A nonperturbative treatment of spin-dependent interactions of light and heavy quarkonia
International Nuclear Information System (INIS)
Schoeberl, F.
1986-01-01
We propose a nonrelativistic potential model with a regularized Coulomb potential at short range which leads to spin-dependent interactions which are at most as singular as 1/r. The Schroedinger equation is solved numerically including all spin-dependent interactions nonperturbatively. The predicted spectrum of light and heavy quarkonia is in remarkable agreement with experiment. Even the leptonic decay widths as well as the M1 transitions are in agreement with experiment. (Author)
Narrow resonances and short-range interactions
International Nuclear Information System (INIS)
Gelman, Boris A.
2009-01-01
Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q 0 | 0 --a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q 0 and a Breit-Wigner term of order Q 2 (δε) -1 which becomes dominant for δε 3 . Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.
Spin-dependent transport through interacting graphene armchair nanoribbons
International Nuclear Information System (INIS)
Koller, Sonja; Mayrhofer, Leonhard; Grifoni, Milena
2010-01-01
We investigate spin effects in transport across fully interacting, finite-size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short-range Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low-energy many-body states is conserved during tunneling but that of the bulk and end states is not. As a consequence, in the single-electron regime, dominated by Coulomb blockade phenomena, we find pronounced negative differential conductance features for ACNs contacted to parallel polarized leads. These features are, however, absent in an anti-parallel contact configuration, which in turn leads, within a certain gate and bias voltage region, to a negative tunneling magneto-resistance. Moreover, we analyze the changes in the transport characteristics under the influence of an external magnetic field.
International Nuclear Information System (INIS)
Tullney, Kathlynne
2014-01-01
The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129
Schroedinger operators with point interactions and short range expansions
International Nuclear Information System (INIS)
Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.
1984-01-01
We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)
Folding of polymer chains with short-range binormal interactions
International Nuclear Information System (INIS)
Craig, A; Terentjev, E M
2006-01-01
We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry
2018-05-01
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Spherical harmonic expansion of short-range screened Coulomb interactions
Energy Technology Data Exchange (ETDEWEB)
Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)
2006-07-07
Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.
Coloured quarks and the short range nucleon nucleon interaction
International Nuclear Information System (INIS)
Ribeiro, J.E.F.T.
1978-02-01
The strong repulsive core that exists in the scattering of two nucleons is studied with the help of the Resonating Group Method (R.G.M.), where the Pauli Principle of fermion antisymmetry is taken explicitly into account. The quark-quark potential is described in terms of colour (long range confining potential) and hyperfine interactions alone. The mass differences N*(1688) - N(938) and Δ(1236) = N(938) are used to fit the two free constants of the assumed quark potential. It is shown that although the Pauli Principle does not exclude ab initio a S state of two nucleons, a strong repulsive potential is, nevertheless, found. Two cases are studied in detail: The Isosinglet case (neutron proton scattering) and the Isotriplet one (identical nucleons). Phase shifts for each case are presented and the obtained relative wave functions are found consistent with the observed experimental features for the repulsive potential. Some formal results concerning an important class of operators characteristic of the present R.G.M. calculations are also presented. (author)
Short-range fundamental forces
International Nuclear Information System (INIS)
Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.
2010-01-01
We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments
The short range effective interaction and the spectra of calcium isotopes in (f-p) space
International Nuclear Information System (INIS)
Qing-ying, Z.; Shen-wu, L.; Jian-xin, W.
1986-01-01
In this work, the authors use a new type of extremely short range interaction, the double delta interaction (DDI) to calculate the low-lying spectra of calcium isotopes /sup 41/Ca through /sup 48/Ca. The configuration space (f-p) includes configurations ( f/sub 7/2//sup n/ ) and ( f/sub 7/2//sup n-1/2p/sub 3/2/). The calculated energies are compared with experimental data for 75 levels. For comparison, they also use usual modified surface delta interaction (MSDI) to calculate the same spectra aforementioned. It is clear that the results calculated with DDI are better than with MSDI. Therefore, in the short-range effective interaction the addition of body delta force to the modified surface delta force may improve the agreement with experiment. The authors believe that the conclusion will not be changed if one enlarges the shell model space
The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap
Directory of Open Access Journals (Sweden)
Metsch B. Ch.
2010-04-01
Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Eﬁmov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].
Short range part of the NN interaction: Equivalent local potentials from quark exchange kernels
International Nuclear Information System (INIS)
Suzuk, Y.; Hecht, K.T.
1983-01-01
To focus on the nature of the short range part of the NN interaction, the intrinsically nonlocal interaction among the quark constituents of colorless nucleons is converted to an equivalent local potential using resonating group kernels which can be evaluated in analytic form. The WKB approximation based on the Wigner transform of the nonlocal kernels has been used to construct the equivalent potentials without recourse to the long range part of the NN interaction. The relative importance of the various components of the exchange kernels can be examined: The results indicate the importance of the color magnetic part of the exchange kernel for the repulsive part in the (ST) = (10), (01) channels, in particular since the energy dependence of the effective local potentials seems to be set by this term. Large cancellations of color Coulombic and quark confining contributions, together with the kinetic energy and norm exchange terms, indicate that the exact nature of the equivalent local potential may be sensitive to the details of the parametrization of the underlying quark-quark interaction. The equivalent local potentials show some of the characteristics of the phenomenological short range terms of the Paris potential
Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction
International Nuclear Information System (INIS)
Ahmad, I.; Auger, J.P.
1981-12-01
The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)
Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au
International Nuclear Information System (INIS)
Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.
2009-01-01
The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)
Study of an Ising model with competing long- and short-range interactions
International Nuclear Information System (INIS)
Loew, U.; Emery, V.J.; Fabricius, K.; Kivelson, S.A.
1994-01-01
A classical spin-one lattice gas model is used to study the competition between short-range ferromagnetic coupling and long-range antiferromagnetic Coulomb interactions. The model is a coarse-grained representation of frustrated phase separation in high-temperature superconductors. The ground states are determined for the complete range of parameters by using a combination of numerical and analytical techniques. The crossover between ferromagnetic and antiferromagnetic states proceeds via a rich structure of highly symmetric striped and checkerboard phases. There is no devil's staircase behavior because mixtures of stripes with different period phase separate
Effects of short range ΔN interaction on observables of the πNN system
International Nuclear Information System (INIS)
Alexandrou, C.; Blankleider, B.
1990-01-01
The inadequacy of standard few-body approaches in describing the πNN system has motivated searches for the responsible missing mechanism. In the case of πd scattering, it has recently been asserted that an additional short range ΔN interaction can account for essentially all the discrepancies between a few-body calculation and experimental data. This conclusion, however, has been based on calculations where a phenomenological ΔN interaction is added only in Born term to background few-body amplitudes. In the present work we investigate the effect of including such a ΔN interaction to all orders within a unitary few-body calculation of the πNN system. Besides testing the validity of adding the ΔN interaction in Born term in πd scattering, our fully coupled approach also enables us to see the influence of the same ΔN interaction on the processes NN→πd and NN→NN. For πd elastic scattering, we find that the higher order ΔN interaction terms can have as much influence on πd observables as the lowest order contribution alone. Moreover, we find that the higher order contributions tend to cancel the effect obtained by adding the ΔN interaction in Born term only. The effect of the same ΔN interaction on NN→πd and NN→NN appears to be as significant as in πd→πd, suggesting that future investigations of the short range ΔN interaction should be done in the context of the fully coupled πNN system
Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman
2015-09-03
Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.
Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect
Energy Technology Data Exchange (ETDEWEB)
Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun, E-mail: scopel@sogang.ac.kr, E-mail: koreasds@naver.com, E-mail: pledge200@gmail.com [Department of Physics, Sogang University, Seoul (Korea, Republic of)
2015-07-01
Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.
International Nuclear Information System (INIS)
Massiera, Gladys; Ramos, Laurence; Ligoure, Christian; Pitard, Estelle
2003-01-01
We use the random phase approximation to compute the structure factor S(q) of a solution of chains interacting through a soft and short range repulsive potential V. Above a threshold polymer concentration, whose magnitude is essentially controlled by the range of the potential, S(q) exhibits a peak whose position depends on the concentration. We take advantage of the close analogy between polymers and wormlike micelles and apply our model, using a Gaussian function for V, to quantitatively analyze experimental small angle neutron scattering profiles of solutions of hairy wormlike micelles. These samples, which consist in surfactant self-assembled flexible cylinders decorated by amphiphilic copolymer, provide indeed an appropriate experimental model system to study the structure of sterically interacting polymer solutions
Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.
1993-06-01
We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.
International Nuclear Information System (INIS)
Nikolaev, M.A.; Klapdor-Kleingrothaus, H.V.
1993-01-01
We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from 123 Te and 131 Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucelon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in 123 Te to collective 2 + excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and quenching effect disappears. The shape of the nuclear form factor for the 131 Xe isotope differs from the one obtained using an oscillator basis. (orig.)
Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals
Wang, Yuxuan; Nandkishore, Rahul M.
2017-09-01
In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.
Martinez, Antonio; Barker, John R; Di Prieto, Riccardo
2018-06-13
A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.
Scattering of polarized 7Li by 120Sn and projectile-target spin-dependent interactions
International Nuclear Information System (INIS)
Sakuragi, Y.; Yahiro, M.; Kamimura, M.; Tanifuji, M.
1986-07-01
Scattering of 7 Li by 120 Sn targets at E lab = 44 MeV is investigated in the coupled-channel frame by taking account of the projectile virtual excitations to the lowest three excited states. Calculations are performed by the cluster-folding (CF) interactions and the double-folding (DF) one. Both interactions reproduce very well the expeimental data on the cross section, the vector analyzing power, the second-rank tensor ones and the third-rank tensor one in elastic and projectile inelastic scattering, although some differences are found between the CF results and the DF ones. In the calculation, the virtual excitations of the projectile are important for most of the analyzing powers and the spin-orbit interaction is indispensable for the vector analyzing power. These features are in contrast to those in 7 Li - 58 Ni scattering at 20 MeV and are interpreted as over-Coulomb-barrier effects. The scattering amplitudes and the analyzing powers are investigated by the invariant amplitude method, which provides a key connecting the spin-dependent interactions to the analyzing powers. The method proposes an important relationship between the tensor analyzing powers, which is useful in analyses of both theoretical and experimental results. Finally, it is found that in the elastic scattering the second-rank tensor analyzing powers are proportional to the strength of the second-rank tensor interaction and the vector and third-rank tensor analyzing powers to the square or cube of the strength of this interaction, while in the inelastic scattering the cross section is proportional to the square of the strength of the tensor interaction, other quantities being weakly dependent on the strength. (author)
Summary of measurements of the spin dependence in NN interactions from 2 to 12 GeV/c
International Nuclear Information System (INIS)
Rust, D.R.
1975-01-01
The status of experimental measurements of the spin dependence in NN interactions from 2 to 12 GeV/c as of June 1975 is summarized. Older data have been left out if more accurate or more complete results are available
Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei
Energy Technology Data Exchange (ETDEWEB)
Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-08
Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.
Blijdenstein, T.B.J.; Hendriks, W.P.G.; Linden, van der E.; Vliet, van T.; Aken, van G.A.
2003-01-01
This paper discusses the change in phase behavior and mechanical properties of oil-in-water emulsion gels brought about by variation of long- and short-range attractive interactions. The model system studied consisted of oil droplets stabilized by the protein -lactoglobulin (-lg). A long-range
Renormalization of the three-boson system with short-range interactions revisited
International Nuclear Information System (INIS)
Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang
2017-01-01
We consider renormalization of the three-body scattering problem in low-energy effective field theory of self-interacting scalar particles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation. The obtained leading-order equation is perturbatively renormalizable and non-perturbatively finite and does not require a three-body counter term in contrast to its non-relativistic approximation. (orig.)
Directory of Open Access Journals (Sweden)
J Matthew Mahoney
Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.
International Nuclear Information System (INIS)
Baktybaev, K.; Koilyk, N.; Ramankulov, K.
2006-01-01
Full text: Collective Schrodinger equations are applied to describe low-energy spectra of even-even nuclei [1]. Spectra for even-odd nuclei are calculated by coupling the single particle degrees of freedom to the collective degree of freedom of the core nucleus, which is of even-even type. The collective spin has a value of 3/2. This leads to the assumption that the linearized equation may be applied to describe nuclei with spin 3/2 in the ground state. Good description of the low energy spectra and electromagnetic transition probabilities can be obtained only with introduction of spin-dependent potentials, which apart from coordinates and momenta also depend on the matrices of the Clifford algebra arising in the linearization,. The interacting boson-fermion models (IBFM) [2] represent another approach to describe spectra of even-odd nuclei. For even-odd nuclei with spin 3/2 in the ground state one uses so-called j=3/2 - IBFM, which is also denoted as the U B (6)xU F (4) IBFM. In this paper we establish the relation between the matrices of the Clifford algebra, which arise in the linearization procedure, and the fermion operators of the j=3/2 IBFM. This allows us to establish a connection between the j=3/2 IBFM and spin dependent generalized collective model (SGCM). The results of the SGCM for Ir and Au nuclei are presented and compared with the results of the j=3/2 IBFM with a dynamical spin symmetry [3] present. In this respect we could apply the linearized collective Schrodinger equation and IBFM with arbitrary spin to all other even-odd nuclei. (author)
Kanada-En'yo, Yoshiko; Isaka, Masahiro; Motoba, Toshio
2018-01-01
Energy spectra of $0s$-orbit $\\Lambda$ states in $p$-shell $\\Lambda$ hypernuclei ($^{A}_\\Lambda Z$) and those in $^{19}_{\\Lambda}\\textrm{F}$ are studied with the microscopic cluster model and antisymmetrized molecular dynamics using the $G$-matrix effective $\\Lambda N$ ($\\Lambda NG$) interactions. Spin-dependent terms of the ESC08a version of the $\\Lambda NG$ interactions are tested and phenomenologically tuned to reproduce observed energy spectra in $p$-shell $^{A}_\\Lambda Z$. Spin-dependent...
Dynamically induced spin-dependent interaction in the elastic scattering of heavy-ions
International Nuclear Information System (INIS)
Imanishi, B.; Oertzen, W. von.
1982-02-01
Dynamical polarization effect in heavy-ion elastic scattering is investigated in the framework of the coupled-reaction-channel theory. By using the adiabatic approximation at low incident energies, this effect is expressed as a spin-orbit (L vector.S vector) interaction with a L vector and S vector independent radial function. The strength of the (L vector.S vector) interaction calculated for the 12 C + 13 C system is in the same order of magnitude as deduced from experiments and is about two orders of magnitude larger than that obtained from the folding model calculation. (author)
Bruce, Ellen E.; van der Vegt, Nico F. A.
2018-06-01
Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.
Vattré, A.
2017-08-01
The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.
Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator
Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko
2017-07-01
In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.
Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2016-04-01
We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
International Nuclear Information System (INIS)
Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.
1989-01-01
The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)
Directory of Open Access Journals (Sweden)
Oller J.A.
2010-04-01
Full Text Available We review on a novel chiral power counting scheme for in-medium chiral perturbation theory with nucleons and pions as degrees of freedom. It allows for a systematic expansion taking into account local as well as pion-mediated inter-nucleon interactions. Based on this power counting, one can identify classes of nonperturbative diagrams that require a resummation. As a method for performing those resummations we review on the techniques of Unitary Chiral Pertubation Theory for nucleon-nucleon interactions. We then apply both power counting and non-perturbative methods to the example of calculating the pion self-energy in asymmetric nuclear matter up-to-and-including next-to-leading order. It is shown that the leading corrections involving in-medium nucleon-nucleon interactions cancel between each other at given chiral orders.
Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.
2018-03-01
We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.
Comparison of short-range rapidity correlations in anti pp and pp interactions at √S = 53 GeV
International Nuclear Information System (INIS)
Breakstone, A.; Crawley, H.B.; Firestone, A.; Gorbics, M.; Lamsa, J.W.; Meyer, W.T.
1982-01-01
Measurements are presented of two-particle rapidity correlations in anti pp and pp at √S = 53 GeV. The data were recorded at the CERN-ISR using the Split Field Magnet spectrometer with a minimum bias trigger. Short range correlations in normal inelastic events with measured charged multiplicities nsub(ch) >= 4 are observed for pairs of charged particles in all charge combinations. Within the experimental errors no differences are observed between the analogous correlations in pp and anti pp interactions. (orig.)
Experimental Searches for Exotic Short-Range Forces Using Mechanical Oscillators
Weisman, Evan
Experimental searches for forces beyond gravity and electromagnetism at short range have attracted a great deal of attention over the last decade. In this thesis I describe the test mass development for two new experiments searching for forces below 1 mm. Both modify a previous experiment that used 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds, a promising technique for probing exceptionally small distances at the limit of instrumental thermal noise. To further reduce thermal noise, one experiment will use plated silicon test masses at cryogenic temperatures. The other experiment, which searches for spin-dependent interactions, will apply the spin-polarizable material Dy3Fe5O 12 to the test mass surfaces. This material exhibits orbital compensation of the magnetism associated with its intrinsic electron spin, minimizing magnetic backgrounds. Several plated silicon test mass prototypes were fabricated using photolithography (useful in both experiments), and spin-dependent materials were synthesized with a simple chemical recipe. Both silicon and spin-dependent test masses demonstrate the mechanical and magnetic properties necessary for sensitive experiments. I also describe sensitivity calculations of another proposed spin-dependent experiment, based on a modified search for the electron electric dipole moment, which show unprecedented sensitivity to exotic monopole-dipole forces. Inspired by a finite element model, a study attempting to maximize detector quality factor versus geometry is also presented, with experimental results so far not explained by the model.
International Nuclear Information System (INIS)
Nguyen Ba An; Hoang Ngoc Cam; Nguyen Trung Dan
1990-08-01
Analytical expressions of the exciton-exciton interaction potentials have been approximately derived in both 2D and 3D structure materials exhibiting explicit dependences on exciton momentum difference, momentum transfer, electron-hole effective mass ratio and two-exciton state spin symmetry. Numerical calculations show that the character of the exciton-exciton interaction is determined by all of the above-mentioned dependences. (author). 32 refs, 7 figs
Comparative Aspects of Spin-Dependent Interaction Potentials for Spin-1/2 and Spin-1 Matter Fields
Directory of Open Access Journals (Sweden)
P. C. Malta
2016-01-01
Full Text Available This paper sets out to establish a comparative study between classes of spin- and velocity-dependent potentials for spin-1/2 and spin-1 matter currents/sources in the nonrelativistic regime. Both (neutral massive scalar and vector particles are considered to mediate the interactions between (pseudo-scalar sources or (pseudo-vector currents. Though our discussion is more general, we contemplate specific cases in which our results may describe the electromagnetic interaction with a massive (Proca-type photon exchanged between two spin-1/2 or two spin-1 carriers. We highlight the similarities and peculiarities of the potentials for the two different types of charged matter and also focus our attention on the comparison between the particular aspects of two different field representations for spin-1 matter particles. We believe that our results may contribute to a further discussion of the relation between charge, spin, and extensibility of elementary particles.
Short-range correlations with pseudopotentials
International Nuclear Information System (INIS)
Osman, A.
1976-01-01
Short-range correlations in nuclei are considered on an unitary-model operator approach. Short-range pseudopotentials have been added to achieve healing in the correlated wave functions. With the introduction of the pseudopotentials, correlated basis wave functions are constructed. The matrix element for effective interaction in nuclei is developed. The required pseudopotentials have been calculated for the Hamda-Johnston, Yale and Reid potentials and for the nuclear nucleon-nucleon potential A calculated by us according to meson exchange between nucleons. (Osman, A.)
Spin-dependent optics with metasurfaces
Directory of Open Access Journals (Sweden)
Xiao Shiyi
2016-11-01
Full Text Available Optical spin-Hall effect (OSHE is a spin-dependent transportation phenomenon of light as an analogy to its counterpart in condensed matter physics. Although being predicted and observed for decades, this effect has recently attracted enormous interests due to the development of metamaterials and metasurfaces, which can provide us tailor-made control of the light-matter interaction and spin-orbit interaction. In parallel to the developments of OSHE, metasurface gives us opportunities to manipulate OSHE in achieving a stronger response, a higher efficiency, a higher resolution, or more degrees of freedom in controlling the wave front. Here, we give an overview of the OSHE based on metasurface-enabled geometric phases in different kinds of configurational spaces and their applications on spin-dependent beam steering, focusing, holograms, structured light generation, and detection. These developments mark the beginning of a new era of spin-enabled optics for future optical components.
Short-range communication system
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2012-01-01
A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.
Spin dependent photon structure functions
International Nuclear Information System (INIS)
Manohar, A.V.; Massachusetts Inst. of Tech., Cambridge
1989-01-01
Spin dependent structure functions of the photon are studied using the operator product expansion. There are new twist-two photon and gluon operators which contribute. The structure functions g 1 and F 3 are calculable in QCD, but differ from their free quark values. The corrections to F 3 are suppressed by 1/log Q 2 . The calculation is an extension of the analysis of Witten for the spin averaged structure functions F 1 and F 2 . (orig.)
Isobar configurations in nuclei and short range correlations
Weber, H J
1979-01-01
Recent results on short range correlations and isobar configurations are reviewed, and in particular a unitary version of the isobar model, coupling constants and rho -meson transition potentials, a comparison with experiments, the CERN N*-knockout from /sup 4/He, QCD and the NN interaction of short range. (42 refs).
Song, Jiayin; Liu, Liping; Li, Peng; Xiong, Guang
2012-11-01
The effects of surfactants, counterions and additive salts on the formation of siliceous mesoporous molecular sieves during self-assembly process were investigated by UV Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The surfactant molecules experience the rearrangement after adding the silica species and adjusting the pH value. The obvious change of the Raman bands related to the surfactants supports a cooperative interaction between surfactant and inorganic species during self-assembly process. The addition of EDTANa(4) to the system induces the interaction between the COO(-) groups of EDTA(4-) and silanol groups of silica and a strong interaction between the EDTA(4-) and the N(+)(CH(3))(3) groups of the surfactant. The above interactions may be the main reason for the salt effect. The new information from the change of the chemical bonds allows for a further analysis to the interactions of different salts between surfactants and silica species at molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.
Magnetic short range order in Gd
International Nuclear Information System (INIS)
Child, H.R.
1976-01-01
Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi
Hard probes of short-range nucleon-nucleon correlations
Energy Technology Data Exchange (ETDEWEB)
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Long, G. L.; Ji, H. Y.
1998-04-01
B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Short range order of selenite glasses
Czech Academy of Sciences Publication Activity Database
Neov, S.; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr
1999-01-01
Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA AV ČR KSK1010104 Keywords : short range * selenite glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 1999
Short-range components of nuclear forces: Experiment versus mythology
International Nuclear Information System (INIS)
Kukulin, V. I.; Platonova, M. N.
2013-01-01
The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment
Spin-dependent relativistic effect on heavy quarkonium properties in medium
International Nuclear Information System (INIS)
Dong Yubing
1997-01-01
Spin-dependent relativistic effect on the binding and dissociation of the heavy quarkonium in a thermal environment is investigated. The result shows that the interactions could influence the heavy quarkonium properties in medium
Magnetic short-range order in Gd
International Nuclear Information System (INIS)
Child, H.R.
1978-01-01
The magnetic short-range order in a ferromagnetic, isotopically enriched 160 Gd metal single crystal has been investigated by quasielastic scattering of 81-meV neutrons. Since Gd behaves as an S-state ion in the metal, little anisotropy is expected in its magnetic behavior. However, the data show that there is anisotropic short-range order present over a large temperature interval both above and below T/sub C/. The data have been analyzed in terms of an Ornstein-Zernike Lorentzian form with anisotropic correlation ranges. These correlation ranges as deduced from the observed data behave normally above T/sub C/ but seem to remain constant over a fairly large interval below T/sub C/ before becoming unobservable at lower temperatures. These observations suggest that the magnetic ordering in Gd may be a more complicated phenomenon than first believed
Brownian motion in short range random potentials
International Nuclear Information System (INIS)
Romero, A.H.; Romero, A.H.; Sancho, J.M.
