WorldWideScience

Sample records for spin-orbit sum rule

  1. The degree of 5f electron localization in URu2Si2: electron energy-loss spectroscopy and spin-orbit sum rule analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, J R; Moore, K T; Butch, N P; Maple, M B

    2010-05-19

    We examine the degree of 5f electron localization in URu{sub 2}Si{sub 2} using spin-orbit sum rule analysis of the U N{sub 4,5} (4d {yields} 5f) edge. When compared to {alpha}-U metal, US, USe, and UTe, which have increasing localization of the 5f states, we find that the 5f states of URu{sub 2}Si{sub 2} are more localized, although not entirely. Spin-orbit analysis shows that intermediate coupling is the correct angular momentum coupling mechanism for URu{sub 2}Si{sub 2} when the 5f electron count is between 2.6 and 2.8. These results have direct ramifications for theoretical assessment of the hidden order state of URu{sub 2}Si{sub 2}, where the degree of localization of the 5f electrons and their contribution to the Fermi surface are critical.

  2. Spin Sum Rules and Polarizabilities: Results from Jefferson Lab

    International Nuclear Information System (INIS)

    Jian-Ping Chen

    2006-01-01

    The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g 1 at momentum transfer of 0.05 to 0.1 GeV 2 but fail to reproduce the neutron data in the case of the generalized polarizability (delta) LT (the (delta) LT puzzle). New data have been taken on the neutron ( 3 He), the proton and the deuteron at very low Q 2 down to 0.02 GeV 2 . They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work

  3. Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Cloet, I.C.; Horsley, R.; Londergan, J.T.

    2012-04-01

    We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N f =2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.

  4. Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Cloet, I.C. [Adelaide Univ, SA (Australia). CSSM, School of Chemistry and Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Londergan, J.T. [Indiana Univ., Bloomington, IN (US). Dept. of Physics and Center for Exploration of Energy and Matter] (and others)

    2012-04-15

    We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N{sub f}=2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.

  5. Sum rule approach to the nuclear response in the isovector spin channel

    International Nuclear Information System (INIS)

    Alberico, W.M.; Ericson, M.; Molinari, A.

    1982-01-01

    We study the global features of the response of infinite nuclear matter in the spin-isospin channel through the energy weighted sum rules S 1 and Ssub(-) 1 . In particular we compare the outcome of the ring approximation with the exact RPA evaluation of the sum rules. We also investigate the influence of the collective character of the response, induced by the particle hole force for a longitudinal and transverse spin couplings. We show that S 1 is insensitive to the collectivity of the response, as long as the Δ degree of freedom is ignored. The inverse energy weighted sum rule on the other hand, which is linked to the paramagnetic susceptibility, always reflects the hardening or softening of the nuclear response, due to the repulsive or attractive character of the p-h force. This quantity is well suited to the comparison with the experiments, which we perform for 12 C and 56 Fe. (orig.)

  6. SUM-RULES FOR MAGNETIC DICHROISM IN RARE-EARTH 4F-PHOTOEMISSION

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1993-01-01

    We present new sum rules for magnetic dichroism in spin polarized photoemission from partly filled shells which give the expectation values of the orbital and spin magnetic moments and their correlations in the ground state. We apply this to the 4f photoemission of rare earths, where the

  7. The calculation of the quark distribution amplitudes of decuplet baryons by means of QCD sum rules

    International Nuclear Information System (INIS)

    Bonekamp, J.

    1994-11-01

    Using the QCD sum rule technique, we derive the quark distribution amplitudes of the decuplet memebers Δ(1232), Σ * (1385), Ξ * (1530) and Ω(1672). Generalizing the treatment of the Bethe-Salpeter amplitude, we can distinguish spin- and orbital- angular momentum parts of the quark distributions and establish separate sum rules for the contributions. Projecting out the angular momentum 1/2 contributions, we obtain sum rules which are saturated by the lowest resonance in the given iso spin channel, thus resolving deficiencies of the standard approach. We find that for helicity 1/2 the spin part of the quark distributions is asymmetric. Also the orbital angular momentum contributions are extremely asymmetric and tend to decrease the asymmetry of the spin part. As a result of SU(3) symmetry breaking, configuration mixing occurs and the decuplet baryons Σ * and Ξ * receive octet contributions. The antisymmetric part of these octet contributions is calculated. (orig.)

  8. The Gauge-Invariant Angular Momentum Sum-Rule for the Proton

    CERN Document Server

    Shore, G.M.

    2000-01-01

    We give a gauge-invariant treatment of the angular momentum sum-rule for the proton in terms of matrix elements of three gauge-invariant, local composite operators. These matrix elements are decomposed into three independent form factors, one of which is the flavour singlet axial charge. We further show that the axial charge cancels out of the sum-rule, so that it is unaffacted by the axial anomaly. The three form factors are then related to the four proton spin components in the parton model, namely quark and gluon intrinsic spin and orbital angular momentum. The renormalisation of the three operators is determined to one loop from which the scale dependence and mixing of the spin components is derived under the constraint that the quark spin be scale-independent. We also show how the three form factors can be measured in experiments.

  9. Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)

    International Nuclear Information System (INIS)

    Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.

    1995-01-01

    Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties

  10. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E. [Stanford Univ., CA (United States)

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results of the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.

  11. Sum rules for collisional processes

    International Nuclear Information System (INIS)

    Oreg, J.; Goldstein, W.H.; Bar-Shalom, A.; Klapisch, M.

    1991-01-01

    We derive level-to-configuration sum rules for dielectronic capture and for collisional excitation and ionization. These sum rules give the total transition rate from a detailed atomic level to an atomic configuration. For each process, we show that it is possible to factor out the dependence on continuum-electron wave functions. The remaining explicit level dependence of each rate is then obtained from the matrix element of an effective operator acting on the bound orbitals only. In a large class of cases, the effective operator reduces to a one-electron monopole whose matrix element is proportional to the statistical weight of the level. We show that even in these cases, nonstatistical level dependence enters through the dependence of radial integrals on continuum orbitals. For each process, explicit analytic expressions for the level-to-configuration sum rules are given for all possible cases. Together with the well-known J-file sum rule for radiative rates [E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (University Press, Cambridge, 1935)], the sum rules offer a systematic and efficient procedure for collapsing high-multiplicity configurations into ''effective'' levels for the purpose of modeling the population kinetics of ionized heavy atoms in plasma

  12. Fixed mass and scaling sum rules

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    1975-01-01

    Using the correspondence principle (continuity in dynamics), the approach of Keppell-Jones-Ward-Taha to fixed mass and scaling current algebraic sum rules is extended so as to consider explicitly the contributions of all classes of intermediate states. A natural, generalized formulation of the truncation ideas of Cornwall, Corrigan, and Norton is introduced as a by-product of this extension. The formalism is illustrated in the familiar case of the spin independent Schwinger term sum rule. New sum rules are derived which relate the Regge residue functions of the respective structure functions to their fixed hadronic mass limits for q 2 → infinity. (Auth.)

  13. Effect of Coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in rare earths

    NARCIS (Netherlands)

    Teramura, Y; Tanaka, A; Thole, BT; Jo, T

    A deviation from the spin sum rule, which relates the integrated intensity of the X-ray magnetic circular dichroism (MCD) signal to the expectation value of the spin operator S-z ((S-z)), is numerically calculated in the case of the 3d --> 4f absorption for rare earths from the trivalent Ce to Tm.

  14. Luttinger and Hubbard sum rules: are they compatible?

    International Nuclear Information System (INIS)

    Matho, K.

    1992-01-01

    A so-called Hubbard sum rule determines the weight of a satellite in fermionic single-particle excitations with strong local repulsion (U→∞). Together with the Luttinger sum rule, this imposes two different energy scales on the remaining finite excitations. In the Hubbard chain, this has been identified microscopically as being due to a separation of spin and charge. (orig.)

  15. Sum rules for four-spinon dynamic structure factor in XXX model

    International Nuclear Information System (INIS)

    Si Lakhal, B.; Abada, A.

    2005-01-01

    In the context of the antiferromagnetic spin 12 Heisenberg quantum spin chain (XXX model), we estimate the contribution of the exact four-spinon dynamic structure factor S 4 by calculating a number of sum rules the total dynamic structure factor S is known to satisfy exactly. These sum rules are: the static susceptibility, the integrated intensity, the total integrated intensity, the first frequency moment and the nearest-neighbor correlation function. We find that the contribution of S 4 is between 1% and 2.5%, depending on the sum rule, whereas the contribution of the exact two-spinon dynamic structure factor S 2 is between 70% and 75%. The calculations are numerical and Monte Carlo based. Good statistics are obtained

  16. Quark-spin isospin sum rules and the Adler-Weisberger relation in nuclei

    International Nuclear Information System (INIS)

    Delorme, J.; Ericson, M.

    1982-01-01

    We use a quark model to extend the classical Gamow-Teller sum rule for the difference of the β - and β + strengths to excitations of the nucleon (mainly the Δ isobar). A schematic model illustrates the realization of the new sum rule when a particle-hole force is introduced. We discuss the connection of our result with the model-independent Adler-Weisberger sum rule. (orig.)

  17. Lattice QCD evaluation of baryon magnetic moment sum rules

    International Nuclear Information System (INIS)

    Leinweber, D.B.

    1991-05-01

    Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs

  18. Electronuclear sum rules

    International Nuclear Information System (INIS)

    Arenhoevel, H.; Drechsel, D.; Weber, H.J.

    1978-01-01

    Generalized sum rules are derived by integrating the electromagnetic structure functions along lines of constant ratio of momentum and energy transfer. For non-relativistic systems these sum rules are related to the conventional photonuclear sum rules by a scaling transformation. The generalized sum rules are connected with the absorptive part of the forward scattering amplitude of virtual photons. The analytic structure of the scattering amplitudes and the possible existence of dispersion relations have been investigated in schematic relativistic and non-relativistic models. While for the non-relativistic case analyticity does not hold, the relativistic scattering amplitude is analytical for time-like (but not for space-like) photons and relations similar to the Gell-Mann-Goldberger-Thirring sum rule exist. (Auth.)

  19. The spin structure function g1p of the proton and a test of the Bjorken sum rule

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2016-02-01

    Full Text Available New results for the double spin asymmetry A1p and the proton longitudinal spin structure function g1p are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g1p(x by about a factor of two in the region x≲0.02. A next-to-leading order QCD fit to the g1 world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, ΔΣ, ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of g1p. The uncertainty of ΔΣ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function g1NS(x,Q2 yields as ratio of the axial and vector coupling constants |gA/gV|=1.22±0.05 (stat.±0.10 (syst., which validates the sum rule to an accuracy of about 9%.

  20. Measurement of the Neutron (3He) Spin Structure at Low Q2 and the Extended Gerasimov-Drell-Hearn Sum Rule

    Energy Technology Data Exchange (ETDEWEB)

    Kominis, Ioannis [Princeton Univ., NJ (United States)

    2001-01-01

    This thesis presents the results of E-94010, an experiment at Thomas Jefferson National Accelerator Facility (TJNAF) designed to study the spin structure of the neutron at low momentum transfer, and to test the “extended” Gerasimov-Drell-Hearn (GDH) sum rule. The first experiment of its kind, it was performed in experimental Hall-A of TJNAF using a new polarized 3He facility. It has recently been shown that the GDH sum rule and the Bjorken sum rule are both special examples of a more general sum rule that applies to polarized electron scattering off nucleons. This generalized sum rule, due to Ji and Osborne, reduces to the GDH sum rule at Q2 = 0 and to the Bjorken sum rule at Q2 >> 1 GeV2. By studying the Q2 evolution of the extended GDH sum, one learns about the transition from quark-like behavior to hadronic-like behavior. We measured inclusive polarized cross sections by scattering high energy polarized electrons off the new TJNAF polarized 3He target with both longitudinal and transverse target orientations. The high density 3He target, based on optical pumping and spin exchange, was used as an effective neutron target. The target maintained a polarization of about 35% at beam currents as high as 151tA. We describe the precision 3He polarimetry leading to a systematic uncertainty of the target polarization of 4% (relative). A strained GaAs photocathode was utilized in the polarized electron gun, which provided an electron beam with a polarization of about 70%, known to 3% (relative). By using six different beam energies (between 0.86 and 5.06 GeV) and a fixed scattering angle of 15.5°, a wide kinematic coverage was achieved, with 0.02 GeV2< Q2 <1 GcV2 and 0.5 GeV< W < 2.5 GeV for the squared momentum transfer and invariant mass, respectively. From the measured cross sections we extract the 3He spin structure functions g$3 He

  1. What can we learn from sum rules for vertex functions in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Stern, J.

    1982-04-01

    We demonstrate that the light cone sum rules for vertex functions based on the operator product expansion and QCD perturbation theory lead to interesting relationships between various non-perturbative parameters associated with hadronic bound states (e.g. vertex couplings and decay constants). We also show that such sum rules provide a valuable means of estimating the matrix elements of the higher spin operators in the meson wave function. (author)

  2. Sum rules application to reflectometry of X-ray resonant radiation for magnetic multilayer investigation

    International Nuclear Information System (INIS)

    Smekhova, A.G.; Andreeva, M.A.

    2005-01-01

    One elaborated the general formalism on the basis of which one derived the clear expressions for reflection factors of X-ray radiation with a circular polarization from medium magnetized both within surface plane and within reflection plane both for grazing angles and for high grazing angles. The asymmetry of reflection spectra for right- and left-polarized radiation is shown to depend both on nondiagonal components of a susceptibility tensor and on other components in contrast to absorption spectra, so the sum rule to determine the orbital and the spin magnetic moments can not be applied directly to the experimental spectra of reflection [ru

  3. The relation between the photonuclear E1 sum rule and the effective orbital g-factor

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Wolfgang E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Arima, Akito

    2004-05-17

    The connection between the enhancement factor (1+{kappa}) of the photonuclear E1 sum rule and the orbital angular momentum g-factor (g{sub l}) of a bound nucleon is investigated in the framework of the Landau-Migdal theory for isospin asymmetric nuclear matter. Special emphasis is put on the role of gauge invariance to establish the {kappa}-g{sub l} relation. By identifying the physical processes which are taken into account in {kappa} and g{sub l}, the validity and limitations of this relation will be discussed. The connections to the collective excitations and to nuclear Compton scattering are also shown.

  4. Near-threshold deuteron photodisintegration: An indirect determination of the Gerasimov-Drell-Hearn sum rule and forward spin polarizability (γ0) for the deuteron at low energies

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Blackston, M. A.; Perdue, B. A.; Tornow, W.; Weller, H. R.; Norum, B.; Sawatzky, B.; Prior, R. M.; Spraker, M. C.

    2008-01-01

    It is shown that a measurement of the analyzing power obtained with linearly polarized γ-rays and an unpolarized target can provide an indirect determination of two physical quantities. These are the Gerasimov-Drell-Hearn (GDH) sum rule integrand for the deuteron and the sum rule integrand for the forward spin polarizability (γ 0 ) near photodisintegration threshold. An analysis of data for the d(γ-vector,n)p reaction and other experiments is presented. A fit to the world data analyzed in this manner gives a GDH integral value of -603±43μb between the photodisintegration threshold and 6 MeV. This result is the first confirmation of the large contribution of the 1 S 0 (M1) transition predicted for the deuteron near photodisintegration threshold. In addition, a sum rule value of 3.75±0.18 fm 4 for γ 0 is obtained between photodisintegration threshold and 6 MeV. This is a first indirect confirmation of the leading-order effective field theory prediction for the forward spin-polarizability of the deuteron

  5. Ultrafast demagnetization in rare-earth alloys: the role of spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Loic; Solopow, Sergej; Radu, Florin; Holldack, Karsten; Mitzner, Rolf; Kachel, Torsten; Pontius, Niko; Foehlisch, Alexander; Radu, Ilie [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Abrudan, Radu [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Institut fuer Experimentalphysik/Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2015-07-01

    Understanding the ultrafast demagnetization occurring upon femtosecond laser excitation of a magnetic material is a fundamental problem of modern magnetism and its microscopic origin remains highly elusive and intensely debated. Particularly, the spin-orbit coupling mediating the spin-lattice interaction is one of the key ingredients. An intriguing case of tunable parallel to anti-parallel LS coupling can be realized in rare-earth (RE) alloys. For instance, Gd60Sm40 and Gd60Dy40 alloys have similar absolute S and L, but exhibit opposite LS coupling while displaying the same ferromagnetic ordering temperature of 250 K. They constitute thus an ideal case to investigate the particular role of the LS coupling on the ultrafast demagnetization. Here we report on the properties of such RE thin film alloys using X-ray Magnetic Circular Dichroism (XMCD) with the spin and orbit sum rules at M5,4 edges. Femtosecond time-resolved transmission XMCD measurements performed at the slicing beamline reveal the element-specific demagnetization time constant in these alloys. Funding from European Union through FEMTOSPIN is gratefully acknowledged.

  6. Sum rules in classical scattering

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1981-01-01

    This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients

  7. General solution of superconvergent sum rules for scattering of I=1 reggeons on baryons

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Khachatryan, G.N.

    1986-01-01

    Superconvergent sum rules for reggeon-particle scattering are applied to scattering of reggeons α i (i=π, ρ, A 2 ) with isospin I=1 on baryons with strangeness S=-1. The saturation scheme of these sum rules is determined on the basis of experimental data. Two series of baryon resonances with arbitrary isospins I and spins J=I+1/2 and J=I-1/2 are predicted. A general solution for vertices of interaction of these resonances with α i is found. Predictions for coupling vertices B α i B'(B, B'=Λ, Σ, Σ * ) agree well with the experiment. It is shown that the condition of sum rules saturation by minimal number of resonances brings to saturation schemes resulting from experimental data. A general solution of sum rules for scattering of α i reggeons on Ξ and Ω hyperons is analyzed

  8. Cosmic Sum Rules

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....

  9. Momentum sum rules for fragmentation functions

    International Nuclear Information System (INIS)

    Meissner, S.; Metz, A.; Pitonyak, D.

    2010-01-01

    Momentum sum rules for fragmentation functions are considered. In particular, we give a general proof of the Schaefer-Teryaev sum rule for the transverse momentum dependent Collins function. We also argue that corresponding sum rules for related fragmentation functions do not exist. Our model-independent analysis is supplemented by calculations in a simple field-theoretical model.

  10. Current algebra sum rules for Reggeons

    CERN Document Server

    Carlitz, R

    1972-01-01

    The interplay between the constraints of chiral SU/sub 2/*SU/sub 2/ symmetry and Regge asymptotic behaviour is investigated. The author reviews the derivation of various current algebra sum rules in a study of the reaction pi + alpha to pi + beta . These sum rules imply that all particles may be classified in multiplets of SU/sub 2/*SU/sub 2/ and that each of these multiplets may contain linear combinations of an infinite number of physical states. Extending his study to the reaction pi + alpha to pi + pi + beta , he derives new sum rules involving commutators of the axial charge with the reggeon coupling matrices of the rho and f Regge trajectories. Some applications of these new sum rules are noted, and the general utility of these and related sum rules is discussed. (17 refs).

  11. QCD Sum Rules, a Modern Perspective

    CERN Document Server

    Colangelo, Pietro; Colangelo, Pietro; Khodjamirian, Alexander

    2001-01-01

    An introduction to the method of QCD sum rules is given for those who want to learn how to use this method. Furthermore, we discuss various applications of sum rules, from the determination of quark masses to the calculation of hadronic form factors and structure functions. Finally, we explain the idea of the light-cone sum rules and outline the recent development of this approach.

  12. Light Cone Sum Rules for gamma*N ->Delta Transition Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    V.M. Braun; A. Lenz; G. Peters; A. Radyushkin

    2006-02-01

    A theoretical framework is suggested for the calculation of {gamma}* N {yields} {Delta} transition form factors using the light-cone sum rule approach. Leading-order sum rules are derived and compared with the existing experimental data. We find that the transition form factors in a several GeV region are dominated by the ''soft'' contributions that can be thought of as overlap integrals of the valence components of the hadron wave functions. The ''minus'' components of the quark fields contribute significantly to the result, which can be reinterpreted as large contributions of the quark orbital angular momentum.

  13. Study of QCD medium by sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)

    1998-08-01

    Though it has no analogue in condensed matter physics, the thermal QCD sum rules can, nevertheless, answer questions of condensed matter type about the QCD medium. The ingredients needed to write such sum rules, viz. the operator product expansion and the spectral representation at finite temperature, are reviewed in detail. The sum rules are then actually written for the case of correlation function of two vector currents. Collecting information on the thermal average of the higher dimension operators from other sources, we evaluate these sum rules for the temperature dependent {rho}-meson parameters. Possibility of extracting more information from the combined set of all sum rules from different correlation functions is also discussed. (author) 30 refs., 2 figs.

  14. Robinson's radiation damping sum rule: Reaffirmation and extension

    International Nuclear Information System (INIS)

    Mane, S.R.

    2011-01-01

    Robinson's radiation damping sum rule is one of the classic theorems of accelerator physics. Recently Orlov has claimed to find serious flaws in Robinson's proof of his sum rule. In view of the importance of the subject, I have independently examined the derivation of the Robinson radiation damping sum rule. Orlov's criticisms are without merit: I work through Robinson's derivation and demonstrate that Orlov's criticisms violate well-established mathematical theorems and are hence not valid. I also show that Robinson's derivation, and his damping sum rule, is valid in a larger domain than that treated by Robinson himself: Robinson derived his sum rule under the approximation of a small damping rate, but I show that Robinson's sum rule applies to arbitrary damping rates. I also display more concise derivations of the sum rule using matrix differential equations. I also show that Robinson's sum rule is valid in the vicinity of a parametric resonance.

  15. The nucleon spin sum rule

    International Nuclear Information System (INIS)

    Burkardt, M.

    2013-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum due to final state interactions as it leaves the target in a DIS experiment.

  16. Model dependence of energy-weighted sum rules

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1977-01-01

    The contribution of the nucleon-nucleon interaction to energy-weighted sum rules for electromagnetic multipole transitions is investigated. It is found that only isoscalar electric transitions might have model-independent energy-weighted sum rules. For these transitions, explicit momentum and angular momentum dependence of the nuclear force give rise to corrections to the sum rule which are found to be negligibly small, thus confirming the model independence of these specific sum rules. These conclusions are unaffected by correlation effects. (author)

  17. Electronuclear sum rules for the lightest nuclei

    International Nuclear Information System (INIS)

    Efros, V.D.

    1992-01-01

    It is shown that the model-independent longitudinal electronuclear sum rules for nuclei with A = 3 and A = 4 have an accuracy on the order of a percent in the traditional single-nucleon approximation with free nucleons for the nuclear charge-density operator. This makes it possible to test this approximation by using these sum rules. The longitudinal sum rules for A = 3 and A = 4 are calculated using the wave functions of these nuclei corresponding to a large set of realistic NN interactions. The values of the model-independent sum rules lie in the range of values calculated by this method. Model-independent expressions are obtained for the transverse sum rules for nuclei with A = 3 and A = 4. These sum rules are calculated using a large set of realistic wave functions of these nuclei. The contribution of the convection current and the changes in the results for different versions of realistic NN forces are given. 29 refs., 4 tabs

  18. Inverse-moment chiral sum rules

    International Nuclear Information System (INIS)

    Golowich, E.; Kambor, J.

    1996-01-01

    A general class of inverse-moment sum rules was previously derived by the authors in a chiral perturbation theory (ChPT) study at two-loop order of the isospin and hypercharge vector-current propagators. Here, we address the evaluation of the inverse-moment sum rules in terms of existing data and theoretical constraints. Two kinds of sum rules are seen to occur: those which contain as-yet undetermined O(q 6 ) counterterms and those free of such quantities. We use the former to obtain phenomenological evaluations of two O(q 6 ) counterterms. Light is shed on the important but difficult issue regarding contributions of higher orders in the ChPT expansion. copyright 1996 The American Physical Society

  19. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    Science.gov (United States)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.

    2017-09-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.

  20. QCD sum-rules for V-A spectral functions

    International Nuclear Information System (INIS)

    Chakrabarti, J.; Mathur, V.S.

    1980-01-01

    The Borel transformation technique of Shifman et al is used to obtain QCD sum-rules for V-A spectral functions. In contrast to the situation in the original Weinberg sum-rules and those of Bernard et al, the problem of saturating the sum-rules by low lying resonances is brought under control. Furthermore, the present sum-rules, on saturation, directly determine useful phenomenological parameters

  1. The Spin Structure Function $g_1^{\\rm p}$ of the Proton and a Test of the Bjorken Sum Rule

    CERN Document Server

    Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2016-02-10

    New results for the double spin asymmetry $A_1^{\\rm p}$ and the proton longitudinal spin structure function $g_1^{\\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\\rm p}(x)$ by about a factor of two in the region $x\\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\\Delta \\Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\\rm p}$. The uncertainty of $\\Delta \\Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\\rm...

  2. Neutrino mass sum-rule

    Science.gov (United States)

    Damanik, Asan

    2018-03-01

    Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.

  3. Sum rules in the response function method

    International Nuclear Information System (INIS)

    Takayanagi, Kazuo

    1990-01-01

    Sum rules in the response function method are studied in detail. A sum rule can be obtained theoretically by integrating the imaginary part of the response function over the excitation energy with a corresponding energy weight. Generally, the response function is calculated perturbatively in terms of the residual interaction, and the expansion can be described by diagrammatic methods. In this paper, we present a classification of the diagrams so as to clarify which diagram has what contribution to which sum rule. This will allow us to get insight into the contributions to the sum rules of all the processes expressed by Goldstone diagrams. (orig.)

  4. Sum rules for nuclear collective excitations

    International Nuclear Information System (INIS)

    Bohigas, O.

    1978-07-01

    Characterizations of the response function and of integral properties of the strength function via a moment expansion are discussed. Sum rule expressions for the moments in the RPA are derived. The validity of these sum rules for both density independent and density dependent interactions is proved. For forces of the Skyrme type, analytic expressions for the plus one and plus three energy weighted sum rules are given for isoscalar monopole and quadrupole operators. From these, a close relationship between the monopole and quadrupole energies is shown and their dependence on incompressibility and effective mass is studied. The inverse energy weighted sum rule is computed numerically for the monopole operator, and an upper bound for the width of the monopole resonance is given. Finally the reliability of moments given by the RPA with effective interactions is discussed using simple soluble models for the hamiltonian, and also by comparison with experimental data

  5. QCD sum rules in a Bayesian approach

    International Nuclear Information System (INIS)

    Gubler, Philipp; Oka, Makoto

    2011-01-01

    A novel technique is developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. The main advantage of this approach lies in its ability of directly generating the spectral function of a given operator. This is done without the need of making an assumption about the specific functional form of the spectral function, such as in the 'pole + continuum' ansatz that is frequently used in QCD sum rule studies. Therefore, with this method it should in principle be possible to distinguish narrow pole structures form continuum states. To check whether meaningful results can be extracted within this approach, we have first investigated the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results exhibit a significant peak in the region of the experimentally observed ρ-meson mass, which agrees with earlier QCD sum rules studies and shows that the Maximum Entropy Method is a useful tool for analyzing QCD sum rules.

