Energy Technology Data Exchange (ETDEWEB)
Jeffries, J R; Moore, K T; Butch, N P; Maple, M B
2010-05-19
We examine the degree of 5f electron localization in URu{sub 2}Si{sub 2} using spin-orbit sum rule analysis of the U N{sub 4,5} (4d {yields} 5f) edge. When compared to {alpha}-U metal, US, USe, and UTe, which have increasing localization of the 5f states, we find that the 5f states of URu{sub 2}Si{sub 2} are more localized, although not entirely. Spin-orbit analysis shows that intermediate coupling is the correct angular momentum coupling mechanism for URu{sub 2}Si{sub 2} when the 5f electron count is between 2.6 and 2.8. These results have direct ramifications for theoretical assessment of the hidden order state of URu{sub 2}Si{sub 2}, where the degree of localization of the 5f electrons and their contribution to the Fermi surface are critical.
International Nuclear Information System (INIS)
Arenhoevel, H.; Drechsel, D.; Weber, H.J.
1978-01-01
Generalized sum rules are derived by integrating the electromagnetic structure functions along lines of constant ratio of momentum and energy transfer. For non-relativistic systems these sum rules are related to the conventional photonuclear sum rules by a scaling transformation. The generalized sum rules are connected with the absorptive part of the forward scattering amplitude of virtual photons. The analytic structure of the scattering amplitudes and the possible existence of dispersion relations have been investigated in schematic relativistic and non-relativistic models. While for the non-relativistic case analyticity does not hold, the relativistic scattering amplitude is analytical for time-like (but not for space-like) photons and relations similar to the Gell-Mann-Goldberger-Thirring sum rule exist. (Auth.)
DEFF Research Database (Denmark)
T. Frandsen, Mads; Masina, Isabella; Sannino, Francesco
2011-01-01
We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models.......We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays and show how it can be used to predict the positron fraction at energies not yet explored by current experiments and to constrain specific models....
Damanik, Asan
2018-03-01
Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.
'Sum rules' for preequilibrium reactions
International Nuclear Information System (INIS)
Hussein, M.S.
1981-03-01
Evidence that suggests a correct relationship between the optical transmission matrix, P, and the several correlation widths, gamma sub(n), found in nsmission matrix, P, and the several correlation widths, n, found in multistep compound (preequilibrium) nuclear reactions, is presented. A second sum rule is also derived within the shell model approach to nuclear reactions. Indications of the potential usefulness of the sum rules in preequilibrium studies are given. (Author) [pt
Sum rules in classical scattering
International Nuclear Information System (INIS)
Bolle, D.; Osborn, T.A.
1981-01-01
This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients
Sum rules for collisional processes
International Nuclear Information System (INIS)
Oreg, J.; Goldstein, W.H.; Bar-Shalom, A.; Klapisch, M.
1991-01-01
We derive level-to-configuration sum rules for dielectronic capture and for collisional excitation and ionization. These sum rules give the total transition rate from a detailed atomic level to an atomic configuration. For each process, we show that it is possible to factor out the dependence on continuum-electron wave functions. The remaining explicit level dependence of each rate is then obtained from the matrix element of an effective operator acting on the bound orbitals only. In a large class of cases, the effective operator reduces to a one-electron monopole whose matrix element is proportional to the statistical weight of the level. We show that even in these cases, nonstatistical level dependence enters through the dependence of radial integrals on continuum orbitals. For each process, explicit analytic expressions for the level-to-configuration sum rules are given for all possible cases. Together with the well-known J-file sum rule for radiative rates [E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (University Press, Cambridge, 1935)], the sum rules offer a systematic and efficient procedure for collapsing high-multiplicity configurations into ''effective'' levels for the purpose of modeling the population kinetics of ionized heavy atoms in plasma
Polarizability sum rules in QED
International Nuclear Information System (INIS)
Llanta, E.; Tarrach, R.
1978-01-01
The well founded total photoproduction and the, assumed subtraction free, longitudinal photoproduction polarizability sum rules are checked in QED at the lowest non-trivial order. The first one is shown to hold, whereas the second one turns out to need a subtraction, which makes its usefulness for determining the electromagnetic polarizabilities of the nucleons quite doubtful. (Auth.)
International Nuclear Information System (INIS)
Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco
2011-01-01
We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays; we show how they can be used to predict the positron fraction at energies not yet explored by current experiments, and to constrain specific models.
Sum rules for neutrino oscillations
International Nuclear Information System (INIS)
Kobzarev, I.Yu.; Martemyanov, B.V.; Okun, L.B.; Schepkin, M.G.
1981-01-01
Sum rules for neutrino oscillations are obtained. The derivation of the general form of the s matrix for two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) (where lsub(i)sup(-)e, μ, tau, ... are initial leptons with flavor i and lsub(k)sup(+-) is final lepton) is presented. The consideration of two stage process lsub(i)sup(-)→ν→lsub(k)sup(+-) gives the possibility to take into account neutrino masses and to obtain the expressions for the oscillating cross sections. In the case of Dirac and left-handed Majorana neutrino is obtained the sum rule for the quantities 1/Vsub(K)σ(lsub(i)sup(-)→lsub(K)sup(+-)), (where Vsub(K) is a velocity of lsub(K)). In the left-handed Majorana neutrino case there is an additional antineutrino admixture leading to lsub(i)sup(-)→lsub(K)sup(+) process. Both components (neutrino and antineutrino) oscillate independently. The sums Σsub(K)1/Vsub(k)σ(lsub(i)sup(-) - lsub(K)sup(+-) then oscillate due to the presence of left-handed antineutrinos and right-handed neutrinos which do not take part in weak interactions. If right-handed currents are added sum rules analogous to considered above may be obtained. All conclusions are valid in the general case when CP is not conserved [ru
Momentum sum rules for fragmentation functions
International Nuclear Information System (INIS)
Meissner, S.; Metz, A.; Pitonyak, D.
2010-01-01
Momentum sum rules for fragmentation functions are considered. In particular, we give a general proof of the Schaefer-Teryaev sum rule for the transverse momentum dependent Collins function. We also argue that corresponding sum rules for related fragmentation functions do not exist. Our model-independent analysis is supplemented by calculations in a simple field-theoretical model.
QCD Sum Rules, a Modern Perspective
Colangelo, Pietro; Colangelo, Pietro; Khodjamirian, Alexander
2001-01-01
An introduction to the method of QCD sum rules is given for those who want to learn how to use this method. Furthermore, we discuss various applications of sum rules, from the determination of quark masses to the calculation of hadronic form factors and structure functions. Finally, we explain the idea of the light-cone sum rules and outline the recent development of this approach.
Sum rules in the response function method
International Nuclear Information System (INIS)
Takayanagi, Kazuo
1990-01-01
Sum rules in the response function method are studied in detail. A sum rule can be obtained theoretically by integrating the imaginary part of the response function over the excitation energy with a corresponding energy weight. Generally, the response function is calculated perturbatively in terms of the residual interaction, and the expansion can be described by diagrammatic methods. In this paper, we present a classification of the diagrams so as to clarify which diagram has what contribution to which sum rule. This will allow us to get insight into the contributions to the sum rules of all the processes expressed by Goldstone diagrams. (orig.)
Superconvergent sum rules for the normal reflectivity
International Nuclear Information System (INIS)
Furuya, K.; Zimerman, A.H.; Villani, A.
1976-05-01
Families of superconvergent relations for the normal reflectivity function are written. Sum rules connecting the difference of phases of the reflectivities of two materials are also considered. Finally superconvergence relations and sum rules for magneto-reflectivity in the Faraday and Voigt regimes are also studied
Current algebra sum rules for Reggeons
Carlitz, R
1972-01-01
The interplay between the constraints of chiral SU/sub 2/*SU/sub 2/ symmetry and Regge asymptotic behaviour is investigated. The author reviews the derivation of various current algebra sum rules in a study of the reaction pi + alpha to pi + beta . These sum rules imply that all particles may be classified in multiplets of SU/sub 2/*SU/sub 2/ and that each of these multiplets may contain linear combinations of an infinite number of physical states. Extending his study to the reaction pi + alpha to pi + pi + beta , he derives new sum rules involving commutators of the axial charge with the reggeon coupling matrices of the rho and f Regge trajectories. Some applications of these new sum rules are noted, and the general utility of these and related sum rules is discussed. (17 refs).
Study of QCD medium by sum rules
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Institute of Nuclear Physics, Calcutta (India)
1998-08-01
Though it has no analogue in condensed matter physics, the thermal QCD sum rules can, nevertheless, answer questions of condensed matter type about the QCD medium. The ingredients needed to write such sum rules, viz. the operator product expansion and the spectral representation at finite temperature, are reviewed in detail. The sum rules are then actually written for the case of correlation function of two vector currents. Collecting information on the thermal average of the higher dimension operators from other sources, we evaluate these sum rules for the temperature dependent {rho}-meson parameters. Possibility of extracting more information from the combined set of all sum rules from different correlation functions is also discussed. (author) 30 refs., 2 figs.
Fixed mass and scaling sum rules
International Nuclear Information System (INIS)
Ward, B.F.L.
1975-01-01
Using the correspondence principle (continuity in dynamics), the approach of Keppell-Jones-Ward-Taha to fixed mass and scaling current algebraic sum rules is extended so as to consider explicitly the contributions of all classes of intermediate states. A natural, generalized formulation of the truncation ideas of Cornwall, Corrigan, and Norton is introduced as a by-product of this extension. The formalism is illustrated in the familiar case of the spin independent Schwinger term sum rule. New sum rules are derived which relate the Regge residue functions of the respective structure functions to their fixed hadronic mass limits for q 2 → infinity. (Auth.)
A Bayesian analysis of QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.
Sum rules for nuclear collective excitations
International Nuclear Information System (INIS)
Bohigas, O.
1978-07-01
Characterizations of the response function and of integral properties of the strength function via a moment expansion are discussed. Sum rule expressions for the moments in the RPA are derived. The validity of these sum rules for both density independent and density dependent interactions is proved. For forces of the Skyrme type, analytic expressions for the plus one and plus three energy weighted sum rules are given for isoscalar monopole and quadrupole operators. From these, a close relationship between the monopole and quadrupole energies is shown and their dependence on incompressibility and effective mass is studied. The inverse energy weighted sum rule is computed numerically for the monopole operator, and an upper bound for the width of the monopole resonance is given. Finally the reliability of moments given by the RPA with effective interactions is discussed using simple soluble models for the hamiltonian, and also by comparison with experimental data
3He electron scattering sum rules
International Nuclear Information System (INIS)
Kim, Y.E.; Tornow, V.
1982-01-01
Electron scattering sum rules for 3 He are derived with a realistic ground-state wave function. The theoretical results are compared with the experimentally measured integrated cross sections. (author)
Gaussian sum rules for optical functions
International Nuclear Information System (INIS)
Kimel, I.
1981-12-01
A new (Gaussian) type of sum rules (GSR) for several optical functions, is presented. The functions considered are: dielectric permeability, refractive index, energy loss function, rotatory power and ellipticity (circular dichroism). While reducing to the usual type of sum rules in a certain limit, the GSR contain in general, a Gaussian factor that serves to improve convergence. GSR might be useful in analysing experimental data. (Author) [pt
The Gross-Llewellyn Smith sum rule
International Nuclear Information System (INIS)
Scott, W.G.
1981-01-01
We present the most recent data on the Gross-Llewellyn Smith sum rule obtained from the combined BEBC Narrow Band Neon and GGM-PS Freon neutrino/antineutrino experiments. The data for the Gross-Llewellyn Smith sum rule as a function of q 2 suggest a smaller value for the QCD coupling constant parameter Λ than is obtained from the analysis of the higher moments. (author)
Electronuclear sum rules for the lightest nuclei
International Nuclear Information System (INIS)
Efros, V.D.
1992-01-01
It is shown that the model-independent longitudinal electronuclear sum rules for nuclei with A = 3 and A = 4 have an accuracy on the order of a percent in the traditional single-nucleon approximation with free nucleons for the nuclear charge-density operator. This makes it possible to test this approximation by using these sum rules. The longitudinal sum rules for A = 3 and A = 4 are calculated using the wave functions of these nuclei corresponding to a large set of realistic NN interactions. The values of the model-independent sum rules lie in the range of values calculated by this method. Model-independent expressions are obtained for the transverse sum rules for nuclei with A = 3 and A = 4. These sum rules are calculated using a large set of realistic wave functions of these nuclei. The contribution of the convection current and the changes in the results for different versions of realistic NN forces are given. 29 refs., 4 tabs
Transition sum rules in the shell model
Lu, Yi; Johnson, Calvin W.
2018-03-01
An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.
Sum rules for quasifree scattering of hadrons
Peterson, R. J.
2018-02-01
The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.
QCD sum rules in a Bayesian approach
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A novel technique is developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. The main advantage of this approach lies in its ability of directly generating the spectral function of a given operator. This is done without the need of making an assumption about the specific functional form of the spectral function, such as in the 'pole + continuum' ansatz that is frequently used in QCD sum rule studies. Therefore, with this method it should in principle be possible to distinguish narrow pole structures form continuum states. To check whether meaningful results can be extracted within this approach, we have first investigated the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results exhibit a significant peak in the region of the experimentally observed ρ-meson mass, which agrees with earlier QCD sum rules studies and shows that the Maximum Entropy Method is a useful tool for analyzing QCD sum rules.
A bayesian approach to QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2010-01-01
QCD sum rules are analyzed with the help of the Maximum Entropy Method. We develop a new technique based on the Bayesion inference theory, which allows us to directly obtain the spectral function of a given correlator from the results of the operator product expansion given in the deep euclidean 4-momentum region. The most important advantage of this approach is that one does not have to make any a priori assumptions about the functional form of the spectral function, such as the 'pole + continuum' ansatz that has been widely used in QCD sum rule studies, but only needs to specify the asymptotic values of the spectral function at high and low energies as an input. As a first test of the applicability of this method, we have analyzed the sum rules of the ρ-meson, a case where the sum rules are known to work well. Our results show a clear peak structure in the region of the experimental mass of the ρ-meson. We thus demonstrate that the Maximum Entropy Method is successfully applied and that it is an efficient tool in the analysis of QCD sum rules. (author)
Vacuum structure and QCD sum rules
International Nuclear Information System (INIS)
Shifman, M.A.
1992-01-01
The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have originally been developed in connection with the QCD sum rules can be and are successfully applied in related fields, as supersymmetric gauge theories, nontraditional schemes of quarks and leptons, etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This volume presents a collection of papers which provide an overview of all basic elements of the sum rule approach and priority has been given to the works which seemed most useful from a pedagogical point of view
Inverse-moment chiral sum rules
International Nuclear Information System (INIS)
Golowich, E.; Kambor, J.
1996-01-01
A general class of inverse-moment sum rules was previously derived by the authors in a chiral perturbation theory (ChPT) study at two-loop order of the isospin and hypercharge vector-current propagators. Here, we address the evaluation of the inverse-moment sum rules in terms of existing data and theoretical constraints. Two kinds of sum rules are seen to occur: those which contain as-yet undetermined O(q 6 ) counterterms and those free of such quantities. We use the former to obtain phenomenological evaluations of two O(q 6 ) counterterms. Light is shed on the important but difficult issue regarding contributions of higher orders in the ChPT expansion. copyright 1996 The American Physical Society
Systematics of strength function sum rules
Directory of Open Access Journals (Sweden)
Calvin W. Johnson
2015-11-01
Full Text Available Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens, violation of the generalized Brink–Axel hypothesis is unsurprising: one expects sum rules to evolve with excitation energy. Furthermore, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive or negative (attractive.
Vacuum structure and QCD sum rules
International Nuclear Information System (INIS)
Shifman, M.A.
1992-01-01
The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have been originally developed in connection with the QCD sum rules can be and are successfully applied in related fields, such as supersymmetric gauge theories, nontraditional schemes of quarks and leptons, etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This collection of papers provides an overview of all basic elements of the sum rule approach. Priority has been given to those works which seemed most useful from a pedagogical point of view
Sum rules for the quarkonium systems
International Nuclear Information System (INIS)
Burnel, A.; Caprasse, H.
1980-01-01
In the framework of the radial Schroedinger equation we derive in a very simple way sum rules relating the potential to physical quantities such as the energy eigenvalues and the square of the lth derivative of the eigenfunctions at the origin. These sum rules contain as particular cases well-known results such as the quantum version of the Clausius theorem in classical mechanics as well as Kramers's relations for the Coulomb potential. Several illustrations are given and the possibilities of applying them to the quarkonium systems are considered
Integrals of Lagrange functions and sum rules
Energy Technology Data Exchange (ETDEWEB)
Baye, Daniel, E-mail: dbaye@ulb.ac.be [Physique Quantique, CP 165/82, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium); Physique Nucleaire Theorique et Physique Mathematique, CP 229, Universite Libre de Bruxelles, B 1050 Bruxelles (Belgium)
2011-09-30
Exact values are derived for some matrix elements of Lagrange functions, i.e. orthonormal cardinal functions, constructed from orthogonal polynomials. They are obtained with exact Gauss quadratures supplemented by corrections. In the particular case of Lagrange-Laguerre and shifted Lagrange-Jacobi functions, sum rules provide exact values for matrix elements of 1/x and 1/x{sup 2} as well as for the kinetic energy. From these expressions, new sum rules involving Laguerre and shifted Jacobi zeros and weights are derived. (paper)
Pentaquarks in QCD Sum Rule Approach
International Nuclear Information System (INIS)
Rodrigues da Silva, R.; Matheus, R.D.; Navarra, F.S.; Nielsen, M.
2004-01-01
We estimate the mass of recently observed pentaquak staes Ξ- (1862) and Θ+(1540) using two kinds of interpolating fields, containing two highly correlated diquarks, in the QCD sum rule approach. We obtained good agreement with the experimental value, using standard continuum threshold
Sum rule approach to nuclear vibrations
International Nuclear Information System (INIS)
Suzuki, T.
1983-01-01
Velocity field of various collective states is explored by using sum rules for the nuclear current. It is shown that an irrotational and incompressible flow model is applicable to giant resonance states. Structure of the hydrodynamical states is discussed according to Tomonaga's microscopic theory for collective motions. (author)
Old tensor mesons in QCD sum rules
International Nuclear Information System (INIS)
Aliev, T.M.; Shifman, M.A.
1981-01-01
Tensor mesons f, A 2 and A 3 are analyzed within the framework of QCD sum rules. The effects of gluon and quark condensate is accounted for phenomenologically. Accurate estimates of meson masses and coupling constants of the lowest-lying states are obtained. It is shown that the masses are reproduced within theoretical uncertainty of about 80 MeV. The coupling of f meson to the corresponding quark current is determined. The results are in good aqreement with experimental data [ru
Singlet axial constant from QCD sum rules
International Nuclear Information System (INIS)
Belitskij, A.V.; Teryaev, O.V.
1995-01-01
We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs
Beautiful mesons from QCD spectral sum rules
International Nuclear Information System (INIS)
Narison, S.
1991-01-01
We discuss the beautiful meson from the point of view of the QCD spectral sum rules (QSSR). The bottom quark mass and the mixed light quark-gluon condensates are determined quite accurately. The decay constant f B is estimated and we present some arguments supporting this result. The decay constants and the masses of the other members of the beautiful meson family are predicted. (orig.)
Limiting law excess sum rule for polyelectrolytes.
Landy, Jonathan; Lee, YongJin; Jho, YongSeok
2013-11-01
We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally, we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.
Robinson's radiation damping sum rule: Reaffirmation and extension
International Nuclear Information System (INIS)
Mane, S.R.
2011-01-01
Robinson's radiation damping sum rule is one of the classic theorems of accelerator physics. Recently Orlov has claimed to find serious flaws in Robinson's proof of his sum rule. In view of the importance of the subject, I have independently examined the derivation of the Robinson radiation damping sum rule. Orlov's criticisms are without merit: I work through Robinson's derivation and demonstrate that Orlov's criticisms violate well-established mathematical theorems and are hence not valid. I also show that Robinson's derivation, and his damping sum rule, is valid in a larger domain than that treated by Robinson himself: Robinson derived his sum rule under the approximation of a small damping rate, but I show that Robinson's sum rule applies to arbitrary damping rates. I also display more concise derivations of the sum rule using matrix differential equations. I also show that Robinson's sum rule is valid in the vicinity of a parametric resonance.
Isospin sum rules for inclusive cross-sections
Rotelli, P.; Suttorp, L.G.
1972-01-01
A systematic analysis of isospin sum rules is presented for the distribution functions of strong, electromagnetic weak inclusive processes. The general expression for these sum rules is given and some new examples are presented.
Sum rules in extended RPA theories
International Nuclear Information System (INIS)
Adachi, S.; Lipparini, E.
1988-01-01
Different moments m k of the excitation strength function are studied in the framework of the second RPA and of the extended RPA in which 2p2h correlations are explicitly introduced into the ground state by using first-order perturbation theory. Formal properties of the equations of motion concerning sum rules are derived and compared with those exhibited by the usual 1p1h RPA. The problem of the separation of the spurious solutions in extended RPA calculations is also discussed. (orig.)
Nuclear Symmetry Energy with QCD Sum Rule
International Nuclear Information System (INIS)
Jeong, K.S.; Lee, S.H.
2013-01-01
We calculate the nucleon self-energies in an isospin asymmetric nuclear matter using QCD sum rule. Taking the difference of these for the neutron and proton enables us to express an important part of the nuclear symmetry energy in terms of local operators. Calculating the operator product expansion up to mass dimension six operators, we find that the main contribution to the difference comes from the iso-vector scalar and vector operators, which is reminiscent to the case of relativistic mean field type theories where mesons with aforementioned quantum numbers produce the difference and provide the dominant mechanism for nuclear symmetry energy. (author)
QCD sum-rules for V-A spectral functions
International Nuclear Information System (INIS)
Chakrabarti, J.; Mathur, V.S.
1980-01-01
The Borel transformation technique of Shifman et al is used to obtain QCD sum-rules for V-A spectral functions. In contrast to the situation in the original Weinberg sum-rules and those of Bernard et al, the problem of saturating the sum-rules by low lying resonances is brought under control. Furthermore, the present sum-rules, on saturation, directly determine useful phenomenological parameters
Sum rules for charge transition density
Energy Technology Data Exchange (ETDEWEB)
Gul' karov, I S [Tashkentskij Politekhnicheskij Inst. (USSR)
1979-01-01
The form factors of the quadrupole and octupole oscillations of the /sup 12/C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow one to obtain various CTDs which contain the components k: r/sup lambda + 2k-2/rho(r) and r/sup lambda + 2k-1)(drho(r)/dr) (k = 0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. Recurrence formulas are derived for the ratios of the higher-order transition matrix elements and CTD. These formulas can be used to predict the CTD behavior for highly excited nuclear states.
On sum rules for charge transition density
International Nuclear Information System (INIS)
Gul'karov, I.S.
1979-01-01
The form factors of the quadrupole and octupole oscillations of the 12 C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow to obtain various CTD which contain the components k: rsup(lambda+2k-2)rho(r) and rsup(lambda+2k-1)(drho(r)/dr) (k=0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. The recurrent formulas are derived for the ratios of the higher order transition matrix elements and CTD. These formulas can be used to predict the CTD behaviour for highly excited nuclear states
Neutron matter within QCD sum rules
Cai, Bao-Jun; Chen, Lie-Wen
2018-05-01
The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.
Li, Rui
2018-02-01
The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.
Light cone sum rules in nonabelian gauge field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1981-03-24
The author examines, in the context of nonabelian gauge field theory, the derivation of the light cone sum rules which were obtained earlier on the assumption of dominance of canonical singularity in the current commutator on the light cone. The retarded scaling functions appearing in the sum rules are numbers known in terms of the charges of the quarks and the number of quarks and gluons in the theory. Possible applications of the sum rules are suggested.
On the Laplace transform of the Weinberg type sum rules
International Nuclear Information System (INIS)
Narison, S.
1981-09-01
We consider the Laplace transform of various sum rules of the Weinberg type including the leading non-perturbative effects. We show from the third type Weinberg sum rules that 7.5 to 8.9 1 coupling to the W boson, while the second sum rule gives an upper bound on the A 1 mass (Msub(A 1 ) < or approx. 1.25 GeV). (author)
Inclusive sum rules and spectra of neutrons at the ISR
International Nuclear Information System (INIS)
Grigoryan, A.A.
1975-01-01
Neutron spectra in pp collisions at ISR energies are studied in the framework of sum rules for inclusive processes. The contributions of protons, π- and E- mesons to the energy sum rule are calculated at √5 = 53 GeV. It is shown by means of this sum rule that the spectra of neutrons at the ISR are in contradiction with the spectra of other particles also measured at the ISR
Singular f-sum rule for superfluid 4He
International Nuclear Information System (INIS)
Wong, V.K.
1979-01-01
The validity and applicability to inelastic neutron scattering of a singular f-sum rule for superfluid helium, proposed by Griffin to explain the rhosub(s) dependence in S(k, ω) as observed by Woods and Svensson, are examined in the light of similar sum rules rigorously derived for anharmonic crystals and Bose liquids. It is concluded that the singular f-sum rules are only of microscopic interest. (Auth,)
Coulomb sum rules in the relativistic Fermi gas model
International Nuclear Information System (INIS)
Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.
1986-11-01
Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer
Sum rules and constraints on passive systems
International Nuclear Information System (INIS)
Bernland, A; Gustafsson, M; Luger, A
2011-01-01
A passive system is one that cannot produce energy, a property that naturally poses constraints on the system. A system in convolution form is fully described by its transfer function, and the class of Herglotz functions, holomorphic functions mapping the open upper half-plane to the closed upper half-plane, is closely related to the transfer functions of passive systems. Following a well-known representation theorem, Herglotz functions can be represented by means of positive measures on the real line. This fact is exploited in this paper in order to rigorously prove a set of integral identities for Herglotz functions that relate weighted integrals of the function to its asymptotic expansions at the origin and infinity. The integral identities are the core of a general approach introduced here to derive sum rules and physical limitations on various passive physical systems. Although similar approaches have previously been applied to a wide range of specific applications, this paper is the first to deliver a general procedure together with the necessary proofs. This procedure is described thoroughly and exemplified with examples from electromagnetic theory.
QCD sum rules and applications to nuclear physics
International Nuclear Information System (INIS)
Cohen, T.D.; Xuemin, J.
1994-12-01
Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author)
Adler Function, DIS sum rules and Crewther Relations
International Nuclear Information System (INIS)
Baikov, P.A.; Chetyrkin, K.G.; Kuehn, J.H.
2010-01-01
The current status of the Adler function and two closely related Deep Inelastic Scattering (DIS) sum rules, namely, the Bjorken sum rule for polarized DIS and the Gross-Llewellyn Smith sum rule are briefly reviewed. A new result is presented: an analytical calculation of the coefficient function of the latter sum rule in a generic gauge theory in order O(α s 4 ). It is demonstrated that the corresponding Crewther relation allows to fix two of three colour structures in the O(α s 4 ) contribution to the singlet part of the Adler function.
Model dependence of energy-weighted sum rules
International Nuclear Information System (INIS)
Kirson, M.W.
1977-01-01
The contribution of the nucleon-nucleon interaction to energy-weighted sum rules for electromagnetic multipole transitions is investigated. It is found that only isoscalar electric transitions might have model-independent energy-weighted sum rules. For these transitions, explicit momentum and angular momentum dependence of the nuclear force give rise to corrections to the sum rule which are found to be negligibly small, thus confirming the model independence of these specific sum rules. These conclusions are unaffected by correlation effects. (author)
Lattice QCD evaluation of baryon magnetic moment sum rules
International Nuclear Information System (INIS)
Leinweber, D.B.
1991-05-01
Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs
Luttinger and Hubbard sum rules: are they compatible?
International Nuclear Information System (INIS)
Matho, K.
1992-01-01
A so-called Hubbard sum rule determines the weight of a satellite in fermionic single-particle excitations with strong local repulsion (U→∞). Together with the Luttinger sum rule, this imposes two different energy scales on the remaining finite excitations. In the Hubbard chain, this has been identified microscopically as being due to a separation of spin and charge. (orig.)
A sum rule description of giant resonances at finite temperature
International Nuclear Information System (INIS)
Meyer, J.; Quentin, P.; Brack, M.
1983-01-01
A generalization of the sum rule approach to collective motion at finite temperature is presented. The m 1 and msub(-1) sum rules for the isovector dipole and the isoscalar monopole electric modes have been evaluated with the modified SkM force for the 208 Pb nucleus. The variation of the resulting giant resonance energies with temperature is discussed. (orig.)
On contribution of instantons to nucleon sum rules
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.
1989-01-01
The contribution of instantons to nucleon QCD sum rules is obtained. It is shown that this contribution does provide stabilization of the sum rules and leads to formation of a nucleon as a bound state of quarks in the instanton field. 17 refs.; 3 figs
Light cone sum rules for single-pion electroproduction
International Nuclear Information System (INIS)
Mallik, S.
1978-01-01
Light cone dispersion sum rules (of low energy and superconvergence types) are derived for nucleon matrix elements of the commutator involving electromagnetic and divergence of axial vector currents. The superconvergence type sum rules in the fixed mass limit are rewritten without requiring the knowledge of Regge subtractions. The retarded scaling functions occurring in these sum rules are evaluated within the framework of quark light cone algebra of currents. Besides a general consistency check of the framework underlying the derivation, the author infers, on the basis of crude evaluation of scaling functions, an upper limit of 100 MeV for the bare mass of nonstrange quarks. (Auth.)
Parity of Θ+(1540) from QCD sum rules
International Nuclear Information System (INIS)
Lee, Su Houng; Kim, Hungchong; Kwon, Youngshin
2005-01-01
The QCD sum rule for the pentaquark Θ + , first analyzed by Sugiyama, Doi and Oka, is reanalyzed with a phenomenological side that explicitly includes the contribution from the two-particle reducible kaon-nucleon intermediate state. The magnitude for the overlap of the Θ + interpolating current with the kaon-nucleon state is obtained by using soft-kaon theorem and a separate sum rule for the ground state nucleon with the pentaquark nucleon interpolating current. It is found that the K-N intermediate state constitutes only 10% of the sum rule so that the original claim that the parity of Θ + is negative remains valid
Neutrino mass sum rules and symmetries of the mass matrix
Energy Technology Data Exchange (ETDEWEB)
Gehrlein, Julia [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Spinrath, Martin [Karlsruhe Institute of Technology, Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany); National Center for Theoretical Sciences, Physics Division, Hsinchu (China)
2017-05-15
Neutrino mass sum rules have recently gained again more attention as a powerful tool to discriminate and test various flavour models in the near future. A related question which has not yet been discussed fully satisfactorily was the origin of these sum rules and if they are related to any residual or accidental symmetry. We will address this open issue here systematically and find previous statements confirmed. Namely, the sum rules are not related to any enhanced symmetry of the Lagrangian after family symmetry breaking but they are simply the result of a reduction of free parameters due to skillful model building. (orig.)
Moessbauer sum rules for use with synchrotron sources
International Nuclear Information System (INIS)
Lipkin, Harry J.
1999-01-01
The availability of tunable synchrotron radiation sources with millivolt resolution has opened new prospects for exploring dynamics of complex systems with Moessbauer spectroscopy. Early Moessbauer treatments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experiments, with emphasis on the unique new conditions absent in neutron scattering and arising in resonance scattering: prompt absorption, delayed emission, recoil-free transitions and coherent forward scattering. The first moment sum rule normalizes the inelastic spectrum. New sum rules obtained for higher moments include the third moment proportional to the second derivative of the potential acting on the Moessbauer nucleus and independent of temperature in the the harmonic approximation
Derivation of sum rules for quark and baryon fields
International Nuclear Information System (INIS)
Bongardt, K.
