow rates exceeding 1x10 18 atoms/s. In this paper, we describe the performance of the laser-driven source as a function of H and D atomic flow rate, magnetic field strength, alkali density and pump-laser power. Polarization measurements as a function of flow rate and magnetic field suggest that, despite a high magnetic field, atoms within the optical-pumping spin-exchange apparatus evolve to spin-temperature equilibrium which results in direct polarization of the H and D nuclei. (orig.)

  13. Effect of the anisotropy of the electron g-factor in spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2010-02-15

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  14. Domain Wall Dynamics Driven by a Localized Injection of a Spin-Polarized Current

    Science.gov (United States)

    Finocchio, Giovanni; Maugeri, Natale; Torres, Luis; Azzerboni, Bruno

    2010-06-01

    This paper introduces an oscillator scheme based on the oscillations of magnetic domain walls due to spin-polarized currents, where the current is injected perpendicular to the sample plane in a localized part of a nanowire. Depending on the geometrical and physical characteristic of the system, we identify two different dynamical regimes (auto-oscillations) when an out-of-plane external field is applied. The first regime is characterized by nucleation of domain walls (DWs) below the current injection site and the propagation of those up to the end of the nanowire, we also found an oscillation frequency larger than 5GHz with a linear dependence on the applied current density. This simple system can be used as a tuneable steady-state domain wall oscillator. In the second dynamical regime, we observe the nucleation of two DWs which propagate back and forth in the nanowire with a sub-GHz oscillation frequency. The micromagnetic spectral mapping technique shows the spatial distribution of the output power is localized symmetrically in the nanowire. We suggest that this configuration can be used as micromagnetic transformer to decouple electrically two different circuits.

  15. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  16. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    Science.gov (United States)

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  17. Interface-induced chiral domain walls, spin spirals and skyrmions revealed by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    von Bergmann, Kirsten; Kubetzka, André; Pietzsch, Oswald; Wiesendanger, Roland

    2014-10-01

    The spin textures of ultra-thin magnetic layers exhibit surprising variety. The loss of inversion symmetry at the interface of the magnetic layer and substrate gives rise to the so-called Dzyaloshinskii-Moriya interaction which favors non-collinear spin arrangements with unique rotational sense. Here we review the application of spin-polarized scanning tunneling microscopy to such systems, which has led to the discovery of interface-induced chiral domain walls and spin spirals. Recently, different interface-driven skyrmion lattices have been found, and the writing as well as the deleting of individual skyrmions based on local spin-polarized current injection has been demonstrated. These interface-induced non-collinear magnetic states offer new exciting possibilities to study fundamental magnetic interactions and to tailor material properties for spintronic applications.

  18. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  19. Thermally induced pure and spin polarized currents in a zigzag silicene nanoribbon based FM/normal/AFM junction

    Science.gov (United States)

    Ghanbari, Atousa; Esmaeilzadeh, Mahdi; Pournaghavi, Nezhat

    2018-01-01

    We study thermally induced spin resolved current in a zigzag silicene nanoribbon when the left and right leads are respectively affected by ferromagnetic (FM) and anti-ferromagnetic (AFM) exchange fields (FM/normal/AFM junction). We show that pure spin current is generated due to the leads temperature difference and the junction can work as a spin Seebeck diode. The pure spin current can be easily controlled by a perpendicular electric field and the junction, in this case, can work as a spin current switch. In addition, we study the effect of a single vacancy and show that the vacancy can slightly destroy the pure spin current property which leads to induce a weak spin polarized current. In the presence of both vacancy and electric field, current with high and tunable spin polarization can be achieved.

  20. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  1. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  2. Spin-polarized quasi-one-dimensional state with finite band gap on the Bi/InSb(001) surface

    Science.gov (United States)

    Kishi, J.; Ohtsubo, Y.; Nakamura, T.; Yaji, K.; Harasawa, A.; Komori, F.; Shin, S.; Rault, J. E.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Nurmamat, M.; Yamane, H.; Ideta, S.; Tanaka, K.; Kimura, S.

    2017-11-01

    One-dimensional (1D) electronic states were discovered on the 1D surface atomic structure of Bi fabricated on semiconductor InSb(001) substrates by angle-resolved photoelectron spectroscopy (ARPES). The 1D state showed steep, Dirac-cone-like dispersion along the 1D atomic structure with a finite direct band gap opening as large as 150 meV. Moreover, spin-resolved ARPES revealed the spin polarization of the 1D unoccupied states as well as that of the occupied states, the orientation of which inverted depending on the wave-vector direction parallel to the 1D array on the surface. These results reveal that a spin-polarized quasi-1D carrier was realized on the surface of 1D Bi with highly efficient backscattering suppression, showing promise for use in future spintronics and energy-saving devices.

  3. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  4. Influence of intrinsic spin-flip processes on spin-polarized transport through quantum dots in the cotunneling regime

    International Nuclear Information System (INIS)

    Weymann, I.; Barnas, J.

    2006-01-01

    The influence of intrinsic spin relaxation on spin-polarized cotunneling through quantum dots coupled to ferromagnetic leads is analyzed theoretically. It is shown that the zero bias anomaly, which occurs due to the interplay of single-barrier and double-barrier cotunneling processes, becomes suppressed by spin relaxation processes on the dot. Diode-like features of the transport characteristics in the cotunneling regime have been found in asymmetrical systems. These features are also suppressed by the spin relaxation processes

  5. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  6. Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: Spin-polarized DFT + U approach

    Energy Technology Data Exchange (ETDEWEB)

    Yousuf, Saleem, E-mail: nengroosaleem17@gmail.com; Gupta, D.C., E-mail: sosfizix@gmail.com

    2017-07-15

    Highlights: • 100% spin-polarized material important for the application in spintronics. • It is ferromagnetic and ductile in nature. • Shows semiconducting behavior with a band gap of 1.06 eV. • Possibly efficient high temperature thermoelectric material. - Abstract: We present a preliminary investigation of band structure and thermoelectric properties of new quaternary CoVTiAl Heusler alloy. Structural, magnetic property and 100% spin polarization of equiatomic CoVTiAl predicts ferromagnetic stable ground state. Band profile outlines the indirect semiconducting behavior in spin down channel with band gap of 1.06 eV, and the magnetic moment of 3 µ{sub B} in accordance with Slater-Pauling rule. To evaluate the accuracy of different approximations in predicting thermoelectric properties, the comparison with available experimental data is made which shows fair agreement for the transport coefficients. The high temperature (800 K) positive Seebeck coefficient of 73.71 µV/K describes the p-type character of the material with high efficiency due to highly influential semiconducting behavior around the Fermi level. Considering the combination of 100% spin-polarization, high Seebeck coefficient and large figure of merit, ferromagnetic semiconducting CoVTiAl may prove as a potential candidate for high temperature thermoelectrics and an ideal spin source material for spintronic applications.

  7. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  8. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    The development of magnetic Heusler compounds, specifically designed as materials for spintronic applications, has made tremendous progress in the very recent past [1-21]. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% [1]. These materials are exceptionally well suited for applications in magnetic tunnel junctions acting, for example, as sensors for magnetic fields. The tunnelling magneto-resistance (TMR) effect is the relative change in the electrical resistance upon application of a small magnetic field. Tunnel junctions with a TMR effect of 580% at 4 K were reported by the group of Miyazaki and Ando [1], consisting of two Co2MnSi Heusler electrodes. High Curie temperatures were found in Co2 Heusler compounds with values up to 1120 K in Co2FeSi [2]. The latest results are for a TMR device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a TMR effect of 174% [3]. The first significant magneto-resistance effect was discovered in Co2Cr0.6Fe0.4Al (CCFA) in Mainz [4]. With the classical Heusler compound CCFA as one electrode, the record TMR effect at 4 K is 240% [5]. Positive and negative TMR values at room temperature utilizing magnetic tunnel junctions with one Heusler compound electrode render magnetic logic possible [6]. Research efforts exist, in particular, in Japan and in Germany. The status of research as of winter 2005 was compiled in a recent special volume of Journal of Physics D: Applied Physics [7-20]. Since then specific progress has been made on the issues of (i) new advanced Heusler materials, (ii) advanced characterization, and (iii) advanced devices using the new materials. In Germany, the Mainz and Kaiserslautern based Research Unit 559 `New Materials with High Spin Polarization', funded since 2004 by the Deutsche Forschungsgemeinschaft, is a basic science approach to Heusler compounds, and it addresses the first two topics in particular

  9. NMR investigations of surfaces and interfaces using spin-polarized xenon

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, Holly Caroline [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-07-01

    129Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional 129Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 105times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the 13C signal of CO2 of xenon occluded in solid CO2 by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of ~1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  10. Production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange

    International Nuclear Information System (INIS)

    Redsun, S.G.

    1990-01-01

    The first part of this work is a study of the production of highly spin-polarized atomic hydrogen and deuterium by spin-exchange optical pumping. A tunable ring dye laser is used to polarize rubidium atoms by optical pumping. The cell containing the rubidium vapor is coated with paraffin in order to reduce spin relaxation due to wall collisions. Hydrogen gas is dissociated in an inductive discharge and flows continuously through the cell, in which the hydrogen atoms are polarized by spin-exchange collisions with the polarized rubidium atoms. The hydrogen polarization is determined by a combination of fluorescence monitoring and magnetic resonance spectroscopy. Atomic hydrogen polarization as high as 2 z > H = 0.72(6) has been observed, which is the highest degree of polarization yet produced by this method. However, the polarization may be limited to this value due to the depolarization of the rubidium by radiation trapping. The spin-relaxation rate of atomic hydrogen on a paraffin-coated cell is also measured for the first time, and corresponds to about 3,800 wall bounces before electron-spin randomization. The second part of this work is a theoretical analysis of the problem of radiation trapping in a dense optically pumped alkali vapor. A Monte Carlo routine is used to simulate the trajectories of multiply scattered photons. The average spin angular momentum transfer from the photons to the vapor is used to determine the equilibrium polarization of the vapor as a function of the alkali density and the frequency of the pumping light

  11. Quantum properties of spin polarized helium 3 optically oriented by a LNA laser

    International Nuclear Information System (INIS)

    Leduc, M.; Laloe, F.; Nacher, P.J.; Tastevin, G.; Daniels, J.M.; Betts, D.

    1986-01-01

    Spin polarized helium 3 (/sup 3/He increasing) and also atomic hydrogen (H decreasing) are systems exhibiting a number of unusual and interesting properties at low temperature. This is true even for dilute polarized gases in spite of the weakness of the nuclear magnetic interaction between atoms. The changes in the macroscopic properties of the gas with the nuclear polarization P are pure consequences of the indistinguishability of the particles and of the symmetrization principle in quantum mechanics. The transport properties of the gas, such as viscosity and thermal conductivity, have been calculated and found to be strongly dependent on P below a few kelvins. Spin transport in /sup 3/He increasing gives rise at low temperature to collective oscillatory modes: the transverse spin waves. Large changes are also expected with P in the case of more dense /sup 3/He fluids, such as an increase with P in the saturated vapor pressure. Optical pumping is a convenient technique for efficient polarization of the nuclear spins in /sup 3/He gas/sup 2/ making use of the 2/sup 3/S-2/sup 3/P atomic line at 1.08 μm. The arrival of cw tunable lasers in the near IR in the early 1980s gave a strong impulse to the buildup of experiments with a view to measuring quantum properties of /sup 3/He increasing at low temperature. Color center lasers (F/sup +//sub 2/ in NaF) provide P values up to 70%. They are now being replaced by more easy to handle LNA lasers which have given so far P in excess of 50% at room temperature. At low temperature, direct optical pumping of a /sup 3/He cell leads to poor P values; for that reason a different technique is used

  12. Direct observation of hopping induced spin polarization current in oxygen deficient Co-doped ZnO by Andreev reflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kung-Shang; Huang, Tzu-Yu; Dwivedi, G.D. [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lin, Lu-Kuei; Lee, Shang-Fan [Taiwan Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, Kaohsiung, Taiwan (China); Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2017-07-01

    Highlights: • Co-doped ZnO thin-films were grown with varying V{sub O} concentartion. • PCAR measurements were done to study the SPC. • High spin polarization was observed above a certain V{sub O} concentartion. • High V{sub O} samples provide a high density of completed percolation path. • This complete percolation path gives rise to high SPC. - Abstract: Oxygen vacancy induced ferromagnetic coupling in diluted magnetic oxide (DMO) semiconductors have been reported in several studies, but technologically more crucial spin-polarized current (SPC) is still under-developed in DMOs. Few studies have claimed that VRH mechanism can originate the SPC, but, how VRH mechanism associated with percolation path, is not clearly understood. We used Point-contact Andreev reflection (PCAR) technique to probe the SPC in Co-doped ZnO (CZO) films. Since the high resistance samples cause broadening in conductance(G)-voltage(V) curves, which may result in an unreliable evaluation of spin polarization, we include two extra parameters, (i) effective temperature and (ii) spreading resistance, for the simulation to avoid the uncertainty in extracting spin polarization. The effective G-V curves and higher spin polarization can be obtained above a certain oxygen vacancy concentration. The number of completed and fragmentary percolation paths is proportional to the concentration of oxygen vacancies. For low oxygen vacancy samples, the Pb-tip has a higher probability of covering fragmentary percolation paths than the complete ones, due to its small contact size. The completed paths may remain independent of one another and get polarized in different directions, resulting in lower spin-polarization value. High oxygen vacancy samples provide a high density of completed path, most of them link to one another by crossing over, and gives rise to high spin-polarization value.

  13. Dimensionality effects on spin-polarized quantum beats in ferromagnetic hosts with a pair of side-coupled impurities

    Energy Technology Data Exchange (ETDEWEB)

    Guessi, L.H.; Leandro, S.C.; Seridonio, A.C.; Siqueira, E.C. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Fisico Quimica; Souza, F.M.; Vernek, E. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Yoshida, M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Rio Claro, SP (Brazil); Figueira, M.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica

    2012-07-01

    Full text: In this work, we report a theoretical description of the differential conductance in the low bias regime, for a normal scanning tunneling microscope (STM) probe in the presence of ferromagnetic (FM) hosts with impurities. The hosts are treated as a spin-polarized electron gas hybridized to a pair of side-coupled impurities. Two setups of different dimensionalities are considered, a quantum wire (QW) and a metallic surface (MS). In order to deal with the non-interacting and the Coulomb blockade regimes of these systems, the analysis is done in the framework of the two-impurity Anderson model (TIAM) in combination with the equation of motion (EOM) approach for the Hamiltonian Green functions (GFs). The Fano effect appears in such setups, due to the quantum interference between the transport channels composed by the spin-polarized conduction bands and the electron tunneling into (or out of) the impurities. Thus the conductance of the STM reveals as a function of the probe position, a Fano interference strong dependent on the host dimensionality. It leads to the emergence of spin-polarized quantum beats in the Friedel oscillations for the conductance signal, which are uniform in the QW system in opposite to those found in the MS case, characterized by a long-range damped behavior. We remark that, the energy levels of the impurities and the Coulomb repulsion, modulate these beats. As a result, they establish a scenario where the interplay between the Coulomb blockade and the ferromagnetism of a metallic environment, can be useful for future quantum computation devices. (author)

  14. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  15. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  16. Spin-polarized scanning tunneling spectroscopy of self-organized nanoscale Co islands on Au(111) surfaces.

    Science.gov (United States)

    Schouteden, K; Muzychenko, D A; Van Haesendonck, C

    2008-07-01

    Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.

  17. Spin-polarized relativistic linear-muffin-tin-orbital method: Volume-dependent electronic structure and magnetic moment of plutonium

    International Nuclear Information System (INIS)

    Solovyev, I.V.; Liechtenstein, A.I.; Gubanov, V.A.; Antropov, V.P.; Andersen, O.K.

    1991-01-01

    The linear-muffin-tin-orbital method is generalized to the case of relativistic and spin-polarized self-consistent band calculations. Our formalism is analogous to the standard orthogonal--linear-muffin-tin-orbital formalism, except that the potential functions and the potential parameters are now matrices. The method is used to perform density-functional calculations for fcc plutonium with different atomic volumes. The formation of spin and orbital magnetic moments, as well as the changes in the energy bands for volume changes corresponding to the α-δ transition, are investigated. The calculated magnetic moments agree quite well with the experimental ones

  18. Dimensional Reduction and Odd-Frequency Pairing of the Checkerboard-Lattice Hubbard Model at 1/4-Filling

    Science.gov (United States)

    Yanagi, Yuki; Yamashita, Yasufumi; Ueda, Kazuo

    2012-12-01

    The ferromagnetism of the checkerboard-lattice Hubbard model at quarter filling is one of the few exact ferromagnetic ground states known in the family of Hubbard models. When the nearest neighbor hopping, t1, is negligible compared with the second neighbor one, t2, the system reduces to a collection of Hubbard chains. We find that the 1D character is surprisingly robust as long as t1

  19. Branner-Hubbard Motions and attracting dynamics

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Tan, Lei

    2006-01-01

    We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics.......We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics....

  20. Branner-Hubbard motions and attracting dynamics

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Tan, Lei

    We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics.......We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics....

  1. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  2. Oliver E. Buckley Prize Talk: Spin polarized tunneling and tunnel magnetoresistance -- Learning from the past and moving forward

    Science.gov (United States)

    Moodera, Jagadeesh

    2009-03-01

    Electron tunneling phenomenon has contributed enormously to our understanding of various branches of physics over the years. The technique of spin polarized tunneling (SPT), sensing the spin polarization of tunneling electrons using a superconducting spin detector, discovered by Meservey and Tedrow in the early seventies has been successfully utilized over the years to understand many aspects of magnetism and superconductivity. Electrical spin injection/detection in a semiconductor is strongly believed to succeed through such an approach. The successful observation of a large change in tunnel current in magnetic tunnel junctions (MTJ) in the mid nineties has brought extreme activity in this field -- both from fundamental study as well as extensive application in mind (as sensors, nonvolatile memory devices, logic elements etc). From the early history of this field that led to the discovery of room temperature TMR effect to the observation of many novel phenomena to the exciting recent work on spin filtering, spin transport in semiconductors to toggling of the superconducting state with spin current will be highlighted and reviewed. Work done in collaboration with Drs. Meservey and Tedrow, PhD students, postdoctorals, as well as high school students and undergraduates. NSF, ONR, DARPA and KIST-MIT project funds supported the research over the years.

  3. New-type spin polarized electron source and its applications; Atarashii spin henkyoku denshi sengen to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Saka, T.; Kato, T. [Daido Steel Co. Ltd., Nagoya (Japan); Nakanishi, T.; Okumi, S. [Nagoya University, Nagoya (Japan); Horinaka, H. [Osaka Prefectural University, Osaka (Japan). College of Engineering

    1998-08-20

    This paper reveals that using distorted thin GaAs film can realize high polarization in spin polarized electron ray, and introduces properties of the developed ray source. The paper also touches on the application thereof to property physics. Realization of the high spin polarization is based on use of the `optical polarization method`. With this method, electrons in specific spin state are excited into a conduction band by utilizing the selection law used when valency electrons of zincblende type crystal such as GaAs absorb circular polarization. These electrons are taken out into vacuum and used as polarized electron beams. In order to realize uniformly distorted GaAs film, a method was discussed, with which the thin GaAs films are grown on substrates with different lattice constants, and the films are distorted by means of lattice mismatch. GaAs(1-x)Px was used for the substrates. GaAs(1-x)Px has the lattice constant decrease as the P`s mixed crystal ratio `x` increases. If a thin GaAs film is grown on this substrate, it is possible to obtain GaAs which is subjected to compression stress in the direction parallel with the growing surface, and tensile stress in the vertical direction. 13 refs., 5 figs., 1 tab.

  4. Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree-Fock exchange

    KAUST Repository

    Wang, Hao

    2014-07-01

    The metal-insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (α) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12.5%≤α≤20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that α=10% is the best possible choice for spin-polarized VO2 calculations. © 2014 Elsevier B.V. All rights reserved.

  5. Spin-polarized transport in manganite-based magnetic nano structures

    International Nuclear Information System (INIS)

    Granada, Mara

    2007-01-01

    Giant magnetoresistance (G M R) and tunnel magnetoresistance are spin polarized transport phenomena which are observed in magnetic multilayers.They consist in a large variation of the electrical resistivity of the system depending on whether the magnetizations of the magnetic layers are aligned parallel or anti-parallel to each other. In order to be able to align the magnetic layers by means of an external magnetic field, they must not be strongly ferromagnetically coupled.The extrinsic magnetoresistance effects in magnetic multilayers, either G M R in the case of a metallic spacer, or T M R in the case of an insulating spacer, are observed at low magnetic fields, which makes these phenomena interesting for technological applications.We studied the possibility of using the ferromagnetic manganite La 0 ,75Sr 0 ,25MnO 3 (L S M O) in magneto resistive devices, with different materials as a spacer layer.As the main result of this work, we report G M R and T M R measurements in L S M O/LaNiO 3 /L S M O and L S M O/CaMnO 3 /L S M O tri layers, respectively, observed for the first time in these systems.This work included the deposition of films and multilayers by sputtering, the structural characterization of the samples and the study of their magnetic and electric transport properties.Our main interest was the study of G M R in L S M O/LaNiO 3 /L S M O tri layers.It was necessary to firstly characterize the magnetic coupling of L S M O layers through the L N O spacer. After that, we performed electric transport measurements with the current in the plane of the samples.We measured a G M R contribution of ∼ 0,55 % at T = 83 K.We designed a procedure for patterning the samples by e-beam lithography for electric transport measurements with the current perpendicular to the plane. We also performed the study of L S M O/CaMnO 3 /L S M O tri layers with an insulating spacer.We studied the magnetic coupling, as in the previous case.Then we fabricated a tunnel junction for

  6. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  7. The effects of Rashba spin-orbit coupling on spin-polarized transport in hexagonal graphene nano-rings and flakes

    Science.gov (United States)

    Laghaei, M.; Heidari Semiromi, E.

    2018-03-01

    Quantum transport properties and spin polarization in hexagonal graphene nanostructures with zigzag edges and different sizes were investigated in the presence of Rashba spin-orbit interaction (RSOI). The nanostructure was considered as a channel to which two semi-infinite armchair graphene nanoribbons were coupled as input and output leads. Spin transmission and spin polarization in x, y, and z directions were calculated through applying Landauer-Buttiker formalism with tight binding model and the Green's function to the system. In these quantum structures it is shown that changing the size of system, induce and control the spin polarized currents. In short, these graphene systems are typical candidates for electrical spintronic devices as spin filtering.