  6. 'Sum rules' for preequilibrium reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    1981-03-01

    Evidence that suggests a correct relationship between the optical transmission matrix, P, and the several correlation widths, gamma sub(n), found in nsmission matrix, P, and the several correlation widths, n, found in multistep compound (preequilibrium) nuclear reactions, is presented. A second sum rule is also derived within the shell model approach to nuclear reactions. Indications of the potential usefulness of the sum rules in preequilibrium studies are given. (Author) [pt

  7. Transition sum rules in the shell model

    Science.gov (United States)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  8. A Bayesian analysis of QCD sum rules

    International Nuclear Information System (INIS)

    Gubler, Philipp; Oka, Makoto

    2011-01-01

    A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.

  9. Adler Function, DIS sum rules and Crewther Relations

    International Nuclear Information System (INIS)

    Baikov, P.A.; Chetyrkin, K.G.; Kuehn, J.H.

    2010-01-01

    The current status of the Adler function and two closely related Deep Inelastic Scattering (DIS) sum rules, namely, the Bjorken sum rule for polarized DIS and the Gross-Llewellyn Smith sum rule are briefly reviewed. A new result is presented: an analytical calculation of the coefficient function of the latter sum rule in a generic gauge theory in order O(α s 4 ). It is demonstrated that the corresponding Crewther relation allows to fix two of three colour structures in the O(α s 4 ) contribution to the singlet part of the Adler function.

  10. Isospin sum rules for inclusive cross-sections

    NARCIS (Netherlands)

    Rotelli, P.; Suttorp, L.G.

    1972-01-01

    A systematic analysis of isospin sum rules is presented for the distribution functions of strong, electromagnetic weak inclusive processes. The general expression for these sum rules is given and some new examples are presented.

  11. The Spin-dependent Structure Function of the Proton $g_{1}^p$ and a Test of the Bjorken Sum Rule

    CERN Document Server

    Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chaberny, D.; Cotic, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schluter, T.; Schopferer, S.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    The inclusive double-spin asymmetry, $A_{1}^{p}$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x < 0.7 and improve the statistical precision of g_{1}^{p}(x) by a factor of two in the region x < 0.02. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants g_A/g_V = 1.28+-0.07(stat)+-0.10(syst).

  12. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung

    2015-04-06

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  13. Angular dependence of spin-orbit spin-transfer torques

    KAUST Repository

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-01-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  14. A bayesian approach to QCD sum rules

    International Nuclear Information System (INIS)

    Gubler, Philipp; Oka, Makoto

    2010-01-01

    QCD sum rules are analyzed with the help of the Maximum Entropy Method. We develop a new technique based on the Bayesion inference theory, which allows us to directly obtain the spectral function of a given correlator from the results of the operator product expansion given in the deep euclidean 4-momentum region. The most important advantage of this approach is that one does not have to make any a priori assumptions about the functional form of the spectral function, such as the 'pole + continuum' ansatz that has been widely used in QCD sum rule studies, but only needs to specify the asymptotic values of the spectral function at high and low energies as an input. As a first test of the applicability of this method, we have analyzed the sum rules of the ρ-meson, a case where the sum rules are known to work well. Our results show a clear peak structure in the region of the experimental mass of the ρ-meson. We thus demonstrate that the Maximum Entropy Method is successfully applied and that it is an efficient tool in the analysis of QCD sum rules. (author)

  15. The DHG sum rule measured with medium energy photons

    International Nuclear Information System (INIS)

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-01-01

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements

  16. QCD sum rules and applications to nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T D [Maryland Univ., College Park, MD (United States). Dept. of Physics; [Washington Univ., Seattle, WA (United States). Dept. of Physics and Inst. for Nuclear Theory; Furnstahl, R J [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Griegel, D K [Maryland Univ., College Park, MD (United States). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada); Xuemin, J

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author). 153 refs., 8 figs.

  17. QCD sum rules and applications to nuclear physics

    International Nuclear Information System (INIS)

    Cohen, T.D.; Xuemin, J.

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author)

  18. Proof of Kochen–Specker Theorem: Conversion of Product Rule to Sum Rule

    International Nuclear Information System (INIS)

    Toh, S.P.; Zainuddin, Hishamuddin

    2009-01-01

    Valuation functions of observables in quantum mechanics are often expected to obey two constraints called the sum rule and product rule. However, the Kochen–Specker (KS) theorem shows that for a Hilbert space of quantum mechanics of dimension d ≤ 3, these constraints contradict individually with the assumption of value definiteness. The two rules are not irrelated and Peres [Found. Phys. 26 (1996) 807] has conceived a method of converting the product rule into a sum rule for the case of two qubits. Here we apply this method to a proof provided by Mermin based on the product rule for a three-qubit system involving nine operators. We provide the conversion of this proof to one based on sum rule involving ten operators. (general)

  19. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  20. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  1. Gaussian sum rules for optical functions

    International Nuclear Information System (INIS)

    Kimel, I.

    1981-12-01

    A new (Gaussian) type of sum rules (GSR) for several optical functions, is presented. The functions considered are: dielectric permeability, refractive index, energy loss function, rotatory power and ellipticity (circular dichroism). While reducing to the usual type of sum rules in a certain limit, the GSR contain in general, a Gaussian factor that serves to improve convergence. GSR might be useful in analysing experimental data. (Author) [pt

  2. The Gross-Llewellyn Smith sum rule

    International Nuclear Information System (INIS)

    Scott, W.G.

    1981-01-01

    We present the most recent data on the Gross-Llewellyn Smith sum rule obtained from the combined BEBC Narrow Band Neon and GGM-PS Freon neutrino/antineutrino experiments. The data for the Gross-Llewellyn Smith sum rule as a function of q 2 suggest a smaller value for the QCD coupling constant parameter Λ than is obtained from the analysis of the higher moments. (author)

  3. Singular f-sum rule for superfluid 4He

    International Nuclear Information System (INIS)

    Wong, V.K.

    1979-01-01

    The validity and applicability to inelastic neutron scattering of a singular f-sum rule for superfluid helium, proposed by Griffin to explain the rhosub(s) dependence in S(k, ω) as observed by Woods and Svensson, are examined in the light of similar sum rules rigorously derived for anharmonic crystals and Bose liquids. It is concluded that the singular f-sum rules are only of microscopic interest. (Auth,)

  4. Superconvergent sum rules for the normal reflectivity

    International Nuclear Information System (INIS)

    Furuya, K.; Zimerman, A.H.; Villani, A.

    1976-05-01

    Families of superconvergent relations for the normal reflectivity function are written. Sum rules connecting the difference of phases of the reflectivities of two materials are also considered. Finally superconvergence relations and sum rules for magneto-reflectivity in the Faraday and Voigt regimes are also studied

  5. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  6. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  7. Spectral sum rules for the three-body problem

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1982-01-01

    This paper derives a number of sum rules for nonrelativistic three-body scattering. These rules are valid for any finite region μ in the six-dimensional coordinate space. They relate energy moments of the trace of the onshell time-delay operator to the energy-weighted probability for finding the three-body bound-state wave functions in the region μ. If μ is all of the six-dimensional space, the global form of the sum rules is obtained. In this form the rules constitute higher-order Levinson's theorems for the three-body problem. Finally, the sum rules are extended to allow the energy momtns have complex powers

  8. Sum rules for neutrino oscillations

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.

    1981-01-01

    Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru

  9. Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, T. D., E-mail: tds32@cam.ac.uk; Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Wang, M.; Hindmarch, A. T.; Rushforth, A. W. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-02-10

    Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.

  10. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  11. Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2017-06-01

    Full Text Available Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a 6LiD target. The data were taken at 160 GeV beam energy and the results are shown for the kinematic range 1(GeV/c24GeV/c2 in the mass of the hadronic final state. The deuteron double-spin asymmetry A1d and the deuteron longitudinal-spin structure function g1d are presented in bins of x and Q2. Towards lowest accessible values of x, g1d decreases and becomes consistent with zero within uncertainties. The presented final g1d values together with the recently published final g1p values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the g1 world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge a0, which is identified in the MS‾ renormalisation scheme with the total contribution of quark helicities to the nucleon spin, is extracted at next-to-leading order accuracy from only the COMPASS deuteron data: a0(Q2=3(GeV/c2=0.32±0.02stat±0.04syst±0.05evol. Together with the recent results on the proton spin structure function g1p, the results on g1d constitute the COMPASS legacy on the measurements of g1 through inclusive spin-dependent deep inelastic scattering.

  12. Systematics of strength function sum rules

    Directory of Open Access Journals (Sweden)

    Calvin W. Johnson

    2015-11-01

    Full Text Available Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens, violation of the generalized Brink–Axel hypothesis is unsurprising: one expects sum rules to evolve with excitation energy. Furthermore, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive or negative (attractive.

  13. Vacuum structure and QCD sum rules

    International Nuclear Information System (INIS)

    Shifman, M.A.

    1992-01-01

    The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have originally been developed in connection with the QCD sum rules can be and are successfully applied in related fields, as supersymmetric gauge theories, nontraditional schemes of quarks and leptons, etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This volume presents a collection of papers which provide an overview of all basic elements of the sum rule approach and priority has been given to the works which seemed most useful from a pedagogical point of view

  14. Vacuum structure and QCD sum rules

    International Nuclear Information System (INIS)

    Shifman, M.A.

    1992-01-01

    The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have been originally developed in connection with the QCD sum rules can be and are successfully applied in related fields, such as supersymmetric gauge theories, nontraditional schemes of quarks and leptons, etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This collection of papers provides an overview of all basic elements of the sum rule approach. Priority has been given to those works which seemed most useful from a pedagogical point of view

  15. Spectral function sum rules in quantum chromodynamics. I. Charged currents sector

    International Nuclear Information System (INIS)

    Floratos, E.G.; Narison, Stephan; Rafael, Eduardo de.

    1978-07-01

    The Weinberg sum rules of the algebra of currents are reconsidered in the light of quantum chromodynamics (QCD). The authors derive new finite energy sum rules which replace the old Weinberg sum rules. The new sum rules are convergent and the rate of convergence is explicitly calculated in perturbative QCD at the one loop approximation. Phenomenological applications of these sum rules in the charged current sector are also discussed

  16. The α3S corrections to the Bjorken sum rule for polarized electro-production and to the Gross-Llewellyn Smith sum rule

    International Nuclear Information System (INIS)

    Larin, S.A.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica; Vermaseren, J.A.M.

    1990-01-01

    The next-next-to-leading order QCD corrections to the Gross-Llewellyn Smith sum rule for deep inelastic neutrino-nucleon scattering and to the Bjorken sum rule for polarized electron-nucleon scattering have been computed. This involved the proper treatment of γ 5 inside the loop integrals with dimensional regularization. It is found that the difference between the two sum rules are entirely due to a class of 6 three loop graphs and is of the order of 1% of the leading QCD term. Hence the Q 2 behavior of both sum rules should be the same if the physics is described adequately by the lower order terms of perturbative QCD. (author). 12 refs.; 2 figs.; 4 tabs

  17. Energy spectrum, the spin polarization, and the optical selection rules of the Kronig-Penney superlattice model with spin-orbit coupling

    Science.gov (United States)

    Li, Rui

    2018-02-01

    The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.

  18. Spin-orbit and spin-lattice coupling

    International Nuclear Information System (INIS)

    Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu

    2014-01-01

    We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)

  19. Cosmic-ray sum rules

    International Nuclear Information System (INIS)

    Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco

    2011-01-01

    We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays; we show how they can be used to predict the positron fraction at energies not yet explored by current experiments, and to constrain specific models.

  20. Compton scattering from nuclei and photo-absorption sum rules

    International Nuclear Information System (INIS)

    Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2011-01-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new 'constituent quark model' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.

  1. On contribution of instantons to nucleon sum rules

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1989-01-01

    The contribution of instantons to nucleon QCD sum rules is obtained. It is shown that this contribution does provide stabilization of the sum rules and leads to formation of a nucleon as a bound state of quarks in the instanton field. 17 refs.; 3 figs

  2. Adler-Weisberger sum rule for WLWL→WLWL scattering

    International Nuclear Information System (INIS)

    Pham, T.N.

    1991-01-01

    We analyse the Adler-Weisberger sum rule for W L W L →W L W L scattering. We find that at some energy, the W L W L total cross section must be large to saturate the sum rule. Measurements at future colliders would be needed to check the sum rule and to obtain the decay rates Γ(H→W L W L , Z L Z L ) which would be modified by the existence of a P-wave vector meson resonance in the standard model with strongly interacting Higgs sector or in technicolour models. (orig.)

  3. Parity of Θ+(1540) from QCD sum rules

    International Nuclear Information System (INIS)

    Lee, Su Houng; Kim, Hungchong; Kwon, Youngshin

    2005-01-01

    The QCD sum rule for the pentaquark Θ + , first analyzed by Sugiyama, Doi and Oka, is reanalyzed with a phenomenological side that explicitly includes the contribution from the two-particle reducible kaon-nucleon intermediate state. The magnitude for the overlap of the Θ + interpolating current with the kaon-nucleon state is obtained by using soft-kaon theorem and a separate sum rule for the ground state nucleon with the pentaquark nucleon interpolating current. It is found that the K-N intermediate state constitutes only 10% of the sum rule so that the original claim that the parity of Θ + is negative remains valid

  4. Searching for hidden-charm baryonium signals in QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Xing; Zhou, Dan [Beihang University, School of Physics, Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University, Research Center for Hadron and CSR Physics, Institute of Modern Physics of CAS, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics, State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)

    2016-11-15

    We give an explicit QCD sum rule investigation for hidden-charm baryonium states with the quark content u anti ud anti dc anti c, spin J = 0/1/2/3, and of both positive and negative parities. We systematically construct the relevant local hidden-charm baryonium interpolating currents, which can actually couple to various structures, including hidden-charm baryonium states, charmonium states plus two pions, and hidden-charm tetraquark states plus one pion, etc. We do not know which structure these currents couple to at the beginning, but after sum rule analyses we can obtain some information. We find some of them can couple to hidden-charm baryonium states, using which we evaluate the masses of the lowest-lying hidden-charm baryonium states with quantum numbers J{sup P} = 2{sup -}/3{sup -}/0{sup +}/1{sup +}/2{sup +} to be around 5.0 GeV. We suggest to search for hidden-charm baryonium states, especially the one of J = 3{sup -}, in the D-wave J/ψππ and P-wave J/ψρ and J/ψω channels in this energy region. (orig.)

  5. Sum rules for the quarkonium systems

    International Nuclear Information System (INIS)

    Burnel, A.; Caprasse, H.

    1980-01-01

    In the framework of the radial Schroedinger equation we derive in a very simple way sum rules relating the potential to physical quantities such as the energy eigenvalues and the square of the lth derivative of the eigenfunctions at the origin. These sum rules contain as particular cases well-known results such as the quantum version of the Clausius theorem in classical mechanics as well as Kramers's relations for the Coulomb potential. Several illustrations are given and the possibilities of applying them to the quarkonium systems are considered

  6. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  7. Sum rules for nuclear excitations with the Skyrme-Landau interaction

    International Nuclear Information System (INIS)

    Liu Kehfei; Luo Hongde; Ma Zhongyu; Feng Man; Shen Qingbiao

    1991-01-01

    The energy-weighted sum rules for electric, magnetic, Fermi and Gamow-Teller transitions with the Skyrme-Landau interaction are derived from the double commutators and numerically calculated in a HF + RPA formalism. As a numerical check of the Thouless theorem, our self-consistent calculations show that the calculated RPA strengths exhaust more than 85% of the sum rules in most cases. The well known non-energy-weighted sum rules for Fermi and Gamow-Teller transitions are also checked numerically. The sum rules are exhausted by more than 94% in these cases. (orig.)

  8. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    Science.gov (United States)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  9. Light cone sum rules in nonabelian gauge field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1981-03-24

    The author examines, in the context of nonabelian gauge field theory, the derivation of the light cone sum rules which were obtained earlier on the assumption of dominance of canonical singularity in the current commutator on the light cone. The retarded scaling functions appearing in the sum rules are numbers known in terms of the charges of the quarks and the number of quarks and gluons in the theory. Possible applications of the sum rules are suggested.

  10. Measurement of the spin dependent structure functions of proton and neutron

    International Nuclear Information System (INIS)

    Rith, K.

    1989-01-01

    Recent results from the EMC experiment on the spin dependent structure function g 1 p (x) of the proton are discussed. They suggest that the nucleon spin does not originate from quark spins but rather from angular orbital momentum and gluon contributions. A proposed experiment at HERA is presented which will allow a very accurate measurement of the spin dependent structure functions and their integrals of both proton and neutron and a precise test of the Bjorken sum rule. (orig.)

  11. Light cone sum rules for single-pion electroproduction

    International Nuclear Information System (INIS)

    Mallik, S.

    1978-01-01

    Light cone dispersion sum rules (of low energy and superconvergence types) are derived for nucleon matrix elements of the commutator involving electromagnetic and divergence of axial vector currents. The superconvergence type sum rules in the fixed mass limit are rewritten without requiring the knowledge of Regge subtractions. The retarded scaling functions occurring in these sum rules are evaluated within the framework of quark light cone algebra of currents. Besides a general consistency check of the framework underlying the derivation, the author infers, on the basis of crude evaluation of scaling functions, an upper limit of 100 MeV for the bare mass of nonstrange quarks. (Auth.)

  12. Moessbauer sum rules for use with synchrotron sources

    International Nuclear Information System (INIS)

    Lipkin, Harry J.

    1999-01-01

    The availability of tunable synchrotron radiation sources with millivolt resolution has opened new prospects for exploring dynamics of complex systems with Moessbauer spectroscopy. Early Moessbauer treatments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experiments, with emphasis on the unique new conditions absent in neutron scattering and arising in resonance scattering: prompt absorption, delayed emission, recoil-free transitions and coherent forward scattering. The first moment sum rule normalizes the inelastic spectrum. New sum rules obtained for higher moments include the third moment proportional to the second derivative of the potential acting on the Moessbauer nucleus and independent of temperature in the the harmonic approximation

  13. Sum Rules, Classical and Quantum - A Pedagogical Approach

    Science.gov (United States)

    Karstens, William; Smith, David Y.

    2014-03-01

    Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  14. Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier

    Directory of Open Access Journals (Sweden)

    Somaieh Ahmadi

    2012-03-01

    Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

  15. I. Photon transition amplitudes predicted by the transformation between current and constituent quarks. II. Saturation of the Drell--Hearn--Gerasimov sum rule

    International Nuclear Information System (INIS)

    Karliner, I.

    1975-01-01

    The SU(6)-W group structure appears in both current algebra and in the spectroscopy of hadrons. Recently, a considerable progress has taken place in relating these two SU(6)-W structures. The consequences of the proposed correspondence, as it applies to real photon transitions, are investigated in this work. The general structure of such transitions is shown, and a set of resulting selection rules is presented for the multipole character of the photon amplitudes. Many specific amplitudes for both mesons and baryons are worked out and their signs and magnitudes are compared with available experimental data. The saturation of the Drell-Hearn-Gerasimov sum rule for the forward spin-flip amplitude of nucleon Compton scattering was investigated. The sum rule saturation was studied using recent analyses of single pion photoproduction in the region up to photon laboratory energies of 1.2 GeV. The original sum rule is decomposed into separate sum rules originating from different isospin compnents of the electromagnetic current. All three sum rules receive important nonresonant as well as resonant contributions. The isovector-isovector sum rule, whose contributions are known best, is found to be nearly saturated, lending support to the assumptions underlying the sum rules. The failure of the isovector-isoscalar sumrule to be saturated is then presumably to be blamed on inadequate data for inelastic contributions. (Diss. Abs,r. Int., B)

  16. Derivation of sum rules for quark and baryon fields

    International Nuclear Information System (INIS)

    Bongardt, K.

    1978-01-01

    In an analogous way to the Weinberg sum rules, two spectral-function sum rules for quark and baryon fields are derived by means of the concept of lightlike charges. The baryon sum rules are valid for the case of SU 3 as well as for SU 4 and the one-particle approximation yields a linear mass relation. This relation is not in disagreement with the normal linear GMO formula for the baryons. The calculated masses of the first resonance states agree very well with the experimental data

  17. New QCD sum rules for nucleon axial-vector coupling constants

    International Nuclear Information System (INIS)

    Lee, F.X.; Leinweber, D.B.; Jin, X.

    1997-01-01

    Two new sets of QCD sum rules for the nucleon axial-vector coupling constants are derived using the external-field technique and generalized interpolating fields. An in-depth study of the predicative ability of these sum rules is carried out using a Monte Carlo based uncertainty analysis. The results show that the standard implementation of the QCD sum rule method has only marginal predicative power for the nucleon axial-vector coupling constants, as the relative errors are large. The errors range from approximately 50% to 100% compared to the nucleon mass obtained from the same method, which has only a 10%- 25% error. The origin of the large errors is examined. Previous analyses of these coupling constants are based on sum rules that have poor operator product expansion convergence and large continuum contributions. Preferred sum rules are identified and their predictions are obtained. We also investigate the new sum rules with an alternative treatment of the problematic transitions which are not exponentially suppressed in the standard treatment. The alternative treatment provides exponential suppression of their contributions relative to the ground state. Implications for other nucleon current matrix elements are also discussed. copyright 1997 The American Physical Society

  18. On the Laplace transform of the Weinberg type sum rules

    International Nuclear Information System (INIS)

    Narison, S.

    1981-09-01

    We consider the Laplace transform of various sum rules of the Weinberg type including the leading non-perturbative effects. We show from the third type Weinberg sum rules that 7.5 to 8.9 1 coupling to the W boson, while the second sum rule gives an upper bound on the A 1 mass (Msub(A 1 ) < or approx. 1.25 GeV). (author)

  19. Integrals of Lagrange functions and sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Baye, Daniel, E-mail: dbaye@ulb.ac.be [Physique Quantique, CP 165/82, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium); Physique Nucleaire Theorique et Physique Mathematique, CP 229, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium)

    2011-09-30

    Exact values are derived for some matrix elements of Lagrange functions, i.e. orthonormal cardinal functions, constructed from orthogonal polynomials. They are obtained with exact Gauss quadratures supplemented by corrections. In the particular case of Lagrange-Laguerre and shifted Lagrange-Jacobi functions, sum rules provide exact values for matrix elements of 1/x and 1/x{sup 2} as well as for the kinetic energy. From these expressions, new sum rules involving Laguerre and shifted Jacobi zeros and weights are derived. (paper)

  20. Inclusive sum rules and spectra of neutrons at the ISR

    International Nuclear Information System (INIS)

    Grigoryan, A.A.

    1975-01-01

    Neutron spectra in pp collisions at ISR energies are studied in the framework of sum rules for inclusive processes. The contributions of protons, π- and E- mesons to the energy sum rule are calculated at √5 = 53 GeV. It is shown by means of this sum rule that the spectra of neutrons at the ISR are in contradiction with the spectra of other particles also measured at the ISR

  1. Energy-weighted sum rules for mesons in hot and dense matter

    NARCIS (Netherlands)

    Cabrera, D.; Polls, A.; Ramos, A.; Tolos Rigueiro, Laura

    2009-01-01

    We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific

  2. Complex-energy approach to sum rules within nuclear density functional theory

    Science.gov (United States)

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-01

    Background: The linear response of the nucleus to an external field contains unique information about the effective interaction, the correlations governing the behavior of the many-body system, and the properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or the nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. Purpose: To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random-phase approximation (QRPA). Methods: To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse-energy-weighted sum rule. Results: We derive the sum-rule expressions from the contour integration of the complex-energy FAM. We demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA. We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the dielectric theorem for the inverse-energy-weighted sum rule to nuclear density functional theory in cases when the EDF is not based on a Hamiltonian. Conclusions: The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method

  3. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-06-19

    In the present thesis we introduce the reader to the field of spintronics and explore new phenomena, such as spin transfer torques, spin filtering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.

  4. Light-cone sum rules: A SCET-based formulation

    CERN Document Server

    De Fazio, F; Hurth, Tobias; Feldmann, Th.

    2007-01-01

    We describe the construction of light-cone sum rules (LCSRs) for exclusive $B$-meson decays into light energetic hadrons from correlation functions within soft-collinear effective theory (SCET). As an example, we consider the SCET sum rule for the $B \\to \\pi$ transition form factor at large recoil, including radiative corrections from hard-collinear loop diagrams at first order in the strong coupling constant.

  5. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  6. 3He electron scattering sum rules

    International Nuclear Information System (INIS)

    Kim, Y.E.; Tornow, V.

    1982-01-01

    Electron scattering sum rules for 3 He are derived with a realistic ground-state wave function. The theoretical results are compared with the experimentally measured integrated cross sections. (author)

  7. Counter-ions at single charged wall: Sum rules.

    Science.gov (United States)

    Samaj, Ladislav

    2013-09-01

    For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

  8. Moessbauer sum rules for use with synchrotron sources

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1995-01-01

    The availability of tunable synchrotron radiation sources with millivolt resolution has opened prospects for exploring dynamics of complex systems with Moessbauer spectroscopy. Early Moessbauer treatments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experiments, with emphasis on the unique conditions absent in neutron scattering and arising in resonance scattering: prompt absorption, delayed emission, recoilfree transitions, and coherent forward scattering. The first moment sum rule normalizes the inelastic spectrum. Sum rules obtained for higher moments include the third moment proportional to the second derivative of the potential acting on the Moessbauer nucleus and independent of temperature in the harmonic approximation. Interesting information may be obtained on the behavior of the potential acting on this nucleus in samples not easily investigated with neutron scattering, e.g., small samples, thin films, time-dependent structures, and amorphous-metallic high pressure phases

  9. Spin Relaxation and Manipulation in Spin-orbit Qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  10. QCD sum rule for nucleon in nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.; Sarkar, Sourav

    2010-01-01

    We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities. (orig.)

  11. GDH sum rule measurement at low Q2

    International Nuclear Information System (INIS)

    Bianchi, N.