1978-01-01
In an analogous way to the Weinberg sum rules, two spectral-function sum rules for quark and baryon fields are derived by means of the concept of lightlike charges. The baryon sum rules are valid for the case of SU 3 as well as for SU 4 and the one-particle approximation yields a linear mass relation. This relation is not in disagreement with the normal linear GMO formula for the baryons. The calculated masses of the first resonance states agree very well with the experimental data
Adler-Weisberger sum rule for WLWL→WLWL scattering
International Nuclear Information System (INIS)
Pham, T.N.
1991-01-01
We analyse the Adler-Weisberger sum rule for W L W L →W L W L scattering. We find that at some energy, the W L W L total cross section must be large to saturate the sum rule. Measurements at future colliders would be needed to check the sum rule and to obtain the decay rates Γ(H→W L W L , Z L Z L ) which would be modified by the existence of a P-wave vector meson resonance in the standard model with strongly interacting Higgs sector or in technicolour models. (orig.)
Compton scattering from nuclei and photo-absorption sum rules
International Nuclear Information System (INIS)
Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.
2011-01-01
We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new 'constituent quark model' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.
A simple derivation of new sum rules of Bessel functions
International Nuclear Information System (INIS)
Ciocci, F.; Dattoli, G.; Dipace, A.
1985-01-01
In this note it is exploited a recently suggested technique to get simple expressions for a class of sum rules of Bessel functions appearing in plasma physics; their relevance to the numerical evaluation of the Turkin function is also discussed
QCD sum rules and applications to nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Cohen, T D [Maryland Univ., College Park, MD (United States). Dept. of Physics; [Washington Univ., Seattle, WA (United States). Dept. of Physics and Inst. for Nuclear Theory; Furnstahl, R J [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Griegel, D K [Maryland Univ., College Park, MD (United States). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada); Xuemin, J
1994-12-01
Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author). 153 refs., 8 figs.
Faraday effect revisited: sum rules and convergence issues
DEFF Research Database (Denmark)
Cornean, Horia; Nenciu, Gheorghe
2010-01-01
This is the third paper of a series revisiting the Faraday effect. The question of the absolute convergence of the sums over the band indices entering the Verdet constant is considered. In general, sum rules and traces per unit volume play an important role in solid-state physics, and they give...
QCD sum rule for nucleon in nuclear matter
International Nuclear Information System (INIS)
Mallik, S.; Sarkar, Sourav
2010-01-01
We consider the two-point function of nucleon current in nuclear matter and write a QCD sum rule to analyse the residue of the nucleon pole as a function of nuclear density. The nucleon self-energy needed for the sum rule is taken as input from calculations using phenomenological N N potential. Our result shows a decrease in the residue with increasing nuclear density, as is known to be the case with similar quantities. (orig.)
GDH sum rule measurement at low Q2
International Nuclear Information System (INIS)
Bianchi, N.
1996-01-01
The Gerasimov-Drell-Hearn (GDH) sum rule is based on a general dispersive relation for the forward Compton scattering. Multipole analysis suggested the possible violation of the sum rule. Some propositions have been made to modify the original GDH expression. An effort is now being made in several laboratories to shred some light on this topic. The purposes of the different planned experiments are briefly presented according to their Q 2 range
Spectral sum rule for time delay in R2
International Nuclear Information System (INIS)
Osborn, T.A.; Sinha, K.B.; Bolle, D.; Danneels, C.
1985-01-01
A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the potential class velement ofL 4 /sup // 3 (R 2 ). The sum rule relates the integral over all scattering energies of the trace of the time-delay operator for a finite region Σis contained inR 2 to the contributions in Σ of the pure point and singularly continuous spectra
Light-cone sum rules: A SCET-based formulation
De Fazio, F; Hurth, Tobias; Feldmann, Th.
2007-01-01
We describe the construction of light-cone sum rules (LCSRs) for exclusive $B$-meson decays into light energetic hadrons from correlation functions within soft-collinear effective theory (SCET). As an example, we consider the SCET sum rule for the $B \\to \\pi$ transition form factor at large recoil, including radiative corrections from hard-collinear loop diagrams at first order in the strong coupling constant.
Hadronic final states and sum rules in deep inelastic processes
International Nuclear Information System (INIS)
Pal, B.K.
1977-01-01
In order to get maximum information on the hadronic final states and sum rules in deep inelastic processes, Regge phenomenology and quarks parton model have been used. The unified picture for the production of hadrons of type i as a function of Bjorken and Feyman variables with only one adjustable parameter is formulated. The results of neutrino experiments and the production of charm particles are discussed in sum rules. (author)
Comment on QCD sum rules and weak bottom decays
International Nuclear Information System (INIS)
Guberina, B.; Machet, B.
1982-07-01
QCD sum rules derived by Bourrely et al. are applied to B-decays to get a lower and an upper bound for the decay rate. The sum rules are shown to be essentially controlled by the large mass scales involved in the process. These bounds combined with the experimental value of BR (B→eνX) provide an upper bound for the lifetime of the B + meson. A comparison is made with D-meson decays
Chiral corrections to the Adler-Weisberger sum rule
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
Spectral sum rules for the three-body problem
International Nuclear Information System (INIS)
Bolle, D.; Osborn, T.A.
1982-01-01
This paper derives a number of sum rules for nonrelativistic three-body scattering. These rules are valid for any finite region μ in the six-dimensional coordinate space. They relate energy moments of the trace of the onshell time-delay operator to the energy-weighted probability for finding the three-body bound-state wave functions in the region μ. If μ is all of the six-dimensional space, the global form of the sum rules is obtained. In this form the rules constitute higher-order Levinson's theorems for the three-body problem. Finally, the sum rules are extended to allow the energy momtns have complex powers
Sum Rules, Classical and Quantum - A Pedagogical Approach
Karstens, William; Smith, David Y.
2014-03-01
Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.
The black hole interior and a curious sum rule
International Nuclear Information System (INIS)
Giveon, Amit; Itzhaki, Nissan; Troost, Jan
2014-01-01
We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics
The black hole interior and a curious sum rule
Energy Technology Data Exchange (ETDEWEB)
Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Troost, Jan [Laboratoire de Physique Théorique,Unité Mixte du CRNS et de l’École Normale Supérieure,associée à l’Université Pierre et Marie Curie 6,UMR 8549 École Normale Supérieure,24 Rue Lhomond Paris 75005 (France)
2014-03-12
We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics.
A Bayesian analysis of the nucleon QCD sum rules
International Nuclear Information System (INIS)
Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto
2011-01-01
QCD sum rules of the nucleon channel are reanalyzed, using the maximum-entropy method (MEM). This new approach, based on the Bayesian probability theory, does not restrict the spectral function to the usual ''pole + continuum'' form, allowing a more flexible investigation of the nucleon spectral function. Making use of this flexibility, we are able to investigate the spectral functions of various interpolating fields, finding that the nucleon ground state mainly couples to an operator containing a scalar diquark. Moreover, we formulate the Gaussian sum rule for the nucleon channel and find that it is more suitable for the MEM analysis to extract the nucleon pole in the region of its experimental value, while the Borel sum rule does not contain enough information to clearly separate the nucleon pole from the continuum. (orig.)
Moessbauer sum rules for use with synchrotron sources
International Nuclear Information System (INIS)
Lipkin, H.J.
1995-01-01
The availability of tunable synchrotron radiation sources with millivolt resolution has opened prospects for exploring dynamics of complex systems with Moessbauer spectroscopy. Early Moessbauer treatments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experiments, with emphasis on the unique conditions absent in neutron scattering and arising in resonance scattering: prompt absorption, delayed emission, recoilfree transitions, and coherent forward scattering. The first moment sum rule normalizes the inelastic spectrum. Sum rules obtained for higher moments include the third moment proportional to the second derivative of the potential acting on the Moessbauer nucleus and independent of temperature in the harmonic approximation. Interesting information may be obtained on the behavior of the potential acting on this nucleus in samples not easily investigated with neutron scattering, e.g., small samples, thin films, time-dependent structures, and amorphous-metallic high pressure phases
Dynamical local field, compressibility, and frequency sum rules for quasiparticles
International Nuclear Information System (INIS)
Morawetz, Klaus
2002-01-01
The finite temperature dynamical response function including the dynamical local field is derived within a quasiparticle picture for interacting one-, two-, and three-dimensional Fermi systems. The correlations are assumed to be given by a density-dependent effective mass, quasiparticle energy shift, and relaxation time. The latter one describes disorder or collisional effects. This parametrization of correlations includes local-density functionals as a special case and is therefore applicable for density-functional theories. With a single static local field, the third-order frequency sum rule can be fulfilled simultaneously with the compressibility sum rule by relating the effective mass and quasiparticle energy shift to the structure function or pair-correlation function. Consequently, solely local-density functionals without taking into account effective masses cannot fulfill both sum rules simultaneously with a static local field. The comparison to the Monte Carlo data seems to support such a quasiparticle picture
Chiral symmetry breaking parameters from QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Bern Univ. (Switzerland). Inst. fuer Theoretische Physik)
1982-10-04
We obtain new QCD sum rules by considering vacuum expectation values of two-point functions, taking all the five quark bilinears into account. These sum rules are employed to extract values of different chiral symmetry breaking parameters in QCD theory. We find masses of light quarks, m=1/2msub(u)+msub(d)=8.4+-1.2 MeV, msub(s)=205+-65 MeV. Further, we obtain corrections to certain soft pion (kaon) PCAC relations and the violation of SU(3) flavour symmetry by the non-strange and strange quark-antiquark vacuum condensate.
Dispersion relations and sum rules for natural optical activity
International Nuclear Information System (INIS)
Thomaz, M.T.; Nussenzveig, H.M.
1981-06-01
Dispersion relations and sum rules are derived for the complex rotatory power of an arbitrary linear (nonmagnetic) isotropic medium showing natural optical activity. Both previously known dispersion relations and sum rules as well as new ones are obtained. It is shown that the Rosenfeld-Condon dispersion formula is inconsistent with the expected asymptotic behavior at high frequencies. A new dispersion formula based on quantum eletro-dynamics removes this inconsistency; however, it still requires modification in the low-frequency limit. (Author) [pt
Chiral restoration and the extended photoabsorption sum rule in nuclei
Energy Technology Data Exchange (ETDEWEB)
Ericson, M [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire; [European Organization for Nuclear Research, Geneva (Switzerland); Rosa-Clot, M [Florence Univ. (Italy). Ist. di Fisica; [Istituto Nazionale di Fisica Nucleare, Florence (Italy); Kulagin, S A [Akademiya Meditsinskikh Nauk SSSR, Moscow (Russian Federation)
1996-07-01
The Bethe-Levinger sum rule is extended beyond the potential model. The pion degrees of freedom are taken into account and the modifications of the potential theory are analyzed within two different approaches: dipole sum rule and dispersion relation on the Compton amplitude. Our aim is to extract from the photon data experimental information on the expectation value of the square of the pion field, a quantity which enters also in the restoration of chiral symmetry in nuclei and in pion-nucleus scattering. We are led to incorporate in the description the {Delta} resonance, which is strongly excited by the pion degrees of freedom. 11 refs.
Chiral restoration and the extended photoabsorption sum rule in nuclei
International Nuclear Information System (INIS)
Ericson, M.; Rosa-Clot, M.; Kulagin, S.A.
1996-07-01
The Bethe-Levinger sum rule is extended beyond the potential model. The pion degrees of freedom are taken into account and the modifications of the potential theory are analyzed within two different approaches: dipole sum rule and dispersion relation on the Compton amplitude. Our aim is to extract from the photon data experimental information on the expectation value of the square of the pion field, a quantity which enters also in the restoration of chiral symmetry in nuclei and in pion-nucleus scattering. We are led to incorporate in the description the Δ resonance, which is strongly excited by the pion degrees of freedom
Counter-ions at single charged wall: Sum rules.
Samaj, Ladislav
2013-09-01
For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.
Λ-bar from QCD sum rules for heavy quarkonium
International Nuclear Information System (INIS)
Kiselev, V.V.
1994-01-01
Using a specific scheme of the QCD sum rules for heavy quarkonium int he leading approximation over the inverse heavy quark, one gets the estimate of the difference between the masses of the heavy meson and heavy quark Λ=o.59+-0.02 GeV. 10 refs
Isospin sum rule for nuclear photoabsorption: Effect of retardation
International Nuclear Information System (INIS)
Maize, M.A.; Fallieros, S.
1987-01-01
Motivated by the close similarity between a sum rule originally derived by Cabibbo and Radicati and a simplified version based on nonrelativistic nuclear physics in the long-wavelength limit, we have investigated the effect of retardation corrections. An account of the contributions due to higher multipolarities is presented, together with a physical interpretation of the results
QCD Sum Rule External Field Approach and Vacuum Susceptibilities
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; CHANG Chao-His; WANG Fan; ZHAO En-Guang
2002-01-01
Based on QCD sum rule three-point and two-point external field formulas respectively, the vector vacuumsusceptibilities are calculated at the mean-field level in the framework of the global color symmetry model. It is shownthat the above two approaches of determination of the vector vacuum susceptibility may lead to different results. Thereason of this contradiction is discussed.
QCD sum rule studies at finite density and temperature
Energy Technology Data Exchange (ETDEWEB)
Kwon, Youngshin
2010-01-21
In-medium modifications of hadronic properties have a strong connection to the restoration of chiral symmetry in hot and/or dense medium. The in-medium spectral functions for vector and axial-vector mesons are of particular interest in this context, considering the experimental dilepton production data which signal the in-medium meson properties. In this thesis, finite energy sum rules are employed to set constraints for the in-medium spectral functions of vector and axial-vector mesons. Finite energy sum rules for the first two moments of the spectral functions are investigated with emphasis on the role of a scale parameter related to the spontaneous chiral symmetry breaking in QCD. It is demonstrated that these lowest moments of vector current spectral functions do permit an accurate sum rule analysis with controlled inputs, such as the QCD condensates of lowest dimensions. In contrast, the higher moments contain uncertainties from the higher dimensional condensates. It turns out that the factorization approximation for the four-quark condensate is not applicable in any of the cases studied in this work. The accurate sum rules for the lowest two moments of the spectral functions are used to clarify and classify the properties of vector meson spectral functions in a nuclear medium. Possible connections with the Brown-Rho scaling hypothesis are also discussed. (orig.)
Beauty vector meson decay constants from QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146, Roma (Italy)
2016-01-22
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
On QCD sum rules of the Laplace transform type and light quark masses
International Nuclear Information System (INIS)
Narison, S.
1981-04-01
We discuss the relation between the usual dispersion relation sum rules and the Laplace transform type sum rules in quantum chromodynamics. Two specific examples corresponding to the S-coupling constant sum rule and the light quark masses sum rules are considered. An interpretation, within QCD, of Leutwyler's formula for the current algebra quark masses is also given
Spectral function sum rules in quantum chromodynamics. I. Charged currents sector
International Nuclear Information System (INIS)
Floratos, E.G.; Narison, Stephan; Rafael, Eduardo de.
1978-07-01
The Weinberg sum rules of the algebra of currents are reconsidered in the light of quantum chromodynamics (QCD). The authors derive new finite energy sum rules which replace the old Weinberg sum rules. The new sum rules are convergent and the rate of convergence is explicitly calculated in perturbative QCD at the one loop approximation. Phenomenological applications of these sum rules in the charged current sector are also discussed
Proof of Kochen–Specker Theorem: Conversion of Product Rule to Sum Rule
International Nuclear Information System (INIS)
Toh, S.P.; Zainuddin, Hishamuddin
2009-01-01
Valuation functions of observables in quantum mechanics are often expected to obey two constraints called the sum rule and product rule. However, the Kochen–Specker (KS) theorem shows that for a Hilbert space of quantum mechanics of dimension d ≤ 3, these constraints contradict individually with the assumption of value definiteness. The two rules are not irrelated and Peres [Found. Phys. 26 (1996) 807] has conceived a method of converting the product rule into a sum rule for the case of two qubits. Here we apply this method to a proof provided by Mermin based on the product rule for a three-qubit system involving nine operators. We provide the conversion of this proof to one based on sum rule involving ten operators. (general)
Spectral representation and QCD sum rules in hot nuclear matter
International Nuclear Information System (INIS)
Mallik, S.; Sarkar, Sourav
2009-01-01
We construct the spectral representation of spinsor two-point functions in medium, that is, at finite temperature and chemical potential. We first deal with the free spinor two-point function. Then we construct the same for interacting fields leading to the Kaellen-Lehmann representation. It is emphasised that although these two point functions have the structure of 2 x 2 matrices in the real time formulation of field theory, any one component actually suffices to describe the dynamics of the system. Our construction is then applied to write the QCD sum rules for two-point function of nucleon currents in medium. We discuss a subtracted version to increase the sensitivity of such a sum rule and point out how it differs from a conventional one. (author)
Parton model (Moessbauer) sum rules for b → c decays
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
The parton model is a starting point or zero-order approximation in many treatments. The author follows an approach previously used for the Moessbauer effect and shows how parton model sum rules derived for certain moments of the lepton energy spectrum in b → c semileptonic decays remain valid even when binding effects are included. The parton model appears as a open-quote semiclassical close-quote model whose results for certain averages also hold (correspondence principle) in quantum mechanics. Algebraic techniques developed for the Moessbauer effect exploit simple features of the commutator between the weak current operator and the bound state Hamiltonian to find the appropriate sum rules and show the validity of the parton model in the classical limit, ℎ → 0, where all commutators vanish
QCD sum rules for the decay amplitudes of pseudoscalar mesons
International Nuclear Information System (INIS)
Narison, S.
1981-07-01
Bounds on the π and K meson decay amplitudes are obtained to a good accuracy from QCD sum rules of the Laplace transform type. A relation between fsub(π) and the rho meson coupling to the photon is given. Using the heavy quarks q 2 =0 sum rule to two loops we find our best bounds: fsub(D) approximately < (101+-25) MeV and fsub(F) approximately < (147+-41.6) MeV to be compared to fsub(π) approximately 93.3 MeV. We also derive a relation between the D and F meson masses and the charm quark mass. Our results are extended to the beautiful B mesons. (author)
Sum rule limitations of kinetic particle-production models
International Nuclear Information System (INIS)
Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.
1988-04-01
Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)
More sum rules for quark and lepton masses
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1990-04-01
Sum rules for quark and lepton masses are derived from the Ward identity of Chanowitz and Ellis for the vertex function of the trace of the energy-momentum tensor and the two axial-vector currents and the partially conserved axial-vector current hypothesis. They indicate, among other things, that the constituent quark masses of u and d and those of the techniquarks, if any, are about 300 MeV and 300 GeV, respectively. (author)
Modified Adler sum rule and violation of charge symmetry
International Nuclear Information System (INIS)
Dominguez, C.A.; Moreno, H.; Zepeda, A.
The consequences of a once subtracted dispersion relation in the derivation of the Adler sum rule are investigated. It is shown that one can expect a breakdown of charge symmetry, of the isotriplet current hypothesis, and of scaling of the structure functions. These breakdowns are related to the possible presence of a non-zero subtraction function at asymptotic energies and arbitrary q 2 . Second class currents and PCAC relations are also discussed
Finite temperature QCD sum rule and the ρ-meson
International Nuclear Information System (INIS)
Liu Jueping; Jin Yaping
1995-01-01
The contributions from the three-gluon condensates to the finite temperature QCD sum rule for the ρ-meson are calculated, and then the dependence of the properties of the ρ-meson upon temperature is investigated in a string model of condensates. The results show that the parameters characterizing the properties of the ρ-meson change noticeably when the temperature closes to the critical temperature of the condensates, and if the critical temperatures of condensates are the same
Spin orbit torque based electronic neuron
Energy Technology Data Exchange (ETDEWEB)
Sengupta, Abhronil, E-mail: asengup@purdue.edu; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
2015-04-06
A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset.
Spin orbit torque based electronic neuron
International Nuclear Information System (INIS)
Sengupta, Abhronil; Choday, Sri Harsha; Kim, Yusung; Roy, Kaushik
2015-01-01
A device based on current-induced spin-orbit torque (SOT) that functions as an electronic neuron is proposed in this work. The SOT device implements an artificial neuron's thresholding (transfer) function. In the first step of a two-step switching scheme, a charge current places the magnetization of a nano-magnet along the hard-axis, i.e., an unstable point for the magnet. In the second step, the SOT device (neuron) receives a current (from the synapses) which moves the magnetization from the unstable point to one of the two stable states. The polarity of the synaptic current encodes the excitatory and inhibitory nature of the neuron input and determines the final orientation of the magnetization. A resistive crossbar array, functioning as synapses, generates a bipolar current that is a weighted sum of the inputs. The simulation of a two layer feed-forward artificial neural network based on the SOT electronic neuron shows that it consumes ∼3× lower power than a 45 nm digital CMOS implementation, while reaching ∼80% accuracy in the classification of 100 images of handwritten digits from the MNIST dataset
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.
Evaluating chiral symmetry restoration through the use of sum rules
Directory of Open Access Journals (Sweden)
Rapp Ralf
2012-11-01
Full Text Available We pursue the idea of assessing chiral restoration via in-medium modifications of hadronic spectral functions of chiral partners. The usefulness of sum rules in this endeavor is illustrated, focusing on the vector/axial-vector channel. We first present an update on obtaining quantitative results for pertinent vacuum spectral functions. These serve as a basis upon which the in-medium spectral functions can be constructed. A novel feature of our analysis of the vacuum spectral functions is the need to include excited resonances, dictated by satisfying the Weinberg-type sum rules. This includes excited states in both the vector and axial-vector channels.We also analyze the QCD sum rule for the finite temperature vector spectral function, based on a ρ spectral function tested in dilepton data which develops a shoulder at low energies.We find that the ρ′ peak flattens off which may be a sign of chiral restoration, though a study of the finite temperature axial-vector spectral function remains to be carried out.
B --> K$*\\gamma$ from hybrid sum rule
Narison, Stéphan
1994-01-01
Using the {\\it hybrid} moments-Laplace sum rule (HSR), which is well-defined for M_b \\rar \\infty, in contrast with the popular double Borel (Laplace) sum rule (DLSR), which blows up in this limit when applied to the heavy-to-light processes, we show that the form factor of the B \\rar K^* \\ \\gamma radiative transition is dominated by the light-quark condensate for M_b \\rar \\infty and behaves like \\sqrt M_b. The form factor is found to be F^{B\\rar K^*}_1(0) \\simeq (30.8 \\pm 1.3 \\pm 3.6 \\pm 0.6)\\times 10^{-2}, where the errors come respectively from the procedure in the sum rule analysis, the errors in the input and in the SU(3)_f-breaking parameters. This result leads to Br(B\\rar K^* \\ \\gamma) \\simeq (4.45 \\pm 1.12) \\times 10^{-5} in agreement with the recent CLEO data. Parametrization of the M_b-dependence of the form factor including the SU(3)_f-breaking effects is given in (26), which leads to F^{B\\rar K^*}_1(0)/ F^{B\\rar \\rho}_1(0) \\simeq (1.14 \\pm 0.02).
What do QCD sum rules tell us about dense matter?
International Nuclear Information System (INIS)
Cohen, T.D.; Washington Univ., Seattle, WA
1995-01-01
The QCD sum rule approach to the properties of hadrons in both the vacuum and in nuclear matter is discussed. The primary limitation for the nuclear matter case is the absence of reliable phenomenological information about the form of the spectral function and about the value of certain four quark condensates. The approach gives moderate evidence in support of the Dirac phenomenology picture of strong attractive Lorentz scalar and repulsive Lorentz vector optical potentials. The approach gives weak evidence for decreasing vector meson masses in medium. (orig.)
Sum rules and exclusive processes in quantum chromodynamics
International Nuclear Information System (INIS)
Radyushkin, A.V.
1983-01-01
A brief review of results of analyzing hadron form factors is presented. The analysis of hardron form factors was conducted by the method of QCD sum rules. The method is based on the concept of quark-hadron duality. Correlation of calculation results with available experimental data was performed. The conclusion is made that it is sufficient to consider only the contribution of the simplest diagrams which don't contain gluon exchanges in order to describe experimental data on pion, proton and neutron form factors
Energy-weighted sum rules for mesons in hot and dense matter
Cabrera, D.; Polls, A.; Ramos, A.; Tolos Rigueiro, Laura
2009-01-01
We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific
Sum rules for baryonic vertex functions and the proton wave function in QCD
International Nuclear Information System (INIS)
Lavelle, M.J.
1985-01-01
We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)
Spin Sum Rules and Polarizabilities: Results from Jefferson Lab
International Nuclear Information System (INIS)
Jian-Ping Chen
2006-01-01
The nucleon spin structure has been an active, exciting and intriguing subject of interest for the last three decades. Recent experimental data on nucleon spin structure at low to intermediate momentum transfers provide new information in the confinement regime and the transition region from the confinement regime to the asymptotic freedom regime. New insight is gained by exploring moments of spin structure functions and their corresponding sum rules (i.e. the generalized Gerasimov-Drell-Hearn, Burkhardt-Cottingham and Bjorken). The Burkhardt-Cottingham sum rule is verified to good accuracy. The spin structure moments data are compared with Chiral Perturbation Theory calculations at low momentum transfers. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g 1 at momentum transfer of 0.05 to 0.1 GeV 2 but fail to reproduce the neutron data in the case of the generalized polarizability (delta) LT (the (delta) LT puzzle). New data have been taken on the neutron ( 3 He), the proton and the deuteron at very low Q 2 down to 0.02 GeV 2 . They will provide benchmark tests of Chiral dynamics in the kinematic region where the Chiral Perturbation theory is expected to work
Borel sum rules for octet baryons in nuclear medium
International Nuclear Information System (INIS)
Kondo, Y.; Morimatsu, O.
1992-06-01
Borel sum rules are examined for octet baryons in the nuclear medium. First, it is noticed that in the medium the dispersion relation is realized for the retarded correlation Π R (ω, q 2 ) in the energy ω. Then, Π R (ω, q 2 ) is split into even and odd parts of ω in order to apply the Borel transformation. The obtained Borel sum rules differ from those of previous works. The mass shifts of octet baryons are calculated in the leading order of the operator product expansion with linear density approximation for the condensates. It is found that both scalar and vector condensates of the quark field, and + q>, induce attraction to the octet baryons in the medium in contrast to the results of previous works. It is also found that |δM N | > |δM Λ | > |δM Σ | ∼ |δM Ξ |. The absolute values, however, turn out to be one order of magnitude larger than those empirically known if a Borel mass of around 1 GeV is used in the present approximation. (author)
Bottom mass from nonrelativistic sum rules at NNLL
Energy Technology Data Exchange (ETDEWEB)
Stahlhofen, Maximilian
2013-01-15
We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) {Upsilon} sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic (NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments with respect to scale variations. A single moment fit (n=10) to the available experimental data yields M{sub b}{sup 1S}=4.755{+-}0.057{sub pert}{+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass. The quoted uncertainties refer to the perturbative error and the uncertainties associated with the strong coupling and the experimental input.
Renormalized sum rules for structure functions of heavy meson decays
International Nuclear Information System (INIS)
Grozin, A.G.; Korchemsky, G.P.
1996-01-01
We consider the properties of the structure functions of inclusive heavy meson decays B→X c and treat the c quark mass as a free parameter. We show that in two extreme cases of heavy and light c quarks the structure functions of heavy-heavy and heavy-light transitions are given by a Fourier transform of the matrix elements of Wilson lines containing a timelike and a lightlike segment, correspondingly. Using the renormalization properties of Wilson lines we find the dependence of the structure functions on the factorization scale, the structure function of the heavy-heavy transition is renormalized multiplicatively, while that of the heavy-light transition obeys the GLAP-type evolution equation. We propose a generalization of the sum rules for the moments of the structure functions (Bjorken, Voloshin, and the open-quote open-quote third close-quote close-quote sum rules) with a soft exponential factorization cutoff, which correctly incorporates both perturbative and nonperturbative effects. We analyze nonperturbative corrections by first considering infrared renormalon contributions to the Wilson lines. Uncertainties induced by the leading renormalon pole at u=1/2 are exactly canceled by a similar uncertainty in the heavy quark pole mass. The leading nonperturbative corrections associated with the next renormalon at u=1 are parametrized by the matrix element μ π 2 which is proportional to the heavy quark kinetic energy. copyright 1996 The American Physical Society
Spectral sum rules and search for periodicities in DNA sequences
International Nuclear Information System (INIS)
Chechetkin, V.R.
2011-01-01
Periodic patterns play the important regulatory and structural roles in genomic DNA sequences. Commonly, the underlying periodicities should be understood in a broad statistical sense, since the corresponding periodic patterns have been strongly distorted by the random point mutations and insertions/deletions during molecular evolution. The latent periodicities in DNA sequences can be efficiently displayed by Fourier transform. The criteria of significance for observed periodicities are obtained via the comparison versus the counterpart characteristics of the reference random sequences. We show that the restrictions imposed on the significance criteria by the rigorous spectral sum rules can be rationally described with De Finetti distribution. This distribution provides the convenient intermediate asymptotic form between Rayleigh distribution and exact combinatoric theory. - Highlights: → We study the significance criteria for latent periodicities in DNA sequences. → The constraints imposed by sum rules can be described with De Finetti distribution. → It is intermediate between Rayleigh distribution and exact combinatoric theory. → Theory is applicable to the study of correlations between different periodicities. → The approach can be generalized to the arbitrary discrete Fourier transform.
A probabilistic approach of sum rules for heat polynomials
International Nuclear Information System (INIS)
Vignat, C; Lévêque, O
2012-01-01
In this paper, we show that the sum rules for generalized Hermite polynomials derived by Daboul and Mizrahi (2005 J. Phys. A: Math. Gen. http://dx.doi.org/10.1088/0305-4470/38/2/010) and by Graczyk and Nowak (2004 C. R. Acad. Sci., Ser. 1 338 849) can be interpreted and easily recovered using a probabilistic moment representation of these polynomials. The covariance property of the raising operator of the harmonic oscillator, which is at the origin of the identities proved in Daboul and Mizrahi and the dimension reduction effect expressed in the main result of Graczyk and Nowak are both interpreted in terms of the rotational invariance of the Gaussian distributions. As an application of these results, we uncover a probabilistic moment interpretation of two classical integrals of the Wigner function that involve the associated Laguerre polynomials. (paper)
Origin of the violation of the Gottfried sum rule
International Nuclear Information System (INIS)
Hwang, W.P.; Speth, J.
1992-01-01
Using generalized Sullivan processes to generate sea-quark distributions of a nucleon at Q 2 =4 GeV 2 , we find that the recent finding by the New Muon Collaboration on the violation of the Gottfried sum rule can be understood quantitatively, including the shape of F 2 p (x)-F 2 n (x) as a function of x. The agreement may be seen as a clear evidence toward the validity of a recent suggestion of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q 2 (at least up to a few GeV 2 ), may be attributed primarily to generalized Sullivan processes
Isovector giant monopole resonances: A sum-rule approach
International Nuclear Information System (INIS)
Goeke, K.; Bonn Univ.; Castel, B.
1980-01-01
Several useful sum rules associated with isovector giant monopole resonances are calculated for doubly closed shell nuclei. The calculation is based on techniques known from constrained and adiabatic time-dependent Hartree-Fock theories and assume various Skyrme interactions. The results obtained form, together with the compiled literature, the basis for a quantitative description of the RPA strength distribution in terms of energy-weighted moments. These, together with strength distribution properties, are determined by a hierarchy of determinantal relations between moments. The isovector giant monopole resonance turns out to be a rather broad resonance centered at E = 46 Asup(-1/10) MeV with an extended width of more than 16 MeV. The consequences regarding isospin impurities in the nuclear ground state are discussed. (orig.)