  8. Anisotropic magnetoresistance and spin polarization of La0.7Sr0.3MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Wang, L.M.; Guo, C.-C.

    2005-01-01

    The crystalline structure, anisotropic magnetoresistance (AMR), and magnetization of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 (LSMO/STO) superlattices grown by a rf sputtering system are systematically analyzed to study the spin polarization of manganite at interfaces. The presence of positive low-temperature AMR in LSMO/STO superlattices implies that two bands of majority and minority character contribute to the transport properties, leading to a reduced spin polarization. Furthermore, the magnetization of superlattices follows the T 3/2 law and decays more quickly as the thickness ratio d STO /d LSMO increases, corresponding to a reduced exchange coupling. The results clearly show that the spin polarization is strongly correlated with the influence of interface-induced strain on the structure

  9. Fabrication of highly spin-polarized Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Vahidi, M.; Zhang, S. K.; Yu, L.; Huang, M.; Newman, N., E-mail: Nathan.Newman@asu.edu [School of Materials, Arizona State University, Tempe, Arizona 85287-8706 (United States); Gifford, J. A.; Chen, T. Y. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Krishnamurthy, S.; Yu, Z. G. [SRI International, 301-64, Menlo Park, California 94025 (United States); Youngbull, C. [The Biodesign Institute, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-04-01

    Ferromagnetic Heusler Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} epitaxial thin-films have been fabricated in the L2{sub 1} structure with saturation magnetizations over 1200 emu/cm{sup 3}. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100) substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  10. Development of a LabVIEW-based surface with innovative controls for the control system of the spin-polarized electron test source Photo-CATCH

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, Heidi Ayse; Enders, Joachim; Espig, Martin; Fritzsche, Yuliya; Wagner, Markus [TU Darmstadt, Institut fuer Kernphysik (Germany)

    2016-07-01

    Operations of the spin-polarized electron source of the S-DALINAC will be supported by a photo-cathode activation, test and cleaning system, Photo-CATCH. Besides cathode-performance studies, this teststand produces spin-polarized electron bunches from a GaAs photo-cathode that are then transported, manipulated, and characterized by devices in a low-energy beam line. To set and monitor the various components of the beamline, a control system was developed, based on the EPICS framework. As interfaces, LabVIEW was used in combination with a gamepad as a controlling device.

  11. Electronic Structures of Magnetic Iron and Cobalt Thin Films on TUNGSTEN(001): a Spin-Polarized Inverse Photoemission Study

    Science.gov (United States)

    Cai, Qing

    Electronic structure is a central question in metallic magnetism as well as in magnetic materials research. The electronic properties in a two-dimensional system such as thin films of a few atomic layers is an important issue in surface science. The epitaxial thin film preparation and morphology are of special technological interests. In this thesis, these questions are addressed. Spin-polarized inverse photoemission spectroscopy is used to study the unoccupied electron band states in magnetic thin film magnets of Fe and Co epitaxially grown on W(001) surface. The clean W(001) surface was studied by angle -resolved inverse photoemission spectroscopy and the bulk band dispersion was determined. Ultrathin Fe overlayers on W(001) show a square lateral crystal structure similar to the bcc-Fe(001) surface. The electronic structure develops into a structure that is close to that of bulk Fe at about four atomic layers. In the normal-incidence spin polarized inverse photoemission spectra, direct transitions to the majority and minority final states near the H^'_ {25} point are identified in good agreement with the theoretical calculations. One Fe monolayer, or multilayers less than four, showed behavior corresponding to a gradually reduced Curie temperature. When the film thickness is reduced, the spin-resolved spectral behavior show that the majority spin signal peak moves from near the Fermi energy to about 1.3 eV while the minority peak stays at about the same position near 1.3 eV. The results are used to examine the spatial correlation of the spin fluctuations in the system in comparison with a theoretical spectral calculation, and favors the disordered-local-moment picture in the contemporary theory of itinerant magnetism. The Co overlayer shows an overlayer structure that consists of equivalent, mutually rotated domains of distorted hexagonal lateral structure. For one atomic layer of Co in that structure, which has a nominal lateral atomic density twice that of the

  12. Pairing of particles in a one-dimensional Fibonacci lattice within the generalized Hubbard model

    International Nuclear Information System (INIS)

    Espinosa, J.E.; Quiroz, A.

    2005-01-01

    In this work, we analyzed the ground-state symmetry for the cases of two particles in a linear Fibonacci chain, using the generalized Hubbard Hamiltonian and the real-space mapping method. A ground state is obtained when the correlated hopping interactions are included. The two-particle problem is analyzed by looking at the phase diagram for the bound state

  13. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-01-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 10 6 %. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents. (paper)

  14. Spin-polarized charge transport in HgTe/CdTe quantum well topological insulator under a ferromagnetic metal strip

    Science.gov (United States)

    Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong

    2018-02-01

    Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.

  15. Effects of Be acceptors on the spin polarization of carriers in p-i-n resonant tunneling diodes

    Energy Technology Data Exchange (ETDEWEB)

    Awan, I. T.; Galvão Gobato, Y. [Departamento de Física, Universidade Federal de São Carlos (UFSCAR) 13560-905, São Carlos, SP (Brazil); Galeti, H. V. A. [Departamento de Engenharia Elétrica, Universidade Federal de São Carlos 13560-905, São Carlos, SP (Brazil); Brasil, M. J. S. P. [Institute of Physics Gleb Wataghin, UNICAMP, Campinas (Brazil); Taylor, D.; Henini, M. [School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-08-07

    In this paper, we have investigated the effect of Be acceptors on the electroluminescence and the spin polarization in GaAs/AlAs p-i-n resonant tunneling diodes. The quantum well emission comprise two main lines separated by ∼20 meV attributed to excitonic and Be-related transitions, which intensities show remarkably abrupt variations at critical voltages, particularly at the electron resonant peak where it shows a high-frequency bistability. The circular-polarization degree of the quantum-well electroluminescence also shows strong and abrupt variations at the critical bias voltages and it attains relatively large values (of ∼−75% at 15 T). These effects may be explored to design novel devices for spintronic applications such as a high-frequency spin-oscillators.

  16. Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: comparison of H- and halogen-atom polarizations.

    Science.gov (United States)

    Sofikitis, Dimitris; Rubio-Lago, Luis; Bougas, Lykourgos; Alexander, Andrew J; Rakitzis, T Peter

    2008-10-14

    Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the a(0)(1)(perpendicular) parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the Re[a(1)(1)(parallel, perpendicular)] parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K.

  17. Tailoring electronic structure of α-AlH3 to enhance spin polarization: Insights from density functional calculations

    Science.gov (United States)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Sun, Lili; Zhao, Hui; Wu, Ping

    2017-09-01

    The effects of 3d transition metals doping on the structural, electronic, and magnetic properties of aluminum hydride were investigated based on spin-polarized first-principles calculations. The studies indicated that V, Cr, Mn, and Fe doping could produce polarization of high-spin state, while Co and Ni doping would induce polarization of low-spin state. It was found that the magnetic ground state depended on the distance between two substitutions and the long-range ferromagnetic coupling was achieved upon doping V, Mn, and Fe. The present work indicated that the introduced 3d-block dopants could tailor aluminum hydride into either a potential half-metallic or n-type magnetic semiconductor by tuning the valence electrons of the impurities. The main findings of this work pointed out the possibilities of the applications of hydrides in future hydride electronics and spintronics.

  18. Self-energy-part resummed quark and gluon propagators in a spin-polarized quark matter and generalized Boltzmann equations

    International Nuclear Information System (INIS)

    Niegawa, A.

    2003-01-01

    We construct perturbative frameworks for studying nonequilibrium spin-polarized quark matter. We employ the closed-time-path formalism and use the gradient approximation in derivative expansion. After constructing self-energy-part resummed quark and gluon propagators, we formulate two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the initial-particle distribution function, and the second one is formulated on the basis of a 'physical' particle distribution function. In the course of the construction of the second framework, the generalized Boltzmann equations and their relatives directly come out, which describe the evolution of the system. The frameworks are relevant to the study of a magnetic character of quark matter, e.g., possible quark stars

  19. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  20. Study of the metal-insulator transition and superconducting correlations of a generalized Hubbard model

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.; Gagliano, E.

    1996-02-01

    We study the metal-insulator transition of a generalized Hubbard model in which the magnitude of the nearest-neighbor hopping depends on the occupations of the sites involved. Numerical results for finite chains at half-filling show that when 0 0 for which the system is metallic. This is consistent with a Hartree-Fock calculation. The metallic phase collapses to one point, U = 0, in the Hubbard limit. In the metallic phase we obtain that the superconducting correlations are the dominant ones, at least for doped systems.

  1. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  2. Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    De Souza, Fabricio; Jauho, Antti-Pekka; Egues, J.C.

    2008-01-01

    Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnet...

  3. Regular and irregular dynamics of spin-polarized wavepackets in a mesoscopic quantum dot at the edge of topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Khomitsky, D. V., E-mail: khomitsky@phys.unn.ru; Chubanov, A. A.; Konakov, A. A. [Lobachevsky National Research State University of Nizhny Novgorod, Department of Physics (Russian Federation)

    2016-12-15

    The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.

  4. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    CERN Document Server

    Bastrukov, S I; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameter...

  5. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Pincelli, T., E-mail: pincelli@iom.cnr.it; Rossi, G. [Dipartimento di Fisica, Università degli studi di Milano, Via Celoria 16, 20133 Milano (Italy); Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Petrov, V. N. [Saint Petersburg State Polytechnical University, Politechnicheskaya Street 29, 195251 Saint Petersburg (Russian Federation); Brajnik, G.; Carrato, S. [Università degli Studi di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); Ciprian, R.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Panaccione, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, 34149 Trieste (Italy); Lollobrigida, V. [Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Sergo, R.; Gubertini, A.; Cautero, G. [Sincrotrone Trieste S.C.p.A, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste (Italy)

    2016-03-15

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  6. Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator

    International Nuclear Information System (INIS)

    Roy, Urmimala; Dey, Rik; Pramanik, Tanmoy; Ghosh, Bahniman; Register, Leonard F.; Banerjee, Sanjay K.

    2015-01-01

    We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory

  7. Design and optimization of a modular setup for measurements of three-dimensional spin polarization with ultrafast pulsed sources

    Science.gov (United States)

    Pincelli, T.; Petrov, V. N.; Brajnik, G.; Ciprian, R.; Lollobrigida, V.; Torelli, P.; Krizmancic, D.; Salvador, F.; De Luisa, A.; Sergo, R.; Gubertini, A.; Cautero, G.; Carrato, S.; Rossi, G.; Panaccione, G.

    2016-03-01

    ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).

  8. Photoemission of Bi_{2}Se_{3} with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?

    Directory of Open Access Journals (Sweden)

    J. Sánchez-Barriga

    2014-03-01

    Full Text Available Topological insulators are characterized by Dirac-cone surface states with electron spins locked perpendicular to their linear momenta. Recent theoretical and experimental work implied that this specific spin texture should enable control of photoelectron spins by circularly polarized light. However, these reports questioned the so far accepted interpretation of spin-resolved photoelectron spectroscopy. We solve this puzzle and show that vacuum ultraviolet photons (50–70 eV with linear or circular polarization indeed probe the initial-state spin texture of Bi_{2}Se_{3} while circularly polarized 6-eV low-energy photons flip the electron spins out of plane and reverse their spin polarization, with its sign determined by the light helicity. Our photoemission calculations, taking into account the interplay between the varying probing depth, dipole-selection rules, and spin-dependent scattering effects involving initial and final states, explain these findings and reveal proper conditions for light-induced spin manipulation. Our results pave the way for future applications of topological insulators in optospintronic devices.

  9. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    CERN Document Server

    Mulhollan, Gregory A; Brachmann, Axel; Clendenin, James E; Garwin, Edward; Kirby, Robert; Luh Dah An; Maruyama, Takashi; Prepost, Richard

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile Preliminary measurements have been carried out on bulk GaAs. As expected, the yield change far from the bandgap is quite large. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. For a bias which enhances emission, the yield nearly doubles. For a bias which diminishes emission, the yield is a...

  10. Measurement of transverse emittance at the source of spin-polarized electrons at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Barday, Roman; Bonnes, Uwe; Eichhorn, Ralf; Enders, Joachim; Hessler, Christoph; Patalakha, Oleksandr; Platz, Markus; Poltoratska, Yuliya; Rick, Wolfgang [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A new injector concept for 100 keV spin-polarized electrons (SPIN) at the S-DALINAC has been developed. The transverse emittance was measured for beam characterization. The emittance is a quantity concerning the quality of the beam, describing the phase space area. Determination of the emittance requires measurement of the beam profile and knowledge of the focal length of a beam focussing device. A wire scanner unit consisting of two 50 {mu}m diameter tungsten wires is used for the beam-profile measurement. Data analysis is performed by fitting a gaussian model distribution to estimate the 1{sigma} beam radius. Each determined beam width is correlated to the corresponding focal length of a magnetic lens, and a parabola fit is applied to calculate the parameters of the {sigma}-matrix. The square root of the determinant of the {sigma}-matrix defines the emittance. The results of the calculation are presented and the emittance is compared to theoretical estimates.

  11. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  12. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  13. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  14. Spin-dependent scattering and the spin polarization of a diffusive current in partly disordered L10 epitaxial FePd

    International Nuclear Information System (INIS)

    Seemann, K M; Hickey, M C; Baltz, V; Hickey, B J; Marrows, C H

    2010-01-01

    We report magnetic domain wall (DW) resistance in epitaxial films of FePd. When equal numbers of Fe and Pd atoms are present, this material forms an ordered structure with alternating crystal planes of Fe and Pd. We prepared films enriched with Pd to varying degrees, gradually degrading this structure. As might be expected, this increased the electrical resistivity of the films by introducing extra defects that can scatter electrons. However, unexpectedly, the additional resistance arising from the ∼10 nm thick DWs rose as a proportion of the overall resistivity, roughly doubling when halving the degree of chemical ordering-as determined from x-ray diffraction measurements-within the films. These data can be used to infer a rise in the spin polarization of the current flowing in the layers when extra Pd atoms are introduced. On the other hand, a separate measurement of spin polarization using a superconducting point contact technique that is insensitive to electron scattering revealed no changes as extra Pd was introduced. We conclude that Pd atoms scatter electrons of one spin far more strongly than the other, suggesting a possible means of producing highly spin-polarized currents for use in spintronic devices.

  15. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  16. The molecular spin filter constructed from 1D organic chain

    International Nuclear Information System (INIS)

    Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan

    2014-01-01

    We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fe n+1 (C 6 H 4 ) n ). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [−1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fe n+1 and (C 6 H 4 ) n . In addition, negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain. The results can help us understand the spin transport properties of organic molecular chain. - Highlights: • Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect. • The effect of spin polarization origin from both of Fe n+1 and (C 6 H 4 ) n . • Negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain

  17. On the SU(2)× SU(2) symmetry in the Hubbard model

    Science.gov (United States)

    Jakubczyk, Dorota; Jakubczyk, Paweł

    2012-08-01

    We discuss the one-dimensional Hubbard model, on finite sites spin chain, in context of the action of the direct product of two unitary groups SU(2)× SU(2). The symmetry revealed by this group is applicable in the procedure of exact diagonalization of the Hubbard Hamiltonian. This result combined with the translational symmetry, given as the basis of wavelets of the appropriate Fourier transforms, provides, besides the energy, additional conserved quantities, which are presented in the case of a half-filled, four sites spin chain. Since we are dealing with four elementary excitations, two quasiparticles called "spinons", which carry spin, and two other called "holon" and "antyholon", which carry charge, the usual spin- SU(2) algebra for spinons and the so called pseudospin-SU(2) algebra for holons and antiholons, provide four additional quantum numbers.

  18. Optical conductivity of the Hubbard model

    International Nuclear Information System (INIS)

    Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.

    1996-07-01

    We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs

  19. Tuning Fermi level of Cr{sub 2}CoZ (Z=Al and Si) inverse Heusler alloys via Fe-doping for maximum spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh-160014 (India); Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India); Reshak, Ali H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: manishdft@gmail.com [Department of Physics, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2014-12-15

    We report full potential treatment of electronic and magnetic properties of Cr{sub 2−x}Fe{sub x}CoZ (Z=Al, Si) Heusler alloys where x=0.0, 0.25, 0.5, 0.75 and 1.0, based on density functional theory (DFT). Both parent alloys (Cr{sub 2}CoAl and Cr{sub 2}CoSi) are not half-metallic frromagnets. The gradual replacement of one Cr sublattice with Fe induces the half-metallicity in these systems, resulting maximum spin polarization. The half-metallicity starts to appear in Cr{sub 2−x}Fe{sub x}CoAl and Cr{sub 2−x}Fe{sub x}CoSi with x=0.50 and x=0.25, respectively, and the values of minority-spin gap and half-metallic gap or spin-flip gap increase with further increase of x. These gaps are found to be maximum for x=1.0 for both cases. An excellent agreement between the structural properties of CoFeCrAl with available experimental study is obtained. The Fermi level tuning by Fe-doping makes these alloys highly spin polarized and thus these can be used as promising candidates for spin valves and magnetic tunnelling junction applications. - Highlights: • Tuning of E{sub F} in Cr{sub 2}CoZ (Z=Al, Si) has been demonstrated via Fe doping. • Effect of Fe doping on half-metallicity and magnetism have been discussed. • The new alloys have a potential of being used as spin polarized electrodes.

  20. Anomalous Hall effect and current spin polarization in Co2Fe X Heusler compounds (X =Al , Ga , In , Si , Ge , and Sn ): A systematic ab initio study

    Science.gov (United States)

    Huang, Hung-Lung; Tung, Jen-Chuan; Guo, Guang-Yu

    2015-04-01

    Co-based Heusler compounds are ferromagnetic with a high Curie temperature and a large magnetization density, and thus are promising for spintronic applications. In this paper, we perform a systematic ab initio study of two principal spin-related phenomena, namely, anomalous Hall effect and current spin polarization, in Co2-based Heusler compounds Co2Fe X (X =Al , Ga , In , Si , Ge , Sn ) in the cubic L2 1 structure within the density functional theory with the generalized gradient approximation (GGA). The accurate all-electron full-potential linearized augmented plane-wave method is used. First, we find that the spin polarization of the longitudinal current (PL) in Co2Fe X (X =Al , Ga , In , Al0.5Si0.5 , and Sn ) is ˜100 % even though that of the electronic states at the Fermi level (PD) is not. Further, the other compounds also have a high current spin polarization with PL>85 %. This indicates that all the Co2Fe X compounds considered are promising for spin-transport devices. Interestingly, PD is negative in Co2Fe X (X =Si , Ge , and Sn ), differing in sign from the PL as well as that from the transport experiments. Second, the calculated anomalous Hall conductivities (AHCs) are moderate, being within 200 S/cm, and agree well with the available experiments on a highly L2 1 ordered Co2FeSi specimen although they differ significantly from the reported experiments on other compounds where the B2 antisite disorders were present. Surprisingly, the AHC in Co2FeSi decreases and then changes sign when Si is replaced by Ge and finally by Sn. Third, the calculated total magnetic moments agree well with the corresponding experimental ones in all the studied compounds except Co2FeSi where a difference of 0.3 μB/f .u . exists. We also perform the GGA plus on-site Coulomb interaction U calculations in the GGA + U scheme. We find that including the U affects the calculated total magnetic moment, spin polarization and AHC significantly, and in most cases, unfortunately

  1. Excitation of Self-Localized Spin-Wave Bullets by Spin-Polarized Current in In-Plane Magnetized Magnetic Nano-Contacts: A Micromagnetic Study

    Science.gov (United States)

    2007-10-08

    excitation of microwave spin waves.3,10,11 The analytical theory of spin-wave excitation in magnetic nanocontacts by spin-polarized current performed...linear theory ,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L... Oersted magnetic field, and/or by any other small interaction, neglected in the micromagnetic model. To make the excitation of subcritical modes12,15

  2. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator

    International Nuclear Information System (INIS)

    Espig, Martin

    2016-02-01

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of n,x =(1.7478(4).10 -4 .(r)/(μm)+2.8(18).10 -5 ) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1.2) ps at a

  3. Disordered spinor Bose-Hubbard model

    International Nuclear Information System (INIS)

    LaPcki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub

    2011-01-01

    We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.

  4. Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO0.55F0.45BiS2.

    Science.gov (United States)

    Wu, Shi-Long; Sumida, Kazuki; Miyamoto, Koji; Taguchi, Kazuaki; Yoshikawa, Tomoki; Kimura, Akio; Ueda, Yoshifumi; Arita, Masashi; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Okuda, Taichi

    2017-12-04

    Conventional Rashba spin polarization is caused by the combination of strong spin-orbit interaction and spatial inversion asymmetry. However, Rashba-Dresselhaus-type spin-split states are predicted in the centrosymmetric LaOBiS 2 system by recent theory, which stem from the local inversion asymmetry of active BiS 2 layer. By performing high-resolution spin- and angle-resolved photoemission spectroscopy, we have investigated the electronic band structure and spin texture of superconductor LaO 0.55 F 0.45 BiS 2 . Here we present direct spectroscopic evidence for the local spin polarization of both the valence band and the conduction band. In particular, the coexistence of Rashba-like and Dresselhaus-like spin textures has been observed in the conduction band. The finding is of key importance for fabrication of proposed dual-gated spin-field effect transistor. Moreover, the spin-split band leads to a spin-momentum locking Fermi surface from which superconductivity emerges. Our demonstration not only expands the scope of spintronic materials but also enhances the understanding of spin-orbit interaction-related superconductivity.

  5. Energy spectrum, the spin polarization, and the optical selection rules of the Kronig-Penney superlattice model with spin-orbit coupling

    Science.gov (United States)

    Li, Rui

    2018-02-01

    The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.

  6. Very efficient spin polarization analysis (VESPA): new exchange scattering-based setup for spin-resolved ARPES at APE-NFFA beamline at Elettra.