1998-01-01
A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on. copyright 1998 The American Physical Society
Nonlocality and short-range wetting phenomena.
Parry, A O; Romero-Enrique, J M; Lazarides, A
2004-08-20
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Nonlocality and Short-Range Wetting Phenomena
Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.
2004-08-01
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.
Short range order in liquid pnictides
International Nuclear Information System (INIS)
Mayo, M; Makov, G; Yahel, E; Greenberg, Y
2013-01-01
Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion. (paper)
The spin dependent odderon in the diquark model
Energy Technology Data Exchange (ETDEWEB)
Szymanowski, Lech [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Zhou, Jian, E-mail: jzhou@sdu.edu.cn [School of Physics, & Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan, Shandong 250100 (China); Nikhef and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands)
2016-09-10
In this short note, we report a di-quark model calculation for the spin dependent odderon and demonstrate that the asymmetrical color source distribution in the transverse plane of a transversely polarized hadron plays an essential role in yielding the spin dependent odderon. This calculation confirms the earlier finding that the spin dependent odderon is closely related to the parton orbital angular momentum.
Thermodynamic properties of short-range square well fluid
López-Rendón, R.; Reyes, Y.; Orea, P.
2006-08-01
The interfacial properties of short-range square well fluid with λ =1.15, 1.25, and 1.375 were determined by using single canonical Monte Carlo simulations. Simulations were carried out in the vapor-liquid region. The coexistence curves of these models were calculated and compared to those previously reported in the literature and good agreement was found among them. We found that the surface tension curves for any potential model of short range form a single master curve when we plot γ* vs T /Tc. It is demonstrated that the critical reduced second virial coefficient B2* as a function of interaction range or Tc* is not constant.
Spin-dependent potentials from lattice QCD
International Nuclear Information System (INIS)
Koma, Y.
2006-09-01
The spin-dependent corrections to the static inter-quark potential are phenomenologically relevant to describing the fine and hyperfine spin splitting of the heavy quarkonium spectra. We investigate these corrections, which are represented as the field strength correlators on the quark-antiquark source, in SU(3) lattice gauge theory. We use the Polyakov loop correlation function as the quark-antiquark source, and by employing the multi-level algorithm, we obtain remarkably clean signals for these corrections up to intermediate distances of around 0.6 fm. Our observation suggests several new features of the corrections. (orig.)
Dynamical arrest in dense short-ranged attractive colloids
International Nuclear Information System (INIS)
Foffi, G; Sciortino, F; Zaccarelli, E; Tartaglia, P
2004-01-01
We study thermodynamic and dynamic properties of model colloidal systems interacting with a hard core repulsion and a short-range attraction, and provide an overall picture of their phase diagrams which shows a very rich phenomenology. We focus on the slow dynamic properties of this model, investigating in detail the glass transition lines (both repulsive and attractive), the glass-glass transitions and the location of the higher order singularities. We discuss the relative location of the glass lines and of the metastable liquid-gas binodal, an issue relevant for the understanding of low density arrested states of matter
Level shifts induced by a short-range potential
International Nuclear Information System (INIS)
Karnakov, B.M.; Mur, V.D.
1984-01-01
Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels
Monte Carlo determination of the spin-dependent potentials
International Nuclear Information System (INIS)
Campostrini, M.; Moriarty, K.J.M.; Rebbi, C.
1987-05-01
Calculation of the bound states of heavy quark systems by a Hamiltonian formulation based on an expansion of the interaction into inverse powers of the quark mass is discussed. The potentials for the spin-orbit and spin-spin coupling between quark and antiquark, which are responsible for the fine and hyperfine splittings in heavy quark spectroscopy, are expressed as expectation values of Wilson loop factors with suitable insertions of chromomagnetic or chromoelectric fields. A Monte Carlo simulation has been used to evaluate the expectation values and, from them, the spin-dependent potentials. The Monte Carlo calculation is reported to show a long-range, non-perturbative component in the interaction
The nuclear contacts and short range correlations in nuclei
Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.
2018-05-01
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
Magnetic short range order and the exchange coupling in magnets
International Nuclear Information System (INIS)
Antropov, V.P.
2006-01-01
We discuss our recent results of time-dependent density functional simulations of magnetic properties of Fe and Ni at finite temperatures. These results indicated that a strong magnetic short range order is responsible for the magnetic properties of elementary Ni and any itinerant magnet in general. We demonstrated that one can use the value of the magnetic short range order parameter to produce new quantitative classification of magnets. We also discuss the nature of the exchange coupling and its connection with the short range order. The spin-wave like propagating and diffusive excitations in paramagnetic localized systems with small short range order have been predicted while in the itinerant systems the short range order is more complicated. The possible smallness of the quantum factor in the itinerant magnets with short range order is discussed
Numerical challenges of short range wake field calculations
Energy Technology Data Exchange (ETDEWEB)
Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)
2011-07-01
For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.
Spin-dependent parton distributions in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia); Bentz, W. [Department of Physics, School of Science, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2005-04-15
Spin-dependent quark light-cone momentum distributions are calculated for a nucleon in the nuclear medium. We utilize a modified NJL model where the nucleon is described as a composite quark-diquark state. Scalar and vector mean fields are incorporated in the nuclear medium and these fields couple to the confined quarks in the nucleon. The effect of these fields on the spin-dependent distributions and consequently the axial charges is investigated. Our results for the 'spin-dependent EMC effect' are also discussed.
Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry
2016-01-01
Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to
Moments of nucleon spin-dependent generalized parton distributions
International Nuclear Information System (INIS)
Schroers, W.; Brower, R.C.; Dreher, P.; Edwards, R.; Fleming, G.; Haegler, Ph.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.V.; Renner, D.B.; Richards, D.; Schilling, K.
2004-01-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H∼(x, ξ, t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions
On the spin-dependent sensitivity of XENON100
Energy Technology Data Exchange (ETDEWEB)
Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan [Technische Univ. Muenchen, Garching (Germany). Physik-Department
2012-11-15
The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.
On the spin-dependent sensitivity of XENON100
International Nuclear Information System (INIS)
Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan
2012-11-01
The latest XENON100 data severely constrains dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross-section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross-section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analysed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwith-standing, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.
Impact of additional surface observation network on short range ...
Indian Academy of Sciences (India)
Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian ... models, which are able to resolve mesoscale fea- ... J. Earth Syst. Sci. ..... terization of the snow field in a cloud model; J. Climate.
Measurements of short-range ordering in Ni3Al
International Nuclear Information System (INIS)
Okamoto, J.K.; Ahn, C.C.
1992-01-01
This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C
Computational study of short-range interactions in bacteriochlorophyll aggregates
Czech Academy of Sciences Publication Activity Database
Alster, J.; Kabeláč, Martin; Tůma, R.; Pšenčík, J.; Burda, J. V.
2012-01-01
Roč. 998, SI (2012), s. 87-97 ISSN 2210-271X R&D Projects: GA AV ČR IAA400550808 Grant - others:GA ČR(CZ) GA206/09/0375; GA MŠk(CZ) ME10149 Program:GA Institutional support: RVO:61388963 Keywords : chlorosome * bacteriochlorophyll * molecular simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.139, year: 2012
The MOLDY short-range molecular dynamics package
Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.
2011-12-01
We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as
Higher order spin-dependent terms in D0-brane scattering from the matrix model
International Nuclear Information System (INIS)
McArthur, I.N.
1998-01-01
The potential describing long-range interactions between D0-branes contains spin-dependent terms. In the matrix model, these should be reproduced by the one-loop effective action computed in the presence of a non-trivial fermionic background ψ. The v 3 ψ 2 /r 8 term in the effective action has been computed by Kraus and shown to correspond to a spin-orbit interaction between D0-branes, and the ψ 8 /r 11 term in the static potential has been obtained by Barrio et al. In this paper, the v 2 ψ 4 /r 9 term is computing in the matrix model and compared with the corresponding results of Morales et al. obtained using string theoretic methods. The technique employed is adapted to the underlying supersymmetry of the matrix model, and should be useful in the calculation of spin-dependent effects in more general Dp-brane scatterings. (orig.)
The spin-dependent neutralino-nucleus form factor for 127I
International Nuclear Information System (INIS)
Ressell, M.T.
1996-01-01
We present the results of detailed shell model calculations of the spin-dependent elastic form factor for the nucleus 127 I. the calculations were performed in extremely large model spaces which adequately describe the configuration mixing in this nucleus. Good agreement between the calculated and experimental values of the magnetic moment are found. Other nuclear observables are also compared to experiment. The dependence of the form factor upon the model space and effective interaction is discussed
A method of short range system analysis for nuclear utilities
International Nuclear Information System (INIS)
Eng, R.; Mason, E.A.; Benedict, M.
1976-01-01
An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)
A short-range ensemble prediction system for southern Africa
CSIR Research Space (South Africa)
Park, R
2012-10-01
Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...
Optical control of spin-dependent thermal transport in a quantum ring
Abdullah, Nzar Rauf
2018-05-01
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.
Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect
Energy Technology Data Exchange (ETDEWEB)
Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)
2014-10-13
We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.
Influence of soliton distributions on the spin-dependent electronic ...
Indian Academy of Sciences (India)
Based on Su–Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green's function formalism, wecalculate the spin-dependent currents, the electronic transmission and tunnelling magnetoresistance (TMR). We found that the presence of a uniform distribution of the soliton centres along the molecular chain ...
Impact of Disorder on Spin Dependent Transport Phenomena
Saidaoui, Hamed
2016-07-03
The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using
Small Device For Short-Range Antenna Measurements Using Optics
DEFF Research Database (Denmark)
Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten
2011-01-01
This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...
High-Capacity Short-Range Optical Communication Links
DEFF Research Database (Denmark)
Tatarczak, Anna
Over the last decade, we have observed a tremendous spread of end-user mobile devices. The user base of a mobile application can grow or shrink by millions per day. This situation creates a pressing need for highly scalable server infrastructure; a need nowadays satisfied through cloud computing...... offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, we achieve 10 Gbps over 400 m and then conrm the approach in an optimized system at 25 Gbps over 300 m. The techniques described in this thesis leverage additional degrees of freedom to better utilize the available resources of short-range links. The proposed schemes enable higher speeds and longer...
Recent results on short-range gravity experiment
International Nuclear Information System (INIS)
Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro
2009-01-01
According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.
Chemical and topological short-range order in metallic glasses
International Nuclear Information System (INIS)
Vincze, I.; Schaafsma, A.S.; Van der Woude, F.; Kemeny, T.; Lovas, A.
1980-10-01
Moessbauer spectroscopy is applied to the study of chemical short-range order in (Fe,Ni)B metallic glasses. It is found that the atomic arrangement in melt-quenched glasses closely resembles that of the crystalline counterparts (Fe 3 B is tetragonal, Ni 3 B is orthorombic). The distribution of transition metal atoms is not random at high Ni concentrations: Ni atoms prefer a neighbourhood with a higher boron coordination. (P.L.)
Morphology effects on spin-dependent transport and recombination in polyfluorene thin films
Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.
2016-12-01
We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled
Short-range correlations in quark and nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Froemel, Frank
2007-06-15
In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)
Measuring spin-dependent structure functions at CEBAF
Energy Technology Data Exchange (ETDEWEB)
Schaefer, A. [Universitaet Frankfurt (Germany)
1994-04-01
The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.
Measuring spin-dependent structure functions at CEBAF
International Nuclear Information System (INIS)
Schaefer, A.
1994-01-01
The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q 2 dependence of the spin-dependent structure functions g 1 (x) and G 2 (x) and (2) the by far most precise determination of the third moments of g 1 (x) and g 2 (x) the latter of which the author argues to be related to a fundamental property of the nucleon
Fluctuations in substitution type alloys and their analyses. Short-range order structures
International Nuclear Information System (INIS)
Iwasaki, Hiroshi; Ohshima, Ken-ichi
2010-01-01
This article is the fifth of the serial lecture, microstructures and fluctuations, in this magazine. The formula of X-ray diffuse scattering intensity was derived for binary alloys by introducing short-range order parameters. Diffuse scattering intensities for a single crystal Cu 3 Au were measured above critical temperature for ordering. The short-range parameters were obtained by a three-dimensional Fourier analysis. The long-range pair interaction between atoms was originated from the indirect screening interaction due to conduction electrons. A detailed study was made on short-range-order diffuse scattering from Cu 3 Au in the disordered state by electron diffraction. Fourfold splitting of the diffuse scattering was observed at 110 in the reciprocal lattice, and this result was attributed to the reflection of the form of the Fermi surface. The X-ray diffuse scattering intensity was measured at room temperature for disordered Cu-Pd alloys for the six composition of Pd. Twofold and fourfold splitting of diffuse scattering due to the short-range order (SRO) were observed at 100, 110 and equivalent positions respectively from alloys with more than 13.0at% Pd. The SRO parameters were determined from all the six alloys. For Cu-Pt alloys, the diffuse scattering originated from the correlation between Cu and Pt layers in direction was observed in addition to the one due to the reflection of the Fermi surface imaging. (author)
Direct observation of the spin-dependent Peltier effect.
Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J
2012-02-05
The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.
Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aa.
2007-02-01
In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(μr12)/r12, which is based on the standard error function, and where μ is a free parameter which controls the range of the long-/short-range decomposition. In order to formulate a general method, they propose a recipe for the definition of an optimal μopt parameter, which is independent of the approximate short-range functional and the approximate wave function, and they discuss its universality. Calculations on a test set consisting of He, Be, Ne, Mg, H2, N2, and H2O yield μopt≈0.4a.u.. A similar analysis on other types of test systems such as actinide compounds is currently in progress. Using the value of 0.4a.u. for μ, encouraging results are obtained with the hybrid MCSCF-DFT method for the dissociation energies of H2, N2, and H2O, with both short-range local-density approximation and PBE-type functionals.
Influence of short range ordering and clustering on transport properties
International Nuclear Information System (INIS)
Vigier, G.; Pelletier, J.M.
1982-01-01
The influence of short range ordering and clustering phenomena on the electrical resistivity p and the thermopower S is investigated both theoretically and experimentally. According to the considered alloys either increases or decreases of transport properties may be observed when deviations from a random distribution of solute atoms occur. These observations are explained with a model based on free electrons and Born approximations the importance of the potential choice is underlined; two kinds of description of the structure factor are investigated. A good semiquantitative agreement is obtained between computed results and experimental observations
Amorphous photonic crystals with only short-range order.
Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian
2013-10-04
Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New measurements of spin-dependent n-p cross sections
International Nuclear Information System (INIS)
Raichle, B. W.; Gould, C. R.; Haase, D. G.; Seely, M. L.; Walston, J. R.; Tornow, W.; Wilburn, W. S.; Penttilae, S. I.; Hoffmann, G. W.
1999-01-01
We report on new measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T respectively) and between 5 and 20 MeV. These transmission experiments involve a polarized neutron beam and polarized proton target. The polarized neutron beam was produced as a secondary beam via charged-particle induced neutron-production reactions. The proton target was cryogenically cooled and dynamically polarized. These data will be used to extract ε 1 , the phase-shift parameter which characterizes the strength of the tensor interaction at low energy
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
Energy Technology Data Exchange (ETDEWEB)
Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)
2010-03-15
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
International Nuclear Information System (INIS)
Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul
2010-01-01
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Unsupervised learning in neural networks with short range synapses
Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.
2013-01-01
Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.
In-medium short-range dynamics of nucleons: Recent theoretical and experimental advances
Energy Technology Data Exchange (ETDEWEB)
Atti, Claudio Ciofi degli, E-mail: ciofi@pg.infn.it
2015-08-14
The investigation of in-medium short-range dynamics of nucleons, usually referred to as the study of short-range correlations (SRCs), is a key issue in nuclear and hadronic physics. As a matter of fact, even in the simplified assumption that the nucleus could be described as a system of protons and neutrons interacting via effective nucleon–nucleon (NN) interactions, several non trivial problems arise concerning the description of in-medium (NN short-range dynamics, namely: (i) the behavior of the NN interaction at short inter-nucleon distances in medium cannot be uniquely constrained by the experimental NN scattering phase shifts due to off-shell effects; (ii) by rigorous renormalization group (RG) techniques entire families of phase equivalent interactions differing in the short-range part can be derived; (iii) the in-medium NN interaction may be, in principle, different from the free one; (iv) when the short inter-nucleon separation is of the order of the nucleon size, the question arises of possible effects from quark and gluon degrees of freedom. For more than fifty years, experimental evidence of SRCs has been searched by means of various kinds of nuclear reactions, without however convincing results, mainly because the effects of SRCs arise from non observable quantities, like, e.g., the momentum distributions, and have been extracted from observable cross sections where short- and long-range effects, effects from nucleonic and non nucleonic degrees of freedom, and effects from final state interaction, could not be unambiguously separated out. Recent years, however, were witness of new progress in the field: from one side, theoretical and computational progress has allowed one to solve ab initio the many-nucleon non relativistic Schrödinger equation in terms of realistic NN interactions, obtaining realistic microscopic wave functions, unless the case of parametrized wave functions used frequently in the past, moreover the development of advanced
Spin-dependent Nucleon Structure Studies at MIT/Bates
International Nuclear Information System (INIS)
Botto, T.
2005-01-01
We present preliminary results from recent measurements of the proton, neutron and deuterium electro-magnetic form factors obtained by the BLAST collaboration at the MIT/Bates Linear Accelerator Facility. BLAST (Bates Large Acceptance Spectrometer Toroid) is a large-acceptance multi-purpose detector dedicated to studies of exclusive spin-dependent electron scattering from internal polarized targets. BLAST makes use of stored electron beam currents in excess of 150 mA with a 60-70% polarization. The electron beam is let through a 15 mm diameter, 60 cm long open-ended storage cell which is fed with ultra-pure, high-polarization H1,D1 gas from an Atomic Beam Source. The target polarization can be rapidly reversed between different vector and tensor target states, thus minimizing systematic uncertainties. The target spin can be oriented to any in-plane direction via a set of Helmholtz coils. Target polarizations in the storage cell of up to 80% (vector) and 70% (tensor) have been routinely achieved over a period of several months. Our data on the D-vector(e-vector,e'n) reaction off vector polarized deuterium allow for a unique extraction of the neutron charge form factor G E n . At same time, complementary measurements of G M n , T20 and the spin-dependent nucleon momentum distributions in deuterium are obtained via the D-vector(e-vector,e'), D (e-vector,e'd) and D (e-vector,e'p) reactions. In addition, BLAST data on vector polarized hydrogen will provide novel measurements of the GE/GM form-factor ratio on the proton as well as of the spin-dependent electro-excitation of the Δ(1232) resonance. Such comprehensive program on few body physics is now well underway and preliminary data will be presented
Precision measurement of the neutron spin dependent structure functions
International Nuclear Information System (INIS)
Kolomensky, Y.G.
1997-02-01
In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g 1 n (x, Q 2 ) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3 He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 ≤ x ≤ 0.7 with an average Q 2 of 5 GeV 2 . The author reports the integral of the spin dependent structure function in the measured range to be ∫ 0.014 0.7 dx g 1 n (x, 5 GeV 2 ) = -0.036 ± 0.004(stat.) ± 0.005(syst.). The author observes relatively large values of g 1 n at low x that call into question the reliability of data extrapolation to x → 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g 1 p and g 1 n paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q 2 = 5 GeV 2 , determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule
Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces
International Nuclear Information System (INIS)
Feiguin, Adrian E.; Fisher, Matthew P. A.
2009-01-01
We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.
A first-principles study of short range order in Cu-Zn
International Nuclear Information System (INIS)
Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.
1990-01-01
Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties
Short range order in FeCo-X alloys
International Nuclear Information System (INIS)
Fultz, B.
1988-01-01
Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)
Short-range disorder in pseudobinary ionic alloys
International Nuclear Information System (INIS)
Di Cicco, Andrea; Principi, Emiliano; Filipponi, Adriano
2002-01-01
The short-range distribution functions of the RbBr 1-x I x solid and molten ionic alloys have been accurately measured using multiple-edge refinement of the K-edge extended x-ray absorption fine structure spectra (EXAFS). The local structure is characterized by two well-defined first-neighbor peaks associated with the Rb-I and Rb-Br distributions, both for solid and liquid alloys. The distribution of distances in solid alloys gives experimental evidence to available theoretical models. In the liquid, the two distance distributions are found to be practically independent of the concentration x. The effect of different effective charge screening of the ions is observed in the molten systems for limiting concentrations
Kernel optimization for short-range molecular dynamics
Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He
2017-02-01
To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.
Freely cooling granular gases with short-ranged attractive potentials
Energy Technology Data Exchange (ETDEWEB)
Murphy, Eric; Subramaniam, Shankar, E-mail: shankar@iastate.edu [Department of Mechanical Engineering, Center for Multiphase Flow Research, Iowa State University, Ames, Iowa 50011 (United States)
2015-04-15
We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.
Spin-dependent Peltier effect in 3D topological insulators
Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard
2013-03-01
The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.
Spin-dependent tunneling transport in a lateral magnetic diode
International Nuclear Information System (INIS)
Wang, Yu; Shi, Ying
2012-01-01
Based on the gate-tunable two-dimensional electron gas, we have constructed laterally a double-barrier resonant tunneling structure by employing a peculiar triple-gate configuration, namely a ferromagnetic gate sandwiched closely by a pair of Schottky gates. Because of the in-plane stray field of ferromagnetic gate, the resulting bound spin state in well gives rise to the remarkable resonant spin polarization following the spin-dependent resonant tunneling regime. Importantly, by aligning the bound spin state through surface gate-voltage configuration, this resonant spin polarization can be externally manipulated, showing the desirable features for the spin-logic device applications. -- Highlights: ► A lateral spin-RTD was proposed by applying triple-gate modulated 2DEG. ► Spin-dependent resonant tunneling transport and large resonant spin polarization has been clarified from the systematic simulation. ► Both electric and/or magnetic strategies can be employed to modulate the system spin transport, providing the essential features for the spin-logic application.
Longitudinal spin dependence of massive lepton pair production
International Nuclear Information System (INIS)
Berger, E. L.; Gordon, L. E.; Klasen, M.
2000-01-01
In this paper, the authors summarize recent work in which they demonstrate that the Compton subprocess, q + g -> γ* + q also dominates the Drell-Yan cross section in polarized and unpolarized proton-proton reactions for values of the transverse momentum Q T of the pair that are larger than roughly half of the pair mass Q, Q T > Q/2. The Drell-Yan process is therefore a valuable, heretofore overlooked, independent source of constraints on the spin-averaged and spin-dependent gluon densities. Although the Drell-Yan cross section is smaller than the prompt photon cross section, massive lepton pair production is cleaner theoretically since long-range fragmentation contributions are absent as are the experimental and theoretical complications associated with isolation of the real photon. Moreover, the dynamics of spin-dependence in hard-scattering processes is a sufficiently complex topic, and its understanding at an early stage in its development, that several defensible approaches for extracting polarized parton densities deserve to be pursued with the expectation that consistent results must emerge
Particle simulation algorithms with short-range forces in MHD and fluid flow
International Nuclear Information System (INIS)
Cable, S.; Tajima, T.; Umegaki, K.
1992-07-01
Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced
Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum
International Nuclear Information System (INIS)
Onwuagba, B.N.; Pal, S.
1987-01-01
It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum
Short-range order in amorphous thin films of indium selenides
International Nuclear Information System (INIS)
Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.
1982-01-01
A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms
Combining 2-m temperature nowcasting and short range ensemble forecasting
Directory of Open Access Journals (Sweden)
A. Kann
2011-12-01
Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous
Hybrid gesture recognition system for short-range use
Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun
2012-03-01
In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.
Short-range quantitative precipitation forecasting using Deep Learning approaches
Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.
2017-12-01
Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.
Exploiting orbital effects for short-range extravehicular transfers
Williams, Trevor; Baughman, David
The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.
Short range spread-spectrum radiolocation system and method
Smith, Stephen F.
2003-04-29
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.