Scalar Hidden-Charm Tetraquark States with QCD Sum Rules
Di, Zun-Yan; Wang, Zhi-Gang; Zhang, Jun-Xia; Yu, Guo-Liang
2018-02-01
In this article, we study the masses and pole residues of the pseudoscalar-diquark-pseudoscalar-antidiquark type and vector-diquark-vector-antidiquark type scalar hidden-charm cu\\bar{c}\\bar{d} (cu\\bar{c}\\bar{s}) tetraquark states with QCD sum rules by taking into account the contributions of the vacuum condensates up to dimension-10 in the operator product expansion. The predicted masses can be confronted with the experimental data in the future. Possible decays of those tetraquark states are also discussed. Supported by the National Natural Science Foundation of China under Grant No. 11375063, the Fundamental Research Funds for the Central Universities under Grant Nos. 2016MS155 and 2016MS133
Thermal Properties of Light Tensor Mesons via QCD Sum Rules
Directory of Open Access Journals (Sweden)
K. Azizi
2015-01-01
Full Text Available The thermal properties of f2(1270, a2(1320, and K2*(1430 light tensor mesons are investigated in the framework of QCD sum rules at finite temperature. In particular, the masses and decay constants of the light tensor mesons are calculated taking into account the new operators appearing at finite temperature. The numerical results show that, at the point at which the temperature-dependent continuum threshold vanishes, the decay constants decrease with amount of (70–85% compared to their vacuum values, while the masses diminish about (60–72% depending on the kinds of the mesons under consideration. The results obtained at zero temperature are in good consistency with the experimental data as well as the existing theoretical predictions.
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-11-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the THETA - moment may indicate that the strange quark contribution to the THETA moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -(1/2)μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (author)
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1984-01-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks, e.g. from a pion cloud. The large magnitude of the Ψ - moment may indicate that the strange quark contribution to the Ψ moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -1/2μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (orig.)
A sum rule approach to the violation of Dashen's theorem
International Nuclear Information System (INIS)
Moussallam, B.
1999-01-01
A classic sum rule by Das et al. is extended to seven of the low-energy constant K i , introduced by Urech, which parameterizes electromagnetic corrections at chiral order O(e 2 p 2 ). Using the spurion formalism, a simple convolution representation is shown to hold and the structure in terms of the chiral renormalization scale, QCD renormalization scale and the QED gauge parameter is displayed. The role of the resonances is studied as providing rational interpolants to relevant QCD n-point functions in the Euclidean domain. A variety of asymptotic constraints must be implemented which have phenomenological consequences. A current assumption concerning the dominance of the lowest-lying resonances is shown clearly to fail in some cases. (author)
Splitting of electrons and violation of the Luttinger sum rule
Quinn, Eoin
2018-03-01
We obtain a controlled description of a strongly correlated regime of electronic behavior. We begin by arguing that there are two ways to characterize the electronic degree of freedom, either by the canonical fermion algebra or the graded Lie algebra su (2 |2 ) . The first underlies the Fermi liquid description of correlated matter, and we identify a regime governed by the latter. We exploit an exceptional central extension of su (2 |2 ) to employ a perturbative scheme recently developed by Shastry and obtain a series of successive approximations for the electronic Green's function. We then focus on the leading approximation, which reveals a splitting in two of the electronic dispersion. The Luttinger sum rule is violated, and a Mott metal-insulator transition is exhibited. We offer a perspective.
The DHG sum rule measured with medium energy photons
International Nuclear Information System (INIS)
Hicks, K.; Ardashev, K.; Babusci, D.
1997-01-01
The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements
The spin-orbit interaction in nuclei
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
The analysis previously made of the average nuclear potential has been extended to consideration of the spin-orbit interactions. It has not been possible to find a satisfactory two-body interaction consistent with all the data; that suggested by the phase-shift analysis of nucleon-nucleon scattering is just within the region of possible forms. (author). 13 refs, 1 fig
Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers
Energy Technology Data Exchange (ETDEWEB)
Skinner, T. D., E-mail: tds32@cam.ac.uk; Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Wang, M.; Hindmarch, A. T.; Rushforth, A. W. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)
2014-02-10
Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.
Impact of Duality Violations on Spectral Sum Rule analyses
International Nuclear Information System (INIS)
Cata, Oscar
2007-01-01
Recent sum rule analyses on the two-point correlator have led to significant discrepancies in the values found for the OPE condensates, most dramatically in the dimension eight condensate and to a lesser extent in the dimension six one [R. Barate et al., ALEPH Collaboration, Eur. Phys. J. C 4 (1998) 409; K. Ackerstaff et al., OPAL Collaboration, Eur. Phys. J. C 7 (1999) 571, (arXiv:hep-ex/9808019); S. Peris, B. Phily and E. de Rafael, Phys. Rev. Lett. 86 (2001) 14, (arXiv:hep-ph/0007338); S. Friot, D. Greynat and E. de Rafael, JHEP 0410 (2004) 043, (arXiv:hep-ph/0408281); M. Davier, L. Girlanda, A. Hocker and J. Stern, Phys. Rev. D 58 (1998) 096014, (arXiv:hep-ph/9802447); B.L. Ioffe and K.N. Zyablyuk, Nucl. Phys. A 687 (2001) 437, (arXiv:hep-ph/0010089). K.N. Zyablyuk, Eur. Phys. J. C 38 (2004) 215, (arXiv:hep-ph/0404230); J. Bijnens, E. Gamiz and J. Prades, JHEP 0110 (2001) 009, (arXiv:hep-ph/0108240); C.A. Dominguez and K. Schilcher, Phys. Lett. B 581 (2004) 193, (arXiv:hep-ph/0309285); J. Rojo and J. I. Latorre, JHEP 0401 (2004) 055, (arXiv:hep-ph/0401047); V. Cirigliano, E. Golowich and K. Maltman, Phys. Rev. D 68 (2003) 054013, (arXiv:hep-ph/0305118); S. Ciulli, C. Sebu, K. Schilcher and H. Spiesberger, Phys. Lett. B 595 (2004) 359, (arXiv:hep-ph/0312212). S. Narison, (arXiv:hep-ph/0412152)]. Precise knowledge of these condensates is of relevance in kaon decays [M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 457 (1999) 227, (arXiv:hep-ph/9812471); J.F. Donoghue and E. Golowich, Phys. Lett. B 478 (2000) 172, (arXiv:hep-ph/9911309); M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 508 (2001) 117, (arXiv:hep-ph/0102017)] and therefore it seems mandatory to assess the actual impact of what is commonly neglected in spectral sum rules, most prominently the issue of duality violations. We will explicitly compute them in a toy model and show that they are a priori non-negligible
Quark-spin isospin sum rules and the Adler-Weisberger relation in nuclei
International Nuclear Information System (INIS)
Delorme, J.; Ericson, M.
1982-01-01
We use a quark model to extend the classical Gamow-Teller sum rule for the difference of the β - and β + strengths to excitations of the nucleon (mainly the Δ isobar). A schematic model illustrates the realization of the new sum rule when a particle-hole force is introduced. We discuss the connection of our result with the model-independent Adler-Weisberger sum rule. (orig.)
Symbolic methods for the evaluation of sum rules of Bessel functions
International Nuclear Information System (INIS)
Babusci, D.; Dattoli, G.; Górska, K.; Penson, K. A.
2013-01-01
The use of the umbral formalism allows a significant simplification of the derivation of sum rules involving products of special functions and polynomials. We rederive in this way known sum rules and addition theorems for Bessel functions. Furthermore, we obtain a set of new closed form sum rules involving various special polynomials and Bessel functions. The examples we consider are relevant for applications ranging from plasma physics to quantum optics
Magnetic susceptibility and M1 transitions in /sup 208/Pb. [Sum rules
Energy Technology Data Exchange (ETDEWEB)
Traini, M; Lipparini, E; Orlandini, G; Stringari, S [Dipartimento di Matematica e Fisica, Universita di Trento, Italy
1979-04-16
M1 transitions in /sup 208/Pb are studied by evaluating energy-weighted and inverse energy-weighted sum-rules. The role of the nuclear interaction is widely discussed. It is shown that the nuclear potential increases the energy-weighted sum rule and lowers the inverse energy-weighted sum rule, with respect to the prediction of the pure shell model. Values of strengths and excitation energies are compared with experimental results and other theoretical calculations.
Sum rules for the real parts of nonforward current-particle scattering amplitudes
International Nuclear Information System (INIS)
Abdel-Rahman, A.M.M.
1976-01-01
Extending previous work, using Taha's refined infinite-momentum method, new sum rules for the real parts of nonforward current-particle scattering amplitudes are derived. The sum rules are based on covariance, casuality, scaling, equal-time algebra and unsubtracted dispersion relations for the amplitudes. A comparison with the corresponding light-cone approach is made, and it is shown that the light-cone sum rules would also follow from the assumptions underlying the present work
Gottfried sum rule and mesonic exchanges in deuteron
International Nuclear Information System (INIS)
Kaptari, L.P.
1991-01-01
Recent NMC data on the experimental value of the Gottfried Sum are discussed. It is shown that the Gottfried Sum is sensitive to the nuclear structure corrections, viz. themesonic exchanges and binding effects. A new estimation of the Gottfried Sum is given. The obtained result is close to the quark-parton prediction of 1/3. 11 refs.; 2 figs
Spin Orbit Torque in Ferromagnetic Semiconductors
Li, Hang
2016-06-21
Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall
Sum rules for nuclear excitations with the Skyrme-Landau interaction
International Nuclear Information System (INIS)
Liu Kehfei; Luo Hongde; Ma Zhongyu; Feng Man; Shen Qingbiao
1991-01-01
The energy-weighted sum rules for electric, magnetic, Fermi and Gamow-Teller transitions with the Skyrme-Landau interaction are derived from the double commutators and numerically calculated in a HF + RPA formalism. As a numerical check of the Thouless theorem, our self-consistent calculations show that the calculated RPA strengths exhaust more than 85% of the sum rules in most cases. The well known non-energy-weighted sum rules for Fermi and Gamow-Teller transitions are also checked numerically. The sum rules are exhausted by more than 94% in these cases. (orig.)
International Nuclear Information System (INIS)
Larin, S.A.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica; Vermaseren, J.A.M.
1990-01-01
The next-next-to-leading order QCD corrections to the Gross-Llewellyn Smith sum rule for deep inelastic neutrino-nucleon scattering and to the Bjorken sum rule for polarized electron-nucleon scattering have been computed. This involved the proper treatment of γ 5 inside the loop integrals with dimensional regularization. It is found that the difference between the two sum rules are entirely due to a class of 6 three loop graphs and is of the order of 1% of the leading QCD term. Hence the Q 2 behavior of both sum rules should be the same if the physics is described adequately by the lower order terms of perturbative QCD. (author). 12 refs.; 2 figs.; 4 tabs
The nuclear spin-orbit coupling
International Nuclear Information System (INIS)
Bell, J.S.; Skyrme, T.H.R.
1994-01-01
Analysis of the nucleon-nucleon scattering around 100 MeV has determined the spin-orbit coupling part of the two-body scattering matrix at that energy, and a reasonable extrapolation to lower energies is possible. This scattering amplitude has been used, in the spirit of Brueckner's nuclear model, to estimate the resultant single-body spin-orbit coupling for a single nucleon interacting with a large nucleus. This resultant potential has a radial dependence approximately proportional to r -1 d ρ /dr, and with a magnitude in good agreement with that required to explain the doublet splittings in nuclei and the polarization of nucleons scattered elastically off nuclei. (author). 14 refs, 2 figs
Mesoscopic rings with spin-orbit interactions
Energy Technology Data Exchange (ETDEWEB)
Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)
2010-09-15
A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.
Spin-orbit torques in magnetic bilayers
Haney, Paul
2015-03-01
Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.
Spin-orbit scattering in superconducting nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)
2017-06-15
We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
QCD sum rule study of hidden-charm pentaquarks
Energy Technology Data Exchange (ETDEWEB)
Chen, Hua-Xing; Cui, Er-Liang [Beihang University, School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei; Steele, T.G. [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)
2016-10-15
We study the mass spectra of hidden-charm pentaquarks having spin J = (1)/(2)/(3)/(2)/(5)/(2) and quark contents uudc anti c. We systematically construct all the relevant local hidden-charm pentaquark currents, and we select some of them to perform QCD sum rule analyses. We find that the P{sub c}(4380) and P{sub c}(4450) can be identified as hidden-charm pentaquark states composed of an anti-charmed meson and a charmed baryon. Besides them, we also find (a) the lowest-lying hidden-charm pentaquark state of J{sup P} = 1/2{sup -} has the mass 4.33{sup +0.17}{sub -0.13} GeV, while the one of J{sup P} = 1/2{sup +} is significantly higher, that is, around 4.7-4.9 GeV; (b) the lowest-lying hidden-charm pentaquark state of J{sup P} = 3/2{sup -} has the mass 4.37{sup +0.18}{sub -0.13} GeV, consistent with the P{sub c}(4380) of J{sup P} = 3/2{sup -}, while the one of J{sup P} = 3/2{sup +} is also significantly higher, that is, above 4.6 GeV; (c) the hidden-charm pentaquark state of J{sup P} = 5/2{sup -} has a mass around 4.5-4.6 GeV, slightly larger than the P{sub c}(4450) of J{sup P} = 5/2{sup +}. (orig.)
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
A self-consistent semiclassical sum rule approach to the average properties of giant resonances
International Nuclear Information System (INIS)
Li Guoqiang; Xu Gongou
1990-01-01
The average energies of isovector giant resonances and the widths of isoscalar giant resonances are evaluated with the help of a self-consistent semiclassical Sum rule approach. The comparison of the present results with the experimental ones justifies the self-consistent semiclassical sum rule approach to the average properties of giant resonances
Radiative E1-decay of charmonium 1P1 level within sum rules of quantum chromodynamics
International Nuclear Information System (INIS)
Martynenko, A.P.
1991-01-01
Analysis of radiative decay of 1 P 1 → 1 S 0 + γ charmonium within sum rules of quantum chromodynamics was conducted. The sum rule, taking account of gluon exponential correction, was obtained, and width of Χ → η c + γ decay was calculated
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
DEFF Research Database (Denmark)
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...
Sum rules and moments for lepton-pair production. [Cross sections, Drell--Yan formula
Energy Technology Data Exchange (ETDEWEB)
Hwa, R.C.
1978-01-01
Sum rules on lepton-pair production cross sections are derived on the bases of the Drell--Yan formula and the known sum rules in leptoproduction. Also exact relations are obtained between the average transverse momenta squared of the valence quarks and moments of the dilepton cross sections. 12 references.
Second-moment sum rules for correlation functions in a classical ionic mixture
Suttorp, L.G.; Ebeling, W.
1992-01-01
The complete set of second-moment sum rules for the correlation functions of arbitrarily high order describing a classical multi-component ionic mixture in equilibrium is derived from the grand-canonical ensemble. The connection of these sum rules with the large-scale behaviour of fluctuations in an
B-decay form factors from QCD sum rules
International Nuclear Information System (INIS)
Offen, Nils
2008-01-01
In the Standard Model of particle physics there is only one source of CP-violation. Namely, a single complex phase in the unitary 3 x 3 CKM-Matrix governing flavor transitions in the weak interaction. The unitarity is usually visualized by a triangle in the complex ρ - η-plane. Therefore testing this framework comes down to measuring weak decays, relating observables to sides and angles of this so called Unitarity Triangle(UT). Particular interest in this respect is payed to decays of mesons containing a heavy b-quark, giving the opportunity to alone determine all parameters of the UT. Doing this is far from easy. Besides tedious experimental measurements the theoretical calculations are plagued by hadronic quantities which cannot be determined by perturbation theory. In this work several of these quantities so called form factors are computed using the well known method of light cone sum rules(LCSR). Two different setups have been used. One, established in this work, utilizing a correlation function with an on-shell B-Meson and one following the traditional calculation by taking the light meson on-shell. Both using light cone expansion in the respective on-shell mesons distribution amplitudes. While the first approach allows to calculate a whole bunch of phenomenologically interesting quantities by just changing Dirac-structures of the relevant currents it has the drawback that it does not have access to the well developed twist expansion of the latter. To incorporate higher Fock-state contributions the first models for three-particle distribution amplitudes of the B-Meson have been derived. α s -corrections remain out of the scope of this work. Nevertheless does a comparison with more sophisticated methods show an encouraging numerical agreement. In the second setup all known corrections especially the never verified α s -corrections to Twist three terms have been recalculated and a competitive result for the CKM-matrixelement vertical stroke V ub vertical
Continuum contributions to dipole oscillator-strength sum rules for hydrogen in finite basis sets
DEFF Research Database (Denmark)
Oddershede, Jens; Ogilvie, John F.; Sauer, Stephan P. A.
2017-01-01
Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases, but that the conver......Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases......, but that the convergence towards the final results with increasing excitation energies included in the sum over states is slower in the basis-set cases when we use the best basis. We argue also that this conclusion most likely holds also for larger atoms or molecules....
Derivation of sum rules for quark and baryon fields. [light-like charges
Energy Technology Data Exchange (ETDEWEB)
Bongardt, K [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Theoretische Kernphysik
1978-08-21
In an analogous way to the Weinberg sum rules, two spectral-function sum rules for quark and baryon fields are derived by means of the concept of lightlike charges. The baryon sum rules are valid for the case of SU/sub 3/ as well as for SU/sub 4/ and the one-particle approximation yields a linear mass relation. This relation is not in disagreement with the normal linear GMO formula for the baryons. The calculated masses of the first resonance states agree very well with the experimental data.
The Relation between the Electric Conductance of Nanostructure Bridge and Friedel Sum Rule
International Nuclear Information System (INIS)
Kotani, Y; Shima, N; Makoshi, K
2012-01-01
We analyze the electric conductance through nanostructure bridges in terms of phase-shifts, which satisfy the Friedel sum rule. The phase-shifts are given by solving the eigenvalue equation obtained by extending the method applied to a single impurity problem in a metal. The local charge neutrality condition is introduced through the Friedel sum rule. It is analytically shown that the electric conductance can increase as the two electrodes separate with the condition in which the phase-shifts satisfy the Friedel sum rule. The increment of the distance between two electrodes is obtained by gradually separating interatomic distance.
Tailoring spin-orbit torque in diluted magnetic semiconductors
Li, Hang; Wang, Xuhui; Doǧan, Fatih; Manchon, Aurelien
2013-01-01
We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.
Tailoring spin-orbit torque in diluted magnetic semiconductors
Li, Hang
2013-05-16
We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design.
Renormalization group summation of Laplace QCD sum rules for scalar gluon currents
Directory of Open Access Journals (Sweden)
Farrukh Chishtie
2016-03-01
Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.
Ultrafast demagnetization in rare-earth alloys: the role of spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Le Guyader, Loic; Solopow, Sergej; Radu, Florin; Holldack, Karsten; Mitzner, Rolf; Kachel, Torsten; Pontius, Niko; Foehlisch, Alexander; Radu, Ilie [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Abrudan, Radu [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Institut fuer Experimentalphysik/Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)
2015-07-01
Understanding the ultrafast demagnetization occurring upon femtosecond laser excitation of a magnetic material is a fundamental problem of modern magnetism and its microscopic origin remains highly elusive and intensely debated. Particularly, the spin-orbit coupling mediating the spin-lattice interaction is one of the key ingredients. An intriguing case of tunable parallel to anti-parallel LS coupling can be realized in rare-earth (RE) alloys. For instance, Gd60Sm40 and Gd60Dy40 alloys have similar absolute S and L, but exhibit opposite LS coupling while displaying the same ferromagnetic ordering temperature of 250 K. They constitute thus an ideal case to investigate the particular role of the LS coupling on the ultrafast demagnetization. Here we report on the properties of such RE thin film alloys using X-ray Magnetic Circular Dichroism (XMCD) with the spin and orbit sum rules at M5,4 edges. Femtosecond time-resolved transmission XMCD measurements performed at the slicing beamline reveal the element-specific demagnetization time constant in these alloys. Funding from European Union through FEMTOSPIN is gratefully acknowledged.
Endpoint behavior of the pion distribution amplitude in QCD sum rules with nonlocal condensates
International Nuclear Information System (INIS)
Mikhailov, S. V.; Pimikov, A. V.; Stefanis, N. G.
2010-01-01
Starting from the QCD sum rules with nonlocal condensates for the pion distribution amplitude, we derive another sum rule for its derivative and its ''integral derivatives''--defined in this work. We use this new sum rule to analyze the fine details of the pion distribution amplitude in the endpoint region x∼0. The results for endpoint-suppressed and flattop (or flatlike) pion distribution amplitudes are compared with those we obtained with differential sum rules by employing two different models for the distribution of vacuum-quark virtualities. We determine the range of values of the derivatives of the pion distribution amplitude and show that endpoint-suppressed distribution amplitudes lie within this range, while those with endpoint enhancement--flat-type or Chernyak-Zhitnitsky like--yield values outside this range.
Forward Compton scattering with weak neutral current: Constraints from sum rules
Directory of Open Access Journals (Sweden)
Mikhail Gorchtein
2015-07-01
Full Text Available We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. We address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν,0. For the dispersive γZ-box correction to the proton's weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributions by a factor of two. The finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.
Calculation of baryon sum rules and SU(4) mass formulae for mesons and baryons
International Nuclear Information System (INIS)
Bongardt, K.
1976-01-01
Light cone coordinates and field-field anticommutators for the free quark model on the light cone are introduced and light cone charges and light cone currents for the free quark model as well as sum rules for the meson and quark states are derived. The derivation of sum rules for the baryons is attempted. It is seen that it is possible formally to derive the same sum rules for the baryons and for the quarks. The baryon sums were derived through the symmetry properties of the baryon fields. Explicit assumptions about the spatial distribution of the three quarks in the baryons were not utilized. The meson-baryon Σ-terms, Zweig's rules in the SU (4) and a number of properties of the M-matrix are discussed. (BJ) [de
Lorentz-Lorenz quenching for the Gamow-Teller sum rule
International Nuclear Information System (INIS)
Delorme, J.; Ericson, M.; Figureau, A.
1984-03-01
We investigate the modification of the Gamow-Teller sum rule brought in by nucleonic excitations. The general trend of the data is well reproduced. The value of the force which mixes nucleonic and nuclear excitations is discussed
General solution of superconvergent sum rules for scattering of I=1 reggeons on baryons
International Nuclear Information System (INIS)
Grigoryan, A.A.; Khachatryan, G.N.
1986-01-01
Superconvergent sum rules for reggeon-particle scattering are applied to scattering of reggeons α i (i=π, ρ, A 2 ) with isospin I=1 on baryons with strangeness S=-1. The saturation scheme of these sum rules is determined on the basis of experimental data. Two series of baryon resonances with arbitrary isospins I and spins J=I+1/2 and J=I-1/2 are predicted. A general solution for vertices of interaction of these resonances with α i is found. Predictions for coupling vertices B α i B'(B, B'=Λ, Σ, Σ * ) agree well with the experiment. It is shown that the condition of sum rules saturation by minimal number of resonances brings to saturation schemes resulting from experimental data. A general solution of sum rules for scattering of α i reggeons on Ξ and Ω hyperons is analyzed
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik
2015-04-01
Background: The linear response of the nucleus to an external field contains unique information about the effective interaction, the correlations governing the behavior of the many-body system, and the properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or the nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. Purpose: To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random-phase approximation (QRPA). Methods: To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse-energy-weighted sum rule. Results: We derive the sum-rule expressions from the contour integration of the complex-energy FAM. We demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA. We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the dielectric theorem for the inverse-energy-weighted sum rule to nuclear density functional theory in cases when the EDF is not based on a Hamiltonian. Conclusions: The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method
Confinement Can Violate Momentum Sum Rule in QCD at High Energy Colliders
Nayak, Gouranga C
2018-01-01
Momentum sum rule in QCD is widely used at high energy colliders. Although the exact form of the confinement potential energy is not known but the confinement potential energy at large distance $r$ can not rise slower than ${\\rm ln}(r)$. In this paper we find that if the confinement potential energy at large distance $r$ rises linearly with $r$ (or faster) then the momentum sum rule in QCD is violated at the high energy colliders.
Sum rules for elements of flavor-mixing matrices based on a non-semisimple symmetry
International Nuclear Information System (INIS)
Sogami, Ikuo S.
2006-01-01
Sum rules for elements of flavor-mixing matrices (FMMs) are derived within a new algebraic theory for flavor physics, in which the FMMs are identified with elements of the Lie group isomorphic to SU(2) x U(1). The resulting sum rules originating from the unique elaborate structure of the algebra of the group are so simple and explicit that their validity can be confirmed by analyzing properly processed experimental data. (author)
What can we learn from sum rules for vertex functions in QCD
International Nuclear Information System (INIS)
Craigie, N.S.; Stern, J.
1982-04-01
We demonstrate that the light cone sum rules for vertex functions based on the operator product expansion and QCD perturbation theory lead to interesting relationships between various non-perturbative parameters associated with hadronic bound states (e.g. vertex couplings and decay constants). We also show that such sum rules provide a valuable means of estimating the matrix elements of the higher spin operators in the meson wave function. (author)
Sum Rules of Charm CP Asymmetries beyond the SU(3)_{F} Limit.
Müller, Sarah; Nierste, Ulrich; Schacht, Stefan
2015-12-18
We find new sum rules between direct CP asymmetries in D meson decays with coefficients that can be determined from a global fit to branching ratio data. Our sum rules eliminate the penguin topologies P and PA, which cannot be determined from branching ratios. In this way, we can make predictions about direct CP asymmetries in the standard model without ad hoc assumptions on the sizes of penguin diagrams. We consistently include first-order SU(3)_{F} breaking in the topological amplitudes extracted from the branching ratios. By confronting our sum rules with future precise data from LHCb and Belle II, one will identify or constrain new-physics contributions to P or PA. The first sum rule correlates the CP asymmetries a_{CP}^{dir} in D^{0}→K^{+}K^{-}, D^{0}→π^{+}π^{-}, and D^{0}→π^{0}π^{0}. We study the region of the a_{CP}^{dir}(D^{0}→π^{+}π^{-})-a_{CP}^{dir}(D^{0}→π^{0}π^{0}) plane allowed by current data and find that our sum rule excludes more than half of the allowed region at 95% C.L. Our second sum rule correlates the direct CP asymmetries in D^{+}→K[over ¯]^{0}K^{+}, D_{s}^{+}→K^{0}π^{+}, and D_{s}^{+}→K^{+}π^{0}.
New QCD sum rules for nucleon axial-vector coupling constants
International Nuclear Information System (INIS)
Lee, F.X.; Leinweber, D.B.; Jin, X.
1997-01-01
Two new sets of QCD sum rules for the nucleon axial-vector coupling constants are derived using the external-field technique and generalized interpolating fields. An in-depth study of the predicative ability of these sum rules is carried out using a Monte Carlo based uncertainty analysis. The results show that the standard implementation of the QCD sum rule method has only marginal predicative power for the nucleon axial-vector coupling constants, as the relative errors are large. The errors range from approximately 50% to 100% compared to the nucleon mass obtained from the same method, which has only a 10%- 25% error. The origin of the large errors is examined. Previous analyses of these coupling constants are based on sum rules that have poor operator product expansion convergence and large continuum contributions. Preferred sum rules are identified and their predictions are obtained. We also investigate the new sum rules with an alternative treatment of the problematic transitions which are not exponentially suppressed in the standard treatment. The alternative treatment provides exponential suppression of their contributions relative to the ground state. Implications for other nucleon current matrix elements are also discussed. copyright 1997 The American Physical Society
Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.
Hou, Yan-Hua; Yu, Zhenhua
2015-10-20
Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.
Slave-particle quantization and sum rules in the t-J model
International Nuclear Information System (INIS)
Le Guillou, J.C.; Ragoucy, E.
1994-12-01
In the framework of constrained systems, the classical Hamiltonian formulation of slave-particle models and their correct quantization are given. The electron-momentum distribution function in the t-J and Hubbard models is then studied in the framework of slave-particle approaches and within the decoupling scheme. It is shown that criticisms which have been addressed in this context coming from a violation of the sum rule for the physical electron are not valid. Due to the correct quantization rules for the slave-particles, the sum rule for the physical electron is indeed obeyed, both exactly and within the decoupling scheme. (author). 15 refs
Sum rules for the spontaneous chiral symmetry breaking parameters of QCD
International Nuclear Information System (INIS)
Craigie, N.S.; Stern, J.
1981-03-01
We discuss in the spirit of the work of Shifman, Vainshtein and Zakharov (SVZ), sum rules involving current-current vacuum correlation functions, whose Wilson expansion starts off with the operators anti qq or (anti qq) 2 , and thus provide information about the chiral symmetry breaking parameters of QCD. We point out that under the type of crude approximations made by SVZ, a value of sub(vac) (250MeV) 3 is obtained from one of these sum rules, in agreement with current expectations. Further we show that a Borel transformed version of the Weinberg sum rule, for VV - AA, current products seem only to make sense for an A 1 mass close to 1.3GeV and it makes little sense with the current algebra mass Msub(A)=anti 2M. We also give an estimate for the chiral symmetry breaking parameters μ 1 6 =2 2 (anti qsub(L) lambda sup(a)γsub(μ)qsub(L))(anti qsub(R) lambdasup(a) γsup(μ)qsub(R)) >sub(vac) entering in the Weinberg sum rules and μ 2 6 =g 2 sub(vac) entering in a new sum rule we propose involving antisymmetric tensor currents J=anti q σsub(μnu) q. (author)
QCD and power corrections to sum rules in deep-inelastic lepton-nucleon scattering
International Nuclear Information System (INIS)
Ravindran, V.; Neerven, W.L. van
2001-01-01
In this paper we study QCD and power corrections to sum rules which show up in deep-inelastic lepton-hadron scattering. Furthermore we will make a distinction between fundamental sum rules which can be derived from quantum field theory and those which are of a phenomenological origin. Using current algebra techniques the fundamental sum rules can be expressed into expectation values of (partially) conserved (axial-)vector currents sandwiched between hadronic states. These expectation values yield the quantum numbers of the corresponding hadron which are determined by the underlying flavour group SU(n) F . In this case one can show that there exist an intimate relation between the appearance of power and QCD corrections. The above features do not hold for phenomenological sum rules, hereafter called non-fundamental. They have no foundation in quantum field theory and they mostly depend on certain assumptions made for the structure functions like super-convergence relations or the parton model. Therefore only the fundamental sum rules provide us with a stringent test of QCD
Lindhard's polarization parameter and atomic sum rules in the local plasma approximation
DEFF Research Database (Denmark)
Cabrera-Trujillo, R.; Apell, P.; Oddershede, J.
2017-01-01
In this work, we analyze the effects of Lindhard polarization parameter, χ, on the sum rule, Sp, within the local plasma approximation (LPA) as well as on the logarithmic sum rule Lp = dSp/dp, in both cases for the system in an initial excited state. We show results for a hydrogenic atom with nuc......In this work, we analyze the effects of Lindhard polarization parameter, χ, on the sum rule, Sp, within the local plasma approximation (LPA) as well as on the logarithmic sum rule Lp = dSp/dp, in both cases for the system in an initial excited state. We show results for a hydrogenic atom...... in terms of a screened charge Z* for the ground state. Our study shows that by increasing χ, the sum rule for p0 it increases, and the value p=0 provides the normalization/closure relation which remains fixed to the number of electrons for the same initial state. When p is fixed...