    Science.gov (United States)

    Bigi, Chiara; Das, Pranab K; Benedetti, Davide; Salvador, Federico; Krizmancic, Damjan; Sergo, Rudi; Martin, Andrea; Panaccione, Giancarlo; Rossi, Giorgio; Fujii, Jun; Vobornik, Ivana

    2017-07-01

    Complete photoemission experiments, enabling measurement of the full quantum set of the photoelectron final state, are in high demand for studying materials and nanostructures whose properties are determined by strong electron and spin correlations. Here the implementation of the new spin polarimeter VESPA (Very Efficient Spin Polarization Analysis) at the APE-NFFA beamline at Elettra is reported, which is based on the exchange coupling between the photoelectron spin and a ferromagnetic surface in a reflectometry setup. The system was designed to be integrated with a dedicated Scienta-Omicron DA30 electron energy analyzer allowing for two simultaneous reflectometry measurements, along perpendicular axes, that, after magnetization switching of the two targets, allow the three-dimensional vectorial reconstruction of the spin polarization to be performed while operating the DA30 in high-resolution mode. VESPA represents the very first installation for spin-resolved ARPES (SPARPES) at the Elettra synchrotron in Trieste, and is being heavily exploited by SPARPES users since autumn 2015.

  7. Superconducting in the near half-filling Hubbard model

    International Nuclear Information System (INIS)

    Hoang Anh Tuan; Nguyen Toan Thang; Nguyen Ngoc Thuan

    1994-06-01

    The near half-filling Hubbard model of strongly correlated electron systems is considered within the framework of the new functional integral method without slave boson. A dynamical system of equations determining the superconducting phase of the Hubbard model is derived. Both singlet and triplet Cooper pairings are studied. (author). 18 refs

  8. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  9. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  10. Strong coupling from the Hubbard model

    OpenAIRE

    Minahan, Joseph A.

    2006-01-01

    It was recently observed that the one dimensional half-filled Hubbard model reproduces the known part of the perturbative spectrum of planar N=4 super Yang-Mills in the SU(2) sector. Assuming that this identification is valid beyond perturbation theory, we investigate the behavior of this spectrum as the 't Hooft parameter \\lambda becomes large. We show that the full dimension \\Delta of the Konishi superpartner is the solution of a sixth order polynomial while \\Delta for a bare dimension 5 op...

  11. Ground-state and spectral properties of an asymmetric Hubbard ladder

    Science.gov (United States)

    Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin

    2015-04-01

    We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.

  12. Off-site interaction effect in the Extended Hubbard Model with the SCRPA method

    International Nuclear Information System (INIS)

    Harir, S; Bennai, M; Boughaleb, Y

    2007-01-01

    The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion

  13. Algebraic approach to q-deformed supersymmetric variants of the Hubbard model with pair hoppings

    International Nuclear Information System (INIS)

    Arnaudon, D.

    1997-01-01

    Two quantum spin chains Hamiltonians with quantum sl(2/1) invariance are constructed. These spin chains define variants of the Hubbard model and describe electron models with pair hoppings. A cubic algebra that admits the Birman-Wenzl-Murakami algebra as a quotient allows exact solvability of the periodic chain. The two Hamiltonians, respectively built using the distinguished and the fermionic bases of U q (sl(2/1)) differ only in the boundary terms. They are actually equivalent, but the equivalence is non local. Reflection equations are solved to get exact solvability on open chains with non trivial boundary conditions. Two families of diagonal solutions are found. The centre and the s-Casimir of the quantum enveloping algebra of sl(2/1) appear as tools for the construction of exactly solvable Hamiltonians. (author)

  14. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field

    International Nuclear Information System (INIS)

    Yao, K.L.; Li, Y.C.; Sun, X.Z.; Liu, Q.M.; Qin, Y.; Fu, H.H.; Gao, G.Y.

    2005-01-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge-charge and spin-spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge-charge and the spin-spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute

  15. Strong coupling from the Hubbard model

    Science.gov (United States)

    Minahan, Joseph A.

    2006-10-01

    It was recently observed that the one-dimensional half-filled Hubbard model reproduces the known part of the perturbative spectrum of planar {\\cal N}=4 super Yang Mills in the SU(2) sector. Assuming that this identification is valid beyond perturbation theory, we investigate the behaviour of this spectrum as the 't Hooft parameter λ becomes large. We show that the full dimension Δ of the Konishi superpartner is the solution of a sixth-order polynomial while Δ for a bare dimension 5 operator is the solution of a cubic. In both cases, the equations can be solved easily as a series expansion for both small and large λ and the equations can be inverted to express λ as an explicit function of Δ. We then consider more general operators and show how Δ depends on λ in the strong coupling limit. We are also able to distinguish those states in the Hubbard model which correspond to the gauge-invariant operators for all values of λ. Finally, we compare our results with known results for strings on AdS5 × S5, where we find agreement for a range of R-charges.

  16. Spin-polarized semiconductors: tuning the electronic structure of graphene by introducing a regular pattern of sp3 carbons on the graphene plane.

    Science.gov (United States)

    Jing, Long; Huang, Ping; Zhu, Huarui; Gao, Xueyun

    2013-01-28

    First-principles calculations (generalized gradient approximation, density functional therory (DFT) with dispersion corrections, and DFT plus local atomic potential) are carried out on the stability and electronic structures of superlattice configurations of nitrophenyl diazonium functionalized graphene with different coverage. In the calculations, the stabilities of these structures are strengthened significantly since van der Waals interactions between nitrophenyl groups are taken into account. Furthermore, spin-polarized and wider-bandgap electronic structures are obtained when the nitrophenyl groups break the sublattice symmetry of the graphene. The unpaired quasi-localized p electrons are responsible for this itinerant magnetism. The results provide a novel approach to tune graphene's electronic structures as well as to form ferromagnetic semiconductive graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet.

    Science.gov (United States)

    Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R

    2009-10-09

    Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.

  18. Strain effects on the spin polarized electron gas in ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures

    KAUST Repository

    Nazir, Safdar

    2013-04-11

    The spin polarized two dimensional electron gas in the correlated ABO3/SrTiO3 (A = Pr, Nd and B = Al, Ga) heterostructures is investigated by ab-initio calculations using density functional theory. Structural relaxation shows a strong buckling at and near the TiO2 terminated n-type interface (IFs) due to significant TiO6 octahedral distortions. We find in all cases, metallic states in a very narrow region of the SrTiO3, in agreement with experimental results. We demonstrate that the interface magnetism strongly reacts to the magnitude of the lattice strain. The orbital occupations and, hence, the charge carrier density change systematically as a function of the lattice mismatch between the component materials.

  19. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  20. Relativistic spin-polarized KKR theory for superconducting heterostructures: Oscillating order parameter in the Au layer of Nb/Au/Fe trilayers

    Science.gov (United States)

    Csire, Gábor; Deák, András; Nyári, Bendegúz; Ebert, Hubert; Annett, James F.; Újfalussy, Balázs

    2018-01-01

    The fully relativistic spin-polarized multiple-scattering theory is developed for inhomogeneous superconductors, including superconducting/normal-metal/ferromagnet heterostructures. The method allows the solution of the first-principles Dirac-Bogoliubov-de Gennes equations combined with a semiphenomenological parametrization of the exchange-correlation functional. Simple conditions are derived for the case when the right-hand-side and left-hand-side solutions must be treated separately when setting up the corresponding Green's function. As an application of the theory, we calculate the order parameters of Nb/Fe and Nb/Au/Fe systems. We find Fulde-Ferrell-Larkin-Ovchinnikov-like oscillations in the iron layers, but more interestingly an oscillatory behavior is observed in the gold layers as well. The band-structure calculations suggest that this is the consequence of an interplay between the quantum-well states and ferromagnetism.

  1. Thomas-Fermi-von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas

    Science.gov (United States)

    van Zyl, B. P.; Zaremba, E.; Pisarski, P.

    2013-04-01

    We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi-von Weizsäcker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions and provide physical insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.

  2. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  3. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  4. Reduced interface spin polarization by antiferromagnetically coupled Mn segregated to the C o2MnSi /GaAs (001) interface

    Science.gov (United States)

    Rath, Ashutosh; Sivakumar, Chockalingam; Sun, C.; Patel, Sahil J.; Jeong, Jong Seok; Feng, J.; Stecklein, G.; Crowell, Paul A.; Palmstrøm, Chris J.; Butler, William H.; Voyles, Paul M.

    2018-01-01

    We have investigated the interfacial structure and its correlation with the calculated spin polarization in C o2MnSi /GaAs(001) lateral spin valves. C o2MnSi (CMS) films were grown on As-terminated c(4 ×4 ) GaAs(100) by molecular beam epitaxy using different first atomic layers: MnSi, Co, and Mn. Atomically resolved Z -contrast scanning transmission electron microscopy (STEM) imaging and electron energy loss spectroscopy (EELS) were used to develop atomic structural models of the CMS/GaAs interfaces that were used as inputs for first-principles calculations to understand the magnetic and electronic properties of the interface. First-principles structures were relaxed and then validated by comparing experimental and simulated high-resolution STEM images. STEM-EELS results show that all three films have similar six atomic layer thick, Mn- and As-rich multilayer interfaces. However, the Co-initiated interface contains a M n2As -like layer, which is antiferromagnetic, and which is not present in the other two interfaces. Density functional theory calculations show a higher degree of interface spin polarization in the Mn- and MnSi-initiated cases, compared to the Co-initiated case, although none of the interfaces are half-metallic. The loss of half-metallicity is attributed, at least in part, to the segregation of Mn at the interface, which leads to the formation of interface states. The implications for the performance of lateral spin valves based on these interfaces are discussed briefly.

  5. K-edge x-ray dichroism investigation of Fe1-xCoxSi: Experimental evidence for spin polarization crossover

    Science.gov (United States)

    Hearne, G. R.; Diguet, G.; Baudelet, F.; Itié, J.-P.; Manyala, N.

    2015-04-01

    Both Fe and Co K-edge x-ray magnetic circular dichroism (XMCD) have been employed as element-specific probes of the magnetic moments in the composition series of the disordered ferromagnet Fe1-xCoxSi (for x=0.2, 0.3, 0.4, 0.5). A definitive single peaked XMCD profile occurs for all compositions at both Fe and Co K-edges. The Fe 4p orbital moment, deduced from the integral of the XMCD signal, has a steep dependence on x at low doping levels and evolves to a different (weaker) dependence at x≥0.3, similar to the behavior of the magnetization in the Co composition range studied here. It is systematically higher, by at least a factor of two, than the corresponding Co orbital moment for most of the composition series. Fine structure beyond the K-edge absorption (limited range EXAFS) suggests that the local order (atomic environment) is very similar across the series, from the perspective of both the Fe and Co absorbing atom. The variation in the XMCD integral across the Co composition range has two regimes, that which occurs below x=0.3 and then evolves to different behavior at higher doping levels. This is more conspicuously present in the Fe contribution. This is rationalized as the evolution from a half-metallic ferromagnet at low Co doping to that of a strong ferromagnet at x>0.3 and as such, spin polarization crossover occurs. The Fermi level is tuned from the majority spin band for x<0.3 where a strongly polarized majority spin electron gas prevails, to a regime where minority spin carriers dominate at higher doping. The evolution of the Fe-derived spin polarized (3d) bands, indirectly probed here via the 4p states, is the primary determinant of the doping dependence of the magnetism in this alloy series.

  6. Tamm–Hubbard surface states in the continuum

    International Nuclear Information System (INIS)

    Longhi, S; Della Valle, G

    2013-01-01

    In the framework of the Bose–Hubbard model, we show that two-particle surface bound states embedded in the continuum (BIC) can be sustained at the edge of a semi-infinite one-dimensional tight-binding lattice for any infinitesimally-small impurity potential V at the lattice boundary. Such thresholdless surface states, which can be referred to as Tamm–Hubbard BIC states, exist provided that the impurity potential V is attractive (repulsive) and the particle–particle Hubbard interaction U is repulsive (attractive), i.e. for UV < 0. (paper)

  7. Superconductivity in a generalized Hubbard model

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.

    1997-02-01

    We consider a Hubbard model in the square lattice, with a generalized hopping between nearest-neighbor sites for spin up (down), which depends on the total occupation nb of spin down (up) electrons on both sites. We call the hopping parameters tAA, tAB, and tBB for nb = 0, 1 or 2 respectively. Using the Hartree-Fock and Bardeen-Cooper-Schrieffer mean-field approximations to decouple the two-body and three-body interactions, we find that the model exhibits extended s-wave superconductivity in the electron-hole symmetric case tAB > tAA = tBB for small values of the Coulomb repulsion U or small band fillings. For moderate values of U, the antiferromagnetic normal (AFN) state has lower energy. The translationally invariant d-wave superconducting state has always larger energy than the AFN state.

  8. L Ron Hubbard's science fiction quest against psychiatry.

    Science.gov (United States)

    Hirshbein, Laura

    2016-12-01

    Layfayette Ronald Hubbard (1911-1986) was a colourful and prolific American writer of science fiction in the 1930s and 1940s. During the time between his two decades of productivity and his return to science fiction in 1980, Hubbard founded the Church of Scientology. In addition to its controversial status as a religion and its troubling pattern of intimidation and litigation directed towards its foes, Scientology is well known as an organised opponent to psychiatry. This paper looks at Hubbard's science fiction work to help understand the evolution of Scientology's antipsychiatry stance, as well as the alternative to psychiatry offered by Hubbard. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Spin-spin correlations in the tt'-Hubbard model

    International Nuclear Information System (INIS)

    Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.

    1994-01-01

    We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)

  10. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  11. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  12. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  13. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    Science.gov (United States)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  14. Quantum simulation with an array of transmon qubits: Bose-Hubbard model

    Science.gov (United States)

    Hacohen-Gourgy, Shay; Ramasesh, Vinay; de Grandi, Claudia; Girvin, Steven; Siddiqi, Irfan

    2015-03-01

    Chains of capacitively-coupled transmons can emulate the Bose-Hubbard Hamiltonian when one considers the full level-structure of the circuit. Here, each individual transmon plays the role of a lattice site, with the excitation level of each transmon corresponding to the number of bosons occupying that particular site. The transmon's anharmonicity gives rise to the attractive contact-interaction term, while the capacitive coupling realizes the hopping amplitude. We implement such a chain of 3 capacitvely-coupled transmons in a single 3D microwave cavity. In our parameter regime, the ground state of the 3-excitation subspace is one in which all excitations lie on a single qubit. Using cavity-assisted bath engineering, it should be possible to cool from an initial state in this subspace to the ground state. We present the current status of this goal. This work is supported by AFOSR, Army Research Office W911NF1410011 and NSF DMR-1301798.

  15. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    Science.gov (United States)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  16. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    Science.gov (United States)

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  17. First-principles study of spin-polarized electronic band structures in ferromagnetic Zn1-xTMxS (TM = Fe, Co and Ni)

    KAUST Repository

    Saeed, Yasir

    2010-10-01

    We report a first-principles study of structural, electronic and magnetic properties of crystalline alloys Zn1-xTMxS (TM = Fe, Co and Ni) at x = 0.25. Structural properties are computed from the total ground state energy convergence and it is found that the cohesive energies of Zn 1-xTMxS are greater than that of zincblende ZnS. We also study the spin-polarized electronic band structures, total and partial density of states and the effect of TM 3d states. Our results exhibit that Zn 0.75Fe0.25S, Zn0.75Co0.25S and Zn0.75Ni0.25S are half-metallic ferromagnetic with a magnetic moment of 4μB, 3μB and 2μB, respectively. Furthermore, we calculate the TM 3d spin-exchange-splitting energies Δx (d), Δx (x-d), exchange constants N0α and N0β, crystal field splitting (ΔEcrystEt2g-Eeg), and find that p-d hybridization reduces the local magnetic moment of TM from its free space charge value. Moreover, robustness of Zn1-xTMxS with respect to the variation of lattice constants is also discussed. © 2010 Elsevier B.V. All rights reserved.

  18. Pairing tendencies in a two-orbital Hubbard model in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nocera, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alvarez, Gonzalo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, A. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-31

    The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling JH / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.

  19. Pairing tendencies in a two-orbital Hubbard model in one dimension

    Science.gov (United States)

    Patel, N. D.; Nocera, A.; Alvarez, G.; Moreo, A.; Dagotto, E.

    2017-07-01

    The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling JH/U =0.25 . Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. The Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.

  20. Hubbard-U band-structure methods

    DEFF Research Database (Denmark)

    Albers, R.C.; Christensen, Niels Egede; Svane, Axel

    2009-01-01

    The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...

  1. Annual cycles of soil and water temperatures at Hubbard Brook

    Science.gov (United States)

    C. Anthony Federer

    1973-01-01

    Soil temperatures in the Hubbard Brook Experimental Forest in central New Hampshire decline very slowly from December to March and are restricted from falling below OºC by insulation of snow and organic matter. Soil in the hardwood forest on a moderate south slope warms rapidly in the spring leafless period after snowmelt and reaches a maximum temperature in...

  2. A bespoke single-band Hubbard model material

    Science.gov (United States)

    Griffin, S. M.; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.

    2016-02-01

    The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the "standard model" of condensed-matter physics. The model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form, multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model to determine the relevance of the model in the description of real materials. After identifying an appropriate crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping, and we propose specific materials for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which the single-band Hubbard model on a triangular lattice exhibits exotic d -wave superconductivity.

  3. The one-dimensional extended Bose-Hubbard model

    Indian Academy of Sciences (India)

    We use the finite-size, density-matrix-renormalization-group (DMRG) method to obtain the zero-temperature phase diagram of the one-dimensional, extended Bose-Hubbard model, for mean boson density ρ = 1, in the - plane ( and are respectively, onsite and nearest-neighbour repulsive interactions between ...

  4. Recent numerical results on the two dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E. (SISSA, Trieste (Italy))

    1989-12-01

    A new method for simulating strongly correlated fermionic systems, has been applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution. (orig.).

  5. Hydrometeorological database for Hubbard Brook Experimental Forest: 1955-2000

    Science.gov (United States)

    Amey Schenck Bailey; James W. Hornbeck; John L. Campbell; Christopher Eagar

    2003-01-01

    The 3,160-ha Hubbard Brook Experimental Forest (HBEF) in New Hampshire has been a prime area of research on forest and stream ecosystems since its establishment by the USDA Forest Service in 1955. Streamflow and precipitation have been measured continuously on the HBEF, and long-term datasets exist for air and soil temperature, snow cover, soil frost, solar radiation,...

  6. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  7. Calculations of spin-polarized Goos-Hänchen displacement in magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit couplings

    Science.gov (United States)

    Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong

    2018-04-01

    We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure—a magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.

  8. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  9. Quantum Monte Carlo study of the Rabi-Hubbard model

    Science.gov (United States)

    Flottat, Thibaut; Hébert, Frédéric; Rousseau, Valéry G.; Batrouni, George Ghassan

    2016-10-01

    We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of a one dimensional Rabi-Hubbard model. The model consists of a lattice of Rabi systems coupled by a photon hopping term between near neighbor sites. For large enough coupling between photons and atoms, the phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one separated by a quantum phase transition (QPT). We show that, as one goes deeper in the coherent phase, the system becomes unstable exhibiting a divergence of the number of photons. The Mott phases which are present in the Jaynes-Cummings-Hubbard model are not observed in these cases due to the presence of non-negligible counter-rotating terms. We show that these two models become equivalent only when the detuning is negative and large enough, or if the counter-rotating terms are small enough

  10. Floquet prethermalization in the resonantly driven Hubbard model

    Science.gov (United States)

    Herrmann, Andreas; Murakami, Yuta; Eckstein, Martin; Werner, Philipp

    2017-12-01

    We demonstrate the existence of long-lived prethermalized states in the Mott insulating Hubbard model driven by periodic electric fields. These states, which also exist in the resonantly driven case with a large density of photo-induced doublons and holons, are characterized by a nonzero current and an effective temperature of the doublons and holons which depends sensitively on the driving condition. Focusing on the specific case of resonantly driven models whose effective time-independent Hamiltonian in the high-frequency driving limit corresponds to noninteracting fermions, we show that the time evolution of the double occupation can be reproduced by the effective Hamiltonian, and that the prethermalization plateaus at finite driving frequency are controlled by the next-to-leading–order correction in the high-frequency expansion of the effective Hamiltonian. We propose a numerical procedure to determine an effective Hubbard interaction that mimics the correlation effects induced by these higher-order terms.

  11. Stripe order from the perspective of the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Devereaux, Thomas Peter

    2018-03-01

    A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large portion of the cuprate phase diagram.

  12. On Hubbard-Stratonovich transformations over hyperbolic domains

    International Nuclear Information System (INIS)

    Fyodorov, Yan V

    2005-01-01

    We discuss and prove the validity of the Hubbard-Stratonovich (HS) identities over hyperbolic domains which are used frequently in studies on disordered systems and random matrices. We also introduce a counterpart of the HS identity arising in disordered systems with 'chiral' symmetry. Apart from this we outline a way of deriving the nonlinear σ-model from the gauge-invariant Wegner k-orbital model avoiding the use of the HS transformations

  13. Analysis of the dynamical cluster approximation for the Hubbard model

    OpenAIRE

    Aryanpour, K.; Hettler, M. H.; Jarrell, M.

    2002-01-01

    We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...

  14. Anomalous conductance oscillations and half-metallicity in atomic Ag-O chains

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Sethna, James P

    2008-01-01

    . The conductances of the chains exhibit weak even-odd oscillations around an anomalously low value of 0.1G(0) (G(0) = 2e(2)/h) which coincide with the averaged experimental conductance in the long chain limit. The unusual conductance properties are explained in terms of a resonating-chain model, which takes...... the reflection probability and phase shift of a single bulk-chain interface as the only input. The model also explains the conductance oscillations for other metallic chains.......Using spin density functional theory, we study the electronic and magnetic properties of atomically thin, suspended chains containing silver and oxygen atoms in an alternating sequence. Chains longer than 4 atoms develop a half-metallic ground state implying fully spin-polarized charge carriers...

  15. Exotic Attractors of the Nonequilibrium Rabi-Hubbard Model.

    Science.gov (United States)

    Schiró, M; Joshi, C; Bordyuh, M; Fazio, R; Keeling, J; Türeci, H E

    2016-04-08

    We explore the phase diagram of the dissipative Rabi-Hubbard model, as could be realized by a Raman-pumping scheme applied to a coupled cavity array. There exist various exotic attractors, including ferroelectric, antiferroelectric, and incommensurate fixed points, as well as regions of persistent oscillations. Many of these features can be understood analytically by truncating to the two lowest lying states of the Rabi model on each site. We also show that these features survive beyond mean field, using matrix product operator simulations.