Bottom quark contribution to spin-dependent dark matter detection
Directory of Open Access Journals (Sweden)
Jinmian Li
2016-05-01
Full Text Available We investigate a previously overlooked bottom quark contribution to the spin-dependent cross section for Dark Matter (DM scattering from the nucleon. While the mechanism is relevant to any supersymmetric extension of the Standard Model, for illustrative purposes we explore the consequences within the framework of the Minimal Supersymmetric Standard Model (MSSM. We study two cases, namely those where the DM is predominantly Gaugino or Higgsino. In both cases, there is a substantial, viable region in parameter space (mb˜−mχ≲O(100 GeV in which the bottom contribution becomes important. We show that a relatively large contribution from the bottom quark is consistent with constraints from spin-independent DM searches, as well as some incidental model dependent constraints.
Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain
Sattari, Farhad; Mirershadi, Soghra
2018-01-01
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.
Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene
International Nuclear Information System (INIS)
Wang, Y.; Liu, Y.; Wang, B.
2014-01-01
The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter
Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
2014-03-15
The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.
Short-range solar radiation forecasts over Sweden
Directory of Open Access Journals (Sweden)
T. Landelius
2018-04-01
Full Text Available In this article the performance for short-range solar radiation forecasts by the global deterministic and ensemble models from the European Centre for Medium-Range Weather Forecasts (ECMWF is compared with an ensemble of the regional mesoscale model HARMONIE-AROME used by the national meteorological services in Sweden, Norway and Finland. Note however that only the control members and the ensemble means are included in the comparison. The models resolution differs considerably with 18 km for the ECMWF ensemble, 9 km for the ECMWF deterministic model, and 2.5 km for the HARMONIE-AROME ensemble.The models share the same radiation code. It turns out that they all underestimate systematically the Direct Normal Irradiance (DNI for clear-sky conditions. Except for this shortcoming, the HARMONIE-AROME ensemble model shows the best agreement with the distribution of observed Global Horizontal Irradiance (GHI and DNI values. During mid-day the HARMONIE-AROME ensemble mean performs best. The control member of the HARMONIE-AROME ensemble also scores better than the global deterministic ECMWF model. This is an interesting result since mesoscale models have so far not shown good results when compared to the ECMWF models.Three days with clear, mixed and cloudy skies are used to illustrate the possible added value of a probabilistic forecast. It is shown that in these cases the mesoscale ensemble could provide decision support to a grid operator in terms of forecasts of both the amount of solar power and its probabilities.
Spin-dependent electron emission from metals in the neutralization of He+ ions
International Nuclear Information System (INIS)
Alducin, M.; Roesler, M.; Juaristi, J.I.; Muino, R. Diez; Echenique, P.M.
2005-01-01
We calculate the spin-polarization of electrons emitted in the neutralization of He + ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He + ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He + ion neutralization process and on the electronic properties of the surface
Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity
Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2018-01-01
Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.
Spin-dependent recombination processes in wide band gap II-Mn-VI compounds
International Nuclear Information System (INIS)
Godlewski, M.; Yatsunenko, S.; Khachapuridze, A.; Ivanov, V.Yu.
2004-01-01
Mechanisms of optical detection of magnetic resonance in wide band gap II-Mn-VI diluted magnetic semiconductor (DMS) are discussed based on the results of photoluminescence (PL), PL kinetics, electron spin resonance (ESR) and optically detected magnetic resonance (ODMR) and optically detected cyclotron resonance (ODCR) investigations. Spin-dependent interactions between localized spins of Mn 2+ ions and spins/magnetic moments of free, localized or bound carriers are responsible for the observed ODMR signals. We conclude that these interactions are responsible for the observed rapid shortening of the PL decay time of 4 T 1 → 6 A 1 intra-shell emission of Mn 2+ ions and also for the observed delocalization of excitons in low dimensional structures
Relativistic description of quark-antiquark bound states. II. Spin-dependent treatment
International Nuclear Information System (INIS)
Gara, A.; Durand, B.; Durand, L.
1990-01-01
We present the results of a study of light- and heavy-quark--antiquark bound states in the context of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to the observed spin splittings in the b bar b and c bar c systems using a short-distance single-gluon-exchange interaction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory fits to the centers of gravity of the b bar b and c bar c spin multiplets at the same time, and the splittings calculated for q bar Q mesons containing the lighter quarks are very poor. The difficulty appears to be intrinsic to the reduced Salpeter equation for reasons which we discuss
Spin-dependent transport and functional design in organic ferromagnetic devices
Directory of Open Access Journals (Sweden)
Guichao Hu
2017-09-01
Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.
Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar
2018-05-01
In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .
Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors
International Nuclear Information System (INIS)
Krauss, Michael
2010-01-01
This thesis is concerned with spin-dependent carrier dynamics in semiconductors and metals. We are especially interested in the dynamics on ultrashort timescales, which can be driven by ultrashort optical excitation, and use of a theoretical description in terms of the dynamical spin-density matrix. The first part of this thesis is concerned with spin-dependent carrier dynamics in bulk GaAs. For conduction electrons in GaAs, the most important mechanisms, by which an electron spin polarization can be destroyed, are the Dyakonov-Perel and Bir-Aronov-Pikus mechanisms. For the Dyakonov-Perel effect, our treatment is the first calculation of the dynamics of the spindensity matrix for bulk GaAs. From our microsopic calculation, we extract spin-dephasing times. In particular, we can describe the dependence of the spin-dephasing time for a wide range of n-doping concentrations and explain the spin-dephasing dynamics in and out of the motional-narrowing regime. For the Bir-Aronov-Pikus mechanism, i.e., the exchange interaction of electronics with holes, approximate relaxation times for limiting cases were derived about 30 years ago. We show that these approaches provide an incomplete picture of spin relaxation, and are only valid for high or low densities, whereas the microscopic calculation is capable of explaining the electronic dynamics also for intermediate doping densities, which are most interesting for typical experiments. The spin-dependent hole dynamics in GaAs is much faster than that of electrons, because the p-like hole bands experience the spin-orbit interaction directly, rather than through the interaction with other bands. The resulting spin relaxation is sometimes referred to as an Elliott-Yafet mechanism. For the first time, we present results for the microscopic dynamics of this mechanism for holes in bulk GaAs, and we discuss the different results that may be obtained with different measurement techniques. We also analyze the importance of ''spin hot
Spin-dependent tunnelling in magnetic tunnel junctions
International Nuclear Information System (INIS)
Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R
2003-01-01
The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)
Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors
Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John
2001-10-01
Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.
Solvable model of spin-dependent transport through a finite array of quantum dots
International Nuclear Information System (INIS)
Avdonin, S A; Dmitrieva, L A; Kuperin, Yu A; Sartan, V V
2005-01-01
The problem of spin-dependent transport of electrons through a finite array of quantum dots attached to a 1D quantum wire (spin gun) for various semiconductor materials is studied. The Breit-Fermi term for spin-spin interaction in the effective Hamiltonian of the device is shown to result in a dependence of transmission coefficient on the spin orientation. The difference of transmission probabilities for singlet and triplet channels can reach a few per cent for a single quantum dot. For several quantum dots in the array due to interference effects it can reach approximately 100% for some energy intervals. For the same energy intervals the conductance of the device reaches the value ∼1 in [e 2 /πℎ] units. As a result a model of the spin gun which transforms the spin-unpolarized electron beam into a completely polarized one is suggested
Resonant tunnelling through short-range singular potentials
International Nuclear Information System (INIS)
Zolotaryuk, A V; Christiansen, P L; Iermakova, S V
2007-01-01
A three-parameter family of point interactions constructed from sequences of symmetric barrier-well-barrier and well-barrier-well rectangles is studied in the limit, when the rectangles are squeezed to zero width but the barrier height and the well depth become infinite (the zero-range limit). The limiting generalized potentials are referred to as the second derivative of Dirac's delta function ±λδ-prime(x) with a renormalized coupling constant λ > 0 or simply as ±δ-prime-like point interactions. As a result, a whole family of self-adjoint extensions of the one-dimensional Schroedinger operator is shown to exist, which results in full and partial resonant tunnelling through this class of singular potentials. The resonant tunnelling occurs for countable sets of interaction strength values in the λ-space which are the roots of several transcendental equations. The comparison with the previous results for δ'-like point interactions is also discussed
A novel nuclear dependence of nucleon–nucleon short-range correlations
Energy Technology Data Exchange (ETDEWEB)
Dai, Hongkai [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Rong, E-mail: rwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lanzhou University, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Yin [Lanzhou University, Lanzhou 730000 (China); Chen, Xurong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2017-06-10
A linear correlation is found between the magnitude of nucleon–nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon–nucleon short-range correlations of some unmeasured nuclei are predicted. Discussions on nucleon–nucleon pairing energy and nucleon–nucleon short-range correlations are made. The found nuclear dependence of nucleon–nucleon short-range correlations may shed some lights on the short-range structure of nucleus.
International Nuclear Information System (INIS)
Gori-Giorgi, Paola; Savin, Andreas
2006-01-01
The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals
Theory of spin-dependent tunnelling in magnetic junctions
International Nuclear Information System (INIS)
Mathon, J.
2002-01-01
Rigorous theory of the tunnelling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches ∼65% in the tunnelling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunnelling current is negative in the metallic regime but becomes positive P∼35% in the tunnelling regime. Calculation of the TMR of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of ∼20 atomic planes and the spin polarization of the tunnelling current is positive for all MgO thicknesses. It is also found that spin-dependent tunnelling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the Γ point (k parallel = 0) even for MgO thicknesses as large as ∼20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains non-zero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunnelling from a Cu interlayer, i.e. non-zero TMR. Numerical modelling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the non-magnetic layer is lost and with it the TMR. (author)
Higher-order glass-transition singularities in systems with short-ranged attractive potentials
International Nuclear Information System (INIS)
Goetze, W; Sperl, M
2003-01-01
Within the mode-coupling theory for the evolution of structural relaxation, the A 4 -glass-transition singularities are identified for systems of particles interacting with a hard-sphere repulsion complemented by different short-ranged potentials: Baxter's singular potential regularized by a large-wavevector cut-off, a model for the Asakura-Oosawa depletion attraction, a triangular potential, a Yukawa attraction, and a square-well potential. The regular potentials yield critical packing fractions, critical Debye-Waller factors, and critical amplitudes very close to each other. The elastic moduli and the particle localization lengths for corresponding states of the Yukawa system and the square-well system may differ by up to 20 and 10%, respectively
Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion
Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori
2018-05-01
We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.
Short-range correlations in an extended time-dependent mean-field theory
International Nuclear Information System (INIS)
Madler, P.
1982-01-01
A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated
A New Theoretical Analysis of the Effects of Short Range Correlations in Inclusive Lepton Scattering
Benedetta Mezzetti, Chiara; Ciofi Degli Atti, Claudio
2009-05-01
Recently, evidence of short range correlations (SRC) has been provided by experimental data on inclusive lepton A(e, e')X scattering by the observation of a scaling behavior of the ratios of the cross sections on heavy nuclei to those on the deuteron and ^3He. Other attempts to get information on SRC rely on the concept of Y-scaling, whose interest has been renewed by new Jlab data. A new approach to Y-scaling, relying on the definition of a new relativistic scaling variable which incorporates the momentum dependence of the excitation energy of the (A - 1) system is presented, with the resulting scaling function being closely related to the longitudinal momentum distributions. Taking into account final state interaction effects, the new analysis of experimental data on nuclei, ranging from ^3He to Nuclear Matter, provides unique information on the nucleon momentum distributions and confirms the analysis in terms of cross section ratios.
DEFF Research Database (Denmark)
Hedegård, Erik D.; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan
2015-01-01
. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality......We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE......-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory...
Utilizing Context in Location-Aware Short-Range Wireless Communication
Directory of Open Access Journals (Sweden)
Vesa A. Korhonen
2010-01-01
Full Text Available We discuss how a short-range wireless communication service implemented for modern mobile communication devices can provide additional value for both the consumer and the service/product provider. When used as an information search tool, such systems allow services and products being promoted at the location they are available. For the customer, it may provide a “digitally augmented vision”, an enhanced view to the current environment. With data filtering and search rules, this may provide a self-manageable context, where the user's own personal environment and preferences to the features available in the current surroundings cooperate with a direct connection to the web-based social media. A preliminary design for such service is provided. The conclusion is that the method can generate additional revenue to the company and please the customers' buying process. In addition to the marketing, the principles described here are also applicable to other forms of human interaction.
Klos, P.; Menéndez, J.; Gazit, D.; Schwenk, A.
2013-01-01
We perform state-of-the-art large-scale shell-model calculations of the structure factors for elastic spin-dependent WIMP scattering off 129,131Xe, 127I, 73Ge, 19F, 23Na, 27Al, and 29Si. This comprehensive survey covers the non-zero-spin nuclei relevant to direct dark matter detection. We include a pedagogical presentation of the formalism necessary to describe elastic and inelastic WIMP-nucleus scattering. The valence spaces and nuclear interactions employed have been previously used in nucl...
Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.
2018-06-01
The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.
International Nuclear Information System (INIS)
Granovsky, A.B.; Inoue, Mitsuteru
2004-01-01
We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling
Energy Technology Data Exchange (ETDEWEB)
Granovsky, A.B. E-mail: granov@magn.ru; Inoue, Mitsuteru
2004-05-01
We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling.
Measurement of the spin dependent structure functions of proton and neutron
International Nuclear Information System (INIS)
Rith, K.
1989-01-01
Recent results from the EMC experiment on the spin dependent structure function g 1 p (x) of the proton are discussed. They suggest that the nucleon spin does not originate from quark spins but rather from angular orbital momentum and gluon contributions. A proposed experiment at HERA is presented which will allow a very accurate measurement of the spin dependent structure functions and their integrals of both proton and neutron and a precise test of the Bjorken sum rule. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn; Wen, Shuangchun [Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)
2015-07-27
We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.
Searching for Short Range Correlations Using (e,e'NN) Reactions
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2003-02-01
Electron induced two nucleon knockout reactions (e,e'pp) and (e,e'np) were performed for ^{3}He, ^{4}He, and ^{12}C nuclei with incident energies of 2.261 GeV and 4.461 GeV using the CLAS detector at Jefferson Lab. Events with missing momenta lower than the Fermi level and missing energies smaller than the pion threshold were studied. The residual system was assumed to be a spectator and the process was considered as a quasi-free knockout of an NN pair. The data showed that the initial momentum extends up to 800 MeV/c with considerable strength. The cross sections for ^{3}He(e,e'pp)n were compared to the calculations of J.M. Laget. It was found that the final state interactions (FSI) and the meson exchange currents (MEC) dominate the cross sections and the short range properties of the NN pair were substantially undermined. However, the node of the S state wave function of the pp pair at around 400 MeV/c initial momentum starts to be recognizable in the 4.461 GeV data. The data and the theory suggest that with higher momentum transfers, especially in the region x_{Bj} > 1, the competing processes such as FSI and MEC will be less important and the detailed study of the short-range properties of nucleons inside nuclei will be more desirable.
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.
Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.
Senouci, B.; Kerkhoff, Hans G.; Annema, Anne J.; Bentum, Marinus Jan
2015-01-01
A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into
Positional short-range order in the nematic phase of n BABAs
Usha Deniz, K.; Pepy, G.; Parette, G.; Keller, P.
1991-10-01
The positional short-range order, SRO ⊥, perpendicular to the nematic director n̂ has been studied in the fibre-type nematics, nBABAs, by neutron diffraction. SRO ⊥ is found to be dependent on other types of nematic short-range order but not on the orientational long-range order.
Short-range airborne transmission of expiratory droplets between two people
DEFF Research Database (Denmark)
Liu, Li; Li, Yuguo; Nielsen, Peter Vilhelm
2017-01-01
, ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold...... distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus...... reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes...
Spin-dependent scattering by a potential barrier on a nanotube
International Nuclear Information System (INIS)
Abranyos, Yonatan; Gumbs, Godfrey; Fekete, Paula
2010-01-01
The electron spin effects on the surface of a nanotube have been considered through the spin-orbit interaction (SOI), arising from the electron confinement on the surface of the nanotube. This is of the same nature as the Rashba-Bychkov SOI at a semiconductor heterojunction. We estimate the effect of disorder within a potential barrier on the transmission probability. Using a continuum model, we obtain analytic expressions for the spin-split energy bands for electrons on the surface of nanotubes in the presence of SOI. First we calculate analytically the amplitudes of scattering from a potential barrier located around the axis of the nanotube into spin-dependent states. The effect of disorder on the scattering process is included phenomenologically and induces a reduction in the transition probability. We analyze the relative role of SOI and disorder in the transmission probability which depends on the angular and linear momentum of the incoming particle, and its spin orientation. Finally we demonstrate that in the presence of disorder, perfect transmission may not be achieved for finite barrier heights.
Methods for studying short-range order in solid binary solutions
International Nuclear Information System (INIS)
Beranger, Gerard
1969-12-01
The short range order definition and its characteristic parameters are first recalled. The different methods to study the short range order are then examined: X ray diffusion, electrical resistivity, specific heat and thermoelectric power, neutron diffraction, electron spin resonance, study of thermodynamic and mechanical properties. The theory of the X ray diffraction effects due to short range order and the subsequent experimental method are emphasized. The principal results obtained from binary Systems, by the different experimental techniques, are reported and briefly discussed. The Au-Cu, Li-Mg, Au-Ni and Cu-Zn Systems are moreover described. (author) [fr
Influence of soliton distributions on the spin-dependent electronic ...
Indian Academy of Sciences (India)
interactions, so that spin memory can only be as long as a few seconds [6]. Therefore, spin-flip .... In addition, the term −σ · hβ is the internal exchange energy with hβ .... electrons density of states for short chains containing 100 carbon atoms.
Spin-dependent quantum transport in nanoscaled geometries
Heremans, Jean J.
2011-10-01
We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).
Short Range Air Defense in Army Divisions: Do We Really Need It
National Research Council Canada - National Science Library
Anderson, Charles
2000-01-01
Ever since the Soviet threat collapsed, coupled with the demonstrated, overwhelming, capability of our air forces during numerous operations in the 1990s, the relevance of the Short Range Air Defense (SHORAD...
2017-04-28
The document describes the overall process for evaluating Dedicated Short Range Communication (DSRC) Roadside Units (RSU) against USDOT RSU Specification 4.1 in preparation for field evaluation. The Test Cases contained in this document only evaluate...
Magnetism and atomic short-range order in Ni-Rh alloys
Carnegie, D. W., Jr.; Claus, H.
1984-07-01
Low-field ac susceptibility measurements of Ni-Rh samples of various concentrations are presented. Giant effects of the metallurgical state on the magnetic ordering temperature are associated with changes in the degree of atomic short-range order. By careful control of this degree of short-range order, it is possible to demonstrate the existence of a spin-glass state in Ni-Rh alloys.
Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2017-06-01
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6 ×10-41 cm2 (σp=5 ×10-40 cm2 ) at 35 GeV c-2 , almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
Determining the spin dependent mean free path in Co90Fe10 using giant magnetoresistance
Shakespear, K. F.; Perdue, K. L.; Moyerman, S. M.; Checkelsky, J. G.; Harberger, S. S.; Tamboli, A. C.; Carey, M. J.; Sparks, P. D.; Eckert, J. C.
2005-05-01
The spin dependent mean free path in Co90Fe10 is determined as a function of temperature down to 5K using two different spin valve structures. At 5K the spin dependent mean free path for one structure was measured to be 9.4±1.4nm, decreasing by a factor of 3 by 350K. For the other structure, it is 7.5±0.5nm at 5K and decreased by a factor of 1.5 by 350K. In both cases, the spin dependent mean free path approaches the typical thickness of ferromagnetic layers in spin valves at room temperature and, thus, has an impact on the choice of design parameters for the development of new spintronic devices.
Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.
Song, Yipu; Schmitt, Andrew L; Jin, Song
2008-08-01
Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.
Current research efforts at JILA to test the equivalence principle at short ranges
International Nuclear Information System (INIS)
Faller, J.E.; Niebauer, T.M.; McHugh, M.P.; Van Baak, D.A.
1988-01-01
We are presently engaged in three different experiments to search for a possible breakdown of the equivalence principle at short ranges. The first of these experiments, which has been completed, is our so-called Galilean test in which the differential free-fall of two objects of differing composition was measured using laser interferometry. We observed that the differential acceleration of two test bodies was less than 5 parts in 10 billion. This experiment set new limits on a suggested baryon dependent ''Fifth Force'' at ranges longer than 1 km. With a second experiment, we are investigating substance dependent interactions primarily for ranges up to 10 meters using a fluid supported torsion balance; this apparatus has been built and is now undergoing laboratory tests. Finally, a proposal has been made to measure the gravitational signal associated with the changing water level at a large pumped storage facility in Ludington, Michigan. Measuring the gravitational signal above and below the pond will yield the value of the gravitational constant, G, at ranges from 10-100 m. These measurements will serve as an independent check on other geophysical measurements of G
International Nuclear Information System (INIS)
Priem, Thierry
1988-01-01
Short-range order in non-stoichiometric transition metal carbides and nitrides (TiN 0.82 , TiC 0.64 , TiC 0.76 , NbC 0.73 and NbC 0.83 ) was investigated by thermal neutron diffuse scattering on G4-4 (L.L.B - Saclay) and D10 (I.L.L. Grenoble) spectrometers. From experimental measurements, we have found that metalloid vacancies (carbon or nitrogen) prefer the f.c.c. third neighbour positions. Ordering interaction energies were calculated within the Ising model framework by three approximations: mean field (Clapp and Moss formula), Monte-Carlo simulation, Cluster variation Method. The energies obtained by the two latter methods are very close, and in qualitative agreement with theoretical values calculated from the band structure. Theoretical phase diagrams were calculated from these ordering energies for TiN x and TiC x ; three ordered structures were predicted, corresponding to compositions Ti 6 N 5 Ti 2 C and Ti 3 C 2 . On the other hand, atomic displacements are induced by vacancies. The metal first neighbours were found to move away from a vacancy, whereas the second neighbours move close to it. Near neighbour atomic displacements were theoretically determined by the lattice statics formalism with results in good agreement with experiment. (author) [fr
International Nuclear Information System (INIS)
Preobrazhenskii, M.A.; Golovinskii, P.A.
1996-01-01
Expressions for cross sections for multiphonon disintegration of quantum systems bound by short-range forces are obtained in the plane-wave approximation taking into account retardation effects. It is shown that, in the region of nonrelativistic energies, their contribution is factored, and the resulting universal factor is expressed for an arbitrary degree of process nonlinearity n in terms of elementary functions. Arguments of functions are determined only by the mode ω, the radiation spectrum width β, and the bound-state energy of a system. The dependence of the contribution of retardation effects on ω, β, and n is studied in detail. Analytical expressions for cross sections for multiquantum disintegration in the first nonvanishing order with respect to correlation interaction, which exactly take into account retardation effects, are obtained. It is shown that for two-quantum processes, the contribution of correlation effects is expressed in terms of a function representing an extension of dipole polarizability, whereas for n>2, it can be described in the dipole approximation
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
International Nuclear Information System (INIS)
Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.
2002-01-01
Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism
Short-range second order screened exchange correction to RPA correlation energies
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Measurement of transparency ratios for protons from short-range correlated pairs
Hen, O.; Hakobyan, H.; Shneor, R.; Piasetzky, E.; Weinstein, L. B.; Brooks, W. K.; May-Tal Beck, S.; Gilad, S.; Korover, I.; Beck, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Arrington, J. R.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Mustapha, B.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zheng, X.; Zonta, I.
2013-05-01
Nuclear transparency, Tp (A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for quasi-elastic A (e ,e‧ p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this Letter we extract a novel observable, the transparency ratio, Tp (A) /Tp(12 C), for knockout of high-missing-momentum protons from the breakup of short-range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q2 ⩾ 1.5(GeV /c) 2 and xB ⩾ 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20-30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A - 1 / 3, which is consistent with dominance of scattering from nucleons at the nuclear surface.
Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule
International Nuclear Information System (INIS)
Cloet, I.C.; Horsley, R.; Londergan, J.T.
2012-04-01
We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N f =2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.
Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Adelaide Univ, SA (Australia). CSSM, School of Chemistry and Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Londergan, J.T. [Indiana Univ., Bloomington, IN (US). Dept. of Physics and Center for Exploration of Energy and Matter] (and others)
2012-04-15
We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N{sub f}=2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.
Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves
Dejene, F. K.; Flipse, J.; van Wees, B. J.
2012-01-01
We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt (Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer. The devices were specifically designed to separate heat-related effects from
Micromagnetic Design of Spin Dependent Tunnel Junctions for Optimized Sensing Performance
National Research Council Canada - National Science Library
Tondra, Mark; Daughton, James M; Nordman, Catherine; Wang, Dexin; Taylor, John
1999-01-01
Pinned Spin Dependent Tunneling (SDT) devices have been fabricated into high sensitivity magnetic field sensors with many favorable properties including high sensitivity (̃ 10 umOe / Hz @ 1 Hz and ̃ 100 nOe / Hz @ > 10 kHz...
Nanoscale spin-dependent transport of electrons and holes in Si-ferromagnet structures
Ul Haq, E.
Given the rapid development of magnetic data storage and spin-electronics into the realm of nanotechnology, the understanding of the spin-dependent electronic transport and switching behavior of magnetic structures at the nanoscale is an important issue. We have developed spin-sensitive techniques
Nuclear-spin-dependent parity-nonconserving effects in thallium, lead and bismuth atoms
International Nuclear Information System (INIS)
Khriplovich, I.B.
1994-01-01
Nuclear-spin-dependent P-odd optical activity in atomic Tl, Pb and Bi is calculated. Its magnitude is expressed analytically through the main contribution to the optical rotation, which is independent of nuclear spin. The accuracy of results is discussed. 31 refs., 2 tabs
Chiral approach to nuclear matter: Role of explicit short-range NN-terms
International Nuclear Information System (INIS)
Fritsch, S.; Kaiser, N.
2004-01-01
We extend a recent chiral approach to nuclear matter by including the most general (momentum-independent) NN-contact interaction. Iterating this two-parameter contact vertex with itself and with one-pion exchange the emerging energy per particle exhausts all terms possible up to and including fourth order in the small momentum expansion. Two (isospin-dependent) cut-offs Λ 0,1 are introduced to regularize the (linear) divergences of some three-loop in-medium diagrams. The equation of state of pure neutron matter, anti E n (k n ), can be reproduced very well up to quite high neutron densities of ρ n =0.5 fm -3 by adjusting the strength of a repulsive nn-contact interaction. Binding and saturation of isospin-symmetric nuclear matter is a generic feature of our perturbative calculation. Fixing the maximum binding energy per particle to - anti E(k f0 )=15.3 MeV we find that any possible equilibrium density ρ 0 lies below ρ 0 max =0.191 fm -3 . The additional constraint from the neutron matter equation of state leads however to a somewhat too low saturation density of ρ 0 =0.134 fm -3 . We also investigate the effects of the NN-contact interaction on the complex single-particle potential U(p,k f )+iW(p,k f ). We find that the effective nucleon mass at the Fermi surface is bounded from below by M * (k f0 ) ≥1.4 M. This property keeps the critical temperature of the liquid-gas phase transition at somewhat too high values T c ≥21 MeV. The downward bending of the asymmetry energy A(k f ) above nuclear-matter saturation density is a generic feature of the approximation to fourth order. We furthermore investigate the effects of the NN-contact interaction on the (vector-∇ρ) 2 -term in the nuclear energy density functional E[ρ,τ]. Altogether, there is within this complete fourth-order calculation no ''magic'' set of adjustable short-range parameters with which one could reproduce simultaneously and accurately all semi-empirical properties of nuclear matter. In
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization
Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.
2015-12-01
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.
Double scattering of light from Biophotonic Nanostructures with short-range order
Energy Technology Data Exchange (ETDEWEB)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)
2010-07-28
We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.
Short-range wireless communication fundamentals of RF system design and application
Bensky, Alan
2004-01-01
The Complete "Tool Kit for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen
The effect of short-range spatial variability on soil sampling uncertainty
Energy Technology Data Exchange (ETDEWEB)
Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)
2008-11-15
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
The effect of short-range spatial variability on soil sampling uncertainty.
Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko
2008-11-01
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
Energy Technology Data Exchange (ETDEWEB)
Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)
2014-03-01
The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.
Energy Technology Data Exchange (ETDEWEB)
Scopel, Stefano; Yu, Hyeonhye, E-mail: scopel@sogang.ac.kr, E-mail: skyh2yu@gmail.com [Department of Physics, Sogang University, Seoul (Korea, Republic of)
2017-04-01
We discuss strategies to make inferences on the thermal relic abundance of a Weakly Interacting Massive Particle (WIMP) when the same effective dimension-six operator that explains an experimental excess in direct detection is assumed to drive decoupling at freeze-out, and apply them to the explicit scenario of WIMP inelastic up-scattering with spin-dependent couplings to protons (proton-philic Spin-dependent Inelastic Dark Matter, pSIDM), a phenomenological set-up containing two Dark Matter (DM) particles χ{sub 1} and χ{sub 2} with masses m {sub χ}= m {sub χ{sub 1}} and m {sub χ{sub 2}}= m {sub χ}+δ that we have shown in a previous paper to explain the DAMA effect in compliance with the constraints from other detectors. We also update experimental constraints on pSIDM, extend the analysis to the most general spin-dependent momentum-dependent interactions allowed by non-relativistic Effective Field Theory (EFT), and consider for the WIMP velocity distribution in our Galaxy f ( v ) both a halo-independent approach and a standard Maxwellian. Under these conditions we find that the DAMA effect can be explained in terms of the particle χ{sub 1} in compliance with all the other constraints for all the analyzed EFT couplings and also for a Maxwellian f ( v ). As far as the relic abundance is concerned, we show that the problem of calculating it by using direct detection data to fix the model parameters is affected by a strong sensitivity on f ( v ) and by the degeneracy between the WIMP local density ρ{sub χ} and the WIMP-nucleon scattering cross section, since ρ{sub χ} must be rescaled with respect to the observed DM density in the neighborhood of the Sun when the calculated relic density Ω is smaller than the observed one Ω{sub 0}. As a consequence, a DM direct detection experiment is not directly sensitive to the physical cut-off scale of the EFT, but on some dimensional combination that does not depend on the actual value of Ω. However, such degeneracy
Senouci, B.; Annema, Anne J.; Bentum, Marinus Jan; Kerkhoff, Hans G.
2011-01-01
A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of a few meters. Behind these embedded applications, a complex Hardware/Software architecture is built. Dependability is one of the major challenges in these systems.
Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys
International Nuclear Information System (INIS)
Aalders, T.J.A.
1982-07-01
The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)
Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses
Czech Academy of Sciences Publication Activity Database
Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.
1999-01-01
Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999
EXAFS, Determination of Short Range Order and Local Structures in Materials
Koningsberger, D.C.; Prins, R.
1981-01-01
Extended X-ray Absorption Fine Structure (EXAFS) is a powerful method of determining short range order and local structures in materials using X-ray photons produced by a synchrotron light source, or in-house by a high intensity rotating anode X-ray generator. The technique has provided valuable
Status of the dedicated short-range communications technology and applications : report to Congress.
2015-07-01
This report responds to a Congressional request for an assessment of the 5.9 Gigahertz (GHz) Dedicated Short Range : Communications (DSRC) in accordance with the requirements provided by Congress in the Moving Ahead for Progress in the : 21st Century...
Electronically driven short-range lattice instability: Possible role in superconductive pairing
International Nuclear Information System (INIS)
Szasz, A.
1991-01-01
A superconducting pairing mechanism is suggested, mediating by collective and coherent cluster fluctuations in the materials. The model, based on a geometrical frustration, proposes a dynamic effect driven by a special short-range electronic instability. Experimental support for this model is discussed
Investigations of multiphoton excitation and ionization in a short range potential
International Nuclear Information System (INIS)
Susskind, S.M.; Cowley, S.C.; Valeo, E.J.
1989-02-01
We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs
Investigations of multiphoton excitation and ionization in a short range potential
Energy Technology Data Exchange (ETDEWEB)
Susskind, S.M.; Cowley, S.C.; Valeo, E.J.
1989-02-01
We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
Kern, N.; Frenkel, D.
2003-01-01
We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere
DEFF Research Database (Denmark)
Fromager, Emmanuel; Réal, Florent; Wåhlin, Pernilla
2009-01-01
In a previous paper [Fromager , J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the mu parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field sho...
Directory of Open Access Journals (Sweden)
Sengupta Dhriti
2012-06-01
Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at
International Nuclear Information System (INIS)
Hu, J.; Toki, H.; Wen, W.; Shen, H.
2010-01-01
The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)
Hu, J.; Toki, H.; Wen, W.; Shen, H.
2010-03-01
The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.
Searches for possible T-odd and P-odd short range interactions using polarized nuclei
Directory of Open Access Journals (Sweden)
Chu P. H.
2014-03-01
Full Text Available Various theories predict the possible existence of T-odd and P-odd shortrange forces between spin ½ fermions, proportional to S・r where S is the fermion spin and r is the separation between particles. We use ensembles of polarized nuclei and an un-polarized mass to search for such a force over sub-mm ranges. We established an improved upper bound on the product gsgpn of the scalar coupling to particles in the un-polarized mass and the pseudo-scalar coupling of polarized neutrons for force ranges from 10−4 to 10−2 m, corresponding to a mass range of 2・10−3 to 2・10−5 eV for the exchange boson [1].
Structure of the conversion laws in quantum integrable spin chains with short range interactions
International Nuclear Information System (INIS)
Grabowski, M.P.; Mathieu, P.
1995-01-01
The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, for two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form. 62 refs., 4 figs
Urban Short Range Interaction: An LVC Solution for Urban Operation Training
Muller, T; Krijnen, R.; Visschedijk, G.C.
2012-01-01
Urban Operations are an increasingly important part of military operations, both nationally and during expeditions. The complexity of the urban environment makes these operations difficult, and a key aspect of this complexity is the presence of local population. The individual soldier needs to
Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Delgado, Pedro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Accardi, Alberto [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-02-01
We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.
Static spin-dependent forces between heavy quarks in the classical approximation to dual QCD
International Nuclear Information System (INIS)
Baker, M.; Ball, J.S.; Zachariasen, F.
1991-01-01
We compute the static spin-dependent forces V S (R) (proportional to σ 1 ·σ 2 ) and V T (R) (proportional to 3σ 1 ·Rσ 2 ·R-σ 1 ·σ 2 ) between two quarks separated by R. This is done by treating the (weak) spin-dependent effects as a perturbation on the spin-independent potentials and fields computed earlier for dual QCD. What results is a definite prediction for the heavy-quark potentials which are similar to, but different in form from, those used in phenomenological treatments. Calculations of the masses and splittings of heavy-quark states using our potentials will provide a further test of the dual superconductor picture of QCD
Spin-dependent electrical transport in Fe-MgO-Fe heterostructures
Directory of Open Access Journals (Sweden)
A A Shokri
2016-09-01
Full Text Available In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR. For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in the transport direction. The transmission is calculated by Green's function formalism based on a single-band tight-binding approximation. The transport properties are investigated as a function of the barrier thickness in the limit of coherent tunneling. We have demonstrated that dependence of the TMR on the applied voltage and barrier thickness. Our numerical results may be useful for designing of spintronic devices. The numerical results may be useful in designing of spintronic devices.
Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.
Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G
2013-08-27
Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene.
Spin-dependent recombination involving oxygen-vacancy complexes in silicon
Franke, David P.; Hoehne, Felix; Vlasenko, Leonid S.; Itoh, Kohei M.; Brandt, Martin S.
2014-01-01
Spin-dependent relaxation and recombination processes in $\\gamma$-irradiated $n$-type Czochralski-grown silicon are studied using continuous wave (cw) and pulsed electrically detected magnetic resonance (EDMR). Two processes involving the SL1 center, the neutral excited triplet state of the oxygen-vacancy complex, are observed which can be separated by their different dynamics. One of the processes is the relaxation of the excited SL1 state to the ground state of the oxygen-vacancy complex, t...
Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, Gukhyung
2013-01-01
Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermio...
Spin dependent surface recombination in silicon p-n junctions: the effect of irradiation
Energy Technology Data Exchange (ETDEWEB)
Kaplan, D [Laboratoire Central de Recherches, 91 - Corbeville par Orsay (France); Pepper, M [Cambridge Univ. (UK). Cavendish Lab.
1980-06-01
The results are presented of an investigation of spin dependent recombination in (100) oriented, gate controlled Si diodes irradiated by 30 keV electrons. After irradiation, recombination at the Si-SiO/sub 2/ interface is increased, and saturation of the spin resonance increases the diode forward current by 5 parts in 10/sup 4/. The results cannot be described by a conventional Shockley-Read recombination model. An alternative picture is proposed involving recombination between trapped electrons and trapped holes.
Origin of spin-dependent asymmetries in electron transmission through ultrathin ferromagnetic films
International Nuclear Information System (INIS)
Gokhale, M.P.; Mills, D.L.
1991-01-01
We present theoretical calculations of exchange asymmetries in the transmission of electrons through ultrathin films of ferromagnetic Fe. The results account nicely for the magnitude of the asymmetries observed by Pappas et al. in photoemission studies of Cu covered by an ultrathin film of Fe. We argue that exchange asymmetry in the transmissivity of the Fe film, rather than the spin dependence of the electron mean free path, is responsible for the effects reported by these authors
Short-range order in alloys of nickel with the elements of group VIII of the periodic table
International Nuclear Information System (INIS)
Khwaja, F.A.
1981-08-01
Experimental measurements of the diffuse X-ray scattering intensity were performed on alloys of Ni with Rh and Os. The atomic short-range order (SRO) parameters αsub(i) and the size-effect parameters βsub(i) were calculated from these measurements. It is established that SRO and size-effect exist in Ni-Rh and Ni-Os alloys analogously as in a few other alloys of Ni with the elements of group VIII of the periodic table. The experimental data was interpreted theoretically by calculating the interaction energies from the pseudo-potentials and the effective valencies of the individual components of the systems studied. It was found that theoretically calculated values of the interaction energies for these alloys are inconsistent with the experimentally determined sign of the SRO parameter. (author)
Spin-dependent electron many-body effects in GaAs
Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.
2005-12-01
Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .
''Spin-dependent'' μ → e conversion on light nuclei
International Nuclear Information System (INIS)
Davidson, Sacha; Saporta, Albert; Kuno, Yoshitaka
2018-01-01
The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years, making it interesting to consider the ''spin-dependent'' (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin-dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models. It is found that comparing the rate on isotopes with and without spin could allow one to detect spin-dependent coefficients that are at least a factor of few larger than the spin-independent ones. Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs. odd neutron could allow one to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators. (orig.)
''Spin-dependent'' μ → e conversion on light nuclei
Energy Technology Data Exchange (ETDEWEB)
Davidson, Sacha; Saporta, Albert [IPNL, CNRS/IN2P3, Villeurbanne (France); Universite Claude Bernard Lyon 1, Villeurbanne (France); Universite de Lyon, Lyon (France); Kuno, Yoshitaka [Osaka University, Department of Physics, Toyonaka, Osaka (Japan)
2018-02-15
The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years, making it interesting to consider the ''spin-dependent'' (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin-dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models. It is found that comparing the rate on isotopes with and without spin could allow one to detect spin-dependent coefficients that are at least a factor of few larger than the spin-independent ones. Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs. odd neutron could allow one to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators. (orig.)
Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode
International Nuclear Information System (INIS)
Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J
2012-01-01
Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)
Structure of the short-range atomic order of WO3 amorphous films
International Nuclear Information System (INIS)
Olevskij, S.S.; Sergeev, M.S.; Tolstikhina, A.L.; Avilov, A.S.; Shkornyakov, S.M.; Semiletov, S.A.
1984-01-01
To study the causes of electrochromism manifestation in thin tungsten oxide films, the structure of WO 3 amorphous films has been investigated. The films were obtained by three different methods: by W(CO) 6 tungsten carbonyl pyrolysis, by high-frequency ion-plasma sputtering of a target prepared by WO 3 powder sintering, and by WO 3 powder thermal evaporation. Monocrystalline wafers of silicon and sodium chloride were used as substrates. The structure of short-range order in WO 3 amorphous films varies versus, the method of preparation in compliance with the type of polyhedral elements, (WO 6 , WO 5 ) and with the character of their packing (contacts via edges or vertices). Manifestation of electroc ro mism in WO 3 films prepared by varions methods and having different structure of short-range order is supposed to be realized through various mechanisms. One cannot exclude a potential simultaneous effect of the two coloration mechanisms
Study of the effect of short ranged ordering on the magnetism in FeCr alloys
Energy Technology Data Exchange (ETDEWEB)
Jena, Ambika Prasad, E-mail: apjena@bose.res.in [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India); Sanyal, Biplab, E-mail: biplab.sanyal@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com [Department of Condensed Matter and Materials Science, S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700098 (India)
2014-01-15
For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied.
Study of the effect of short ranged ordering on the magnetism in FeCr alloys
International Nuclear Information System (INIS)
Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit
2014-01-01
For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments. - Highlights: • The magnetism in FeCr is sensitively depended on the ordering of the atoms : disordered or with short ranged ordering. • This work uses the SQS technique suggested by Zunger has been used to generate various degrees of short range ordering in FeCr. • The electronic structure and pair energies have been obatined from first principles ASR and Lichtenstein methods. • The effect of chemical ordering on magnetic ordering is studied in detail. • Only those situations where the chemical ordering is complete have been studied
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review
Directory of Open Access Journals (Sweden)
Changzhan Gu
2016-07-01
Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.
International Nuclear Information System (INIS)
Erokhin, L.N.; Mokrov, A.P.; Shivrin, O.N.; Khanina, N.I.
1986-01-01
A method is proposed for determining thermodynamical coefficients according to short-range order parameters. The method approbation for Mo-W alloys has shown a good agreement between the thermodynamical and diffusion data. The Mo-W system in the concentration range under study is close to the ideal one. The calculated relative error of determination of interdiffusion coefficients in alloys of the Mo-W system does not exceed 16%
Probing the short range behavior of nuclei with high PT photo- and electro-nuclear reactions
International Nuclear Information System (INIS)
Laget, J.M.
1990-01-01
The short range behavior of the nucleus and the use of the nucleus as a filter are studied. Special emphasis is given to photon and hadron induced reactions. The components of the nuclear wave function are described. The evidences of hard scattering processes in reactions induced by real photons as well as by hadrons on free nucleus are reviewed. The spin observables are also investigated. The perspectives opened by these studies in the nuclear environment are considered
Short-range order of amorphous FeNiB alloy after neutron irradiation
International Nuclear Information System (INIS)
Miglierini, M.; Sitek, J.; Baluch, S.; Cirak, J.; Lipka, J.
1990-01-01
Transmission Moessbauer spectroscopy was used to study irradiation-induced changes in the short-range order of an amorphous Fe 80-x Ni x B 20 alloy. Neutron irradiation led to an increase of the width of a hyperfine field distribution implying atomic rearrangement towards disordering. Changes in a mean value of a HFD and Moessbauer line areas can be associated with a reorientation of spins due to radiation damage. (orig.)
Short range correlations in the pion s-wave self-energy of pionic atoms
Salcedo, L. L.; Holinde, K.; Oset, E.; Schütz, C.
1995-01-01
We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave $\\pi N$ amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected ...
Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous
International Nuclear Information System (INIS)
Hillairet, J.
1985-01-01
This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena
Short-range order in InSb amorphized under ion bombardment
International Nuclear Information System (INIS)
Pavlov, P.V.; Tetel'baum, D.I.; Gerasimov, A.I.
1979-01-01
The investigation of short-range order is carried out in polycrystal InSb films, irradiated with Ne + ions with E=150 keV and with the 2x10 15 ion/cm 2 dose. The data are obtained testifying to the film amorphization, the cause of which is the defect storage but not the local melting. Stability of the obtained amorphous phase at the room temperature is noted
Angular correlation between short-range. cap alpha. particles and. gamma. quanta
Energy Technology Data Exchange (ETDEWEB)
Kul' chitskii, L A; Latyshev, G D; Bulyginskii, D G
1949-01-01
Chang (Phys. Rev. 69, 60(1946); 70, 632(1946)) has found that the intensities of short-range ..cap alpha.. rays of Po and Ra are considerably higher than the values given by the Geiger-Nuttall law. This can be explained by assuming surface vibrations of ..cap alpha..-radioactive nuclei, which produce deformations and corresponding lowerings of the potential barrier in certain directions. In this case an angular correlation should exist between the short-range ..cap alpha.. ray and the accompanying ..gamma.. quantum. The authors checked this conclusion by applying the coincidence method to the ..cap alpha.. and ..gamma.. radiations of a mixture of RdTh (/sup 228/Th) and ThC (/sup 212/Bi). Maxima of coincidence numbers occur at angles 45 and 135 deg., with lesser maxima at 0 and 180 deg. Theoretical considerations show that in cases (like the one investigated) where the nuclear spin before and after the ..cap alpha.. and ..gamma.. emissions is zero, the angular correlations are uniquely determined whatever the deformation caused by the vibration; in other cases, the correlation depends on the kind of deformation. Therefore, it would be interesting to investigate the case of Pa, whose nuclear spin is not zero and the decay exhibits intensive groups of short-range ..cap alpha.. particles.
Morinari, Takao
2018-06-01
The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.
International Nuclear Information System (INIS)
Juo, J.W.; Franceschetti, A.; Zunger, A.
2009-01-01
Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.
Potential of the neutron lloyd's mirror interferometer for the search for new interactions
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu. N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)
2013-04-15
We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.
The role of the axial anomaly in determining spin-dependent parton distributions
International Nuclear Information System (INIS)
Carlitz, R.D.; Collins, J.C.; Mueller, A.H.
1989-01-01
It is shown that the forward matrix elements of j 5 μ , the flavor singlet axial vector current, do not measure the helicity carried by quarks and anti-quarks but also include a spin-dependent gluonic component due to the anomaly. Detailed phenomenological and field theoretic reasons are given for the necessity of a gluonic component in the matrix element of j 5 μ . The first higher order corrections to the basic box and triangle graphs are discussed and shown not to modify the conclusions drawn in the leading order calculation. We close with a few comments on the possible phenomenological implications of the anomalous contribution. 25 refs., 6 figs
Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.
Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A
2004-07-23
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society
Spin-dependent Hall effect in degenerate semiconductors: a theoretical study
International Nuclear Information System (INIS)
Idrish Miah, M
2008-01-01
The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V SDH ) is derived, and drift and diffusive contributions to V SDH are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V SDH increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V SDH is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.
On the mechanism of spin-dependent (e,2e) scattering from a ferromagnetic surface
International Nuclear Information System (INIS)
Samarin, S N; Sergeant, A D; Pravica, L; Cvejanovic, D; Wilkie, P; Guagliardo, P; Williams, J F; Artamonov, O M; Suvorova, A A
2009-01-01
A simple model is suggested for a qualitative analysis of spin-dependent (e,2e) reaction on a ferromagnetic surface. The model is based on the scattering of the primary electron with the average spin projection 1 > by the valence electron with the average spin projection 2 >. To test the model the energy distributions of correlated electron pairs are measured for parallel and anti-parallel orientations of the magnetic moment of the cobalt film and polarization vector of the incident beam. The proposed model explains qualitatively the spin-asymmetry of the measured binding energy spectrum.
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2008-01-01
(majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction......We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...
Goldstein, G R
2001-01-01
Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.
Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems
DEFF Research Database (Denmark)
Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal
2010-01-01
Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important...... parameters of the system are the finite detecting area of the photodiode and the laser frequency chirp. Furthemore, we show that the use of the central launch technique inherently determines a lower impact of modal noise fluctuations with respect to the offset launch one. This makes CL more convenient...
Highly excited bound-state resonances of short-range inverse power-law potentials
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-11-15
We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)
Short-range order and local conservation of quantum numbers in multiparticle production
International Nuclear Information System (INIS)
Le Bellac, M.