Flexible spin-orbit torque devices
International Nuclear Information System (INIS)
Lee, OukJae; You, Long; Jang, Jaewon; Subramanian, Vivek; Salahuddin, Sayeef
2015-01-01
We report on state-of-the-art spintronic devices synthesized and fabricated directly on a flexible organic substrate. Large perpendicular magnetic anisotropy was achieved in ultrathin ferromagnetic heterostructures of Pt/Co/MgO sputtered on a non-rigid plastic substrate at room temperature. Subsequently, a full magnetic reversal of the Co was observed by exploiting the spin orbit coupling in Pt that leads to a spin accumulation at the Pt/Co interface when an in-plane current is applied. Quasi-static measurements show the potential for operating these devices at nano-second speeds. Importantly, the behavior of the devices remained unchanged under varying bending conditions (up to a bending radius of ≈ ±20–30 mm). Furthermore, the devices showed robust operation even after application of 10 6 successive pulses, which is likely sufficient for many flexible applications. Thus, this work demonstrates the potential for integrating high performance spintronic devices on flexible substrates, which could lead to many applications ranging from flexible non-volatile magnetic memory to local magnetic resonance imaging
Flexible spin-orbit torque devices
Energy Technology Data Exchange (ETDEWEB)
Lee, OukJae; You, Long; Jang, Jaewon; Subramanian, Vivek [Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720 (United States); Salahuddin, Sayeef [Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2015-12-21
We report on state-of-the-art spintronic devices synthesized and fabricated directly on a flexible organic substrate. Large perpendicular magnetic anisotropy was achieved in ultrathin ferromagnetic heterostructures of Pt/Co/MgO sputtered on a non-rigid plastic substrate at room temperature. Subsequently, a full magnetic reversal of the Co was observed by exploiting the spin orbit coupling in Pt that leads to a spin accumulation at the Pt/Co interface when an in-plane current is applied. Quasi-static measurements show the potential for operating these devices at nano-second speeds. Importantly, the behavior of the devices remained unchanged under varying bending conditions (up to a bending radius of ≈ ±20–30 mm). Furthermore, the devices showed robust operation even after application of 10{sup 6} successive pulses, which is likely sufficient for many flexible applications. Thus, this work demonstrates the potential for integrating high performance spintronic devices on flexible substrates, which could lead to many applications ranging from flexible non-volatile magnetic memory to local magnetic resonance imaging.
Strong electron correlation in photoionization of spin-orbit doublets
International Nuclear Information System (INIS)
Amusia, M.Ya.; Chernysheva, L.V.; Manson, S.T.; Msezane, A.M.; Radojevic, V.
2002-01-01
A new and explicitly many-body aspect of the 'leveraging' of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, it is demonstrated via a modified version of the spin-polarized random phase approximation with exchange, that a recently observed unexplained structure in the Xe 3d 5/2 photoionization cross section [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2000)] is entirely due to this effect. Similar features are predicted for Cs 3d 5/2 and Ba 3d 5/2
Spin-orbit mediated control of spin qubits
DEFF Research Database (Denmark)
Flindt, Christian; Sørensen, A.S; Flensberg, Karsten
2006-01-01
We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....
Sum rules, asymptotic behaviour and (multi)baryon states in the Skyrme model
International Nuclear Information System (INIS)
Mignaco, J.A.; Wulck, S.
1990-01-01
We obtain sum roles that should be satisfied by the solutions of the Euler-Lagrange equation for the chiral angle in the Skyrme model in the hedgehog representation. The sum rules allow to determine the existence of solutions with integer baryon number for well determined values of a relevant dimensionless parameter Φ only. For all other values, there are no solutions with integer baryon number, in particular for the pure non-linear sigma model. (author)
O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states
International Nuclear Information System (INIS)
Daboul, Jamil; Mizrahi, Salomon S
2005-01-01
Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra
Charmonium spectrum at finite temperature from a Bayesian analysis of QCD sum rules
Directory of Open Access Journals (Sweden)
Morita Kenji
2012-02-01
Full Text Available Making use of a recently developed method of analyzing QCD sum rules, we investigate charmonium spectral functions at finite temperature. This method employs the Maximum Entropy Method, which makes it possible to directly obtain the spectral function from the sum rules, without having to introduce any strong assumption about its functional form. Finite temperature effects are incorporated into the sum rules by the change of the various gluonic condensates that appear in the operator product expansion. These changes depend on the energy density and pressure at finite temperature, which are extracted from lattice QCD. As a result, J/ψ and ηc dissolve into the continuum already at temperatures around 1.0 ~ 1.1 Tc.
Sum rules for four-spinon dynamic structure factor in XXX model
International Nuclear Information System (INIS)
Si Lakhal, B.; Abada, A.
2005-01-01
In the context of the antiferromagnetic spin 12 Heisenberg quantum spin chain (XXX model), we estimate the contribution of the exact four-spinon dynamic structure factor S 4 by calculating a number of sum rules the total dynamic structure factor S is known to satisfy exactly. These sum rules are: the static susceptibility, the integrated intensity, the total integrated intensity, the first frequency moment and the nearest-neighbor correlation function. We find that the contribution of S 4 is between 1% and 2.5%, depending on the sum rule, whereas the contribution of the exact two-spinon dynamic structure factor S 2 is between 70% and 75%. The calculations are numerical and Monte Carlo based. Good statistics are obtained
The calculation of the quark distribution amplitudes of decuplet baryons by means of QCD sum rules
International Nuclear Information System (INIS)
Bonekamp, J.
1994-11-01
Using the QCD sum rule technique, we derive the quark distribution amplitudes of the decuplet memebers Δ(1232), Σ * (1385), Ξ * (1530) and Ω(1672). Generalizing the treatment of the Bethe-Salpeter amplitude, we can distinguish spin- and orbital- angular momentum parts of the quark distributions and establish separate sum rules for the contributions. Projecting out the angular momentum 1/2 contributions, we obtain sum rules which are saturated by the lowest resonance in the given iso spin channel, thus resolving deficiencies of the standard approach. We find that for helicity 1/2 the spin part of the quark distributions is asymmetric. Also the orbital angular momentum contributions are extremely asymmetric and tend to decrease the asymmetry of the spin part. As a result of SU(3) symmetry breaking, configuration mixing occurs and the decuplet baryons Σ * and Ξ * receive octet contributions. The antisymmetric part of these octet contributions is calculated. (orig.)
Sum rule approach to the nuclear response in the isovector spin channel
International Nuclear Information System (INIS)
Alberico, W.M.; Ericson, M.; Molinari, A.
1982-01-01
We study the global features of the response of infinite nuclear matter in the spin-isospin channel through the energy weighted sum rules S 1 and Ssub(-) 1 . In particular we compare the outcome of the ring approximation with the exact RPA evaluation of the sum rules. We also investigate the influence of the collective character of the response, induced by the particle hole force for a longitudinal and transverse spin couplings. We show that S 1 is insensitive to the collectivity of the response, as long as the Δ degree of freedom is ignored. The inverse energy weighted sum rule on the other hand, which is linked to the paramagnetic susceptibility, always reflects the hardening or softening of the nuclear response, due to the repulsive or attractive character of the p-h force. This quantity is well suited to the comparison with the experiments, which we perform for 12 C and 56 Fe. (orig.)
Experimental check of the GDH sum rule at MAMI and ELSA
International Nuclear Information System (INIS)
Krimmer, J.
2002-01-01
The experimental check of the GDH sum rule is being performed at the tagged photon facilities of the electron accelerators MAMI (Mainz) and ELSA (Bonn), using circularly polarized photons impinging on a longitudinally polarized proton target, together with detector systems covering almost the whole solid angle range. Results from the MAMI experiment for the double polarized total photoabsorption cross section in the low energy region (200 MeV < Eγ < 800 MeV) will be shown together with their contribution to the GDH sum rule. Furthermore first results from the ELSA experiment in the higher energy region (680 MeV < Eγ < 1900 MeV) will be presented
The heat current density correlation function: sum rules and thermal conductivity
International Nuclear Information System (INIS)
Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S
2006-01-01
Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed
The heat current density correlation function: sum rules and thermal conductivity
Energy Technology Data Exchange (ETDEWEB)
Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)
2006-02-01
Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.
Bulk stress auto-correlation function in simple liquids-sum rules
International Nuclear Information System (INIS)
Tankeshwar, K.; Bhandari, R.; Pathak, K.N.
1990-10-01
Expressions for the zeroth, second and fourth frequency sum rules of the bulk stress auto correlation function have been derived. The exact expressions involve static correlation function up to four particles. Because of the non availability of any information about static quadruplet correlation function we use a low order decoupling approximation for this. In this work, we have obtained, separately, the sum rules for the different mechanism of momentum transfer in the fluids. The results are expected to be useful in the study of bulk viscosity of the fluids. (author). 9 refs
QCD effects to Bjorken unpolarized sum rule for νN deep-inelastic scattering
International Nuclear Information System (INIS)
Alekhin, S I; Kataev, A L
2003-01-01
The possibility of the first measurement of Bjorken unpolarized sum rule for F 1 structure function of νN deep-inelastic scattering at neutrino factories is commented. The brief summary of various theoretical contributions to this sum rule is given. Using the next-to-leading set of parton distributions functions, we simulate the expected Q 2 -behaviour and emphasize that its measurement can allow us to determine the value of the QCD strong coupling constant α s with reasonable theoretical uncertainty, dominated by the ambiguity in the existing estimates of the twist-4 non-perturbative 1/Q 2 -effect
Sum Rules in the CFL Phase of QCD at finite density
Manuel, C; Manuel, Cristina; Tytgat, Michel H.G.
2001-01-01
We study the asymmetry between the vector current and axial-vector current correlators in the colour-flavour locking (CFL) phase of QCD at finite density. Using Weinberg's sum rules, we compute the decay constant $f_\\pi$ of the Goldstone modes and find agreement with previous derivations. Using Das's sum rule, we also estimate the contribution of electromagnetic interactions to the mass of the charged modes. Finally, we comment on low temperature corrections to the effective field theory describing the Goldstone bosons.
Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule
International Nuclear Information System (INIS)
Cloet, I.C.; Horsley, R.; Londergan, J.T.
2012-04-01
We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N f =2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.
Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Adelaide Univ, SA (Australia). CSSM, School of Chemistry and Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Londergan, J.T. [Indiana Univ., Bloomington, IN (US). Dept. of Physics and Center for Exploration of Energy and Matter] (and others)
2012-04-15
We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N{sub f}=2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.
The Adler sum rule and quark parton distribution functions in nucleon
International Nuclear Information System (INIS)
Niegawa, Akira; Sasaki, Ken.
1975-01-01
The behaviour of the quark parton distribution functions is discussed through the phenomenological analysis of the deep inelastic e-p and e-n data under constraint of the saturation of the Adler sum rule. It is concluded that in the region 0 0 where the Regge parametrization can be applied, anti u(x) is equal to anti d(x), and both behave as const/x, (x 0 will be 0.04--0.05); for x 0 x 0 is given. The rate of convergence of the Adler sum rule is also discussed. (auth.)
Electromagnetic form factors of the ρ meson in light cone QCD sum rules
International Nuclear Information System (INIS)
Aliev, T.M.; Savci, M.
2004-01-01
We investigate the electromagnetic form factors of the ρ meson in light cone QCD sum rules. We find that the ratio of the magnetic and charge form factors is larger than 2 at all values of Q 2 (Q 2 ≥0.5 GeV 2 ). The values of the individual form factors at fixed values of Q 2 predicted by the light cone QCD sum rules are quite different compared to the results of other approaches. These results can be checked in the future, when more precise data on ρ meson form factors is available
Light Cone Sum Rules for gamma*N ->Delta Transition Form Factors
Energy Technology Data Exchange (ETDEWEB)
V.M. Braun; A. Lenz; G. Peters; A. Radyushkin
2006-02-01
A theoretical framework is suggested for the calculation of {gamma}* N {yields} {Delta} transition form factors using the light-cone sum rule approach. Leading-order sum rules are derived and compared with the existing experimental data. We find that the transition form factors in a several GeV region are dominated by the ''soft'' contributions that can be thought of as overlap integrals of the valence components of the hadron wave functions. The ''minus'' components of the quark fields contribute significantly to the result, which can be reinterpreted as large contributions of the quark orbital angular momentum.
Spin-orbit evolution of Mercury revisited
Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael
2014-10-01
Although it is accepted that the significant eccentricity of Mercury (0.206) favours entrapment into the 3:2 spin-orbit resonance, open are the questions of how and when the capture took place. A recent work by Makarov (Makarov, V.V. [2012]. Astrophys. J., 752, 73) has proven that trapping into this state is certain for eccentricities larger than 0.2, provided we use a realistic tidal model based on the Darwin-Kaula expansion of the tidal torque. While in Ibid. a Mercury-like planet had its eccentricity fixed, we take into account its evolution. To that end, a family of possible histories of the eccentricity is generated, based on synthetic time evolution consistent with the expected statistics of the distribution of eccentricity. We employ a model of tidal friction, which takes into account both the rheology and self-gravitation of the planet. As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL) models, the physics-based tidal model changes dramatically the statistics of the possible final spin states. First, we discover that after only one encounter with the spin-orbit 3:2 resonance this resonance becomes the most probable end-state. Second, if a capture into this (or any other) resonance takes place, the capture becomes final, several crossings of the same state being forbidden by our model. Third, within our model the trapping of Mercury happens much faster than previously believed: for most histories, 10-20 Myr are sufficient. Fourth, even a weak laminar friction between the solid mantle and a molten core would most likely result in a capture in the 2:1 or even higher resonance, which is confirmed both semi-analytically and by limited numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant time lag model is employed. The swift capture justifies our treatment of Mercury as a homogeneous, unstratified body whose liquid core had not
Spin-orbit interaction in multiple quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Spin-orbit interaction in multiple quantum wells
International Nuclear Information System (INIS)
Hao, Ya-Fei
2015-01-01
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices
Spin-orbit and spin-lattice coupling
International Nuclear Information System (INIS)
Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu
2014-01-01
We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)
Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings.
Rybkin, Artem G; Rybkina, Anna A; Otrokov, Mikhail M; Vilkov, Oleg Yu; Klimovskikh, Ilya I; Petukhov, Anatoly E; Filianina, Maria V; Voroshnin, Vladimir Yu; Rusinov, Igor P; Ernst, Arthur; Arnau, Andrés; Chulkov, Evgueni V; Shikin, Alexander M
2018-03-14
A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.
Nuclear spin-orbit splitting from an intermediate Δ excitation
International Nuclear Information System (INIS)
Ohta, K.; Terasawa, T.; Tohyama, M.
1980-01-01
The strength of the single particle spin-orbit potential is calculated from the two pion exchange box diagrams involving an intermediate Δ(1232) resonance excitation by taking account of the exclusion principle for the intermediate nucleon states. The effect of the rho meson is also considered. The predicted strength is found to account for a substantial part of the empirical spin-orbit splittings
Spin-Orbit Coupled Bose-Einstein Condensates
2016-11-03
21. "Many-body physics of spin-orbit-coupled quantum gases ," Invited talk at the March Meeting 2014 in Denver, Colorado (March, 2014) 22... properties of the fundamentally new class of coherent states of quantum matter that had been predicted by the PI and subsequently experimentally...Report Title This ARO research proposal entitled "SPIN-ORBIT COUPLED BOSE-EINSTEIN CONDENSATES" (SOBECs) explored properties of the fundamentally new
Competition of multiplet and spin-orbit splitting in open-shells
Energy Technology Data Exchange (ETDEWEB)
Zhang, Qian; Koch, Erik [Institute for Advanced Simulation, Forschungszentrum Juelich (Germany)
2016-07-01
To study the trends in the spectra of open-shells across the periodic table, we perform density functional calculations for atoms and ions. We collect the Slater-Condon and spin-orbit parameters from the resulting self-consistent radial wave functions and potentials. To make these easily accessible, we provide a simple least squares fitting formula in the spirit of Slater's rules. Given these parameters we calculate the many-body spectra in LS-, intermediate-, and jj-coupling. To assess the relative importance of Coulomb and spin-orbit interactions, we estimate the width of the spectra by calculating the eigen-energy variance of the corresponding Hamiltonian using a simple formula that does not require diagonalizing a complicated many-body Hamiltonian.
Angular dependence of spin-orbit spin-transfer torques
Lee, Ki-Seung
2015-04-06
In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.
Vortices in spin-orbit-coupled Bose-Einstein condensates
International Nuclear Information System (INIS)
Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.
2011-01-01
Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.
Angular dependence of spin-orbit spin-transfer torques
Lee, Ki-Seung; Go, Dongwook; Manchon, Aurelien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin
2015-01-01
In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.
Tracing back resonances to families of Regge trajectories. New finite energy sum rules
International Nuclear Information System (INIS)
Mandelbrojt, Jacques.
1975-04-01
An amplitude is supposed to be expressed for large enough energies as a sum of contributions of Regge poles. Calling family of trajectories the set of trajectories which differ by integers from one of them, a correspondance, such that the energy and width of a given resonance depend on only family of trajectories, is established between resonances of the amplitude and families of trajectories. The contribution to the amplitude of each family of trajectories is shown to satisfy the same finite energy sum rules as does the amplitude itself. In these sum rules the resonance approximation can be made where the only resonances that will appear are those which are in correspondence with the family [fr
QCD sum rules in medium and the Okamoto-Nolen-Schiffer anomaly
International Nuclear Information System (INIS)
Hatsuda, T.; Hogaasen, H.; Prakash, M.
1991-01-01
The QCD sum-rule approach for a nuclear medium is developed. The medium dependence of the neutron-proton mass difference calculated from this approach gives effects in nuclei which have direct relevance for the resolution of the Okamoto-Nolen-Schiffer anomaly
The Thomas-Reiche-Kuhn sum rule and the toroid moments
International Nuclear Information System (INIS)
Dubovik, V.M.
1975-01-01
By example of the Thomas-Reiche-Kuhn sum rule a procedure is given for calculating the retardation effects in any E-transition strengths via the toroid moments. The investigation has been performed at the Laboratory of Theoretical Physics, JINR
Calculation of excited vector meson electron widths using QCD sum rules
International Nuclear Information System (INIS)
Geshkenbein, B.V.
1984-01-01
The sum rules are suggested which allow one to calculate the electron widths of excited vector mesons of the PSI, UPSILON, rho meson family assuming the values of their masses to be known. The calculated values of the electron widths agree with experiment
Iso-vector form factors of the delta and nucleon in QCD sum rules
International Nuclear Information System (INIS)
Ozpineci, A.
2012-01-01
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector Δ→N transition form factor calculations in QCD Sum Rules are presented.
SUM-RULES FOR MAGNETIC DICHROISM IN RARE-EARTH 4F-PHOTOEMISSION
THOLE, BT; VANDERLAAN, G
1993-01-01
We present new sum rules for magnetic dichroism in spin polarized photoemission from partly filled shells which give the expectation values of the orbital and spin magnetic moments and their correlations in the ground state. We apply this to the 4f photoemission of rare earths, where the
In-medium QCD sum rules for {omega} meson, nucleon and D meson
Energy Technology Data Exchange (ETDEWEB)
Thomas, Ronny
2008-07-01
The modifications of hadronic properties caused by an ambient nuclear medium are investigated within the scope of QCD sum rules. This is exemplified for the cases of the {omega} meson, the nucleon and the D meson. By virtue of the sum rules, integrated spectral densities of these hadrons are linked to properties of the QCD ground state, quantified in condensates. For the cases of the {omega} meson and the nucleon it is discussed how the sum rules allow a restriction of the parameter range of poorly known four-quark condensates by a comparison of experimental and theoretical knowledge. The catalog of independent four-quark condensates is covered and relations among these condensates are revealed. The behavior of four-quark condensates under the chiral symmetry group and the relation to order parameters of spontaneous chiral symmetry breaking are outlined. In this respect, also the QCD condensates appearing in differences of sum rules of chiral partners are investigated. Finally, the effects of an ambient nuclear medium on the D meson are discussed and relevant condensates are identified. (orig.)
Finite energy sum rules and instantons in the instanton liquid model
International Nuclear Information System (INIS)
Elias, V.; Fang Shi; Steele, T.G.
1998-01-01
We obtain the imaginary part of the direct single-instanton contribution to the pseudoscalar correlator, as defined by the appropriate dispersion relation, in order to derive an explicit integral representation for the instanton contribution to finite energy sum rules in the instanton liquid model. (author)
The nucleon axial isoscalar coupling constant and the Bjorken sum rule
International Nuclear Information System (INIS)
Belyaev, V.M.; Ioffe, B.L.; Kogan, Ya.I.
1984-01-01
The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model
On the conductance sum rule for the hierarchical edge states of the fractional quantum hall effect
International Nuclear Information System (INIS)
Ma Zhongshui; Chen Yixin; Su Zhaobin.
1993-09-01
The conductance sum rule for the hierarchical edge channel currents of a Fractional Quantum Hall Effect state is derived analytically within the Haldane-Halperin hierarchy scheme. We provide also an intuitive interpretation for the hierarchical drift velocities of the edge excitations. (author). 12 refs
The influence of gluonic operators on QCD sum rules for baryons
International Nuclear Information System (INIS)
Schall, D.
1982-01-01
In this thesis the operator product expansion (OPE) is extended up to operators of dimension d=10. The coefficient functions are calculated only up to order αsub(s). Thereby the performation of the OPE by means of the Schwinger operator formalism is extensively described. In the final section the sum rules for nucleon and delta are discussed. (orig./HSI) [de
Analysis of QCD sum rule based on the maximum entropy method
International Nuclear Information System (INIS)
Gubler, Philipp
2012-01-01
QCD sum rule was developed about thirty years ago and has been used up to the present to calculate various physical quantities like hadrons. It has been, however, needed to assume 'pole + continuum' for the spectral function in the conventional analyses. Application of this method therefore came across with difficulties when the above assumption is not satisfied. In order to avoid this difficulty, analysis to make use of the maximum entropy method (MEM) has been developed by the present author. It is reported here how far this new method can be successfully applied. In the first section, the general feature of the QCD sum rule is introduced. In section 2, it is discussed why the analysis by the QCD sum rule based on the MEM is so effective. In section 3, the MEM analysis process is described, and in the subsection 3.1 likelihood function and prior probability are considered then in subsection 3.2 numerical analyses are picked up. In section 4, some cases of applications are described starting with ρ mesons, then charmoniums in the finite temperature and finally recent developments. Some figures of the spectral functions are shown. In section 5, summing up of the present analysis method and future view are given. (S. Funahashi)
Sum rule approach to the study of statistical decay properties of nuclear giant resonances
International Nuclear Information System (INIS)
Adhikari, S.K.; Hussein, M.S.
1987-03-01
Corrections to the well-known statistical sum rule that relates the summed transmission coefficients on the one hand and 2πΓ C.N. .ρ C.N. On the other, in the context of the statistical decay properties of nuclear giant resonances, are discussed. These corrections arise both from pre-equilibrium processes as well as from the giant resonance itself. It is shown that the compound nucleus average width is reduced as a result of these corrections. (Author) [pt
Current-induced torques and interfacial spin-orbit coupling
Haney, Paul M.; Lee, Hyun-Woo; Lee, Kyung-Jin; Manchon, Aurelien; Stiles, M. D.
2013-01-01
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.
Current-induced torques and interfacial spin-orbit coupling
Haney, Paul M.
2013-12-19
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.
Spin-orbit beams for optical chirality measurement
Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.
2018-01-01
Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.
Current-induced Rashba spin orbit torque in silicene
Energy Technology Data Exchange (ETDEWEB)
Chen, Ji, E-mail: muze7777@hdu.edu.cn [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Peng, Yingzi [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhou, Jie [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)
2017-06-15
Highlights: • The spin dynamics of a ferromagnetic layer coupled to a silicene is investigated. • The Rashba spin orbit torque is obtained and the well-known LLG equation is modified. • The explicit forms of spin orbit torques in Domain Wall and vortex is also obtained. - Abstract: We study theoretically the spin torque of a ferromagnetic layer coupled to a silicene in the presence of the intrinsic Rashba spin orbit coupling (RSOC) effect. By using gauge field method, we find that under the applied current, the RSOC can induce an effective field which will result in the spin precession of conduction electron without applying any magnetic field. We also derive the spin torques due to the RSOC, which generalize the Landau-Lifshitz-Gilbert (LLG) equation. The spin torques are related to the applied current, the carrier density and Rashba strength of the system.
Q2 evolution of generalized Baldin sum rule for the proton
International Nuclear Information System (INIS)
Liang, Y.; Christy, M. E.; Ent, R.; Keppel, C. E.
2006-01-01
The generalized Baldin sum rule for virtual photon scattering, the unpolarized analogy of the generalized Gerasimov-Drell-Hearn integral provides an important way to investigate the transition between perturbative QCD and hadronic descriptions of nucleon structure. This sum rule requires integration of the nucleon structure function F 1 , which until recently had not been measured at low Q 2 and large x, i.e., in the nucleon resonance region. This work uses new data from inclusive electron-proton scattering in the resonance region obtained at Jefferson Lab, in combination with SLAC deep inelastic scattering data, to present first precision measurements of the generalized Baldin integral for the proton in the Q 2 range of 0.3 to 4.0 GeV 2
Predictions for the Dirac C P -violating phase from sum rules
Delgadillo, Luis A.; Everett, Lisa L.; Ramos, Raymundo; Stuart, Alexander J.
2018-05-01
We explore the implications of recent results relating the Dirac C P -violating phase to predicted and measured leptonic mixing angles within a standard set of theoretical scenarios in which charged lepton corrections are responsible for generating a nonzero value of the reactor mixing angle. We employ a full set of leptonic sum rules as required by the unitarity of the lepton mixing matrix, which can be reduced to predictions for the observable mixing angles and the Dirac C P -violating phase in terms of model parameters. These sum rules are investigated within a given set of theoretical scenarios for the neutrino sector diagonalization matrix for several known classes of charged lepton corrections. The results provide explicit maps of the allowed model parameter space within each given scenario and assumed form of charged lepton perturbations.
Experimental check of the Gerasimov-Drell-Hearn sum rule for H1
International Nuclear Information System (INIS)
Dutz, H.; Drachenfels, W. von; Frommberger, F.; Hillert, W.; Klein, F.; Menze, D.; Rohlof, C.; Schoch, B.; Helbing, K.; Speckner, T.; Zeitler, G.; Anton, G.; Bock, A.; Godo, M.; Kiel, B.; Michel, T.; Naumann, J.; Krimmer, J.; Grabmayr, P.; Sauer, M.
2004-01-01
For the first time we checked the fundamental Gerasimov-Drell-Hearn (GDH) sum rule for the proton experimentally in the photon energy range from 0.2-2.9 GeV with the tagged photon facilities at MAMI (Mainz) and ELSA (Bonn). New data of the doubly polarized total cross section difference are presented in the energy range from 1.6 to 2.9 GeV. The contribution to the GDH integral from 0.2-2.9 GeV yields [254±5(stat)±12(syst)] μb with negative contributions in the Regge regime at photon energies above 2.1 GeV. This trend supports the validity of the GDH sum rule
Quark-number susceptibility, thermodynamic sum rule, and the hard thermal loop approximation
International Nuclear Information System (INIS)
Chakraborty, Purnendu; Mustafa, Munshi G.; Thoma, Markus H.
2003-01-01
The quark number susceptibility, associated with the conserved quark number density, is closely related to the baryon and charge fluctuations in the quark-gluon plasma, which might serve as signature for the quark-gluon plasma formation in ultrarelativistic heavy-ion collisions. In addition to QCD lattice simulations, the quark number susceptibility has been calculated recently using a resummed perturbation theory (hard thermal loop resummation). In the present work we show, based on general arguments, that the computation of this quantity neglecting hard thermal loop vertices contradicts the Ward identity and violates the thermodynamic sum rule following from quark number conservation. We further show that the hard thermal loop perturbation theory is consistent with the thermodynamic sum rule
QCD light-cone sum rule estimate of charming penguin contributions in B→ππ
International Nuclear Information System (INIS)
Khodjamirian, A.; Mannel, Th.; Melic, B.
2003-01-01
Employing the QCD light-cone sum rule approach we calculate the B→ππ hadronic matrix element of the current-current operator with c quarks in the penguin topology (''charming penguin''). The dominant contribution to the sum rule is due to the c-quark loop at short distances and is of O(α s ) with respect to the factorizable B→ππ amplitude. The effects of soft gluons are suppressed at least by O(α s m b -2 ). Our result indicates that sizable nonperturbative effects generated by charming penguins at finite m b are absent. The same is valid for the penguin contractions of the current-current operators with light quarks
QCD light-cone sum rule estimate of charming penguin contributions in B→ππ
International Nuclear Information System (INIS)
Khodjamirian, A.; Mannel, Th.; Melic, B.
2003-01-01
Employing the QCD light-cone sum rule approach we calculate the B→ππ hadronic matrix element of the current-current operator with c quarks in the penguin topology ('charming penguin'). The dominant contribution to the sum rule is due to the c-quark loop at short distances and is of O(α s ) with respect to the factorizable B→ππ amplitude. The effects of soft gluons are suppressed at least by O(α s m b -2 ). Our result indicates that sizable nonperturbative effects generated by charming penguins at finite m b are absent. The same is valid for the penguin contractions of the current-current operators with light quarks
Sum-rule analysis of long-wavelength excitations in electron liquids
International Nuclear Information System (INIS)
Ichimaru, Setsuo; Totsuji, Hiroo; Tange, Toshio; Pines, D.
1975-01-01
The properties of the plasma oscillations, the single-particle excitations and the collisional excitations in the classical one-component plasma are investigated in the long-wave-length domain with the aid of moment sum rules. The frequency moments of the dynamic form factor are calculated up to that term which involves the ternary correlation function. The dispersion in the plasma-wave frequency and the strengths of the single-particle and collisional excitations are computed over the thermodynamically stable domain of the plasma parameter, epsilon<=10. It is emphasized that inclusion of the collisional excitations plays a vital part in satisfying various moment-sum rules and in securing agreement with known boundary conditions such as the Vlasov description and molecular-dynamics computations. (auth.)
The Gauge-Invariant Angular Momentum Sum-Rule for the Proton
Shore, G.M.
2000-01-01
We give a gauge-invariant treatment of the angular momentum sum-rule for the proton in terms of matrix elements of three gauge-invariant, local composite operators. These matrix elements are decomposed into three independent form factors, one of which is the flavour singlet axial charge. We further show that the axial charge cancels out of the sum-rule, so that it is unaffacted by the axial anomaly. The three form factors are then related to the four proton spin components in the parton model, namely quark and gluon intrinsic spin and orbital angular momentum. The renormalisation of the three operators is determined to one loop from which the scale dependence and mixing of the spin components is derived under the constraint that the quark spin be scale-independent. We also show how the three form factors can be measured in experiments.
Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules
International Nuclear Information System (INIS)
Wang, Zhi-Gang
2012-01-01
In this article, we study the doubly heavy baryon states Ξ cc , Ω cc , Ξ bb and Ω bb in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔM Ξ cc =-1.11simGeV, ΔM Ω cc =-0.33∝GeV, ΔM Ξ bb =-3.37∝GeV and ΔM Ω bb =-1.05∝GeV can be confronted with experimental data in the future. (orig.)
Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential
Modarres, M.; Moeini, H.; Moshfegh, H. R.
The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.
International Nuclear Information System (INIS)
Koretune, Susumu
1993-01-01
A sum rule which relates the deep-inelastic polarized structure function g 1 p (x,Q 2 ) to the cross section of photoproduction, (σ 3/2 -σ 1/2 ), is derived. This rule makes it possible to compare the integral of g 1 p (x,Q 2 ) with the Drell-Hearn-Gerasimov sum rule without worrying about contributions from higher twist terms. Further this sum rule shows that there may exist a dynamical mechanism which relates the low energy region to the high energy one. It is conjectured that the spontaneous chiral symmetry breaking of the vacuum is the origin of this mechanism. (author)
The off shell ρ endash ω mixing in the QCD sum rules
International Nuclear Information System (INIS)
Hatsuda, T.
1993-01-01
The q 2 dependence of the ρ - ω mixing amplitude is analyzed with the use of the QCD sum rules and the dispersion relation. In going off shell the mixing decreases, changes sign at q 2 ≅ 0.4 m ρ 2 > 0, and is negative in the space-like region. Implications of this result to the isospin breaking part of the nuclear force are discussed
Energy Technology Data Exchange (ETDEWEB)
Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy
1978-09-25
A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.
Adler-type sum rule, charge symmetry and neutral current in general multi-triplet model
International Nuclear Information System (INIS)
Katuya, Mituaki; Baba, Yoshimitsu; Fujii, Kanji
1975-01-01
We derive Adler-type sum rule extended to general multi-triplet model. Paying attention to roles of the colour degree of freedom, we discuss the charge symmetry property of the weak charged current and the structure functions for ν(ν - )+N→l(l - )+X, and also the structure of the neutral current. A comment is given on implications in our theory of Koike and Konuma's result on the neutral hadronic current. (auth.)