  16. Desarrollo No Perturbativo para el Modelo de Hubbard Generalizado

    Directory of Open Access Journals (Sweden)

    Oscar P. Zandron

    2010-01-01

    Full Text Available Se extienden a un estado superconductor nuestros resultados previamente obtenidos para un estado normal en el marco del formalismo Lagrangiano. Se considera la expansión noperturbativa a N grande aplicada a un modelo generalizado de Hubbard describiendo N bandas degeneradas correlacionadas. Se obtienen la diagramática Feynman del modelo y se calculan y analizan las cantidades físicas renormalizadas. Nuestro propósito es obtener la corrección 1/N de los propagadores bosónico y fermiónico renormalizados cuando se tiene en cuenta un estado de condensación de pares de Cooper.

  17. Specific heat of a non-local attractive Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Calegari, E.J., E-mail: eleonir@ufsm.br [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Lobo, C.O. [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Magalhaes, S.G. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210, 346, Niterói, Rio de Janeiro (Brazil); Chaves, C.M.; Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2013-10-01

    The specific heat C(T) of an attractive (interaction G<0) non-local Hubbard model is investigated within a two-pole approximation that leads to a set of correlation functions, which play an important role as a source of anomalies as the pseudogap. For a giving range of G and n{sub T} (where n{sub T}=n{sub ↑}+n{sub ↓}), the specific heat as a function of the temperature presents a two peak structure. Nevertehelesss, the presence of a pseudogap eliminates the two peak structure. The effects of the second nearest-neighbor hopping on C(T) are also investigated.

  18. T/U expansion for the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, A.H.; Girvin, S.M.; Yoshioka, D.

    1988-06-01

    We describe a unitary transformation which eliminates terms coupling states with differing numbers of doubly occupied sites from the Hamiltonian of the Hubbard model. The S matrix for the transformation, and the transformed Hamiltonian, H', are generated by an iterative procedure which results in an expansion in powers of the hopping integral t divided by the on-site energy U. For a half-filled band and in the space with no doubly occupied sites, H' is equivalent to a spin Hamiltonian. We discuss the implications of our results for H' on theories of high-temperature superconductivity.

  19. Synthetic gauge fields in Jaynes-Cummings-Hubbard ring lattices

    Science.gov (United States)

    Nunnenkamp, Andreas; Koch, Jens; Girvin, Steven

    2011-03-01

    Recently there has been much interest in many-body physics with photons in circuit-QED arrays. Here we explore the physics of a Jaynes-Cummings-Hubbard ring lattice subject to a synthetic gauge field, i.e.~where the hopping terms carry a complex phase factor due to Josephson couplers between the resonators. There are critical phase twists at which the single-particle spectrum is degenerate so that even weak interactions can give rise to strong correlations. We compare to ultracold bosons in rotating ring lattices and study the out-of-equilibrium physics as relevant for current experiments.

  20. Bethe Ansatz Solutions of the Bose-Hubbard Dimer

    Directory of Open Access Journals (Sweden)

    Jon Links

    2006-12-01

    Full Text Available The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2 Lie algebra.

  1. Pairing correlations in a generalized Hubbard model for the cuprates

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.

    2000-04-01

    Using numerical diagonalization of a 4×4 cluster, we calculate on-site s, extended-s, and dx2-y2 pairing correlation functions (PCF's) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t'. The vertex contributions to the PCF's are significantly enhanced, relative to the t-t'-U model. The behavior of the PCF's and their vertex contributions, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channel for moderate doping and in the s-wave channel for high doping and small U.

  2. dx2-y2 superconductivity in a generalized Hubbard model

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.

    1999-01-01

    We consider an extended Hubbard model with nearest-neighbor correlated hopping and next-nearest-neighbor hopping t' obtained as an effective model for cuprate superconductors. Using a generalized Hartree-Fock BCS approximation, we find that for high enough t' and doping, antiferromagnetism is destroyed and the system exhibits d-wave superconductivity. Near optimal doping we consider the effect of antiferromagnetic spin fluctuations on the normal self-energy using a phenomenological susceptibility. The resulting superconducting critical temperature as a function of doping is in good agreement with experiment.

  3. Pairing Correlations in a Generalized Hubbard Model for the Cuprates

    OpenAIRE

    Arrachea, L.; Aligia, A.

    1999-01-01

    Using numerical diagonalization of a 4x4 cluster, we calculate on-site s, extended s and d pairing correlation functions (PCF) in an effective generalized Hubbard model for the cuprates, with nearest-neighbor correlated hopping and next nearest-neighbor hopping t'. The vertex contributions (VC) to the PCF are significantly enhanced, relative to the t-t'-U model. The behavior of the PCF and their VC, and signatures of anomalous flux quantization, indicate superconductivity in the d-wave channe...

  4. Anomalous Flux Quantization in a Hubbard Ring with Correlated Hopping

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.; Gagliano, E.

    1996-06-01

    We solve exactly a generalized Hubbard ring with twisted boundary conditions. The magnitude of the nearest-neighbor hopping depends on the occupations of the sites involved and the term which modifies the number of doubly occupied sites tAB = 0. Although η-pairing states with off-diagonal long-range order are part of the degenerate ground state, the behavior of the energy as a function of the twist rules out superconductivity in this limit. A small tAB breaks the degeneracy and for moderate repulsive U introduce superconducting correlations which lead to ``anomalous'' flux quantization.

  5. Spin-polarized scanning tunneling microscopy experiments on the rough surface of a polycrystalline NiFe film with a fine magnetic tip sensitive to a well-defined magnetization component

    Directory of Open Access Journals (Sweden)

    H. Matsuyama

    2016-03-01

    Full Text Available We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin image of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.

  6. 2D Electron Gas with 100% Spin-Polarization in the (LaMnO3)2/(SrTiO3)2 Superlattice under Uniaxial Strain

    KAUST Repository

    Cossu, Fabrizio

    2014-07-28

    By first-principles calculations we investigate the structural, electronic, and magnetic properties of the (LaMnO3)2/(SrTiO3)2 superlattice. We find that a monoclinic C2h symmetry is energetically favorable and that the spins order ferromagnetically. Under both compressive and tensile uniaxial strain the electronic structure of the superlattice shows a half-metallic character. In particular, a fully spin-polarized two-dimensional electron gas, which traces back to the Ti 3dxy orbitals, is achieved under compressive uniaxial strain. The (LaMnO3)2/(SrTiO3)2 superlattice is analysed with respect to its structure, magnetism, and electronic properties. Our results demonstrate that uniaxial strain in an experimentally accessible range, both tensile and compressive, can be used to induce half-metallicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-resolution vector magnetometry: Piezo-spin-polarization effect and in-plane strain-induced dominating uniaxial magnetic anisotropy in a 200-nm-thick Ni thin film

    Science.gov (United States)

    Benito, L.

    2018-04-01

    Owing to its high-sensitivity, reliability, fast, versatile and cost-effective operation, vibrating sample magnetometers (VSM) are massively popular characterization instruments at Magnetism laboratories worldwide. Nevertheless, the inherent appearance of synchronous noise represents a major drawback, which critically limits the fine probing of nanometer-sized media. I here report on an innovative approach to eliminate synchronous noise in VSM. This consists of fitting engineered mechanical devices that absorbs vibration energy, dissipating that into heat. Complementarily, a novel transversal pick-up coil system is also presented and analyzed; this detection system has been engineered to enhance the noise-to-signal ratio and optimized for measuring small size thin film samples. The implementation of a combined mechanical and electromagnetic approach enables to notably enhance the VSM performance, achieving a sensitivity better than 1 ×10-6 emu and a resolution below 5 ×10-8 emu, so that the magnetization vector in nanostructured media can be accurately mapped out down to cryogenic temperatures. I lastly show precision magnetometry measurements carried out in an epitaxial (0 0 1)-oriented 200 nm-thick Ni thin film. The analysis reveals the arising of an in-plane dominating strain-induced uniaxial magnetic anisotropy, K2ef = - 6.455kJ m - 3 , and a stunning piezo-spin-polarization effect resulting in a remarkable 10% modulation of the magnetization vector, ∼ 27 emu/cm3, with respect to the cubic lattice axes. Both effects are attributed to the likely existence of an orthorhombic lattice distortion, i.e.εxx -εyy ≈ - 2 ×10-3 . This categorical link enables to assign the observed anisotropic spin-polarization in the Ni overlayer to a two-ion magnetoelastic coupling effect.

  8. Magnetic properties of three-dimensional Hubbard-sigma model

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.

    1989-11-01

    It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)

  9. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...... and chain. This effect should in general hold for any p-conjugated molecules bridging the zig-zag edges of graphene electrodes. The polarization of the transmission can be controlled by chemically or mechanically modifying the molecule, or by applying an electrical gate....

  10. On the particle-hole symmetry of the fermionic spinless Hubbard model in D=1

    Directory of Open Access Journals (Sweden)

    M.T. Thomaz

    2014-06-01

    Full Text Available We revisit the particle-hole symmetry of the one-dimensional (D=1 fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions.

  11. Efficient numerical technique for calculating the properties of interacting dimers in the Peierls-Hubbard model

    Science.gov (United States)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We develop a method to compute the Green's function for two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. The method is based on a variational approximation to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and is shown to agree with exact digaonalization calculations. We show that the properties of bipolarons arising in such models is qualitatively different from those of the well-studied Holstein bipolarons. In particular, we show that depending on the particle statistics, strongly bound bipolarons may or may not form. In the case of hard-core bosons, we demonstrate novel effects for dimers such as sharp transitions and self-trapping. In the case of soft-core particles/ spinfull fermions, we show that the mediated interactions lead to overscreeing of the bare Hubbard U repulsion resulting in the formation of strongly bound bipolarons. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  12. A pure Hubbard model with demonstrable pairing adjacent to the Mott-insulating phase

    International Nuclear Information System (INIS)

    Champion, J D; Long, M W

    2003-01-01

    We introduce a Hubbard model on a particular class of geometries, and consider the effect of doping the highly spin-degenerate Mott-insulating state with a microscopic number of holes in the extreme strong-coupling limit. The geometry is quite general, with pairs of atomic sites at each superlattice vertex, and a highly frustrated inter-atomic connectivity: the one-dimensional realization is a chain of edge-sharing tetrahedra. The sole model parameter is the ratio of intra-pair to inter-pair hopping matrix elements. If the intra-pair hopping is negligible then introducing a microscopic number of holes results in a ferromagnetic Nagaoka groundstate. Conversely, if the intra-pair hopping is comparable with the inter-pair hopping then the groundstate is low spin with short-ranged spin correlations. We exactly solve the correlated motion of a pair of holes in such a state and find that, in 1d and 2d, they form a bound pair on a length scale that increases with diminishing binding energy. This result is pertinent to the long-standing problem of hole motion in the CuO 2 planes of the high-temperature superconductors: we have rigorously shown that, on our frustrated geometry, the holes pair up and a short-ranged low-spin state is generated by hole motion alone

  13. Progress towards localization in the attractive Hubbard model

    Science.gov (United States)

    Morong, W.; Xu, W.; Demarco, B.

    2017-04-01

    The interplay between fermionic superfluidity and disorder is a topic of long-standing interest that has recently come within reach of ultracold gas experiments. Outstanding questions include the fate of Cooper pairs in a localized superfluid and the effect of disorder on the superfluid transition temperature. We report progress on tackling this problem using a realization of the Hubbard model with attractive interactions. Our system consists of two spin states of fermionic potassium-40 trapped in a cubic optical lattice. Disorder is introduced using an optical speckle potential, and interactions are controlled via a Feshbach resonance. We study the binding and unbinding of Cooper pairs in this system using rf spectroscopy, changes in Tc by measuring the condensate fraction, and transport properties by observing the response to an applied impulse. We will discuss progress towards these measurements.

  14. Orbital Order in Two-Orbital Hubbard Model

    Science.gov (United States)

    Honkawa, Kojiro; Onari, Seiichiro

    2018-03-01

    In strongly correlated multiorbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. To clarify the essential conditions for realizing orbital orders, we study the simple two-orbital (dxz,dyz) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, the dxy orbital is not essential to realize the nematic orbital order. The obtained orbital order is determined by the orbital dependence and the topology of Fermi surfaces. We also find that another type of orbital order, which is rotated 45°, appears in a heavily hole-doped case.

  15. Antiferromagnetic order in the Hubbard model on the Penrose lattice

    Science.gov (United States)

    Koga, Akihisa; Tsunetsugu, Hirokazu

    2017-12-01

    We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.

  16. Asymptotic localization in the Bose-Hubbard model

    Science.gov (United States)

    Bols, Alex; De Roeck, Wojciech

    2018-02-01

    We consider the Bose-Hubbard model. Our focus is on many-body localization, which was described by many authors in such models, even in the absence of disorder. Since our work is rigorous, and since we believe that the localization in this type of models is not strictly valid in the infinite-time limit, we necessarily restrict our study to "asymptotic localization" also known as "quasi-localization:" We prove that transport and thermalization are small beyond perturbation theory in the limit of large particle density. Our theorem takes the form of a many-body Nekhoroshev estimate. An interesting and new aspect of this model is the following: The localization cannot be inferred from a lack of hybridization between zero-hopping eigenstates. Naively speaking, all these eigenstates appear resonant and one has to move to a dressed basis to see the absence of resonances that are responsible for (quasi-)localization.

  17. Anomalous flux quantization in a hubbard ring with correlated hopping

    Energy Technology Data Exchange (ETDEWEB)

    Arrachea, L.; Aligia, A.A.; Gagliano, E. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)

    1996-06-01

    We solve exactly a generalized Hubbard ring with twisted boundary conditions. The magnitude of the nearest-neighbor hopping depends on the occupations of the sites involved and the term which modifies the number of doubly occupied sites {ital t}{sub {ital AB}}=0. Although {eta}-pairing state with off-diagonal long-range order are part of the degenerate ground state, the behavior of the energy as a function of the twist rules out superconductivity in this limit. A small {ital t}{sub {ital AB}} breaks the degeneracy and for moderate repulsive {ital U} introduce superconducting correlations which lead to {open_quote}{open_quote}anomalous{close_quote}{close_quote} flux quantization. {copyright} {ital 1996 The American Physical Society.}

  18. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    Science.gov (United States)

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; Johnston, S.; Moritz, B.; Devereaux, T. P.

    2017-11-01

    We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists out to relatively high doping levels. We study the evolution of the d -wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ .

  19. Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms

    Science.gov (United States)

    2008-11-01

    Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due

  20. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  1. Electron spin polarization effects in low-energy electron diffraction, ion neutralization, and metastable-atom deexcitation at solid surfaces. Progress report No. 3, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1983-01-01

    The importance of electron spin polarization (ESP) effects in the various spectroscopies used to study solid surfaces has become increasingly apparent in recent years. Recent low energy electron diffraction (LEED) investigations in this laboratory and elsewhere have shown that a great deal of new information contributing to the understanding of the geometrical arrangements of atoms at a surface can be obtained if the polarization of the various LEED beams is measured, or if the incident electron beam is polarized. Polarized LEED studies have shown large polarization features that are very sensitive to the presence of adsorbed layers, surface reconstruction, etc. In addition, theory suggests that polarization measurements can provide a more sensitive test of many of the parameters used in a surface model than can conventional LEED intensity measurements alone. Polarized LEED has also been applied to the study of surface magnetism. In the present contract year, polarized LEED has been used, together with Auger analysis and LEED intensity measurements, as a diagnostic to characterize Ni(001) surfaces produced by laser annealing

  2. Partial spin polarization of a conductance in a bi-layer In0.52 Al0.48 As / In0.53 Ga0.47 As heterostructure based nanowire for the rectangular and the smooth lateral confinement potentials

    Science.gov (United States)

    Chwiej, T.

    2016-03-01

    We simulate the electron transport in a vertical bi-layer nanowire in order to study an influence of the lateral confinement's shape on a spin polarization of wire's conductance. The active part of considered quantum wire constitutes a double inverted heterojunction In0.52 Al0.48 As /In0.53 Ga0.47 As which nanostructure can be fabricated in molecular beam epitaxy process while the lateral confinement potential can be finally formed by means of cleaved overgrowth or surface oxidization methods giving the desired rectangular and smooth lateral confinement. In calculations we take into account interaction between charge carriers using DFT within local spin density approximation. We show that if the magnetic field is perpendicular to the wire axis, the pseudogaps are opened in energy dispersion relation E (k) what in conjunction with spin Zeeman shift of spin-up and spin-down subbands may enhance the spin polarization of conductance with reference to a single layer wire. For nanowire with rectangular lateral confinement potential we found that the electron density has two maximums localized at wire edges in each layers. This modificates strongly all magnetosubbands giving up to four energy minimums in lowest subband and considerably diminishes widths of pseudogaps what translates into low maximal spin polarization of conductance, not exceeding 40%. This drawback is absent in wire with smooth lateral confinement. However, in order to gain a large spin polarization simultaneous tuning of magnetic field as well as the Fermi energies in both layers of nanowire are required.

  3. Attractive Hubbard model: Homogeneous Ginzburg–Landau expansion and disorder

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2016-01-01

    We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T c , is also controlled only by disorder widening of the conduction band (density of states).

  4. SENSORY EVALUATION OF HUBBARD JV CHICKENS MEAT AFTER PROPOLIS APPLICATION IN THEIR DIET

    Directory of Open Access Journals (Sweden)

    Peter Haščík

    2014-02-01

    Full Text Available In this experiment, propolis extract was applied in the diet of Hubbard JV broiler chickens and we tested its influence on the sensory quality of breast and thigh muscles prepared by baking at 200 °C for 60 minutes, followed by final baking for 10-15 minutes. Five groups were created: one control (C and four experimental (I, II, III, IV groups. Each group consisted of 100 chickens. Fattening lasted 42 days. Chickens were fed by ad libitum system. The identical starter feed mixture were administered till the 21st day of age. From the 22nd to 42nd day of age, chickens were fed by growth feed mixture in all groups. Feed mixtures were made without antibiotics and coccidiostats. Propolis extract was added to experimental groups at doses of 150 mg.kg-1 (I, 450 mg.kg-1 (II, 600 mg.kg-1 (III and 800 mg.kg-1 (IV. Breast and thigh muscles of 60 chickens from each group were prepared by baking and were anonymously assessed by six-member committee, which evaluated the smell, taste, juiciness and tenderness of meat in five-point scale. No significant differences (P ≥ 0.05 were found in smell, taste, juiciness and tenderness of breast and thigh muscles between the control and experimental groups. Sensory quality of chicken meat is one of the most important links for its use in food chain. The results of experiment confirmed, that propolis extract in those quantities can be applied in chicken nutrition, because sensory quality of chicken meat has not been worsen after its application.

  5. Attractive Hubbard model with disorder and the generalized Anderson theorem

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2015-01-01

    Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T c for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T c (in the weak-coupling region) or significantly increase T c (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band

  6. Chemistry of precipitation, streamwater, and lakewater from the Hubbard Brook Ecosystem Study: a record of sampling protocols and analytical procedures

    Science.gov (United States)

    Donald C. Buso; Gene E. Likens; John S. Eaton

    2000-01-01

    The Hubbard Brook Ecosystem Study (HBES), begun in 1963, is a long-term effort to understand the structure, function and change in forest watersheds and associated aquatic ecosystems at the Hubbard Brook Experimental Forest in New Hampshire. Chemical analyses of streamwater and precipitation collections began in 1963, and analyses of lakewater collections began in 1967...

  7. Classical mapping for Hubbard operators: Application to the double-Anderson model

    International Nuclear Information System (INIS)

    Li, Bin; Miller, William H.; Levy, Tal J.; Rabani, Eran

    2014-01-01

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures

  8. Generic Hubbard model description of semiconductor quantum-dot spin qubits

    Science.gov (United States)

    Yang, Shuo; Wang, Xin; Das Sarma, S.

    2011-04-01

    We introduce a Hubbard model as the simple quantum generalization of the classical capacitance circuit model to study semiconductor quantum-dot spin qubits. We prove theoretically that our model is equivalent to the usual capacitance circuit model in the absence of quantum fluctuations. However, our model naturally includes quantum effects such as hopping and spin exchange. The parameters of the generalized Hubbard model can either be directly read off from the experimental plot of the stability diagram or be calculated from the microscopic theory, establishing a quantitative connection between the two. We show that, while the main topology of the charge stability diagram is determined by the ratio between intersite and on-site Coulomb repulsion, fine details of the stability diagram reveal information about quantum effects. Extracting quantum information from experiments using our Hubbard model approach is simple, but would require the measurement resolution to increase by an order of magnitude.

  9. On the performance of natural orbital functional approximations in the Hubbard model

    Science.gov (United States)

    Mitxelena, I.; Piris, M.; Rodríguez-Mayorga, M.

    2017-10-01

    Strongly correlated materials are now under intense development, and natural orbital functional (NOF) methods seem to be able to capture the physics of these systems. We present a benchmark based on the Hubbard model for a class of commonly used NOF approximations (also known as reduced density matrix functional approximations). Our findings highlight the importance of imposing ensemble N-representability conditions in order to obtain consistent results in systems with either weak or strong electronic correlation, such as the Hubbard system with a varying two-particle interaction parameter. Based on the accuracy of the results obtained using PNOF7, which retrieves a large amount of the total strong nondynamic correlation, the Hubbard model points out that N-representability gives solid foundations for NOF development.

  10. Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

    Science.gov (United States)

    Zuo, Zheng-Wei; Li, Guo-Ling; Li, Liben

    2018-03-01

    We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.

  11. Energy of ground state in B-B'-U-Hubbard model in approximation of static fluctuations

    CERN Document Server

    Mironov, G I

    2002-01-01

    To explain some features of CuO sub 2 base high-temperature superconductors (HTSC) one should take account of possibility of electron transfer to the crystalline structure mode next to the nearest one. It terms of approximation of static fluctuations one calculated the energy of ground state in two-dimensional B-B'-U Hubbard model. Lattice is assumed to consist of two sublattices formed by various type atoms. The calculation results of ground state energy are compared with the precise solution for one-dimensional Hubbard model derived previously. Comparison of the precise and the approximated solutions shows that approximation of static fluctuations describes adequately behavior of the Hubbard studied model within both weak and strong correlation ranges

  12. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.