1976-01-01
These lectures discuss the implications of the hypotheses of short-range order (SRO) and local conservation of quantum numbers (LCQN) for multiple production of elementary particles at high energies. The consequences of SRO for semi-inclusive correlations and the distribution of rapidity gaps are derived, essentially in the framework of the cluster model. Then the experimental status of local conservation of charge and transverse momentum is reviewed. Finally, by making use of the unitarity relation, it is shown that LCQN has important consequences for the elastic amplitude. The derivation is given both in a model-independent way, and in specific multiperiheral models. (Author)
OTDM Networking for Short Range High-Capacity Highly Dynamic Networks
DEFF Research Database (Denmark)
Medhin, Ashenafi Kiros
This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...
Perturbation theory for short-range weakly-attractive potentials in one dimension
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2017-03-15
We have obtained the perturbative expressions up to sixth order for the energy of the bound state in a one dimensional, arbitrarily weak, short range finite well, applying a method originally developed by Gat and Rosenstein Ref. [1]. The expressions up to fifth order reproduce the results already known in the literature, while the sixth order had not been calculated before. As an illustration of our formulas we have applied them to two exactly solvable problems and to a nontrivial problem.
Study of the short-range 3He structure from the dd→3Hen reaction
International Nuclear Information System (INIS)
Ladygin, V.P.; Ladygina, N.V.
1995-01-01
An experiment on studying of the tensor analysing power C 0,NN,0,0 and spin correlation C N,N,0,0 due to the transverse polarization of both initial particles from the dd→ 3 Hen reaction has been proposed. Those polarization observables are very sensitive to the short-range 3 He structure. This experiment is proposed to be done at the LHE Accelerator Complex using both a polarized deuteron beam and a polarized deuterium target. 25 refs., 2 figs
Influence of short range chemical order on density of states in α-ZrNi
International Nuclear Information System (INIS)
Duarte Junior, J.
1986-01-01
Calculations of the density of electronic states for amorphous alloys of ZrNi and ZrCu with different chemical order degrees, in order to verify the effect of chemical ordering on this property, are presented. The results obtained for ZrCu shown that the density of states at Fermi level do not vary significantly with the ordering. The results for ZrNi shown that the introduction of short range chemical order can decrease significantly the density of states at Fermi level, leading to better agreement with experimental results. (M.C.K.) [pt
Measurement based scenario analysis of short-range distribution system planning
DEFF Research Database (Denmark)
Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe
2009-01-01
This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....
EXAFS study of short range order in Fe-Zr amorphous alloys
International Nuclear Information System (INIS)
Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.
1995-01-01
Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)
Numerical study of the glass-glass transition in short-ranged attractive colloids
International Nuclear Information System (INIS)
Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero
2004-01-01
We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition
Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^{2} for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1
Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin
2018-03-01
An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.
Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)
Energy Technology Data Exchange (ETDEWEB)
Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany
2016-09-09
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO_{3} units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO_{3} entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO_{3} core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.
Intermediate- and short-range order in phosphorus-selenium glasses
International Nuclear Information System (INIS)
Bytchkov, Aleksei; Hennet, Louis; Price, David L.; Miloshova, Mariana; Bychkov, Eugene; Kohara, Shinji
2011-01-01
State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P x Se 1-x glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P 4 Se 3 and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale ∼6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring -1 , identified in earlier numerical simulations, provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.
Short-range contacts govern the performance of industry-relevant battery cathodes
Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.
2018-05-01
Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.
CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications
Aznar, Francisco; Calvo Lopez, Belén
2013-01-01
This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints. These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip. The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length. This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...
Polyamorphism and substructure of short-range order in amorphous boron films
International Nuclear Information System (INIS)
Palatnik, L.S.; Nechitajlo, A.A.; Koz'ma, A.A.
1981-01-01
The structure and substructure of boron amorphous films are studied in detail. Amorphous condensate of Bsup(a) boron is built of the same (but only disorientedly located) 12 B icosahedrons as boron crystalline modifications: B 105 -equilibrium β-rhombic, metastable: B 50 -tetragonal, B 12 -α-rhombohedral Coordination number for Bsup(a) (Z 1 =6.4) is lower than in B 105 (Z 1 =6.6) but higher than in B 50 modification (Z 1 =6.1). In crystalline modifications B 105 , B 50 , B 12 coordination numbers ω in first coordination spheres of icosahedrons are equal to ν 105 =6+4.6=10.6; ν 50 =10+3=14; ν 12 =6 respectively. Both amorphous modifications of boron Bsub(1)sup(a) and Bsub(15)sup(a) are analogs to B 50 in respect of the short-range order of icosahedron location. The difference between them is in ''substructure'' of short-range order: part of boron atoms (approximately 12%) do not occupy the vertices (so that vacancies appear) and enter the emptinesses between icosahedrons. In other words, the structure B 50 is the model basis of both amorphous phases [ru
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
International Nuclear Information System (INIS)
Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.
2011-01-01
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.
Spin dependence in the neutralization of He+ ions in metals: An analysis of different contributions
International Nuclear Information System (INIS)
Alducin, M.
2005-01-01
We study the spin polarization of the Auger electrons produced during the neutralization of He + ions in a free electron gas. In this process, one metal electron decays to the unoccupied state and a second electron is promoted to a continuum excited state. Although the spin of the decaying electron is fixed, both spins are allowed for the excited one. The states of the electrons involved in this Auger capture process are described by the spin-dependent Kohn-Sham orbitals obtained from density functional theory and the local spin approximation. The Auger capture rates indicate a strong polarization of the excited electron. In a paramagnetic free electron gas, there are two mechanisms accounting for this effect, the spin-dependent screening and the interference between indistinguishable processes when the involved electrons are in the same spin state. In a spin-polarized medium, the difference in the density of spin-up and spin-down electrons is a new ingredient to be considered. As a result, the excited electrons preferably come from the majority band, even in the case of He + ions with spin opposite to that of the majority band embedded in a low spin-polarized free electron gas
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
Energy Technology Data Exchange (ETDEWEB)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)
2017-01-15
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.
The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains
International Nuclear Information System (INIS)
An, Yipeng; Zhang, Mengjun; Wang, Tianxing; Jiao, Zhaoyong; Wu, Dapeng; Fu, Zhaoming; Wang, Kun
2016-01-01
Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μ B for B n N n−1 , 2 μ B for B n N n , and 3 μ B for B n N n+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short B n N n+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long B n N n+1 chains under high bias voltages and other types of BN atomic chains (B n N n−1 and B n N n ). The proposed short B n N n+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Barriga, Jaime; Varykhalov, Andrei; Fink, Joerg; Rader, Oliver; Duerr, Hermann; Eberhardt, Wolfgang [Bessy GmbH, Berlin (Germany)
2008-07-01
Spin dependent low-energy electronic excitations in 3d ferromagnets are of special interest due to the need of a microscopic understanding of the electronic structure of solids. Low-energy electrons (or holes) become dressed by a cloud of excitations resulting in quasiparticles of a finite lifetime and a different effective mass. These type of excitations have been studied by many theoretical methods, and it has been found that because of many body effects no sharp quasiparticle peaks exist for binding energies larger than 2 eV. Interestingly, it has been shown that strong correlation effects could particularly affect majority spin electrons, leading to a pronounced damping of quasiparticles at binding energies around 2 eV and above. In order to give an experimental corroboration to these findings, we have performed a systematic study of the spin-dependent quasiparticle lifetime and band structure of ferromagnetic 3d transition metal surfaces by means of spin and angle-resolved photoemission spectroscopy. On hcp Co(0001), fcc Ni(111) and bcc Fe(110), we have found a more pronounced renormalization of the majority spin quasiparticle spectral weight going from Ni to Co which are both strong ferromagnets. For Fe, a weak ferromagnet, such a process becomes more prominent in the minority channel.
Fotoohi, Somayeh; Haji-Nasiri, Saeed
2018-04-01
Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.
International Nuclear Information System (INIS)
Lebedenko, V. N.; Bewick, A.; Currie, A.; Davidge, D.; Dawson, J.; Horn, M.; Howard, A. S.; Jones, W. G.; Joshi, M.; Liubarsky, I.; Lyons, K.; Quenby, J. J.; Sumner, T. J.; Thorne, C.; Walker, R. J.; Araujo, H. M.; Edwards, B.; Barnes, E. J.; Ghag, C.; Murphy, A. StJ.
2009-01-01
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter weakly interacting massive particles based at the Boulby mine. Analysis of ∼450 kg·days fiducial exposure allow us to place a 90%-confidence upper limit on the pure WIMP-neutron cross section of σ n =1.9x10 -2 pb at 55 GeV/c 2 WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn charge-dependent nucleon-nucleon potential were used for the odd-neutron isotopes 129 Xe and 131 Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction could be much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of ∼2.
International Nuclear Information System (INIS)
Eslami, Leila; Esmaeilzadeh, Mahdi
2014-01-01
Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted
Evidence for short range corelations from high Q2 (e,e') reactions
International Nuclear Information System (INIS)
Strikman, M.I.; Frankfurt, L.L.; Sargayan, M.M.
1994-01-01
For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e') reactions, where Q 2 > 1 (GeV/c) 2 , x = Q 2 /2mq o > 1 and 1 GeV > q o > 300 ∼ 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration
International Nuclear Information System (INIS)
Nazarova, S.Z.; Gusev, A.I.
2001-01-01
Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru
Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation
Altaf, Muhammad
2013-08-01
This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.
Unitarity corrections to short-range order long-range rapidity correlations
Capella, A
1978-01-01
Although the effective hadronic forces have short range in rapidity space, one nevertheless expects long-range dynamical correlations induced by unitarity constraints. This paper contains a thorough discussion of long-range rapidity correlations in high-multiplicity events. In particular, the authors analyze in detail the forward- backward multiplicity correlations, measured recently in the whole CERN ISR energy range. They find from these data that the normalized variance of the number n of exchanged cut Pomerons, ((n/(n)-1)/sup 2/) , is most probably in the range 0.32 to 0.36. They show that such a number is obtained from Reggeon theory in the eikonal approximation. The authors also predict a very specific violation of local compensation of charge in multiparticle events: The violation should appear in the fourth-order zone correlation function and is absent in the second-order correlation function, the only one measured until now. (48 refs).
Mass dependence of short-range correlations in nuclei and the EMC effect
Directory of Open Access Journals (Sweden)
Cosyn Wim
2014-03-01
Full Text Available We sketch an approximate method to quantify the number of correlated pairs in any nucleus A. It is based on counting independent-particle model (IPM nucleon-nucleon pairs in a relative S-state with no radial excitation. We show that IPM pairs with those quantum numbers are most prone to short-range correlations and are at the origin of the high-momentum tail of the nuclear momentum distributions. Our method allows to compute the a2 ratios extracted from inclusive electron scattering. Furthermore, our results reproduce the observed linear correlation between the number of correlated pairs and the magnitude of the EMC effect. We show that the width of the pair center-ofmass distribution in exclusive two-nucleon knockout yields information on the quantum numbers of the pairs.
Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping
2018-05-03
Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.
International Nuclear Information System (INIS)
Massen, S. E.; Garistov, V. P.; Grypeos, M. E.
1996-01-01
The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q
Energy Technology Data Exchange (ETDEWEB)
Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)
2013-10-01
Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.
Age differences in visual search for compound patterns: long- versus short-range grouping.
Burack, J A; Enns, J T; Iarocci, G; Randolph, B
2000-11-01
Visual search for compound patterns was examined in observers aged 6, 8, 10, and 22 years. The main question was whether age-related improvement in search rate (response time slope over number of items) was different for patterns defined by short- versus long-range spatial relations. Perceptual access to each type of relation was varied by using elements of same contrast (easy to access) or mixed contrast (hard to access). The results showed large improvements with age in search rate for long-range targets; search rate for short-range targets was fairly constant across age. This pattern held regardless of whether perceptual access to a target was easy or hard, supporting the hypothesis that different processes are involved in perceptual grouping at these two levels. The results also point to important links between ontogenic and microgenic change in perception (H. Werner, 1948, 1957).
Interlayer exchange coupling in Er|Tb superlattices mediated by short range incommensurate Er order
International Nuclear Information System (INIS)
Pfuhl, E; Brueckel, T; Voigt, J; Mattauch, S; Korolkov, D
2010-01-01
We study the magnetic correlations in Er|Tb superlattices by means of off-specular scattering of polarized neutrons. We show here the co-existence of inhomogeneous magnetic states: i) ferromagnetic order of moments within the Tb layers below 230 K (FM), correlation length of about 10 bilayer, ii) an incommensurate modulated magnetic order, restricted to single Er layers and iii) antiferromagnetic coupling of ferromagnetic layers below 70K (AFC). Polarised off-specular neutron scattering under grazing incidence reveals that i) magnetic fluctuations appear when the sample is cooled below 70 K, ii) these fluctuations lead to AFC, when the sample is cooled to 10 K, which iii) persists, when the sample is subsequently heated up to 45 K, while the order is not present during the cooling cycle. Also the short range incommensurate order changes accordingly, implying that the magnetic order in the Er layers mediates the interlayer coupling between ferromagnetic Tb layers.
Molecular dynamics simulations of short-range force systems on 1024-node hypercubes
International Nuclear Information System (INIS)
Plimpton, S.J.
1990-01-01
In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined
Short-range structure and thermal properties of lead tellurite glasses
Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando
2017-05-01
PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.
Short-range structure and thermal properties of barium tellurite glasses
Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando
2017-05-01
BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.
Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation
Altaf, Muhammad; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, Ibrahim
2013-01-01
This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.
79 GHz UWB automotive short range radar – Spectrum allocation and technology trends
Directory of Open Access Journals (Sweden)
H.-L. Bloecher
2009-05-01
Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.
Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration
Stupakov, G.
2018-04-01
In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.
Multi-channel, passive, short-range anti-aircraft defence system
Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew
2018-01-01
The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.
Direct separation of short range order in intermixed nanocrystalline and amorphous phases
International Nuclear Information System (INIS)
Frenkel, Anatoly I.; Kolobov, Alexander V.; Robinson, Ian K.; Cross, Julie O.; Maeda, Yoshihito; Bouldin, Charles E.
2002-01-01
Diffraction anomalous fine-structure (DAFS) and extended x-ray absorption fine-structure (EXAFS) measurements were combined to determine short range order (SRO) about a single atomic type in a sample of mixed amorphous and nanocrystalline phases of germanium. EXAFS yields information about the SRO of all Ge atoms in the sample, while DAFS determines the SRO of only the ordered fraction. We determine that the first-shell distance distribution is bimodal; the nanocrystalline distance is the same as the bulk crystal, to within 0.01(2) A ring , but the mean amorphous Ge-Ge bond length is expanded by 0.076(19) Angstrom. This approach can be applied to many systems of mixed amorphous and nanocrystalline phases
An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment
Directory of Open Access Journals (Sweden)
Ye Wang
2012-01-01
Full Text Available A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS and non-LOS (NLOS scenarios. The model is characterized as the path loss to distance with a Gaussian random variable X due to the shadow fading by using linear regression. The path-loss exponent n is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation σ of X. The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT.
Contribution of silicon recombination properties in resolution of short-range particle detectors
International Nuclear Information System (INIS)
Verbitskaya, E.M.; Eremin, V.K.; Malyarenko, A.M.; Strokan, N.B.; Sukhanov, V.L.
1987-01-01
Tracks of short-range particles represent dense clusters of electron-hole pairs 2-4 μm in diameter and 20-30 μm long. Thus, conditions for charge carrier transport in microscopic Si volume are discovered at registration of each particle. Statistical distribution by the specimen square of the main parameter - lifetime of charge carriers (τ) is disclosed as a result of particle chaotic hitting the detector. Analytical description for the shape of the spectral line of the detector is found in the assumption of Gauss distribution τ. The function is applied to the analysis of detector spectra with maximum energy resolution, for which contributions to the shape of the line of the fundamental factors and nonperfection of Si or of the detector structure as a whole are comparable. Excess fluctuations of α-particle energy transformation to the charge of electron-hole pairs are found relatively to adopted values
Contribution of silicon recombination properties in resolution of short-range particle detectors
Energy Technology Data Exchange (ETDEWEB)
Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Strokan, N B; Sukhanov, V L
1987-10-01
Tracks of short-range particles represent dense clusters of electron-hole pairs 2-4 ..mu..m in diameter and 20-30 ..mu..m long. Thus, conditions for charge carrier transport in microscopic Si volume are discovered at registration of each particle. Statistical distribution by the specimen square of the main parameter - lifetime of charge carriers (tau) is disclosed as a result of particle chaotic hitting the detector. Analytical description for the shape of the spectral line of the detector is found in the assumption of Gauss distribution tau. The function is applied to the analysis of detector spectra with maximum energy resolution, for which contributions to the shape of the line of the fundamental factors and nonperfection of Si or of the detector structure as a whole are comparable. Excess fluctuations of ..cap alpha..-particle energy transformation to the charge of electron-hole pairs are found relatively to adopted values.
Dependence of Coulomb Sum Rule on the Short Range Correlation by Using Av18 Potential
Modarres, M.; Moeini, H.; Moshfegh, H. R.
The Coulomb sum rule (CSR) and structure factor are calculated for inelastic electron scattering from nuclear matter at zero and finite temperature in the nonrelativistic limit. The effect of short-range correlation (SRC) is presented by using lowest order constrained variational (LOCV) method and the Argonne Av18 and Δ-Reid soft-core potentials. The effects of different potentials as well as temperature are investigated. It is found that the nonrelativistic version of Bjorken scaling approximately sets in at the momentum transfer of about 1.1 to 1.2 GeV/c and the increase of temperature makes it to decrease. While different potentials do not significantly change CSR, the SRC improves the Coulomb sum rule and we get reasonably close results to both experimental data and others theoretical predictions.
n-p Short-Range Correlations from (p,2p+n) Measurements
Tang, A.; Watson, J. W.; Aclander, J.; Alster, J.; Asryan, G.; Averichev, Y.; Barton, D.; Baturin, V.; Bukhtoyarova, N.; Carroll, A.; Gushue, S.; Heppelmann, S.; Leksanov, A.; Makdisi, Y.; Malki, A.; Minina, E.; Navon, I.; Nicholson, H.; Ogawa, A.; Panebratsev, Yu.; Piasetzky, E.; Schetkovsky, A.; Shimanskiy, S.; Zhalov, D.
2003-01-01
We studied the 12C(p,2p+n) reaction at beam momenta of 5.9, 8.0, and 9.0 GeV/c. For quasielastic (p,2p) events pf, the momentum of the knocked-out proton before the reaction, was compared (event by event) with pn, the coincident neutron momentum. For |pn|>kF=0.220 GeV/c (the Fermi momentum) a strong back-to-back directional correlation between pf and pn was observed, indicative of short-range n-p correlations. From pn and pf we constructed the distributions of c.m. and relative motion in the longitudinal direction for correlated pairs. We also determined that 49±13% of events with |pf|>kF had directionally correlated neutrons with |pn|>kF.
Observation of short range three-particle correlations in e+e- annihilations at LEP energies
Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Barão, F; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myagkov, A; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; Van Eldik, J; Van der Velde, C; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S
1995-01-01
\\def\\tpc{three-particle correlation} \\def\\twopc{two-particle correlation} Measurements are presented of short range three-particle correlations in e^+ e^- annihilations at LEP using data collected by the DELPHI detector. %The jet structure is studied using three-particle correlation functions. At small values of the four-momentum difference, strong three-particle correlations are observed for like-sign (+++ and ---) and for unlike-sign (++- and +--) pion combinations which are not a consequence of two-particle correlations. A possible explanation of the observed effects in like-sign combinations is the existence of higher order Bose-Einstein interference, which significantly changes the particle distributions in jets.
Air defense planning for an area with the use of very short range air defense sets
Directory of Open Access Journals (Sweden)
Tadeusz Pietkiewicz
2017-12-01
Full Text Available This paper presents a heuristic method of planning the deployment of very short-range anti-air missile and artillery sets (VSHORAD around an area (‘protected area’ in order to protect it. A function dependent on the distance between the earliest feasible points of destroying targets and the centre of the protected area was taken as an objective function. This is a different indicator from those commonly used in the literature, and based on the likelihood of a defense zone penetration by means of an air attack (MAA: the kill probability of the MAA and the probability of area losses. The model constraints resulted directly from the restrictions imposed by real air defense systems and the nature of the area being defended. This paper assumes that the VSHORAD system operates as a part of a general, superordinate air defense command and control system based on the idea of network-centric warfare, which provides the VSHORAD system with a recognized air picture, air defense plans, and combat mission specifications. The presented method has been implemented. The final part of the paper presents the computational results. Keywords: optimal planning, air defense system, area installation protection, deployment of very short range anti-air missile and artillery sets (VSHORAD
Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games
Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon
2016-04-01
The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.
How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?
Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian
2017-11-30
The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.
Spin-dependent recombination involving oxygen-vacancy complexes in silicon
Franke, David P.; Hoehne, Felix; Vlasenko, Leonid S.; Itoh, Kohei M.; Brandt, Martin S.
2014-05-01
Spin-dependent relaxation and recombination processes in γ-irradiated n-type Czochralski-grown silicon are studied using continuous wave (cw) and pulsed electrically detected magnetic resonance (EDMR). Two processes involving the SL1 center, the neutral excited triplet state of the oxygen-vacancy complex, are observed which can be separated by their different dynamics. One of the processes is the relaxation of the excited SL1 state to the ground state of the oxygen-vacancy complex, the other a charge transfer between 31P donors and SL1 centers forming close pairs, as indicated by electrically detected electron double resonance. For both processes, the recombination dynamics is studied with pulsed EDMR techniques. We demonstrate the feasibility of true zero-field cw and pulsed EDMR for spin-1 systems and use this to measure the lifetimes of the different spin states of SL1 also at vanishing external magnetic field.
Spin-dependent Hall effect in degenerate semiconductors: a theoretical study
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au
2008-10-15
The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V{sub SDH}) is derived, and drift and diffusive contributions to V{sub SDH} are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V{sub SDH} increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V{sub SDH} is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.
The spin-dependent structure function g1 of the deuteron
International Nuclear Information System (INIS)
Bueltmann, S.
1996-01-01
Results on the spin-dependent structure function g 1 d of the deuteron measured by the Spin Muon Collaboration at CERN are presented. They are based on deep-inelastic scattering of 190 GeV polarized muons off a polarized deuteron target in the kinematic range of 0.003 ≤ x Bj ≤ 0.7 and 1 GeV 2 ≤ Q 2 ≤ 60 GeV 2 . The structure function is found to be negative for small values of x Bj , while the proton structure function g 1 p measured earlier by the SMC is positive over the whole x Bj -range. The Bjorken sum rule is in good agreement with the first moments of the structure functions, while the Ellis-Jaffe sum rule is violated by more than three standard deviations for the deuteron measurement. (author)
Recent SLAC measurements of the spin dependent structure functions for the proton and neutron
International Nuclear Information System (INIS)
Zapalac, G.
1995-09-01
The authors present results from SLAC experiments E142 and E143 for the spin dependent structure functions of the proton g 1 p (x, Q 2 ) and neutron g 1 n (x,Q 2 ) measured in deep inelastic scattering of polarized electrons from a polarized target. Experiment E142 measures ∫ 0 1 g 1 n (x)dx = -0.022 ± 0.011 at 2 > = 2 (GeV/c) 2 using a polarized 3 He target. Experiment E143 measures ∫ 0 1 g 1 p (x)dx = 0.129 ± 0.011 at 2 > = 3 (GeV/c) 2 using a polarized NH 3 target. These results are combined at Q 2 = 3 (GeV/c) 2 to yield ∫ 0 1 [g 1 p (x) - g 1 n (x)]dx = 0.151 ± 0.015. The Bjorken sum rule predicts 0.171 ± 0.008
Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films.
Li, D L; Ma, Q L; Wang, S G; Ward, R C C; Hesjedal, T; Zhang, X-G; Kohn, A; Amsellem, E; Yang, G; Liu, J L; Jiang, J; Wei, H X; Han, X F
2014-12-02
Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.