Determination of baryon and baryonic resonance masses from QCD sum rules. Strange baryons
International Nuclear Information System (INIS)
Belyaev, V.M.; Ioffe, B.L.
1982-01-01
The mass differences in baryonic octet Jsup(P)=1/2sup(+), decuplet Jsup(P)=3/2sup(+) and in octet Jsup(P)=3/2sup(-) are calculated basing on the QCD sum rules. The mass differences are expressed through two QCD parameters: the strange current qUark mass and the value of the quark condensate. At the properly chosen values of these parameters all of the mass differences are in a good agreement with experiment
Energy and Regge residues in quantum-mechanical ''QCD'' sum rules
International Nuclear Information System (INIS)
Durand, B.; Durand, L.
1986-01-01
It was shown recently by Fishbane, Kaus, and Gasiorowicz that the residues at the poles of quantum-mechanical two-point functions for arbitrary angular momenta l have an incorrect l dependence when calculated by the sum-rule method used for the analogous problem in QCD. Knowledge of the residues is of interest since they are directly related to particle couplings and decay widths. We develop reliable expressions for the energy and Regge residues using semiclassical methods
Analysis of the scalar doubly charmed hexaquark state with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-09-15
In this article, we study the scalar-diquark-scalar-diquark-scalar-diquark type hexaquark state with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 16. We obtain a lowest hexaquark mass of 6.60{sup +0.12}{sub -0.09} GeV, which can be confronted with the experimental data in the future. (orig.)
Leptonic decay constants of heavy quarkonia in effective QCD sum rules
International Nuclear Information System (INIS)
Kiselev, V.V.
1992-01-01
The QCD sum rule scheme, which allows one effectively to take into account the heavy quarkonium peculiarities such as nonrelativistic motion and large mass values of the quarks is considered. The phenomenological scaling law is derived for the leptonic constants with the use of the heavy quarkonium mass spectra. The law describes the data on the values of f φ , f ψ and fγ rather good and predicts f B C . 12 refs.; 2 tabs
Scaling properties of S-wave level density for heavy quarkonium from QCD sum rules
International Nuclear Information System (INIS)
Kiselev, V.V.
1994-01-01
In the framework of a specific scheme of the QCD sum rules for S-wave of the heavy quarkonium one derives an expression, relating the energetic density of quarkonium states and universal characteristics in the heavy quarkonium physics, such as the difference between the masses of a heavy quark Q and meson and the number of heavy quarkonium levels below the threshold decay. 20 refs
On the twist-2 contributions to polarized structure functions and new sum rules
International Nuclear Information System (INIS)
Bluemlein, J.; Kochelev, N.
1996-03-01
The twist-2 contributions to the polarized structure functions in deep inelastic lepton-hadron scattering are calculated including the exchange of weak bosons and using both the operator product expansion and the covariant parton model. A new relation between two structure functions leading to a sequence of new sum rules is found. The light quark mass corrections to the structure functions are derived in lowest order QCD. (orig.)
gsub(ωrhoπ) coupling constant from QCD sum rules
International Nuclear Information System (INIS)
Eletsky, V.L.; Ioffe, B.L.; Kogan, Ya.I.
1982-01-01
QCD sum rules for the vertex function of two vector and one axial vector currents are used to calculate the gsub(ωrhoπ) coupling constant (where gsub(ωrhoπ) is a transition coupling constant for ω → rhoπ process). The obtained value, gsub(ωrhoπ) approximately 17 GeV -1 is in a good agreement with experimental data
Calculation of electromagnetic rhoπ formfactor from QCD sum rules
International Nuclear Information System (INIS)
Eletskij, V.L.; Kogan, Ya.I.
1982-01-01
Electromagnetic rhoπγ form factor at intermediate momentum transfer, 0.7 GeV 2 2 2 , is calculated using QCD sum rules for the vertex function of two vector and one axial-vector currents. In this region the results obtained are consistent within 25% accuracy with the vector meson dominance model predictions and can be regarded as its theoretical ustification
Subtractions in the Adler sum rule and violation of charge symmetry
International Nuclear Information System (INIS)
Dominguez, C.A.; Moreno, H.; Zepeda, A.
1976-01-01
The consequences of a once-subtracted dispersion relation in the derivation of the Adler sum rule are investigated. It is shown that one can expect a breakdown of charge symmetry, of the isotriplet-current hypothesis, and of scaling of the structure functions. These breakdowns are related to the possible presence of a nonzero subtraction function at asymptotic energies and arbitrary q 2 . We also comment about second-class currents and PCAC (partial conservation of axial-vector current) relations
Dispersion theory and sum rules for the non-minimum phase problem in optical spectroscopy
International Nuclear Information System (INIS)
Peiponen, Kai-Erik
2009-01-01
Dispersion relations and sum rules for integer powers of an optical response function are given in the case of the non-minimum phase problem. These relations were obtained using the concept of the Hilbert transform and Blaschke product. The theory presented in this paper is useful both in basic and applied studies of non-minimum phase functions in optics, and also other fields of physics such as high energy physics.
Frustrated Kinetic Energy, the Optical Sum Rule, and the Mechanism of Superconductivity
International Nuclear Information System (INIS)
Chakravarty, S.; Kee, H.; Abrahams, E.
1999-01-01
The basis of the interlayer tunneling theory of high-temperature superconductivity is that the electronic kinetic energy in a direction perpendicular to the copper-oxygen planes is a substantial fraction of the condensation energy. This issue is critically examined, and it is argued from a rigorous conductivity sum rule that the consequences of this theory are consistent with recent optical and penetration depth measurements. copyright 1999 The American Physical Society
Uses of dipole oscillator strength sum rules in second order perturbation theory
International Nuclear Information System (INIS)
Struensee, M.C.
1984-01-01
Certain moments of the dipole oscillator strength distribution of atoms and molecules can be calculated from theory (using sum rules) or deduced from experiment. The present work describes the use of these moments to construct effective distributions which lead to bounds and estimates of physical properties of interest. Asymptotic analysis is then used to obtain the high energy behavior of the oscillator strength density and a previously unknown sum rule for atoms and molecules. A new type of effective distribution, which incorporates the information concerning the asymptotic behavior and the new sum rule, is suggested. This new type of distribution is used to calculate the logarithmic mean excitation energies for the ground states of atomic hydrogen, atomic helium and the negative hydrogen ion. The calculations for atomic helium and the negative hydrogen ion require the evaluation of certain ground state expectation values. These have been calculated using high accuracy wavefunctions containing the nonconventional terms shown by Fock to be necessary for a correct analytic expansion when both electrons are near the nucleus
Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule
Energy Technology Data Exchange (ETDEWEB)
Meziani, Z.E. [Stanford Univ., CA (United States)
1994-12-01
A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results of the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.
Microscopic Stern-Gerlach effect and spin-orbit pendulum
International Nuclear Information System (INIS)
Rozmej, P.; Arvieu, R.
1996-01-01
The motion of a particle with spin in spherical harmonic oscillator potential with spin-orbit interaction is discussed. The attention is focused on the spatial motion of wave packets. The particular case of wave packets moving along the circular orbits for which the most transparent and pedagogical description is possible is considered. The splitting of the wave packets into two components moving differently along classical orbits reflects a strong analogy with the Stern-Gerlach experiment. The periodic transfer of average angular momentum between spin and orbital subspaces accompanying this time evolution is called the spin-orbit pendulum. (author). 6 refs, 3 figs
Spin-Orbit Coupling for Photons and Polaritons in Microstructures
Directory of Open Access Journals (Sweden)
V. G. Sala
2015-03-01
Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.
QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders
Energy Technology Data Exchange (ETDEWEB)
Buchheim, Thomas
2017-04-11
Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their
QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders
International Nuclear Information System (INIS)
Buchheim, Thomas
2017-01-01
Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their
DISCERNING EXOPLANET MIGRATION MODELS USING SPIN-ORBIT MEASUREMENTS
International Nuclear Information System (INIS)
Morton, Timothy D.; Johnson, John Asher
2011-01-01
We investigate the current sample of exoplanet spin-orbit measurements to determine whether a dominant planet migration channel can be identified, and at what confidence. We use the predictions of Kozai migration plus tidal friction and planet-planet scattering as our misalignment models, and we allow for a fraction of intrinsically aligned systems, explainable by disk migration. Bayesian model comparison demonstrates that the current sample of 32 spin-orbit measurements strongly favors a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. Our analysis indicates that between 34% and 76% of close-in planets (95% confidence) migrated via planet-planet scattering. Separately analyzing the subsample of 12 stars with T eff >6250 K-which Winn et al. predict to be the only type of stars to maintain their primordial misalignments-we find that the data favor a single-mode scattering model over Kozai with 85% confidence. We also assess the number of additional hot star spin-orbit measurements that will likely be necessary to provide a more confident model selection, finding that an additional 20-30 measurement has a >50% chance of resulting in a 95% confident model selection, if the current model selection is correct. While we test only the predictions of particular Kozai and scattering migration models in this work, our methods may be used to test the predictions of any other spin-orbit misaligning mechanism.
Magnonic charge pumping via spin-orbit coupling
Czech Academy of Sciences Publication Activity Database
Ciccarelli, C.; Hals, K.M.D.; Irvine, A.; Novák, Vít; Tserkovnyak, Y.; Kurebayashi, H.; Brataas, A.; Ferguson, A.
2015-01-01
Roč. 10, č. 1 (2015), 50-54 ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : spintronics * spin-orbit torque * GaMnAs Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.267, year: 2015
Spin-orbit qubit in a semiconductor nanowire.
Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P
2010-12-23
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
Perturbative corrections to Λ_b→Λ form factors from QCD light-cone sum rules
International Nuclear Information System (INIS)
Wang, Yu-Ming; Shen, Yue-Long
2016-01-01
We compute radiative corrections to Λ_b→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ_b-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ_b-baryon correlation function is justified at leading power in Λ/m_b, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α_s) shift the Λ_b→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ_b→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ_b→Λ ℓ"+ℓ"− transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ_b→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
Isospin-breaking nuclear forces in QCD sum rules and Nolen-Schiffer anomaly
International Nuclear Information System (INIS)
Drukarev, E.G.; Ryskin, M.G.
1994-01-01
We use QCD sum rules to investigate isospin-breaking effects in nuclear matter. The isospin-breaking condensate left angle NM vertical stroke uu-dd vertical stroke NM right angle is shown to play an important role. In a reasonable model the neutron becomes (0.9±0.6) MeV more bound than the proton, providing a possible solution for the Nolen-Schiffer anomaly. The various contributions to the value are analysed. The possible consequences for nucleon-nucleon isospin-breaking forces are discussed. ((orig.))
Subtracted Dispersion Relations for In-medium Meson Correlators in QCD Sum Rules
Energy Technology Data Exchange (ETDEWEB)
Florkowski, W; Broniowski, W [The H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)
1999-01-01
We analyze subtracted dispersion relations for meson correlators at finite baryon density and temperature. Such relations are needed for QCD sum rules. We point out that importance of scattering terms, as well as finite, well-defined subtraction constants. Both are necessary for consistency, in particular for the equality of the longitudinal and transverse correlators in the limit of the vanishing three-momentum of mesons relative to the medium. We present detailed calculations in various mesonic channels of the Fermi gas of nucleons. (author)
Masses and decay constants of bound states containing fourth family quarks from QCD sum rules
International Nuclear Information System (INIS)
Bashiry, V.; Azizi, K.; Sultansoy, S.
2011-01-01
The heavy fourth generation of quarks that have sufficiently small mixing with the three known standard model families form hadrons. In the present work, we calculate the masses and decay constants of mesons containing either both quarks from the fourth generation or one from the fourth family and the other from known third family standard model quarks in the framework of the QCD sum rules. In the calculations, we take into account two-gluon condensate diagrams as nonperturbative contributions. The obtained results reduce to the known masses and decay constants of the bb and cc quarkonia when the fourth family quark is replaced by the bottom or charm quark.
International Nuclear Information System (INIS)
Nagano, Seido; Ichimaru, Setsuo
1980-01-01
The memory function for the velocity autocorrelation function in a strongly coupled, one-component plasma is analyzed in the short time and long time domains, respectively, with the aid of the frequency-moment sum rules and the hydrodynamic consideration evoking the idea of the generalized Stokes friction. A series of interpolation schemes with successively improved accuracies are then introduced. Numerical investigations of those interpolation schemes clarify the physical origin of the three different types of the velocity autocorrelation function observed in the molecular dynamics simulation at different regimes of the coupling constant. (author)
Sum rules for the ed - NN scattering reactions and microscopic potential field-theoretical approach
International Nuclear Information System (INIS)
Machivariani, A.I.
1996-01-01
The connections between the equal-time commutators of nucleon and photon field-operators and relativistic potential approach of ed - NN scattering equations is established. Namely, it is demonstrated that: 1) equal-time commutator between nucleon field operators generated completeness condition for NN interaction functions, 2) the off-mass shell contributions in γd - NN exchange currents or in microscopic NN potential are determined by equal time commutator between nucleon field operator and photon or nucleon source operators, and 3) equal-time commutators between source operators produce sum rules for same vertex functions and effective potentials [ru
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang; Yan, Ze-Hui [North China Electric Power University, Department of Physics, Baoding (China)
2018-01-15
In this article, we construct the axialvector-diquark-axialvector-antidiquark type currents to interpolate the scalar, axialvector, vector, tensor doubly charmed tetraquark states, and study them with QCD sum rules systematically by carrying out the operator product expansion up to the vacuum condensates of dimension 10 in a consistent way, the predicted masses can be confronted with the experimental data in the future. We can search for those doubly charmed tetraquark states in the Okubo-Zweig-Iizuka super-allowed strong decays to the charmed-meson pairs. (orig.)
International Nuclear Information System (INIS)
Smekhova, A.G.; Andreeva, M.A.
2005-01-01
One elaborated the general formalism on the basis of which one derived the clear expressions for reflection factors of X-ray radiation with a circular polarization from medium magnetized both within surface plane and within reflection plane both for grazing angles and for high grazing angles. The asymmetry of reflection spectra for right- and left-polarized radiation is shown to depend both on nondiagonal components of a susceptibility tensor and on other components in contrast to absorption spectra, so the sum rule to determine the orbital and the spin magnetic moments can not be applied directly to the experimental spectra of reflection [ru
The relation between the photonuclear E1 sum rule and the effective orbital g-factor
Energy Technology Data Exchange (ETDEWEB)
Bentz, Wolfgang E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Arima, Akito
2004-05-17
The connection between the enhancement factor (1+{kappa}) of the photonuclear E1 sum rule and the orbital angular momentum g-factor (g{sub l}) of a bound nucleon is investigated in the framework of the Landau-Migdal theory for isospin asymmetric nuclear matter. Special emphasis is put on the role of gauge invariance to establish the {kappa}-g{sub l} relation. By identifying the physical processes which are taken into account in {kappa} and g{sub l}, the validity and limitations of this relation will be discussed. The connections to the collective excitations and to nuclear Compton scattering are also shown.
Dispersive approach to the axial anomaly. The t'Hooft's principle and QCD sum rules
International Nuclear Information System (INIS)
Horejsi, J.; Teryaev, O.; Veretin, O.; )
1997-01-01
The dispersive approach to the axial anomaly is revisited. Considering the familiar VVA triangle graph, the anomalous Ward identity is proved in the case of the arbitrary external momenta. It is also commented on a recent claim that the anomaly pole in QCD fails to reproduce the pion pole. In this connection it is emphasized that there is no need to introduce a massless axial meson in the chiral limit. In the framework of QCD sum rules method a constraint for the Borel transform of relevant form factors imposed by the anomaly is considered [ru
Normalization sum rule and spontaneous breaking of U(N) invariance in random matrix ensembles
International Nuclear Information System (INIS)
Canali, C.M.; Kravtsov, V.E.
1995-03-01
It is shown that the two-level correlation function R(s,s') in the invariant random matrix ensembles (RME) with soft confinement exhibits a ''ghost peak'' at s approx. -s'. This lifts the sum rule prohibition for the level number variance to have a Poisson-like term var(n) = ηn that is typical of RME with broken U(N) symmetry. Thus we conclude that the U(N) invariance is broken spontaneously in the RME with soft confinement, η playing the role of an order-parameter. (author). 16 refs, 1 fig
Analyzing Bs - anti Bs mixing. Non-perturbative contributions to bag parameters from sum rules
International Nuclear Information System (INIS)
Mannel, T.; Pivovarov, A.A.; Russian Academy of Sciecnes, Moscow
2007-03-01
We use QCD sum rules to compute matrix elements of the ΔB=2 operators appearing in the heavy-quark expansion of the width difference of the B s mass eigenstates. Our analysis includes the leading-order operators Q and Q S , as well as the subleading operators R 2 and R 3 , which appear at next-to-leading order in the 1/m b expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)
Measurement of αs(Q2) from the Gross endash Llewellyn Smith Sum Rule
International Nuclear Information System (INIS)
Johnson, R.A.; Vakili, M.; Kim, J.H.; Arroyo, C.G.; Bazarko, A.O.; Conrad, J.; King, B.J.; Lefmann, W.C.; McNulty, C.; Mishra, S.R.; Quintas, P.Z.; Romosan, A.; Schellman, H.; Sciulli, F.J.; Seligman, W.G.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Bernstein, R.H.; Lamm, M.J.; Marsh, W.; McFarland, K.S.; Yu, J.; Bolton, T.; Naples, D.; Barbaro, L. de; Harris, D.A.; Barbaro, P. de; Bodek, A.; Budd, H.; Sakumoto, W.K.; Yang, U.K.; Kinnel, T.; Smith, W.H.
1998-01-01
We extract a set of values for the Gross endash Llewellyn Smith sum rule at different values of 4-momentum transfer squared (Q 2 ), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for 1 2 2 /c 2 . A comparison with the order α 3 s theoretical predictions yields a determination of α s at the scale of the Z -boson mass of 0.114± 0.009 0.012 . This measurement provides a new and useful test of perturbative QCD at low Q 2 , because of the low uncertainties in the higher order calculations. copyright 1998 The American Physical Society
Berk, A.; Temkin, A.
1985-01-01
A sum rule is derived for the auxiliary eigenvalues of an equation whose eigenspectrum pertains to projection operators which describe electron scattering from multielectron atoms and ions. The sum rule's right-hand side depends on an integral involving the target system eigenfunctions. The sum rule is checked for several approximations of the two-electron target. It is shown that target functions which have a unit eigenvalue in their auxiliary eigenspectrum do not give rise to well-defined projection operators except through a limiting process. For Hylleraas target approximations, the auxiliary equations are shown to contain an infinite spectrum. However, using a Rayleigh-Ritz variational principle, it is shown that a comparatively simple aproximation can exhaust the sum rule to better than five significant figures. The auxiliary Hylleraas equation is greatly simplified by conversion to a square root equation containing the same eigenfunction spectrum and from which the required eigenvalues are trivially recovered by squaring.
International Nuclear Information System (INIS)
Kataev, A.L.
2005-01-01
It is demonstrated that the infrared renormalon calculus indicates that the QCD theoretical expressions for the Gross-Llewellyn Smith sum rule and for the Bjorken polarized and unpolarized ones contain an identical negative twist-4 1/Q 2 correction. This observation is supported by the consideration of the results of calculations of the corresponding twist-4 matrix elements. Together with the indication of the similarity of perturbative QCD contributions to these three sum rules, this observation leads to simple new theoretical relations between the Gross-Llewellyn Smith and Bjorken polarized and unpolarized sum rules in the energy region Q 2 ≥ 1 GeV 2 . The validity of this relation is checked using concrete experimental data for the Gross-Llewellyn Smith and Bjorken polarized sum rules [ru
Estimating the small-x exponent of the structure function g1NS from the Bjorken sum rule
International Nuclear Information System (INIS)
Knauf, Anke; Meyer-Hermann, Michael; Soff, Gerhard
2002-01-01
We present a new estimate of the exponent governing the small-x behavior of the nonsinglet structure function g 1 p-n derived under the assumption that the Bjorken sum rule is valid. We use the world wide average of α s and the NNNLO QCD corrections to the Bjorken sum rule. The structure function g 1 NS is found to be clearly divergent for small x
Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect
Energy Technology Data Exchange (ETDEWEB)
Golkar, Siavash; Nguyen, Dung X.; Son, Dam T. [Enrico Fermi Institute, James Franck Institute and Department of Physics,University of Chicago, Chicago, Illinois 60637 (United States)
2016-01-05
We consider gapped fractional quantum Hall states on the lowest Landau level when the Coulomb energy is much smaller than the cyclotron energy. We introduce two spectral densities, ρ{sub T}(ω) and ρ̄{sub T}(ω), which are proportional to the probabilities of absorption of circularly polarized gravitons by the quantum Hall system. We prove three sum rules relating these spectral densities with the shift S, the q{sup 4} coefficient of the static structure factor S{sub 4}, and the high-frequency shear modulus of the ground state μ{sub ∞}, which is precisely defined. We confirm an inequality, first suggested by Haldane, that S{sub 4} is bounded from below by |S−1|/8. The Laughlin wavefunction saturates this bound, which we argue to imply that systems with ground state wavefunctions close to Laughlin’s absorb gravitons of predominantly one circular polarization. We consider a nonlinear model where the sum rules are saturated by a single magneto-roton mode. In this model, the magneto-roton arises from the mixing between oscillations of an internal metric and the hydrodynamic motion. Implications for experiments are briefly discussed.
Searching for hidden-charm baryonium signals in QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Chen, Hua-Xing; Zhou, Dan [Beihang University, School of Physics, Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University, Research Center for Hadron and CSR Physics, Institute of Modern Physics of CAS, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics, State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)
2016-11-15
We give an explicit QCD sum rule investigation for hidden-charm baryonium states with the quark content u anti ud anti dc anti c, spin J = 0/1/2/3, and of both positive and negative parities. We systematically construct the relevant local hidden-charm baryonium interpolating currents, which can actually couple to various structures, including hidden-charm baryonium states, charmonium states plus two pions, and hidden-charm tetraquark states plus one pion, etc. We do not know which structure these currents couple to at the beginning, but after sum rule analyses we can obtain some information. We find some of them can couple to hidden-charm baryonium states, using which we evaluate the masses of the lowest-lying hidden-charm baryonium states with quantum numbers J{sup P} = 2{sup -}/3{sup -}/0{sup +}/1{sup +}/2{sup +} to be around 5.0 GeV. We suggest to search for hidden-charm baryonium states, especially the one of J = 3{sup -}, in the D-wave J/ψππ and P-wave J/ψρ and J/ψω channels in this energy region. (orig.)
Quasielastic 3Hp and 3Hep scattering at intermediate energies and Glauber sum rules
International Nuclear Information System (INIS)
Blinov, A.V.; Vanyushin, I.A.; Grechko, V.E.
1984-01-01
Differential cross sections and average energy losses of fast protons in reactions p +3 H→psub(F)+X and p+ 3 He → psub(F)+X are studied making use of the ITEP liquid hydrogen bubble chamber of 80-cm diameter exposed to 2.5-GeV/c tritium nuclei (the kinetic energy of the incident protons in the nucleus rest frame Tsub(p)=0.318 GeV) and to 5-GeV/c 3 He nuclei (Tsub(p)=0.978 GeV). The experimental results are compared to predictions based on the sum rules for differential cross sections and average energy losses in the Glauber-Sitenko multiple scattering theory using the completeness condition for the wave functions of the nuclear excited states and the locality of the nuclear potential. The theory and the data are in good agreement at momentum of 2.5 GeV/c. Inconsistence between the Glauber sum rule predictions and the 5 GeV/c data is attributed to the Δ-isobar production in the intermediate state. It is found that possible six-quark bag admixture in the 3 H and 3 He nuclei does not exceed 5%
Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets
Li, Hang; Gao, H.; Zâ rbo, Liviu P.; Vý borný , K.; Wang, Xuhui; Garate, Ion; Dogan, Fatih; Čejchan, A.; Sinova, Jairo; Jungwirth, T.; Manchon, Aurelien
2015-01-01
Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking inversion symmetry are theoretically studied using the Kubo formula. In addition to the current-driven fieldlike torque TFL=τFLm×uso (uso being a unit vector determined by the symmetry of the spin-orbit coupling), we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an anti-damping-like torque of the form TDL=τDLm×(uso×m). Analytical expressions are obtained in the model case of a magnetic Rashba two-dimensional electron gas, while numerical calculations have been performed on a dilute magnetic semiconductor (Ga,Mn)As modeled by the Kohn-Luttinger Hamiltonian exchange coupled to the Mn moments. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described.
Spin Relaxation and Manipulation in Spin-orbit Qubits
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Pumped double quantum dot with spin-orbit coupling
Directory of Open Access Journals (Sweden)
Sherman Eugene
2011-01-01
Full Text Available Abstract We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures. PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn
Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets
Li, Hang
2015-04-01
Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking inversion symmetry are theoretically studied using the Kubo formula. In addition to the current-driven fieldlike torque TFL=τFLm×uso (uso being a unit vector determined by the symmetry of the spin-orbit coupling), we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an anti-damping-like torque of the form TDL=τDLm×(uso×m). Analytical expressions are obtained in the model case of a magnetic Rashba two-dimensional electron gas, while numerical calculations have been performed on a dilute magnetic semiconductor (Ga,Mn)As modeled by the Kohn-Luttinger Hamiltonian exchange coupled to the Mn moments. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described.
Spin-orbital quantum liquid on the honeycomb lattice
Corboz, Philippe
2013-03-01
The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.
Spin-Orbital Quantum Liquid on the Honeycomb Lattice
Directory of Open Access Journals (Sweden)
Philippe Corboz
2012-11-01
Full Text Available The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the spin-orbital SU(4 symmetric Kugel-Khomskii model of Mott insulators on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—lattice or SU(N—is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave function based on the π-flux state of fermions on the honeycomb lattice at 1/4 filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba_{3}CuSb_{2}O_{9}. The present results also suggest the choice of optical lattices with honeycomb geometry in the search for quantum liquids in ultracold four-color fermionic atoms.
Implanting Strong Spin-Orbit Coupling at Magnetoelectric Interfaces
2017-12-19
drawback is that including both spin and orbital is computationally more expensive than the conventional method and consume significantly longer time...superlattices in Fig. 6. Right: The remnant magnetization anisotropy between the in- plane and out-of- plane directions for the 1/1-SL, which is...canted antiferromagnet. The out-of- plane canting of the spin-orbit moments is significantly enhanced (Fig. 10) compared with the nonpolar structure
Quark potential model of baryon spin-orbit mass splittings
International Nuclear Information System (INIS)
Wang Fan; Wong Chunwa
1987-01-01
We show that it is possible to make the P-wave spin-orbit mass splittings in Λ baryons consistent with those of nonstrange baryons in a naive quark model, but only by introducing additional terms in the quark-quark effective interaction. These terms might be related to contributions due to pomeron exchange and sea excitations. The implications of our model in meson spectroscopy and nuclear forces are discussed. (orig.)
Spin-orbit-enhanced Wigner localization in quantum dots
DEFF Research Database (Denmark)
Cavalli, Andrea; Malet, F.; Cremon, J. C.
2011-01-01
We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum...... dots. Recurring shapes in the pair distribution functions of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported....
Dynamics of the conservative and dissipative spin-orbit problem
Celletti, A; Lega, E
2006-01-01
We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.
Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases
2016-06-14
Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and
Isospin dependence of the spin-orbit splitting in nuclei
International Nuclear Information System (INIS)
Isakov, V.I.
2007-01-01
The analysis has been made of experimental data on level spectra, single-nucleon transfer reactions near closed shells, and data on polarization effects in charge-exchange (p, n) reactions between isoanalogous states of nuclei with even A. It is concluded that there is a significant difference between the spin-orbit splittings of neutrons and protons in identical orbitals. This conclusion is confirmed in the frame work of different theoretical approaches [ru
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
The nucleon-nucleon spin-orbit interaction in the Skyrme model
International Nuclear Information System (INIS)
Riska, D.O.; Dannbom, K.
1987-01-01
The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component
Double perovskites with strong spin-orbit coupling
Cook, Ashley M.
We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally
Liu, C; Liu, J; Yao, Y X; Wu, P; Wang, C Z; Ho, K M
2016-10-11
We recently proposed the correlation matrix renormalization (CMR) theory to treat the electronic correlation effects [Phys. Rev. B 2014, 89, 045131 and Sci. Rep. 2015, 5, 13478] in ground state total energy calculations of molecular systems using the Gutzwiller variational wave function (GWF). By adopting a number of approximations, the computational effort of the CMR can be reduced to a level similar to Hartree-Fock calculations. This paper reports our recent progress in minimizing the error originating from some of these approximations. We introduce a novel sum-rule correction to obtain a more accurate description of the intersite electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.
QCD sum rules for the gluon component of the U(1)sub(A) pseudoscalar meson
International Nuclear Information System (INIS)
Narison, S.; Centre National de la Recherche Scientifique, 13 - Marseille
1981-01-01
Using sum rules based on the positivity and the analyticity of the U(1)sub(A) spectral functions, and within the framework of QCD (quantum chromodynamics), we derive an upper bound Msub(p) approximately less than (0.6 approximately 0.75) GeV to the gluon component of the U(1)sub(A) meson mass. Such a bound could be identified as the exact value of Msub(p) if one accepts a QCD model for the ''continuum'' contribution to the U(1)sub(A) spectral functions. Comparing our result to the observed mass Msub(eta)' approximately equal to 0.96GeV, one could expect an important gluonic contribution to the eta'-mass. This experimental result could be reproduced, if one adds to our result, the quark contribution known to be Msub(q) approximately equal to root(3)msub(π). (author)
Analysis of the mass and width of the X*(3860) with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-10-15
In this article, we tentatively assign the X*(3860) to be the Cγ{sub 5} x γ{sub 5}C-type scalar tetraquark state and study its mass and width with the QCD sum rules; special attention is paid to calculating the hadronic coupling constants G{sub Xη{sub cπ}} and G{sub XDD} concerning the tetraquark state. We obtain the values M{sub X} = 3.86 ± 0.09 GeV and Γ{sub X} = 202 ± 146 MeV, which are consistent with the experimental data. The numerical result supports assigning the X*(3860) to be the Cγ{sub 5} x γ{sub 5}C-type scalar tetraquark state. (orig.)
Sum rules and spectral density flow in QCD and in superconformal theories
Directory of Open Access Journals (Sweden)
Costantini Antonio
2014-01-01
Full Text Available We discuss the signature of the anomalous breaking of the superconformal symmetry in N${\\cal N}$ = 1 super Yang Mills theory and its manifestation in the form of anomaly poles. Moreover, we describe the massive deformations of the N${\\cal N}$ = 1 theory and the spectral densities of the corresponding anomaly form factors. These are characterized by spectral densities which flow with the mass deformation and turn the continuum contributions from the two-particle cuts of the intermediate states into poles, with a single sum rule satisfied by each component. The poles can be interpreted as signaling the exchange of a composite axion/dilaton/dilatino (ADD multiplet in the effective Lagrangian. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields.
Representation properties, Racah sum rule, and Biedenharn - Elliott identity for Uq(osp(1|2))
International Nuclear Information System (INIS)
Minnaert, P.; Mozrzymas, M.