    Science.gov (United States)

    Cheuk, Lawrence W; Nichols, Matthew A; Lawrence, Katherine R; Okan, Melih; Zhang, Hao; Khatami, Ehsan; Trivedi, Nandini; Paiva, Thereza; Rigol, Marcos; Zwierlein, Martin W

    2016-09-16

    Strong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. At large doping, nearest-neighbor correlations between singly charged sites are negative, revealing the formation of a correlation hole, the suppressed probability of finding two fermions near each other. As the doping is reduced, the correlations become positive, signaling strong bunching of doublons and holes, in agreement with numerical calculations. The dynamics of the doublon-hole correlations should play an important role for transport in the Fermi-Hubbard model. Copyright © 2016, American Association for the Advancement of Science.

  13. Hubbard interaction in the arbitrary Chern number insulator: A mean-field study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)

    2017-05-10

    The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.

  14. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain (ES)); Balle, S. (Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain (ES)); Salvador, R. (Control Data Corporation, TALLAHASSEE, FL (USA) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 (USA))

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  15. Entanglement and position-space information entropy: Hubbard model as an approximation to nanostructure systems

    Energy Technology Data Exchange (ETDEWEB)

    Coe, J P; D' Amico, I [Department of Physics, University of York, York YO10 5DD (United Kingdom); Franca, V V, E-mail: jpc503@york.ac.uk, E-mail: vivian.franca@physik.uni-freiburg.de, E-mail: ida500@york.ac.uk [Physikalisches Institut, Albert-Ludwigs-Universitaet, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)

    2011-07-06

    We consider the position-space information and linear entropies as proxy measures to the average single-site entanglement-quantified using the von Neumann entropy-of the one-dimensional Hubbard model and of a one-dimensional nanostructure system comprised of an array of quantum-dots. Spatial entanglement in the quantum-dot system is also investigated via the three entropies. We appraise the use of the possible proxy measures in the Hubbard model as an approximation to their use for the nanostructure system.

  16. O líquido de spin isolante no modelo de Hubbard bidimensional levemente dopado

    OpenAIRE

    Silva, Hermann Freire Ferreira Lima e

    2011-01-01

    O nosso objetivo principal nesta tese consiste em estudar as propriedades de baixa energia do modelo de Hubbard bidimensional (2d) levemente fora de uma situação de banda semi-cheia sob o ponto de vista do método do grupo de renormalização (GR), utilizando a aproximação até 2 loops. Vamos desenvolver essa técnica, adaptando-a convenientemente ao nosso problema de interesse. Como um teste inicial para a nossa abordagem, vamos aplicar essa metodologia para o modelo de Hubbard unidimensional (1d...

  17. Pairing susceptibility of iron-based superconductors within a two-layer Hubbard model

    Science.gov (United States)

    Wei, Dan; Wang, Jingyao; Wu, Yang; Liang, Ying; Ma, Tianxing

    2017-12-01

    By using the determinant quantum Monte Carlo method, we studied the dominant pairing susceptibility of iron-based superconductors within an extended Hubbard model, which describes the underlying electronic structure of both iron pnictides and iron chalcogenides. The extended Hubbard model is constructed by two iron layers, each of which forms two sublattices on a square structure. Although the coupling between the two layers has different effects on the behavior of pairings in iron pnictides and iron chalcogenides, our non-biased numerical simulations reveal that the pairing with Sxy symmetry dominates over the studied parameter for both materials.

  18. Incommmensurability and Unconventional Superconductor to Insulator Transition in the Hubbard Model with Bond-Charge Interaction

    Science.gov (United States)

    Aligia, A. A.; Anfossi, A.; Arrachea, L.; Degli Esposti Boschi, C.; Dobry, A. O.; Gazza, C.; Montorsi, A.; Ortolani, F.; Torio, M. E.

    2007-11-01

    We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U>0 at half-filling. For large enough XHubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.

  19. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  20. Study of the two-dimensional Hubbard model at half-filling through constructive methods; Etude du modele de Hubbard bidimensionnel a demi remplissage par des methodes constructives

    Energy Technology Data Exchange (ETDEWEB)

    Afchain, St

    2005-02-15

    The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)

  1. Physical processes in spin polarized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained.

  2. Spin-polarized current in noncollinear antiferromagnets

    Czech Academy of Sciences Publication Activity Database

    Železný, Jakub; Zhang, Y.; Felser, C.; Yan, B.

    2017-01-01

    Roč. 119, č. 18 (2017), s. 1-7, č. článku 187204. ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : anisotropic magnetoresistance * wannier functions * room-temperature * torques * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 8.462, year: 2016

  3. Collective effects in spin polarized plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Cowley, S.; Detragiache, P.; Kulsrud, R.; Pegoraro, F.

    1984-10-01

    A fusing plasma with coherently polarized spin nuclei can be subject to instabilities due to the anisotropy of the reaction product distributions in velocity space, which is a result of their polarization. The characteristics of these instabilities depend strongly on the plasma spatial inhomogeneities and a significant rate of spin depolarization can be produced by them if adequate fluctuation amplitudes are reached. The results of the relevant analysis are, in addition, of interest for plasma heating processes with frequencies in the range of the cyclotron frequencies of the considered nuclei

  4. Photoinduced spin polarization and microwave technology

    International Nuclear Information System (INIS)

    Antipov, Sergey; Poluektov, Oleg; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang

    2013-01-01

    We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C 61 -butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on development and bench testing for these new fullerene-based materials along with some conceptual designs for microwave PASERs. Other possible applications for active paramagnetic materials are suggested including low noise microwave amplifiers and tunable RF absorbers.

  5. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....

  6. Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain

    Directory of Open Access Journals (Sweden)

    Jun Ouyang

    2016-03-01

    Full Text Available Using the density functional theory and the nonequilibrium Green’s function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would have potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.

  7. Hydrogen ion input to the Hubbard Brook Experimental Forest, New Hampshire, during the last decade

    Science.gov (United States)

    Gene E. Likens; F. Herbert Bormann; John S. Eaton; Robert S. Pierce; Noye M. Johnson

    1976-01-01

    Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 years provide a measure of recent changes in precipitation inputs of hydrogen ion. The weighted average pH of precipitation...

  8. Breeding for improved herbage and seed yield in Setaria sphacelata (Schumach.) Stapf and Hubbard ex Moss

    NARCIS (Netherlands)

    Wijk, van A.J.P.

    1980-01-01

    The simultaneous selection for yield of herbage and seed in Setaria sphacelata (Schumach.) Stapf and Hubbard ex Moss was studied, and the amount of variation present for each of these traits in relation to various plant characteristics was assessed in a spaced plant population and its

  9. Chemical and morphological distinctions between vertical and lateral podzolization at Hubbard Brook

    Science.gov (United States)

    Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey

    2015-01-01

    Classical podzolization studies assumed vertical percolation and pedon-scale horizon development. However, hillslope-scale lateral podzolization also occurs where lateral subsurface water flux predominates. In this hydropedologic study, 99 podzols were observed in Watershed 3, Hubbard Brook Experimental Forest, New Hampshire. Soil horizon samples were extracted with...

  10. Extraction of Bose-Hubbard parameters from a 1D microscopic model

    Science.gov (United States)

    Kristensen, Tom; Simoni, Andrea

    2017-04-01

    The Bose-Hubbard model is a powerful tool to understand the many-body physics of cold atoms in lattices. The link between its parameters and the underlying microscopic model is therefore of outstanding importance. The standard Bose-Hubbard model assumes that (i) the excited energy bands are neglected, (ii) tunneling is allowed only between nearest neighbors and (iii) the interaction only acts on-site. However it has been shown in Ref. from an exact 2-body 1D calculation that the effective interaction of two cold atoms in a lattice strongly depends on the center-of-mass motion, a behavior not predicted by the standard Bose-Hubbard model. We present here an approach to extract effective Bose-Hubbard parameters from a microscopic two-body model that is based on the solution of the Schrödinger equation in a lattice without approximations. As a crucial intermediate we compute the two-body interacting Green function, expressed in terms of regular and irregular solutions. In order to avoid solution linear-dependence problems, we adapt the algorithm of Ref. to our spectral-element solution approach. Agence Nationale de la Recherche (Contract No. ANR-12-BS04-0020-01).

  11. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  12. Modeling ecohydrologic processes at Hubbard Brook: Initial results for Watershed 6 stream discharge and chemistry

    Science.gov (United States)

    The Hubbard Brook Long Term Ecological Research site has produced some of the most extensive and long-running databases on the hydrology, biology and chemistry of forest ecosystem responses to climate and forest harvest. We used these long-term databases to calibrate and apply G...

  13. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  14. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Science.gov (United States)

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  15. Finite-temperature charge transport in the one-dimensional Hubbard model

    NARCIS (Netherlands)

    Jin, F.; Steinigeweg, R.; Heidrich-Meisner, F.; Michielsen, K.; De Raedt, H.

    2015-01-01

    We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way

  16. Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH USA

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Palaniswamy Thangavel; Subhash C. Minocha; Christopher Eagar; Charles T. Driscoll

    2010-01-01

    Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions...

  17. d-Wave superconductivity in the effective extended Hubbard model for cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Arrachea, L.; Aligia, A.A

    2004-08-01

    We consider the effective extended Hubbard Hamiltonian for the cuprates, with nearest-neighbor hopping which depends on the occupation. Using exact diagonalization in a 4 x 4 cluster, we obtain a large enhancement of d-wave pairing correlation functions for optimum doping. The physical picture is consistent with magnetic measurements, the pseudogap and the kinetic energy gain in the cuprates.

  18. d-Wave superconductivity in the effective extended Hubbard model for cuprates

    Science.gov (United States)

    Arrachea, L.; Aligia, A. A.

    2004-08-01

    We consider the effective extended Hubbard Hamiltonian for the cuprates, with nearest-neighbor hopping which depends on the occupation. Using exact diagonalization in a 4 × 4 cluster, we obtain a large enhancement of d-wave pairing correlation functions for optimum doping. The physical picture is consistent with magnetic measurements, the pseudogap and the kinetic energy gain in the cuprates.

  19. Development, construction and characterization of a variable repetitive spin-polarized electron gun with an inverted-geometry insulator; Entwicklung, Aufbau und Charakterisierung einer variabel repetierenden, spinpolarisierten Elektronenkanone mit invertierter Isolatorgeometrie

    Energy Technology Data Exchange (ETDEWEB)

    Espig, Martin

    2016-02-15

    Within the scope of this thesis a pulsed source of spin polarized electrons Photo-CATCH was designed, constructed, characterized and has been put into operation. This source is based on the photoemission of spin-polarized electrons from GaAs-photocathodes. Both the design of the electron gun, consisting of an ultra-high vacuum chamber and an electrode with Pierce geometry, as well as the properties of the electron beam have been simulated with CST Studio. Results were a maximum electric field of (0.064±0.001) MV/m/kV on the electrode surface and a beam emittance as a function of the radius of the laser spot on the photocathode of element of {sub n,x}=(1.7478(4).10{sup -4}.(r)/(μm)+2.8(18).10{sup -5}) mm mrad at a beam current of 100 μA. Currently Photo-CATCH provides electron beams with an energy of 60 keV, which can be expanded up to 100 keV by upgrading the high-voltage power supply. The electron gun has an inverted-geometry insulator to ensure a compact design of the ultra-high vacuum chamber and a maximum person- and machine-safety from sparkovers. Since the properties of the laser light directly affect the properties of the generated electron beam a pulsed semiconductor laser system has been specially developed and built for Photo-CATCH. This is characterized by a high variability of its operating parameters, in particular its wavelength and repetition rate, in order to fulfill the broad variety of requirements of various nuclear physics experiments. By selecting the wavelength of the used laser diode highly polarized or high-current electron beams can be generated from GaAs-photocathodes. The time profile of the laser has direct influence to the longitudinal profile of the electron bunch. Through the radiofrequency modulation of the pumping current of the impedance-matched semiconductor laser system, consisting of a DC power source and an electrical pulse generator with 881 ps broad pump pulses, Lorentz shaped laser pulses with a minimum FWHM of (43.8±1

  20. Chain Posets

    OpenAIRE

    Johnson, Ian T.

    2018-01-01

    A chain poset, by definition, consists of chains of ordered elements in a poset. We study the chain posets associated to two posets: the Boolean algebra and the poset of isotropic flags. We prove that, in both cases, the chain posets satisfy the strong Sperner property and are rank-log concave.

  1. Finite-Temperature Signatures of Spin Liquids in Frustrated Hubbard Model

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei

    2018-02-01

    Finite-temperature properties of the frustrated Hubbard model are theoretically examined by using the recently proposed thermal pure quantum state, which is an unbiased numerical method for performing finite-temperature calculations. By performing systematic calculations for the frustrated Hubbard model, we show that the geometrical frustration controls the characteristic energy scale of the metal-insulator transitions. We also find that entropy remains large even at moderately high temperatures around the region where the quantum spin liquid is expected to appear at zero temperature. We propose that this is a useful criterion for determining whether the target systems have chances of becoming the quantum spin liquid or the non-magnetic insulator at zero temperature.

  2. Moment approach for the attractive Hubbard model in two dimensions: superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Nunez, J.J.; Cordeiro, C.; Delfino, A. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. Using the moment of Nolting (Z. Phys. 225, 25 (1972) for the attractive Hubbard model in the superconducting phase, we have derived a set of three non-linear equations, the electron density, the superconducting order parameter, and the narrowing factor. Our starting point is the Ansatz that the diagonal spectral density is composed of three peaks while the off-diagonal spectral functional is composed of two. The third band, or upper Hubbard band, strongly renormalizes the other two, making the energy gap K dependent while the order parameter is pure s-wave. Our approach recuperates the BCS limit, weak coupling (U/t <<1) in a natural way. We solve these non-linear equations in a self-consistent way for intermediate coupling for U/t {approx} -4.0. Here we report the order parameter as function of temperature and compare it with the BCS result. (author)

  3. Exact solution of the infinite-range-hopping Bose-Hubbard model

    CERN Document Server

    Bru, J B

    2003-01-01

    The thermodynamic behavior of the Bose-Hubbard model is solved for any temperature and any chemical potential. It is found that there is a range of critical coupling strengths $\\lambda_{c1} < \\lambda_{c2} < \\lambda_{c3} < \\dots $ in this model. For coupling strengths between $\\lambda_{c,k}$ and $% \\lambda_{c,k+1}$, Bose-Einstein condensation is suppressed at densities near the integer values $\\rho = 1, \\dots, k$ with an energy gap. This is known as a Mott insulator phase and was previously shown only for zero temperature. In the context of ultra-cold atoms, this phenomenon was experimentally observed in 2002 \\cite{BoseCondInsulator1} but, in the Bose-Hubbard model, it manifests itself also in the pressure-volume diagram at high pressures. It is suggested that this phenomenon persists for finite-range hopping and might also be experimentally observable.

  4. Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order

    Science.gov (United States)

    Yang, Chun; Feiguin, Adrian

    We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.

  5. Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL

    2006-01-01

    Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.

  6. Bose-Hubbard lattice as a controllable environment for open quantum systems

    Science.gov (United States)

    Cosco, Francesco; Borrelli, Massimo; Mendoza-Arenas, Juan José; Plastina, Francesco; Jaksch, Dieter; Maniscalco, Sabrina

    2018-04-01

    We investigate the open dynamics of an atomic impurity embedded in a one-dimensional Bose-Hubbard lattice. We derive the reduced evolution equation for the impurity and show that the Bose-Hubbard lattice behaves as a tunable engineered environment allowing one to simulate both Markovian and non-Markovian dynamics in a controlled and experimentally realizable way. We demonstrate that the presence or absence of memory effects is a signature of the nature of the excitations induced by the impurity, being delocalized or localized in the two limiting cases of a superfluid and Mott insulator, respectively. Furthermore, our findings show how the excitations supported in the two phases can be characterized as information carriers.

  7. Thermodynamics in an extended mean-field theory for the Bose-Hubbard model

    Science.gov (United States)

    Huegel, Dario; Pollet, Lode

    2015-03-01

    We derive an extended mean-field formalism to study the thermodynamical properties of the Bose-Hubbard model. The framework can be viewed as the zero-frequency limit of bosonic dynamical mean-field theory (B-DMFT), but equally well as an extension of the mean-field approximation in which pair creation and annihilation of depleted particles is taken into account. The self-energy is treated variationally, minimizing the grand potential. We find that the T = 0 phase diagrams of the 3d and 2d Bose-Hubbard model are reproduced with an accuracy of 1 % with just 3 free (physical) parameters that are determined self-consistently. The superfluid to normal transition at finite temperature is reproduced well but less accurately than in B-DMFT.

  8. Thermodynamics of the Bose-Hubbard model in a Bogoliubov +U theory

    Science.gov (United States)

    Hügel, Dario; Pollet, Lode

    2015-06-01

    We derive the Bogoliubov +U formalism to study the thermodynamical properties of the Bose-Hubbard model. The framework can be viewed as the zero-frequency limit of bosonic dynamical mean-field theory (B-DMFT), but equally well as an extension of the mean-field decoupling approximation in which pair creation and annihilation of depleted particles is taken into account. The self-energy on the impurity site is treated variationally, minimizing the grand potential. The theory containing just three parameters that are determined self-consistently reproduces the T =0 phase diagrams of the three-dimensional and two-dimensional Bose-Hubbard model with an accuracy of 1 % or better. The superfluid to normal transition at finite temperature is also reproduced well and only slightly less accurately than in B-DMFT.

  9. A Functional Renormalization Group Study of Hund's Rule Coupling in Multi-band Hubbard Models

    Science.gov (United States)

    Yirga, Nahom; Campbell, David

    Two-band Hubbard models are the simplest systems that capture the interplay between magnetism and superconductivity, as seen in many of the Pnictides. They have also been crucial in understanding the material dependence of the critical temperature in the Cuprates. We consider the role of Hund's Rule coupling in a generalized two-band Hubbard Hamiltonian within the framework of the Functional Renormalization Group. We derive the phase diagram for the model and discuss the effects of a strong Hund's Rule coupling on the predicted critical temperature. Finally, to fully address the interplay between the bands and interactions in the Pnictides and the Cuprates, we expand our model to include the effects of bands away from the Fermi surface.

  10. J Freezing and Hund's Rules in Spin-Orbit-Coupled Multiorbital Hubbard Models

    Science.gov (United States)

    Kim, Aaram J.; Jeschke, Harald O.; Werner, Philipp; Valentí, Roser

    2017-02-01

    We investigate the phase diagram of the spin-orbit-coupled three orbital Hubbard model at arbitrary filling by means of dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. We find that the spin-freezing crossover occurring in the metallic phase of the nonrelativistic multiorbital Hubbard model can be generalized to a J -freezing crossover, with J =L +S , in the spin-orbit-coupled case. In the J -frozen regime the correlated electrons exhibit a nontrivial flavor selectivity and energy dependence. Furthermore, in the regions near n =2 and n =4 the metallic states are qualitatively different from each other, which reflects the atomic Hund's third rule. Finally, we explore the appearance of magnetic order from exciton condensation at n =4 and discuss the relevance of our results for real materials.

  11. Correlation mediated superconductivity in a Spin Peierls Phase of the Hubbard Model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    The author explores the consequences of a mapping of the Hubbard Hamiltonian with a view to finding possible superconducting phases. The transformation pairs up all the sites and is therefore a much more natural starting point for describing a 'Spin Peierls' transition, generating enhanced singlet correlations for this pairing, than it is for describing the 'Resonating Valence Bond' state. It is shown that in the less than half filling case, an effective non-linear hopping Hamiltonian is quite useful in describing half of the electrons. This effective Hamiltonian can show a form of superconducting instability when nearest neighbour hopping is introduced to stabilise it. This superconducting phase seems to be a very unlikely possibility for the standard Hubbard model. (author)

  12. Parity symmetry-breaking phase transition in a nonlinear Rabi-Hubbard lattice

    OpenAIRE

    Pyykkönen, A. (Ari)

    2015-01-01

    Abstract Lattices consisting of cavity QED and circuit QED elements have come under focus as a platform for studying several novel quantum phenomena. In particular, a lattice of Rabi systems described by the Rabi-Hubbard model is expected to display a new Z2 parity symmetry-breaking phase transition of light between a Rabi insulator and a delocalized superradiant phase. In this thesis, we examine a superconducting circuit c...

  13. Phase diagram of 2D Hubbard model by simulated annealing mean field approximation

    International Nuclear Information System (INIS)

    Kato, Masaru; Kitagaki, Takashi

    1991-01-01

    In order to investigate the stable magnetic structure of the Hubbard model on a square lattice, we utilize the dynamical simulated annealing method which proposed by R. Car and M. Parrinello. Results of simulations on a 10 x 10 lattice system with 80 electrons under assumption of collinear magnetic structure that the most stable state is incommensurate spin density wave state with periodic domain wall. (orig.)

  14. Breaking of SU(4) symmetry and interplay between strongly-correlated phases in the Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Golubeva, A.; Sotnikov, A.; Cichy, A.; Kuneš, Jan; Hofstetter, W.

    2017-01-01

    Roč. 95, č. 12 (2017), s. 1-7, č. článku 125108. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : Hubbard model * SU(4) Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.836, year: 2016

  15. Monte Carlo study of the magnetic properties of the 3D Hubbard model

    OpenAIRE

    Campos, Isabel; Davenport, James W.

    2001-01-01

    We investigate numerically the magnetic properties of the 3D Isotropic and Anisotropic Hubbard model at half-filling. The behavior of the transition temperature as a function of the anisotropic hopping parameter is qualitatively described. In the Isotropic model we measure the scaling properties of the susceptibility finding agreement with the magnetic critical exponents of the 3D Heisenberg model. We also describe several particularities concerning the implementation of our simulation in a c...

  16. Optical, magnetic, and single-particle excitations in the multiband Hubbard model for cuprate superconductors

    Science.gov (United States)

    Wagner, J.; Hanke, W.; Scalapino, D. J.