    1996-01-01

    The Gerasimov-Drell-Hearn (GDH) sum rule is based on a general dispersive relation for the forward Compton scattering. Multipole analysis suggested the possible violation of the sum rule. Some propositions have been made to modify the original GDH expression. An effort is now being made in several laboratories to shred some light on this topic. The purposes of the different planned experiments are briefly presented according to their Q 2 range

  12. Competition of multiplet and spin-orbit splitting in open-shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich (Germany)

    2016-07-01

    To study the trends in the spectra of open-shells across the periodic table, we perform density functional calculations for atoms and ions. We collect the Slater-Condon and spin-orbit parameters from the resulting self-consistent radial wave functions and potentials. To make these easily accessible, we provide a simple least squares fitting formula in the spirit of Slater's rules. Given these parameters we calculate the many-body spectra in LS-, intermediate-, and jj-coupling. To assess the relative importance of Coulomb and spin-orbit interactions, we estimate the width of the spectra by calculating the eigen-energy variance of the corresponding Hamiltonian using a simple formula that does not require diagonalizing a complicated many-body Hamiltonian.

  13. On QCD sum rules of the Laplace transform type and light quark masses

    International Nuclear Information System (INIS)

    Narison, S.

    1981-04-01

    We discuss the relation between the usual dispersion relation sum rules and the Laplace transform type sum rules in quantum chromodynamics. Two specific examples corresponding to the S-coupling constant sum rule and the light quark masses sum rules are considered. An interpretation, within QCD, of Leutwyler's formula for the current algebra quark masses is also given

  14. Fixed poles in electromagnetic processes and modification of Adler's neutrino sum rule due to quark anomalous magnetic moment

    International Nuclear Information System (INIS)

    Khare, A.

    1975-01-01

    We show that Adler's sum rule for neutrino scattering and Bjorken's inequality for electron-proton scattering are modified if quark has finite anomalous magnetic moment ksub(q). We also show that if ksub(q) is nonzero, there exist fixed poles in spin-flip Compton scattering as well as in charged pion photoproduction. (auth.)

  15. Spin-orbit interaction in multiple quantum wells

    International Nuclear Information System (INIS)

    Hao, Ya-Fei

    2015-01-01

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices

  16. Spin-orbit interaction in multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  17. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  18. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure

    KAUST Repository

    Wang, Xuhui; Ortiz Pauyac, Christian; Manchon, Aurelien

    2014-01-01

    Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.

  19. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure

    KAUST Repository

    Wang, Xuhui

    2014-02-07

    Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.

  20. Symbolic methods for the evaluation of sum rules of Bessel functions

    International Nuclear Information System (INIS)

    Babusci, D.; Dattoli, G.; Górska, K.; Penson, K. A.

    2013-01-01

    The use of the umbral formalism allows a significant simplification of the derivation of sum rules involving products of special functions and polynomials. We rederive in this way known sum rules and addition theorems for Bessel functions. Furthermore, we obtain a set of new closed form sum rules involving various special polynomials and Bessel functions. The examples we consider are relevant for applications ranging from plasma physics to quantum optics

  1. B --> K$*\\gamma$ from hybrid sum rule

    CERN Document Server

    Narison, Stéphan

    1994-01-01

    Using the {\\it hybrid} moments-Laplace sum rule (HSR), which is well-defined for M_b \\rar \\infty, in contrast with the popular double Borel (Laplace) sum rule (DLSR), which blows up in this limit when applied to the heavy-to-light processes, we show that the form factor of the B \\rar K^* \\ \\gamma radiative transition is dominated by the light-quark condensate for M_b \\rar \\infty and behaves like \\sqrt M_b. The form factor is found to be F^{B\\rar K^*}_1(0) \\simeq (30.8 \\pm 1.3 \\pm 3.6 \\pm 0.6)\\times 10^{-2}, where the errors come respectively from the procedure in the sum rule analysis, the errors in the input and in the SU(3)_f-breaking parameters. This result leads to Br(B\\rar K^* \\ \\gamma) \\simeq (4.45 \\pm 1.12) \\times 10^{-5} in agreement with the recent CLEO data. Parametrization of the M_b-dependence of the form factor including the SU(3)_f-breaking effects is given in (26), which leads to F^{B\\rar K^*}_1(0)/ F^{B\\rar \\rho}_1(0) \\simeq (1.14 \\pm 0.02).

  2. Spin manipulation and relaxation in spin-orbit qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  3. Neutrino mass sum rules and symmetries of the mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gehrlein, Julia [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Spinrath, Martin [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); National Center for Theoretical Sciences, Physics Division, Hsinchu (China)

    2017-05-15

    Neutrino mass sum rules have recently gained again more attention as a powerful tool to discriminate and test various flavour models in the near future. A related question which has not yet been discussed fully satisfactorily was the origin of these sum rules and if they are related to any residual or accidental symmetry. We will address this open issue here systematically and find previous statements confirmed. Namely, the sum rules are not related to any enhanced symmetry of the Lagrangian after family symmetry breaking but they are simply the result of a reduction of free parameters due to skillful model building. (orig.)

  4. Sum rules for quasifree scattering of hadrons

    Science.gov (United States)

    Peterson, R. J.

    2018-02-01

    The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.

  5. Orbital selective spin-texture in a topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2015-05-15

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to an orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.

  6. Spectral sum rule for time delay in R2

    International Nuclear Information System (INIS)

    Osborn, T.A.; Sinha, K.B.; Bolle, D.; Danneels, C.

    1985-01-01

    A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the potential class velement ofL 4 /sup // 3 (R 2 ). The sum rule relates the integral over all scattering energies of the trace of the time-delay operator for a finite region Σis contained inR 2 to the contributions in Σ of the pure point and singularly continuous spectra

  7. A Bayesian analysis of the nucleon QCD sum rules

    International Nuclear Information System (INIS)

    Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto

    2011-01-01

    QCD sum rules of the nucleon channel are reanalyzed, using the maximum-entropy method (MEM). This new approach, based on the Bayesian probability theory, does not restrict the spectral function to the usual ''pole + continuum'' form, allowing a more flexible investigation of the nucleon spectral function. Making use of this flexibility, we are able to investigate the spectral functions of various interpolating fields, finding that the nucleon ground state mainly couples to an operator containing a scalar diquark. Moreover, we formulate the Gaussian sum rule for the nucleon channel and find that it is more suitable for the MEM analysis to extract the nucleon pole in the region of its experimental value, while the Borel sum rule does not contain enough information to clearly separate the nucleon pole from the continuum. (orig.)

  8. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  9. Forward Compton scattering with weak neutral current: Constraints from sum rules

    Directory of Open Access Journals (Sweden)

    Mikhail Gorchtein

    2015-07-01

    Full Text Available We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. We address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν,0. For the dispersive γZ-box correction to the proton's weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributions by a factor of two. The finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.

  10. Polarizability sum rules in QED

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1978-01-01

    The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)

  11. Chiral symmetry breaking parameters from QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Bern Univ. (Switzerland). Inst. fuer Theoretische Physik)

    1982-10-04

    We obtain new QCD sum rules by considering vacuum expectation values of two-point functions, taking all the five quark bilinears into account. These sum rules are employed to extract values of different chiral symmetry breaking parameters in QCD theory. We find masses of light quarks, m=1/2msub(u)+msub(d)=8.4+-1.2 MeV, msub(s)=205+-65 MeV. Further, we obtain corrections to certain soft pion (kaon) PCAC relations and the violation of SU(3) flavour symmetry by the non-strange and strange quark-antiquark vacuum condensate.

  12. Pumped double quantum dot with spin-orbit coupling

    Directory of Open Access Journals (Sweden)

    Sherman Eugene

    2011-01-01

    Full Text Available Abstract We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures. PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn

  13. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang; Wang, Xuhui; Doǧan, Fatih; Manchon, Aurelien

    2013-01-01

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  14. Tailoring spin-orbit torque in diluted magnetic semiconductors

    KAUST Repository

    Li, Hang

    2013-05-16

    We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.

  15. Pentaquarks in QCD Sum Rule Approach

    International Nuclear Information System (INIS)

    Rodrigues da Silva, R.; Matheus, R.D.; Navarra, F.S.; Nielsen, M.

    2004-01-01

    We estimate the mass of recently observed pentaquak staes Ξ- (1862) and Θ+(1540) using two kinds of interpolating fields, containing two highly correlated diquarks, in the QCD sum rule approach. We obtained good agreement with the experimental value, using standard continuum threshold

  16. Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction

    KAUST Repository

    Ortiz Pauyac, Christian

    2016-01-01

    filtering. In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives

  17. Comment on QCD sum rules and weak bottom decays

    International Nuclear Information System (INIS)

    Guberina, B.; Machet, B.

    1982-07-01

    QCD sum rules derived by Bourrely et al. are applied to B-decays to get a lower and an upper bound for the decay rate. The sum rules are shown to be essentially controlled by the large mass scales involved in the process. These bounds combined with the experimental value of BR (B→eνX) provide an upper bound for the lifetime of the B + meson. A comparison is made with D-meson decays

  18. Lindhard's polarization parameter and atomic sum rules in the local plasma approximation

    DEFF Research Database (Denmark)

    Cabrera-Trujillo, R.; Apell, P.; Oddershede, J.

    2017-01-01

    In this work, we analyze the effects of Lindhard polarization parameter, χ, on the sum rule, Sp, within the local plasma approximation (LPA) as well as on the logarithmic sum rule Lp = dSp/dp, in both cases for the system in an initial excited state. We show results for a hydrogenic atom with nuc......In this work, we analyze the effects of Lindhard polarization parameter, χ, on the sum rule, Sp, within the local plasma approximation (LPA) as well as on the logarithmic sum rule Lp = dSp/dp, in both cases for the system in an initial excited state. We show results for a hydrogenic atom...... in terms of a screened charge Z* for the ground state. Our study shows that by increasing χ, the sum rule for p0 it increases, and the value p=0 provides the normalization/closure relation which remains fixed to the number of electrons for the same initial state. When p is fixed...

  19. Faraday effect revisited: sum rules and convergence issues

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, Gheorghe

    2010-01-01

    This is the third paper of a series revisiting the Faraday effect. The question of the absolute convergence of the sums over the band indices entering the Verdet constant is considered. In general, sum rules and traces per unit volume play an important role in solid-state physics, and they give...

  20. Microscopic Stern-Gerlach effect and spin-orbit pendulum

    International Nuclear Information System (INIS)

    Rozmej, P.; Arvieu, R.

    1996-01-01

    The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs

  1. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  2. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-10-31

    In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are

  3. Magnetic susceptibility and M1 transitions in /sup 208/Pb. [Sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Traini, M; Lipparini, E; Orlandini, G; Stringari, S [Dipartimento di Matematica e Fisica, Universita di Trento, Italy

    1979-04-16

    M1 transitions in /sup 208/Pb are studied by evaluating energy-weighted and inverse energy-weighted sum-rules. The role of the nuclear interaction is widely discussed. It is shown that the nuclear potential increases the energy-weighted sum rule and lowers the inverse energy-weighted sum rule, with respect to the prediction of the pure shell model. Values of strengths and excitation energies are compared with experimental results and other theoretical calculations.

  4. Sum rules for the real parts of nonforward current-particle scattering amplitudes

    International Nuclear Information System (INIS)

    Abdel-Rahman, A.M.M.

    1976-01-01

    Extending previous work, using Taha's refined infinite-momentum method, new sum rules for the real parts of nonforward current-particle scattering amplitudes are derived. The sum rules are based on covariance, casuality, scaling, equal-time algebra and unsubtracted dispersion relations for the amplitudes. A comparison with the corresponding light-cone approach is made, and it is shown that the light-cone sum rules would also follow from the assumptions underlying the present work

  5. Sum rules for baryonic vertex functions and the proton wave function in QCD

    International Nuclear Information System (INIS)

    Lavelle, M.J.

    1985-01-01

    We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)

  6. A sum rule description of giant resonances at finite temperature

    International Nuclear Information System (INIS)

    Meyer, J.; Quentin, P.; Brack, M.

    1983-01-01

    A generalization of the sum rule approach to collective motion at finite temperature is presented. The m 1 and msub(-1) sum rules for the isovector dipole and the isoscalar monopole electric modes have been evaluated with the modified SkM force for the 208 Pb nucleus. The variation of the resulting giant resonance energies with temperature is discussed. (orig.)

  7. QCD sum rule studies at finite density and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Youngshin

    2010-01-21

    In-medium modifications of hadronic properties have a strong connection to the restoration of chiral symmetry in hot and/or dense medium. The in-medium spectral functions for vector and axial-vector mesons are of particular interest in this context, considering the experimental dilepton production data which signal the in-medium meson properties. In this thesis, finite energy sum rules are employed to set constraints for the in-medium spectral functions of vector and axial-vector mesons. Finite energy sum rules for the first two moments of the spectral functions are investigated with emphasis on the role of a scale parameter related to the spontaneous chiral symmetry breaking in QCD. It is demonstrated that these lowest moments of vector current spectral functions do permit an accurate sum rule analysis with controlled inputs, such as the QCD condensates of lowest dimensions. In contrast, the higher moments contain uncertainties from the higher dimensional condensates. It turns out that the factorization approximation for the four-quark condensate is not applicable in any of the cases studied in this work. The accurate sum rules for the lowest two moments of the spectral functions are used to clarify and classify the properties of vector meson spectral functions in a nuclear medium. Possible connections with the Brown-Rho scaling hypothesis are also discussed. (orig.)

  8. Sum rules for the spontaneous chiral symmetry breaking parameters of QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Stern, J.

    1981-03-01

    We discuss in the spirit of the work of Shifman, Vainshtein and Zakharov (SVZ), sum rules involving current-current vacuum correlation functions, whose Wilson expansion starts off with the operators anti qq or (anti qq) 2 , and thus provide information about the chiral symmetry breaking parameters of QCD. We point out that under the type of crude approximations made by SVZ, a value of sub(vac) (250MeV) 3 is obtained from one of these sum rules, in agreement with current expectations. Further we show that a Borel transformed version of the Weinberg sum rule, for VV - AA, current products seem only to make sense for an A 1 mass close to 1.3GeV and it makes little sense with the current algebra mass Msub(A)=anti 2M. We also give an estimate for the chiral symmetry breaking parameters μ 1 6 =2 2 (anti qsub(L) lambda sup(a)γsub(μ)qsub(L))(anti qsub(R) lambdasup(a) γsup(μ)qsub(R)) >sub(vac) entering in the Weinberg sum rules and μ 2 6 =g 2 sub(vac) entering in a new sum rule we propose involving antisymmetric tensor currents J=anti q σsub(μnu) q. (author)

  9. Dispersion relations and sum rules for natural optical activity

    International Nuclear Information System (INIS)

    Thomaz, M.T.; Nussenzveig, H.M.

    1981-06-01

    Dispersion relations and sum rules are derived for the complex rotatory power of an arbitrary linear (nonmagnetic) isotropic medium showing natural optical activity. Both previously known dispersion relations and sum rules as well as new ones are obtained. It is shown that the Rosenfeld-Condon dispersion formula is inconsistent with the expected asymptotic behavior at high frequencies. A new dispersion formula based on quantum eletro-dynamics removes this inconsistency; however, it still requires modification in the low-frequency limit. (Author) [pt

  10. Sum rule approach to nuclear vibrations

    International Nuclear Information System (INIS)

    Suzuki, T.

    1983-01-01

    Velocity field of various collective states is explored by using sum rules for the nuclear current. It is shown that an irrotational and incompressible flow model is applicable to giant resonance states. Structure of the hydrodynamical states is discussed according to Tomonaga's microscopic theory for collective motions. (author)

  11. Spin conversion induced by spin-orbit interaction in positronium collisions

    International Nuclear Information System (INIS)

    Saito, H; Nakayama, T; Hyodo, T

    2009-01-01

    The positronium spin conversion reaction induced by spin-orbit interaction is investigated. We obtain the reaction rates during positronium-Xe and positronium-Kr collisions by using the Zeeman mixing of positronium states. At thermal energies corresponding to room temperature, the reaction rate for spin conversion due to spin-orbit interaction is found to be almost twice that for the positronium pick-off reaction. We also study the energy dependence of the reaction rate. The mean energy of positronium is controlled by changing the gas temperature and using positronium in thermal equilibrium. We found that the reaction rate increases with the collision energy.

  12. Sum Rules of Charm CP Asymmetries beyond the SU(3)_{F} Limit.

    Science.gov (United States)

    Müller, Sarah; Nierste, Ulrich; Schacht, Stefan

    2015-12-18

    We find new sum rules between direct CP asymmetries in D meson decays with coefficients that can be determined from a global fit to branching ratio data. Our sum rules eliminate the penguin topologies P and PA, which cannot be determined from branching ratios. In this way, we can make predictions about direct CP asymmetries in the standard model without ad hoc assumptions on the sizes of penguin diagrams. We consistently include first-order SU(3)_{F} breaking in the topological amplitudes extracted from the branching ratios. By confronting our sum rules with future precise data from LHCb and Belle II, one will identify or constrain new-physics contributions to P or PA. The first sum rule correlates the CP asymmetries a_{CP}^{dir} in D^{0}→K^{+}K^{-}, D^{0}→π^{+}π^{-}, and D^{0}→π^{0}π^{0}. We study the region of the a_{CP}^{dir}(D^{0}→π^{+}π^{-})-a_{CP}^{dir}(D^{0}→π^{0}π^{0}) plane allowed by current data and find that our sum rule excludes more than half of the allowed region at 95% C.L. Our second sum rule correlates the direct CP asymmetries in D^{+}→K[over ¯]^{0}K^{+}, D_{s}^{+}→K^{0}π^{+}, and D_{s}^{+}→K^{+}π^{0}.

  13. Renormalization group summation of Laplace QCD sum rules for scalar gluon currents

    Directory of Open Access Journals (Sweden)

    Farrukh Chishtie

    2016-03-01

    Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.

  14. Spin-orbit scattering in superconducting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)

    2017-06-15

    We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Manchon, Aurelien; Stiles, M. D.

    2013-01-01

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  16. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  17. Gate tunable spin transport in graphene with Rashba spin-orbit coupling

    Science.gov (United States)

    Tan, Xiao-Dong; Liao, Xiao-Ping; Sun, Litao

    2016-10-01

    Recently, it attracts much attention to study spin-resolved transport properties in graphene with Rashba spin-orbit coupling (RSOC). One remarkable finding is that Klein tunneling in single layer graphene (SLG) with RSOC (SLG + R for short below) behaves as in bi-layer graphene (BLG). Based on the effective Dirac theory, we reconsider this tunneling problem and derive the analytical solution for the transmission coefficients. Our result shows that Klein tunneling in SLG + R and BLG exhibits completely different behaviors. More importantly, we find two new transmission selection rules in SLG + R, i.e., the single band to single band (S → S) and the single band to multiple bands (S → M) transmission regimes, which strongly depend on the relative height among Fermi level, RSOC, and potential barrier. Interestingly, in the S → S transmission regime, only normally incident electrons have capacity to pass through the barrier, while in the S → M transmission regime the angle-dependent tunneling becomes very prominent. Using the transmission coefficients, we also derive spin-resolved conductance analytically, and conductance oscillation with the increasing barrier height and zero conductance gap are found in SLG + R. The present study offers new insights and opportunities for developing graphene-based spin devices.

  18. Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.

    Science.gov (United States)

    Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M

    2018-03-14

    A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

  19. Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h -BN heterostructures

    Science.gov (United States)

    Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter

    2018-02-01

    Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.

  20. Hadronic final states and sum rules in deep inelastic processes

    International Nuclear Information System (INIS)

    Pal, B.K.

    1977-01-01

    In order to get maximum information on the hadronic final states and sum rules in deep inelastic processes, Regge phenomenology and quarks parton model have been used. The unified picture for the production of hadrons of type i as a function of Bjorken and Feyman variables with only one adjustable parameter is formulated. The results of neutrino experiments and the production of charm particles are discussed in sum rules. (author)

  1. Vortices in spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.

    2011-01-01

    Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.

  2. Measurement of the proton spin structure function g1p

    International Nuclear Information System (INIS)

    Pussieux, T.

    1994-10-01

    In order to check the Bjorken sum rule and confirm the EMC surprising conclusion on the spin structure of the proton, the measurement of the spin structure function of the proton has been performed by the Spin Muon Collaboration via the polarized muon nucleon deep inelastic scattering. The results of the 1993 run are presented within a kinematical range of 0.003 2 = 10 GeV 2 . The first moment of the polarized spin structure function g 1 p is found to be two standard deviations below the Ellis-Jaffe sum rule. Assuming SU(3) for hyperons β decays, the quark spin contribution to the proton spin is extracted. Combining all available data on proton, neutron and deuton, The Bjorken sum rule is confirmed within 10%. (author). 25 refs., 3 figs., 2 tabs

  3. Derivation of sum rules for quark and baryon fields. [light-like charges

    Energy Technology Data Exchange (ETDEWEB)

    Bongardt, K [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Theoretische Kernphysik

    1978-08-21

    In an analogous way to the Weinberg sum rules, two spectral-function sum rules for quark and baryon fields are derived by means of the concept of lightlike charges. The baryon sum rules are valid for the case of SU/sub 3/ as well as for SU/sub 4/ and the one-particle approximation yields a linear mass relation. This relation is not in disagreement with the normal linear GMO formula for the baryons. The calculated masses of the first resonance states agree very well with the experimental data.

  4. Spin-orbit torques in magnetic bilayers

    Science.gov (United States)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  5. Mesoscopic rings with spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)

    2010-09-15

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.

  6. Spin-flip and spin orbit interactions in heavy ion systems

    International Nuclear Information System (INIS)

    Bybell, D.P.

    1983-01-01

    The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included

  7. Spin-orbit qubit in a semiconductor nanowire.

    Science.gov (United States)

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  8. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  9. Experimental study of isovector spin sum rules

    International Nuclear Information System (INIS)

    Alexandre Deur; Peter Bosted; Volker Burkert; Donald Crabb; Kahanawita Dharmawardane; Gail Dodge; Tony Forest; Keith Griffioen; Sebastian Kuhn; Ralph Minehart; Yelena Prok

    2008-01-01

    We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for 0.05 2 . The integral is fit to extract the twist-4 element f 2 p-n which is large and negative. Systematic studies of this higher twist analysis establish its legitimacy at Q 2 around 1 GeV 2 . We also extracted the isovector part of the generalized forward spin polarizability γ 0 . Although this quantity provides a robust test of Chiral Perturbation Theory, our data disagree with the calculations

  10. The nucleon-nucleon spin-orbit interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Riska, D.O.; Dannbom, K.

    1987-01-01

    The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component

  11. Dynamical local field, compressibility, and frequency sum rules for quasiparticles

    International Nuclear Information System (INIS)

    Morawetz, Klaus

    2002-01-01

    The finite temperature dynamical response function including the dynamical local field is derived within a quasiparticle picture for interacting one-, two-, and three-dimensional Fermi systems. The correlations are assumed to be given by a density-dependent effective mass, quasiparticle energy shift, and relaxation time. The latter one describes disorder or collisional effects. This parametrization of correlations includes local-density functionals as a special case and is therefore applicable for density-functional theories. With a single static local field, the third-order frequency sum rule can be fulfilled simultaneously with the compressibility sum rule by relating the effective mass and quasiparticle energy shift to the structure function or pair-correlation function. Consequently, solely local-density functionals without taking into account effective masses cannot fulfill both sum rules simultaneously with a static local field. The comparison to the Monte Carlo data seems to support such a quasiparticle picture

  12. Current-induced Rashba spin orbit torque in silicene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ji, E-mail: muze7777@hdu.edu.cn [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Peng, Yingzi [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhou, Jie [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-06-15

    Highlights: • The spin dynamics of a ferromagnetic layer coupled to a silicene is investigated. • The Rashba spin orbit torque is obtained and the well-known LLG equation is modified. • The explicit forms of spin orbit torques in Domain Wall and vortex is also obtained. - Abstract: We study theoretically the spin torque of a ferromagnetic layer coupled to a silicene in the presence of the intrinsic Rashba spin orbit coupling (RSOC) effect. By using gauge field method, we find that under the applied current, the RSOC can induce an effective field which will result in the spin precession of conduction electron without applying any magnetic field. We also derive the spin torques due to the RSOC, which generalize the Landau-Lifshitz-Gilbert (LLG) equation. The spin torques are related to the applied current, the carrier density and Rashba strength of the system.

  13. Innermost stable circular orbit of spinning particle in charged spinning black hole background

    Science.gov (United States)

    Zhang, Yu-Peng; Wei, Shao-Wen; Guo, Wen-Di; Sui, Tao-Tao; Liu, Yu-Xiao

    2018-04-01

    In this paper we investigate the innermost stable circular orbit (ISCO) (spin-aligned or anti-aligned orbit) for a classical spinning test particle with the pole-dipole approximation in the background of Kerr-Newman black hole in the equatorial plane. It is shown that the orbit of the spinning particle is related to the spin of the test particle. The motion of the spinning test particle will be superluminal if its spin is too large. We give an additional condition by considering the superluminal constraint for the ISCO in the black hole backgrounds. We obtain numerically the relations between the ISCO and the properties of the black holes and the test particle. It is found that the radius of the ISCO for a spinning test particle is smaller than that of a nonspinning test particle in the black hole backgrounds.

  14. Polarized photoproduction from nuclear targets with arbitrary spin and relation to deep inelastic scattering

    International Nuclear Information System (INIS)

    Hoodbhoy, P.; Massachusetts Inst. of Tech., Cambridge; Quaid-i-Azam Univ., Islamabad

    1990-01-01

    Inclusive photo-production from polarized targets of arbitrary spin is analyzed by using multipoles. The Drell-Hearn-Gerasimov sum rule, which was originally fromulated for spin-1/2 targets, is generalized to all spins and multipoles, and shown to have some interesting consequences. Measurements to test the new rules, or to derive nuclear structure information from them, could be incorporated into existing plans at electron accelerator facilities. Finally, the possible relevance of these generalized sum rules to sum rules measurable in polarized lepton-polarized target deep inelastic inclusive scattering is discussed. (orig.)