International Nuclear Information System (INIS)
Popescu, Voicu; Ebert, Hubert; Papanikolaou, Nikolaos; Zeller, Rudolf; Dederichs, Peter H
2004-01-01
We present a fully relativistic generalization of the Landauer-Buettiker formalism that has been implemented within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker Green function method. This approach, going beyond the two-current model, supplies a more general description of the electronic transport. It is shown that the relativistic conductance can be split in terms of individual spin-diagonal and spin-off-diagonal (spin-flip) components, which allows a detailed analysis of the influence of spin-orbit-coupling-induced spin-flip processes on the spin-dependent transport. We apply our method to calculate the ballistic conductance in Fe/GaAs/Fe magnetic tunnel junctions. We find that, by removing the spin selection rules, the spin-orbit coupling strongly influences the conductance, not only qualitatively but also quantitatively, especially in the anti-parallel alignment of the magnetization in the two Fe leads
A lattice calculation of the nucleon's spin-dependent structure function g2 revisited
International Nuclear Information System (INIS)
Goeckeler, M.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.
2000-11-01
Our previous calculation of the spin-dependent structure function g 2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q 2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d 2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d 2 , which is consistent with the experimental data. (orig.)
The Deuteron Spin-dependent Structure Function $g^{d}_1$ and its First Moment
Alexakhin, V.Yu.; Alexeev, G.D.; Alexeev, M.; Amoroso, A.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; M. Finger jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu. V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Zvyagin, A.
2007-01-01
We present a measurement of the deuteron spin-dependent structure function g^d_1 based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for \\Gamma^d_1, the first moment of g^d_1(x), and for the matrix element of the singlet axial current, a_0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function \\Delta_G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3(GeV/c)^2 the first moment of \\Delta G is found to be of the order of 0:2 - 0:3 in absolute value.
International Nuclear Information System (INIS)
Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min
2015-01-01
We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO 3 /Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO 3 /Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances
Energy Technology Data Exchange (ETDEWEB)
Dai, Jian-Qing, E-mail: djqkust@sina.com; Zhang, Hu; Song, Yu-Min [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)
2015-08-07
We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.
Hoi, Bui Dinh; Yarmohammadi, Mohsen
2018-04-01
The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.
Study of short range order in alloy of glassy metals and effect of neutron irradiation on them
International Nuclear Information System (INIS)
Habibi, S.; Banaee, N.; Salman, M.; Gupta, A.; Principi, G.
2000-04-01
In this paper, we have studied a series of glassy metals with composition Fe 78-x Ni x Si 8 B 14 with x=0, 15, 25,38,53, 58. We have used Moessbauer spectroscopy to get information about short range order and local structure in these alloys. The specimens are exposed to neutron irradiation to perturb local structure and their short range order. The hyperfine parameters obtained from spectra before and after n-irradiation and are compared
Short range order of Mg-Cd-alloys during the transition from the solid to the molten state
International Nuclear Information System (INIS)
Boos, A.; Steeb, S.
1977-01-01
Recently a method was published for the determination of short range order parameters in binary melts and also a method for the determination of the concentration of different structures which form such a melt. These methods are used in the present work to evaluate the atomic structure of Mg-Cd-melts and to reval the changes in short range order during the melting process. (orig.) [de
The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps
Directory of Open Access Journals (Sweden)
Leanda D. Mason
2018-05-01
Full Text Available Ecological traps attract biota to low-quality habitats. Landscape traps are zones caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE traits may make such taxa vulnerable to ecological and landscape traps. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli (n = 20 and Aganippe sp. (n = 50, demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ. An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum. At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological trap for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape trap in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced rapid change.
Objectives for next generation of practical short-range atmospheric dispersion models
International Nuclear Information System (INIS)
Olesen, H.R.; Mikkelsen, T.
1992-01-01
The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)
Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions
Energy Technology Data Exchange (ETDEWEB)
Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States); Frankfurt, L.L.; Sargayan, M.M. [Tel Aviv Univ. (Iceland)] [and others
1994-04-01
For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.
On the skill of various ensemble spread estimators for probabilistic short range wind forecasting
Kann, A.
2012-05-01
A variety of applications ranging from civil protection associated with severe weather to economical interests are heavily dependent on meteorological information. For example, a precise planning of the energy supply with a high share of renewables requires detailed meteorological information on high temporal and spatial resolution. With respect to wind power, detailed analyses and forecasts of wind speed are of crucial interest for the energy management. Although the applicability and the current skill of state-of-the-art probabilistic short range forecasts has increased during the last years, ensemble systems still show systematic deficiencies which limit its practical use. This paper presents methods to improve the ensemble skill of 10-m wind speed forecasts by combining deterministic information from a nowcasting system on very high horizontal resolution with uncertainty estimates from a limited area ensemble system. It is shown for a one month validation period that a statistical post-processing procedure (a modified non-homogeneous Gaussian regression) adds further skill to the probabilistic forecasts, especially beyond the nowcasting range after +6 h.
Short-range order clustering in BCC Fe-Mn alloys induced by severe plastic deformation
Shabashov, V. A.; Kozlov, K. A.; Sagaradze, V. V.; Nikolaev, A. L.; Lyashkov, K. A.; Semyonkin, V. A.; Voronin, V. I.
2018-03-01
The effect of severe plastic deformation, namely, high-pressure torsion (HPT) at different temperatures and ball milling (BM) at different time intervals, has been investigated by means of Mössbauer spectroscopy in Fe100-xMnx (x = 4.1, 6.8, 9) alloys. Deformation affects the short-range clustering (SRC) in BCC lattice. Two processes occur: destruction of SRC by moving dislocations and enhancement of the SRC by migration of non-equilibrium defects. Destruction of SRC prevails during HPT at 80-293 K; whereas enhancement of SRC dominates at 473-573 K. BM starts enhancing the SRC formation at as low as 293 K due to local heating at impacts. The efficiency of HPT in terms of enhancing SRC increases with increasing temperature. The authors suppose that at low temperatures, a significant fraction of vacancies are excluded from enhancing SRC because of formation of mobile bi- and tri-vacancies having low efficiency of enhancing SRC as compared to that of mono vacancies. Milling of BCC Fe100-xMnx alloys stabilises the BCC phase with respect to α → γ transition at subsequent isothermal annealing because of a high degree of work hardening and formation of composition inhomogeneity.
Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions
Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas
2018-02-01
Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.
Directory of Open Access Journals (Sweden)
Vandana Bassoo
2015-12-01
Full Text Available Vehicular communication is a widely researched field and aims at developing technologies that may complement systems such as the advanced driver assistance systems. It is therefore important to analyse and infer on the performance of vehicular technologies for different driving and on-road criteria. This study considers the dedicated short range communications technology and more precisely the IEEE 802.11p standard for a performance and practicability analysis. There is also the proposal of a new classification scheme for typical driving conditions, which includes the main categories of Emergency and Safety scenarios while sub-classifications of Critical and Preventive Safety also exist. The scheme is used to build up scenarios as well as related equations relevant to developing countries for practical network simulation. The results obtained indicate that the relative speed of nodes is a determining factor in the overall performance and effectiveness of wireless vehicular communication systems. Moreover, delay values of low order were observed while an effective communication range of about 800 m was calculated for highway scenarios. The research thus indicates suitability of the system for an active use in collision avoidance even though independent factors such as climatic conditions and driver behaviour may affect its effectiveness in critical situations.
Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)
Energy Technology Data Exchange (ETDEWEB)
THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)
2014-04-15
We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.
Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts
Mohammadi, Seyedeh Atefeh; Rahmani, Morteza; Azadi, Majid
2016-08-01
This paper deals with the probabilistic short-range temperature forecasts over synoptic meteorological stations across Iran using non-homogeneous Gaussian regression (NGR). NGR creates a Gaussian forecast probability density function (PDF) from the ensemble output. The mean of the normal predictive PDF is a bias-corrected weighted average of the ensemble members and its variance is a linear function of the raw ensemble variance. The coefficients for the mean and variance are estimated by minimizing the continuous ranked probability score (CRPS) during a training period. CRPS is a scoring rule for distributional forecasts. In the paper of Gneiting et al. (Mon Weather Rev 133:1098-1118, 2005), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimize the CRPS. Since BFGS is a conventional optimization method with its own limitations, we suggest using the particle swarm optimization (PSO), a robust meta-heuristic method, to minimize the CRPS. The ensemble prediction system used in this study consists of nine different configurations of the weather research and forecasting model for 48-h forecasts of temperature during autumn and winter 2011 and 2012. The probabilistic forecasts were evaluated using several common verification scores including Brier score, attribute diagram and rank histogram. Results show that both BFGS and PSO find the optimal solution and show the same evaluation scores, but PSO can do this with a feasible random first guess and much less computational complexity.
Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.
Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C
2010-03-10
We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.
A UHF RFID system with on-chip-antenna tag for short range communication
International Nuclear Information System (INIS)
Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua
2015-01-01
A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)
Demonstration of micro-projection enabled short-range communication system for 5G.
Chou, Hsi-Hsir; Tsai, Cheng-Yu
2016-06-13
A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(-3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously.
Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry
Yuge, Koretaka
2018-04-01
Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
International Nuclear Information System (INIS)
Moreno, I.F.
1987-01-01
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt
Structural study of liquids with strong short-range correlation in the atomic distribution
International Nuclear Information System (INIS)
Uzuki, Kenji
1976-01-01
Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de
Short-range order analysis and some physical properties of InxSe1-x glasses
International Nuclear Information System (INIS)
El-Kabany, N.
2012-01-01
Bulk In x Se 1-x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(k α ) radiation in the wave vector interval 0.28≤k≤6.5 A 0-1 .The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r 1 =0.263 and r 2 =0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In 2 Se 3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of In x Se 1-x chalcogenide glass has been studied. The glass transition activation energy (E g ) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating T g theoretically.
2D fluorescence spectra measurement of six kinds of bioagents simulants by short range Lidar
Sanpedro, Man
2018-02-01
Pantoea agglomerans (Pan), Staphylococcus aureus (Sta), Bacillus globigii (BG) and Escherichia coli (EH), these four kinds of bioagents simulants of were cultured and then their growth curves were measured, the generation time was 0.99h, 0.835h, 1.07h and 1.909h, respectively. A small short range fluorescence lidar working at wavelengths of 266nm and 355nm was designed and used to measure the two-dimensional fluorescence spectra of bioagents simulants in the amino acid segment and NADH segment, respectively. In a controllable fluorescence measurement chamber, the two-dimensional fluorescence spectra of vegetative liquid bacterial aerosols as well as BSA and OVA, two protein toxinic simulants were measured with a resolution of 4nm. The two-dimensional fluorescence spectral shape of Pan, Sta, EH and BG, BSA and OVA were consistent with the standard fluorescent component tryptophan in the amino acid band with FWHM of 60nm, but the central wavelength of the fluorescence spectra of these simulants blue/purple shifted obviously as affected by the external biochemical environment, concentration and ratio of different bacterial internal fluorophores, so the energy level between the excited state and the ground state of the fluorescence molecule increased. Differently, weak NADH fluorescence spectra with 100nm FWHM inside the four vegetative bacteria aerosols were detected, but Rayleigh scattering, Raman scattering contribution of water, nitrogen in the fluorescence spectra could not be effectively extracted. The second - order derivative fluorescence spectra of four simulants showed that the high - order processing and recognition of the fluorescence spectra was feasible.
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2018-03-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and
Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals
Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui
2016-10-01
Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.
Short-range structure of barium tellurite glasses and its correlation with stress-optic response
Kaur, Amarjot; Khanna, Atul; Fábián, Margit
2018-06-01
The atomic parameters of metal ion-oxygen speciation such as bond-lengths and nearest neighbor distances for Ba-O, Te-O and O-O pairs, co-ordination numbers and bond angle distributions for O-Ba-O, O-Te-O and O-O-O linkages are determined by neutron diffraction and Reverse Monte Carlo simulations on the series of xBaO-(100-x)TeO2 glasses containing 10, 15 and 20 mol% BaO. The glass network depolymerizes and the average Te-O co-ordination number decreases from 3.60 ± 0.02 to 3.48 ± 0.02 with increase in BaO concentration. Te-O bond lengths are in the range: 1.97 ± 0.01–1.92 ± 0.01 Å. Ba2+ is mostly in octahedral coordination and the Ba-O bond lengths are in the range: 2.73 ± 0.01 to 2.76 ± 0.03 Å. Te-O co-ordination number is also determined by Raman spectroscopy and it shows good agreement with the neutron data. The short-range structural properties i.e. metal ion coordination number (Nc) and bond lengths (d) were correlated with the stress-optic response. The bonding characteristic, Br values were determined from the structural data of xBaO-(100-x)TeO2 glasses and were used to predict the stress-induced birefringence properties.
Limited-area short-range ensemble predictions targeted for heavy rain in Europe
Directory of Open Access Journals (Sweden)
K. Sattler
2005-01-01
Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.
Short-range and long-range forces in quantum theory: selected topics
International Nuclear Information System (INIS)
Hiller, J.R.
1980-01-01
Short-range forces (SRF) are encountered when the effects of the parity-violating (PV) weak neutral current are considered in atomic systems. We consider these and other SRF that are associated with operators that contain delta functions. Identities which convert a delta-function matrix element to that of a global operator are reviewed. Past and possible future applications of such identities are described. It has been found that use of these identities can substantially improve the results obtained with less accurate wave functions. We present a further application to the hyperfine structure of the ground state of lithium where we again find that results are improved by the use of an identity. A long-range force (LRF) is here defined to be one that is associated with a potential V(r) that is asymptotically of the form lambda r - 1 (r 0 /r)/sup N-1/. We use a dispersion-theoretic approach to study LRF between hadrons due to two-glucon exchange within the framework of quantum chromodynamics. Such an LRF is usually related to the presence of a spectrum of physical states that extends to zero mass. A speculative scheme put forward by Feinberg and Sucher is used to avoid requiring the existence of massless gluons as observable particles. Semi-quantitative expressions for the two-glucon exchange potential between hadrons and, in particular, between two nucleons are obtained. Limits on two-gluon corrections to πp forward scattering dispersion relations are used to provide an upper bound for lambda, the coupling constant in the nucleon-nucleon potential. For N greater than or equal to 7, expected on heuristic grounds, we obtain the bound lambda less than or equal to 10 6 , which is very weak; gluon effects as treated here do not lead to significant effects in the dispersion-theoretic analysis of πp scattering
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.
1991-01-01
Within the model of QCD vacuum as an instanton liquid the spin-dependent structure functions of sea quarks are obtained. It is shown that the EMC data manages the definition of new Regge trajectory connected with the axial anomaly. The model explains the modern experimental data on the sea quark structure functions. 23 refs.; 3 figs
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one
The spin dependent structure function g1 of the deuteron and the proton
International Nuclear Information System (INIS)
Klostermann, L.
1995-01-01
This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarised nuons on polarised proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one con determine the spin dependent structure function g 1 , which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g 1 p by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g 1 p and g 1 d to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. (orig./WL)
Energy Technology Data Exchange (ETDEWEB)
Granovsky, Alexander [Faculty of Physics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation)]. E-mail: granov@magn.ru; Kozlov, Andrey [Faculty of Physics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Nedukh, Sergey [Institute of Radiophysics and Electronics NAS of Ukraine, Kharkov 61085 (Ukraine); Tarapov, Sergey [Institute of Radiophysics and Electronics NAS of Ukraine, Kharkov 61085 (Ukraine)
2005-07-15
Since the dielectric permittivity is linear with frequency-dependent conductivity, high-frequency properties for any kind of magnetic materials with the high magnetoresistance depend on magnetization. It manifests as magnetorefractive effect (MRE) in the infrared region of spectrum and as magnetoimpedance (MI) in the frequency range between radio and microwaves. The main mechanism of both MRE and MI in nanocomposites with tunnel-type magnetoresistance is high-frequency spin-dependent tunnelling. We report on recent results of theoretical and experimental investigations of MRE and MI in nanocomposites Co{sub 51.5}Al{sub 19.5}O{sub 29}, Co{sub 50.2}Ti{sub 9.1}O{sub 40.7}, Co{sub 52.3}Si{sub 12.2}O{sub 35.5} and (Co{sub 0,4}Fe{sub 0,6}){sub 48}(MgF){sub 52}. Most of the obtained experimental data for MRE and MI are consistent with the theory based on considering the tunnel junction between adjacent granules in percolation cluster as a capacitor.
Spin dependent disorder in a junction device with spin orbit couplings
International Nuclear Information System (INIS)
Ganguly, Sudin; Basu, Saurabh
2016-01-01
Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)
Measurement of the spin-dependent structure-functions of the proton and the deuteron
2002-01-01
% NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent structure functions $g _{1}(x)$ of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...
Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation
Energy Technology Data Exchange (ETDEWEB)
Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2016-08-10
A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.
Research of Short-range Missile Motion in Terms of Different Wind Loads
Directory of Open Access Journals (Sweden)
A. N. Klishin
2015-01-01
Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the
Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts
Directory of Open Access Journals (Sweden)
S. R. Kolusu
2015-11-01
Full Text Available The direct radiative impacts of biomass burning aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September–3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2 and reduces net top-of-atmosphere (TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were
Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars
Ming, Douglas W.; Morris, R. V.; Golden, D. C.
2011-01-01
Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be
Short range order and phase separation in Ti-rich Ti-Al alloys
International Nuclear Information System (INIS)
Liew, H.J.
1999-01-01
of the reaction over a range of scales, from the atomic level on which order occurs through to large scale precipitates. Ti-15at%Al displays a phase separation mechanism involving both ordering and chemical phase decomposition which occurs in a time and temperature range that is readily accessible experimentally. Hence this alloy is an appropriate model system on which to conduct fundamental investigations into a complex decomposition mechanism and its kinetics. Both experimental and modelling results show that short range order develops rapidly in the alloy, and is followed by the formation and growth of congruent long range ordered regions of DO 19 structure. At a later stage composition variations form and increase in amplitude through a spinodal mechanism. From these findings, it cannot be ruled out that the observed decomposition sequence is due solely to the kinetics of ordering being more rapid than those of chemical phase separation. However, there are some indications which suggest that a thermodynamic criterion is operating, such that the onset of chemical phase separation occurs only after ordering has been achieved to some extent. The observed mechanism is fully consistent in appearance with the class of reactions known as conditional spinodals. (author)
Radiation tolerance of a spin-dependent tunnelling magnetometer for space applications
International Nuclear Information System (INIS)
Persson, Anders; Thornell, Greger; Nguyen, Hugo
2011-01-01
To meet the increasing demand for miniaturized space instruments, efforts have been made to miniaturize traditional magnetometers, e.g. fluxgate and spin-exchange relaxation-free magnetometers. These have, for different reasons, turned out to be difficult. New technologies are needed, and promising in this respect are tunnelling magnetoresistive (TMR) magnetometers, which are based on thin film technology. However, all new space devices first have to be qualified, particularly in terms of radiation resistance. A study on TMR magnetometers' vulnerability to radiation is crucial, considering the fact that they employ a dielectric barrier, which can be susceptible to charge trapping from ionizing radiation. Here, a TMR-based magnetometer, called the spin-dependent tunnelling magnetometer (SDTM), is presented. A magnetometer chip consisting of three Wheatstone bridges, with an angular pitch of 120°, was fabricated using microstructure technology. Each branch of the Wheatstone bridges consists of eight pairs of magnetic tunnel junctions (MTJs) connected in series. Two such chips are used to measure the three-dimensional magnetic field vector. To investigate the SDTM's resistance to radiation, one branch of a Wheatstone bridge was irradiated with gamma rays from a Co 60 source with a dose rate of 10.9 rad min −1 to a total dose of 100 krad. The TMR of the branch was monitored in situ, and the easy axis TMR loop and low-frequency noise characteristics of a single MTJ were acquired before and after irradiation with the total dose. It was concluded that radiation did not influence the MTJs in any noticeable way in terms of the TMR ratio, coercivity, magnetostatic coupling or low-frequency noise
On-chip patch antenna on InP substrate for short-range wireless communication at 140 GHz
DEFF Research Database (Denmark)
Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy
2017-01-01
This paper presents the design of an on-chip patch antenna on indium phosphide (InP) substrate for short-range wireless communication at 140 GHz. The antenna shows a simulated gain of 5.3 dBi with 23% bandwidth at 140 GHz and it can be used for either direct chip-to-chip communication or chip...
International Nuclear Information System (INIS)
Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.
2011-01-01
We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.
Panda, Manas K.; Ghosh, Soumyajit; Yasuda, Nobuhiro; Moriwaki, Taro; Mukherjee, Goutam Dev; Reddy, C. Malla; Naumov, Panče
2015-01-01
The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.
Directory of Open Access Journals (Sweden)
I. Kaminer
2017-01-01
Full Text Available Electrons interacting with plasmonic structures can give rise to resonant excitations in localized plasmonic cavities and to collective excitations in periodic structures. We investigate the presence of resonant features and disorder in the conventional Smith-Purcell effect (electrons interacting with periodic structures and observe the simultaneous excitation of both the plasmonic resonances and the collective excitations. For this purpose, we introduce a new scanning-electron-microscope-based setup that allows us to probe and directly image new features of electron-photon interactions in nanophotonic structures like plasmonic crystals with strong disorder. Our work creates new possibilities for probing nanostructures with free electrons, with potential applications that include tunable sources of short-wavelength radiation and plasmonic-based particle accelerators.
Effect of Δ-isobar excitation on spin-dependent observables of elastic nucleon-deuteron scattering
International Nuclear Information System (INIS)
Nemoto, S.; Oryu, S.; Chmielewski, K.; Sauer, P.U.
2000-01-01
Δ-isobar excitation in the nuclear medium yields an effective three-nucleon force. A coupled-channel formulation with Δ-isobar excitation developed previously is used. The three-particle scattering equations are solved by a separable expansion of the two-baryon transition matrix for elastic nucleon-deuteron scattering. The effect of Δ-isobar excitation on the spin-dependent observables is studied at energies above 50 MeV nucleon lab energy. (author)
International Nuclear Information System (INIS)
Baishya, R.; Jamil, U.; Sarma, J. K.
2009-01-01
In this paper the spin-dependent singlet and nonsinglet structure functions have been obtained by solving Dokshitzer, Gribov, Lipatov, Altarelli, Parisi evolution equations in leading order and next to leading order in the small x limit. Here we have used Taylor series expansion and then the method of characteristics to solve the evolution equations. We have also calculated t and x evolutions of deuteron structure functions, and the results are compared with the SLAC E-143 Collaboration data.
Electronically driven short-range lattice instability: Cluster effects in superconductors
International Nuclear Information System (INIS)
Szasz, A.
1991-01-01
In the first part of this series, short- and medium-range interactions in superconductors were investigated. In this paper a discussion is made on the cluster-mass dependence of the superconductive transition temperature and the relevant phenomenon of electron localization. A comparison with experiments is given; the predictions fit well to the observations
Short-ranged radial and tensor correlations in nuclear many-body systems
International Nuclear Information System (INIS)
Neff, T.; Feldmeier, H.
2003-01-01
The unitary correlation operator method (UCOM) is applied to realistic potentials. The effects of tensor correlations are investigated. The resulting phase shift equivalent correlated interactions are used in the no-core shell model for light nuclei and for mean-field calculations in the Fermionic Molecular Dynamics model for nuclei up to mass A=48. (orig.)
On the sensitivity of nucleon-nucleon correlations to the form of short-range potential
International Nuclear Information System (INIS)
Gmitro, M.; Kvasil, J.; Lednicky, R.; Lyuboshitz, V.L.
1986-01-01
Nucleon-nucleon correlation characteristics are calculated for several phenomenological and realistic strong potentials. The results show that a square-well potential reasonably well approximates the nucleon-nucleon interaction if one calculates the correlations between nucleons generated in a region with an r.m.s. radius larger than 1.5-2 fm. Vice versa, the correlations of nucleons emitted from a smaller generation region are sensitive to the form of the assumed nucleon-nucleon potential. (author)
High-energy X-ray study of short range order and phase transformations in titanium-vanadium
International Nuclear Information System (INIS)
Ramsteiner, I.B.