1998-01-01
It is shown that the universal R matrix in the tensor product of two irreducible representation spaces of the quantum superalgebra U q (osp(1|2)) can be expressed by Clebsch - Gordan coefficients. The Racah sum rule satisfied by U q (osp(1|2)) Racah coefficients and 6-j symbols is derived from the properties of the universal R matrix in the tensor product of three representation spaces. Considering the tensor product of four irreducible representations, it is shown that Biedenharn - Elliott identity holds for U q (osp(1|2)) Racah coefficients and 6-j symbols. A recursion relation for U q (osp(1|2)) 6-j symbols is derived from the Biedenharn endash Elliott identity. copyright 1998 American Institute of Physics
Third family corrections to tri-bimaximal lepton mixing and a new sum rule
International Nuclear Information System (INIS)
Antusch, Stefan; King, Stephen F.; Malinsky, Michal
2009-01-01
We investigate the theoretical stability of the predictions of tri-bimaximal neutrino mixing with respect to third family wave-function corrections. Such third family wave-function corrections can arise from either the canonical normalisation of the kinetic terms or renormalisation group running effects. At leading order both sorts of corrections can be subsumed into a single universal parameter. For hierarchical neutrinos, this leads to a new testable lepton mixing sum rule s=rcosδ+2/3 a (where s,r,a describe the deviations of solar, reactor and atmospheric mixing angles from their tri-bimaximal values, and δ is the observable Dirac CP phase) which is stable under all leading order third family wave-function corrections, as well as Cabibbo-like charged lepton mixing effects
Parton distributions, the Gottfried sum rule and the W charge asymmetry
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1990-09-01
Preliminary data from the New Muon Collaboration (NMC) allow a precise evaluation of I p-n (x) from a given integral formula for values of x down to 0.004. As x → 0, this integral should converge to a value I p-n (0) = 1/3 (Gottfried sum rule) if the light sea-quark distributions are equal. The NMC value I p-n (0.004) = 0.23 ± 0.03, though appearing to be well short of 1/3, is quite consistent with modern estimates for parton distributions extracted from a wide range of data. These parton distributions are also found to reproduce the W ± rapidity asymmetry recently measured by a European collaboration. (author)
Sum rule for bremsstrahlung cross section for 6Li in the resonating-group method
International Nuclear Information System (INIS)
Lodhi, M.A.K.; Wood, K.E.
1982-01-01
In the method of resonating-group structure, the wave function of 6 Li is assumed to have a single channel of alpha and deuteron substructures in the ground state. It is shown that the intercluster exchange of nucleons is an important effect which causes significant change in the root mean square radius and the dipole transition cross section. Due to lack of symmetry in space coordinates of 6 Li, the dipole operator is not identical to the mean square operator for this sum rule calculation and is expected to display like behavior in similar systems. It is also shown that the deuteron substructure in this nucleus is substantially larger than the alpha substructure. (orig.)
The polarised photon g1γ sum rule at the linear collider and high luminosity B factories
International Nuclear Information System (INIS)
Shore, G.M.
2005-01-01
The sum rule for the first moment of the polarised (virtual) photon structure function g 1 γ (x,Q 2 ;K 2 ) is revisited in the light of proposals for future e + e - colliders. The sum rule exhibits an array of phenomena characteristic of QCD: for real photons (K 2 =0) electromagnetic gauge invariance constrains the first moment to vanish; the limit for asymptotic photon virtuality (m ρ 2 -bar K 2 -bar Q 2 ) is governed by the electromagnetic U A (1) axial anomaly and the approach to asymptopia by the gluonic anomaly; for intermediate values of K 2 , it reflects the realisation of chiral symmetry and is determined by the off-shell radiative couplings of the pseudoscalar mesons; finally, like many polarisation phenomena in QCD, the first moment of g 1 γ involves the gluon topological susceptibility. In this paper, we review the original sum rule proposed by Narison, Shore and Veneziano and extend the relation with pseudoscalar mesons. The possibility of measuring the sum rule in future polarised e + e - colliders is then considered in detail, focusing on the International Linear Collider (ILC) and high luminosity B factories. We conclude that all the above features of the sum rule should be accessible at a polarised collider with the characteristics of SuperKEKB
Spin Orbit Interaction Engineering for beyond Spin Transfer Torque memory
Wang, Kang L.
Spin transfer torque memory uses electron current to transfer the spin torque of electrons to switch a magnetic free layer. This talk will address an alternative approach to energy efficient non-volatile spintronics through engineering of spin orbit interaction (SOC) and the use of spin orbit torque (SOT) by the use of electric field to improve further the energy efficiency of switching. I will first discuss the engineering of interface SOC, which results in the electric field control of magnetic moment or magneto-electric (ME) effect. Magnetic memory bits based on this ME effect, referred to as magnetoelectric RAM (MeRAM), is shown to have orders of magnitude lower energy dissipation compared with spin transfer torque memory (STTRAM). Likewise, interests in spin Hall as a result of SOC have led to many advances. Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures have been shown to arise from the large SOC. The large SOC is also shown to give rise to the large SOT. Due to the presence of an intrinsic extraordinarily strong SOC and spin-momentum lock, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. In particular, we will show the magnetization switching in a chromium-doped magnetic TI bilayer heterostructure by charge current. A giant SOT of more than three orders of magnitude larger than those reported in heavy metals is also obtained. This large SOT is shown to come from the spin-momentum locked surface states of TI, which may further lead to innovative low power applications. I will also describe other related physics of SOC at the interface of anti-ferromagnetism/ferromagnetic structure and show the control exchange bias by electric field for high speed memory switching. The work was in part supported by ERFC-SHINES, NSF, ARO, TANMS, and FAME.
Superconducting fluctuations in systems with Rashba-spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Beyl, Stefan [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Orth, Peter P.; Scheurer, Mathias; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We investigate the BEC-BCS crossover in a two-dimensional system with Rashba-spin-orbit coupling. To include the effects of phase and amplitude fluctuations of the superconducting order parameter we perform a loop expansion of the effective field theory. We analyze in particular the probability of a low density superconducting quantum phase transition. The theory is relevant to LaAlO{sub 3}/SrTiO{sub 3} interfaces and two-dimensional cold atom systems with synthetic gauge fields.
The BANANA Survey: Spin-Orbit Alignment in Binary Stars
Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.
2012-04-01
Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.
Single-Particle Spin-Orbit Splittings in Nuclei
Kazuhiko, ANDO; Hiroharu, BANDO; Department of Physics, Kyoto University; Division of Mathematical Physics, Fukui University
1981-01-01
Single-particle spin-orbit splittings (Δ^) in ^O and ^Ca nuclei are evaluated within the framework of the effective interaction theory by employing the Reid soft-core potential and meson-exchange three-body forces (TBF). Among the two-body force contributions, the Pauli-rearrangement effect on Δ^ is studied with special care. The TBF contribution to Δ^ is found to be significant. The G-matrix, the second-order pauli-rearrangement and the TBF contribute to Δ^ by the amount of ～1/2, ～1/5 and ～1...
International Nuclear Information System (INIS)
Bernard, V.; Kubis, B.; Meissner, U.G.
2005-01-01
We analyze the Fubini-Furlan-Rosetti sum rule in the framework of covariant baryon chiral perturbation theory to leading one-loop accuracy and including next-to-leading-order polynomial contributions. We discuss the relation between the subtraction constants in the invariant amplitudes and certain low-energy constants employed in earlier chiral perturbation theory studies of threshold neutral pion photoproduction off nucleons. In particular, we consider the corrections to the sum rule due to the finite pion mass and show that below the threshold they agree well with determinations based on fixed-t dispersion relations. We also discuss the energy dependence of the electric dipole amplitude E 0+ . (orig.)
QCD determination of the A1-p-π system through vertex light-cone sum rules
International Nuclear Information System (INIS)
Craigie, N.S.; Paver, N.; Riazzudin
1986-01-01
We analyze the rho-A 1 -π system within the context of vertex light-cone sum rules, which are believed to be rigorously satisfied in QCD. It is pointed out that these sum rules provide very strong constraints on the hardronic spectrum and with additional assumptions lead to new predictions, which go significantly beyond those obtained from current algebra in the past. In particular, we report some new results about the rho-A 1 -π couplings and the various transitions form factors in tau-semi-leptonic decays. (orig.)
Magnetic moment for the negative parity Λ→Σ0 transition in light cone QCD sum rules
Directory of Open Access Journals (Sweden)
T.M. Aliev
2016-07-01
Full Text Available The magnetic moment of the Λ→Σ0 transition between negative parity baryons is calculated in framework of the QCD sum rules approach by using the general form of the interpolating currents. The pollution arising from the positive-to-positive, and positive-to-negative parity baryons is eliminated by constructing the sum rules for different Lorentz structures. A comparison of our result with the predictions of the results of other approaches for the positive parity baryons is presented.
Spin-inversion in nanoscale graphene sheets with a Rashba spin-orbit barrier
Directory of Open Access Journals (Sweden)
Somaieh Ahmadi
2012-03-01
Full Text Available Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.
Controlling electron quantum dot qubits by spin-orbit interactions
International Nuclear Information System (INIS)
Stano, P.
2007-01-01
Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)
Spin manipulation and relaxation in spin-orbit qubits
Borhani, Massoud; Hu, Xuedong
2012-03-01
We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Relativistic spin-orbit interactions of photons and electrons
Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.
2018-04-01
Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.
Controlling electron quantum dot qubits by spin-orbit interactions
Energy Technology Data Exchange (ETDEWEB)
Stano, P.
2007-01-15
Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)
1S and $\\overline{MS}$ Bottom Quark Masses from $\\Upsilon$ Sum Rules
Hoang, A.H.
2000-01-01
The bottom quark $1S$ mass, $M_b^{1S}$, is determined using sum rules which relate the masses and the electronic decay widths of the $\\Upsilon$ mesons to moments of the vacuum polarization function. The $1S$ mass is defined as half the perturbative mass of a fictitious ${}^3S_1$ bottom-antibottom quark bound state, and is free of the ambiguity of order $\\Lambda_{QCD}$ which plagues the pole mass definition. Compared to an earlier analysis by the same author, which had been carried out in the pole mass scheme, the $1S$ mass scheme leads to a much better behaved perturbative series of the moments, smaller uncertainties in the mass extraction and to a reduced correlation of the mass and the strong coupling. We arrive at $M_b^{1S}=4.71\\pm 0.03$ GeV taking m_b(\\bar m_b)$ can be reduced if the three-loop corrections to the relation of pole and $\\bar{MS}$ mass are known and if the error in the strong coupling is decreased.
ρ, ω, and φ meson-nucleon scattering lengths from QCD sum rules
International Nuclear Information System (INIS)
Koike, Y.
1995-01-01
The QCD sum rule method is applied to derive a formula for the ρ, ω, and φ meson-nucleon spin-isospin--averaged scattering lengths a ρ,ω,φ . We found that the crucial matrix elements are left-angle bar qγ μ D ν q right-angle N (q=ud) (twist-2 nucleon matrix element) for a ρ,ω and m s left-angle bar ss right-angle N for a φ , and obtained a ρ =0.14±0.07 fm, a ω =0.11±0.06 fm, and a φ =0.035±0.020 fm. These small numbers originate from a common factor 1/(m N +m ρ,ω,φ ). Our result suggests a slight increase (<60 MeV for ρ and ω, and <15 MeV for φ) of the effective mass of these vector mesons in nuclear matter (in the dilute nucleon-gas approximation). The origin of the discrepancy with Hatsuda-Lee was clarified
Revisit assignments of the new excited Ω{sub c} states with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang; Wei, Xing-Ning; Yan, Ze-Hui [North China Electric Power University, Department of Physics, Baoding (China)
2017-12-15
In this article, we distinguish the contributions of the positive parity and negative parity Ω{sub c} states, study the masses and pole residues of the 1S, 1P, 2S and 2P Ω{sub c} states with the spin J = (1)/(2) and (3)/(2) using the QCD sum rules in a consistent way, and we revisit the assignments of the new narrow excited Ω{sub c}{sup 0} states. The predictions support assigning Ω{sub c}(3000) to the 1P Ω{sub c} state with J{sup P} = (1)/(2){sup -}, assigning Ω{sub c}(3090) to the 1P Ω{sub c} state with J{sup P} = (3)/(2){sup -} or the 2S Ω{sub c} state with J{sup P} = (1)/(2){sup +}, and assigning Ω{sub c}(3119) to the 2S Ω{sub c} state with J{sup P} = (3)/(2){sup +}. (orig.)
0+ tetraquark states from improved QCD sum rules: delving into X(5568)
Zhang, Jian-Rong; Zou, Jing-Lan; Wu, Jin-Yun
2018-04-01
In order to investigate the possibility of the recently observed X(5568) being a 0+ tetraquark state, we make an improvement to the study of the related various configuration states in the framework of the QCD sum rules. Particularly, to ensure the quality of the analysis, condensates up to dimension 12 are included to inspect the convergence of operator product expansion (OPE) and improve the final results of the studied states. We note that some condensate contributions could play an important role on the OPE side. By releasing the rigid OPE convergence criterion, we arrive at the numerical value {5.57}-0.23+0.35 {{GeV}} for the scalar-scalar diquark-antidiquark 0+ state, which agrees with the experimental data for the X(5568) and could support its interpretation in terms of a 0+ tetraquark state with the scalar-scalar configuration. The corresponding result for the axial-axial current is calculated to be {5.77}-0.33+0.44 {{GeV}}, which is still consistent with the mass of X(5568) in view of the uncertainty. The feasibility of X(5568) being a tetraquark state with the axial-axial configuration therefore cannot be definitely excluded. For the pseudoscalar-pseudoscalar and the vector-vector cases, their unsatisfactory OPE convergence make it difficult to find reasonable work windows to extract the hadronic information. Supported by National Natural Science Foundation of China (11475258, 11105223, 11675263) and the Project in NUDT for Excellent Youth Talents
Heavy-to-light form factors: Sum rules on the light cone and beyond
International Nuclear Information System (INIS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2007-01-01
We report the first systematic analysis of the off-light-cone effects in sum rules for heavy-to-light form factors. These effects are investigated in a model based on scalar constituents, which allows a technically rather simple analysis but has the essential features of the analogous QCD calculation. The correlator relevant for the extraction of the heavy-to-light form factor is calculated in two different ways: first, by adopting the full Bethe-Salpeter amplitude of the light meson and, second, by performing the expansion of this amplitude near the light cone x 2 =0. We demonstrate that the contributions to the correlator from the light-cone term x 2 =0 and the off-light-cone terms x 2 ≠0 have the same order in the 1/m Q expansion. The light-cone correlator, corresponding to x 2 =0, is shown to systematically overestimate the full correlator, the difference being ∼Λ QCD /δ, with δ the continuum subtraction parameter of order 1 GeV. Numerically, this difference is found to be 10 divide 20%
Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2018-04-01
We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.
QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing
Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.
2018-02-01
We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).
Masses of open-flavour heavy-light hybrids from QCD sum-rules
Energy Technology Data Exchange (ETDEWEB)
Ho, J. [Department of Physics and Engineering Physics, University of Saskatchewan,Saskatoon, SK, S7N 5E2 (Canada); Harnett, D. [Department of Physics, University of the Fraser Valley,Abbotsford, BC, V2S 7M8 (Canada); Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,Saskatoon, SK, S7N 5E2 (Canada)
2017-05-29
We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrid’s constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of several hybrid interpolating currents, taking into account QCD condensates up to dimension-six, and extract hybrid mass predictions for all J{sup P}∈{0"±, 1"±}, as well as explore possible mixing effects with conventional quark-antiquark mesons. Within theoretical uncertainties, our results are consistent with a degeneracy between the heavy-nonstrange and heavy-strange hybrids in all J{sup P} channels. We find a similar mass hierarchy of 1{sup +}, 1{sup −}, and 0{sup +} states (a 1{sup +} state lighter than essentially degenerate 1{sup −} and 0{sup +} states) in both the charm and bottom sectors, and discuss an interpretation for the 0{sup −} states. If conventional meson mixing is present the effect is an increase in the hybrid mass prediction, and we estimate an upper bound on this effect.
Renormalization group improved bottom mass from {Upsilon} sum rules at NNLL order
Energy Technology Data Exchange (ETDEWEB)
Hoang, Andre H.; Stahlhofen, Maximilian [Wien Univ. (Austria). Fakultaet fuer Physik; Ruiz-Femenia, Pedro [Wien Univ. (Austria). Fakultaet fuer Physik; Valencia Univ. - CSIC (Spain). IFIC
2012-09-15
We determine the bottom quark mass from non-relativistic large-n {Upsilon} sum rules with renormalization group improvement at next-to-next-to-leading logarithmic order. We compute the theoretical moments within the vNRQCD formalism and account for the summation of powers of the Coulomb singularities as well as of logarithmic terms proportional to powers of {alpha}{sub s} ln(n). The renormalization group improvement leads to a substantial stabilization of the theoretical moments compared to previous fixed-order analyses, which did not account for the systematic treatment of the logarithmic {alpha}{sub s} ln(n) terms, and allows for reliable single moment fits. For the current world average of the strong coupling ({alpha}{sub s}(M{sub Z})=0.1183{+-}0.0010) we obtain M{sub b}{sup 1S}=4.755{+-}0.057{sub pert} {+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass, where we have quoted the perturbative error and the uncertainties from the strong coupling and the experimental data.
Analysis of the QQ anti Q anti Q tetraquark states with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-07-15
In this article, we study the J{sup PC} = 0{sup ++} and 2{sup ++} QQ anti Q anti Q tetraquark states with the QCD sum rules, and we obtain the predictions M{sub X(cc} {sub anti} {sub c} {sub anti} {sub c,0}{sup {sub +}{sub +)}} =5.99 ± 0.08 GeV, M{sub X(cc} {sub anti} {sub c} {sub anti} {sub c,2}{sup {sub +}{sub +)}} = 6.09 ± 0.08 GeV, M{sub X(bb} {sub anti} {sub b} {sub anti} {sub b,0}{sup {sub +}{sub +)}} = 18.84 ± 0.09 GeV and M{sub X(bb} {sub anti} {sub b} {sub anti} {sub b,2}{sup {sub +}{sub +)}} = 18.85 ± 0.09 GeV, which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark-antidiquark type tetraquark state can be taken as a special superposition of a series of meson-meson pairs and that it embodies the net effects. (orig.)
B→ππ form factors from light-cone sum rules with B-meson distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Cheng, Shan; Khodjamirian, Alexander [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Department Physik, Universität Siegen,Walter-Flex-Strasse 3, 57068 Siegen (Germany); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2017-05-30
We study B→ππ form factors using QCD light-cone sum rules with B-meson distribution amplitudes. These form factors describe the semileptonic decay B→ππℓν̄{sub ℓ}, and constitute an essential input in B→ππℓ{sup +}ℓ{sup −} and B→πππ decays. We employ the correlation functions where a dipion isospin-one state is interpolated by the vector light-quark current. We obtain sum rules where convolutions of the P-wave B̄{sup 0}→π{sup +}π{sup 0} form factors with the timelike pion vector form factor are related to universal B-meson distribution amplitudes. These sum rules are valid in the kinematic regime where the dipion state has a large energy and a low invariant mass, and reproduce analytically the known light-cone sum rules for B→ρ form factors in the limit of ρ-dominance and zero width, thus providing a systematics for so far unaccounted corrections to B→ρ transitions. Using data for the pion vector form factor, we estimate finite-width effects and the contribution of excited ρ-resonances to the B→ππ form factors. We find that these contributions amount up to ∼20% in the small dipion mass region where they can be effectively regarded as a nonresonant (P-wave) background to the B→ρ transition.
Effect of Coulomb interaction on the X-ray magnetic circular dichroism spin sum rule in rare earths
Teramura, Y; Tanaka, A; Thole, BT; Jo, T
A deviation from the spin sum rule, which relates the integrated intensity of the X-ray magnetic circular dichroism (MCD) signal to the expectation value of the spin operator S-z ((S-z)), is numerically calculated in the case of the 3d --> 4f absorption for rare earths from the trivalent Ce to Tm.
The spin-dependent structure function of the proton g(1)(p) and a test of the Bjorken sum rule
Czech Academy of Sciences Publication Activity Database
Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotic, D.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Käfer, W.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmitt, L.; Schopferer, S.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2010-01-01
Roč. 690, č. 5 (2010), s. 466-472 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : deep inelastic scattering * structure function * QCD analysis * Bjorken sum rule Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.255, year: 2010
Matrix elements of four-quark operators relevant to life time difference ΔΓBs from QCD sum rules
International Nuclear Information System (INIS)
Huang, C.S.; Zhang Ailin; Zhu, S.L.
2001-01-01
We extract the matrix elements of four-quark operators O L,S relevant to the B s and anti B s life time difference from QCD sum rules. We find that the vacuum saturation approximation works reasonably well, i.e., within 10%. We discuss the implications of our results and compare them with a recent lattice QCD determination. (orig.)
Analysis of diffractive pd to Xd and pp to Xp interactions and test of the finite-mass sum rule
Akimov, Y; Golovanov, L B; Goulianos, K; Gross, D; Malamud, E; Melissinos, A C; Mukhin, S; Nitz, D; Olsen, S; Sticker, H; Tsarev, V A; Yamada, R; Zimmerman, P
1976-01-01
The first moment finite mass sum rule is tested by utilising cross- sections for pp to Xp extracted from recent Fermilab data on pd to Xd and also comparing with CERN ISR data. The dependences on M/sub x//sup 2/, t and s are also discussed. (11 refs).
International Nuclear Information System (INIS)
Khare, A.
1975-01-01
We show that Adler's sum rule for neutrino scattering and Bjorken's inequality for electron-proton scattering are modified if quark has finite anomalous magnetic moment ksub(q). We also show that if ksub(q) is nonzero, there exist fixed poles in spin-flip Compton scattering as well as in charged pion photoproduction. (auth.)
gDsDK*0 and gBsDK*0 coupling constants in QCD sum rules
International Nuclear Information System (INIS)
Şahin, S; Sundu, H; Azizi, K
2012-01-01
In the present study, we calculate the strong coupling constants g D s DK* 0 (800) and g B s DK* 0 (800) within the three-point QCD sum rules approach. We evaluate the correlation function of the considered vertices taking into account both D[B] and K* 0 (800) mesons as off-shell states.
Intrinsic and extrinsic spin-orbit torques from first principles
International Nuclear Information System (INIS)
Geranton, Guillaume
2017-01-01
This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag_2Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag_2Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT-based magnetic
Intrinsic and extrinsic spin-orbit torques from first principles
Energy Technology Data Exchange (ETDEWEB)
Geranton, Guillaume
2017-09-01
This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag{sub 2}Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag{sub 2}Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT
Spin-orbit induced electronic spin separation in semiconductor nanostructures.
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
Spin-Orbit Torques in Co/Pd Multilayer Nanowires
Jamali, Mahdi; Narayanapillai, Kulothungasagaran; Qiu, Xuepeng; Loong, Li Ming; Manchon, Aurelien; Yang, Hyunsoo
2013-01-01
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108 A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1 nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.
Tuning Rashba spin-orbit coupling in homogeneous semiconductor nanowires
Wójcik, Paweł; Bertoni, Andrea; Goldoni, Guido
2018-04-01
We use k .p theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of the electron charge density. We explore gate-controlled SOC for wires of different size and doping, and we show that in high carrier density SOC has a nonlinear electric field susceptibility, due to large reshaping of the quantum states. We analyze recent experiments with InSb nanowires in light of our calculations. Good agreement is found with the SOC coefficients reported in Phys. Rev. B 91, 201413(R) (2015), 10.1103/PhysRevB.91.201413, but not with the much larger values reported in Nat. Commun. 8, 478 (2017), 10.1038/s41467-017-00315-y. We discuss possible origins of this discrepancy.
Spin-Orbit Torques in Co/Pd Multilayer Nanowires
Jamali, Mahdi
2013-12-09
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (fieldlike) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 and 5 kOe at 108 A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (∼1 nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.
Spin-orbit controlled capacitance of a polar heterostructure
Energy Technology Data Exchange (ETDEWEB)
Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)
2015-07-01
Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.
Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds
Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.
2017-11-01
If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.
QCD sum rules study of the JPC=1-- charmonium Y mesons
International Nuclear Information System (INIS)
Albuquerque, R.M.; Nielsen, M.
2009-01-01
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark (cc-bar qq-bar) or (cc-bar ss-bar) states with J PC =1 -- . We work at leading order in α s , consider the contributions of higher dimension condensates and keep terms which are linear in the strange quark mass m s . We find for the (cc-bar ss-bar) state a mass m Y =(4.65±0.10) GeV which is compatible with the experimental candidate Y(4660), while for the (cc-bar qq-bar) state we find a mass m Y =(4.49±0.11) GeV, which is still consistent with the mass of the experimental candidate Y(4350). With the tetraquark structure we are working we cannot explain the Y(4260) as a tetraquark state. We also consider molecular D s0 D-bar s * and D 0 D-bar * states. For the D s0 D-bar s * molecular state we get m D s0 D -bar s* =(4.42±0.10) GeV which is consistent, considering the errors, with the mass of the meson Y(4350) and for the D 0 D-bar* molecular state we get m D 0 D -bar*=(4.27±0.10) GeV in excellent agreement with the mass of the meson Y(4260)
Extraction of Spin-Orbit Interactions from Phase Shifts via Inversion
International Nuclear Information System (INIS)
Lun, D.R.; Buckman, S.J.
1997-01-01
An exact inversion procedure for obtaining the central and spin-orbit potential from phase shifts at fixed energy is described. The method, based on Sabatier interpolation formulas, reduces the nonlinear problem to linear-algebraic equations. We have tested the method with a Woods-Saxon potential with a strong spin-orbit component. copyright 1997 The American Physical Society
The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling
Zhao, Jingxiang; Yan, Xu; Gu, Qiang
2017-10-01
The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.
Review of an emerging research field 'spin-orbit torques'
International Nuclear Information System (INIS)
Kurebayashi, Hidekazu
2015-01-01
This Review will provide a landscape of the recent development of one of spintronics sub-fields, so-called 'spin orbit torques'. This new class of spin torques, arising from the relativistic spin-orbit interaction in solid states, has gained a great deal of academic interest from relevant scientists and technologists. (author)
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
International Nuclear Information System (INIS)
Diniz, Ginetom S.; Ulloa, Sergio E.
2014-01-01
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.
Energy Technology Data Exchange (ETDEWEB)
Bernard, V. [Universite Louis Pasteur, Laboratoire de Physique Theorique, Strasbourg Cedex 2 (France); Kubis, B. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Bonn (Germany); Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Juelich (Germany)
2005-09-01
We analyze the Fubini-Furlan-Rosetti sum rule in the framework of covariant baryon chiral perturbation theory to leading one-loop accuracy and including next-to-leading-order polynomial contributions. We discuss the relation between the subtraction constants in the invariant amplitudes and certain low-energy constants employed in earlier chiral perturbation theory studies of threshold neutral pion photoproduction off nucleons. In particular, we consider the corrections to the sum rule due to the finite pion mass and show that below the threshold they agree well with determinations based on fixed-t dispersion relations. We also discuss the energy dependence of the electric dipole amplitude E{sub 0+}. (orig.)
Renormalization group analysis of B →π form factors with B -meson light-cone sum rules
Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian
2018-03-01
Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.
Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order αs4 in a General Gauge Theory
International Nuclear Information System (INIS)
Baikov, P. A.; Chetyrkin, K. G.; Kuehn, J. H.
2010-01-01
We compute, for the first time, the order α s 4 contributions to the Bjorken sum rule for polarized electron-nucleon scattering and to the (nonsinglet) Adler function for the case of a generic color gauge group. We confirm at the same order a (generalized) Crewther relation which provides a strong test of the correctness of our previously obtained results: the QCD Adler function and the five-loop β function in quenched QED. In particular, the appearance of an irrational contribution proportional to ζ 3 in the latter quantity is confirmed. We obtain the commensurate scale equation relating the effective strong coupling constants as inferred from the Bjorken sum rule and from the Adler function at order α s 4 .
QCD sum rule approach to the s→dγ contribution to the Ω-→Ξ-γ radiative decay
International Nuclear Information System (INIS)
Nielsen, M.; Barreiro, L.A.; Escobar, C.O.; Rosenfeld, R.
1996-01-01
QCD sum rules are used to calculate the contribution of the short-distance single-quark transition s→dγ to the amplitudes of the hyperon radiative decay Ω - →Ξ - γ. We reevaluate the Wilson coefficient of the effective operator responsible for this transition. We obtain a branching ratio which is comparable to the unitarity limit. copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Contreras, C [Department of Physics, Universidad Tecn. Federico Santa Maria, Valparaiso (Chile); Cvetic, G [Department of Physics, Universidad Tecn. Federico Santa Maria, Valparaiso (Chile); Jeong, K S [Department of Physics, Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of); Lee, Taekoon [Department of Physics, Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)
2003-08-01
We recapitulate the method which resums the truncated perturbation series of a physical observable in a way which takes into account the structure of the leading infrared renormalon. We apply the method to the Gross-Llewellyn Smith (GLS) sum rule. By confronting the obtained result with the experimentally extracted GLS value, we determine the value of the QCD coupling parameter, which turns out to agree with the present world average.
The Q2-Dependence of the Gross-Llewellyn Smith Sum Rule and of the Parton Distributions
International Nuclear Information System (INIS)
Kataev, A.L.; AN SSSR, Moscow; Sidorov, A.V.
1994-01-01
We describe the results of our recent work on the determination of the value of the parameter Λ and of the Q 2 -dependence of the Gross-Llewellyn Smith (GLS) sum rule from the experimental data of the CCFR collaboration on neutrino-nucleon deep inelastic scattering, using the Jacobi polynomials QCD analysis. The new information on the Q 2 -dependence of the parton distributions is presented. 37 refs., 3 figs., 3 tabs
International Nuclear Information System (INIS)
Bakulev, Alexander P.
2010-01-01
Using the results on the electromagnetic pion Form Factor (FF) obtained in the O(α s ) QCD sum rules with non-local condensates [A.P. Bakulev, A.V. Pimikov, and N.G. Stefanis, Phys. Rev. D79 (2009) 093010] we determine the effective continuum threshold for the local duality approach. Then we apply it to construct the O(α s 2 ) estimation of the pion FF in the framework of the fractional analytic perturbation theory.
Transition form factors of π0,η and η′ mesons: What can be learned from anomaly sum rule?
International Nuclear Information System (INIS)
Klopot, Yaroslav; Oganesian, Armen; Teryaev, Oleg
2013-01-01
We studied the applications of the anomaly sum rule (ASR) to the transition form factors of light pseudoscalar mesons: π 0 ,η and η ′ . This nonperturbative QCD approach can be used even if the QCD factorization is broken. The status of possible small non-OPE corrections to continuum in comparison to BaBar and Belle data is explored. The accuracy of the applied method and the role of the quark mass contributions are discussed
How Precisely can we Determine the $\\piNN$ Coupling Constant from the Isovector GMO Sum Rule?
Loiseau, B; Thomas, A W
1999-01-01
The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths.
International Nuclear Information System (INIS)
Oganesian, A.G.
1998-01-01
A method is proposed for estimating unknown vacuum expectation values of high-dimensional operators. The method is based on the idea that the factorization hypothesis is self-consistent. Results are obtained for all vacuum expectation values of dimension-7 operators, and some estimates for dimension-10 operators are presented as well. The resulting values are used to compute corrections of higher dimensions to the Bjorken and Ellis-Jaffe sum rules
QCD Sum-Rule Calculation of the Kinetic Energy and Chromo-Interaction of Heavy Quarks Inside Mesons
Neubert, M
1996-01-01
We present a QCD sum-rule determination of the heavy-quark kinetic energy inside a heavy meson, $-\\lambda_1/2 m_Q$, which is consistent with the field-theory analog of the virial theorem. We obtain $-\\lambda_1\\approx (0.10\\pm 0.05)~\\mbox{GeV}^2$, significantly smaller than a previous sum-rule result, but in good agreement with recent determinations from the analysis of inclusive decays. We also present a new determination of the chromo-magnetic interaction, yielding $\\lambda_2(m_b)=(0.15\\pm 0.03)~\\mbox{GeV}^2$. This implies $m_{B^*}^2-m_B^2=(0.60\\pm 0.12)~\\mbox{GeV}^2$, in good agreement with experiment. As a by-product of our analysis, we derive the QCD sum rules for the three form factors describing the meson matrix element of a velocity-changing current operator containing the gluon field-strength tensor.