  15. QCD and power corrections to sum rules in deep-inelastic lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Ravindran, V.; Neerven, W.L. van

    2001-01-01

    In this paper we study QCD and power corrections to sum rules which show up in deep-inelastic lepton-hadron scattering. Furthermore we will make a distinction between fundamental sum rules which can be derived from quantum field theory and those which are of a phenomenological origin. Using current algebra techniques the fundamental sum rules can be expressed into expectation values of (partially) conserved (axial-)vector currents sandwiched between hadronic states. These expectation values yield the quantum numbers of the corresponding hadron which are determined by the underlying flavour group SU(n) F . In this case one can show that there exist an intimate relation between the appearance of power and QCD corrections. The above features do not hold for phenomenological sum rules, hereafter called non-fundamental. They have no foundation in quantum field theory and they mostly depend on certain assumptions made for the structure functions like super-convergence relations or the parton model. Therefore only the fundamental sum rules provide us with a stringent test of QCD

  16. Spin torque on the surface of graphene in the presence of spin orbit splitting

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2013-06-01

    Full Text Available We study theoretically the spin transfer torque of a ferromagnetic layer coupled to (deposited onto a graphene surface in the presence of the Rashba spin orbit coupling (RSOC. We show that the RSOC induces an effective magnetic field, which will result in the spin precession of conduction electrons. We derive correspondingly the generalized Landau-Lifshitz-Gilbert (LLG equation, which describes the precessional motion of local magnetization under the influence of the spin orbit effect. Our theoretical estimate indicates that the spin orbit spin torque may have significant effect on the magnetization dynamics of the ferromagnetic layer coupled to the graphene surface.

  17. Q2 dependence of the spin structure function in the resonance region

    International Nuclear Information System (INIS)

    Li, Z.; Li, Z.

    1994-01-01

    In this paper, we show what we can learn from the CEBAF experiments on spin-structure functions, and the transition from the Drell-Hearn-Gerasimov sum rule in the real photon limit to the spin-dependent sum rules in deep inelastic scattering, and how the asymmetry A 1 (x,Q 2 ) approaches the scaling limit in the resonance region. The spin structure function in the resonance region alone cannot determine the spin-dependent sum rule due to the kinematic restriction of the resonance region. The integral ∫ 0 1 {A 1 (x,Q 2 )F 2 (x,Q 2 )/2x[1+R(x,Q 2 )]}dx is estimated from Q 2 =0--2.5 GeV 2 . The result shows that there is a region where both contributions from the baryon resonances and the deep inelastic scattering are important; thus it provides important information on the high twist effects on the spin-dependent sum rule

  18. Experimental study of isovector spin sum rules

    International Nuclear Information System (INIS)

    Deur, A.; Bosted, P.; Burkert, V.; Crabb, D.; Minehart, R.; Prok, Y.; Dharmawardane, V.; Dodge, G. E.; Kuhn, S. E.; Forest, T. A.; Griffioen, K. A.

    2008-01-01

    We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for 0.05 2 2 . The integral is fit to extract the twist-4 element f 2 p-n which appears to be relatively large and negative. Systematic studies of this higher twist analysis establish its legitimacy at Q 2 around 1 GeV 2 . We also performed an isospin decomposition of the generalized forward spin polarizability γ 0 . Although its isovector part provides a reliable test of the calculation techniques of chiral perturbation theory, our data disagree with the calculations.

  19. Second-moment sum rules for correlation functions in a classical ionic mixture

    NARCIS (Netherlands)

    Suttorp, L.G.; Ebeling, W.

    1992-01-01

    The complete set of second-moment sum rules for the correlation functions of arbitrarily high order describing a classical multi-component ionic mixture in equilibrium is derived from the grand-canonical ensemble. The connection of these sum rules with the large-scale behaviour of fluctuations in an

  20. Sign rules for anisotropic quantum spin systems

    International Nuclear Information System (INIS)

    Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.

    2000-01-01

    We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model

  1. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  2. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  3. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  4. Spin-Orbit Coupled Bose-Einstein Condensates

    Science.gov (United States)

    2016-11-03

    21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new

  5. Sum rule limitations of kinetic particle-production models

    International Nuclear Information System (INIS)

    Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.

    1988-04-01

    Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)

  6. Continuum contributions to dipole oscillator-strength sum rules for hydrogen in finite basis sets

    DEFF Research Database (Denmark)

    Oddershede, Jens; Ogilvie, John F.; Sauer, Stephan P. A.

    2017-01-01

    Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases, but that the conver......Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases......, but that the convergence towards the final results with increasing excitation energies included in the sum over states is slower in the basis-set cases when we use the best basis. We argue also that this conclusion most likely holds also for larger atoms or molecules....

  7. Spin-Orbital Quantum Liquid on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Philippe Corboz

    2012-11-01

    Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.

  8. In-medium QCD sum rules for {omega} meson, nucleon and D meson

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ronny

    2008-07-01

    The modifications of hadronic properties caused by an ambient nuclear medium are investigated within the scope of QCD sum rules. This is exemplified for the cases of the {omega} meson, the nucleon and the D meson. By virtue of the sum rules, integrated spectral densities of these hadrons are linked to properties of the QCD ground state, quantified in condensates. For the cases of the {omega} meson and the nucleon it is discussed how the sum rules allow a restriction of the parameter range of poorly known four-quark condensates by a comparison of experimental and theoretical knowledge. The catalog of independent four-quark condensates is covered and relations among these condensates are revealed. The behavior of four-quark condensates under the chiral symmetry group and the relation to order parameters of spontaneous chiral symmetry breaking are outlined. In this respect, also the QCD condensates appearing in differences of sum rules of chiral partners are investigated. Finally, the effects of an ambient nuclear medium on the D meson are discussed and relevant condensates are identified. (orig.)

  9. Bulk stress auto-correlation function in simple liquids-sum rules

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Bhandari, R.; Pathak, K.N.

    1990-10-01

    Expressions for the zeroth, second and fourth frequency sum rules of the bulk stress auto correlation function have been derived. The exact expressions involve static correlation function up to four particles. Because of the non availability of any information about static quadruplet correlation function we use a low order decoupling approximation for this. In this work, we have obtained, separately, the sum rules for the different mechanism of momentum transfer in the fluids. The results are expected to be useful in the study of bulk viscosity of the fluids. (author). 9 refs

  10. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  11. Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory

    Science.gov (United States)

    Wang, Kang L.

    Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.

  12. Endpoint behavior of the pion distribution amplitude in QCD sum rules with nonlocal condensates

    International Nuclear Information System (INIS)

    Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G.

    2010-01-01

    Starting from the QCD sum rules with nonlocal condensates for the pion distribution amplitude, we derive another sum rule for its derivative and its ''integral derivatives''--defined in this work. We use this new sum rule to analyze the fine details of the pion distribution amplitude in the endpoint region x∼0. The results for endpoint-suppressed and flattop (or flatlike) pion distribution amplitudes are compared with those we obtained with differential sum rules by employing two different models for the distribution of vacuum-quark virtualities. We determine the range of values of the derivatives of the pion distribution amplitude and show that endpoint-suppressed distribution amplitudes lie within this range, while those with endpoint enhancement--flat-type or Chernyak-Zhitnitsky like--yield values outside this range.

  13. The Relation between the Electric Conductance of Nanostructure Bridge and Friedel Sum Rule

    International Nuclear Information System (INIS)

    Kotani, Y; Shima, N; Makoshi, K

    2012-01-01

    We analyze the electric conductance through nanostructure bridges in terms of phase-shifts, which satisfy the Friedel sum rule. The phase-shifts are given by solving the eigenvalue equation obtained by extending the method applied to a single impurity problem in a metal. The local charge neutrality condition is introduced through the Friedel sum rule. It is analytically shown that the electric conductance can increase as the two electrodes separate with the condition in which the phase-shifts satisfy the Friedel sum rule. The increment of the distance between two electrodes is obtained by gradually separating interatomic distance.

  14. Evaluating chiral symmetry restoration through the use of sum rules

    Directory of Open Access Journals (Sweden)

    Rapp Ralf

    2012-11-01

    Full Text Available We pursue the idea of assessing chiral restoration via in-medium modifications of hadronic spectral functions of chiral partners. The usefulness of sum rules in this endeavor is illustrated, focusing on the vector/axial-vector channel. We first present an update on obtaining quantitative results for pertinent vacuum spectral functions. These serve as a basis upon which the in-medium spectral functions can be constructed. A novel feature of our analysis of the vacuum spectral functions is the need to include excited resonances, dictated by satisfying the Weinberg-type sum rules. This includes excited states in both the vector and axial-vector channels.We also analyze the QCD sum rule for the finite temperature vector spectral function, based on a ρ spectral function tested in dilepton data which develops a shoulder at low energies.We find that the ρ′ peak flattens off which may be a sign of chiral restoration, though a study of the finite temperature axial-vector spectral function remains to be carried out.

  15. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    Science.gov (United States)

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  16. Calculation of baryon sum rules and SU(4) mass formulae for mesons and baryons

    International Nuclear Information System (INIS)

    Bongardt, K.

    1976-01-01

    Light cone coordinates and field-field anticommutators for the free quark model on the light cone are introduced and light cone charges and light cone currents for the free quark model as well as sum rules for the meson and quark states are derived. The derivation of sum rules for the baryons is attempted. It is seen that it is possible formally to derive the same sum rules for the baryons and for the quarks. The baryon sums were derived through the symmetry properties of the baryon fields. Explicit assumptions about the spatial distribution of the three quarks in the baryons were not utilized. The meson-baryon Σ-terms, Zweig's rules in the SU (4) and a number of properties of the M-matrix are discussed. (BJ) [de

  17. Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Khayatzadeh Mahani, Mohammad Reza; Faizabadi, Edris

    2008-01-01

    The influence of the Dresselhaus spin-orbit coupling on spin polarization by tunneling through a disordered semiconductor superlattice was investigated. The Dresselhaus spin-orbit coupling causes the spin polarization of the electron due to transmission possibilities difference between spin up and spin down electrons. The electron tunneling through a zinc-blende semiconductor superlattice with InAs and GaAs layers and two variable distance In x Ga (1-x) As impurity layers was studied. One hundred percent spin polarization was obtained by optimizing the distance between two impurity layers and impurity percent in disordered layers in the presence of Dresselhaus spin-orbit coupling. In addition, the electron transmission probability through the mentioned superlattice is too much near to one and an efficient spin filtering was recommended

  18. Inhomogeneous spectral moment sum rules for the retarded Green function and self-energy of strongly correlated electrons or ultracold fermionic atoms in optical lattices

    International Nuclear Information System (INIS)

    Freericks, J. K.; Turkowski, V.

    2009-01-01

    Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.

  19. Slave-particle quantization and sum rules in the t-J model

    International Nuclear Information System (INIS)

    Le Guillou, J.C.; Ragoucy, E.

    1994-12-01

    In the framework of constrained systems, the classical Hamiltonian formulation of slave-particle models and their correct quantization are given. The electron-momentum distribution function in the t-J and Hubbard models is then studied in the framework of slave-particle approaches and within the decoupling scheme. It is shown that criticisms which have been addressed in this context coming from a violation of the sum rule for the physical electron are not valid. Due to the correct quantization rules for the slave-particles, the sum rule for the physical electron is indeed obeyed, both exactly and within the decoupling scheme. (author). 15 refs

  20. Sum rules and moments for lepton-pair production. [Cross sections, Drell--Yan formula

    Energy Technology Data Exchange (ETDEWEB)

    Hwa, R.C.

    1978-01-01

    Sum rules on lepton-pair production cross sections are derived on the bases of the Drell--Yan formula and the known sum rules in leptoproduction. Also exact relations are obtained between the average transverse momenta squared of the valence quarks and moments of the dilepton cross sections. 12 references.

  1. Strong electron correlation in photoionization of spin-orbit doublets

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Manson, S.T.; Msezane, A.M.; Radojevic, V.

    2002-01-01

    A new and explicitly many-body aspect of the 'leveraging' of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, it is demonstrated via a modified version of the spin-polarized random phase approximation with exchange, that a recently observed unexplained structure in the Xe 3d 5/2 photoionization cross section [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2000)] is entirely due to this effect. Similar features are predicted for Cs 3d 5/2 and Ba 3d 5/2

  2. The spin-dependent structure function of the proton g(1)(p) and a test of the Bjorken sum rule

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotic, D.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Käfer, W.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmitt, L.; Schopferer, S.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    Roč. 690, č. 5 (2010), s. 466-472 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : deep inelastic scattering * structure function * QCD analysis * Bjorken sum rule Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.255, year: 2010

  3. Sum Rules in the CFL Phase of QCD at finite density

    CERN Document Server

    Manuel, C; Manuel, Cristina; Tytgat, Michel H.G.

    2001-01-01

    We study the asymmetry between the vector current and axial-vector current correlators in the colour-flavour locking (CFL) phase of QCD at finite density. Using Weinberg's sum rules, we compute the decay constant $f_\\pi$ of the Goldstone modes and find agreement with previous derivations. Using Das's sum rule, we also estimate the contribution of electromagnetic interactions to the mass of the charged modes. Finally, we comment on low temperature corrections to the effective field theory describing the Goldstone bosons.

  4. Double perovskites with strong spin-orbit coupling

    Science.gov (United States)

    Cook, Ashley M.

    We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally

  5. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  6. The nuclear spin-orbit coupling

    International Nuclear Information System (INIS)

    Bell, J.S.; Skyrme, T.H.R.

    1994-01-01

    Analysis of the nucleon-nucleon scattering around 100 MeV has determined the spin-orbit coupling part of the two-body scattering matrix at that energy, and a reasonable extrapolation to lower energies is possible. This scattering amplitude has been used, in the spirit of Brueckner's nuclear model, to estimate the resultant single-body spin-orbit coupling for a single nucleon interacting with a large nucleus. This resultant potential has a radial dependence approximately proportional to r -1 d ρ /dr, and with a magnitude in good agreement with that required to explain the doublet splittings in nuclei and the polarization of nucleons scattered elastically off nuclei. (author). 14 refs, 2 figs

  7. Charge and Spin Transport in Spin-orbit Coupled and Topological Systems

    KAUST Repository

    Ndiaye, Papa Birame

    2017-01-01

    for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic

  8. Next-order spin-orbit contributions to chaos in compact binaries

    International Nuclear Information System (INIS)

    Wang Yuzhao; Wu Xin

    2011-01-01

    This paper is mainly devoted to numerically investigating the effects of the next-order spin-orbit interactions including the 2.5 post-Newtonian order term of the equations of motion and the second post-Newtonian order terms of the spin precession equations on chaos in the conservative Lagrangian dynamics of a spinning compact binary system. It is shown sufficiently through individual orbit simulations, the dependence of the invariant fast Lyapunov indicators on the variations of initial spin angles and the phase space scans for chaos, that the next-order spin-orbit contributions do play an important role in the amplification of chaos.

  9. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  10. Chiral restoration and the extended photoabsorption sum rule in nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Rosa-Clot, M.; Kulagin, S.A.

    1996-07-01

    The Bethe-Levinger sum rule is extended beyond the potential model. The pion degrees of freedom are taken into account and the modifications of the potential theory are analyzed within two different approaches: dipole sum rule and dispersion relation on the Compton amplitude. Our aim is to extract from the photon data experimental information on the expectation value of the square of the pion field, a quantity which enters also in the restoration of chiral symmetry in nuclei and in pion-nucleus scattering. We are led to incorporate in the description the Δ resonance, which is strongly excited by the pion degrees of freedom

  11. Chiral restoration and the extended photoabsorption sum rule in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, M [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [European Organization for Nuclear Research, Geneva (Switzerland); Rosa-Clot, M [Florence Univ. (Italy). Ist. di Fisica; [Istituto Nazionale di Fisica Nucleare, Florence (Italy); Kulagin, S A [Akademiya Meditsinskikh Nauk SSSR, Moscow (Russian Federation)

    1996-07-01

    The Bethe-Levinger sum rule is extended beyond the potential model. The pion degrees of freedom are taken into account and the modifications of the potential theory are analyzed within two different approaches: dipole sum rule and dispersion relation on the Compton amplitude. Our aim is to extract from the photon data experimental information on the expectation value of the square of the pion field, a quantity which enters also in the restoration of chiral symmetry in nuclei and in pion-nucleus scattering. We are led to incorporate in the description the {Delta} resonance, which is strongly excited by the pion degrees of freedom. 11 refs.

  12. QCD sum rules for the decay amplitudes of pseudoscalar mesons

    International Nuclear Information System (INIS)

    Narison, S.

    1981-07-01

    Bounds on the π and K meson decay amplitudes are obtained to a good accuracy from QCD sum rules of the Laplace transform type. A relation between fsub(π) and the rho meson coupling to the photon is given. Using the heavy quarks q 2 =0 sum rule to two loops we find our best bounds: fsub(D) approximately < (101+-25) MeV and fsub(F) approximately < (147+-41.6) MeV to be compared to fsub(π) approximately 93.3 MeV. We also derive a relation between the D and F meson masses and the charm quark mass. Our results are extended to the beautiful B mesons. (author)

  13. Macroscopic spin-orbit coupling in non-uniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Tabat, N.; Edelman, H. S.; Song, D. [Semaphore Scientific, Inc., St. Cloud, Minnesota 56301 (United States); Vogt, T. [Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, Minnesota 56301 (United States)

    2015-03-02

    Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values.

  14. Macroscopic spin-orbit coupling in non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Tabat, N.; Edelman, H. S.; Song, D.; Vogt, T.

    2015-01-01

    Translational dynamics of aggregated magnetic nano-particles placed in a rotating external magnetic field is described. It is observed and explained that aggregates that spin within a radially decreasing field strength must execute an orbital motion of their center of mass in a sense that counters their spin rotation. This orbital motion is tightly coupled to the spin dynamics of the aggregates. An analytical model for the canonical variables describing the orbital motion is derived and shown to be in good agreement with the measured values

  15. Charmonium spectrum at finite temperature from a Bayesian analysis of QCD sum rules

    Directory of Open Access Journals (Sweden)

    Morita Kenji

    2012-02-01

    Full Text Available Making use of a recently developed method of analyzing QCD sum rules, we investigate charmonium spectral functions at finite temperature. This method employs the Maximum Entropy Method, which makes it possible to directly obtain the spectral function from the sum rules, without having to introduce any strong assumption about its functional form. Finite temperature effects are incorporated into the sum rules by the change of the various gluonic condensates that appear in the operator product expansion. These changes depend on the energy density and pressure at finite temperature, which are extracted from lattice QCD. As a result, J/ψ and ηc dissolve into the continuum already at temperatures around 1.0 ~ 1.1 Tc.

  16. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems

    KAUST Repository

    Manchon, Aurelien

    2018-01-29

    Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.

  17. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems

    KAUST Repository

    Manchon, Aurelien; Miron, I. M.; Jungwirth, T.; Sinova, J.; Zelezný , J.; Thiaville, A.; Garello, K.; Gambardella, P.

    2018-01-01

    Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.

  18. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  19. Bottom mass from nonrelativistic sum rules at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Stahlhofen, Maximilian

    2013-01-15

    We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) {Upsilon} sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic (NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments with respect to scale variations. A single moment fit (n=10) to the available experimental data yields M{sub b}{sup 1S}=4.755{+-}0.057{sub pert}{+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass. The quoted uncertainties refer to the perturbative error and the uncertainties associated with the strong coupling and the experimental input.

  20. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  1. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  2. The heat current density correlation function: sum rules and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S

    2006-01-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed

  3. The heat current density correlation function: sum rules and thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)

    2006-02-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.

  4. The Adler sum rule and quark parton distribution functions in nucleon

    International Nuclear Information System (INIS)

    Niegawa, Akira; Sasaki, Ken.

    1975-01-01

    The behaviour of the quark parton distribution functions is discussed through the phenomenological analysis of the deep inelastic e-p and e-n data under constraint of the saturation of the Adler sum rule. It is concluded that in the region 0 0 where the Regge parametrization can be applied, anti u(x) is equal to anti d(x), and both behave as const/x, (x 0 will be 0.04--0.05); for x 0 x 0 is given. The rate of convergence of the Adler sum rule is also discussed. (auth.)

  5. Analysis of QCD sum rule based on the maximum entropy method

    International Nuclear Information System (INIS)

    Gubler, Philipp

    2012-01-01

    QCD sum rule was developed about thirty years ago and has been used up to the present to calculate various physical quantities like hadrons. It has been, however, needed to assume 'pole + continuum' for the spectral function in the conventional analyses. Application of this method therefore came across with difficulties when the above assumption is not satisfied. In order to avoid this difficulty, analysis to make use of the maximum entropy method (MEM) has been developed by the present author. It is reported here how far this new method can be successfully applied. In the first section, the general feature of the QCD sum rule is introduced. In section 2, it is discussed why the analysis by the QCD sum rule based on the MEM is so effective. In section 3, the MEM analysis process is described, and in the subsection 3.1 likelihood function and prior probability are considered then in subsection 3.2 numerical analyses are picked up. In section 4, some cases of applications are described starting with ρ mesons, then charmoniums in the finite temperature and finally recent developments. Some figures of the spectral functions are shown. In section 5, summing up of the present analysis method and future view are given. (S. Funahashi)

  6. Beautiful mesons from QCD spectral sum rules

    International Nuclear Information System (INIS)

    Narison, S.

    1991-01-01

    We discuss the beautiful meson from the point of view of the QCD spectral sum rules (QSSR). The bottom quark mass and the mixed light quark-gluon condensates are determined quite accurately. The decay constant f B is estimated and we present some arguments supporting this result. The decay constants and the masses of the other members of the beautiful meson family are predicted. (orig.)

  7. Limiting law excess sum rule for polyelectrolytes.

    Science.gov (United States)

    Landy, Jonathan; Lee, YongJin; Jho, YongSeok

    2013-11-01

    We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally, we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.

  8. Lorentz-Lorenz quenching for the Gamow-Teller sum rule

    International Nuclear Information System (INIS)

    Delorme, J.; Ericson, M.; Figureau, A.

    1984-03-01

    We investigate the modification of the Gamow-Teller sum rule brought in by nucleonic excitations. The general trend of the data is well reproduced. The value of the force which mixes nucleonic and nuclear excitations is discussed

  9. Confinement Can Violate Momentum Sum Rule in QCD at High Energy Colliders

    OpenAIRE

    Nayak, Gouranga C

    2018-01-01

    Momentum sum rule in QCD is widely used at high energy colliders. Although the exact form of the confinement potential energy is not known but the confinement potential energy at large distance $r$ can not rise slower than ${\\rm ln}(r)$. In this paper we find that if the confinement potential energy at large distance $r$ rises linearly with $r$ (or faster) then the momentum sum rule in QCD is violated at the high energy colliders.

  10. The black hole interior and a curious sum rule

    International Nuclear Information System (INIS)

    Giveon, Amit; Itzhaki, Nissan; Troost, Jan

    2014-01-01

    We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics

  11. The black hole interior and a curious sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Troost, Jan [Laboratoire de Physique Théorique,Unité Mixte du CRNS et de l’École Normale Supérieure,associée à l’Université Pierre et Marie Curie 6,UMR 8549 École Normale Supérieure,24 Rue Lhomond Paris 75005 (France)

    2014-03-12

    We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics.

  12. Sum rules in extended RPA theories

    International Nuclear Information System (INIS)

    Adachi, S.; Lipparini, E.

    1988-01-01

    Different moments m k of the excitation strength function are studied in the framework of the second RPA and of the extended RPA in which 2p2h correlations are explicitly introduced into the ground state by using first-order perturbation theory. Formal properties of the equations of motion concerning sum rules are derived and compared with those exhibited by the usual 1p1h RPA. The problem of the separation of the spurious solutions in extended RPA calculations is also discussed. (orig.)

  13. Spin-orbit coupling effects in indium antimonide quantum well structures

    Science.gov (United States)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  14. Gate-dependent spin-orbit coupling in multielectron carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Paaske, Jens

    2011-01-01

    Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. Here we demonstrate such spin–orbit coupling in a carbon-nanotube quantum dot in the general multielectron...... graphene lattice. Our findings suggest that the spin–orbit coupling is a general property of carbon-nanotube quantum dots, which should provide a unique platform for the study of spin–orbit effects and their applications....

  15. Sum rules for charge transition density

    Energy Technology Data Exchange (ETDEWEB)

    Gul' karov, I S [Tashkentskij Politekhnicheskij Inst. (USSR)

    1979-01-01

    The form factors of the quadrupole and octupole oscillations of the /sup 12/C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow one to obtain various CTDs which contain the components k: r/sup lambda + 2k-2/rho(r) and r/sup lambda + 2k-1)(drho(r)/dr) (k = 0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. Recurrence formulas are derived for the ratios of the higher-order transition matrix elements and CTD. These formulas can be used to predict the CTD behavior for highly excited nuclear states.

  16. Strain engineered magnetic tunnel junctions and spin-orbit torque switching (Conference Presentation)

    Science.gov (United States)

    Wu, Yang; Narayanapillai, Kulothungasagaran; Elyasi, Mehrdad; Qiu, Xuepeng; Yang, Hyunsoo

    2016-10-01

    The efficient generation of pure spin currents and manipulation of the magnetization dynamics of magnetic structures is of central importance in the field of spintronics. The spin-orbit effect is one of the promising ways to generate spin currents, in which a charge current can be converted to a transverse spin current due to the spin-orbit interaction. We investigate the spin dynamics in the presence of strong spin-orbit coupling materials such as LaAlO3/SrTiO3 oxide heterostructures. Angle dependent magnetoresistance measurements are employed to detect and understand the current-induced spin-orbit torques, and an effective field of 2.35 T is observed for a dc-current of 200 uA. In order to understand the interaction between light and spin currents, we use a femtosecond laser to excite an ultrafast transient spin current and subsequent terahertz (THz) emission in nonmagnet (NM)/ferromagnet (FM)/oxide heterostructures. The THz emission strongly relies on spin-orbit interaction, and is tailored by the magnitude and sign of the effective spin Hall angle of the NM. Our results can be utilized for ultrafast spintronic devices and tunable THz sources.

  17. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  18. Singlet axial constant from QCD sum rules

    International Nuclear Information System (INIS)

    Belitskij, A.V.; Teryaev, O.V.

    1995-01-01

    We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs

  19. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  20. A self-consistent semiclassical sum rule approach to the average properties of giant resonances

    International Nuclear Information System (INIS)

    Li Guoqiang; Xu Gongou

    1990-01-01

    The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances

  1. O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states

    International Nuclear Information System (INIS)

    Daboul, Jamil; Mizrahi, Salomon S

    2005-01-01

    Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra

  2. Spectral representation and QCD sum rules in hot nuclear matter

    International Nuclear Information System (INIS)

    Mallik, S.; Sarkar, Sourav

    2009-01-01

    We construct the spectral representation of spinsor two-point functions in medium, that is, at finite temperature and chemical potential. We first deal with the free spinor two-point function. Then we construct the same for interacting fields leading to the Kaellen-Lehmann representation. It is emphasised that although these two point functions have the structure of 2 x 2 matrices in the real time formulation of field theory, any one component actually suffices to describe the dynamics of the system. Our construction is then applied to write the QCD sum rules for two-point function of nucleon currents in medium. We discuss a subtracted version to increase the sensitivity of such a sum rule and point out how it differs from a conventional one. (author)

  3. Parton model (Moessbauer) sum rules for b → c decays

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1993-01-01

    The parton model is a starting point or zero-order approximation in many treatments. The author follows an approach previously used for the Moessbauer effect and shows how parton model sum rules derived for certain moments of the lepton energy spectrum in b → c semileptonic decays remain valid even when binding effects are included. The parton model appears as a open-quote semiclassical close-quote model whose results for certain averages also hold (correspondence principle) in quantum mechanics. Algebraic techniques developed for the Moessbauer effect exploit simple features of the commutator between the weak current operator and the bound state Hamiltonian to find the appropriate sum rules and show the validity of the parton model in the classical limit, ℎ → 0, where all commutators vanish

  4. Sum-rule analysis of long-wavelength excitations in electron liquids

    International Nuclear Information System (INIS)

    Ichimaru, Setsuo; Totsuji, Hiroo; Tange, Toshio; Pines, D.