    1991-05-01

    On the basis of exact diagonalizations, a comparative study of two-particle optical and magnetic, as well as single-particle, excitations is presented for a two-dimensional (2D) multiorbital Hubbard model. For reasonable parameter sets appropriate for the cuprate superconductors, the single-particle excitations display strongly correlated states related to the Zhang-Rice Cu-O singlet construction. These states define the gap (to the upper Hubbard band) at half-filling and become partially occupied by doping holes in our 2×2 unit-cell system. The optical results, which are the first quantitative calculations performed for realistic parameters of the three-band Hubbard model, clearly show three allowed optical transitions: (i) itinerant motion of the Cu-O singlets, having (for doping concentrations x≠0) a spectral Drude distribution around ω=0 with spectral weight proportional to x; (ii) unbinding of the O hole from the Cu spin in the singlet. This gives, in particular, a strong absorption peak due to singlet-->nonbonding oxygen transitions, again with relative weight ~x. It is roughly centered at ω~JKondoUpd. They show a pronounced excitonic effect due to the p-d interaction Upd and have a reduced spectral weight shifted to higher energies for increased dopings. Findings (i)-(iii) are in general accordance with recent experimental data. Our study of the low-energy absorption is complemented with a numerical scaling analysis of the Drude weight in 1D, where, in particular, we find an interesting violation of Lenz's law for 4n-site Hubbard rings. Finally, the magnetic structure factor is calculated for the 2D case. For finite doping it contains a peak at 2JKondo, which should be detectable in experiment.

  17. Two-site Hubbard molecule with a spinless electron-positron pair

    KAUST Repository

    Cossu, Fabrizio

    2012-12-19

    We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.

  18. Electronic properties of a generalized Hubbard model at half-filling

    Science.gov (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel

    1996-02-01

    A generalized Hubbard model with correlated hoppings is studied at half-filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static and dynamic correlation functions suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction UC. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U ⪅ UC, we find a ferromagnetic ground state.

  19. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2016-05-07

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  20. Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Science.gov (United States)

    Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran

    2017-12-01

    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.

  1. Study of the two-dimensional Hubbard model at half-filling through constructive methods

    International Nuclear Information System (INIS)

    Afchain, St.

    2005-02-01

    The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)

  2. Bipolarons in one-dimensional extended Peierls-Hubbard models

    Science.gov (United States)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  3. Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: simulations with the dynamic model ForSAFE

    Science.gov (United States)

    Salim Belyazid; Scott Bailey; Harald. Sverdrup

    2010-01-01

    The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...

  4. Thermoelectric transport parallel to the planes in a multilayered Mott-Hubbard heterostructure

    Science.gov (United States)

    Zlatić, Veljko; Freericks, J. K.

    2017-12-01

    We present a theory for charge and heat transport parallel to the interfaces of a multilayer (ML) of the ABA type, where A and B are materials with strongly correlated electrons. When separated, both materials are half-filled Mott-Hubbard insulators with large gaps in their excitation spectrum. In a ML, the renormalization of the energy bands gives rise to a charge reconstruction which breaks the charge neutrality of the planes next to the interface. The ensuing electrical field couples self-consistently to the itinerant electrons, so that the properties of the ML crucially depend on an interplay between the on-site Coulomb forces and the long range electrostatic forces. Using the Falicov-Kimball model, we compute the Green's function and the local charge on each plane of the ML by inhomogeneous DMFT and find the corresponding electrical potential from Poisson's equation. The self-consistent solution is obtained by an iterative procedure, which yields the reconstructed charge profile, the electrical potential, the planar density of states, the transport function, and the transport coefficients of the device. For the right choice of parameters, we find that a heterostructure built of two Mott-Hubbard insulators exhibits, in a large temperature interval, a linear conductivity and a large temperature-independent thermopower. The charge and energy currents are confined to the central part of the ML. Our results indicate that correlated multilayers have the potential for applications; by tuning the band shift and the Coulomb correlation on the central planes, we can bring the chemical potential in the immediate proximity of the Mott-Hubbard gap edge and optimize the transport properties of the device. In such a heterostructure, a small gate voltage can easily induce a MI transition. Furthermore, the right combination of strongly correlated materials with small ZT can produce, theoretically at least, a heterostructure with a large ZT.

  5. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model

    Science.gov (United States)

    Sherman, A.

    2018-05-01

    The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U  =  2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.

  6. Phase-slip-induced dissipation in an atomic Bose-Hubbard system.

    Science.gov (United States)

    McKay, D; White, M; Pasienski, M; DeMarco, B

    2008-05-01

    Phase-slips control dissipation in many bosonic systems, determining the critical velocity of superfluid helium and the generation of resistance in thin superconducting wires. Technological interest has been largely motivated by applications involving nanoscale superconducting circuit elements, such as standards based on quantum phase-slip junctions. Although phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors--in solids, problems such as uncontrolled noise sources and disorder complicate their study and application. Here we show that phase slips can lead to dissipation in a clean and well-characterized Bose-Hubbard system, by experimentally studying the transport of ultracold atoms trapped in an optical lattice. In contrast to previous work, we explore a low-velocity regime described by the three-dimensional Bose-Hubbard model that is unaffected by instabilities, and we measure the effect of temperature on the dissipation strength. The damping rate of atomic motion (the analogue of electrical resistance in a solid) in the confining parabolic potential is well fitted by a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, whereas at higher temperatures a crossover consistent with a transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging. These results clarify the role of phase slips in superfluid systems. They may also be of relevance in understanding the source of metallic phases observed in thin films, or serve as a test bed for theories of bosonic dissipation based upon variants of the Bose-Hubbard model.

  7. Extended hubbard model with ring exchange: a route to a non-Abelian topological phase.

    Science.gov (United States)

    Freedman, Michael; Nayak, Chetan; Shtengel, Kirill

    2005-02-18

    We propose an extended Hubbard model on a 2D kagome lattice with an additional ring exchange term. The particles can be either bosons or spinless fermions. We analyze the model at the special filling fraction 1/6, where it is closely related to the quantum dimer model. We show how to arrive at an exactly soluble point whose ground state is the "d-isotopy" transition point into a stable phase with a certain type of non-Abelian topological order. Near the "special" values, d=2cos(pi/(k+2), this topological phase has anyonic excitations closely related to SU(2) Chern-Simons theory at level k.

  8. Selfenergy effect on the magnetic ordering transition in the mono- and bilayer honeycomb Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Honerkamp, Carsten [Institute for Theoretical Solid State Physics, RWTH Aachen University (Germany); JARA - Fundamentals of Future Information Technology, Aachen (Germany)

    2017-11-15

    We investigate the impact of electron self-energy corrections on potential antiferromagnetic ordering instabilities in mono- and bilayer graphene, modeled by a Hubbard-type lattice model with onsite interactions among the electrons, using a self-consistent random phase approximation (RPA). In qualitative agreement with earlier studies we find that the electronic interactions cause non-Fermi liquid behavior at low energies. In self-consistent RPA, the transition scales for antiferromagnetic ordering are renormalized significantly by these self-energy effects, both for interaction-driven and temperature-driven cases. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Antiferromagnetism in the Hubbard model using a cluster slave-spin method

    Science.gov (United States)

    Lee, Wei-Cheng; Lee, Ting-Kuo

    2017-09-01

    The cluster slave-spin method is introduced to systematically investigate the solutions of the Hubbard model including the symmetry-broken phases. In this method, the electron operator is factorized into a fermionic spinon describing the physical spin and a slave-spin describing the charge fluctuations. Following the U (1 ) formalism derived by Yu and Si [Phys. Rev. B 86, 085104 (2012), 10.1103/PhysRevB.86.085104], it is shown that the self-consistent equations to explore various symmetry-broken density wave states can be constructed in general with a cluster of multiple slave-spin sites. We employ this method to study the antiferromagnetic (AFM) state in the single band Hubbard model with the two- and four-site clusters of slave spins. While the Hubbard gap, the charge gap due to the doubly occupied states, scales with the Hubbard interaction U as expected, the AFM gap Δ , the gap in the spinon dispersion in the AFM state, exhibits a crossover from the weak- to strong-coupling behaviors as U increases. Our cluster slave-spin method reproduces not only the traditional mean-field behavior of Δ ˜U in the weak-coupling limit, but also the behavior of Δ ˜t2/U predicted by the superexchange mechanism in the strong-coupling limit. In addition, the holon-doublon correlator as functions of U and doping x is also computed, which exhibits a strong tendency toward the holon-doublon binding in the strong coupling regime. We further show that the quasiparticle weight obtained by the cluster slave-spin method is in a good agreement with the generalized Gutzwiller approximation in both AFM and paramagnetic states, and the results can be improved beyond the generalized Gutzwiller approximation as the cluster is enlarged from a single site to four sites. Our results demonstrate that the cluster slave-spin method can be a powerful tool to systematically investigate the strongly correlated system.

  10. Crossover between Mott-insulator and band-insulator in the two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Odashima, Satoru, E-mail: odashima@iwate-jst-satellite.j [Japan Science and Tehnology Ageny, JST Satellite Iwate, 3-35-2 Iiokashinden, Morioka, Iwate 020-0852 (Japan)

    2009-03-01

    Electronic states of the two-orbital Hubbard model are investigated by means of the composite operator method. In addition to the transfer within the same kind of orbital, we introduce the off-diagonal transfer t', which provides the mixing of orbitals. In the t' = 0 case, the system shows the orbital selective Mott transition at U = 4. Upon adding t', the band gap goes wider. This increase of the gap originates from the crossover between the Mott-insulator and the band-insulator.

  11. Phase diagram of an extended Hubbard model with correlated hopping at half filling

    Science.gov (United States)

    Aligia, A. A.; Arrachea, Liliana; Gagliano, E. R.

    1995-05-01

    We study a generalized Hubbard model with on-site interaction U, nearest-neighbor repulsion V, and general correlated hopping under the condition that the number of doubly occupied sites is conserved. We find the exact ground state (GS) in arbitrary dimension in two wide regions of parameters. In one of them the GS is a Mott insulator (MI) and in the other it is a charge-density wave (CDW). The boundary of the MI and a large part of that of the CDW are determined exactly for relevant lattices. We study numerically the effect of relaxing the above-mentioned condition.

  12. Electronic properties of a generalized Hubbard model at half-filling

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, E.R. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Aligia, A.A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche; Arrachea, L. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche]|[La Plata Univ. Nacional (Argentina). Dept. de Fisica; Avignon, M. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. d`Etudes des Proprietes Electroniques des Solides

    1996-07-01

    A generalized Hubbard model with correlated hoppings is studied at half-filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static and dynamic correlation functions suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction U{sub C}. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  13. Ground state of the Hubbard model: a variational approach based on the maximum entropy principle

    Energy Technology Data Exchange (ETDEWEB)

    Arrachea, L. (Dept. de Fisica, Univ. Nacional de La Plata (Argentina)); Plastino, A. (Dept. de Fisica, Univ. Nacional de La Plata (Argentina)); Canosa, N. (Physik Dept. der Technischen Univ. Muenchen, Garching (Germany)); Rossignoli, R. (Physik Dept. der Technischen Univ. Muenchen, Garching (Germany))

    1993-05-17

    A variational approach based on maximum entropy considerations is used to approximate the ground state of the Hubbard Hamiltonian. The evaluation of both the ground state energy and the correlation functions is performed with a trial wave function, which is parameterized in terms of a small set of variables associated with the relevant correlation operators of the problem. Results for one-dimensional case are in very good agreement with the exact ones for arbitrary interaction strengths. It is also shown that the method provides us with better evaluations of the ground state energy and correlation functions than those obtained with the Gutzwiller approximation. (orig.)

  14. Ground state of the Hubbard model: a variational approach based on the maximum entropy principle

    Science.gov (United States)

    Arrachea, L.; Canosa, N.; Plastino, A.; Rossignoli, R.

    1993-05-01

    A variational approach based on maximum entropy considerations is used to approximate the ground state of the Hubbard Hamiltonian. The evaluation of both the ground state energy and the correlation functions is performed with a trial wave function, which is parameterized in terms of a small set of variables associated with the relevant correlation operators of the problem. Results for the one-dimensional case are in very good agreement with the exact ones for arbitrary interaction strengths. It is also shown that the method provides us with better evaluations of the ground state energy and correlation functions than those obtained with the Gutzwiller approximation.

  15. Phase diagram of an extended Hubbard model with correlated hopping at half filling

    Energy Technology Data Exchange (ETDEWEB)

    Aligia, A.A.; Arrachea, L.; Gagliano, E.R. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche (Argentina)

    1995-05-15

    We study a generalized Hubbard model with on-site interaction {ital U}, nearest-neighbor repulsion {ital V}, and general correlated hopping under the condition that the number of doubly occupied sites is conserved. We find the exact ground state (GS) in arbitrary dimension in two wide regions of parameters. In one of them the GS is a Mott insulator (MI) and in the other it is a charge-density wave (CDW). The boundary of the MI and a large part of that of the CDW are determined exactly for relevant lattices. We study numerically the effect of relaxing the above-mentioned condition.

  16. Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition

    Science.gov (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel

    1995-05-01

    A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  17. Rationalization of the Hubbard U parameter in CeO{sub x} from first principles: Unveiling the role of local structure in screening

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Deyu, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov; Liu, Ping, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-28

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions.

  18. Fifty years of continuous precipitation and stream chemistry data from the Hubbard Brook ecosystem study (1963-2013).

    Science.gov (United States)

    Likens, Gene E

    2017-08-01

    The Hubbard Brook Ecosystem Study officially began on 1 June 1963. This archive contains the results of 50 yr of collection and analysis of (at least) weekly stream water and precipitation samples obtained during the period 1963-2014 (from 1 June 1963 to 30 May 2013). Stream chemistry for the nine gauged watersheds and precipitation chemistry for precipitation gauges distributed throughout the Hubbard Brook Experimental Forest are reported as concentrations in (mg/L). © 2017 by the Ecological Society of America.

  19. Group theoretical classification of broken symmetry states of the two-fold degenerate Hubbard model on a triangular lattice

    International Nuclear Information System (INIS)

    Masago, Akira; Suzuki, Naoshi

    2001-01-01

    By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins

  20. Hubbard Model for Atomic Impurities Bound by the Vortex Lattice of a Rotating Bose-Einstein Condensate.

    Science.gov (United States)

    Johnson, T H; Yuan, Y; Bao, W; Clark, S R; Foot, C; Jaksch, D

    2016-06-17

    We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These include both a repulsive direct interaction and an attractive effective interaction mediated by the Bose-Einstein condensate. The occupation dependence of these two competing interactions drastically affects the Hubbard model phase diagram, including causing the disappearance of some Mott lobes.

  1. Heavy Chain Diseases

    Science.gov (United States)

    ... heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy chain ... disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy chain ...

  2. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Science.gov (United States)

    Zhang, Xi; Wang, Tianlei; Chen, Wencong; Wang, Sanmei; Peng, Da

    2017-05-01

    This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms and nonbonding electrons exist widely in nanomaterials and in network-structural materials with their impact under-estimated. A quantum theory was proposed to calculate the under-coordinated effects on the electronic structure of materials by incorporating bond order-length-strength (BOLS) correlation theory to mean-field Hubbard model, i.e. BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT) calculation on 2D materials verified that i) bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; ii) the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; iii) the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and iv) nonbond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP) with a local magnetic moment.

  3. Superconductivity, Mott-Hubbard states, and molecular orbital order in intercalated fullerides

    CERN Document Server

    Iwasa, Y

    2003-01-01

    This article reviews the current status of chemically doped fullerene superconductors and related compounds, with particular focus on Mott-Hubbard states and the role of molecular orbital degeneracy. Alkaline-earth metal fullerides produce superconductors of several kinds, all of which have states with higher valence than (C sub 6 sub 0) sup 6 sup - , where the second lowest unoccupied molecular orbital (the LUMO + 1 state) is filled. Alkali-metal-doped fullerides, on the other hand, afford superconductors only at the stoichiometry A sub 3 C sub 6 sub 0 (A denotes alkali metal) and in basically fcc structures. The metallicity and superconductivity of A sub 3 C sub 6 sub 0 compounds are destroyed either by reduction of the crystal symmetry or by change in the valence of C sub 6 sub 0. This difference is attributed to the narrower bandwidth in the A sub 3 C sub 6 sub 0 system, causing electronic instability in Jahn-Teller insulators and Mott-Hubbard insulators. The latter metal-insulator transition is driven by...

  4. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  5. Anomalous suppression of the Bose glass at commensurate fillings in the disordered Bose-Hubbard model

    International Nuclear Information System (INIS)

    Krueger, Frank; Wu Jiansheng; Phillips, Philip

    2009-01-01

    We study the weakly disordered Bose-Hubbard model on a cubic lattice through a one-loop renormalization-group analysis of the corresponding effective-field theory which is explicitly derived by combining a strong-coupling expansion with a replica average over the disorder. The method is applied not only to generic uncorrelated on-site disorder but also to simultaneous hopping-disorder correlated with the differences of adjacent disorder potentials. Such correlations are inherent in fine-grained optical speckle potentials used as a source of disorder in optical lattice experiments. As a result of strong coupling, the strength of the replica-mixing disorder vertex, responsible for the emergence of a Bose glass, crucially depends on the chemical potential and the Hubbard repulsion and vanishes to leading order in the disorder at commensurate boson fillings. As a consequence, at such fillings a direct transition between the Mott insulator and the superfluid in the presence of disorder cannot be excluded on the basis of a one-loop calculation. At incommensurate fillings, at a certain length scale, the Mott insulator will eventually become unstable toward the formation of a Bose glass. Phase diagrams as a function of the microscopic parameters are presented and the finite-size crossover between the Mott-insulating state and the Bose glass is analyzed.

  6. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  7. Antiferromagnetic, charge-transfer, and pairing correlations in the three-band Hubbard model

    Science.gov (United States)

    Scalettar, R. T.; Scalapino, D. J.; Sugar, R. L.; White, S. R.

    1991-07-01

    The CuO2 sheets common to the superconducting cuprates are believed to be characterized by a charge-transfer gap in their insulating antiferromagnetic state. The three-band Hubbard model with an on-site Cu Coulomb interaction Ud, which is large compared to the difference in energy ɛ between the O and Cu sites, provides a basic model for such a system. We have carried out Lanczos and Monte Carlo studies of a CuO2 lattice described by a three-band Hubbard model. For Ud large compared with ɛ, and ɛ comparable to or larger than the bandwidth of the lower hole band, we find strong antiferromagnetic correlations and evidence for a charge-transfer gap at a filling of one hole per Cu. The antiferromagnetic correlations decrease with either hole or electron doping, and we see that the additional holes go primarily on the O sites, while additional electrons go onto the Cu sites. For large values of the intersite Cu-O Coulomb interaction V, the hole-doped system exhibits a charge-transfer instability. As V is reduced, this is reflected as a peak in the charge-transfer susceptibility near ɛ+2V~=Ud, which we find is washed out by the strong Cu-O hybridization at realistic values of V. Attractive pairing interactions are found in both the d-wave and extended s*-wave channels near the antiferromagnetic boundary.

  8. Acetylene chain reaction on hydrogenated boron nitride monolayers: a density functional theory study.

    Science.gov (United States)

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2017-11-28

    Spin-polarized first-principles total-energy calculations have been performed to investigate the possible chain reaction of acetylene molecules mediated by hydrogen abstraction on hydrogenated hexagonal boron nitride monolayers. Calculations have been done within the periodic density functional theory (DFT), employing the PBE exchange correlation potential, with van der Waals corrections (vdW-DF). Reactions at two different sites have been considered: hydrogen vacancies on top of boron and on top of nitrogen atoms. As previously calculated, at the intermediate state of the reaction, when the acetylene molecule is attached to the surface, the adsorption energy is of the order of -0.82 eV and -0.20 eV (measured with respect to the energy of the non interacting molecule-substrate system) for adsorption on top of boron and nitrogen atoms, respectively. After the hydrogen abstraction takes place, the system gains additional energy, resulting in adsorption energies of -1.52 eV and -1.30 eV, respectively. These results suggest that the chain reaction is energetically favorable. The calculated minimum energy path (MEP) for hydrogen abstraction shows very small energy barriers of the order of 5 meV and 22 meV for the reaction on top of boron and nitrogen atoms, respectively. Finally, the density of states (DOS) evolution study helps to understand the chain reaction mechanism. Graphical abstract Acetylene chain reaction on hydrogenated boron nitride monolayers.

  9. Finite-size effects for the gap in the excitation spectrum of the one-dimensional Hubbard model

    NARCIS (Netherlands)

    Colomé-Tatché, M.; Matveenko, S.I.; Shlyapnikov, G.V.

    2010-01-01

    We study finite-size effects for the gap of the quasiparticle excitation spectrum in the weakly interacting regime one-dimensional Hubbard model with on-site attraction. Two types of corrections to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction due

  10. Numerical calculation of spectral functions of the Bose-Hubbard model using bosonic dynamical mean-field theory

    Czech Academy of Sciences Publication Activity Database

    Panas, J.; Kauch, Anna; Kuneš, Jan; Vollhardt, D.; Byczuk, K.

    2015-01-01

    Roč. 92, č. 4 (2015), "045102-1"-"045102-9" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : Bose-Hubbard model * Bose-Einstein condensation * superfluidity Subject RIV: BE - Theoretical Physics Impact factor: 3.736, year: 2014

  11. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Science.gov (United States)

    John L. Campbell; Scott V. Ollinger; Gerald N. Flerchinger; Haley Wicklein; Katharine Hayhoe; Amey S. Bailey

    2010-01-01

    Long-term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils...

  12. Markov chains

    CERN Document Server

    Revuz, D

    1984-01-01

    This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.