2005-01-01
This work presents a study of configurational correlations and phase transformations in the binary alloy Ti-V, using high-energy X-ray diffraction. The experiments have been performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-energy (60-100 keV) technique developed recently allows in-situ measurements on bulk material in transmission geometry. The first part of the thesis discusses multiple scattering effects which might occur with this method. These effects are experimentally verified and discussed. Special emphasis is put on the questions, whether they affect the results obtained with this method, and how they can be avoided. Understanding alloys on the most fundamental level requires knowledge about the atomic interaction potentials. Competing with entropy, these potentials determine the configurational short range order in a disordered alloy, which generates together with static and dynamic distortions the diffuse scattering. The thesis presents measurements and calculations of the diffuse scattering patterns of Ti-V. The calculations, taking into account configurational correlations, static distortions induced by atomic size mismatch and thermal diffuse scattering, agree with the experimental data. Structural transformations in Ti-V are carefully characterized using high-energy x-ray diffraction in combination with the complementary transmission electron microscopy (TEM). While the first technique allows to study the phenomena in-situ and time-resolved, TEM yields real space images and chemical information about the phases. Ti-V near the equiatomic composition is a beta-Ti-alloy. The body centered cubic beta phase is retained at room temperature by fast quenching. Aging the material below the phase transformation temperature, however, leads to the precipitation of hexagonal alpha titanium. Another transformation process confusing earlier works is identified as TiC formation from carbon impurities in the material. In addition
2H(p, pp) n reaction as a probe of the short-range nuclear force
International Nuclear Information System (INIS)
Haftel, M.I.; Petersen, E.L.; Wallace, J.M.
1976-01-01
We examine the feasibility of using the 2 H(p, pp) n reaction as a means of extracting information about the short-range behavior of the nuclear force not obtainable from N-N scattering experiments. To do this we use several separable potentials and examine the predicted cross section in various regions of phase space and for beam energies between 14 and 65 MeV. The questions that we address are likely to be insensitive to Coulomb effects. Both the form factor and the energy dependence of the potentials have been modified from the usual Yamaguchi form. The form of the energy dependence is chosen to obtain phase-shift equivalence for two different form factors while guaranteeing a unitary two-body scattering amplitude. The sensitivity of breakup results to the on-shell and off-shell aspects of the nuclear force is examined and discussed. Significant on-shell sensitivity occurs for breakup amplitudes in all states and for cross sections over all regions of phase space. Off-shell sensitivity appears only in the S = 1/2, L = 0 breakup amplitudes, with all S = 3/2 and all L > 0 amplitudes exhibiting negligible off-shell dependence. This result leads to only a very small (< or = 5%) off-shell sensitivity for quasifree scattering. However, cross sections far from quasifree scattering, and in particular cross sections in the final-state interaction region of phase space, exhibit as much as a 50% variation for phase-shift-equivalent potentials. This sensitivity is small at low beam energy and increases with increasing energy. The energy dependence at negative energies of one potential is also altered to adjust the triton binding energy. This enables us to compare phase-shift-equivalent potentials differing off shell but predicting the same triton binding energy. The energy dependence of this potential is somewhat unconventional. Fixing of the triton binding energy reduces the off-shell sensitivity appreciably only for E approximately-less-than 20 MeV
Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni
Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.
2017-10-01
Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.
Manifestation of short-range correlations in deep inelastic scattering in deuterons and nuclei
International Nuclear Information System (INIS)
Strikman, M.I.; Frankfurt, L.L.
1981-01-01
It is shown that deep inelastic processes of the type l+A→l'+X and l+A→l'+p+X are an effective tool to study phenomena associated with the nucleon-nucleon interaction core, in particular the problem of cumulative particles. We have calculated the effects of scaling violation in the e+D→e+X process in accordance with the data of Schutz et al. It is shown that recent data on the reaction ν (nu-bar)+A→μ+p+X agree with the predictions of the few-nucleon correlation model
New spin source to search for scalar-pseudoscalar couplings at short range
International Nuclear Information System (INIS)
Hammond, G. D.; Pulido Paton, A.; Speake, C. C.; Trenkel, C.; Rochester, G. K.; Shaul, D.; Sumner, T. J.
2008-01-01
We describe the design and performance of a new source of polarized spins that can be employed in experiments that search for macroscopic interactions between particles with intrinsic spin. In this article we concentrate on the analysis of the performance of the spin source in generating putative scalar-pseudoscalar forces. We outline two methods of calculating the magnitude of such forces and compare the predictions of the models. We discuss the manufacture of the spin source and the measurements that we have carried out in order to place upper limits on systematic effects that would limit the sensitivity of such searches. We have shown, in a recent article to Physical Review Letters [G. D. Hammond, C. C. Speake, C. Trenkel, and A. Pulido-Paton, Phys. Rev. Lett. 98, 081101 (2007)], that the combination of the spin source together with the torque sensitivity of our torsion balance improves constraints on the coupling strength of macroscopic scalar-pseudoscalar interactions by 10 orders of magnitude at a range of 1 mm. This paper further supports that work and provides a detailed description and characterization of the spin source
Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun
2018-05-09
With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.
Changes in structure of the short-range order of the InP melt when heated
International Nuclear Information System (INIS)
Glazov, V.M.; Dovletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.
1977-01-01
An investigation of the temperature dependence of the InP viscosity has indicated an ''after-melting'' effect similar to that observed in other A 3 V 5 compounds having a sphalerite structure. The termodynamic parameters of the viscous flow of indium phosphide melt have been calculated, and a suggestion has been made on the loosening of the short-range order structure of the melt during the period preceding solidification. With the similarity in the behaviour of InP and of A 3 Sb compound melts as a basis, a suggestion has been put forward that the influence of the thermal dissociation upon the character of the changes in the short-range order structure directly after transition from the solid to the liquid phase is negligible
Assi, I. A.; Sous, A. J.
2018-05-01
The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.
International Nuclear Information System (INIS)
Dhawan, Sahil; Vedeshwar, Agnikumar G; Tandon, R P
2011-01-01
The optical and structural properties of well characterized vacuum-evaporated amorphous V 2 O 5 films were studied in the thickness range 5-500 nm. The structural analyses show that V-O, O-O and V-V nearest neighbour distances defining the short range order vary nonlinearly with film thickness. The optical absorption shows thickness-dependent energy gap (E g ) and the nonlinear behaviour of thickness-dependent E g is similar to that of nearest neighbour distance with film thickness. The E g correlates linearly very well with all the three nearest neighbour distances. The variation of E g with film thickness is attributed to the residual stress in the film which causes the changes in short range order. The change in E g corresponding to the change in V-O distance was found to be 35 eV nm -1 . This change is almost three times of that with V-V distance.
SHORT-RANGE WAKEFIELD IN A FLAT PILLBOX CAVITY GENERATED BY A SUB-RELATIVISTIC BEAM BUNCH
International Nuclear Information System (INIS)
WANG, H.; PALMER, R.B.; GALLARDO, J.
2001-01-01
The short-range wakefield between two parallel conducting plates generated by a sub-relativistic beam bunch has been solved analytically by the image charge method in time domain. Comparing with the traditional modal analysis in frequency domain, this algorithm simplifies the mathematics and reveals in greater details the physics of electromagnetic field generation, propagation, reflection and causality. The calculated results have an excellent agreement with MAFIA and ABC1 simulations in all range of beam velocities
International Nuclear Information System (INIS)
Bilyj, M.N.; Didyk, G.V.; Stetsiv, Ya.I.; Yurechko, R.Ya.
1980-01-01
Thin amorphous films of InSe have been obtained by the method of discrete vacuum evaporation of about 10 -2 Pa. The short-range order is investigated according to the radial distribution curves. The temperature and film thickness are shown to affect the character of conductivity. The width of the forbidden band determined by the fundamental absorption edge is found to depend on the time of film annealing
Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys
International Nuclear Information System (INIS)
Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.
1990-01-01
Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH
A NEUTRON DIFFRACTION DETERMINATION OF SHORT RANGE ORDER IN A Ni63.7Zr36.3 GLASS
Bellissent , R.; Bigot , J.; Calvayrac , Y.; Lefebvre , S.; Quivy , A.
1985-01-01
A precise determination of the three partial structure factors for the eutectic composition Ni63.7Zr36.3 has been carried out using neutron diffraction on three isotopically substituted glasses. The use of a "zero alloy" yields a direct determination of the Bhatia-Thornton structure factor SCC. Evidence for the existence of strong chemical short-range order and a clear size effect is obtained. Due to this chemical order, the partial structure factors cannot be consistent with the ones calcula...
DEFF Research Database (Denmark)
Hedegård, Erik Donovan
2017-01-01
considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...
A short-range weather prediction system for South Africa based on a multi-model approach
CSIR Research Space (South Africa)
Landman, S
2012-10-01
Full Text Available stream_source_info Landman5_2012.pdf.txt stream_content_type text/plain stream_size 44898 Content-Encoding ISO-8859-1 stream_name Landman5_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 1 A short... to be skillful. Moreover, the system outscores the forecast skill of the individual models. Keywords: short-range, ensemble, forecasting, precipitation, multi-model, verification Tel: +27 12 367 6054...
International Nuclear Information System (INIS)
Goodwin, Zachary A.H.; Feng, Guang; Kornyshev, Alexei A.
2017-01-01
We develop the theory of the electrical double layer in ionic liquids as proposed earlier by Kornyshev (2007). In the free energy function we keep the so called ‘short-range correlation terms’ which were omitted there. With some simplifying assumptions, we arrive at a modified expression for differential capacitance, which makes differential capacitance curves less sharply depending on electrode potential and having smaller values at extrema than in the previous theory. This brings the results closer to typical experimental observations, and makes it appealing to use this formalism for treatment of experimental data. Implications on Debye length and the extent of ion paring in ionic liquids are then briefly discussed.
Directory of Open Access Journals (Sweden)
Kunito Fukuda
2017-08-01
Full Text Available Spin-dependent space-charge-limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived, respectively, from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures
International Nuclear Information System (INIS)
Kaidatzis, A.
2008-10-01
In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)
Fukuda, Kunito; Asakawa, Naoki
2017-08-01
Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
Energy Technology Data Exchange (ETDEWEB)
Hassel, Christoph
2009-08-11
In the present thesis, the spin dependent transport in epitaxial Fe wires as well as in perpendicularly magnetized multilayer wires is investigated. The main focus is on the investigation of quantum transport phenomena, the domain wall resistance as well as the current induced domain wall motion. Epitaxial Fe wires are prepared from epitaxial Fe films by means of electron beam lithography. Because of the intrinsic magnetic anisotropy, it is possible to prepare wires with a remanent transversal magnetization. Magnetic force microscopy is used to image the magnetic state of single wires. The magnetization reversal behaviour of these wires is investigated in detail using magnetoresistance measurements. These measurements are dominated by effects of the anisotropic magnetoresistance and can be explained by micromagnetic calculations. For the first time, quantum transport phenomena in epitaxial Fe wires are studied by magnetoresistance measurements for temperatures down to 20 mK. These measurements clearly indicate that, independent of the wire width and orientation, no contribution due to weak electron localization can be observed. The results are quantitatively explained within the framework of enhanced electron-electron interactions. Furthermore, by reducing the wire width the onset of the transition from two-dimensional to one-dimensional behaviour is found. To determine the domain wall resistance, a different number of domain walls is created in various structures, whereby the epitaxial samples allow to investigate different domain wall structures. First, a technique based on the stray field of a magnetic force microscope tip is presented. Furthermore, the influence of the shape anisotropy on the coercive field of single wires is used. Contributions to the observed resistance change due to the anisotropic magnetoresistance are calculated using micromagnetic simulations. A positive intrinsic relative resistance increase of 0.2% within the domain wall is found at
Directory of Open Access Journals (Sweden)
A Moameni
2011-02-01
Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics
Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study
Shor, Stanislav; Yahel, Eyal; Makov, Guy
2018-04-01
The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping
2016-08-01
Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2
Nair, Harikrishnan S.; Brown, J. M.; Coldren, E.; Hester, G.; Gelfand, M. P.; Podlesnyak, A.; Huang, Q.; Ross, K. A.
2018-04-01
We present observations of highly frustrated quasi-two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the Seff =1 /2 compound γ -BaCo2(PO4)2 (γ -BCPO). Specific heat shows a broad peak comprised of two weak kink features at TN 1˜6 K and TN 2˜3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below TN 1 and TN 2, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length ξc=60 ±2 Å (TN 1) and in quasi-2D helical domains with ξh=350 ±11 Å (TN 2). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on γ -BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ J1-J2-J3 model with ferromagnetic nearest-neighbor exchange J1 are favored, both near regions of high classical degeneracy. High energy coherent excitations (˜10 meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above TN. These data show that γ -BCPO is a rare highly frustrated, quasi-2D Seff =1 /2 honeycomb lattice material which resists long range magnetic order and spin freezing.
Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS
Lin, Zhicheng; Martins, Rui Paulo
2016-01-01
This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. · Summarizes the state-of-the-art i...
Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses
Energy Technology Data Exchange (ETDEWEB)
Zaccone, Alessio; Terentjev, Eugene M. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)
2014-01-21
The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in agreement with the assumption of affine deformation, namely that the atoms are displaced just by the amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine deformations, with additional displacements due to the structural disorder which induce a marked material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the shear modulus for disordered materials characterized by dense atomic packing, but not for random networks with point atoms. We explain this phenomenon with a microscopic derivation of the elastic moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle correlations due to excluded volume. Short-range order is responsible for a reduction of the nonaffinity which is much stronger under compression, where the geometric coupling between nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination and atomic packing observed with many amorphous materials.
concentration on spin-dependent resonant tunnelling in InAs/Ga1 ...
Indian Academy of Sciences (India)
Cent percentage polarization can be obtained in this strained non-magnetic double-barrier ... Keywords. Spin–orbit interaction; barrier transparency; polarization efficiency; tunnelling lifetime. 1. Introduction ..... Figure 6. Tunnelling lifetime vs.
Spin-dependent tunneling conductance in 2D structures in zero magnetic field
International Nuclear Information System (INIS)
Rozhansky, I.V.; Averkiev, N.S.
2009-01-01
The influence of the spin-orbit interaction on the tunneling between two-dimensional electron layers is considered. A general expression for the tunneling current is obtained with the Rashba and Dresselhaus effects and also elastic scattering of charge carriers on impurities taken into account. It is shown that the particular form of the tunneling conductance as a function of the voltage between layers is extremely sensitive to the relationship between the Rashba and Dresselhaus parameters. This makes it possible to determine the parameters of the spin-orbit interaction and the quantum scattering time directly from measurements of the tunneling conductance in the absence of magnetic field
DEFF Research Database (Denmark)
Zhao, Ying; Deng, Lei; Pang, Xiaodan
2011-01-01
be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission......We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems....
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Alpert, P.; Getenio, B.; Zak-Rosenthal, R.
1988-01-01
The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.
Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach
International Nuclear Information System (INIS)
Galván-Colín, Jonathan; Valladares, Ariel A.; Valladares, Renela M.; Valladares, Alexander
2015-01-01
Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu x Zr 100−x (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature
Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach
Energy Technology Data Exchange (ETDEWEB)
Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)
2015-10-15
Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.
Zaccarelli, E.; Sciortino, F.; Tartaglia, P.; Foffi, G.; McCullagh, G. D.; Lawlor, A.; Dawson, K. A.
2002-11-01
We discuss the phase behaviour of spherical hard-core particles, with an attractive potential, as described by a hard-core Yukawa model. The ratio of the range of the attraction to the diameter of the particles is an important control parameter of the problem. Upon decreasing the range of the attraction, the phase diagram changes quite significantly, with the liquid-gas transition becoming metastable, and the crystal being in equilibrium with the fluid, with no intervening liquid. We also study the glass transition lines and, crucially, find that the situation, being very simple for pure repulsive potentials, becomes much richer in competition between glass and crystal phases for short-range attractions. Also a transition between attractive and repulsive glass appears somewhat in analogy with the isostructural equilibrium transition between two crystals.
Energy Technology Data Exchange (ETDEWEB)
Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy); University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States); DelFavero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States)
2015-04-01
Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip–cell interface under circumstances where the actin cytoskeleton has been disrupted. - Highlights: • AFM force–deformation curve was used to characterize the cardiac fibroblast adhesion behavior. • The amount and nature of adhesion were assessed using a Poisson analysis applied to the AFM curve. • The work of adhesion for control cells was about four times higher than that of the Cyt-D treated cells. • Short- and long-range contributions to adhesion are nearly equal for both control and treated cells.
International Nuclear Information System (INIS)
Beck, D.H.; Filippone, B.W.; Jourdan, J.
1988-01-01
It is possible to measure the deep-inelastic spin-dependent structure functions g 1 /sup p/(x) and g 1 /sup n/(x) for the proton and neutron using internal polarized hydrogen, deuterium, and 3 He targets of polarization 50% and thickness 10 14 to 10 15 cm -2 and the 60 mA longitudinally polarized 30 GeV electron beam in the HERA electron storage ring. The measurement of the deep-inelastic spin-structure of both isospin states of the nucleon at the same kinematics and using the same apparatus allows the Bjorken sum rule to be experimentally checked. In addition, it uniquely constrains the spin distribution of the u and d quarks as a function of x in any model of the nucleon. Possible target and detector configurations are described and an estimate of the accuracy of such a measurement is presented
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)
International Nuclear Information System (INIS)
Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.
1995-01-01
Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties
2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets
Directory of Open Access Journals (Sweden)
Teshome Senbeta
2012-03-01
Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
On the twist-2 and twist-3 contributions to the spin-dependent electroweak structure functions
International Nuclear Information System (INIS)
Bluemlein, J.; Kochelev, N.
1997-01-01
The twist-2 and twist-3 contributions of the polarized deep-inelastic structure functions are calculated both for neutral and charged current interactions using the operator product expansion in lowest order in QCD. The relations between the different structure functions are determined. New integral relations are derived between the twist-2 contributions of the structure functions g 3 (x,Q 2 ) and g 5 (x,Q 2 ) and between combinations of the twist-3 contributions to the structure functions g 2 (x,Q 2 ) and g 3 (x,Q 2 ). The sum rules for polarized deep-inelastic scattering are discussed in detail. (orig.)
Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.
2017-09-01
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi
Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies
International Nuclear Information System (INIS)
Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej
2014-01-01
The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed
Roermund, Arthur; Baschirotto, Andrea
2012-01-01
The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
International Nuclear Information System (INIS)
Aziz, M.J.; Boettinger, W.J.
1994-01-01
Short-range diffusion-limited growth, collision-limited growth, and the transition between the two regimes are explained as natural consequences of a single model for the kinetics of alloy solidification. Analytical expressions are developed for the velocity-undercooling function of a planar interface during dilute alloy solidification, using Turnbull's collision-limited growth model and the Continuous Growth Solute Trapping Model of Aziz and Kaplan both with and without a solute drag effect. The interface mobility, -dv/dT, is shown to be very high (proportional to the speed of sound) if the alloy is sufficiently dilute or if the growth rate is sufficiently rapid for nearly complete solute trapping. The interface mobility is reduced by the three orders of magnitude (becoming proportional to the diffusive speed) at intermediate growth rates where partial solute trapping occurs. Differences in low velocity predictions of the models with and without solute drag are also discussed. Comparison of the results of the analytical expressions to numerical solutions of the non-dilute kinetic model for Al-Be alloys shows that the dilute approximation breaks down at melt compositions on the order of 10 at.%. Similar variations in the interface mobility are shown for the disorder-trapping model of Boettinger and Aziz
Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket
Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin
2015-01-01
The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.
Energy Technology Data Exchange (ETDEWEB)
Burger, H; Tews, W; Vogel, W; Kozhukharov, V [Jena Univ. (Germany)
1989-01-01
Tellurate glasses, with as second components Al[sub 2]O[sub 3], PbO, PbF[sub 2], PbCl[sub 2], PbBr[sub 2], PbSO[sub 4], ZnO, B[sub 2]O[sub 3], P[sub 2]O[sub 5], Li[sub 2]O, Na[sub 2]O, K[sub 2]O, MgO and BaO as well as some glasses from ternary TeO[sub 2]-P[sub 2]O[sub 5]-RO systems (R is Pb, Ba and Zn ions), have been investigated. Transmittance spectra in UV and VIS region of some selected glasses have been measured. A correlation between optical properties and UV absorption edge of the transmittance have been done. Using p[sup 31]-NMR spectroscopy the structural changes on short-range level order are studied. A strong influence on the refraction and dispersion values as well as UV-absorption ability of the glasses is established. For p[sup 31] -NMR spectroscopy investigations of crystalline phosphotellurites and related phosphotellurite glasses the TeO[sub 2]-P[sub 2]O[sub 5B]aO ternary system have been chosen. (author).
Ekerholm, Mattias; Hallberg, Eric
2005-08-01
The European shore crab Carcinus maenas is considered to rely on a female pheromone when mating. Evidence, however, is scarce on how the urine pheromone in itself affects males. We investigated male primer and releaser responses to female pheromones with methods that minimized effects from females, delivering female urine either as a pump-generated plume or deposited on a polyurethane sponge. We delivered the pheromone at different concentrations in far, near, and close/contact range to get a picture of how distance affects behavioral response. Our results show that substances in premolt female urine (PMU) function as primer and potent short-range releaser pheromones. Based on the olfactometer and sponge tests, we conclude that PMU stimulus in itself is sufficient to elicit increased search and mating-specific behaviors such as posing, posing search, cradle carrying, and stroking. Pheromone concentrations do not seem to be important for attenuating search and posing as long as the level is above a certain threshold concentration. Instead, pheromone levels seem to play a role in male acceptance of females, recruiting more males to respond, and generating better responses with increasing concentration.
Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem
2002-09-01
Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.
Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.
2017-12-01
As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.
International Nuclear Information System (INIS)
Iacopi, F.; Travaly, Y.; Eyckens, B.; Waldfried, C.; Abell, T.; Guyer, E.P.; Gage, D.M.; Dauskardt, R.H.; Sajavaara, T.; Houthoofd, K.; Grobet, P.; Jacobs, P.; Maex, K.
2006-01-01
The short-ranged bonding structure of organosilicate glasses can vary to a great extent and is directly linked to the mechanical properties of the thin film material. The combined action of ultraviolet (UV) radiation and thermal activation is shown to generate a pronounced rearrangement in the bonding structure of thin organosilicate glass films involving no significant compositional change or film densification. Nuclear magnetic resonance spectroscopy indicates loss of -OH groups and an increase of the degree of cross-linking of the organosilicate matrix for UV-treated films. Fourier transform infrared spectroscopy shows a pronounced enhancement of the Si-O-Si network bond structure, indicating the formation of more energetically stable silica bonds. Investigation with x-ray reflectivity and ellipsometric porosimetry indicated only minor film densification. As a consequence, the mechanical properties of microporous organosilicate dielectric films are substantially enhanced while preserving the organosilicate nature and pristine porosity of the films. UV-treated films show an increase in elastic modulus and hardness of more than 40%, and a similar improvement in fracture energy compared to untreated films. A minor increase in material dielectric constant from 3.0 to 3.15 was observed after UV treatment. This mechanism is of high relevance for the application of organosilicate glasses as dielectric materials for microelectronics interconnects, for which a high mechanical stability and a low dielectric constant are both essential film requirements
International Nuclear Information System (INIS)
Utkina, T.G.
1995-01-01
Niobium carbide, NbC x , belongs to the family of so called interstital phases. Metal atoms form a face-centered cubic lattice, whose octahedral interstices are occupied by carbon atoms. The fraction (1 - x) of interstices remain vacant, and this determines the nonstoichiometry of these phases: most of them are characterized by a wide homogeneity range, 0.70 m ≅ 3308 - 3886 K). In contrast, the metalloid atoms exhibit high mobility at relatively low temperatures. For compositions close to Nb 6 C 5 (0.81 O-D ≅ 1300 K. The presence of vacancies in the carbon sublattice considerably affects the physical properties of carbides, which depend not only on total vacancy concentration but also on their distribution, i.e., on the degree of ordering (both short-range and long-range order) in the metalloid sublattice. The purpose of this work is to study the effects of such ordering on the superconducting properties of Nb 6 C 5 single crystals
International Nuclear Information System (INIS)
Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B
2011-01-01
Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)
International Nuclear Information System (INIS)
Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.