    1975-01-01

    The properties of the plasma oscillations, the single-particle excitations and the collisional excitations in the classical one-component plasma are investigated in the long-wave-length domain with the aid of moment sum rules. The frequency moments of the dynamic form factor are calculated up to that term which involves the ternary correlation function. The dispersion in the plasma-wave frequency and the strengths of the single-particle and collisional excitations are computed over the thermodynamically stable domain of the plasma parameter, epsilon<=10. It is emphasized that inclusion of the collisional excitations plays a vital part in satisfying various moment-sum rules and in securing agreement with known boundary conditions such as the Vlasov description and molecular-dynamics computations. (auth.)

  5. Spin-orbital quantum liquid on the honeycomb lattice

    Science.gov (United States)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  6. Spin Polarization Oscillations without Spin Precession: Spin-Orbit Entangled Resonances in Quasi-One-Dimensional Spin Transport

    Directory of Open Access Journals (Sweden)

    D. H. Berman

    2014-03-01

    Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.

  7. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  8. High-order moments of spin-orbit energy in a multielectron configuration

    Science.gov (United States)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  9. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  10. Hadrons of arbitrary spin and heavy quark symmetry

    International Nuclear Information System (INIS)

    Hussain, F.; Thompson, G.; Koerner, J.G.

    1993-11-01

    We present a general construction of the spin content of the Bethe-Salpeter amplitudes (covariant wave functions) for heavy hadrons with arbitrary orbital excitations, using representations of l x O(3, 1). These wave functions incorporate the symmetries manifest in the heavy quark limit. In the baryonic sector we clearly differentiate between the Λ and Σ-type excited baryons. We then use the trace formalism to evaluate the weak transitions of ground state heavy hadrons to arbitrary excited heavy hadrons. The contributions of excited states to the Bjorken sum rule are also worked out in detail. (author). 21 refs

  11. Causality, spin, and equal-time commutators

    International Nuclear Information System (INIS)

    Abdel-Rahman, A.M.

    1975-01-01

    We study the causality constraints on the structure of the Lorentz-antisymmetric component of the commutator of two conserved isovector currents between fermion states of equal momenta. We discuss the sum rules that follow from causality and scaling, using the recently introduced refined infinite-momentum technique. The complete set of sum rules is found to include the spin-dependent fixed-mass sum rules obtained from light-cone commutators. The causality and scaling restrictions on the structure of the electromagnetic equal-time commutators are discussed, and it is found, in particular, that causality requires the spin-dependent part of the matrix element for the time-space electromagnetic equal-time commutator to vanish identically. It is also shown, in comparison with the electromagnetic case, that the corresponding matrix element for the time-space isovector current equal-time commutator is required, by causality, to have isospin-antisymmetric tensor and scalar operator Schwinger terms

  12. Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling

    Science.gov (United States)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas

    2017-12-01

    We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.

  13. Spin orbit torque based electronic neuron

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-04-06

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.

  14. Spin orbit torque based electronic neuron

    International Nuclear Information System (INIS)

    Sengupta, Abhronil; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik

    2015-01-01

    A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset

  15. Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption

    KAUST Repository

    Qiu, Xuepeng

    2016-11-18

    The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin current absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.

  16. Implanting Strong Spin-Orbit Coupling at Magnetoelectric Interfaces

    Science.gov (United States)

    2017-12-19

    drawback is that including both spin and orbital is computationally more expensive than the conventional method and consume significantly longer time...superlattices in Fig. 6. Right: The remnant magnetization anisotropy between the in- plane and out-of- plane directions for the 1/1-SL, which is...canted antiferromagnet. The out-of- plane canting of the spin-orbit moments is significantly enhanced (Fig. 10) compared with the nonpolar structure

  17. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    Science.gov (United States)

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal

  18. Spin and isospin modes

    International Nuclear Information System (INIS)

    Suzuki, T.; Sagawa, H.

    2000-01-01

    Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)

  19. Spin interferometry in anisotropic spin-orbit fields

    Science.gov (United States)

    Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku

    2018-03-01

    Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.

  20. Experimental check of the GDH sum rule at MAMI and ELSA

    International Nuclear Information System (INIS)

    Krimmer, J.

    2002-01-01

    The experimental check of the GDH sum rule is being performed at the tagged photon facilities of the electron accelerators MAMI (Mainz) and ELSA (Bonn), using circularly polarized photons impinging on a longitudinally polarized proton target, together with detector systems covering almost the whole solid angle range. Results from the MAMI experiment for the double polarized total photoabsorption cross section in the low energy region (200 MeV < Eγ < 800 MeV) will be shown together with their contribution to the GDH sum rule. Furthermore first results from the ELSA experiment in the higher energy region (680 MeV < Eγ < 1900 MeV) will be presented

  1. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  2. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    Science.gov (United States)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  3. Inverse engineering for fast transport and spin control of spin-orbit-coupled Bose-Einstein condensates in moving harmonic traps

    Science.gov (United States)

    Chen, Xi; Jiang, Ruan-Lei; Li, Jing; Ban, Yue; Sherman, E. Ya.

    2018-01-01

    We investigate fast transport and spin manipulation of tunable spin-orbit-coupled Bose-Einstein condensates in a moving harmonic trap. Motivated by the concept of shortcuts to adiabaticity, we design inversely the time-dependent trap position and spin-orbit-coupling strength. By choosing appropriate boundary conditions we obtain fast transport and spin flip simultaneously. The nonadiabatic transport and relevant spin dynamics are illustrated with numerical examples and compared with the adiabatic transport with constant spin-orbit-coupling strength and velocity. Moreover, the influence of nonlinearity induced by interatomic interaction is discussed in terms of the Gross-Pitaevskii approach, showing the robustness of the proposed protocols. With the state-of-the-art experiments, such an inverse engineering technique paves the way for coherent control of spin-orbit-coupled Bose-Einstein condensates in harmonic traps.

  4. ρ, ω, and φ meson-nucleon scattering lengths from QCD sum rules

    International Nuclear Information System (INIS)

    Koike, Y.

    1995-01-01

    The QCD sum rule method is applied to derive a formula for the ρ, ω, and φ meson-nucleon spin-isospin--averaged scattering lengths a ρ,ω,φ . We found that the crucial matrix elements are left-angle bar qγ μ D ν q right-angle N (q=ud) (twist-2 nucleon matrix element) for a ρ,ω and m s left-angle bar ss right-angle N for a φ , and obtained a ρ =0.14±0.07 fm, a ω =0.11±0.06 fm, and a φ =0.035±0.020 fm. These small numbers originate from a common factor 1/(m N +m ρ,ω,φ ). Our result suggests a slight increase (<60 MeV for ρ and ω, and <15 MeV for φ) of the effective mass of these vector mesons in nuclear matter (in the dilute nucleon-gas approximation). The origin of the discrepancy with Hatsuda-Lee was clarified

  5. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  6. Spin-orbit interaction driven dimerization in one dimensional frustrated magnets

    Science.gov (United States)

    Zhang, Shang-Shun; Batista, Cristian D.

    Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.

  7. Λ-bar from QCD sum rules for heavy quarkonium

    International Nuclear Information System (INIS)

    Kiselev, V.V.

    1994-01-01

    Using a specific scheme of the QCD sum rules for heavy quarkonium int he leading approximation over the inverse heavy quark, one gets the estimate of the difference between the masses of the heavy meson and heavy quark Λ=o.59+-0.02 GeV. 10 refs

  8. Approximately analytical solutions of the Manning-Rosen potential with the spin-orbit coupling term and spin symmetry

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2008-01-01

    In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential

  9. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  10. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Diniz, Ginetom S.; Ulloa, Sergio E.

    2014-01-01

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  11. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  12. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  13. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    Science.gov (United States)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  14. Uses of dipole oscillator strength sum rules in second order perturbation theory

    International Nuclear Information System (INIS)

    Struensee, M.C.

    1984-01-01

    Certain moments of the dipole oscillator strength distribution of atoms and molecules can be calculated from theory (using sum rules) or deduced from experiment. The present work describes the use of these moments to construct effective distributions which lead to bounds and estimates of physical properties of interest. Asymptotic analysis is then used to obtain the high energy behavior of the oscillator strength density and a previously unknown sum rule for atoms and molecules. A new type of effective distribution, which incorporates the information concerning the asymptotic behavior and the new sum rule, is suggested. This new type of distribution is used to calculate the logarithmic mean excitation energies for the ground states of atomic hydrogen, atomic helium and the negative hydrogen ion. The calculations for atomic helium and the negative hydrogen ion require the evaluation of certain ground state expectation values. These have been calculated using high accuracy wavefunctions containing the nonconventional terms shown by Fock to be necessary for a correct analytic expansion when both electrons are near the nucleus

  15. The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths

    DEFF Research Database (Denmark)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens

    1999-01-01

    Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...

  16. Spin-orbit effects in carbon-nanotube double quantum dots

    DEFF Research Database (Denmark)

    Weiss, S; Rashba, E I; Kuemmeth, Ferdinand

    2010-01-01

    We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...

  17. Spin flip in single quantum ring with Rashba spin–orbit interation

    Science.gov (United States)

    Liu, Duan-Yang; Xia, Jian-Bai

    2018-03-01

    We theoretically investigate spin transport in the elliptical ring and the circular ring with Rashba spin–orbit interaction. It is shown that when Rashba spin–orbit interaction is relatively weak, a single circular ring can not realize spin flip, however an elliptical ring may work as a spin-inverter at this time, and the influence of the defect of the geometry is not obvious. Howerver if a giant Rashba spin–orbit interaction strength has been obtained, a circular ring can work as a spin-inverter with a high stability. Project supported by the National Natural Science Foundation of China (Grant No. 11504016).

  18. Gate control of the spin mobility through the modification of the spin-orbit interaction in two-dimensional systems

    Science.gov (United States)

    Luengo-Kovac, M.; Moraes, F. C. D.; Ferreira, G. J.; Ribeiro, A. S. L.; Gusev, G. M.; Bakarov, A. K.; Sih, V.; Hernandez, F. G. G.

    2017-06-01

    Spin drag measurements were performed in a two-dimensional electron system set close to the crossed spin helix regime and coupled by strong intersubband scattering. In a sample with an uncommon combination of long spin lifetime and high charge mobility, the drift transport allows us to determine the spin-orbit field and the spin mobility anisotropies. We used a random walk model to describe the system dynamics and found excellent agreement for the Rashba and Dresselhaus couplings. The proposed two-subband system displays a large tuning lever arm for the Rashba constant with gate voltage, which provides a new path towards a spin transistor. Furthermore, the data show large spin mobility controlled by the spin-orbit constants setting the field along the direction perpendicular to the drift velocity. This work directly reveals the resistance experienced in the transport of a spin-polarized packet as a function of the strength of anisotropic spin-orbit fields.

  19. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  20. Tracing back resonances to families of Regge trajectories. New finite energy sum rules

    International Nuclear Information System (INIS)

    Mandelbrojt, Jacques.

    1975-04-01

    An amplitude is supposed to be expressed for large enough energies as a sum of contributions of Regge poles. Calling family of trajectories the set of trajectories which differ by integers from one of them, a correspondance, such that the energy and width of a given resonance depend on only family of trajectories, is established between resonances of the amplitude and families of trajectories. The contribution to the amplitude of each family of trajectories is shown to satisfy the same finite energy sum rules as does the amplitude itself. In these sum rules the resonance approximation can be made where the only resonances that will appear are those which are in correspondence with the family [fr

  1. Nuclear spin-orbit splitting from an intermediate Δ excitation

    International Nuclear Information System (INIS)

    Ohta, K.; Terasawa, T.; Tohyama, M.

    1980-01-01

    The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings

  2. Schematic model of nuclear spin excitations

    International Nuclear Information System (INIS)

    Boucher, P.M.

    1990-01-01

    A simple model to estimate the strength of spin and nonspin collective states is presented. The model was inspired by early schematic models based on energy-weighted sum rules and is a useful tool for interpreting experimental data without the complexities of realistic microscopic calculations. The strength of collective states is calculated by assuming that a single collective state completely exhausts the energy-weighted sum rule. 19 refs

  3. Spin polarization of tunneling current in barriers with spin-orbit coupling

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons

  4. Spin polarization of tunneling current in barriers with spin-orbit coupling.

    Science.gov (United States)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-03-19

    We present a general method for evaluating the maximum transmitted spin polarization and optimal spin axis for an arbitrary spin-orbit coupling (SOC) barrier system, in which the spins lie in the azimuthal plane and finite spin polarization is achieved by wavevector filtering of electrons. Besides momentum filtering, another prerequisite for finite spin polarization is asymmetric occupation or transmission probabilities of the eigenstates of the SOC Hamiltonian. This is achieved most efficiently by resonant tunneling through multiple SOC barriers. We apply our analysis to common SOC mechanisms in semiconductors: pure bulk Dresselhaus SOC, heterostructures with mixed Dresselhaus and Rashba SOC and strain-induced SOC. In particular, we find that the interplay between Dresselhaus and Rashba SOC effects can yield several advantageous features for spin filter and spin injector functions, such as increased robustness to wavevector spread of electrons.

  5. Old tensor mesons in QCD sum rules

    International Nuclear Information System (INIS)

    Aliev, T.M.; Shifman, M.A.

    1981-01-01

    Tensor mesons f, A 2 and A 3 are analyzed within the framework of QCD sum rules. The effects of gluon and quark condensate is accounted for phenomenologically. Accurate estimates of meson masses and coupling constants of the lowest-lying states are obtained. It is shown that the masses are reproduced within theoretical uncertainty of about 80 MeV. The coupling of f meson to the corresponding quark current is determined. The results are in good aqreement with experimental data [ru

  6. Review of an emerging research field 'spin-orbit torques'

    International Nuclear Information System (INIS)

    Kurebayashi, Hidekazu

    2015-01-01

    This Review will provide a landscape of the recent development of one of spintronics sub-fields, so-called 'spin orbit torques'. This new class of spin torques, arising from the relativistic spin-orbit interaction in solid states, has gained a great deal of academic interest from relevant scientists and technologists. (author)

  7. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    Science.gov (United States)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  8. The Thomas-Reiche-Kuhn sum rule and the toroid moments

    International Nuclear Information System (INIS)

    Dubovik, V.M.

    1975-01-01

    By example of the Thomas-Reiche-Kuhn sum rule a procedure is given for calculating the retardation effects in any E-transition strengths via the toroid moments. The investigation has been performed at the Laboratory of Theoretical Physics, JINR

  9. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  10. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  11. A simple derivation of new sum rules of Bessel functions

    International Nuclear Information System (INIS)

    Ciocci, F.; Dattoli, G.; Dipace, A.

    1985-01-01

    In this note it is exploited a recently suggested technique to get simple expressions for a class of sum rules of Bessel functions appearing in plasma physics; their relevance to the numerical evaluation of the Turkin function is also discussed

  12. Radiative E1-decay of charmonium 1P1 level within sum rules of quantum chromodynamics

    International Nuclear Information System (INIS)

    Martynenko, A.P.

    1991-01-01

    Analysis of radiative decay of 1 P 1 → 1 S 0 + γ charmonium within sum rules of quantum chromodynamics was conducted. The sum rule, taking account of gluon exponential correction, was obtained, and width of Χ → η c + γ decay was calculated

  13. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    Science.gov (United States)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  14. Q2 evolution of generalized Baldin sum rule for the proton

    International Nuclear Information System (INIS)

    Liang, Y.; Christy, M. E.; Ent, R.; Keppel, C. E.

    2006-01-01

    The generalized Baldin sum rule for virtual photon scattering, the unpolarized analogy of the generalized Gerasimov-Drell-Hearn integral provides an important way to investigate the transition between perturbative QCD and hadronic descriptions of nucleon structure. This sum rule requires integration of the nucleon structure function F 1 , which until recently had not been measured at low Q 2 and large x, i.e., in the nucleon resonance region. This work uses new data from inclusive electron-proton scattering in the resonance region obtained at Jefferson Lab, in combination with SLAC deep inelastic scattering data, to present first precision measurements of the generalized Baldin integral for the proton in the Q 2 range of 0.3 to 4.0 GeV 2

  15. QCD sum rule study of hidden-charm pentaquarks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Xing; Cui, Er-Liang [Beihang University, School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei; Steele, T.G. [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)

    2016-10-15

    We study the mass spectra of hidden-charm pentaquarks having spin J = (1)/(2)/(3)/(2)/(5)/(2) and quark contents uudc anti c. We systematically construct all the relevant local hidden-charm pentaquark currents, and we select some of them to perform QCD sum rule analyses. We find that the P{sub c}(4380) and P{sub c}(4450) can be identified as hidden-charm pentaquark states composed of an anti-charmed meson and a charmed baryon. Besides them, we also find (a) the lowest-lying hidden-charm pentaquark state of J{sup P} = 1/2{sup -} has the mass 4.33{sup +0.17}{sub -0.13} GeV, while the one of J{sup P} = 1/2{sup +} is significantly higher, that is, around 4.7-4.9 GeV; (b) the lowest-lying hidden-charm pentaquark state of J{sup P} = 3/2{sup -} has the mass 4.37{sup +0.18}{sub -0.13} GeV, consistent with the P{sub c}(4380) of J{sup P} = 3/2{sup -}, while the one of J{sup P} = 3/2{sup +} is also significantly higher, that is, above 4.6 GeV; (c) the hidden-charm pentaquark state of J{sup P} = 5/2{sup -} has a mass around 4.5-4.6 GeV, slightly larger than the P{sub c}(4450) of J{sup P} = 5/2{sup +}. (orig.)

  16. On sum rules for charge transition density

    International Nuclear Information System (INIS)

    Gul'karov, I.S.

    1979-01-01

    The form factors of the quadrupole and octupole oscillations of the 12 C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow to obtain various CTD which contain the components k: rsup(lambda+2k-2)rho(r) and rsup(lambda+2k-1)(drho(r)/dr) (k=0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. The recurrent formulas are derived for the ratios of the higher order transition matrix elements and CTD. These formulas can be used to predict the CTD behaviour for highly excited nuclear states

  17. Borel sum rules for octet baryons in nuclear medium

    International Nuclear Information System (INIS)

    Kondo, Y.; Morimatsu, O.

    1992-06-01

    Borel sum rules are examined for octet baryons in the nuclear medium. First, it is noticed that in the medium the dispersion relation is realized for the retarded correlation Π R (ω, q 2 ) in the energy ω. Then, Π R (ω, q 2 ) is split into even and odd parts of ω in order to apply the Borel transformation. The obtained Borel sum rules differ from those of previous works. The mass shifts of octet baryons are calculated in the leading order of the operator product expansion with linear density approximation for the condensates. It is found that both scalar and vector condensates of the quark field, and + q>, induce attraction to the octet baryons in the medium in contrast to the results of previous works. It is also found that |δM N | > |δM Λ | > |δM Σ | ∼ |δM Ξ |. The absolute values, however, turn out to be one order of magnitude larger than those empirically known if a Borel mass of around 1 GeV is used in the present approximation. (author)

  18. Sum rules for elements of flavor-mixing matrices based on a non-semisimple symmetry

    International Nuclear Information System (INIS)

    Sogami, Ikuo S.

    2006-01-01

    Sum rules for elements of flavor-mixing matrices (FMMs) are derived within a new algebraic theory for flavor physics, in which the FMMs are identified with elements of the Lie group isomorphic to SU(2) x U(1). The resulting sum rules originating from the unique elaborate structure of the algebra of the group are so simple and explicit that their validity can be confirmed by analyzing properly processed experimental data. (author)

  19. A new sum rule relating the deep-inelastic polarized structure function to the cross section of photoproduction

    International Nuclear Information System (INIS)

    Koretune, Susumu

    1993-01-01

    A sum rule which relates the deep-inelastic polarized structure function g 1 p (x,Q 2 ) to the cross section of photoproduction, (σ 3/2 -σ 1/2 ), is derived. This rule makes it possible to compare the integral of g 1 p (x,Q 2 ) with the Drell-Hearn-Gerasimov sum rule without worrying about contributions from higher twist terms. Further this sum rule shows that there may exist a dynamical mechanism which relates the low energy region to the high energy one. It is conjectured that the spontaneous chiral symmetry breaking of the vacuum is the origin of this mechanism. (author)

  20. DISCERNING EXOPLANET MIGRATION MODELS USING SPIN-ORBIT MEASUREMENTS

    International Nuclear Information System (INIS)

    Morton, Timothy D.; Johnson, John Asher

    2011-01-01

    We investigate the current sample of exoplanet spin-orbit measurements to determine whether a dominant planet migration channel can be identified, and at what confidence. We use the predictions of Kozai migration plus tidal friction and planet-planet scattering as our misalignment models, and we allow for a fraction of intrinsically aligned systems, explainable by disk migration. Bayesian model comparison demonstrates that the current sample of 32 spin-orbit measurements strongly favors a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. Our analysis indicates that between 34% and 76% of close-in planets (95% confidence) migrated via planet-planet scattering. Separately analyzing the subsample of 12 stars with T eff >6250 K-which Winn et al. predict to be the only type of stars to maintain their primordial misalignments-we find that the data favor a single-mode scattering model over Kozai with 85% confidence. We also assess the number of additional hot star spin-orbit measurements that will likely be necessary to provide a more confident model selection, finding that an additional 20-30 measurement has a >50% chance of resulting in a 95% confident model selection, if the current model selection is correct. While we test only the predictions of particular Kozai and scattering migration models in this work, our methods may be used to test the predictions of any other spin-orbit misaligning mechanism.

  1. QCD Sum Rule External Field Approach and Vacuum Susceptibilities

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; CHANG Chao-His; WANG Fan; ZHAO En-Guang

    2002-01-01

    Based on QCD sum rule three-point and two-point external field formulas respectively, the vector vacuumsusceptibilities are calculated at the mean-field level in the framework of the global color symmetry model. It is shownthat the above two approaches of determination of the vector vacuum susceptibility may lead to different results. Thereason of this contradiction is discussed.

  2. Isospin sum rule for nuclear photoabsorption: Effect of retardation

    International Nuclear Information System (INIS)

    Maize, M.A.; Fallieros, S.

    1987-01-01

    Motivated by the close similarity between a sum rule originally derived by Cabibbo and Radicati and a simplified version based on nonrelativistic nuclear physics in the long-wavelength limit, we have investigated the effect of retardation corrections. An account of the contributions due to higher multipolarities is presented, together with a physical interpretation of the results

  3. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    Science.gov (United States)

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  4. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  5. More sum rules for quark and lepton masses

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1990-04-01

    Sum rules for quark and lepton masses are derived from the Ward identity of Chanowitz and Ellis for the vertex function of the trace of the energy-momentum tensor and the two axial-vector currents and the partially conserved axial-vector current hypothesis. They indicate, among other things, that the constituent quark masses of u and d and those of the techniquarks, if any, are about 300 MeV and 300 GeV, respectively. (author)

  6. Extraction of Spin-Orbit Interactions from Phase Shifts via Inversion

    International Nuclear Information System (INIS)

    Lun, D.R.; Buckman, S.J.

    1997-01-01

    An exact inversion procedure for obtaining the central and spin-orbit potential from phase shifts at fixed energy is described. The method, based on Sabatier interpolation formulas, reduces the nonlinear problem to linear-algebraic equations. We have tested the method with a Woods-Saxon potential with a strong spin-orbit component. copyright 1997 The American Physical Society

  7. Infrared renormalons and the relations between the Gross-Llewellyn Smith and the Bjorken polarized and unpolarized sum rules

    International Nuclear Information System (INIS)

    Kataev, A.L.

    2005-01-01

    It is demonstrated that the infrared renormalon calculus indicates that the QCD theoretical expressions for the Gross-Llewellyn Smith sum rule and for the Bjorken polarized and unpolarized ones contain an identical negative twist-4 1/Q 2 correction. This observation is supported by the consideration of the results of calculations of the corresponding twist-4 matrix elements. Together with the indication of the similarity of perturbative QCD contributions to these three sum rules, this observation leads to simple new theoretical relations between the Gross-Llewellyn Smith and Bjorken polarized and unpolarized sum rules in the energy region Q 2 ≥ 1 GeV 2 . The validity of this relation is checked using concrete experimental data for the Gross-Llewellyn Smith and Bjorken polarized sum rules [ru

  8. Predictions for the Dirac C P -violating phase from sum rules

    Science.gov (United States)

    Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.

    2018-05-01

    We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.

  9. Spin injection into Pt-polymers with large spin-orbit coupling

    Science.gov (United States)

    Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy

    2014-03-01

    Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.

  10. The spin structure of the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Frois, B. [DAPNIA/SPHN, Gif-sur-Yvette (France)

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{sup p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.

  11. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Topological phases in superconductor-noncollinear magnet interfaces with strong spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Menke, H.; Schnyder, A.P. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Toews, A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Quantum Matter Institute, University of British Columbia, Vancouver, BC (Canada)

    2016-07-01

    Majorana fermions are predicted to emerge at interfaces between conventional s-wave superconductors and non-collinear magnets. In these heterostructures, the spin moments of the non-collinear magnet induce a low-energy band of Shiba bound states in the superconductor. Depending on the type of order of the magnet, the band structure of these bound states can be topologically nontrivial. Thus far, research has focused on systems where the influence of spin-orbit coupling can be neglected. Here, we explore the interplay between non-collinear (or non-coplanar) spin textures and Rashba-type spin-orbit interaction. This situation is realized, for example, in heterostructures between helical magnets and heavy elemental superconductors, such as Pb. Using a unitary transformation in spin space, we show that the effects of Rashba-type spin-orbit coupling are equivalent to the effects of the non-collinear spin texture of the helical magnet. We explore the topological phase diagram as a function of spin-orbit coupling, spin texture, and chemical potential, and find many interesting topological phases, such as p{sub x}-, (p{sub x} + p{sub y})-, and (p{sub x} + i p{sub y})-wave states. Conditions for the formation and the nature of Majorana edge channels are examined. Furthermore, we study the topological edge currents of these phases.