  13. Quantum phases of AB2 fermionic chains

    International Nuclear Information System (INIS)

    Murcia-Correa, L S; Franco, R; Silva-Valencia, J

    2016-01-01

    A fermionic chain is a one-dimensional system with fermions that interact locally and can jump between sites in the lattice, in particular an AB n chain type, where A and B are sites that exhibit a difference in energy level of Δ and site B is repeated n-times, such that the unit cell has n +1 sites. A limit case of this model, called the ionic Hubbard model (n = 1), has been widely studied due to its interesting physics and applications. In this paper, we study the ground state of an AB 2 chain, which describes the material R 4 [Pt 2 (P 2 O 5 H 2 ) 4 X] · nH 2 O. Specifically, we consider a filling with two electrons per unit cell, and using the density matrix renormalization group method we found that the system exhibits the band insulator and Mott correlated insulator phases, as well as an intermediate phase between them. For couplings of Δ = 2,10 and 20, we estimate the critical points that separate these phases through the structure factor and the energy gap in the sector of charge and spin, finding that the position of the critical point rises as a function of Δ. (paper)

  14. Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage

    Science.gov (United States)

    Bergeron, Dominic

    Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient

  15. Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture

    Science.gov (United States)

    Duchon, Eric Nicholas

    Ultracold atomic gases may be the ultimate quantum simulator. These isolated systems have the lowest temperatures in the observable universe, and their properties and interactions can be precisely and accurately tuned across a full spectrum of behaviors, from few-body physics to highly-correlated many-body effects. The ability to impose potentials on and tune interactions within ultracold gases to mimic complex systems mean they could become a theorist's playground. One of their great strengths, however, is also one of the largest obstacles to this dream: isolation. This thesis touches on both of these themes. First, methods to characterize phases and quantum critical points, and to construct finite temperature phase diagrams using experimentally accessible observables in the Bose Hubbard model are discussed. Then, the transition from a weakly to a strongly interacting Bose-Fermi mixture in the continuum is analyzed using zero temperature numerical techniques. Real materials can be emulated by ultracold atomic gases loaded into optical lattice potentials. We discuss the characteristics of a single boson species trapped in an optical lattice (described by the Bose Hubbard model) and the hallmarks of the quantum critical region that separates the superfluid and the Mott insulator ground states. We propose a method to map the quantum critical region using the single, experimentally accessible, local quantity R, the ratio of compressibility to local number fluctuations. The procedure to map a phase diagram with R is easily generalized to inhomogeneous systems and generic many-body Hamiltonians. We illustrate it here using quantum Monte Carlo simulations of the 2D Bose Hubbard model. Secondly, we investigate the transition from a degenerate Fermi gas weakly coupled to a Bose Einstein condensate to the strong coupling limit of composite boson-fermion molecules. We propose a variational wave function to investigate the ground state properties of such a Bose-Fermi mixture

  16. Charged Stripes in the Two-Orbital Hubbard Model for Pnictides

    Science.gov (United States)

    Yao, Dao-Xin; Luo, Qinlong; Prestel, Thomas; Daghofer, Maria; Moreo, Adriana; Dagotto, Elbio

    2011-03-01

    The two-orbital Hubbard model for the pnictides is studied numerically in the real-space Hartree-Fock approximation. Upon electron doping, states with a nonuniform ditribution of charge are stabilized. The patterns observed correspond to charge stripes that run perpendicular to the direction of the spin stripes of the undoped magnetic ground state. These striped states are robust when the undoped state has a gap, although with a decreasing amplitude as the gap decreases. Results for hole doping and implications for recent experiments that reported electronic nematic states and spin incommensurability in the pnictides are also discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Q.L., A.M., E.D.), the SYSU and NSFC-11074310 (D.X.Y.), the DFG under the Emmy-Noether program (T.P., M.D.).

  17. About long range pairing correlations in the Hubbard U-t-t' models

    International Nuclear Information System (INIS)

    Moreo, A.

    1991-01-01

    Using a quantum Monte Carlo method the authors measured pair correlation functions with different symmetries as a function of the filling, U/t and t'/t for the Hubbard and U-t-t' models. For the first time the Monte Carlo results are presented for U/t larger than the bandwidth 8t, away from half-filling. D-wave and extended S-wave pairing correlations are enhanced. D-wave pairing is stronger at half-filling but this behavior is reversed when the filling decreases. However, none of the eight pairing correlations that were studied increases as a function of lattice size, which makes the existence of long range superconducting order unlikely. (author). 10 refs.; 5 figs

  18. Analytical diagonalization study of a two-orbital Hubbard model on a two-site molecule

    Energy Technology Data Exchange (ETDEWEB)

    Amendola, Maria Emilia, E-mail: canio@sa.infn.it [Dipartimento di Matematica, Università di Salerno, I-84084 Fisciano (Italy); Romano, Alfonso [CNR-SPIN, I-84084 Fisciano (Italy); Dipartimento di Fisica “E. R. Caianiello”, Università di Salerno, I-84084 Fisciano (Italy); Noce, Canio, E-mail: canio@sa.infn.it [CNR-SPIN, I-84084 Fisciano (Italy); Dipartimento di Fisica “E. R. Caianiello”, Università di Salerno, I-84084 Fisciano (Italy)

    2015-12-15

    We present the exact solution of a two-orbital Hubbard model on a two-site molecule for arbitrary electron filling and arbitrary interaction couplings. The knowledge of the many-particle spectrum, determined via a diagonalization procedure performed by fully taking into account the symmetry properties of the model, has been used to investigate the temperature dependence of charge, spin and orbital response functions as well as of the intra- and inter-orbital on-site occupations. We point out that this study may allow easy access to many interesting features of the model and may serve as a reference tool for various numerical or perturbation methods dealing with complex correlated electron models defined on a lattice, in particular in the case in which strong local interactions dominate over kinetic effects.

  19. Universal conductivity in the boson Hubbard model in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cha, M. (Department of Physics and Astronomy and Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)); Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States))

    1994-04-01

    The universal conductivity at the zero-temperature superconductor-insulator transition of the two-dimensional boson Hubbard model is studied for cases both with and without magnetic field by Monte Carlo simulations of the (2+1)-dimensional classical [ital XY] model with disorder represented by random bonds correlated along the imaginary time dimension. The effect of the magnetic field is characterized by the frustration [ital f]. From the scaling behavior of the stiffness, we determine the quantum dynamical exponent [ital z], the correlation length exponent [nu], and the universal conductivity [sigma][sup *]. For the disorder-free model with [ital f]=1/2, we obtain [ital z][approx]1, 1/[nu][approx]1.5, and [sigma][sup *]/[sigma][sub [ital Q

  20. Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system

    International Nuclear Information System (INIS)

    Leung, P.W.; Oppenheimer, P.E.

    1992-01-01

    An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed

  1. Coherent Peaks and Minimal Probing Depth in Photoemission Spectroscopy of Mott-Hubbard Systems

    Science.gov (United States)

    Panaccione, G.; Altarelli, M.; Fondacaro, A.; Georges, A.; Huotari, S.; Lacovig, P.; Lichtenstein, A.; Metcalf, P.; Monaco, G.; Offi, F.; Paolasini, L.; Poteryaev, A.; Tjernberg, O.; Sacchi, M.

    2006-09-01

    We have measured hard x-ray photoemission spectra of pure vanadium sesquioxide (V2O3) across its metal-insulator transition. We show that, in the metallic phase, a clear correlation exists between the shakedown satellites observed in the vanadium 2p and 3p core-level spectra and the coherent peak measured at the Fermi level. Comparing experimental results and dynamical mean-field theory calculations, we estimate the Hubbard energy U in V2O3 (4.20±0.05eV). From our bulk-sensitive photoemission spectra we infer the existence of a critical probing depth for investigating electronic properties in strongly correlated solids.

  2. Critical points of the Bose–Hubbard model with three-body local interaction

    Energy Technology Data Exchange (ETDEWEB)

    Avila, C.A.; Franco, R. [Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá (Colombia); Souza, A.M.C. [Departamento de Física, Universidade Federal de Sergipe, 49100-000 São Cristovão, SE (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210-346 Niterói, Rio de Janeiro (Brazil); Silva-Valencia, J., E-mail: jsilvav@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, A.A. 5997, Bogotá (Colombia)

    2014-09-12

    Using the density matrix renormalization group method, we study a one-dimensional system of bosons that interact with a local three-body term. We calculate the phase diagram for higher densities, where the Mott insulator lobes are surrounded by the superfluid phase. We also show that the Mott insulator lobes always grow as a function of the density. The critical points of the Kosterlitz–Thouless transitions were determined through the von Neumann block entropy, and its dependence on the density is given by a power law with a negative exponent. - Highlights: • We studied the Bose–Hubbard model with a local three-body interaction term. • We show that the Mott insulator lobes always grow as a function of the density. • We found a power law dependence of the critical point position with the density.

  3. Algebraic geometry methods associated to the one-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.J., E-mail: martins@df.ufscar.br

    2016-06-15

    In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian constructed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We provide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax operator.

  4. Phase transitions in the Haldane-Hubbard model within coherent potential approximation

    Science.gov (United States)

    Le, Duc-Anh; Tran, Minh-Tien; Tran, Thi-Thanh-Mai; Nguyen, Thi-Thao; Nguyen, Thi-Huong; Hoang, Anh-Tuan

    2018-03-01

    Within the coherent potential approximation we study the two-dimensional Haldane-Hubbard model, in which an interplay between topology and correlation effects is realized. The model essentially describes correlated electrons moving in a honeycomb lattice with zero net magnetic flux. The influence of the next-nearest-neighbor hopping and electron correlations on the metal-insulator transitions are investigated by monitoring the density of states at the Fermi level and the energy gap. The topological properties of the insulators is determined by the Chern number. With a given next-nearest-neighbor hopping, electron correlations drive the system from the topological Chern insulator to a metal, and then to the topologically trivial Mott insulator.

  5. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models.

    Science.gov (United States)

    Elben, A; Vermersch, B; Dalmonte, M; Cirac, J I; Zoller, P

    2018-02-02

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  6. Quantum disordered insulating phase in the frustrated cubic-lattice Hubbard model

    Science.gov (United States)

    Laubach, Manuel; Joshi, Darshan G.; Reuther, Johannes; Thomale, Ronny; Vojta, Matthias; Rachel, Stephan

    2016-01-01

    In the quest for quantum spin liquids in three spatial dimensions (3D), we study the half-filled Hubbard model on the simple cubic lattice with hopping processes up to third neighbors. Employing the variational cluster approach (VCA), we determine the zero-temperature phase diagram: In addition to a paramagnetic metal at small interaction strength U and various antiferromagnetic insulators at large U , we find an intermediate-U antiferromagnetic metal. Most interestingly, we also identify a nonmagnetic insulating region, extending from intermediate to strong U . Using VCA results in the large-U limit, we establish the phase diagram of the corresponding J1-J2-J3 Heisenberg model. This is qualitatively confirmed—including the nonmagnetic region—using spin-wave theory. Further analysis reveals a striking similarity to the behavior of the J1-J2 square-lattice Heisenberg model, suggesting that the nonmagnetic region may host a 3D spin-liquid phase.

  7. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models

    Science.gov (United States)

    Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.

    2018-02-01

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  8. Quantum phase transition of light in the Rabi–Hubbard model

    International Nuclear Information System (INIS)

    Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E

    2013-01-01

    We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)

  9. Low quasiparticle coherence temperature in the one-band Hubbard model: A slave-boson approach

    Science.gov (United States)

    Mezio, Alejandro; McKenzie, Ross H.

    2017-07-01

    We use the Kotliar-Ruckenstein slave-boson formalism to study the temperature dependence of paramagnetic phases of the one-band Hubbard model for a variety of band structures. We calculate the Fermi liquid quasiparticle spectral weight Z and identify the temperature at which it decreases significantly to a crossover to a bad metal region. Near the Mott metal-insulator transition, this coherence temperature Tcoh is much lower than the Fermi temperature of the uncorrelated Fermi gas, as is observed in a broad range of strongly correlated electron materials. After a proper rescaling of temperature and interaction, we find a universal behavior that is independent of the band structure of the system. We obtain the temperature-interaction phase diagram as function of doping, and we compare the temperature dependence of the double occupancy, entropy, and charge compressibility with previous results obtained with dynamical mean-field theory. We analyze the stability of the method by calculating the charge compressibility.

  10. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    Science.gov (United States)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  11. Itinerant ferromagnetism in the two-dimensional t-t' Hubbard model

    Science.gov (United States)

    Arrachea, Liliana

    2000-10-01

    Using exact diagonalization techniques, the Hubbard model with hopping between nearest (t) and next-nearest neighbors (t') is studied in a two-dimensional cluster with 4×4 sites. Within a range of values of t'<0 and low densities, states with different total spin are degenerate in the noninteracting system. At a finite value of the Coulomb repulsion U, states with high spin are energetically favored and the ground state can be fully polarized. The behavior of the density of states differs from that obtained within the Hartree-Fock approximation. The low energy region of the density of states (DOS) for the majority spins remains weakly modified by U. Our results bring further support to the idea that itinerant ferromagnetism occurs in strongly correlated systems with high noninteracting DOS at the bottom of the band.

  12. Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling

    International Nuclear Information System (INIS)

    Karchev, Naoum

    2013-01-01

    A one-band Hubbard model with hopping parameter t and Coulomb repulsion U is considered at half-filling. By means of the Schwinger bosons and slave fermions representation of the electron operators and integrating out the spin–singlet Fermi fields an effective Heisenberg model with antiferromagnetic exchange constant is obtained for vectors which identifies the local orientation of the spin of the itinerant electrons. The amplitude of the spin vectors is an effective spin of the itinerant electrons accounting for the fact that some sites, in the ground state, are doubly occupied or empty. Accounting adequately for the magnon–magnon interaction the Néel temperature is calculated. When the ratio t/U is small enough (t/U ≤0.09) the effective model describes a system of localized electrons. Increasing the ratio increases the density of doubly occupied states which in turn decreases the effective spin and Néel temperature. The phase diagram in the plane of temperature (T N )/U and parameter t/U is presented. The quantum critical point (T N =0) is reached at t/U =0.9. The magnons in the paramagnetic phase are studied and the contribution of the magnons’ fluctuations to the heat capacity is calculated. At the Néel temperature the heat capacity has a peak which is suppressed when the system approaches a quantum critical point. It is important to stress that, at half-filling, the ground state, determined by fermions, is antiferromagnetic. The magnon fluctuations drive the system to quantum criticality and when the effective spin is critically small these fluctuations suppress the magnetic order. -- Highlights: •Technique of calculation is introduced which permits us to study the magnons’ fluctuations. •Quantum critical point is obtained in the one-band 3D Hubbard model at half-filling. •The present analytical results supplement the numerical ones (see Fig. 7)

  13. Absence of ballistic charge transport in the half-filled 1D Hubbard model

    Science.gov (United States)

    Carmelo, J. M. P.; Nemati, S.; Prosen, T.

    2018-05-01

    Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mηz = - 2Sηz / L = 1 -ne → 0, nonzero temperature T > 0, and U / t > 0 the charge stiffness of the 1D Hubbard model with first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different approaches yield contradictory results. (Here Sηz = - (L -Ne) / 2 is the η-spin projection and ne =Ne / L the electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly as at zero temperature), for T > 0 and U / t > 0 it vanishes for mηz → 0 within the canonical ensemble in the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ →μu where (μ -μu) ≥ 0 and 2μu is the Mott-Hubbard gap. The lack of charge ballistic transport indicates that charge transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and doubly occupied lattice sites are good quantum numbers for U / t > 0. In contrast to often less controllable numerical studies, the use of such a representation reveals the carriers that couple to the charge probes and provides useful physical information on the microscopic processes behind the exotic charge transport properties of the 1D electronic correlated system under study.

  14. Filling-dependent doublon dynamics in the one-dimensional Hubbard model

    Science.gov (United States)

    Rausch, Roman; Potthoff, Michael

    2017-01-01

    The fate of a local two-hole doublon excitation in the one-dimensional Fermi-Hubbard model is systematically studied for strong Hubbard interaction U in the entire filling range using the density-matrix renormalization group (DMRG) and the Bethe ansatz. For strong U , two holes at the same site form a compound object whose decay is impeded by the lack of phase space. Still, a partial decay is possible on an extremely short time scale where phase-space arguments do not yet apply. We argue that the initial decay and the resulting intermediate state are relevant for experiments performed with ultracold atoms loaded into an optical lattice as well as for (time-resolved) CVV Auger-electron spectroscopy. The detailed discussion comprises the mixed ballistic-diffusive real-time propagation of the doublon through the lattice, its partial decay on the short time scale as a function of filling and interaction strength, as well as the analysis of the decay products, which are metastable on the intermediate time scale that is numerically accessible and which show up in the two-hole excitation (Auger) spectrum. The ambivalent role of singly occupied sites is key to understanding the doublon physics; for high fillings, ground-state configurations with single occupancies are recognized to strongly relax the kinematic constraints and to open up decay channels. For fillings close to half-filling, however, their presence actually blocks the doublon decay. Finally, the analysis of the continua in the two-hole spectrum excludes a picture where the doublon decays into unbound electron holes for generic fillings, different from the limiting case of the completely filled band. We demonstrate that the decay products as well as the doublon propagation should rather be understood in terms of Bethe ansatz eigenstates.

  15. The Hubbard dimer: a density functional case study of a many-body problem.

    Science.gov (United States)

    Carrascal, D J; Ferrer, J; Smith, J C; Burke, K

    2015-10-07

    This review explains the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site Hubbard model. The relationship to traditional quantum chemistry is included. Even in this elementary example, where the exact ground-state energy and site occupations can be found analytically, there is much to be explained in terms of the underlying logic and aims of density functional theory. Although the usual solution is analytic, the density functional is given only implicitly. We overcome this difficulty using the Levy-Lieb construction to create a parametrization of the exact function with negligible errors. The symmetric case is most commonly studied, but we find a rich variation in behavior by including asymmetry, as strong correlation physics vies with charge-transfer effects. We explore the behavior of the gap and the many-body Green's function, demonstrating the 'failure' of the Kohn-Sham (KS) method to reproduce the fundamental gap. We perform benchmark calculations of the occupation and components of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test several approximate functionals (restricted and unrestricted Hartree-Fock and Bethe ansatz local density approximation) to show their successes and limitations. We also discuss and illustrate the concept of the derivative discontinuity. Useful appendices include analytic expressions for density functional energy components, several limits of the exact functional (weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection results, proofs of exact conditions for this model, and the origin of the Hubbard model from a minimal basis model for stretched H2.

  16. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  17. Structural, electronic and magnetic properties of Fe, Co, Ni monatomic nanochains encapsulated in armchair LiF nanotubes

    Directory of Open Access Journals (Sweden)

    Nia B. Arghavani

    2017-07-01

    Full Text Available Structural, electronic and magnetic properties of transition metal TM (TM = Fe, Co and Ni atomic chains wrapped in single walled LiF armchair nanotubes have been investigated by the first-principles calculations in the framework of the density functional theory. The generalized gradient approximation (GGA with Hubbard repulsion potential and without Hubbard repulsion was employed to describe the exchange-correlation potential. It is found that all these TM chains @LiFNTs systems have negative formation energy so they are stable and exothermic. Total density of states and partial densities of states analyses show that the spin polarization and the magnetic moment of TM chains @LiFNTs(n,n systems come mostly from the TM atom chains. All these nanocomposites are ferromagnetic (FM and spin splitting between spin up and down is observed. The high magnetic moment and spin polarization of the TM chains @LiFNT(n,n systems show that they can be used as magnetic nanostructures possessing potential current and future applications in permanent magnetism, magnetic recording, and spintronics.

  18. Driven Bose-Hubbard model with a parametrically modulated harmonic trap

    Science.gov (United States)

    Mann, N.; Bakhtiari, M. Reza; Massel, F.; Pelster, A.; Thorwart, M.

    2017-04-01

    We investigate a one-dimensional Bose-Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross-Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particular, the effective eigenfrequency is reduced for growing interaction in the mean-field regime. For a stronger interaction, the impact of the global parametric drive is determined by the numerically exact time-evolving block decimation scheme. When the trapped bosons in the lattice are in a Mott insulating state, the absorption of energy from the driving field is suppressed due to the strongly reduced local compressibility of the quantum many-body state. In particular, we find that the width of the local Mott region shows a breathing dynamics. Finally, we observe that the global modulation also induces an effective time-independent inhomogeneous hopping strength for the atoms.

  19. Entanglement of Exact Excited Eigenstates of the Hubbard Model in Arbitrary Dimension

    Directory of Open Access Journals (Sweden)

    Oskar Vafek, Nicolas Regnault, B. Andrei Bernevig

    2017-12-01

    Full Text Available We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH, we also compute the entanglement Renyi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.

  20. Spin-state transition and phase separation in multi-orbital Hubbard model

    Science.gov (United States)

    Ishihara, Sumio; Suzuki, Ryo; Watanabe, Tsutomu

    2010-03-01

    Exotic phenomena in correlated electron systems are responsible for competition and cooperation between multi-electronic phases. In particular, in perovskite cobaltites, there is the spin-state degree of freedom, i.e., multiple spin states due to the different electron configurations in a single ion. The multiple spin states occur by changes in the carrier concentration, temperature and other parameters. In the lightly hole doped region between the low-spin band insulator (BI) and the high-spin (HS) ferromagnetic metallic (FM) states, several inhomogeneous features have been reported experimentally. We address the issues of the spin-state transition and the phase separation (PS) associated with this transition by analyzing the multi-orbital Hubbard model [1]. We examine the electronic structures in hole doped and undoped systems by the variational Monte-Carlo (VMC) method. We find that the electronic PS is realized between the nonmagnetic BI and the HS FM metal. We conclude that the different band widths play an essential role in the present electronic PS. [1] R. Suzuki, T. Watanabe, and S. Ishihara, Phys. Rev. B 80, 054410 (2009).

  1. Phonon-like excitations in the two-state Bose-Hubbard model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2015-12-01

    Full Text Available The spectrum of phonon-like collective excitations in the system of Bose-atoms in optical lattice (more generally, in the system of quantum particles described by the Bose-Hubbard model is investigated. Such excitations appear due to displacements of particles with respect to their local equilibrium positions. The two-level model taking into account the transitions of bosons between the ground state and the first excited state in potential wells, as well as interaction between them, is used. Calculations are performed within the random phase approximation in the hard-core boson limit. It is shown that excitation spectrum in normal phase consists of the one exciton-like band, while in the phase with BE condensate an additional band appears. The positions, spectral weights and widths of bands strongly depend on chemical potential of bosons and temperature. The conditions of stability of a system with respect to the lowering of symmetry and displacement modulation are discussed.

  2. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  3. Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model

    Science.gov (United States)

    Mohan, Minette M.

    1992-08-01

    I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.

  4. L Modele de Hubbard a Faible Densite et a Proximite du Demi-Remplissage quelques Aspects

    Science.gov (United States)

    Dare, Anne-Marie

    Ce travail, qui concerne quelques aspects du modele de Hubbard, se divise en deux volets. Dans une premiere partie, nous etudions une approximation simple basee sur l'idee de renormalisation de l'interaction par les effets a courte portee. Elle se justifie a basse densite et possede la propriete de satisfaire les relations de croisement fermioniques. Des comparaisons detaillees aux resultats de simulations Monte Carlo pour les fonctions de correlation de spin, de charge et de paire de diverses symetries, nous permettent d'identifier les effets essentiels dans ce regime d'interaction moderee, et de preciser les regions ou les effets non triviaux se manifestent. Cette approximation est egalement reliee a la theorie des liquides de Fermi, et nous permet d'interpreter les resultats a faible remplissage de bande, et sur petits reseaux, d'un point de vue liquide de Fermi faiblement correle. Dans une deuxieme partie, nous nous placerons a proximite du demi-remplissage de bande, pour uel une approche recemment developpee est particulierement adequate: elle predit conformement au theoreme de Mermin-Wagner, l'absence de transition magnetique a temperature finie en 2D. Cette theorie satisfait quelques exigences des relations de croisement. Nous nous interesserons a l'apparition et a la caracterisation d'une transition de phase antiferromagnetique par l'inclusion d'un faible effet tridimensionnel. Quelques comparaisons aux resultats experimentaux sur le compose de La_2CuO_4 sont discutees.