International Nuclear Information System (INIS)
Karliner, I.
1975-01-01
The SU(6)-W group structure appears in both current algebra and in the spectroscopy of hadrons. Recently, a considerable progress has taken place in relating these two SU(6)-W structures. The consequences of the proposed correspondence, as it applies to real photon transitions, are investigated in this work. The general structure of such transitions is shown, and a set of resulting selection rules is presented for the multipole character of the photon amplitudes. Many specific amplitudes for both mesons and baryons are worked out and their signs and magnitudes are compared with available experimental data. The saturation of the Drell-Hearn-Gerasimov sum rule for the forward spin-flip amplitude of nucleon Compton scattering was investigated. The sum rule saturation was studied using recent analyses of single pion photoproduction in the region up to photon laboratory energies of 1.2 GeV. The original sum rule is decomposed into separate sum rules originating from different isospin compnents of the electromagnetic current. All three sum rules receive important nonresonant as well as resonant contributions. The isovector-isovector sum rule, whose contributions are known best, is found to be nearly saturated, lending support to the assumptions underlying the sum rules. The failure of the isovector-isoscalar sumrule to be saturated is then presumably to be blamed on inadequate data for inelastic contributions. (Diss. Abs,r. Int., B)
Tuning the effective spin-orbit coupling in molecular semiconductors
Schott, Sam
2017-05-11
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
Degenerate quantum gases with spin-orbit coupling: a review.
Zhai, Hui
2015-02-01
This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.
Spin interferometry in anisotropic spin-orbit fields
Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku
2018-03-01
Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
Tuning the effective spin-orbit coupling in molecular semiconductors
Schott, Sam; McNellis, Erik R.; Nielsen, Christian B.; Chen, Hung-Yang; Watanabe, Shun; Tanaka, Hisaaki; McCulloch, Iain; Takimiya, Kazuo; Sinova, Jairo; Sirringhaus, Henning
2017-01-01
The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
Hankiewicz, Ewelina M.; Culcer, Dimitrie
2017-01-01
Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal
Bell-like inequality for the spin-orbit separability of a laser beam
International Nuclear Information System (INIS)
Borges, C. V. S.; Hor-Meyll, M.; Khoury, A. Z.; Huguenin, J. A. O.
2010-01-01
In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.
Spin torque on the surface of graphene in the presence of spin orbit splitting
Directory of Open Access Journals (Sweden)
Ji Chen
2013-06-01
Full Text Available We study theoretically the spin transfer torque of a ferromagnetic layer coupled to (deposited onto a graphene surface in the presence of the Rashba spin orbit coupling (RSOC. We show that the RSOC induces an effective magnetic field, which will result in the spin precession of conduction electrons. We derive correspondingly the generalized Landau-Lifshitz-Gilbert (LLG equation, which describes the precessional motion of local magnetization under the influence of the spin orbit effect. Our theoretical estimate indicates that the spin orbit spin torque may have significant effect on the magnetization dynamics of the ferromagnetic layer coupled to the graphene surface.
On the difference between proton and neutron spin-orbit splittings in nuclei
International Nuclear Information System (INIS)
Isakov, V.I.; Erokhina, K.I.; Mach, H.; Sanchez-Vega, M.; Fogelberg, B.
2002-01-01
The latest experimental data on nuclei at 132 Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly magic region and compare the case to that of 208 Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean-field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches. (orig.)
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
Hung, Yu-Ming
This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then
Superconductivity in three-dimensional spin-orbit coupled semimetals
Savary, Lucile; Ruhman, Jonathan; Venderbos, Jörn W. F.; Fu, Liang; Lee, Patrick A.
2017-12-01
Motivated by the experimental detection of superconductivity in the low-carrier density half-Heusler compound YPtBi, we study the pairing instabilities of three-dimensional strongly spin-orbit coupled semimetals with a quadratic band touching point. In these semimetals the electronic structure at the Fermi energy is described by spin j =3/2 quasiparticles, which are fundamentally different from those in ordinary metals with spin j =1/2 . For both local and nonlocal pairing channels in j =3/2 materials we develop a general approach to analyzing pairing instabilities, thereby providing the computational tools needed to investigate the physics of these systems beyond phenomenological considerations. Furthermore, applying our method to a generic density-density interaction, we establish that: (i) The pairing strengths in the different symmetry channels uniquely encode the j =3/2 nature of the Fermi surface band structure—a manifestation of the fundamental difference with ordinary metals. (ii) The leading odd-parity pairing instabilities are different for electron doping and hole doping. Finally, we argue that polar phonons, i.e., Coulomb interactions mediated by the long-ranged electric polarization of the optical phonon modes, provide a coupling strength large enough to account for a Kelvin-range transition temperature in the s -wave channel, and are likely to play an important role in the overall attraction in non-s -wave channels. Moreover, the explicit calculation of the coupling strengths allows us to conclude that the two largest non-s -wave contributions occur in nonlocal channels, in contrast with what has been commonly assumed.
Thermal conductivity of magnetic insulators with strong spin-orbit coupling
Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.
We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers
Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo
2013-01-01
. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te
Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice
Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji
2018-03-01
We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.
Spin-polarized spin-orbit-split quantum-well states in a metal film
Energy Technology Data Exchange (ETDEWEB)
Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)
2008-07-01
Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-01-01
for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic
Spatially and time-resolved magnetization dynamics driven by spin-orbit torques
Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can O.; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro
2017-01-01
Current-induced spin-orbit torques (SOTs) represent one of the most effective ways to manipulate the magnetization in spintronic devices. The orthogonal torque-magnetization geometry, the strong damping, and the large domain wall velocities inherent to materials with strong spin-orbit coupling make SOTs especially appealing for fast switching applications in nonvolatile memory and logic units. So far, however, the timescale and evolution of the magnetization during the switching process have ...
The role of Rashba spin-orbit coupling in valley-dependent transport of Dirac fermions
Energy Technology Data Exchange (ETDEWEB)
Hasanirok, Kobra; Mohammadpour, Hakimeh
2017-01-01
At this work, spin- and valley-dependent electron transport through graphene and silicene layers are studied in the presence of Rashba spin- orbit coupling. We find that the transport properties of the related ferromagnetic/normal/ferromagnetic structure depend on the relevant parameters. A fully valley- and spin- polarized current is obtained. As another result, Rashba spin-orbit interaction plays important role in controlling the transmission characteristics.
[OsF6]x−: Molecular Models for Spin-Orbit Entangled Phenomena
DEFF Research Database (Denmark)
Pedersen, Kasper Steen; Woodruff, Daniel N.; Singh, Saurabh Kumar
2017-01-01
Heavy 5d elements, like osmium, feature strong spin-orbit interactions which are at the origin of exotic physical behaviors. Revealing the full potential of, for example, novel osmium oxide materials (“osmates”) is however contingent upon a detailed understanding of the local single-ion propertie...... state was elucidated; mirroring the osmium electronic structure in osmates. The realization of such molecular model systems provides a unique chemical playground to engineer materials exhibiting spin-orbit entangled phenomena....
Perturbative corrections to Λ{sub b}→Λ form factors from QCD light-cone sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Yu-Ming [Fakultät für Physik, Universität Wien,Boltzmanngasse 5, 1090 Vienna (Austria); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Road 238, Qingdao, Shandong 266100 (China)
2016-02-29
We compute radiative corrections to Λ{sub b}→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ{sub b}-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ{sub b}-baryon correlation function is justified at leading power in Λ/m{sub b}, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α{sub s}) shift the Λ{sub b}→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ{sub b}→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ{sub b}→Λ ℓ{sup +}ℓ{sup −} transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ{sub b}→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)
International Nuclear Information System (INIS)
Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.
1995-01-01
Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties
The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules
Wang, Zhi-Gang
2018-04-01
In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.
Higher-twist effects in the B → π transition form factor from QCD light-cone sum rules
Energy Technology Data Exchange (ETDEWEB)
Khodjamirian, Alexander; Rusov, Aleksey [Universitaet Siegen (Germany). Fakultaet IV, Department Physik, Theoretische Physik 1 Walter-Flex-Strasse 3 57068 Siegen
2016-07-01
I report on the progress in calculating new higher-twist corrections to the QCD light-cone sum rule for the B → π transition form factor. First, the expansion of the massive heavy-quark propagator in the external gluonic field near the light-cone was extended to include new terms containing the gluon-field strength derivatives. The resulting analytical expressions for the twist-5 and twist-6 contributions to the correlation function were obtained in a factorized approximation, expressed via the product of the quark-condensate density and the lower-twist pion distribution amplitudes. The numerical analysis of new higher-twist effects is in progress.
Gold-plated mode of CP-violation in decays of B{sub c} meson from QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Kiselev, V V [Russian State Research Center, ' Institute for High Energy Physics' , Protvino, Moscow Region, 142281 (Russian Federation)
2004-10-01
A model-independent method based on the triangle ideology is implemented to extract the CKM-matrix angle {gamma} in the decays of the doubly heavy long-lived meson B{sub c}. We analyse a colour structure of diagrams and conditions to reconstruct two reference triangles by tagging the flavour and CP eigenstates of D{sup 0} - D{sup 0}bar mesons in the fixed exclusive channels. The characteristic branching ratios are evaluated in the framework of QCD sum rules.
International Nuclear Information System (INIS)
Brancus, I.M.; Rebel, H.; Wentz, J.; Corcalciuc, V.
1989-11-01
The original sum-rule model worked out by Wilczynski et al. and successfully used for a global description of complete and incomplete fusion reactions has been extended by a term accounting for dissipative processes of the dinuclear system on its way to fusion. When applying to light and heavy ion collisions with various targets at energies in the transitional region, the new term proves to be rather essential for reproducing the element distributions of the fragments emitted from rather asymmetric systems. (orig.) [de
International Nuclear Information System (INIS)
Lopez, C.
1981-01-01
We write the simplest possible parametrizations of deep inelastic structure functions which satisfy the following requirements: (i) exact compatibility with QCD at the endpoints x = 0,1, to second order; (ii) fulfilment of sum rules to second order; (iii) leading and subleading Regge behaviour. In all we find that, including the QCD scale Λ, such parametrizations describe in a simple manner the three standard functions W 1 , W 2 , W 3 for all x, Q 2 in terms of four to six parameters only (two more if allowing for higher twists). (orig.)
SU (N ) spin-wave theory: Application to spin-orbital Mott insulators
Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin
2018-05-01
We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.
Gate tunable spin transport in graphene with Rashba spin-orbit coupling
Tan, Xiao-Dong; Liao, Xiao-Ping; Sun, Litao
2016-10-01
Recently, it attracts much attention to study spin-resolved transport properties in graphene with Rashba spin-orbit coupling (RSOC). One remarkable finding is that Klein tunneling in single layer graphene (SLG) with RSOC (SLG + R for short below) behaves as in bi-layer graphene (BLG). Based on the effective Dirac theory, we reconsider this tunneling problem and derive the analytical solution for the transmission coefficients. Our result shows that Klein tunneling in SLG + R and BLG exhibits completely different behaviors. More importantly, we find two new transmission selection rules in SLG + R, i.e., the single band to single band (S → S) and the single band to multiple bands (S → M) transmission regimes, which strongly depend on the relative height among Fermi level, RSOC, and potential barrier. Interestingly, in the S → S transmission regime, only normally incident electrons have capacity to pass through the barrier, while in the S → M transmission regime the angle-dependent tunneling becomes very prominent. Using the transmission coefficients, we also derive spin-resolved conductance analytically, and conductance oscillation with the increasing barrier height and zero conductance gap are found in SLG + R. The present study offers new insights and opportunities for developing graphene-based spin devices.
Sum rules for multi-photon spectroscopy of ions in finite symmetry
International Nuclear Information System (INIS)
Kibler, M.; Daoud, M.
1993-05-01
Models describing one- and two-photon transitions for ions in crystalline environments are unified and extended to the case of parity-allowed and parity-forbidden p-photon transitions. The number of independent parameters for characterizing the polarization dependence is shown to depend on an ensemble of properties and rules which combine symmetry considerations and physical models. (author) 26 refs
Status of the B0(S)-bar {B}0(S) Mixing from QCD Spectral Sum Rules
Narison, Stephan
2002-07-01
In this talk, I summarize new results 1 obtained from QCD spectral sum rules (QSSR), on the bag constant parameters entering in the analysis of the B0(s)-bar {B}0(s) mass-differences. Taking the average of the results from the Laplace and moment sum rules, one obtains to order α s: fB√ {hat {B}_B} ˜= (229 ± 55) GeV, fB{s}√ {BB_{s}}/f_B√ {BB} ˜= 1.18 ± 0.03, in units where fπ = 130.7 MeV. Combined with the experimental data on the mass-differences ΔMd,s, one obtains the constraint on the CKM weak mixing angle: |Vts/Vtd|2 ≥ 20.2(1.3). Alternatively, using the weak mixing angle from the analysis of the unitarity triangle and the data on ΔMd, one predicts ΔMs = 18.3(2.1) ps-1 in agreement with the present experimental lower bound and within the reach of Tevatron 2.
The spin structure function g1p of the proton and a test of the Bjorken sum rule
Directory of Open Access Journals (Sweden)
C. Adolph
2016-02-01
Full Text Available New results for the double spin asymmetry A1p and the proton longitudinal spin structure function g1p are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g1p(x by about a factor of two in the region x≲0.02. A next-to-leading order QCD fit to the g1 world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, ΔΣ, ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of g1p. The uncertainty of ΔΣ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function g1NS(x,Q2 yields as ratio of the axial and vector coupling constants |gA/gV|=1.22±0.05 (stat.±0.10 (syst., which validates the sum rule to an accuracy of about 9%.
Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2
Chaudhuri, Dipanjan; Cheng, Bing; Yaresko, Alexander; Gibson, Quinn D.; Cava, R. J.; Armitage, N. P.
2017-08-01
Strong spin-orbit coupling (SOC) can result in ground states with nontrivial topological properties. The situation is even richer in magnetic systems where the magnetic ordering can potentially have strong influence over the electronic band structure. The class of A MnBi2 (A = Sr, Ca) compounds are important in this context as they are known to host massive Dirac fermions with strongly anisotropic dispersion, which is believed to be due to the interplay between strong SOC and magnetic degrees of freedom. We report the optical conductivity of YbMnBi2, a newly discovered member of this family and a proposed Weyl semimetal (WSM) candidate with broken time reversal symmetry. Together with density functional theory (DFT) band-structure calculations, we show that the complex conductivity can be interpreted as the sum of an intraband Drude response and interband transitions. We argue that the canting of the magnetic moments that has been proposed to be essential for the realization of the WSM in an otherwise antiferromagnetically ordered system is not necessary to explain the optical conductivity. We believe our data is explained qualitatively by the uncanted magnetic structure with a small offset of the chemical potential from strict stochiometry. We find no definitive evidence of a bulk Weyl nodes. Instead, we see signatures of a gapped Dirac dispersion, common in other members of A MnBi2 family or compounds with similar 2D network of Bi atoms. We speculate that the evidence for a WSM seen in ARPES arises through a surface magnetic phase. Such an assumption reconciles all known experimental data.
Effect of deformation and orientation on spin orbit density dependent nuclear potential
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Energy Technology Data Exchange (ETDEWEB)
Bai, Chunxu, E-mail: chunxu_bai@semi.ac.cn [School of Physics, Anyang Normal University, Anyang 455000 (China); Yang, Yanling [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); School of Physics, Anyang Normal University, Anyang 455000 (China)
2016-08-26
Based on the Dirac–Bogoliubov–de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry–Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI. - Highlights: • The retro-Andreev reflection in graphene is suppressed by the spin orbit interaction. • The specular Andreev reflection in graphene can be enhanced largely by the spin orbit interaction. • The Fabry–Perot interferences in the graphene-based barrier lead to the oscillating feature of the tunneling conductance. • The spin orbit interaction is also vital in diagnosing the specular Andreev reflection in graphene.
Energy Technology Data Exchange (ETDEWEB)
Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)
2016-05-15
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.
Directory of Open Access Journals (Sweden)
Armen N. Kocharian
2016-05-01
Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.
International Nuclear Information System (INIS)
Bai, Chunxu; Yang, Yanling
2016-01-01
Based on the Dirac–Bogoliubov–de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry–Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI. - Highlights: • The retro-Andreev reflection in graphene is suppressed by the spin orbit interaction. • The specular Andreev reflection in graphene can be enhanced largely by the spin orbit interaction. • The Fabry–Perot interferences in the graphene-based barrier lead to the oscillating feature of the tunneling conductance. • The spin orbit interaction is also vital in diagnosing the specular Andreev reflection in graphene.
Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers
MacNeill, D.; Stiehl, G. M.; Guimaraes, M. H. D.; Buhrman, R. A.; Park, J.; Ralph, D. C.
2017-03-01
Recent discoveries regarding current-induced spin-orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin-orbit torques have an important limitation--the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin-orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin-orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin-orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies.
Wu, Yang; Narayanapillai, Kulothungasagaran; Elyasi, Mehrdad; Qiu, Xuepeng; Yang, Hyunsoo
2016-10-01
The efficient generation of pure spin currents and manipulation of the magnetization dynamics of magnetic structures is of central importance in the field of spintronics. The spin-orbit effect is one of the promising ways to generate spin currents, in which a charge current can be converted to a transverse spin current due to the spin-orbit interaction. We investigate the spin dynamics in the presence of strong spin-orbit coupling materials such as LaAlO3/SrTiO3 oxide heterostructures. Angle dependent magnetoresistance measurements are employed to detect and understand the current-induced spin-orbit torques, and an effective field of 2.35 T is observed for a dc-current of 200 uA. In order to understand the interaction between light and spin currents, we use a femtosecond laser to excite an ultrafast transient spin current and subsequent terahertz (THz) emission in nonmagnet (NM)/ferromagnet (FM)/oxide heterostructures. The THz emission strongly relies on spin-orbit interaction, and is tailored by the magnitude and sign of the effective spin Hall angle of the NM. Our results can be utilized for ultrafast spintronic devices and tunable THz sources.
High-order moments of spin-orbit energy in a multielectron configuration
Na, Xieyu; Poirier, M.
2016-07-01
In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.
Analysis of J/psi → etasub(c)γ decay by the method of QCD sum rules
International Nuclear Information System (INIS)
Bejlin, V.A.; Radyushkin, A.V.
1984-01-01
The radiative M1 transitions in charmonium are analyzed by the method of QCD sum rules taking into account nonperturbative corrections O( ). The dependence of the result on the choice of the parameter is investigated. The account of the lower nonperturbative corrections to the amplitude, describing radiation M1-transitions in charmonium, changes slightly the result for the decay widths GITA(J/psi → etasub(c)γ). The calculations show that the values of parameter phi, somewhat larger than the standard, one, result in shifting the theoretical values for GITA(J/psi → etasub(c)γ) in the direction of the experimental one, however no unambiguous conclusion on phi deviation of the standard value can be drawn without account for the contribution from higher dimensions
International Nuclear Information System (INIS)
Tas, Murat; Tanatar, B.
2008-01-01
We calculate the collective excitation modes of strongly coupled bilayer charged Bose systems. We employ the dielectric matrix formulation to study the correlation effects within the random-phase approximation (RPA), the self consistent field approximation Singwi, Tosi, Land, and Sjoelander (STLS), and the quasilocalized charge approximation (QLCA), which satisfies the third-frequency-moment ( 3 >) sum rule. We find that the QLCA predicts a long-wavelength correlation-induced energy gap in the out-of-phase plasmon mode, similar to the situation in electronic bilayer systems. The energy gap and the plasmon density of states are studied as a function of interlayer separation and coupling parameter r s . The results should be helpful for experimental investigations
Energy Technology Data Exchange (ETDEWEB)
Hasselgren, L; Fahlander, C; Edvardson, L O; Thun, J E; Falk, F; Ghumman, B S
1975-04-01
The orientation precession technique, REPREC, for measurements of quadrupole moments is described. The application of REPREC to the measurement of the static electric quadrupole moments of the first excited 2/sup +/-states in /sup 108/ /sup 110/Pd is presented. The possibility to measure the matrix product P/sub 4/ = M/sub 02/M/sub 22/,M/sub 02/M/sub 22/ is also discussed. Such measurements are presented for /sup 108/ /sup 110/Pd. The results of these measurements are P/sub 4/O for both /sup 108/Pd and /sup 110/Pd. For /sup 108/Pd the quadrupole moment of the first excited 2/sup +/-state was found to be -.66 +- .18 eb and for /sup 110/Pd -.72 +- .14 eb. Intrinsic nuclear properties for /sup 106 -110/Pd are derived using the sum rules suggested by Kumar.
International Nuclear Information System (INIS)
Guellenstern, S.
1991-09-01
Using the technique of Cherniak and Zhitnitzky we have calculated the wavefunctions of ρ(770) and Φ(1020) within the framework of QCD sum rules. Whereas the standard approach assumes light-like distances of the quarks (z 2 = 0), we also have taken into account higher order terms in z 2 . Thus, we obtained non-vanishing orbital angular momentum contributions. The first few moments of various invariant functions have been calculated with the help of an especially developed REDUCE program package. In zeroth order (z 2 = 0) our results of the reconstructed wavefunctions agree with those in the literature. However, we got first order contributions in z 2 of an amount of almost 10% of the corresponding zeroth order. (orig.)
The Adler-Weisberger sum rule and the sigma-Commutator for the Kaon-Neutron system
International Nuclear Information System (INIS)
Rodriguez-Vargas, A.M.; Violini, G.
1980-01-01
The axial coupling constant is determined from Kp and Kn Adler-Weisberger sum rule, in correspondence with different anti K N unphysical region parameterizations. Moreover a new calculation of the sigma-term is presented. It is shown that by using Kn data it is possible to reduce considerably the error on sigma sup(KK)sub(NN) with respect to the analogous calculation for Kp, but that an accurate determination requires a good value for the psub(3/2) anti K N scattering length. By preferring the solutions which lead to a positive sigma-term, one obtains sigma sup(KK)sub(NN) = 638 +- 438 MeV. (orig.) 891 HSI/orig. 892 HIS
Adler function, sum rules and Crewther relation of order O(αs4): The singlet case
International Nuclear Information System (INIS)
Baikov, P.A.; Chetyrkin, K.G.; Kühn, J.H.; Rittinger, J.
2012-01-01
The analytic result for the singlet part of the Adler function of the vector current in a general gauge theory is presented in five-loop approximation. Comparing this result with the corresponding singlet part of the Gross-Llewellyn Smith sum rule (Baikov et al., 2010 ), we successfully demonstrate the validity of the generalized Crewther relation for the singlet part. This provides a non-trivial test of both our calculations and the generalized Crewther relation. Combining the result with the already available non-singlet part of the Adler function (Baikov et al., 2008 , Baikov et al., 2010 ) we arrive at the complete O(α s 4 ) expression for the Adler function and, as a direct consequence, at the complete O(α s 4 ) correction to the e + e - annihilation into hadrons in a general gauge theory.
Analysis of the strong decays Ds3*(2860) → DK, D*K with QCD sum rules
International Nuclear Information System (INIS)
Wang, Zhi-Gang
2016-01-01
In this article, we assign the D s3 * (2860) to be a D-wave c anti s meson, study the hadronic coupling constants G D s3 * (2860)DK and G D s3 * (2860)D * K with the three-point QCD sum rules, and calculate the partial decay widths Γ(D s3 * (2860) → D * K) and Γ(D s3 * (2860) → DK). The predicted ratio R = Γ(D s3 * (2860) → D * K)/Γ(D s3 * (2860) → DK) = 0.57±0.38 cannot reproduce the experimental value R = Br(D sJ * (2860) → D * K)/Br(D sJ * (2860) → DK) = 1.10±0.15±0.19. (orig.)
Analysis of the strong decays Ds3 *(2860) → DK, D*K with QCD sum rules
Wang, Zhi-Gang
2016-10-01
In this article, we assign the D_{s3}^{ast}(2860) to be a D-wave c bar{s} meson, study the hadronic coupling constants G_{D_{s3}^{ast}(2860)DK} and G_{D_{s3}^{ast} (2860)D^{ast}K} with the three-point QCD sum rules, and calculate the partial decay widths Γ (D_{s3}^{ast} (2860) → D^{ast}K) and Γ (D_{s3}^{ast}(2860) → DK) . The predicted ratio R = Γ (D_{s3}^{ast} (2860)→ D^{ast}K)/Γ (D_{s3}^{ast} (2860)→ DK) = 0.57± 0.38 cannot reproduce the experimental value R = Br(D_{sJ}^{ast} (2860)→ D^{ast}K)/Br (D_{sJ}^{ast} (2860)→ DK) = 1.10 ± 0.15 ± 0.19.
International Nuclear Information System (INIS)
Lu Jianduo; Li Jianwen
2010-01-01
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.
The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system
Akbari, M.; Rezaei, G.; Khordad, R.
2017-01-01
We study the impact of the spin-orbit coupling due to both structure and crystal inversion asymmetry and external magnetic field on the level structure in a two-dimensional quantum pseudo-dot. It is demonstrated that, both the spin-orbit interactions and magnetic field strength have a great influence on energy eigenvalues of the system. Also, we found that an increase in magnetic field enhances the spin-orbit coupling strength. This phenomena leads to increase the energy eigenvalues and energy splitting due to the spin-orbit coupling.
Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot
Hofmann, A.; Maisi, V. F.; Krähenmann, T.; Reichl, C.; Wegscheider, W.; Ensslin, K.; Ihn, T.
2017-10-01
The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.
Phase-space curvature in spin-orbit-coupled ultracold atomic systems
Armaitis, J.; Ruseckas, J.; Anisimovas, E.
2017-04-01
We consider a system with spin-orbit coupling and derive equations of motion which include the effects of Berry curvatures. We apply these equations to investigate the dynamics of particles with equal Rashba-Dresselhaus spin-orbit coupling in one dimension. In our derivation, the adiabatic transformation is performed first and leads to quantum Heisenberg equations of motion for momentum and position operators. These equations explicitly contain position-space, momentum-space, and phase-space Berry curvature terms. Subsequently, we perform the semiclassical approximation and obtain the semiclassical equations of motion. Taking the low-Berry-curvature limit results in equations that can be directly compared to previous results for the motion of wave packets. Finally, we show that in the semiclassical regime, the effective mass of the equal Rashba-Dresselhaus spin-orbit-coupled system can be viewed as a direct effect of the phase-space Berry curvature.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
Statistical properties of spectra in harmonically trapped spin-orbit coupled systems
DEFF Research Database (Denmark)
V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.
2014-01-01
We compute single-particle energy spectra for a one-body Hamiltonian consisting of a two-dimensional deformed harmonic oscillator potential, the Rashba spin-orbit coupling and the Zeeman term. To investigate the statistical properties of the obtained spectra as functions of deformation, spin......-orbit and Zeeman strengths we examine the distributions of the nearest neighbor spacings. We find that the shapes of these distributions depend strongly on the three potential parameters. We show that the obtained shapes in some cases can be well approximated with the standard Poisson, Brody and Wigner...... distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choices of deformation and spin-orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding...
Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure
Wang, Xuhui; Ortiz Pauyac, Christian; Manchon, Aurelien
2014-01-01
Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.
Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure
Wang, Xuhui
2014-02-07
Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.
Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot.
Hofmann, A; Maisi, V F; Krähenmann, T; Reichl, C; Wegscheider, W; Ensslin, K; Ihn, T
2017-10-27
The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.
The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors
International Nuclear Information System (INIS)
Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang
2012-01-01
We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering
International Nuclear Information System (INIS)
Lutz, M.F.M.; Kolomeitsev, E.E.
2001-05-01
The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large N c baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large N c expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of p lab ≅ 500 MeV. (orig.)
Kohut, Sviataslau V; Staroverov, Viktor N
2013-10-28
The exchange-correlation potential of Kohn-Sham density-functional theory, vXC(r), can be thought of as an electrostatic potential produced by the static charge distribution qXC(r) = -(1∕4π)∇(2)vXC(r). The total exchange-correlation charge, QXC = ∫qXC(r) dr, determines the rate of the asymptotic decay of vXC(r). If QXC ≠ 0, the potential falls off as QXC∕r; if QXC = 0, the decay is faster than coulombic. According to this rule, exchange-correlation potentials derived from standard generalized gradient approximations (GGAs) should have QXC = 0, but accurate numerical calculations give QXC ≠ 0. We resolve this paradox by showing that the charge density qXC(r) associated with every GGA consists of two types of contributions: a continuous distribution and point charges arising from the singularities of vXC(r) at each nucleus. Numerical integration of qXC(r) accounts for the continuous charge but misses the point charges. When the point-charge contributions are included, one obtains the correct QXC value. These findings provide an important caveat for attempts to devise asymptotically correct Kohn-Sham potentials by modeling the distribution qXC(r).
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.
2018-05-01
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.
Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling
Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki
2017-07-01
We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.
Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling
International Nuclear Information System (INIS)
Baym, Gordon; Ozawa, Tomoki
2014-01-01
Cold atomic Bose-Einstein systems in the presence of simulated Rashba- Dresselhaus spin-orbit coupling exhibit novel physical features. With pure in-plane Rashba coupling the system is predicted in Bogoliubov-Hartree-Fock to have a stable Bose condensate below a critical temperature, even though the effective density of states is two-dimensional. In addition the system has a normal state at all temperatures. We review here the new physics when the system has such spin-orbit coupling, and discuss the nature of the finite temperature condensation phase transition from the normal to condensed phases.
Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism
Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu
2018-02-01
Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.
International Nuclear Information System (INIS)
Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun
2013-01-01
The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field
Next-order spin-orbit contributions to chaos in compact binaries
International Nuclear Information System (INIS)
Wang Yuzhao; Wu Xin
2011-01-01
This paper is mainly devoted to numerically investigating the effects of the next-order spin-orbit interactions including the 2.5 post-Newtonian order term of the equations of motion and the second post-Newtonian order terms of the spin precession equations on chaos in the conservative Lagrangian dynamics of a spinning compact binary system. It is shown sufficiently through individual orbit simulations, the dependence of the invariant fast Lyapunov indicators on the variations of initial spin angles and the phase space scans for chaos, that the next-order spin-orbit contributions do play an important role in the amplification of chaos.
Spin conversion induced by spin-orbit interaction in positronium collisions
International Nuclear Information System (INIS)
Saito, H; Nakayama, T; Hyodo, T
2009-01-01
The positronium spin conversion reaction induced by spin-orbit interaction is investigated. We obtain the reaction rates during positronium-Xe and positronium-Kr collisions by using the Zeeman mixing of positronium states. At thermal energies corresponding to room temperature, the reaction rate for spin conversion due to spin-orbit interaction is found to be almost twice that for the positronium pick-off reaction. We also study the energy dependence of the reaction rate. The mean energy of positronium is controlled by changing the gas temperature and using positronium in thermal equilibrium. We found that the reaction rate increases with the collision energy.
Influence of the spin-orbit coupling on nuclear superfluidity along the N=Z line
International Nuclear Information System (INIS)
Juillet, O.; Josse, S.
2000-01-01
We show that the spin-orbit potential of the nuclear mean field destroys isoscalar superfluid correlations in self-conjugate nuclei. Using group theory and boson mapping techniques on a Hamiltonian including single particle splittings and a SO ST (8) pairing interaction, we give analytical expression for the spin-orbit dependence of some N =Z properties such as the relative position of T = 0 and T = 1 states in odd-odd systems or double binding-energy differences of even-even nuclei. (authors)
International Nuclear Information System (INIS)
Fujita, T; Jalil, M B A; Tan, S G
2008-01-01
We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors
International Nuclear Information System (INIS)
Khotkevich, N.V.; Kolesnichenko, Yu.A.; Vovk, N.P.