  13. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  14. All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Kohda, M. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Department of Materials Science, Tohoku University, 980-8579 Sendai (Japan); Altmann, P.; Salis, G. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Schuh, D.; Ganichev, S. D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland)

    2015-10-26

    A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

  15. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model

    International Nuclear Information System (INIS)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En

    2012-01-01

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  16. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    Science.gov (United States)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  17. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  18. Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction

    International Nuclear Information System (INIS)

    Vaseghi, B.; Rezaei, G.; Malian, M.

    2011-01-01

    We have studied simultaneous effects of Rashba spin-orbit interaction and external electric and magnetic fields on the subbands energy levels and electron g-factor of spherical quantum dots. It is shown that energy eigenvalues strongly depend on the combined effects of external electric and magnetic fields and spin-orbit interaction strength. The more the spin-orbit interaction strength increase, the more the energy eigenvalues increase. Also, we found that the electron g-factor sensitively differers from the bulk value due to the confinement effects. Furthermore, external fields and spin-orbit interaction have a great influence on this important quantity. -- Highlights: → Energy of spherical quantum dots depends on the spin-orbit interaction strength in external electric and magnetic fields. → Spin-orbit interaction shifts the energy levels. → Electron g-factor differs from the bulk value in spherical quantum dots due to the confinement effects. → Electron g-factor strongly depends on the spin-orbit interaction strength in external electric and magnetic fields.

  19. Quark-number susceptibility, thermodynamic sum rule, and the hard thermal loop approximation

    International Nuclear Information System (INIS)

    Chakraborty, Purnendu; Mustafa, Munshi G.; Thoma, Markus H.

    2003-01-01

    The quark number susceptibility, associated with the conserved quark number density, is closely related to the baryon and charge fluctuations in the quark-gluon plasma, which might serve as signature for the quark-gluon plasma formation in ultrarelativistic heavy-ion collisions. In addition to QCD lattice simulations, the quark number susceptibility has been calculated recently using a resummed perturbation theory (hard thermal loop resummation). In the present work we show, based on general arguments, that the computation of this quantity neglecting hard thermal loop vertices contradicts the Ward identity and violates the thermodynamic sum rule following from quark number conservation. We further show that the hard thermal loop perturbation theory is consistent with the thermodynamic sum rule

  20. Experimental check of the Gerasimov-Drell-Hearn sum rule for H1

    International Nuclear Information System (INIS)

    Dutz, H.; Drachenfels, W. von; Frommberger, F.; Hillert, W.; Klein, F.; Menze, D.; Rohlof, C.; Schoch, B.; Helbing, K.; Speckner, T.; Zeitler, G.; Anton, G.; Bock, A.; Godo, M.; Kiel, B.; Michel, T.; Naumann, J.; Krimmer, J.; Grabmayr, P.; Sauer, M.

    2004-01-01

    For the first time we checked the fundamental Gerasimov-Drell-Hearn (GDH) sum rule for the proton experimentally in the photon energy range from 0.2-2.9 GeV with the tagged photon facilities at MAMI (Mainz) and ELSA (Bonn). New data of the doubly polarized total cross section difference are presented in the energy range from 1.6 to 2.9 GeV. The contribution to the GDH integral from 0.2-2.9 GeV yields [254±5(stat)±12(syst)] μb with negative contributions in the Regge regime at photon energies above 2.1 GeV. This trend supports the validity of the GDH sum rule

  1. Beauty vector meson decay constants from QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146, Roma (Italy)

    2016-01-22

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  2. Quantifying the importance of orbital over spin correlations in delta-Pu within density-functional theory

    International Nuclear Information System (INIS)

    Soderlind, P

    2008-01-01

    The electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for (delta)-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero

  3. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Jia-Ting, Ni; Bin, Chen; Xiao-Wan, Liang; Koga, T.

    2009-01-01

    We demonstrate the amplitude and spin polarization of AAS oscillation changing with Rashba spin-orbit interaction (SOI) and Dresselhaus SOI. The amplitude and spin polarization of AB oscillation changing with Rashba SOI and Dresselhaus SOI are demonstrated as well. The ideal quasi-one-dimensional square loop does not exist in reality, therefore to match the experiment better we should consider the shape of the rectangle loop in theory

  4. Coupling of spin and orbital motion of electrons in carbon nanotubes

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Ilani, S; Ralph, D C

    2008-01-01

    Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion, leading to the well-known fine structure in their...... systems, entailing new design principles for the realization of quantum bits (qubits) in nanotubes and providing a mechanism for all-electrical control of spins in nanotubes....

  5. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  6. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  7. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    Science.gov (United States)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then

  8. QCD effects to Bjorken unpolarized sum rule for νN deep-inelastic scattering

    International Nuclear Information System (INIS)

    Alekhin, S I; Kataev, A L

    2003-01-01

    The possibility of the first measurement of Bjorken unpolarized sum rule for F 1 structure function of νN deep-inelastic scattering at neutrino factories is commented. The brief summary of various theoretical contributions to this sum rule is given. Using the next-to-leading set of parton distributions functions, we simulate the expected Q 2 -behaviour and emphasize that its measurement can allow us to determine the value of the QCD strong coupling constant α s with reasonable theoretical uncertainty, dominated by the ambiguity in the existing estimates of the twist-4 non-perturbative 1/Q 2 -effect

  9. Electromagnetic form factors of the ρ meson in light cone QCD sum rules

    International Nuclear Information System (INIS)

    Aliev, T.M.; Savci, M.

    2004-01-01

    We investigate the electromagnetic form factors of the ρ meson in light cone QCD sum rules. We find that the ratio of the magnetic and charge form factors is larger than 2 at all values of Q 2 (Q 2 ≥0.5 GeV 2 ). The values of the individual form factors at fixed values of Q 2 predicted by the light cone QCD sum rules are quite different compared to the results of other approaches. These results can be checked in the future, when more precise data on ρ meson form factors is available

  10. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    Science.gov (United States)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  11. The polarised photon g1γ sum rule at the linear collider and high luminosity B factories

    International Nuclear Information System (INIS)

    Shore, G.M.

    2005-01-01

    The sum rule for the first moment of the polarised (virtual) photon structure function g 1 γ (x,Q 2 ;K 2 ) is revisited in the light of proposals for future e + e - colliders. The sum rule exhibits an array of phenomena characteristic of QCD: for real photons (K 2 =0) electromagnetic gauge invariance constrains the first moment to vanish; the limit for asymptotic photon virtuality (m ρ 2 -bar K 2 -bar Q 2 ) is governed by the electromagnetic U A (1) axial anomaly and the approach to asymptopia by the gluonic anomaly; for intermediate values of K 2 , it reflects the realisation of chiral symmetry and is determined by the off-shell radiative couplings of the pseudoscalar mesons; finally, like many polarisation phenomena in QCD, the first moment of g 1 γ involves the gluon topological susceptibility. In this paper, we review the original sum rule proposed by Narison, Shore and Veneziano and extend the relation with pseudoscalar mesons. The possibility of measuring the sum rule in future polarised e + e - colliders is then considered in detail, focusing on the International Linear Collider (ILC) and high luminosity B factories. We conclude that all the above features of the sum rule should be accessible at a polarised collider with the characteristics of SuperKEKB

  12. The role of spin-orbit potential in nuclear prolate-shape dominance

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Satoshi, E-mail: staka@ks.kyorin-u.ac.jp [Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611 (Japan); Onishi, Naoki [University of Tokyo (Japan); University of Yamanashi (Japan); Shimizu, Yoshifumi R. [Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 812-8581 (Japan); Tajima, Naoki [Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan)

    2011-08-26

    It is confirmed, in terms of the Woods-Saxon-Strutinsky method, that the spin-orbit potential plays a decisive role in the predominance of prolate deformation, which has been a long standing problem in nuclear physics. It is originated from the combined effects of the spin-orbit coupling and the diffused surface of the potential, in agreement with the previous work based on a more schematic Nilsson-Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect to the strength of spin-orbit potential and, the prolate-shape dominance is realized at the proper strength of the spin-orbit potential together with the standard surface diffuseness; this oscillatory behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy differences between oblate and prolate minima in this Letter are consistent with those of our extensive self-consistent calculations of the Hartree-Fock + BCS method with the Skyrme interaction.

  13. The role of spin-orbit potential in nuclear prolate-shape dominance

    International Nuclear Information System (INIS)

    Takahara, Satoshi; Onishi, Naoki; Shimizu, Yoshifumi R.; Tajima, Naoki

    2011-01-01

    It is confirmed, in terms of the Woods-Saxon-Strutinsky method, that the spin-orbit potential plays a decisive role in the predominance of prolate deformation, which has been a long standing problem in nuclear physics. It is originated from the combined effects of the spin-orbit coupling and the diffused surface of the potential, in agreement with the previous work based on a more schematic Nilsson-Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect to the strength of spin-orbit potential and, the prolate-shape dominance is realized at the proper strength of the spin-orbit potential together with the standard surface diffuseness; this oscillatory behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy differences between oblate and prolate minima in this Letter are consistent with those of our extensive self-consistent calculations of the Hartree-Fock + BCS method with the Skyrme interaction.

  14. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    Energy Technology Data Exchange (ETDEWEB)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  15. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    International Nuclear Information System (INIS)

    Evelt, M.; Demidov, V. E.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; Loubens, G. de; Klein, O.; Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A.

    2016-01-01

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  16. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  17. Measurement of the neutron (3He) spin structure functions at low Q2: A connection between the Bjorken and gerasimov-drell-hearn sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Djawotho, Pibero [College of William and Mary, Williamsburg, VA (United States)

    2002-12-01

    This dissertation presents results of experiment E94-010 performed at Jefferson Laboratory (simply known as JLab) in Hall A. The experiment aimed to measure the low Q2 evolution of the Gerasimov-Drell-Hearn (GDH) integral from Q2 = 0.1 to 0.9 GeV2. The GDH sum rule at the real photon point provides an important test of Quantum Chromodynamics (QCD). The low Q2 evolution of the GDH integral contests various resonance models, Chiral Perturbation Theory ({chi} PT) and lattice QCD calculations, but more importantly, it helps us understand the transition between partonic and hadronic degrees of freedom. At high Q2, beyond 1 GeV2, the difference of the GDH integrals for the proton and the neutron is related to the Bjorken sum rule, another fundamental test of QCD. In addition, results of the measurements for the spin structure functions g1 and g2, cross sections, and asymmetries are presented. E94-010 was the first experiment of its kind at JLab. It used a high-pressure, polarized 3He target with a gas pressure of 10 atm and average target polarization of 35%. For the first time, the polarized electron source delivered an average beam polarization of 70% with a beam current of 15 micro A. The limit on the beam current was only imposed by the target. The experiment required six different beam energies from 0.86 to 5.1 GeV. This was the first time the accelerator ever reached 5.1 GeV. Both High-Resolution Spectrometers of Hall A, used in singles mode, were positioned at 15.5 ° each.

  18. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  19. Nuclear Symmetry Energy with QCD Sum Rule

    International Nuclear Information System (INIS)

    Jeong, K.S.; Lee, S.H.

    2013-01-01

    We calculate the nucleon self-energies in an isospin asymmetric nuclear matter using QCD sum rule. Taking the difference of these for the neutron and proton enables us to express an important part of the nuclear symmetry energy in terms of local operators. Calculating the operator product expansion up to mass dimension six operators, we find that the main contribution to the difference comes from the iso-vector scalar and vector operators, which is reminiscent to the case of relativistic mean field type theories where mesons with aforementioned quantum numbers produce the difference and provide the dominant mechanism for nuclear symmetry energy. (author)

  20. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    Science.gov (United States)

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  1. On the difference between proton and neutron spin-orbit splittings in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.; Erokhina, K.I.; Mach, H.; Sanchez-Vega, M.; Fogelberg, B.

    2002-01-01

    The latest experimental data on nuclei at 132 Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly magic region and compare the case to that of 208 Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean-field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches. (orig.)

  2. Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions

    International Nuclear Information System (INIS)

    Niţa, Marian; Ostahie, Bogdan; Marinescu, D C; Manolescu, Andrei; Gudmundsson, Vidar

    2012-01-01

    When subjected to a linearly polarized terahertz pulse, a mesoscopic ring endowed with spin-orbit interaction (SOI) of the Rashba-Dresselhaus type exhibits non-uniform azimuthal charge and spin distributions. Both types of SOI couplings are considered linear in the electron momentum. Our results are obtained within a formalism based on the equation of motion satisfied by the density operator which is solved numerically for different values of the angle φ, the angle determining the polarization direction of the laser pulse. Solutions thus obtained are later employed in determining the time-dependent charge and spin currents, whose values are calculated in the stationary limit. Both these currents exhibit an oscillatory behavior complicated in the case of the spin current by a beating pattern. We explain this occurrence on account of the two spin-orbit interactions which force the electron spin to oscillate between the two spin quantization axes corresponding to Rashba and Dresselhaus interactions. The oscillation frequencies are explained using the single particle spectrum.

  3. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang; Wang, Xuhui; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  4. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  5. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  6. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    Science.gov (United States)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  7. QCD sum rules in medium and the Okamoto-Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Hatsuda, T.; Hogaasen, H.; Prakash, M.

    1991-01-01

    The QCD sum-rule approach for a nuclear medium is developed. The medium dependence of the neutron-proton mass difference calculated from this approach gives effects in nuclei which have direct relevance for the resolution of the Okamoto-Nolen-Schiffer anomaly

  8. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  9. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  10. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  11. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.

    Science.gov (United States)

    Intronati, Guido A; Tamborenea, Pablo I; Weinmann, Dietmar; Jalabert, Rodolfo A

    2012-01-06

    We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites, and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good agreement with experimental values. This conclusion is drawn from two complementary approaches: an analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation time.

  12. Revisit assignments of the new excited Ω{sub c} states with QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Gang; Wei, Xing-Ning; Yan, Ze-Hui [North China Electric Power University, Department of Physics, Baoding (China)

    2017-12-15

    In this article, we distinguish the contributions of the positive parity and negative parity Ω{sub c} states, study the masses and pole residues of the 1S, 1P, 2S and 2P Ω{sub c} states with the spin J = (1)/(2) and (3)/(2) using the QCD sum rules in a consistent way, and we revisit the assignments of the new narrow excited Ω{sub c}{sup 0} states. The predictions support assigning Ω{sub c}(3000) to the 1P Ω{sub c} state with J{sup P} = (1)/(2){sup -}, assigning Ω{sub c}(3090) to the 1P Ω{sub c} state with J{sup P} = (3)/(2){sup -} or the 2S Ω{sub c} state with J{sup P} = (1)/(2){sup +}, and assigning Ω{sub c}(3119) to the 2S Ω{sub c} state with J{sup P} = (3)/(2){sup +}. (orig.)

  13. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.

    2015-01-01

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system

  14. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  15. Calculation of excited vector meson electron widths using QCD sum rules

    International Nuclear Information System (INIS)

    Geshkenbein, B.V.

    1984-01-01

    The sum rules are suggested which allow one to calculate the electron widths of excited vector mesons of the PSI, UPSILON, rho meson family assuming the values of their masses to be known. The calculated values of the electron widths agree with experiment

  16. Sum rules, asymptotic behaviour and (multi)baryon states in the Skyrme model

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Wulck, S.

    1990-01-01

    We obtain sum roles that should be satisfied by the solutions of the Euler-Lagrange equation for the chiral angle in the Skyrme model in the hedgehog representation. The sum rules allow to determine the existence of solutions with integer baryon number for well determined values of a relevant dimensionless parameter Φ only. For all other values, there are no solutions with integer baryon number, in particular for the pure non-linear sigma model. (author)

  17. Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice

    Science.gov (United States)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-03-01

    We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.

  18. Spin-orbital superexchange physics emerging from interacting oxygen molecules in KO2

    International Nuclear Information System (INIS)

    Solovyev, I V

    2008-01-01

    We propose that the spin-orbital-lattice coupled phenomena, widely known for the transition-metal oxides, can be realized in molecular solids, comprising of orbitally degenerate magnetic O 2 - ions. KO 2 is one such system. Using the first-principles electronic structure calculations, we set-up an effective spin-orbital superexchange model for the low-energy molecular bands and argue that many anomalous properties of KO 2 indeed replicate the status of its orbital system in different temperature regimes

  19. Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling

    Science.gov (United States)

    Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki

    2017-07-01

    We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.

  20. Spectral sum rules and search for periodicities in DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.

    2011-01-01

    Periodic patterns play the important regulatory and structural roles in genomic DNA sequences. Commonly, the underlying periodicities should be understood in a broad statistical sense, since the corresponding periodic patterns have been strongly distorted by the random point mutations and insertions/deletions during molecular evolution. The latent periodicities in DNA sequences can be efficiently displayed by Fourier transform. The criteria of significance for observed periodicities are obtained via the comparison versus the counterpart characteristics of the reference random sequences. We show that the restrictions imposed on the significance criteria by the rigorous spectral sum rules can be rationally described with De Finetti distribution. This distribution provides the convenient intermediate asymptotic form between Rayleigh distribution and exact combinatoric theory. - Highlights: → We study the significance criteria for latent periodicities in DNA sequences. → The constraints imposed by sum rules can be described with De Finetti distribution. → It is intermediate between Rayleigh distribution and exact combinatoric theory. → Theory is applicable to the study of correlations between different periodicities. → The approach can be generalized to the arbitrary discrete Fourier transform.

  1. Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms

    International Nuclear Information System (INIS)

    Juzeliunas, Gediminas; Ruseckas, Julius; Dalibard, Jean

    2010-01-01

    We study the possibility for generating a new type of spin-orbit coupling for the center-of-mass motion of cold atoms, using laser beams that resonantly couple N atomic internal ground states to an extra state. After a general analysis of the scheme, we concentrate on the tetrapod setup (N=4) where the atomic state can be described by a three-component spinor, evolving under the action of a Rashba-Dresselhaus-type spin-orbit coupling for a spin 1 particle. We illustrate a consequence of this coupling by studying the negative refraction of atoms at a potential step and show that the amplitude of the refracted beam is significantly increased in comparison to the known case of spin 1/2 Rashba-Dresselhaus coupling. Finally, we explore a possible implementation of this tetrapod setup, using stimulated Raman couplings between Zeeman sublevels of the ground state of alkali-metal atoms.

  2. Sum rules and exclusive processes in quantum chromodynamics

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1983-01-01

    A brief review of results of analyzing hadron form factors is presented. The analysis of hardron form factors was conducted by the method of QCD sum rules. The method is based on the concept of quark-hadron duality. Correlation of calculation results with available experimental data was performed. The conclusion is made that it is sufficient to consider only the contribution of the simplest diagrams which don't contain gluon exchanges in order to describe experimental data on pion, proton and neutron form factors

  3. Majorana spin in magnetic atomic chain systems

    Science.gov (United States)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  4. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  5. B→ππ form factors from light-cone sum rules with B-meson distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shan; Khodjamirian, Alexander [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Department Physik, Universität Siegen,Walter-Flex-Strasse 3, 57068 Siegen (Germany); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2017-05-30

    We study B→ππ form factors using QCD light-cone sum rules with B-meson distribution amplitudes. These form factors describe the semileptonic decay B→ππℓν̄{sub ℓ}, and constitute an essential input in B→ππℓ{sup +}ℓ{sup −} and B→πππ decays. We employ the correlation functions where a dipion isospin-one state is interpolated by the vector light-quark current. We obtain sum rules where convolutions of the P-wave B̄{sup 0}→π{sup +}π{sup 0} form factors with the timelike pion vector form factor are related to universal B-meson distribution amplitudes. These sum rules are valid in the kinematic regime where the dipion state has a large energy and a low invariant mass, and reproduce analytically the known light-cone sum rules for B→ρ form factors in the limit of ρ-dominance and zero width, thus providing a systematics for so far unaccounted corrections to B→ρ transitions. Using data for the pion vector form factor, we estimate finite-width effects and the contribution of excited ρ-resonances to the B→ππ form factors. We find that these contributions amount up to ∼20% in the small dipion mass region where they can be effectively regarded as a nonresonant (P-wave) background to the B→ρ transition.

  6. Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Baym, Gordon; Ozawa, Tomoki

    2014-01-01

    Cold atomic Bose-Einstein systems in the presence of simulated Rashba- Dresselhaus spin-orbit coupling exhibit novel physical features. With pure in-plane Rashba coupling the system is predicted in Bogoliubov-Hartree-Fock to have a stable Bose condensate below a critical temperature, even though the effective density of states is two-dimensional. In addition the system has a normal state at all temperatures. We review here the new physics when the system has such spin-orbit coupling, and discuss the nature of the finite temperature condensation phase transition from the normal to condensed phases.

  7. Finite energy sum rules and instantons in the instanton liquid model

    International Nuclear Information System (INIS)

    Elias, V.; Fang Shi; Steele, T.G.

    1998-01-01

    We obtain the imaginary part of the direct single-instanton contribution to the pseudoscalar correlator, as defined by the appropriate dispersion relation, in order to derive an explicit integral representation for the instanton contribution to finite energy sum rules in the instanton liquid model. (author)

  8. Efficient spin filter using multi-terminal quantum dot with spin-orbit interaction

    Directory of Open Access Journals (Sweden)

    Yokoyama Tomohiro

    2011-01-01

    Full Text Available Abstract We propose a multi-terminal spin filter using a quantum dot with spin-orbit interaction. First, we formulate the spin Hall effect (SHE in a quantum dot connected to three leads. We show that the SHE is significantly enhanced by the resonant tunneling if the level spacing in the quantum dot is smaller than the level broadening. We stress that the SHE is tunable by changing the tunnel coupling to the third lead. Next, we perform a numerical simulation for a multi-terminal spin filter using a quantum dot fabricated on semiconductor heterostructures. The spin filter shows an efficiency of more than 50% when the conditions for the enhanced SHE are satisfied. PACS numbers: 72.25.Dc,71.70.Ej,73.63.Kv,85.75.-d

  9. Non-Abelian hydrodynamics and the flow of spin in spin-orbit coupled substances

    International Nuclear Information System (INIS)

    Leurs, B.W.A.; Nazario, Z.; Santiago, D.I.; Zaanen, J.

    2008-01-01

    Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a 'fixed frame', and it can be viewed as an 'analogous system' for non-Abelian transport in the same spirit as Volovik's identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the 'fixed frame' context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw's scheme: non-Abelian hydrodynamical currents can be factored in a 'non-coherent' classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The 'particle based hydrodynamics' of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non

  10. Multi-channel spintronic transistor design based on magnetoelectric barriers and spin-orbital effects

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors

  11. Bell-like inequality for the spin-orbit separability of a laser beam

    International Nuclear Information System (INIS)

    Borges, C. V. S.; Hor-Meyll, M.; Khoury, A. Z.; Huguenin, J. A. O.

    2010-01-01

    In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.

  12. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    Science.gov (United States)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  13. Spin-polarization and spin-flip in a triple-quantum-dot ring by using tunable lateral bias voltage and Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)

    2017-04-15

    By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.

  14. The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system

    Science.gov (United States)

    Akbari, M.; Rezaei, G.; Khordad, R.

    2017-01-01

    We study the impact of the spin-orbit coupling due to both structure and crystal inversion asymmetry and external magnetic field on the level structure in a two-dimensional quantum pseudo-dot. It is demonstrated that, both the spin-orbit interactions and magnetic field strength have a great influence on energy eigenvalues of the system. Also, we found that an increase in magnetic field enhances the spin-orbit coupling strength. This phenomena leads to increase the energy eigenvalues and energy splitting due to the spin-orbit coupling.

  15. Neutron matter within QCD sum rules

    Science.gov (United States)

    Cai, Bao-Jun; Chen, Lie-Wen

    2018-05-01

    The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.

  16. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Tatara, Gen, E-mail: gen.tatara@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan (Japan); Nakabayashi, Noriyuki [RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan (Japan); Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan (Japan)

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  17. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

    Science.gov (United States)

    MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.

    2017-03-01

    Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.

  18. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-01-01

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  19. Temperature dependence of spin-orbit torques in Cu-Au alloys

    KAUST Repository

    Wen, Yan

    2017-03-07

    We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  20. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    Science.gov (United States)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  1. Modified Adler sum rule and violation of charge symmetry

    International Nuclear Information System (INIS)

    Dominguez, C.A.; Moreno, H.; Zepeda, A.

    The consequences of a once subtracted dispersion relation in the derivation of the Adler sum rule are investigated. It is shown that one can expect a breakdown of charge symmetry, of the isotriplet current hypothesis, and of scaling of the structure functions. These breakdowns are related to the possible presence of a non-zero subtraction function at asymptotic energies and arbitrary q 2 . Second class currents and PCAC relations are also discussed

  2. Phase-space curvature in spin-orbit-coupled ultracold atomic systems

    Science.gov (United States)

    Armaitis, J.; Ruseckas, J.; Anisimovas, E.

    2017-04-01

    We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.

  3. Measuring the Neutron and 3He Spin Structure at Low Q2

    International Nuclear Information System (INIS)

    Vince Sulkosky

    2005-01-01

    The spin structure of the nucleon has been of great interest over the past few decades. Sum rules, including the Gerasimov-Drell-Hearn (GDH), and moments of the spin structure functions are powerful tools for understanding nucleon structure. The GDH sum rule, originally derived for real photon absorption, has been generalized to nonzero Q 2 . The goal of Jefferson Lab experiment E97-110 is to perform a precise measurement of the Q 2 dependence of the generalized GDH integral and of the moments of the neutron and 3 He spin structure functions between 0.02 and 0.3 GeV 2 . This Q 2 range will allow us to test predictions of Chiral Perturbation Theory, and verify the GDH sum rule by extrapolating the integral to the real photon point. The measurement will also contribute to the understanding of nucleon resonances. The data have been taken in Hall A using a high resolution spectrometer with the addition of a septum magnet, which allowed us to access the low Q 2 region. The analysis's status, prospects and impact will be discussed

  4. gsub(ωrhoπ) coupling constant from QCD sum rules

    International Nuclear Information System (INIS)

    Eletsky, V.L.; Ioffe, B.L.; Kogan, Ya.I.

    1982-01-01

    QCD sum rules for the vertex function of two vector and one axial vector currents are used to calculate the gsub(ωrhoπ) coupling constant (where gsub(ωrhoπ) is a transition coupling constant for ω → rhoπ process). The obtained value, gsub(ωrhoπ) approximately 17 GeV -1 is in a good agreement with experimental data

  5. Calculation of electromagnetic rhoπ formfactor from QCD sum rules

    International Nuclear Information System (INIS)

    Eletskij, V.L.; Kogan, Ya.I.