  5. Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-02-01

    A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role in emergence of a non-FL (NFL) paradigm in higher dimensions D (>1 ) . Motivated hereby, we explore the emergence of this "two relaxation rates" scenario in the Hubbard Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to D =3 , we find, beyond a critical Falicov-Kimball (FK) interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2 -yO3 near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization method applied to the Wolff model and connecting it to the x-ray edge problem.

  6. Quantum phase transitions of light in a dissipative Dicke-Bose-Hubbard model

    Science.gov (United States)

    Wu, Ren-Cun; Tan, Lei; Zhang, Wen-Xuan; Liu, Wu-Ming

    2017-09-01

    The impact that the environment has on the quantum phase transition of light in the Dicke-Bose-Hubbard model is investigated. Based on the quasibosonic approach, mean-field theory, and perturbation theory, the formulation of the Hamiltonian, the eigenenergies, and the superfluid order parameter are obtained analytically. Compared with the ideal cases, the order parameter of the system evolves with time as the photons naturally decay in their environment. When the system starts with the superfluid state, the dissipation makes the photons more likely to localize, and a greater hopping energy of photons is required to restore the long-range phase coherence of the localized state of the system. Furthermore, the Mott lobes depend crucially on the numbers of atoms and photons (which disappear) of each site, and the system tends to be classical with the number of atoms increasing; however, the atomic number is far lower than that expected under ideal circumstances. As there is an inevitable interaction between the coupled-cavity array and its surrounding environment in the actual experiments, the system is intrinsically dissipative. The results obtained here provide a more realistic image for characterizing the dissipative nature of quantum phase transitions in lossy platforms, which will offer valuable insight into quantum simulation of a dissipative system and which are helpful in guiding experimentalists in open quantum systems.

  7. Self-energies, renormalization factor, Luttinger sum rule and quasiparticle structure of the Hubbard systems

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aguilar, F.; Costa-Quintana, J. (Dept. de Fisica, Grupo de Electromagnetismo, Univ. Autonoma de Barcelona, Bellaterra, E-08193 Barcelona (ES))

    1992-07-10

    In this paper, the authors give a method for obtaining the renormalized electronic structure of the Hubbard systems. The first step is the determination of the self-energy beyond the Hartree-Fock approximation. This self-energy is constructed from several dielectric response functions. The second step is the determination of the quasiparticle band structure calculation which is performed from an appropriate modification of the augmented plane wave method. The third step consists in the determination of the renormalized density of states deduced from the spectral functions. The analysis of the renormalized density of states of the strongly correlated systems leads to the conclusion that there exist three types of resonances in their electronic structures, the lower energy resonances (LER), the middle energy resonances (MER) and the upper energy resonances (UER). In addition, the authors analyze the conditions for which the Luttinger theorem is satisfied. All of these questions are determined in a characteristic example which allows to test the theoretical method.

  8. Dynamical recovery of SU(2) symmetry in the mass-quenched Hubbard model

    Science.gov (United States)

    Du, Liang; Fiete, Gregory A.

    2018-02-01

    We use nonequilibrium dynamical mean-field theory with iterative perturbation theory as an impurity solver to study the recovery of SU(2) symmetry in real time following a hopping integral parameter quench from a mass-imbalanced to a mass-balanced single-band Hubbard model at half filling. A dynamical order parameter γ (t ) is defined to characterize the evolution of the system towards SU(2) symmetry. By comparing the momentum-dependent occupation from an equilibrium calculation [with the SU(2) symmetric Hamiltonian after the quench at an effective temperature] with the data from our nonequilibrium calculation, we conclude that the SU(2) symmetry recovered state is a thermalized state. Further evidence from the evolution of the density of states supports this conclusion. We find the order parameter in the weak Coulomb interaction regime undergoes an approximate exponential decay. We numerically investigate the interplay of the relevant parameters (initial temperature, Coulomb interaction strength, initial mass-imbalance ratio) and their combined effect on the thermalization behavior. Finally, we study evolution of the order parameter as the hopping parameter is changed with either a linear ramp or a pulse. Our results can be useful in strategies to engineer the relaxation behavior of interacting quantum many-particle systems.

  9. Two-state Bose-Hubbard model in the hard-core boson limit

    Directory of Open Access Journals (Sweden)

    O.V. Velychk

    2011-03-01

    Full Text Available Phase transition into the phase with Bose-Einstein (BE condensate in the two-band Bose-Hubbard model with the particle hopping in the excited band only is investigated. Instability connected with such a transition (which appears at excitation energies δ0|, where |t'0| is the particle hopping parameter is considered. The re-entrant behaviour of spinodales is revealed in the hard-core boson limit in the region of positive values of chemical potential. It is found that the order of the phase transition undergoes a change in this case and becomes the first one; the re-entrant transition into the normal phase does not take place in reality. First order phase transitions also exist at negative values of δ (under the condition δ>δcrit≈ − 0.12|t'0|. At μ0|, μ phase diagrams are built and localizations of tricritical points are established. The conditions are found at which the separation on the normal phase and the phase with the BE condensate takes place.

  10. Revisiting the hybrid quantum Monte Carlo method for Hubbard and electron-phonon models

    Science.gov (United States)

    Beyl, Stefan; Goth, Florian; Assaad, Fakher F.

    2018-02-01

    A unique feature of the hybrid quantum Monte Carlo (HQMC) method is the potential to simulate negative sign free lattice fermion models with subcubic scaling in system size. Here we will revisit the algorithm for various models. We will show that for the Hubbard model the HQMC suffers from ergodicity issues and unbounded forces in the effective action. Solutions to these issues can be found in terms of a complexification of the auxiliary fields. This implementation of the HQMC that does not attempt to regularize the fermionic matrix so as to circumvent the aforementioned singularities does not outperform single spin flip determinantal methods with cubic scaling. On the other hand we will argue that there is a set of models for which the HQMC is very efficient. This class is characterized by effective actions free of singularities. Using the Majorana representation, we show that models such as the Su-Schrieffer-Heeger Hamiltonian at half filling and on a bipartite lattice belong to this class. For this specific model subcubic scaling is achieved.

  11. Superconducting properties of the attractive Hubbard model: A slave-boson study

    International Nuclear Information System (INIS)

    Bul/ka, B.R.; Robaszkiewicz, S.

    1996-01-01

    The superfluid characteristics of the attractive Hubbard model are analyzed for any coupling |U| and arbitrary electron concentration (0< n<2) by means of the slave-boson mean-field method and also by the perturbative treatment of the strong-coupling limit. The slave boson method takes into account correlations of electrons and yields a reliable description of the crossover from BCS-type superconductivity to local pair (composite bosons) superconductivity with increasing |U|. The results for the ground state (the free energy, the gap in the excitation spectrum) and the electromagnetic characteristics (the critical magnetic field, the London penetration depth, the coherence length) are compared with those obtained by the Hartree-Fock approximation and by the self-consistent second-order perturbation theory in the weak-coupling limit as well as with those obtained using perturbational approaches in the strong-coupling limit. We show that the slave-boson method, in contrast to the Hartree-Fock approximation, gives credible results for all investigated quantities in the whole interaction range, interpolating smoothly between the BCS and local pair regimes. A comparison of theoretical predictions for our simple model with experimental data for various families of short-coherence-length superconductors suggests that the best agreement can be obtained for intermediate values of the local attraction. copyright 1996 The American Physical Society

  12. Linked-cluster expansion for the Green's function of the infinite-U Hubbard model.

    Science.gov (United States)

    Khatami, Ehsan; Perepelitsky, Edward; Rigol, Marcos; Shastry, B Sriram

    2014-06-01

    We implement a highly efficient strong-coupling expansion for the Green's function of the Hubbard model. In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We compute the finite-temperature Green's function analytically in the momentum and Matsubara frequency space as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at temperatures lower than, or of the order of, the hopping amplitude. We also discuss several different approaches for obtaining the spectral functions through analytic continuation of the imaginary frequency Green's function, and show results for the system near half filling. We benchmark our results for the equation of state against those obtained from a numerical linked-cluster expansion carried out to the eleventh order.

  13. Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping

    Science.gov (United States)

    Aligia, A. A.; Gagliano, E.; Arrachea, L.; Hallberg, K.

    1998-10-01

    We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n_b of spin down (up) electrons on both sites involved. The hopping parameters are t_{AA}, t_{AB} and t_{BB} for n_b=0,1,2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for t_{AB}

  14. Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping

    Energy Technology Data Exchange (ETDEWEB)

    Aligia, A.A.; Gagliano, E.; Hallberg, K. [Comision Nacional de Energia Atomica (CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche (CAB); Arrachea, L. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, 01187 Dresden (Germany)

    1998-10-01

    We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n{sub b} of spin down (up) electrons on both sites involved. The hopping parameters are t{sub AA}, t{sub AB} and t{sub BB} for n{sub b}=0,1,2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for t{sub AB}

  15. Decofinement, dimensional crossover and quantum criticality in coupled correlated chains with frustration

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    The dynamics of the charge sector of a one-dimensional quarter-filled electronic system with extended Hubbard interactions were recently mapped onto that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. Motivated by studying the effects of inter-chain couplings, we investigate the phase diagram for the case of a system of many coupled effective (TFIM) chains. A random phase approximation analysis reveals a phase diagram with an ordered phase existing at finite temperatures. The phase boundary ends at a zero temperature quantum critical point. Critical quantum fluctuations are found to drive a zero temperature deconfinement transition, as well as enhance the dispersion of excitations in the transverse directions, leading to a dimensional crossover at finite temperatures. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (author)

  16. Humanitarian relief supply chain

    Indian Academy of Sciences (India)

    This paper models a humanitarian relief chain that includes a relief goods supply chain and an evacuation chain in case of a natural disaster. Optimum network flow is studied for both the chains by considering three conflicting objectives, namely demand satisfaction in relief chain, demand satisfaction in evacuation chain ...

  17. Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Hamerla, Simone Anke

    2013-10-15

    In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in

  18. Exact Solutions of an Extended Bose-Hubbard Model with E 2 Symmetry

    Science.gov (United States)

    Pan, Feng; Zhang, Ningyun; Wang, Qianyun; Draayer, J. P.

    2015-07-01

    An extended Bose-Hubbard (BH) model with number-dependent multi-site and infinite-range hopping is proposed, which, similar to the original BH model, describes a phase transition between the delocalized superfluid (SF) phase and localized Mott insulator (MI) phase. It is shown that this extended model with local Euclidean E 2 symmetry is exactly solvable when on-site local potentials are included, while the model without local potentials is quasi-exactly solvable, which means only a part of the excited states including the ground state being exactly solvable. As applications of the exact solution for the ground state, phase diagram of the model in 1D without local potential and on-site disorder for filling factor ρ = 1 with M = 6, M = 10, and M = 14 sites are obtained. The ground state probabilities to detect n particles on a single site, P n , for n = 0, 1, 2 as functions of the control parameter U/ t in these cases are also calculated. It is shown that the critical point in P n and in the entanglement measure is away from that of the SF-MI transition determined in the phase analysis. It is also shown that the model-independent entanglement measure is related with P n , which, therefore, may be practically useful because P n is measurable experimentally. The ground state expectation value of local particle numbers, the ground state local particle number fluctuations, the ground state probabilities to detect n particles on every site, and the entanglement measure have also been studied in the model for N = M = 4 with the two-body onsite repulsion and a local confining harmonic potential. The connection between these quantities and the entanglement observed previously is verified.

  19. Unconventional and intertwined orders of the low-dimensional Hubbard model

    International Nuclear Information System (INIS)

    Leprevost, Alexandre

    2015-01-01

    The understanding of superconductivity exhibited at high critical temperature by certain transition metal oxides remains a central issue in theoretical condensed matter physics. In this context, and since the historical proposal by P. W. Anderson, the repulsive Hubbard model in two dimensions became a paradigm in an attempt to capture the essential properties of non-conventional superconducting materials. However, the determination of the exact ground state encounters the exponential complexity of the quantum many-body problem. The main purpose of this thesis is to develop a variational scheme free of any hypothesis concerning magnetic, charge or superconducting orders likely to emerge from the Hamiltonian at low energy. The originality of the approach is found in the introduction of correlations by restoring, before variation, symmetries deliberately broken in a trial state given by a superposition of versatile wavefunctions of Hartree-Fock and Bogoliubov-de Gennes types. For small clusters of two and four sites, we show analytically that this symmetry entangled mean field method allows to find the exact ground state regardless of the strength of the on-site interaction. For larger hole-doped clusters and in the strongly correlated regime, we highlight an arrangement of magnetic moments in a spiral or in a spin density wave that is then accompanied by inhomogeneities in the form of regularly distributed stripes. Moreover, such orders are intertwined with long range d-wave pairing correlations, which, in the thermodynamic limit, sign superconductivity. These results are obtained through systematic simulations in a four-leg tube geometry that can be realized experimentally using cold atoms trapped in optical lattices. (author) [fr

  20. Ginzburg-Landau expansion in strongly disordered attractive Anderson-Hubbard model

    Science.gov (United States)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-07-01

    We have studied disordering effects on the coefficients of Ginzburg-Landau expansion in powers of superconducting order parameter in the attractive Anderson-Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose-Einstein condensation (BEC) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder's influence upon the coefficients A and B of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of "dirty" superconductors, the C coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient C is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS-BEC crossover and in BEC limit, the coefficient C and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

  1. Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study

    Science.gov (United States)

    Žitko, Rok; Bonča, Janez; Pruschke, Thomas

    2009-12-01

    Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.

  2. Influence of counter-rotating interaction on quantum phase transition in Dicke-Hubbard lattice: an extended coherent-state approach

    Science.gov (United States)

    Lu, Yongchuan; Wang, Chen

    2016-10-01

    We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization-delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit-cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.

  3. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  4. Some results on the phase diagram of the 2D Hubbard model using an analytic Lanczos method

    International Nuclear Information System (INIS)

    Wellard, C.J.; Witte, N.S.; Hollenberg, L.C.L.

    1998-01-01

    Aspects of the ground state phase diagram of the two-dimensional Hubbard Model have been determined using a new non-perturbative method based on an analytic formulation of the Lanczos algorithm. The ground state energy for arbitrary repulsion U/t and density n has been calculated using a number of trial states which are expected to be qualitatively correct in certain regimes of this model - the paramagnetic Fermi sea and the Hartree-Fock Spin Density Wave state. We find large corrections to the mean-field result that shift the paramagnetic-ferromagnetic transition to higher values of U/t and closer to half-filling. (authors)

  5. Competition among various charge-inhomogeneous states and d -wave superconducting state in Hubbard models on square lattices

    Science.gov (United States)

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2018-01-01

    We study competitions among charge-uniform and -inhomogeneous states in two-dimensional Hubbard models by using a variational Monte Carlo method. At realistic parameters for cuprate superconductors, emergent effective attraction of carriers generated from repulsive Coulomb interaction leads to charge/spin stripe ground states, which severely compete with uniform superconducting excited states in the energy scale of 10 K for cuprates. Stripe period increases with decreasing hole doping δ , which agrees with the experiments for La-based cuprates at δ =1 /8 . For lower δ , we find a phase separation. Implications of the emergent attraction for cuprates are discussed.

  6. Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2015-12-01

    Full Text Available Phase transitions are investigated in the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations for the case of infinitely small fermion transfer and repulsive on-site boson-fermion interaction. The behavior of the Bose-Einstein condensate order parameter and grand canonical potential is analyzed as functions of the chemical potential of bosons at zero temperature. The possibility of change of order of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams are built.

  7. Effect of magnetic field, pressure and correlated hopping of electrons on conductivity of Mott-Hubbard material

    International Nuclear Information System (INIS)

    Didukh, Leonid; Skorenkyy, Yuriy; Kramar, Oleksandr; Dovhopyaty, Yuriy

    2006-01-01

    We discuss the influence of external magnetic field h and pressure p on a static conductivity of Mott-Hubbard material which is described by model with strong intra-site Coulomb repulsion and correlated hopping of electrons. Green function and energy spectrum are calculated by the use of a variant of projection procedure. The static conductivity σ xx is calculated as a function of electron concentration n, h, p, and temperature T. The correlated hopping is shown to cause the electron-hole asymmetry of transport properties of real materials

  8. Dynamical mean field study of the Mott transition in the half-filled Hubbard model on a triangular lattice

    OpenAIRE

    Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.

    2006-01-01

    We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...

  9. Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model

    Science.gov (United States)

    Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun

    2017-09-01

    The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.

  10. Strongly correlated electron physics in nanotube-encapsulated metallocene chains

    Science.gov (United States)

    García-Suárez, V. M.; Ferrer, J.; Lambert, C. J.

    2006-11-01

    The structural, electronic, and transport properties of metallocene molecules (MCp2) and isolated or nanotube-encapsulated metallocene chains are studied by using a combination of density functional theory and nonequilibrium Green’s functions. The analysis first discusses the whole series of isolated (MCp2) molecules, where M=V , Cr, Mn, Fe, Co, Ni, Ru, and Os. The series presents a rich range of electronic and magnetic behaviors due to the interplay between the crystal field interaction and Hund’s rules, as the occupation of the d shell increases. The article then shows how many of these interesting properties can also be seen when (MCp2) molecules are linked together to form periodic chains. Interestingly, a large portion of these chains display metallic, and eventually magnetic, behavior. These properties may render these systems as useful tools for spintronics applications but this is hindered by the lack of mechanical stability of the chains. It is finally argued that encapsulation of the chains inside carbon nanotubes, that is exothermic for radii larger than 4.5Å , provides the missing mechanical stability and electrical isolation. The structural stability, charge transfer, magnetic, and electronic behavior of the ensuing chains, as well as the modification of the electrostatic potential in the nanotube wall produced by the metallocenes are thoroughly discussed. We argue that the full devices can be characterized by two doped, strongly correlated Hubbard models whose mutual hybridization is almost negligible. The charge transferred from the chains produces a strong modification of the electrostatic potential in the nanotube walls, which is amplified in case of semiconducting and endothermic nanotubes. The transport properties of isolated metallocenes between semi-infinite nanotubes are also analyzed and shown to lead to important changes in the transmission coefficients of clean nanotubes for high energies.

  11. Spin-polarized deuterium : stabilization in magnetic traps

    NARCIS (Netherlands)

    Koelman, J.M.V.A.; Stoof, H.T.C.; Verhaar, B.J.; Walraven, J.T.M.

    1987-01-01

    We report on a calculation of the spin-exchange two-body rate constants associated with the population dynamics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero temperature limit. We find that a gas of low field seeking deuterium atoms trapped in a

  12. Compact scanning tunneling microscope for spin polarization measurements.

    Science.gov (United States)

    Kim, Seong Heon; de Lozanne, Alex

    2012-10-01

    We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.

  13. Light-induced spin polarizations in quantum rings

    NARCIS (Netherlands)

    Joibari, F.K.; Blanter, Y.M.; Bauer, G.E.W.

    2014-01-01

    Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the principle by studying a simple generic model system, i.e., the

  14. Role of spin polarized tunneling in magnetoresistance and low ...

    Indian Academy of Sciences (India)

    Lowering of ρ0 value (table 2) on application of magnetic field suggests that such imperfections are .... Soma Das and T K Dey. 636. Table 3. Best-fit parameters obtained from intergranular tun- neling model. H ρ0 ρ1 × 105. JS/KB. (Tesla). (Ω cm). (Ω cm K–3/2) ε. (K) x = 0⋅05. 0. 0⋅0731. 6⋅00. 0⋅4175. 95⋅61. 0⋅8.

  15. Improved Superlattices for Spin-Polarized Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamaev, Yu.A.; Gerchikov, L.G.; Yashin, Yu.P.; Kuz-michev, V.; Vasiliev, D.; /St. Petersburg Polytechnic Inst.; Maruymama, T.; Clendenin, J.E.; /SLAC; Ustinov, V.M.; Zhukov, A.E.; /Ioffe Phys. Tech. Inst.

    2006-12-08

    Photoemission of polarized electrons from heterostructures based on InAlGaAs/GaAs superlattices with minimum conduction-band offsets is investigated. The comparison of the excitation energy dependence of the photoemission polarization degree with the calculated spectra makes it possible to determine the polarization losses at different stages of the photoemission. A maximum polarization of P = 91% and a quantum efficiency of QE = 0.5% are close to the best results obtained for photocathodes that are based on strained semiconductor superlattices.

  16. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    The population of Fe–B bond increases from 0.175 (FM) to 0.2 (NM) in FeB. On the other hand, the calculated bond overlap populations in Fe2B kept unchanged and the value is 0.15 electrons in the two cases. 3.3 Bond hardness. Hardness is a measure of the resistance of materials against permanent deformations.

  17. In1-xMnxSb: spin polarization, conductivity

    Science.gov (United States)

    Matsukura, F.

    This document is part of Subvolume D 'New Data and Updates for IV-IV; III-V; II-VI and I-VII Compounds; their Mixed Crystals and Diluted Magnetic Semiconductors' of Volume 44 'Semiconductors' of Landolt-Börnstein - Group III 'Condensed Matter'.

  18. Role of spin polarized tunneling in magnetoresistance and low ...

    Indian Academy of Sciences (India)

    KMnO3 has been investigated between 10 K and 300 K with and without the magnetic field ( = 0.8 T). All the samples show metal–insulator transitions with Curie temperature (C) ranging between 260 K and 309 K. At temperature below 60 ...

  19. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    The spin of electrons in semiconductors strongly couple with electric and magnetic fields due to ... where ckμ and d−kμ are annihilation operators for electron with momentum k and spin μ and hole with momentum −k ... kμ and ekμ are annihilation and creation operators for impurity electrons. Qkμ and Qkμ are the coefficient ...

  20. Spin-polarized quantum transport properties through flexible phosphorene

    Science.gov (United States)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.