2016-01-01
The electron tunneling from the quasi-two-dimensional (surface) states with the spin-orbit interaction into bulk-mode states is studied in the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier. The influence of the scattering of quasi-two-dimensional electrons by a single magnetic defect on the tunnel current is analyzed. Analytic formulas for the conductance of a tunnel point-contact as a function of its distance from the defect are obtained. It is shown that the analysis of the local magnetization density around the defect by means of spin-polarized scanning tunneling microscopy allows finding the constant of spin orbit interaction.
Temperature dependence of spin-orbit torques in Cu-Au alloys
Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang
2017-01-01
We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.
Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.
Zhou, Tao; Gao, Yi; Wang, Z D
2014-06-11
We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.
Temperature dependence of spin-orbit torques in Cu-Au alloys
Wen, Yan
2017-03-07
We investigated current driven spin-orbit torques in Cu40Au60/Ni80Fe20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.
Spin-orbital superexchange physics emerging from interacting oxygen molecules in KO2
International Nuclear Information System (INIS)
Solovyev, I V
2008-01-01
We propose that the spin-orbital-lattice coupled phenomena, widely known for the transition-metal oxides, can be realized in molecular solids, comprising of orbitally degenerate magnetic O 2 - ions. KO 2 is one such system. Using the first-principles electronic structure calculations, we set-up an effective spin-orbital superexchange model for the low-energy molecular bands and argue that many anomalous properties of KO 2 indeed replicate the status of its orbital system in different temperature regimes
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Kominis, Ioannis [Princeton Univ., NJ (United States)
2001-01-01
This thesis presents the results of E-94010, an experiment at Thomas Jefferson National Accelerator Facility (TJNAF) designed to study the spin structure of the neutron at low momentum transfer, and to test the “extended” Gerasimov-Drell-Hearn (GDH) sum rule. The first experiment of its kind, it was performed in experimental Hall-A of TJNAF using a new polarized ^{3}He facility. It has recently been shown that the GDH sum rule and the Bjorken sum rule are both special examples of a more general sum rule that applies to polarized electron scattering off nucleons. This generalized sum rule, due to Ji and Osborne, reduces to the GDH sum rule at Q^{2} = 0 and to the Bjorken sum rule at Q^{2} >> 1 GeV^{2}. By studying the Q^{2} evolution of the extended GDH sum, one learns about the transition from quark-like behavior to hadronic-like behavior. We measured inclusive polarized cross sections by scattering high energy polarized electrons off the new TJNAF polarized ^{3}He target with both longitudinal and transverse target orientations. The high density ^{3}He target, based on optical pumping and spin exchange, was used as an effective neutron target. The target maintained a polarization of about 35% at beam currents as high as 151tA. We describe the precision ^{3}He polarimetry leading to a systematic uncertainty of the target polarization of 4% (relative). A strained GaAs photocathode was utilized in the polarized electron gun, which provided an electron beam with a polarization of about 70%, known to 3% (relative). By using six different beam energies (between 0.86 and 5.06 GeV) and a fixed scattering angle of 15.5°, a wide kinematic coverage was achieved, with 0.02 GeV^{2}< Q^{2} <1 GcV^{2} and 0.5 GeV< W < 2.5 GeV for the squared momentum transfer and invariant mass, respectively. From the measured cross sections we extract the ^{3}He spin structure functions g$3 He
International Nuclear Information System (INIS)
Kondratyuk, S.; Kubodera, K.; Myhrer, F.; Scholten, O.
2004-01-01
The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: (1) by evaluating the scattering amplitude at the corresponding low-energy kinematics and (2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the Δ resonance, including its dressing with meson loops, is discussed in some detail and found to be small
Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter
2018-02-01
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.
Dufner, Michael; Leising, Daniel; Gebauer, Jochen E
2016-05-01
How are people who generally see others positively evaluated themselves? We propose that the answer to this question crucially hinges on the content domain: We hypothesize that Agency follows a "zero-sum principle" and therefore people who see others ashighin Agency are perceived aslowin Agency themselves. In contrast, we hypothesize that Communion follows a "non-zero-sum principle" and therefore people who see others ashighin Communion are perceived ashighin Communion themselves. We tested these hypotheses in a round-robin and a half-block study. Perceiving others as agentic was indeed linked to being perceived as low in Agency. To the contrary, perceiving others as communal was linked to being perceived as high in Communion, but only when people directly interacted with each other. These results help to clarify the nature of Agency and Communion and offer explanations for divergent findings in the literature. © 2016 by the Society for Personality and Social Psychology, Inc.
Changing spin-orbit interaction with increasing exoticism across the periodic table
International Nuclear Information System (INIS)
Kshetri, Ritesh; Ray, Indrani; Saha Sarkar, M.; Sarkar, Sukhendusekhar
2005-01-01
Recently, experimental information about nuclei away from the valley of stability are being available. Several workers have suggested that shell structures may change away from the line of stability and nuclear spin-orbit interaction weakens as a function of the neutron excess
Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling
Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas
2017-12-01
We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.
Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling
DEFF Research Database (Denmark)
Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.
2015-01-01
We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...
Scattering resonances in a low-dimensional Rashba-Dresselhaus spin-orbit coupled quantum gas
Wang, Su-Ju; Blume, D.
2017-04-01
Confinement-induced resonances allow for the tuning of the effective one-dimensional coupling constant. When the scattering state associated with the ground transverse mode is brought into resonance with the bound state attached to the energetically excited transverse modes, the atoms interact through an infinitely strong repulsion. This provides a route to realize the Tonks-Girardeau gas. On the other hand, the realization of synthetic gauge fields in cold atomic systems has attracted a lot of attention. For instance, bound-state formation is found to be significantly modified in the presence of spin-orbit coupling in three dimensions. This motivates us to study ultracold collisions between two Rashba-Dresselhaus spin-orbit coupled atoms in a quasi-one-dimensional geometry. We develop a multi-channel scattering formalism that accounts for the external transverse confinement and the spin-orbit coupling terms. The interplay between these two single-particle terms is shown to give rise to new scattering resonances. In particular, it is analyzed what happens when the scattering energy crosses the various scattering thresholds that arise from the single-particle confinement and the spin-orbit coupling. Support by the NSF is gratefully acknowledged.
Dirac-fermions in graphene d-wave superconducting heterojunction with the spin orbit interaction
Wang, Juntao; Wang, Andong; Zhang, Rui; Sun, Deng; Yang, Yanling
2017-09-01
In this study, based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the interaction effect between the anisotropic d-wave pairing symmetry and the spin orbit interaction (the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI)) in a graphene superconducting heterojunction. We find that the spin orbit interaction (SOI) plays a critical role on the tunneling conductance in the pristine case, but minimally affecting the tunneling conductance in the heavily doped case. As for the zero bias state, in contrast to the keep intact feature in the heavily doped case, it exhibits a distinct dependence on the RSOI and the DSOI in the pristine case. In particular, the damage of the zero bias state with a slight DSOI results in the disappearance of the zero bias conductance peak. Moreover, the tunneling conductances also show a qualitative difference with respect to the RSOI when both the RSOI and the DSOI are finite. These remarkable results suggest that the SOI and the anisotropic superconducting gap can be regarded as a key tool for diagnosing the specular Andreev reflection.
Železný, J.
2017-01-10
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Spin-orbit interaction driven dimerization in one dimensional frustrated magnets
Zhang, Shang-Shun; Batista, Cristian D.
Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.
Yokoyama, T.; Eto, M.; Nazarov, Y.V.
2012-01-01
We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the
Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots
DEFF Research Database (Denmark)
Zumbuhl, D.; Miller, Jessica; M. Marcus, C.
2002-01-01
We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localizat...
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
Manchon, Aurelien
2018-01-29
Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.
Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.
2017-01-01
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas
DEFF Research Database (Denmark)
Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej
2015-01-01
Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic to a...
The role of spin-orbit potential in nuclear prolate-shape dominance
Energy Technology Data Exchange (ETDEWEB)
Takahara, Satoshi, E-mail: staka@ks.kyorin-u.ac.jp [Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611 (Japan); Onishi, Naoki [University of Tokyo (Japan); University of Yamanashi (Japan); Shimizu, Yoshifumi R. [Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 812-8581 (Japan); Tajima, Naoki [Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan)
2011-08-26
It is confirmed, in terms of the Woods-Saxon-Strutinsky method, that the spin-orbit potential plays a decisive role in the predominance of prolate deformation, which has been a long standing problem in nuclear physics. It is originated from the combined effects of the spin-orbit coupling and the diffused surface of the potential, in agreement with the previous work based on a more schematic Nilsson-Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect to the strength of spin-orbit potential and, the prolate-shape dominance is realized at the proper strength of the spin-orbit potential together with the standard surface diffuseness; this oscillatory behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy differences between oblate and prolate minima in this Letter are consistent with those of our extensive self-consistent calculations of the Hartree-Fock + BCS method with the Skyrme interaction.
The role of spin-orbit potential in nuclear prolate-shape dominance
International Nuclear Information System (INIS)
Takahara, Satoshi; Onishi, Naoki; Shimizu, Yoshifumi R.; Tajima, Naoki
2011-01-01
It is confirmed, in terms of the Woods-Saxon-Strutinsky method, that the spin-orbit potential plays a decisive role in the predominance of prolate deformation, which has been a long standing problem in nuclear physics. It is originated from the combined effects of the spin-orbit coupling and the diffused surface of the potential, in agreement with the previous work based on a more schematic Nilsson-Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect to the strength of spin-orbit potential and, the prolate-shape dominance is realized at the proper strength of the spin-orbit potential together with the standard surface diffuseness; this oscillatory behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy differences between oblate and prolate minima in this Letter are consistent with those of our extensive self-consistent calculations of the Hartree-Fock + BCS method with the Skyrme interaction.
Topological phases in superconductor-noncollinear magnet interfaces with strong spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Menke, H.; Schnyder, A.P. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Toews, A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Quantum Matter Institute, University of British Columbia, Vancouver, BC (Canada)
2016-07-01
Majorana fermions are predicted to emerge at interfaces between conventional s-wave superconductors and non-collinear magnets. In these heterostructures, the spin moments of the non-collinear magnet induce a low-energy band of Shiba bound states in the superconductor. Depending on the type of order of the magnet, the band structure of these bound states can be topologically nontrivial. Thus far, research has focused on systems where the influence of spin-orbit coupling can be neglected. Here, we explore the interplay between non-collinear (or non-coplanar) spin textures and Rashba-type spin-orbit interaction. This situation is realized, for example, in heterostructures between helical magnets and heavy elemental superconductors, such as Pb. Using a unitary transformation in spin space, we show that the effects of Rashba-type spin-orbit coupling are equivalent to the effects of the non-collinear spin texture of the helical magnet. We explore the topological phase diagram as a function of spin-orbit coupling, spin texture, and chemical potential, and find many interesting topological phases, such as p{sub x}-, (p{sub x} + p{sub y})-, and (p{sub x} + i p{sub y})-wave states. Conditions for the formation and the nature of Majorana edge channels are examined. Furthermore, we study the topological edge currents of these phases.
The magnetic g-tensors for ion complexes with large spin-orbit coupling
International Nuclear Information System (INIS)
Chang, P.K.L.; Liu, Y.S.
1977-01-01
A nonperturbative method for calculating the magnetic g-tensors is presented and discussed for complexes of transition metal ions of large spin-orbit coupling, in the ground term 2 D. A numerical example for CuCl 2 .2H 2 O is given [pt
DEFF Research Database (Denmark)
Hels, Morten Canth
to have god correspondence with transport data obtained from a two-terminal CNT quantum dot device. A CNT CPS device is fabricated which allows identification of non-collinear spin-orbit magnetic fields in the two segments of the device. This is made possible because the curved nanotube exhibits low...
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
Manchon, Aurelien; Miron, I. M.; Jungwirth, T.; Sinova, J.; Zelezný , J.; Thiaville, A.; Garello, K.; Gambardella, P.
2018-01-01
Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devices with potentially high impact in data storage, nonvolatile logic, and magnonic applications. This paper reviews recent progress in the field of spin-orbitronics, focusing on theoretical models, material properties, and experimental results obtained on bulk noncentrosymmetric conductors and multilayer heterostructures, including metals, semiconductors, and topological insulator systems. Relevant aspects for improving the understanding and optimizing the efficiency of nonequilibrium spin-orbit phenomena in future nanoscale devices are also discussed.
Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction
Ortiz Pauyac, Christian
2016-01-01
ﬁltering. In Chap. 3 we discuss the Rashba torque in ferromagnetic ﬁlms, and in Chap. 4 we study spin Hall eﬀect and spin swapping in ferromagnetic ﬁlms, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives
Influence of spin-orbit coupling on the magnetic dipole term T.sub.α./sub.
Czech Academy of Sciences Publication Activity Database
Šipr, Ondřej; Minár, J.; Ebert, H.
2016-01-01
Roč. 94, č. 14 (2016), 1-7, č. článku 144406. ISSN 2469-9950 R&D Projects: GA MŠk LD15097 Institutional support: RVO:68378271 Keywords : spin-orbit coupling * magnetism * XMCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016
Spin-orbit coupling effects in indium antimonide quantum well structures
Dedigama, Aruna Ruwan
Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.
Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei
Energy Technology Data Exchange (ETDEWEB)
Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)
2017-10-15
The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)
Energy Technology Data Exchange (ETDEWEB)
Baru, V. [Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44870 Bochum (Germany); Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, B. Cheremushinskaya 25, 117218 Moscow (Russian Federation); Hanhart, C. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Hoferichter, M., E-mail: hoferichter@hiskp.uni-bonn.de [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Kubis, B. [Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Nogga, A. [Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)
2011-12-15
We use chiral perturbation theory (ChPT) to calculate the {pi}{sup -}d scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) , where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a{sup +} and a{sup -}. We study isospin-breaking contributions to the three-body part of a{sub {pi}}{sup -}{sub d} due to mass differences, isospin violation in the {pi}N scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a{sub {pi}}{sup -}{sub d} due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
The Spin-dependent Structure Function of the Proton $g_{1}^p$ and a Test of the Bjorken Sum Rule
Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chaberny, D.; Cotic, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schluter, T.; Schopferer, S.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2010-01-01
The inclusive double-spin asymmetry, $A_{1}^{p}$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x < 0.7 and improve the statistical precision of g_{1}^{p}(x) by a factor of two in the region x < 0.02. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants g_A/g_V = 1.28+-0.07(stat)+-0.10(syst).
The Spin Structure Function $g_1^{\\rm p}$ of the Proton and a Test of the Bjorken Sum Rule
Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2016-02-10
New results for the double spin asymmetry $A_1^{\\rm p}$ and the proton longitudinal spin structure function $g_1^{\\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\\rm p}(x)$ by about a factor of two in the region $x\\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\\Delta \\Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\\rm p}$. The uncertainty of $\\Delta \\Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\\rm...
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
The Zb(10610) and Zb(10650) as axial-vector tetraquark states in the QCD sum rules
International Nuclear Information System (INIS)
Wang, Zhi-Gang; Huang, Tao
2014-01-01
In this article, we study the axial-vector mesons Z b (10610) and Z b (10650) with the Cγ μ –Cγ 5 type and Cγ μ –Cγ ν type interpolating currents, respectively, by carrying out the operator product expansion to the vacuum condensates up to dimension 10. In calculations, we explore the energy scale dependence of the QCD spectral densities of the hidden bottom tetraquark states in detail for the first time, and suggest a formula μ=√(M X/Y/Z 2 −(2M b ) 2 ) with the effective mass M b =5.13 GeV to determine the energy scales. The numerical results favor assigning the Z b (10610) and Z b (10650) as the Cγ μ –Cγ 5 type and Cγ μ –Cγ ν type hidden bottom tetraquark states, respectively. We obtain the mass of the J PC =1 ++ hidden bottom tetraquark state as a byproduct, which can be compared to the experimental data in the futures. Furthermore, we study the strong decays Z b ± (10610)→ϒπ ± ,η b ρ ± with the three-point QCD sum rules, the decay widths also support assigning the Z b (10610) as the Cγ μ –Cγ 5 type hidden bottom tetraquark state
Energy Technology Data Exchange (ETDEWEB)
Drangeid, K E; Sommerhalder, R [IBM Research Lab., Zurich (Switzerland)
1976-03-02
Based on previous work applying to normal conducting metals, an analog network model for superconducting metals is developed. The reciprocal surface impendance associated with this model is used as a response function in connection with the Kramers-Kronig relations and the sum rule to compute electrodynamic properties of superconductors.
International Nuclear Information System (INIS)
Nath, N.M.; Mukharjee, A.; Das, M.K.; Sarma, J.K.
2016-01-01
We present an analysis of the xF 3 (x,Q 2 ) structure function and Gross-Llewellyn Smith(GLS) sum rule taking into account the nuclear effects and higher twist correction. This analysis is based on the results presented in [N.M. Nath, et al, Indian J. Phys. 90 (2016) 117]. The corrections due to nuclear effects predicted in several earlier analysis are incorporated to our results of xF 3 (x,Q 2 ) structure function and GLS sum rule for free nucleon, corrected upto next-next-to-leading order (NNLO) perturbative order and calculate the nuclear structure function as well as sum rule for nuclei. In addition, by means of a simple model we have extracted the higher twist contributions to the non-singlet structure function xF 3 (x,Q 2 ) and GLS sum rule in NNLO perturbative orders and then incorporated them to our results. Our NNLO results along with nuclear effect and higher twist corrections are observed to be compatible with corresponding experimental data and other phenomenological analysis. (paper)
International Nuclear Information System (INIS)
Freericks, J. K.; Turkowski, V.
2009-01-01
Spectral moment sum rules are presented for the inhomogeneous many-body problem described by the fermionic Falicov-Kimball or Hubbard models. These local sum rules allow for arbitrary hoppings, site energies, and interactions. They can be employed to quantify the accuracy of numerical solutions to the inhomogeneous many-body problem such as strongly correlated multilayered devices, ultracold atoms in an optical lattice with a trap potential, strongly correlated systems that are disordered, or systems with nontrivial spatial ordering such as a charge-density wave or a spin-density wave. We also show how the spectral moment sum rules determine the asymptotic behavior of the Green function, self-energy, and dynamical mean field when applied to the dynamical mean-field theory solution of the many-body problem. In particular, we illustrate in detail how one can dramatically reduce the number of Matsubara frequencies needed to solve the Falicov-Kimball model while still retaining high precision, and we sketch how one can incorporate these results into Hirsch-Fye quantum Monte Carlo solvers for the Hubbard (or more complicated) models. Since the solution of inhomogeneous problems is significantly more time consuming than periodic systems, efficient use of these sum rules can provide a dramatic speed up in the computational time required to solve the many-body problem. We also discuss how these sum rules behave in nonequilibrium situations as well, where the Hamiltonian has explicit time dependence due to a driving field or due to the time-dependent change in a parameter such as the interaction strength or the origin of the trap potential.
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-10-31
In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are
Energy levels and electron g-factor of spherical quantum dots with Rashba spin-orbit interaction
International Nuclear Information System (INIS)
Vaseghi, B.; Rezaei, G.; Malian, M.
2011-01-01
We have studied simultaneous effects of Rashba spin-orbit interaction and external electric and magnetic fields on the subbands energy levels and electron g-factor of spherical quantum dots. It is shown that energy eigenvalues strongly depend on the combined effects of external electric and magnetic fields and spin-orbit interaction strength. The more the spin-orbit interaction strength increase, the more the energy eigenvalues increase. Also, we found that the electron g-factor sensitively differers from the bulk value due to the confinement effects. Furthermore, external fields and spin-orbit interaction have a great influence on this important quantity. -- Highlights: → Energy of spherical quantum dots depends on the spin-orbit interaction strength in external electric and magnetic fields. → Spin-orbit interaction shifts the energy levels. → Electron g-factor differs from the bulk value in spherical quantum dots due to the confinement effects. → Electron g-factor strongly depends on the spin-orbit interaction strength in external electric and magnetic fields.
International Nuclear Information System (INIS)
Shiles, E.; Sasaki, T.; Inokuti, M.; Smith, D.Y.
1980-01-01
An iterative, self-consistent procedure for the Kramers-Kronig analysis of data from reflectance, ellipsometric, transmission, and electron-energy-loss measurements is presented. This procedure has been developed for practical dispersion analysis since experimentally no single optical function can be readily measured over the entire range of frequencies as required by the Kramers-Kronig relations. The present technique is applied to metallic aluminum as an example. The results are then examined for internal consistency and for systematic errors by various optical sum rules. The present procedure affords a systematic means of preparing a self-consistent set of optical functions provided some optical or energy-loss data are available in all important spectral regions. The analysis of aluminum discloses that currently available data exhibit an excess oscillator strength, apparently in the vicinity of the L edge. A possible explanation is a systematic experimental error in the absorption-coefficient measurements resulting from surface layers: possibly oxides: present in thin-film transmission samples. A revised set of optical functions has been prepared by an ad hoc reduction of the reported absorption coefficient above the L edge by 14%. These revised data lead to a total oscillator strength consistent with the known electron density and are in agreement with dc-conductivity and stopping-power measurements as well as with absorption coefficients inferred from the cross sections of neighboring elements in the periodic table. The optical functions resulting from this study show evidence for both the redistribution of oscillator strength between energy levels and the effects on real transitions of the shielding of conduction electrons by virtual processes in the core states
Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule
Directory of Open Access Journals (Sweden)
C. Adolph
2017-06-01
Full Text Available Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a 6LiD target. The data were taken at 160 GeV beam energy and the results are shown for the kinematic range 1(GeV/c24GeV/c2 in the mass of the hadronic final state. The deuteron double-spin asymmetry A1d and the deuteron longitudinal-spin structure function g1d are presented in bins of x and Q2. Towards lowest accessible values of x, g1d decreases and becomes consistent with zero within uncertainties. The presented final g1d values together with the recently published final g1p values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the g1 world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge a0, which is identified in the MS‾ renormalisation scheme with the total contribution of quark helicities to the nucleon spin, is extracted at next-to-leading order accuracy from only the COMPASS deuteron data: a0(Q2=3(GeV/c2=0.32±0.02stat±0.04syst±0.05evol. Together with the recent results on the proton spin structure function g1p, the results on g1d constitute the COMPASS legacy on the measurements of g1 through inclusive spin-dependent deep inelastic scattering.
Local-duality QCD sum rules for strong isospin breaking in the decay constants of heavy-light mesons
Energy Technology Data Exchange (ETDEWEB)
Lucha, Wolfgang [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); Melikhov, Dmitri [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Vienna, Faculty of Physics, Vienna (Austria); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Rome (Italy)
2018-02-15
We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass m{sub Q} and small light-quark mass m{sub q}. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on m{sub q} arises predominantly (at the level of 70-80%) from the calculable m{sub q}-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of m{sub q} in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: f{sub D{sup +}} - f{sub D{sup 0}} = (0.96 ± 0.09) MeV, f{sub D}{sup {sub *}{sub +}} - f{sub D}{sup {sub *}{sub 0}} = (1.18 ± 0.35) MeV, f{sub B{sup 0}} - f{sub B{sup +}} = (1.01 ± 0.10) MeV, f{sub B}{sup {sub *}{sub 0}} - f{sub B}{sup {sub *}{sub +}} = (0.89 ± 0.30) MeV. (orig.)
International Nuclear Information System (INIS)
Wei Gaofeng; Dong Shihai
2008-01-01
In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential
Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling
Liao, Renyuan
2018-04-01
We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.
Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms
International Nuclear Information System (INIS)
Juzeliunas, Gediminas; Ruseckas, Julius; Dalibard, Jean
2010-01-01
We study the possibility for generating a new type of spin-orbit coupling for the center-of-mass motion of cold atoms, using laser beams that resonantly couple N atomic internal ground states to an extra state. After a general analysis of the scheme, we concentrate on the tetrapod setup (N=4) where the atomic state can be described by a three-component spinor, evolving under the action of a Rashba-Dresselhaus-type spin-orbit coupling for a spin 1 particle. We illustrate a consequence of this coupling by studying the negative refraction of atoms at a potential step and show that the amplitude of the refracted beam is significantly increased in comparison to the known case of spin 1/2 Rashba-Dresselhaus coupling. Finally, we explore a possible implementation of this tetrapod setup, using stimulated Raman couplings between Zeeman sublevels of the ground state of alkali-metal atoms.
Fulde-Ferrell-Like Molecular States in Spin-Orbit Coupled Ultracold Fermi Gases
Ye, Chong; Fu, Li-Bin
2017-08-01
We study the molecular state in three-component Fermi gases with a single impurity of 6 Li immersing in a no-interacting Fermi sea of 40 K in the presence of an equal weight combination of Rashba-type and Dresselhaus-type spin-orbit coupling. In the region where the Fermi sea has two disjointed Fermi surfaces, we find that there are two Fulde-Ferrell-like molecular states with dominating contributions from the lower helicity branch. Decreasing the scattering length or the spin-orbit coupled Fermi energy, we find the Fulde-Ferrell-like molecular state with small center-of-mass momentum is always energy favored and the other one will suddenly disappear. Supported by the National Basic Research Program of China (973 Program) under Grant Nos. 2013CBA01502, 2013CB834100, and the National Natural Science Foundation of China under Grant Nos. 11374040, 11475027, 11575027, 11274051, and 11075020
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Beukman, Arjan J. A.; de Vries, Folkert K.; van Veen, Jasper; Skolasinski, Rafal; Wimmer, Michael; Qu, Fanming; de Vries, David T.; Nguyen, Binh-Minh; Yi, Wei; Kiselev, Andrey A.; Sokolich, Marko; Manfra, Michael J.; Nichele, Fabrizio; Marcus, Charles M.; Kouwenhoven, Leo P.
2017-12-01
The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field, the quantum well can be tuned between a single-carrier regime with exclusively electrons as carriers and a two-carrier regime where electrons and holes coexist. The spin-orbit interaction in both regimes manifests itself as a beating in the Shubnikov-de Haas oscillations. In the single-carrier regime the linear Dresselhaus strength is characterized by β =28.5 meV Å and the Rashba coefficient α is tuned from 75 to 53 meV Å by changing the electric field. In the two-carrier regime a quenching of the spin splitting is observed and attributed to a crossing of spin bands.
Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling
Valizadeh, Mohammad M.; Satpathy, S.
2018-03-01
Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.
Anisotropy of exciton spectrum and spin-orbit interactions in quantum wells in tilted magnetic field
International Nuclear Information System (INIS)
Olendski, Oleg; Shahbazyan, Tigran V
2006-01-01
We study theoretically excitonic energy spectrum and optical absorption in narrowgap semiconductor quantum wells in strong magnetic field. We show that, in the presence of an in-plane field component, the absorption coefficient exhibit a double-peak structure due to hybridization of bright and dark excitons. If both Rashba and Dresselhaus spin-orbit terms are present, the spectrum is anisotropic in in-plane field orientation with respect to [100] axis. In particular, the magnitude of the splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. The absorption spectrrum anisotropy would allow simultaneous measurement Dresselhaus and Rashba spin-orbit coefficients
Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals
Li, Hang; Wang, Xuhui; Manchon, Aurelien
2016-01-01
We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.
Spin Torques in Systems with Spin Filtering and Spin Orbit Interaction
Ortiz Pauyac, Christian
2016-06-19
In the present thesis we introduce the reader to the ﬁeld of spintronics and explore new phenomena, such as spin transfer torques, spin ﬁltering, and three types of spin-orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently and are promising candidates for a new generation of memory devices in computer technology. A general overview of these phenomena is presented in Chap. 1. In Chap. 2 we study spin transfer torques in tunnel junctions in the presence of spin ﬁltering. In Chap. 3 we discuss the Rashba torque in ferromagnetic ﬁlms, and in Chap. 4 we study spin Hall eﬀect and spin swapping in ferromagnetic ﬁlms, exploring the nature of spin-orbit torques based on these mechanisms. Conclusions and perspectives are summarized in Chap. 5.
Dirac spin-orbit torques and charge pumping at the surface of topological insulators
Ndiaye, Papa Birame
2017-07-07
We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.
Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling
Haney, Paul M.
2013-05-07
In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.
Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields
Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.
2009-11-01
Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals
Li, Hang
2016-01-11
We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.
Spin-orbit effects in carbon-nanotube double quantum dots
DEFF Research Database (Denmark)
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...
Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions
International Nuclear Information System (INIS)
Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor
2007-01-01
We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters
Dirac spin-orbit torques and charge pumping at the surface of topological insulators
Ndiaye, Papa Birame; Akosa, Collins Ashu; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, Aurelien
2017-01-01
We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.
Dirac spin-orbit torques and charge pumping at the surface of topological insulators
Ndiaye, Papa B.; Akosa, C. A.; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, A.
2017-07-01
We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.
Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers
Cheng, Yingchun
2013-06-01
The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
The Rashba spin-orbit coupling for superconductivity in oxide interfaces
Energy Technology Data Exchange (ETDEWEB)
Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)
2014-07-01
We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.
Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions
International Nuclear Information System (INIS)
Jia-Ting, Ni; Bin, Chen; Xiao-Wan, Liang; Koga, T.
2009-01-01
We demonstrate the amplitude and spin polarization of AAS oscillation changing with Rashba spin-orbit interaction (SOI) and Dresselhaus SOI. The amplitude and spin polarization of AB oscillation changing with Rashba SOI and Dresselhaus SOI are demonstrated as well. The ideal quasi-one-dimensional square loop does not exist in reality, therefore to match the experiment better we should consider the shape of the rectangle loop in theory
Spin conversion induced by the spin-orbit interaction in positronium collisions
International Nuclear Information System (INIS)
Saito, Haruo; Nakayama, Takashi; Hyodo, Toshio
2009-01-01
We show the existence of a new reaction mechanism of positronium - ortho-Ps - para-Ps conversion reaction induced by the spin-orbit interaction. This interaction was previously believed to be negligibly small. Recently, however, Mitroy has suggested that this interaction could be observed in Ps-Xe collision. In the present work, we have succeeded in observing this effect and obtaining the reaction rate by using the Zeeman mixing of positronium.
Gmitra, Martin; Fabian, Jaroslav
2015-01-01
Hybrids of graphene and two dimensional transition metal dichalcogenides (TMDC) have the potential to bring graphene spintronics to the next level. As we show here by performing first-principles calculations of graphene on monolayer MoS$_2$, there are several advantages of such hybrids over pristine graphene. First, Dirac electrons in graphene exhibit a giant global proximity spin-orbit coupling, without compromising the semimetallic character of the whole system at zero field. Remarkably, th...
Conditions of Passage and Entrapment of Terrestrial Planets in Spin-Orbit Resonances
2012-06-10
May 25 ABSTRACT The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using... planet and assuming a zero obliquity. We find that a Mercury -like planet with a current value of orbital eccentricity (0.2056) is always captured in... Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance. Key words: celestial mechanics – planets
Role of antisymmetric spin-orbit component in effective interactions in the sd-shell
International Nuclear Information System (INIS)
Yoshinada, K.
1981-10-01
The antisymmetric spin-orbit interaction (ALS) proposed for sd-shell nuclei is investigated. It is shown that the centroid energy of the d sub(5/2) - d sub(3/2) interactions plays a crucial role in reproducing the excited band spectra of A = 18 - 24 nuclei. An empirical effective interaction without ALS component is proposed to reproduce the observed spectra of light sd-shell nuclei. (author)
Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction
Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.
2010-01-01
We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.
The spin-orbit interaction and SU(3) generators in superdeformation
Energy Technology Data Exchange (ETDEWEB)
Sugawara-Tanabe, K [School of Social Information, Otsuma Women` s University, Tokyo (Japan); Arima, A [Tokyo Univ. (Japan). Dept. of Physics
1992-08-01
The authors found that the effect of spin-orbit coupling becomes smaller for the parity doublet level and for some other levels around superdeformation. This is because of the strongly deformed quadrupole field, which indicates the L-S coupling scheme is recovered for these levels. These levels can be described by an SU-3 group with eight generators and a Casimir operator. 6 refs., 3 figs.
Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques
Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.
2017-11-01
Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.
Measure synchronization in a spin-orbit-coupled bosonic Josephson junction
Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin
2015-11-01
We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.