    1982-01-01

    Electromagnetic rhoπγ form factor at intermediate momentum transfer, 0.7 GeV 2 2 2 , is calculated using QCD sum rules for the vertex function of two vector and one axial-vector currents. In this region the results obtained are consistent within 25% accuracy with the vector meson dominance model predictions and can be regarded as its theoretical ustification

  6. Finite temperature QCD sum rule and the ρ-meson

    International Nuclear Information System (INIS)

    Liu Jueping; Jin Yaping

    1995-01-01

    The contributions from the three-gluon condensates to the finite temperature QCD sum rule for the ρ-meson are calculated, and then the dependence of the properties of the ρ-meson upon temperature is investigated in a string model of condensates. The results show that the parameters characterizing the properties of the ρ-meson change noticeably when the temperature closes to the critical temperature of the condensates, and if the critical temperatures of condensates are the same

  7. QCD determination of the A1-p-π system through vertex light-cone sum rules

    International Nuclear Information System (INIS)

    Craigie, N.S.; Paver, N.; Riazzudin

    1986-01-01

    We analyze the rho-A 1 -π system within the context of vertex light-cone sum rules, which are believed to be rigorously satisfied in QCD. It is pointed out that these sum rules provide very strong constraints on the hardronic spectrum and with additional assumptions lead to new predictions, which go significantly beyond those obtained from current algebra in the past. In particular, we report some new results about the rho-A 1 -π couplings and the various transitions form factors in tau-semi-leptonic decays. (orig.)

  8. Statistical properties of spectra in harmonically trapped spin-orbit coupled systems

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We compute single-particle energy spectra for a one-body Hamiltonian consisting of a two-dimensional deformed harmonic oscillator potential, the Rashba spin-orbit coupling and the Zeeman term. To investigate the statistical properties of the obtained spectra as functions of deformation, spin......-orbit and Zeeman strengths we examine the distributions of the nearest neighbor spacings. We find that the shapes of these distributions depend strongly on the three potential parameters. We show that the obtained shapes in some cases can be well approximated with the standard Poisson, Brody and Wigner...... distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choices of deformation and spin-orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding...

  9. The spin structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J.M

    2005-02-15

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)

  10. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Le Goff, J.M.

    2005-02-01

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*ΔΣ + Δg + L q + L g where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L q and L g are the orbital momentum of the quark and the gluon respectively. The ΔΣ contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization Δg/g and the so-called transversity. (A.C.)

  11. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    Science.gov (United States)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  12. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    Science.gov (United States)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  13. Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot

    Science.gov (United States)

    Hofmann, A.; Maisi, V. F.; Krähenmann, T.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.

    2017-10-01

    The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

  14. Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot.

    Science.gov (United States)

    Hofmann, A; Maisi, V F; Krähenmann, T; Reichl, C; Wegscheider, W; Ensslin, K; Ihn, T

    2017-10-27

    The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

  15. Estimating the small-x exponent of the structure function g1NS from the Bjorken sum rule

    International Nuclear Information System (INIS)

    Knauf, Anke; Meyer-Hermann, Michael; Soff, Gerhard

    2002-01-01

    We present a new estimate of the exponent governing the small-x behavior of the nonsinglet structure function g 1 p-n derived under the assumption that the Bjorken sum rule is valid. We use the world wide average of α s and the NNNLO QCD corrections to the Bjorken sum rule. The structure function g 1 NS is found to be clearly divergent for small x

  16. QCD Sum-Rule Calculation of the Kinetic Energy and Chromo-Interaction of Heavy Quarks Inside Mesons

    CERN Document Server

    Neubert, M

    1996-01-01

    We present a QCD sum-rule determination of the heavy-quark kinetic energy inside a heavy meson, $-\\lambda_1/2 m_Q$, which is consistent with the field-theory analog of the virial theorem. We obtain $-\\lambda_1\\approx (0.10\\pm 0.05)~\\mbox{GeV}^2$, significantly smaller than a previous sum-rule result, but in good agreement with recent determinations from the analysis of inclusive decays. We also present a new determination of the chromo-magnetic interaction, yielding $\\lambda_2(m_b)=(0.15\\pm 0.03)~\\mbox{GeV}^2$. This implies $m_{B^*}^2-m_B^2=(0.60\\pm 0.12)~\\mbox{GeV}^2$, in good agreement with experiment. As a by-product of our analysis, we derive the QCD sum rules for the three form factors describing the meson matrix element of a velocity-changing current operator containing the gluon field-strength tensor.

  17. The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirok, Kobra; Mohammadpour, Hakimeh

    2017-01-01

    At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.

  18. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    OpenAIRE

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can O.; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-01-01

    Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent to materials with strong spin-orbit coupling make SOTs especially appealing for fast switching applications in nonvolatile memory and logic units. So far, however, the timescale and evolution of the magnetization during the switching process have ...

  19. Specular Andreev reflection in graphene-based superconducting junction with substate-induced spin orbit interaction

    International Nuclear Information System (INIS)

    Bai, Chunxu; Yang, Yanling

    2016-01-01

    Based on the Dirac–Bogoliubov–de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry–Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI. - Highlights: • The retro-Andreev reflection in graphene is suppressed by the spin orbit interaction. • The specular Andreev reflection in graphene can be enhanced largely by the spin orbit interaction. • The Fabry–Perot interferences in the graphene-based barrier lead to the oscillating feature of the tunneling conductance. • The spin orbit interaction is also vital in diagnosing the specular Andreev reflection in graphene.

  20. Specular Andreev reflection in graphene-based superconducting junction with substate-induced spin orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chunxu, E-mail: chunxu_bai@semi.ac.cn [School of Physics, Anyang Normal University, Anyang 455000 (China); Yang, Yanling [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); School of Physics, Anyang Normal University, Anyang 455000 (China)

    2016-08-26

    Based on the Dirac–Bogoliubov–de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry–Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI. - Highlights: • The retro-Andreev reflection in graphene is suppressed by the spin orbit interaction. • The specular Andreev reflection in graphene can be enhanced largely by the spin orbit interaction. • The Fabry–Perot interferences in the graphene-based barrier lead to the oscillating feature of the tunneling conductance. • The spin orbit interaction is also vital in diagnosing the specular Andreev reflection in graphene.

  1. Magnonic charge pumping via spin-orbit coupling

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Hals, K.M.D.; Irvine, A.; Novák, Vít; Tserkovnyak, Y.; Kurebayashi, H.; Brataas, A.; Ferguson, A.

    2015-01-01

    Roč. 10, č. 1 (2015), 50-54 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : spintronics * spin-orbit torque * GaMnAs Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.267, year: 2015

  2. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.

    2017-01-01

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  3. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets

    KAUST Repository

    Železný, J.

    2017-01-10

    One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.

  4. Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

    KAUST Repository

    Haney, Paul M.

    2013-05-07

    In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.

  5. The proton spin structure; La structure en spin du proton

    Energy Technology Data Exchange (ETDEWEB)

    Breton, V.

    1996-05-13

    The author presents first the theoretical frame of the nucleon spin structure study carried out through the deep inelastic scattering of polarised leptons on a polarised target. The interest of the lepton scattering reaction to study the hadronic structure is discussed and the formalism of the inclusive inelastic scattering presented. If the target and the beam are both polarised, the formalism enables to connect the experimentally measured asymmetries to the contribution of quarks to the spin of nucleon. The recent knowledge about the nucleon spin structure is also presented. The Bjorken sum rule is then discussed: it correlates the difference of spin structure between proton and neutron to the neutron lifetime. Then, the author mentions the experimental results of SMC (CERN) and E142, E143 (SLAC). The transition from rough asymmetry to the g sub 1 structure function integral is discussed as well as the main causes of uncertainty. Compared to theoretical data, the measurements confirm the reliability of the Bjorken sum rule. They also confirm the deficit of the quark contribution with respect to the naive unpolarized strange sea model. The possible origins of this discrepancy and the contributions of the current and planned experiments are also discussed. Finally, the author brings up the next major step for nucleon spin studies: the estimation of the gluon contribution. He discusses the experimental knowledge about the polarised gluon distribution function with regard to the multiple existing parameter set. Concerning the experimental determination of this distribution function, outlooks are proposed with respect to feasibility on current experimental facilities. (N.T.). 134 refs.

  6. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    Science.gov (United States)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  7. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  8. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    Science.gov (United States)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  9. Quantum chromodynamical calculations of meson wave functions in the light-cone formalism by means of QCD sum rules

    International Nuclear Information System (INIS)

    Guellenstern, S.

    1991-09-01

    Using the technique of Cherniak and Zhitnitzky we have calculated the wavefunctions of ρ(770) and Φ(1020) within the framework of QCD sum rules. Whereas the standard approach assumes light-like distances of the quarks (z 2 = 0), we also have taken into account higher order terms in z 2 . Thus, we obtained non-vanishing orbital angular momentum contributions. The first few moments of various invariant functions have been calculated with the help of an especially developed REDUCE program package. In zeroth order (z 2 = 0) our results of the reconstructed wavefunctions agree with those in the literature. However, we got first order contributions in z 2 of an amount of almost 10% of the corresponding zeroth order. (orig.)

  10. The Proton-Spin Crisis another ABJ anomaly?

    CERN Document Server

    Shore, G.M.

    1998-01-01

    Contents: 1. Introduction; 2. The First Moment Sum Rule for $g_1^p$; 3. The Parton Model and the `Proton Spin'; 4. The CPV Method and Topological Charge Screening; 5. Experiment; 6. Semi-Inclusive Polarised DIS.

  11. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.

    2014-01-01

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  12. Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules

    International Nuclear Information System (INIS)

    Wang, Zhi-Gang

    2012-01-01

    In this article, we study the doubly heavy baryon states Ξ cc , Ω cc , Ξ bb and Ω bb in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔM Ξ cc =-1.11simGeV, ΔM Ω cc =-0.33∝GeV, ΔM Ξ bb =-3.37∝GeV and ΔM Ω bb =-1.05∝GeV can be confronted with experimental data in the future. (orig.)

  13. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    Science.gov (United States)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  14. The spin-orbit interaction in nuclei

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    The analysis previously made of the average nuclear potential has been extended to consideration of the spin-orbit interactions. It has not been possible to find a satisfactory two-body interaction consistent with all the data; that suggested by the phase-shift analysis of nucleon-nucleon scattering is just within the region of possible forms. (author). 13 refs, 1 fig

  15. Spin dipole and quadrupole resonances in 40Ca

    International Nuclear Information System (INIS)

    Baker, F.T.; Love, W.G.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Green, A.; Jones, K.; Nanda, S.

    1989-01-01

    Angular distributions of the double differential cross section d 2 σ/dΩ dE(σ) and the spin-flip probability S nn have been measured for inclusive proton inelastic scattering from 40 Ca at 319 MeV. Excitation energies (ω) up to about 40 MeV have been investigated over the angular range from 3.5 degree to 12 degree in the laboratory (0.3 to 0.9 fm -1 ). Here, multipole decompositions of angular distributions of σS nn for the 40 Ca(rvec p,rvec p ') reaction at 319 MeV have been performed in order to compare ΔS=1 strength observed with sum rules. In contrast to the well-known quenching of Gamow-Teller and M1 resonances, the spin-dipole resonance has a total measured strength which is larger than that predicted by the energy-weighted sum rule. The spin-dipole strength distribution supports asymmetric widths predicted by calculations including 2p-2h mixing. The spin-quadrupole resonance is observed near ω=35 MeV and its total strength for ω<40 MeV estimated

  16. QCD light-cone sum rule estimate of charming penguin contributions in B→ππ

    International Nuclear Information System (INIS)

    Khodjamirian, A.; Mannel, Th.; Melic, B.

    2003-01-01

    Employing the QCD light-cone sum rule approach we calculate the B→ππ hadronic matrix element of the current-current operator with c quarks in the penguin topology (''charming penguin''). The dominant contribution to the sum rule is due to the c-quark loop at short distances and is of O(α s ) with respect to the factorizable B→ππ amplitude. The effects of soft gluons are suppressed at least by O(α s m b -2 ). Our result indicates that sizable nonperturbative effects generated by charming penguins at finite m b are absent. The same is valid for the penguin contractions of the current-current operators with light quarks

  17. QCD light-cone sum rule estimate of charming penguin contributions in B→ππ

    International Nuclear Information System (INIS)

    Khodjamirian, A.; Mannel, Th.; Melic, B.

    2003-01-01

    Employing the QCD light-cone sum rule approach we calculate the B→ππ hadronic matrix element of the current-current operator with c quarks in the penguin topology ('charming penguin'). The dominant contribution to the sum rule is due to the c-quark loop at short distances and is of O(α s ) with respect to the factorizable B→ππ amplitude. The effects of soft gluons are suppressed at least by O(α s m b -2 ). Our result indicates that sizable nonperturbative effects generated by charming penguins at finite m b are absent. The same is valid for the penguin contractions of the current-current operators with light quarks

  18. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  19. Hund’s Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d−5d Interfaces

    KAUST Repository

    Belabbes, Abderrezak; Bihlmayer, G.; Bechstedt, F.; Blü gel, S.; Manchon, Aurelien

    2016-01-01

    Using relativistic first-principles calculations, we show that the chemical trend of the Dzyaloshinskii-Moriya interaction (DMI) in 3d-5d ultrathin films follows Hund's first rule with a tendency similar to their magnetic moments in either the unsupported 3d monolayers or 3d-5d interfaces. We demonstrate that, besides the spin-orbit coupling (SOC) effect in inversion asymmetric noncollinear magnetic systems, the driving force is the 3d orbital occupations and their spin-flip mixing processes with the spin-orbit active 5d states control directly the sign and magnitude of the DMI. The magnetic chirality changes are discussed in the light of the interplay between SOC, Hund's first rule, and the crystal-field splitting of d orbitals. © 2016 American Physical Society.

  20. The nucleon axial isoscalar coupling constant and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.; Kogan, Ya.I.

    1984-01-01

    The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model

  1. The Influence of the Optical Phonons on the Non-equilibrium Spin Current in the Presence of Spin-Orbit Couplings

    Science.gov (United States)

    Hasanirokh, K.; Phirouznia, A.; Majidi, R.

    2016-02-01

    The influence of the electron coupling with non-polarized optical phonons on magnetoelectric effects of a two-dimensional electron gas system has been investigated in the presence of the Rashba and Dresselhaus spin-orbit couplings. Numerical calculations have been performed in the non-equilibrium regime. In the previous studies in this field, it has been shown that the Rashba and Dresselhaus couplings cannot generate non-equilibrium spin current and the spin current vanishes identically in the absence of other relaxation mechanisms such as lattice vibrations. However, in the current study, based on a semiclassical approach, it was demonstrated that in the presence of electron-phonon coupling, the spin current and other magnetoelectric quantities have been modulated by the strength of the spin-orbit interactions.

  2. Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Heers, Swantje

    2011-09-21

    The scope of this thesis is to gain insight, by means of ab initio-calculations, into the physics of momentum and spin relaxation phenomena induced by electron scattering at impurities and defects in the noble metals copper, silver and gold. The main results are subdivided in three parts. In the first part, momentum- and spinrelaxation times due to scattering at 3d, 4sp, 4d, 5sp, 5d and 6sp impurities in copper and gold fcc bulk are investigated. The inversion symmetry of the crystals leads to a two-fold degeneracy of all states on the Fermi surface, and therefore spin relaxation is dominated by the Elliott-Yafet mechanism as well as the spin-orbit coupling of the impurity. For impurities in gold, we calculate much shorter spin-relaxation times than in copper because of the stronger spin-orbit coupling of the gold host. Furthermore, we have found important qualitative differences between the relaxation times obtained for the d- and the sp- impurities. As scattering at d-impurities is resonant, the electrons spend much more time at the impurity sites than in the case of the sp-impurities; therefore, they are much longer exhibited to the spin-orbit coupling of the impurity. This results in considerably shorter spin-relaxation times, even if the momentum scattering rates are in the same order of magnitude. Finally, the investigation of interference of scattering processes at impurity dimers reveals that relevant differences to the independent-impurity approximation appear only for strong d-scatterer, placed at nearest neighboring sites. In the second part we investigate the reduction of spin-conserving surface-state lifetimes induced by adatom- and impurity-scattering on the (111) surfaces of copper, silver and gold films with different thicknesses. We have found strong qualitative differences in the lifetimes when comparing the results for adatoms to those of impurities in the first and second layer. The trends for the latter ones are similar to those calculated in

  3. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  4. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  5. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    Science.gov (United States)

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    unpaired electrons on the metal center. Thus, we introduce the exchange-enhanced reactivity (EER) principle, which predicts the preferred spin state during oxidation reactions, the dependence of the barrier on the number of unpaired electrons in the TS, and the dependence of the deformation energy of the reactants on the spin state. We complement EER with orbital-selection rules, which predict the structure of the preferred TS and provide a handy theory of bioinorganic oxidative reactions. These rules show how EER provides a Hund's Rule for chemical reactivity: EER controls the reactivity landscape for a great variety of transition-metal complexes and substrates. Among many reactivity patterns explained, EER rationalizes the abundance of high-spin oxoiron(IV) complexes in enzymes that carry out bond activation of the strongest bonds. The concepts used in this Account might also be applicable in other areas such as in f-block chemistry and excited-state reactivity of 4d and 5d OMCs.

  6. Secular Orbit and Spin Variations of Asteroid (16) Psyche

    Science.gov (United States)

    Bills, B. G.; Park, R. S.; Scott, B.

    2016-12-01

    The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole

  7. [OsF6]x−: Molecular Models for Spin-Orbit Entangled Phenomena

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Woodruff, Daniel N.; Singh, Saurabh Kumar

    2017-01-01

    Heavy 5d elements, like osmium, feature strong spin-orbit interactions which are at the origin of exotic physical behaviors. Revealing the full potential of, for example, novel osmium oxide materials (“osmates”) is however contingent upon a detailed understanding of the local single-ion propertie...... state was elucidated; mirroring the osmium electronic structure in osmates. The realization of such molecular model systems provides a unique chemical playground to engineer materials exhibiting spin-orbit entangled phenomena....

  8. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    International Nuclear Information System (INIS)

    Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-01-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  9. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    Science.gov (United States)

    Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-07-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  10. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chin-Ping; Ng, C.-Y. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Chou, Yi [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Lin, Lupin Chun-Che [Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan (China); Yen, David Chien-Chang, E-mail: cphu@hku.hk [Department of Mathematics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2017-07-20

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  11. Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures

    Science.gov (United States)

    Cho, Soonha; Baek, Seung-heon Chris; Lee, Kyeong-Dong; Jo, Younghun; Park, Byong-Guk

    2015-01-01

    The phenomena based on spin-orbit interaction in heavy metal/ferromagnet/oxide structures have been investigated extensively due to their applicability to the manipulation of the magnetization direction via the in-plane current. This implies the existence of an inverse effect, in which the conductivity in such structures should depend on the magnetization orientation. In this work, we report a systematic study of the magnetoresistance (MR) of W/CoFeB/MgO structures and its correlation with the current-induced torque to the magnetization. We observe that the MR is independent of the angle between the magnetization and current direction but is determined by the relative magnetization orientation with respect to the spin direction accumulated by the spin Hall effect, for which the symmetry is identical to that of so-called the spin Hall magnetoresistance. The MR of ~1% in W/CoFeB/MgO samples is considerably larger than those in other structures of Ta/CoFeB/MgO or Pt/Co/AlOx, which indicates a larger spin Hall angle of W. Moreover, the similar W thickness dependence of the MR and the current-induced magnetization switching efficiency demonstrates that MR in a non-magnet/ferromagnet structure can be utilized to understand other closely correlated spin-orbit coupling effects such as the inverse spin Hall effect or the spin-orbit spin transfer torques. PMID:26423608

  12. Spin Chern number and topological phase transition on the Lieb lattice with spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Rui; Zhou, Bin

    2017-01-01

    We propose that quantum anomalous Hall effect may occur in the Lieb lattice, when Rashba spin–orbit coupling, spin-independent and spin-dependent staggered potentials are introduced into the lattice. It is found that spin Chern numbers of two degenerate flat bands change from 0 to ±2 due to Rashba spin–orbit coupling effect. The inclusion of Rashba spin–orbit coupling and two kinds of staggered potentials opens a gap between the two flat bands. The topological property of the gap is determined by the amplitudes of Rashba spin–orbit coupling and staggered potentials, and thus the topological phase transition from quantum anomalous Hall effect to normal insulator can occur. Finally, the topological phase transition from quantum spin Hall state to normal insulator is discussed when Rashba spin–orbit coupling and intrinsic spin–orbit coupling coexist in the Lieb lattice. - Highlights: • Spin Chern numbers of the bulk states on the Lieb lattice are calculated. • RSOC plays an important role on the topological phase transition on the Lieb lattice. • Quantum anomalous Hall effect can occur due to RSOC and staggered potentials. • Topological phase transition can occur when ISOC and RSOC coexist.

  13. The influence of gluonic operators on QCD sum rules for baryons

    International Nuclear Information System (INIS)

    Schall, D.

    1982-01-01

    In this thesis the operator product expansion (OPE) is extended up to operators of dimension d=10. The coefficient functions are calculated only up to order αsub(s). Thereby the performation of the OPE by means of the Schwinger operator formalism is extensively described. In the final section the sum rules for nucleon and delta are discussed. (orig./HSI) [de

  14. Sum rules and other properties involving resonance projection operators. [for optical potential description of electron scattering from atoms and ions

    Science.gov (United States)

    Berk, A.; Temkin, A.

    1985-01-01

    A sum rule is derived for the auxiliary eigenvalues of an equation whose eigenspectrum pertains to projection operators which describe electron scattering from multielectron atoms and ions. The sum rule's right-hand side depends on an integral involving the target system eigenfunctions. The sum rule is checked for several approximations of the two-electron target. It is shown that target functions which have a unit eigenvalue in their auxiliary eigenspectrum do not give rise to well-defined projection operators except through a limiting process. For Hylleraas target approximations, the auxiliary equations are shown to contain an infinite spectrum. However, using a Rayleigh-Ritz variational principle, it is shown that a comparatively simple aproximation can exhaust the sum rule to better than five significant figures. The auxiliary Hylleraas equation is greatly simplified by conversion to a square root equation containing the same eigenfunction spectrum and from which the required eigenvalues are trivially recovered by squaring.

  15. Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mawrie, Alestin; Ghosh, Tarun Kanti [Department of Physics, Indian Institute of Technology-Kanpur, Kanpur 208 016 (India)

    2016-01-28

    We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strength of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.

  16. SU(2) x U(1) unified theory for charge, orbit and spin currents

    International Nuclear Information System (INIS)

    Jin Peiqing; Li Youquan; Zhang Fuchun

    2006-01-01

    Spin and charge currents in systems with Rashba or Dresselhaus spin-orbit couplings are formulated in a unified version of four-dimensional SU(2) x U(1) gauge theory, with U(1) being the Maxwell field and SU(2) being the Yang-Mills field. While the bare spin current is non-conserved, it is compensated by a contribution from the SU(2) gauge field, which gives rise to a spin torque in the spin transport, consistent with the semi-classical theory of Culcer et al. Orbit current is shown to be non-conserved in the presence of electromagnetic fields. Similar to the Maxwell field inducing forces on charge and charge current, we derive forces acting on spin and spin current induced by the Yang-Mills fields such as the Rashba and Dresselhaus fields and the sheer strain field. The spin density and spin current may be considered as a source generating Yang-Mills field in certain condensed matter systems

  17. Circular-Polarization-Selective Transmission Induced by Spin-Orbit Coupling in a Helical Tape Waveguide

    Science.gov (United States)

    Liu, Yahong; Guo, Qinghua; Liu, Hongchao; Liu, Congcong; Song, Kun; Yang, Biao; Hou, Quanwen; Zhao, Xiaopeng; Zhang, Shuang; Navarro-Cía, Miguel

    2018-05-01

    Spin-orbit coupling of light, describing the interaction between the polarization (spin) and spatial degrees of freedom (orbit) of light, plays an important role in subwavelength scale systems and leads to many interesting phenomena, such as the spin Hall effect of light. Here, based on the spin-orbit coupling, we design and fabricate a helical tape waveguide (HTW), which can realize a circular-polarization-selective process. When the incident circularly polarized wave is of the same handedness as the helix of the HTW, a nearly complete transmission is observed; in contrast, a counterrotating circular polarization of incident wave results in a much lower transmission or is even totally blocked by the HTW. Indeed, both simulations and experiments reveal that the blocked component of power leaks through the helical aperture of the HTW and forms a conical beam analogous to helical Cherenkov radiation due to the conversion from the spin angular momentum to the orbital angular momentum. Our HTW structure demonstrates its potential as a polarization selector in a broadband frequency range.

  18. The spin dependent structure function g1 of the deuteron and the proton

    International Nuclear Information System (INIS)

    Klostermann, L.

    1995-01-01

    This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarised nuons on polarised proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one con determine the spin dependent structure function g 1 , which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g 1 p by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g 1 p and g 1 d to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. (orig./WL)

  19. Dirac-fermions in graphene d-wave superconducting heterojunction with the spin orbit interaction

    Science.gov (United States)

    Wang, Juntao; Wang, Andong; Zhang, Rui; Sun, Deng; Yang, Yanling

    2017-09-01

    In this study, based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the interaction effect between the anisotropic d-wave pairing symmetry and the spin orbit interaction (the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI)) in a graphene superconducting heterojunction. We find that the spin orbit interaction (SOI) plays a critical role on the tunneling conductance in the pristine case, but minimally affecting the tunneling conductance in the heavily doped case. As for the zero bias state, in contrast to the keep intact feature in the heavily doped case, it exhibits a distinct dependence on the RSOI and the DSOI in the pristine case. In particular, the damage of the zero bias state with a slight DSOI results in the disappearance of the zero bias conductance peak. Moreover, the tunneling conductances also show a qualitative difference with respect to the RSOI when both the RSOI and the DSOI are finite. These remarkable results suggest that the SOI and the anisotropic superconducting gap can be regarded as a key tool for diagnosing the specular Andreev reflection.

  20. A canonical eight-dimensional formalism for linear and non-linear classical spin-orbit motion in storage rings

    International Nuclear Information System (INIS)

    Barber, D.P.; Heinemann, K.; Ripken, G.

    1991-05-01

    In the following report we begin to reformulate work by Derbenev on the behaviour of coupled quantized spin-orbit motion. To this end we present a classical symplectic treatment of linear and non-linear spin-orbit motion for storage rings using a fully coupled eight-dimensional formalism which generalizes earlier investigations of coupled synchro-betatron oscillations by introducing two additional canonical spin variables which behave, in a small-angle limit, like those already used in linearised spin theory. Thus in addition to the usual x-z-s couplings, both the spin to orbit and orbit to spin coupling are described canonically. Since the spin Hamiltonian can be expanded in a Taylor series in canonical variables, the formalism is convenient for use in 8-dimensional symplectic tracking calculations with the help, for example, of Lie algebra or differential algebra for the study of chaotic spin motion, for construction of spin normal forms and for the study of the effect of Stern-Gerlach forces. (orig.)

  1. Hund’s Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d−5d Interfaces

    KAUST Repository

    Belabbes, Abderrezak

    2016-12-09

    Using relativistic first-principles calculations, we show that the chemical trend of the Dzyaloshinskii-Moriya interaction (DMI) in 3d-5d ultrathin films follows Hund\\'s first rule with a tendency similar to their magnetic moments in either the unsupported 3d monolayers or 3d-5d interfaces. We demonstrate that, besides the spin-orbit coupling (SOC) effect in inversion asymmetric noncollinear magnetic systems, the driving force is the 3d orbital occupations and their spin-flip mixing processes with the spin-orbit active 5d states control directly the sign and magnitude of the DMI. The magnetic chirality changes are discussed in the light of the interplay between SOC, Hund\\'s first rule, and the crystal-field splitting of d orbitals. © 2016 American Physical Society.

  2. Spin dependent disorder in a junction device with spin orbit couplings

    International Nuclear Information System (INIS)

    Ganguly, Sudin; Basu, Saurabh

    2016-01-01

    Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)

  3. The spin and flavor content of intrinsic sea quarks

    International Nuclear Information System (INIS)

    Bo-Qiang Ma; Brodsky, S.J.

    1997-07-01

    The intrinsic quark-antiquark pairs generated by the minimal energy nonperturbative meson-baryon fluctuations in the nucleon sea provide a consistent framework for understanding a number of empirical anomalies observed in the deep inelastic quark-parton structure of nucleons: the flavor asymmetry of the nucleon sea implied by the violation of Gottfried sum rule, the proton spin problem implied by the violation of the Ellis-Jaffe sum rule, and the outstanding conflict between two different determinations of the strange quark sea in the nucleon

  4. The Role of Self-Interaction Corrections, Vibrations, and Spin-Orbit in Determining the Ground Spin State in a Simple Heme

    Directory of Open Access Journals (Sweden)

    Der-you Kao

    2017-10-01

    Full Text Available Without self-interaction corrections or the use of hybrid functionals, approximations to the density-functional theory (DFT often favor intermediate spin systems over high-spin systems. In this paper, we apply the recently proposed Fermi–Löwdin-orbital self-interaction corrected density functional formalism to a simple tetra-coordinated Fe(II-porphyrin molecule and show that the energetic orderings of the S = 1 and S = 2 spin states are changed qualitatively relative to the results of Generalized Gradient Approximation (developed by Perdew, Burke, and Ernzerhof, PBE-GGA and Local Density Approximation (developed by Perdew and Wang, PW92-LDA. Because the energetics, associated with changes in total spin, are small, we have also calculated the second-order spin–orbit energies and the zero-point vibrational energies to determine whether such corrections could be important in metal-substituted porphins. Our results find that the size of the spin–orbit and vibrational corrections to the energy orderings are small compared to the changes due to the self-interaction correction. Spin dependencies in the Infrared (IR/Raman spectra and the zero-field splittings are provided as a possible means for identifying the spin in porphyrins containing Fe(II.

  5. Rashba and Dresselhaus spin-orbit coupling effects on tunnelling through two-dimensional magnetic quantum systems

    International Nuclear Information System (INIS)

    Xu Wen; Guo Yong

    2005-01-01

    We investigate the influence of the Rashba and Dresselhaus spin-orbit coupling interactions on tunnelling through two-dimensional magnetic quantum systems. It is showed that not only Rashba spin-orbit coupling but also Dresselhaus one can affect spin tunnelling properties greatly in such a quantum system. The transmission possibility, the spin polarization and the conductance are obviously oscillated with both coupling strengths. High spin polarization, conductance and magnetic conductance of the structure can be obtained by modulating either Rashba or Dresselhaus coupling strength

  6. Magnetic moment for the negative parity Λ→Σ0 transition in light cone QCD sum rules

    Directory of Open Access Journals (Sweden)

    T.M. Aliev

    2016-07-01

    Full Text Available The magnetic moment of the Λ→Σ0 transition between negative parity baryons is calculated in framework of the QCD sum rules approach by using the general form of the interpolating currents. The pollution arising from the positive-to-positive, and positive-to-negative parity baryons is eliminated by constructing the sum rules for different Lorentz structures. A comparison of our result with the predictions of the results of other approaches for the positive parity baryons is presented.

  7. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    Science.gov (United States)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  8. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  9. Energy and Regge residues in quantum-mechanical ''QCD'' sum rules

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1986-01-01

    It was shown recently by Fishbane, Kaus, and Gasiorowicz that the residues at the poles of quantum-mechanical two-point functions for arbitrary angular momenta l have an incorrect l dependence when calculated by the sum-rule method used for the analogous problem in QCD. Knowledge of the residues is of interest since they are directly related to particle couplings and decay widths. We develop reliable expressions for the energy and Regge residues using semiclassical methods

  10. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  11. The Bertlmann-Martin Inequality and Spin Degrees of Freedom

    International Nuclear Information System (INIS)

    Boufas, S.; Ighezou, F.-Z.; Lombard, R. J.

    2012-01-01

    The Bertlmann-Martin inequality based on the dipole sum rule is revisited taking into account the spin degrees of freedom. We consider 1 and 2 particles of spin 1/2 in a mean field, adding a spin dependent interaction. The derivation of the inequality relies on the closure relation. We discuss the effect of the Pauli principle, and the restrictions it imposes on the use of the closure relation. The problem is exemplified by a simple model based on harmonic forces. Moreover, in the 2 particle case, the model we use is separable in the relative and centre of mass coordinates. In this case, we show that for operators connecting only singlet states, their sum rule can be calculated in the usual way, i. e. via the double commutator of this operator with the Hamiltonian. An upper bound can also be obtained by using the Bertlmann-Martin technique. This is not possible for operators involving a transition between singlet and triplet states. (author)

  12. Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy

    International Nuclear Information System (INIS)

    Patra, Moumita; Maiti, Santanu K.

    2016-01-01

    In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.

  13. Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in

    2016-12-15

    In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.

  14. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Science.gov (United States)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  15. Conductivity rules in the Fermi and charge-spin separated liquid

    International Nuclear Information System (INIS)

    Arulsamy, Andrew Das

    2005-01-01

    Ioffe-Larkin rule applies for the pure charge-spin separation regardless of its dimensionality. Here, an extension to this rule as a result of the coexistence of spinon, holon and electron as a single entity in the 2-dimensional (2D) system is derived, which is also in accordance with the original rule

  16. Renormalized sum rules for structure functions of heavy meson decays

    International Nuclear Information System (INIS)

    Grozin, A.G.; Korchemsky, G.P.

    1996-01-01

    We consider the properties of the structure functions of inclusive heavy meson decays B→X c and treat the c quark mass as a free parameter. We show that in two extreme cases of heavy and light c quarks the structure functions of heavy-heavy and heavy-light transitions are given by a Fourier transform of the matrix elements of Wilson lines containing a timelike and a lightlike segment, correspondingly. Using the renormalization properties of Wilson lines we find the dependence of the structure functions on the factorization scale, the structure function of the heavy-heavy transition is renormalized multiplicatively, while that of the heavy-light transition obeys the GLAP-type evolution equation. We propose a generalization of the sum rules for the moments of the structure functions (Bjorken, Voloshin, and the open-quote open-quote third close-quote close-quote sum rules) with a soft exponential factorization cutoff, which correctly incorporates both perturbative and nonperturbative effects. We analyze nonperturbative corrections by first considering infrared renormalon contributions to the Wilson lines. Uncertainties induced by the leading renormalon pole at u=1/2 are exactly canceled by a similar uncertainty in the heavy quark pole mass. The leading nonperturbative corrections associated with the next renormalon at u=1 are parametrized by the matrix element μ π 2 which is proportional to the heavy quark kinetic energy. copyright 1996 The American Physical Society

  17. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    Science.gov (United States)

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  18. Dresselhaus spin-orbit coupling induced spin-polarization and resonance-split in n-well semiconductor superlattices

    International Nuclear Information System (INIS)

    Ye Chengzhi; Xue Rui; Nie, Y.-H.; Liang, J.-Q.

    2009-01-01

    Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n-1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure

  19. Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations

    International Nuclear Information System (INIS)

    Li, Ming-Fu; Surh, M.P.; Louie, S.G.

    1988-06-01

    Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs

  20. Sum rule approach to the study of statistical decay properties of nuclear giant resonances

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Hussein, M.S.

    1987-03-01

    Corrections to the well-known statistical sum rule that relates the summed transmission coefficients on the one hand and 2πΓ C.N. .ρ C.N. On the other, in the context of the statistical decay properties of nuclear giant resonances, are discussed. These corrections arise both from pre-equilibrium processes as well as from the giant resonance itself. It is shown that the compound nucleus average width is reduced as a result of these corrections. (Author) [pt

  1. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    Science.gov (United States)

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  2. An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.

    Science.gov (United States)

    Kazemi, Mohammad

    2017-11-10

    The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.

  3. Experimental tests of proton spin models

    International Nuclear Information System (INIS)

    Ramsey, G.P.; Argonne National Lab., IL

    1989-01-01

    We have developed models for the spin-weighted quark and gluon distribution in a longitudinally polarized proton. The model parameters are determined from current algebra sum rules and polarized deep-inelastic scattering data. A number of different scenarios are presented for the fraction of spin carried the constituent parton distributions. A possible long-range experimental program is suggested for measuring various hard scattering processes using polarized lepton and proton beams. With the knowledge gained from these experiments, we can begin to understand the parton contributions to the proton spin. 28 refs., 5 figs

  4. Scattering resonances in a low-dimensional Rashba-Dresselhaus spin-orbit coupled quantum gas

    Science.gov (United States)

    Wang, Su-Ju; Blume, D.

    2017-04-01

    Confinement-induced resonances allow for the tuning of the effective one-dimensional coupling constant. When the scattering state associated with the ground transverse mode is brought into resonance with the bound state attached to the energetically excited transverse modes, the atoms interact through an infinitely strong repulsion. This provides a route to realize the Tonks-Girardeau gas. On the other hand, the realization of synthetic gauge fields in cold atomic systems has attracted a lot of attention. For instance, bound-state formation is found to be significantly modified in the presence of spin-orbit coupling in three dimensions. This motivates us to study ultracold collisions between two Rashba-Dresselhaus spin-orbit coupled atoms in a quasi-one-dimensional geometry. We develop a multi-channel scattering formalism that accounts for the external transverse confinement and the spin-orbit coupling terms. The interplay between these two single-particle terms is shown to give rise to new scattering resonances. In particular, it is analyzed what happens when the scattering energy crosses the various scattering thresholds that arise from the single-particle confinement and the spin-orbit coupling. Support by the NSF is gratefully acknowledged.

  5. Isospin dependence of the spin-orbit splitting in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.

    2007-01-01

    The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru

  6. Spin-Orbital Momentum Decomposition and Helicity Exchange in a Set of Non-Null Knotted Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Manuel Arrayás

    2018-03-01

    Full Text Available We calculate analytically the spin-orbital decomposition of the angular momentum using completely nonparaxial fields that have a certain degree of linkage of electric and magnetic lines. The split of the angular momentum into spin-orbital components is worked out for non-null knotted electromagnetic fields. The relation between magnetic and electric helicities and spin-orbital decomposition of the angular momentum is considered. We demonstrate that even if the total angular momentum and the values of the spin and orbital momentum are the same, the behavior of the local angular momentum density is rather different. By taking cases with constant and non-constant electric and magnetic helicities, we show that the total angular momentum density presents different characteristics during time evolution.

  7. A spin-orbital-entangled quantum liquid on a honeycomb lattice

    Science.gov (United States)

    Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.

    2018-02-01

    The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.

  8. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    Science.gov (United States)

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-10-01

    Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

  9. Some exact identities connecting one- and two-particle Green's functions in spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Yang Huatong

    2007-01-01

    Some exact identities connecting one- and two-particle Green's functions in the presence of spin-orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin-orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory

  10. The Spin Structure of 3He and the Neutron at Low Q2: A Measurement of the Generalized GDH Integrand

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, Vincent [College of William and Mary, Williamsburg, VA (United States)

    2007-08-01

    Since the 1980's, the study of nucleon (proton or neutron) spin structure has been an active field both experimentally and theoretically. One of the primary goals of this work is to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction. In the high energy region of asymptotically free quarks, QCD has been verified. However, verifiable predictions in the low energy region are harder to obtain due to the complex interactions between the nucleon's constituents: quarks and gluons. In the non-pertubative regime, low-energy effective field theories such as chiral perturbation theory provide predictions for the spin structure functions in the form of sum rules. Spin-dependent sum rules such as the Gerasimov-Drell-Hearn (GDH) sum rule are important tools available to study nucleon spin structure. Originally derived for real photon absorption, the Gerasimov-Drell-Hearn (GDH) sum rule was first extended for virtual photon absorption in 1989. The extension of the sum rule provides a unique relation, valid at any momentum transfer ($Q^{2}$), that can be used to study the nucleon spin structure and make comparisons between theoretical predictions and experimental data. Experiment E97-110 was performed at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) to examine the spin structure of the neutron and $^{3}$He. The Jefferson Lab longitudinally-polarized electron beam with incident energies between 1.1 and 4.4 GeV was scattered from a longitudinally or transversely polarized $^{3}$He gas target in the Hall A end station. Asymmetries and polarized cross-section differences were measured in the quasielastic and resonance regions to extract the spin structure functions $g_{1}(x,Q^{2})$ and $g_{2}(x,Q^{2})$ at low momentum transfers (0.02 $< Q^{2} <$ 0.3 GeV$^{2}$). The goal of the experiment was to perform a precise measurement of the $Q^{2}$ dependence of the extended GDH integral and of the moments of

  11. Perturbative corrections to Λ_b→Λ form factors from QCD light-cone sum rules

    International Nuclear Information System (INIS)

    Wang, Yu-Ming; Shen, Yue-Long

    2016-01-01

    We compute radiative corrections to Λ_b→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ_b-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ_b-baryon correlation function is justified at leading power in Λ/m_b, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α_s) shift the Λ_b→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ_b→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ_b→Λ ℓ"+ℓ"− transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ_b→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.

  12. A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Ashman, J.; Combley, F.; Salmon, D.; Wheeler, S.; Baum, G.; Caputo, M.C.; Hughes, V.W.; Oppenheim, R.F.; Papavassiliou, V.; Piegaia, R.; Schueler, K.P.; Bee, C.P.; Brown, S.C.; Court, G.; Francis, D.; Gabathuler, E.; Gamet, R.; Hayman, P.; Holt, J.R.; Jones, T.; Matthews, M.; Wimpenny, S.J.; Coignet, G.; Windmolders, R.

    1988-01-01

    The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01 1 (x) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These values for the integrals of g 1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon. (orig.)

  13. What do QCD sum rules tell us about dense matter?

    International Nuclear Information System (INIS)

    Cohen, T.D.; Washington Univ., Seattle, WA

    1995-01-01

    The QCD sum rule approach to the properties of hadrons in both the vacuum and in nuclear matter is discussed. The primary limitation for the nuclear matter case is the absence of reliable phenomenological information about the form of the spectral function and about the value of certain four quark condensates. The approach gives moderate evidence in support of the Dirac phenomenology picture of strong attractive Lorentz scalar and repulsive Lorentz vector optical potentials. The approach gives weak evidence for decreasing vector meson masses in medium. (orig.)

  14. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    Science.gov (United States)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  15. Isovector giant monopole resonances: A sum-rule approach

    International Nuclear Information System (INIS)

    Goeke, K.; Bonn Univ.; Castel, B.

    1980-01-01

    Several useful sum rules associated with isovector giant monopole resonances are calculated for doubly closed shell nuclei. The calculation is based on techniques known from constrained and adiabatic time-dependent Hartree-Fock theories and assume various Skyrme interactions. The results obtained form, together with the compiled literature, the basis for a quantitative description of the RPA strength distribution in terms of energy-weighted moments. These, together with strength distribution properties, are determined by a hierarchy of determinantal relations between moments. The isovector giant monopole resonance turns out to be a rather broad resonance centered at E = 46 Asup(-1/10) MeV with an extended width of more than 16 MeV. The consequences regarding isospin impurities in the nuclear ground state are discussed. (orig.)

  16. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam

    2017-05-11

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  17. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    Science.gov (United States)

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  18. Tuning the effective spin-orbit coupling in molecular semiconductors

    KAUST Repository

    Schott, Sam; McNellis, Erik R.; Nielsen, Christian B.; Chen, Hung-Yang; Watanabe, Shun; Tanaka, Hisaaki; McCulloch, Iain; Takimiya, Kazuo; Sinova, Jairo; Sirringhaus, Henning

    2017-01-01

    The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

  19. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    Science.gov (United States)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  20. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  1. Spin conversion induced by the spin-orbit interaction in positronium collisions

    International Nuclear Information System (INIS)

    Saito, Haruo; Nakayama, Takashi; Hyodo, Toshio

    2009-01-01

    We show the existence of a new reaction mechanism of positronium - ortho-Ps - para-Ps conversion reaction induced by the spin-orbit interaction. This interaction was previously believed to be negligibly small. Recently, however, Mitroy has suggested that this interaction could be observed in Ps-Xe collision. In the present work, we have succeeded in observing this effect and obtaining the reaction rate by using the Zeeman mixing of positronium.

  2. Universal Borromean Binding in Spin-Orbit-Coupled Ultracold Fermi Gases

    Directory of Open Access Journals (Sweden)

    Xiaoling Cui

    2014-08-01

    Full Text Available Borromean rings and Borromean binding, a class of intriguing phenomena as three objects are linked (bound together while any two of them are unlinked (unbound, widely exist in nature and have been found in systems of biology, chemistry, and physics. Previous studies have suggested that the occurrence of such a binding in physical systems typically relies on the microscopic details of pairwise interaction potentials at short range and is, therefore, nonuniversal. Here, we report a new type of Borromean binding in ultracold Fermi gases with Rashba spin-orbit coupling, which is universal against short-range interaction details, with its binding energy only dependent on the s-wave scattering length and the spin-orbit-coupling strength. We show that the occurrence of this universal Borromean binding is facilitated by the symmetry of the single-particle dispersion under spin-orbit coupling and is, therefore, symmetry selective rather than interaction selective. The state is robust over a wide range of mass ratios between composing fermions, which are accessible by Li-Li, K-K, and K-Li mixtures in cold-atom experiments. Our results reveal the importance of single- particle spectral symmetry in few-body physics and shed light on the emergence of new quantum phases in a many-body system with exotic few-body correlations.

  3. N=28 shell closure : shape coexistence and spin-orbit contribution

    International Nuclear Information System (INIS)

    Sarazin, Frederic

    1999-01-01

    One of the fundamental questions, which emerge from the study of nuclei far from stability, concerns the persistence of the magic character of certain configurations of protons and neutrons. From previous measurements around the N=28 magic number, it appears that this shell closure is especially weakening. In this context, a mass measurement experiment by a time of flight method around N=28 (Z 43 S in the same experiment and its interpretation by a shell model calculation confirm the analysis of the masses and constitutes the first evidence of shape coexistence around N=28. At the same time, an estimation of the evolution of the contribution of the spin-orbit coupling far from stability, partially responsible of the magic numbers sequence, showed that, although non-negligible, it is not sufficient to explain the vanishing of the shell closure. Through this study, it appeared extremely difficult to separate the contribution of the deformation from the one of the spin-orbit coupling in spectroscopic experiments. A feasibility study has thus been undertaken concerning a polarised proton and deuteron target to measure directly the evolution of the spin-orbit potential as a function of the isospin through elastic scattering experiments. (author) [fr

  4. Renormalized second post-Newtonian spin contributions to the accumulated orbital phase for LISA sources

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Mikoczi, Balazs

    2009-01-01

    We give here a new third post-Newtonian (3PN) spin-spin contribution (in the PN parameter ε) to the accumulated orbital phase of a compact binary, arising from the spin-orbit precessional motion of the spins. In the equal mass case, this contribution vanishes, but Laser Interferometer Space Antenna (LISA) sources of merging supermassive binary black holes have typically a mass ratio of 1:10. For such nonequal masses, this 3PN correction is periodic in time, with a period approximately ε -1 times larger than the period of gravitational waves. We derive a renormalized and simpler expression of the spin-spin coefficient at 2PN, as an average over the time scale of this period of the combined 2PN and 3PN contribution. We also find that for LISA sources the quadrupole-monopole contribution to the phase dominates over the spin-spin contribution, while the self-spin contribution is negligible even for the dominant spin. Finally, we define a renormalized total spin coefficient σ to be employed in the search for gravitational waves emitted by LISA sources.

  5. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    Science.gov (United States)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present

  6. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  7. Spin-Orbital Excitations in Ca_{2}RuO_{4} Revealed by Resonant Inelastic X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    L. Das

    2018-03-01

    Full Text Available The strongly correlated insulator Ca_{2}RuO_{4} is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K-edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca_{2}RuO_{4}. A set of low-energy (about 80 and 400 meV and high-energy (about 1.3 and 2.2 eV excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund’s coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca_{2}RuO_{4}.

  8. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    Science.gov (United States)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  9. Spin-orbit interaction in a dual gated InAs/GaSb quantum well

    Science.gov (United States)

    Beukman, Arjan J. A.; de Vries, Folkert K.; van Veen, Jasper; Skolasinski, Rafal; Wimmer, Michael; Qu, Fanming; de Vries, David T.; Nguyen, Binh-Minh; Yi, Wei; Kiselev, Andrey A.; Sokolich, Marko; Manfra, Michael J.; Nichele, Fabrizio; Marcus, Charles M.; Kouwenhoven, Leo P.

    2017-12-01

    The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field, the quantum well can be tuned between a single-carrier regime with exclusively electrons as carriers and a two-carrier regime where electrons and holes coexist. The spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single-carrier regime the linear Dresselhaus strength is characterized by β =28.5 meV Å and the Rashba coefficient α is tuned from 75 to 53 meV Å by changing the electric field. In the two-carrier regime a quenching of the spin splitting is observed and attributed to a crossing of spin bands.

  10. Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, S.

    2018-03-01

    Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.

  11. Origin of the violation of the Gottfried sum rule

    International Nuclear Information System (INIS)

    Hwang, W.P.; Speth, J.

    1992-01-01

    Using generalized Sullivan processes to generate sea-quark distributions of a nucleon at Q 2 =4 GeV 2 , we find that the recent finding by the New Muon Collaboration on the violation of the Gottfried sum rule can be understood quantitatively, including the shape of F 2 p (x)-F 2 n (x) as a function of x. The agreement may be seen as a clear evidence toward the validity of a recent suggestion of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q 2 (at least up to a few GeV 2 ), may be attributed primarily to generalized Sullivan processes

  12. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit; Manchon, Aurelien

    2017-01-01

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  13. Spin-orbit torque in 3D topological insulator-ferromagnet heterostructure: crossover between bulk and surface transport

    KAUST Repository

    Ghosh, Sumit

    2017-11-29

    Current-driven spin-orbit torques are investigated in a heterostructure composed of a ferromagnet deposited on top of a three dimensional topological insulator using the linear response formalism. We develop a tight-binding model of the heterostructure adopting a minimal interfacial hybridization scheme that promotes induced magnetic exchange on the topological surface states, as well as induced Rashba-like spin-orbit coupling in the ferromagnet. Therefore, our model accounts for spin Hall effect from bulk states together with inverse spin galvanic and magnetoelectric effects at the interface on equal footing. By varying the transport energy across the band structure, we uncover a crossover from surface-dominated to bulk-dominated transport regimes. We show that the spin density profile and the nature of the spin-orbit torques differ substantially in both regimes. Our results, which compare favorably with experimental observations, demonstrate that the large damping torque reported recently is more likely attributed to interfacial magnetoelectric effect, while spin Hall torque remains small even in the bulk-dominated regime.

  14. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator

    DEFF Research Database (Denmark)

    Pályi, András; Struck, P R; Rudner, Mark

    2012-01-01

    as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup......We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve...

  15. Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin—orbit couplings

    International Nuclear Information System (INIS)

    Liu Song; Yan Yu-Zhen; Hu Liang-Bin

    2012-01-01

    The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin—orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin—orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin—orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Logical spin-filtering in a triangular network of quantum nanorings with a Rashba spin-orbit interaction

    Science.gov (United States)

    Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.

    2018-01-01

    The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.

  17. Soft X-ray magnetic circular dichroism study of UFe2

    International Nuclear Information System (INIS)

    Okane, T.; Takeda, Y.; Fujimori, S.-I.; Terai, K.; Saitoh, Y.; Muramatsu, Y.; Fujimori, A.; Haga, Y.; Yamamoto, E.; Onuki, Y.

    2006-01-01

    Soft X-ray magnetic circular dichroism has been measured at the U N 4,5 and Fe L 2,3 absorption edges of ferromagnetic UFe 2 . The orbital and spin magnetic moments of U 5f and Fe 3d electrons are evaluated by a sum-rule analysis of the XMCD data. It is confirmed that the U 5f orbital moment is parallel to the Fe 3d spin moment

  18. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  19. xF 3( x,Q 2) Structure Function and Gross-Llewellyn Smith Sum Rule with Nuclear Effect and Higher Twist Correction

    International Nuclear Information System (INIS)

    Nath, N.M.; Mukharjee, A.; Das, M.K.; Sarma, J.K.

    2016-01-01

    We present an analysis of the xF 3 (x,Q 2 ) structure function and Gross-Llewellyn Smith(GLS) sum rule taking into account the nuclear effects and higher twist correction. This analysis is based on the results presented in [N.M. Nath, et al, Indian J. Phys. 90 (2016) 117]. The corrections due to nuclear effects predicted in several earlier analysis are incorporated to our results of xF 3 (x,Q 2 ) structure function and GLS sum rule for free nucleon, corrected upto next-next-to-leading order (NNLO) perturbative order and calculate the nuclear structure function as well as sum rule for nuclei. In addition, by means of a simple model we have extracted the higher twist contributions to the non-singlet structure function xF 3 (x,Q 2 ) and GLS sum rule in NNLO perturbative orders and then incorporated them to our results. Our NNLO results along with nuclear effect and higher twist corrections are observed to be compatible with corresponding experimental data and other phenomenological analysis. (paper)

  20. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.