2017-01-01
Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.
Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.
2017-09-01
Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.
Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C
Energy Technology Data Exchange (ETDEWEB)
Mouginot, Roman, E-mail: roman.mouginot@aalto.fi [Aalto University School of Engineering, Department of Mechanical Engineering, Otakaari 4, 02150 Espoo (Finland); Sarikka, Teemu [Aalto University School of Engineering, Department of Mechanical Engineering, Otakaari 4, 02150 Espoo (Finland); Heikkilä, Mikko [University of Helsinki, Laboratory of Inorganic Chemistry, A.I.Virtasen Aukio 1, 00560 Helsinki (Finland); Ivanchenko, Mykola; Ehrnstén, Ulla [VTT Technical Research Centre of Finland LTD, Kemistintie 3, 02150 Espoo (Finland); Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daedeok-Daero, 989-111, Yuseong, Daejeon, 34057 (Korea, Republic of); Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, Otakaari 4, 02150 Espoo (Finland)
2017-03-15
Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M{sub 23}C{sub 6} carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM). - Highlights: • SRO was suggested in Alloy 690 with 9.18 wt% Fe after thermal ageing at 350, 420 and 475 °C. • Prior thermal treatment promoted SRO before ageing. • Cold work led to recrystallization and precipitation of α-Cr upon ageing at 550 °C. • Thermal ageing promoted IG precipitation of Cr-rich M{sub 23}C{sub 6} carbides and DIGM.
Directory of Open Access Journals (Sweden)
M. Jamal Deen
2013-08-01
Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
Directory of Open Access Journals (Sweden)
Sajid Shah
2015-05-01
Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.
Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J
1997-01-01
We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.
International Nuclear Information System (INIS)
Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui
2016-01-01
We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.
Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi
2018-01-01
We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.
International Nuclear Information System (INIS)
Zhang, Hu; Dai, Jian-Qing; Song, Yu-Min
2016-01-01
We investigate the magnetoelectric coupling and spin-polarized tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions with asymmetric interfaces based on density functional theory. The junctions have two stable polarization states. We predict a peculiar magnetoelectric effect in such junctions originating from the magnetic reconstruction of Ni near the KO-terminated interface. This reconstruction is induced by the reversal of the ferroelectric polarization of KNbO_3. Furthermore, the change in the magnetic ordering filters the spin-dependent current. This effect leads to a change in conductance by about two orders of magnitude. As a result we obtain a giant tunneling electroresistance effect. In addition, there exist sizable tunneling magnetoresistance effects for two polarization states. - Highlights: • We study the ME coupling and electron tunneling in Ni/KNbO_3/Ni junctions. • There is magnetic reconstruction of Ni atoms near the KO-terminated interface. • A peculiar magnetoelectric coupling effect is obtained. • Predicted giant tunneling electroresistance effects.
The Spin-dependent Structure Function of the Proton $g_{1}^p$ and a Test of the Bjorken Sum Rule
Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chaberny, D.; Cotic, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schluter, T.; Schopferer, S.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2010-01-01
The inclusive double-spin asymmetry, $A_{1}^{p}$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x < 0.7 and improve the statistical precision of g_{1}^{p}(x) by a factor of two in the region x < 0.02. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants g_A/g_V = 1.28+-0.07(stat)+-0.10(syst).
Energy Technology Data Exchange (ETDEWEB)
Zhou, Benliang [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Benhu [Department of Physics, Shaoyang University, Shaoyang 422001 (China); Liu, Guang; Guo, Dan [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China)
2016-11-01
We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.
Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.
2016-09-01
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
Yong, Gao-Chan; Li, Bao-An
2017-12-01
Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.
Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule
Directory of Open Access Journals (Sweden)
C. Adolph
2017-06-01
Full Text Available Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a 6LiD target. The data were taken at 160 GeV beam energy and the results are shown for the kinematic range 1(GeV/c24GeV/c2 in the mass of the hadronic final state. The deuteron double-spin asymmetry A1d and the deuteron longitudinal-spin structure function g1d are presented in bins of x and Q2. Towards lowest accessible values of x, g1d decreases and becomes consistent with zero within uncertainties. The presented final g1d values together with the recently published final g1p values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the g1 world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge a0, which is identified in the MS‾ renormalisation scheme with the total contribution of quark helicities to the nucleon spin, is extracted at next-to-leading order accuracy from only the COMPASS deuteron data: a0(Q2=3(GeV/c2=0.32±0.02stat±0.04syst±0.05evol. Together with the recent results on the proton spin structure function g1p, the results on g1d constitute the COMPASS legacy on the measurements of g1 through inclusive spin-dependent deep inelastic scattering.
Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu
2018-05-01
The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.
Shang, Liangliang; He, Yangle; Lian, Jingwei; Pan, Yusi
2018-05-01
The Weakly Interacting Massive Particle (WIMP) has been one of the most attractive candidates for Dark Matter (DM), and the lightest neutralino (\\widetilde{χ }^0_1) in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is an interesting realization of the WIMP framework. The Galactic Center Excess (GCE) indicated from the analysis of the photon data of the Fermi Large Area Telescope (Fermi-LAT) in the gamma-ray wavelength ≲ 1 fm, can be explained by WIMP DM annihilations in the sky, as shown in many existing works. In this work we consider an interesting scenario in the Z_3-NMSSM where the singlet S and Singlino \\widetilde{S}^0 components play important roles in the Higgs and DM sector. Guided by our analytical arguments, we perform a sophisticated scan over the NMSSM parameter space by considering various observables such as the Standard Model (SM) Higgs data measured by the ATLAS and CMS experiments at the Large Hadron Collider (LHC), and the B-physics observables BR(B_s→ X_sγ ) and BR(B_s→ μ ^+μ ^-). We first collect samples which can explain the GCE well while passing all constraints we consider except for the DM direct detection (DD) bounds from XENON1T and PandaX-II experiments. We analyze the features of these samples suitable for the GCE interpretation and find that \\widetilde{χ }^0_1 DM are mostly Singlino-like and annihilation products are mostly the bottom quark pairs \\bar{b}b through a light singlet-like CP-odd Higgs A_1. Moreover, a good fit to the GCE spectrum generically requires sizable DM annihilation rates 0 in today's Universe. However, the correlation between the coupling C_{A_1 b\\bar{b}} in 0 and the coupling C_{Z \\widetilde{χ }^0_1 \\widetilde{χ }^0_1} in DM-neutron Spin Dependent (SD) scattering rate σ ^{SD}_{\\widetilde{χ }^0_1-N} makes all samples we obtain for GCE explanation get excluded by the PandaX-II results. Although the DM resonant annihilation scenarios may be beyond the reach of our analytical
Vodopyanov, B P
2010-05-12
The influence of the spin-dependent phase shifts (SDPSs) associated with the electronic reflection and transmission amplitudes acquired by electrons upon scattering at the potential barrier on the Andreev reflection probability of electron and hole excitations for a ferromagnet/isolator/d-wave superconductor (FIS) contact and on the charge conductance of the FIS contact is studied. Various superconductor orientations are considered. It has been found that for strong ferromagnets and ultrathin interface potential for the {110} oriented d-wave superconductor the presence of the SDPS can lead to the appearance of finite-voltage peaks in the charge conductance of the F/I/d-wave superconductor contact. On the contrary, for the {100} orientation of the d-wave superconductor the presence of the SDPS can lead to restoration of the zero-voltage peak and suppression of finite-voltage peaks. The spin-dependent amplitudes of the Andreev reflection probability and energy levels of the spin-dependent Andreev bound states are found.
International Nuclear Information System (INIS)
Kumar, V.; Mookerjee, A.; Srivastava, V.K.
1980-09-01
We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)
Czech Academy of Sciences Publication Activity Database
Melnyk, R.; Nezbeda, Ivo; Trokhymchuk, A.
2016-01-01
Roč. 114, 16-17 (2016), s. 2523-2529 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : hard-core fluid * reference system * short-range Yukawa attraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016
Directory of Open Access Journals (Sweden)
Meera Ramaswamy
2017-10-01
Full Text Available Confined systems ranging from the atomic to the granular are ubiquitous in nature. Experiments and simulations of such atomic and granular systems have shown a complex relationship between the microstructural arrangements under confinement, the short-ranged particle stresses, and flow fields. Understanding the same correlation between structure and rheology in the colloidal regime is important due to the significance of such suspensions in industrial applications. Moreover, colloidal suspensions exhibit a wide range of structures under confinement that could considerably modify such force balances and the resulting viscosity. Here, we use a combination of experiments and simulations to elucidate how confinement-induced structures alter the relative contributions of hydrodynamic and short-range repulsive forces to produce up to a tenfold change in the viscosity. In the experiments we use a custom-built confocal rheoscope to image the particle configurations of a colloidal suspension while simultaneously measuring its stress response. We find that as the gap decreases below 15 particle diameters, the viscosity first decreases from its bulk value, shows fluctuations with the gap, and then sharply increases for gaps below 3 particle diameters. These trends in the viscosity are shown to strongly correlate with the suspension microstructure. Further, we compare our experimental results to those from two different simulations techniques, which enables us to determine the relative contributions of hydrodynamic and short-range repulsive stresses to the suspension rheology. The first method uses the lubrication approximation to find the hydrodynamic stress and includes a short-range repulsive force between the particles while the second is a Stokesian dynamics simulation that calculates the full hydrodynamic stress in the suspension. We find that the decrease in the viscosity at moderate confinements has a significant contribution from both the
International Nuclear Information System (INIS)
Znojil, M.
1986-01-01
The radial Schroedinger equation and its bound-state solutions for the interaction V(r)=Vsub(coulomb)+Vsub(Pade), where Vsub(Pade)(r)=(b+cr)/(1+drsup(2)) are considered. In order to construct exactly the Feshbach effective Hamiltonian Hsup(eff), the fixed-point-substraction technique is employed and its simplification is proposed. The first two terms in the resulting asymptotic expansions of PSIsub(n) and Hsup(eff) are calculated and interpreted as a new type of perturbation theory
Directory of Open Access Journals (Sweden)
Ashish C. Gandhi
2018-05-01
Full Text Available With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO2/Cr2O3 core-shell nanorods (NRs has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO2 extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.
Energy Technology Data Exchange (ETDEWEB)
Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)
1998-08-01
To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels.
Deuterium short-range order in Pd0.975Ag0.025D0.685 by diffuse neutron scattering
DEFF Research Database (Denmark)
Blaschko, O.; Klemencic, R.; Fratzl, P.
1983-01-01
By diffuse neutron scattering the D short-range order in a Pd0.975Ag0.025D0.685 crystal was investigated at 50 and 70K. The results are compared with the D ordering in the PdDx system previously investigated, and it is shown that the isointensity contours around the (1/2,1,0) point are similar...
Directory of Open Access Journals (Sweden)
Tao Liu
2016-12-01
Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.
International Nuclear Information System (INIS)
Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm
1998-01-01
To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels
Zemlyanichkina, Elena
2014-01-01
New results of the double spin asymmetry A p 1 and the spin-dependent structure function of the proton g p 1 as a function of x Bj and Q 2 will be presented. New COMPASS data on longitudinal polarized NH 3 target were collected during the year 2011 with a beam of positive muons with energy E = 200 GeV. It allows us to cover low x region down to 0 : 0025 in the range Q 2 > 1 GeV = c 2 for the first time
Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; He, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sans, M.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.-W.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.
2007-01-01
We present a precise measurement of the deuteron longitudinal spin asymmetry $A_1^d$ and of the deuteron spin-dependent structure function $g_1^d$ at $Q^2 < $ 1~(GeV/$c$)$^2$ and $4\\cdot$10$^{-5} < x < $~2.5$\\cdot$10$^{-2}$ based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured $A_1^d$ and $g_1^d$ are found to be consistent with zero in the whole range of $x$.
Sharov, V. I.; Anischenko, N. G.; Antonenko, V. G.; Averichev, S. A.; Azhgirey, L. S.; Bartenev, V. D.; Bazhanov, N. A.; Belyaev, A. A.; Blinov, N. A.; Borisov, N. S.; Borzakov, S. B.; Borzunov, Yu. T.; Bushuev, Yu. P.; Chernenko, L. P.; Chernykh, E. V.; Chumakov, V. F.; Dolgh, S. A.; Fedorov, A. N.; Fimushkin, V. V.; Finger, M.; Finger, M.; Golovanov, L. B.; Gurevich, G. M.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kolomiets, V. G.; Komogorov, E. V.; Kovalenko, A. D.; Kovalev, A. I.; Krasnov, V. A.; Krstonoshich, P.; Kuzmin, E. S.; Kuzmin, N. A.; Ladygin, V. P.; Lazarev, A. B.; Lehar, F.; de Lesquen, A.; Liburg, M. Yu.; Livanov, A. N.; Lukhanin, A. A.; Maniakov, P. K.; Matafonov, V. N.; Matyushevsky, E. A.; Moroz, V. D.; Morozov, A. A.; Neganov, A. B.; Nikolaevsky, G. P.; Nomofilov, A. A.; Panteleev, Tz.; Pillpenko, Yu. K.; Pisarev, I. L.; Plis, Yu. A.; Polunin, Yu. P.; Prokofiev, A. N.; Prytkov, V. Yu.; Rukoyatkin, P. A.; Schedrov, V. A.; Schevelev, O. N.; Shilov, S. N.; Shindin, R. A.; Slunecka, M.; Slunečková, V.; Starikov, A. Yu.; Stoletov, G. D.; Strunov, L. N.; Svetov, A. L.; Usov, Yu. A.; Vasiliev, T.; Volkov, V. I.; Vorobiev, E. I.; Yudin, I. P.; Zaitsev, I. V.; Zhdanov, A. A.; Zhmyrov, V. N.
2005-01-01
New accurate data on the neutron-proton spin-dependent total cross section difference Δ σ L( np) at the neutron beam kinetic energies 1.4, 1.7, 1.9 and 2.0 GeV are presented. A number of physical and methodical results on investigation of an elastic np→pn charge exchange process over a few GeV region are also presented. Measurements were carried out at the Synchrophasotron and Nuclotron of the Veksler and Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research.
International Nuclear Information System (INIS)
Chang, S.; Coriano, C.; Elwood, J.K.
1997-01-01
The authors investigate the role of the transverse spin dependence in Drell Yan lepton pair production to NLO in QCD at parton level. In the analysis the authors deal with the large p Τ distributions. They give very compact expressions for the virtual O(α s 2 ) corrections to the cross section and show that the singularities factorize. The study is performed in the MS scheme in Dimensional Regularization, and with the t'Hooft-Veltman prescription for γ 5 . A discussion of the structure of the real emissions is included, and detailed methods for the study of these contributions are formulated
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti Malta, Pedro
2017-06-27
It is well known that the Standard Model is not complete and many of the theories that seek to extend it predict new phenomena that may be accessible in low-energy settings. This thesis deals with some of these, namely, novel spin-dependent interparticle potentials, axion-like particles and Lorentz-symmetry violation. In Part I we discuss the spin-dependent potentials that arise due to the exchange of a topologically massive mediator, and also pursue a comparative study between spin-1/2 and spin-1 sources. In Part II we treat massive axion-like particles that may be copiously produced in core-collapse supernovae, thus leading to a non-standard flux of gamma rays. Using SN 1987A and the fact that after its observation no extra gamma-ray signal was detected, we are able to set robust limits on the parameter space of axion-like particles with masses in the 10 keV - 100 MeV range. Finally, in Part III we investigate the effects of Lorentz-breaking backgrounds in QED. We discuss two scenarios: a modification in the Maxwell sector via the Carroll-Field-Jackiw term and a new non-minimal coupling between electrons and photons. We are able to set upper limits on the coefficients of the backgrounds by using laboratory-based measurements.
International Nuclear Information System (INIS)
Li, Xin-Mei; Long, Meng-Qiu; Cui, Li-Ling; Xiao, Jin; Zhang, Xiao-Jiao; Zhang, Dan; Xu, Hui
2014-01-01
Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS 2 ) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS 2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. - Highlights: • The spin-dependent electronic transport of zigzag MoS 2 nanoribbons. • The effects of V-shaped edge defect and H-saturation. • The effects of spin-filter and negative differential resistance can be observed
Intentionally Short Range Communications (ISRC)
1993-05-01
molecular oxygen in the atmosphere at 60 GHz (figure 9 LIppolito, 1981]). The MMW range is similar to that of the UV links. 3.3.1 Variable Range Similar to...option also requires that the signal be strong enough to overcome the noise from the solar and background sources, although the molecular oxygen and... emisions . Lasing will occur only within the cavity when the alignment is correct and not lasing othem ise. Such a cavity is dcteclable only when an observer
Short range charge/orbital ordering in La1-xSrxMn1-zBzO3 (B Cu,Zn) manganites
International Nuclear Information System (INIS)
Popovic, Z V; Cantarero, A; Thijssen, W H A; Paunovic, N; Dohcevic-Mitrovic, Z; Sapina, F
2005-01-01
We have measured the reflectivity spectra of La 1-x Sr x Mn 1-z B z O 3 (B = Cu, Zn; 0.17 ≤ x ≤ 0.30; 0 ≤ z ≤ 0.10) manganites over wide frequency (100-4000 cm -1 ) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm -1 (external mode), 350 cm -1 (bond bending mode) and 590 cm -1 (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm -1 below the temperature T 1 (T 1 C ), which coincides with the phase transition temperature when the system transforms from ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally ordered domains. The temperature T 1 of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T 1 ∼(0.93 ± 0.02) T C . Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario
Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)
2002-01-01
This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.
Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip
2016-02-15
We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
K. K. Hon
2014-01-01
Full Text Available Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear and turbulence associated with buildings or man-made structures, it would be necessary to involve meteorological instruments that offer greater spatial resolution. Therefore, the Observatory has set up a short-range LIDAR on the roof of the AsiaWorld-Expo during the summers over the past several years, conducting field research on the feasibility of strengthening early alerting for windshear and turbulence over the north runway’s eastern arrival runway (Runway 25RA and developing an automated early alerting algorithm. This paper takes the pilot reports for Runway 25RA during the 2013 field research as verification samples, using different thresholds for radial wind velocity spatial and temporal changes detected by the short-range LIDAR to calculate the relative operating characteristic (ROC curve, and analyzes its early alerting performance.
Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti
2014-01-01
An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.
International Nuclear Information System (INIS)
Xi, L.; Du, J.H.; Ma, J.H.; Wang, Z.; Zuo, Y.L.; Xue, D.S.
2013-01-01
Highlights: ► Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. ► Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. ► Non-linear I–V curve indicates a tunneling type transport properties. ► Tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting I–V curves. ► LFMR of LSMO/oleic acid molecules value reaches −18% with current of 0.1 μA at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La 0.7 Sr 0.3 MnO 3 (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I–V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting the I–V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.
Energy Technology Data Exchange (ETDEWEB)
Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2015-12-14
We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.
Thermal stability study of the insulator layer in NiFe/CoFe/Al2O3/Co spin-dependent tunnel junction
International Nuclear Information System (INIS)
Liao, C.C.; Ho, C.H.; Huang, R.-T.; Chen, F.-R.; Kai, J.J.; Chen, L.-C.; Lin, M.-T.; Yao, Y.D.
2002-01-01
Spin-dependent tunnel junction, NiFe/CoFe/Al 2 O 3 /Co//Si, was fabricated to investigate the thermal stability induced diffusion behaviors. The interfacial diffusion causes the degradation of the ratio of the TMR, the enhancement of the switching field of the two magnetic electrodes, the thickness decrease of the insulator layer, and the increase of the interfacial roughness. The outward diffusion of oxygen from the insulator layer is faster than that of aluminum for samples annealed below 400 deg. C. The degradation of the ratio of TMR is attributed to the disturbance of the spin polarization in the magnetic layers, and the increase of the pinholes and spin-flip effect in the insulator layer. The relative roughness between the two interfaces of the insulator induces the surface magnetic dipoles, and hence, increases the switching field of the ferromagnetic electrodes
International Nuclear Information System (INIS)
Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki
2015-01-01
We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale
Magnetic and spin-dependent transport properties of reactive sputtered epitaxial Ti 1-xCr xN films
Duan, Xiaofei
2012-05-01
Reactive-sputtered epitaxial Ti 1-xCr xN films are ferromagnetic in the range of 0.17 ≤ x ≤ 0.51 due to the Cr-N-Cr double-exchange interaction below the Curie temperature (T C). The T C first increases, then decreases as x increases, and a maximum of 120 K appears at x = 0.47. All of the films are metallic with a transition near T C. A resistivity minimum ρ min is observed below 60 K in the films with 0.10 ≤ x ≤ 0.51 due to the effects of the weak localization and electron-electron interaction. The negative magnetoresistance (MR) is caused by the double-exchange interaction below T C and the weak localization can also contribute to MR below T min where ρ min appears. The x-dependent electron carrier densities reveal that the ferromagnetism is not from the carrier-mediated mechanism. The anomalous Hall resistivity follows the relation of ρxyA∝ρxx2, which is from the side-jump mechanism. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Magnetic and spin-dependent transport properties of reactive sputtered epitaxial Ti 1-xCr xN films
Duan, Xiaofei; Mi, Wenbo; Guo, Zaibing; Bai, Haili
2012-01-01
Reactive-sputtered epitaxial Ti 1-xCr xN films are ferromagnetic in the range of 0.17 ≤ x ≤ 0.51 due to the Cr-N-Cr double-exchange interaction below the Curie temperature (T C). The T C first increases, then decreases as x increases, and a maximum of 120 K appears at x = 0.47. All of the films are metallic with a transition near T C. A resistivity minimum ρ min is observed below 60 K in the films with 0.10 ≤ x ≤ 0.51 due to the effects of the weak localization and electron-electron interaction. The negative magnetoresistance (MR) is caused by the double-exchange interaction below T C and the weak localization can also contribute to MR below T min where ρ min appears. The x-dependent electron carrier densities reveal that the ferromagnetism is not from the carrier-mediated mechanism. The anomalous Hall resistivity follows the relation of ρxyA∝ρxx2, which is from the side-jump mechanism. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Khwaja, F.A.; Alam, A.
1980-09-01
Diffuse X-ray scattering investigations about the existence of short-range order (SRO) have been carried out in the Ni-Ta system for different concentrations and annealing temperatures. It is observed that the values of the SRO parameters for the first co-ordination shell have anomalously large negative values for all the samples studied. These values of the α 1 depend upon the annealing temperatures and the concentration of Ta atoms in the Ni-Ta system. The results of the theoretical predictions of the ordering potential obtained using the formulae of the electronic theory of SRO, confirm the existence of very strong attractive correlation between the atoms of the different species in this system. (author)
Biava, D. A.; Johnson, D. D.
2009-03-01
Short-range order (SRO) is ubiquitous in metallic alloys, affecting changes in their electronic, thermodynamic, mechanical, magnetic, and structural properties. For example, SRO is responsible for the yield-strength anomalies observed in Cu-Al at high temperatures, i.e., the materials is more resistant to dislocation motion at high temperature than it is at room temperature. Within the Korringa-Kohn-Rostorker (KKR) electronic-structure method, we present results using the dynamical cluster approximations (DCA) to obtain the temperature-dependent SRO in disordered alloys. We obtain the KKR-DCA SRO energetics versus local neighbor SRO parameters and minimize it at fixed temperature to predict the SRO. We show that the calculated SRO at fixed temperature compares well with available experimental results, and then correlate the results to the electronic structure. We discuss how an accurate analytic estimate can be made for the SRO in most metals due to the dependence of the grand potential on SRO.
DEFF Research Database (Denmark)
Holdensen, Lars; Hauggaard-Nielsen, Henrik; Jensen, Erik Steen
2007-01-01
abundance in spring barley and N2-fixing pea was measured within the 0.15-4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley......-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop...
International Nuclear Information System (INIS)
Roy, Anupam; Bhattacharjee, K.; Ghatak, J.; Dev, B.N.
2012-01-01
Clean Si(1 1 1)-(7 × 7) surfaces, followed by air-exposure, have been investigated by reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short-range (7 × 7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(1 1 1)-(7 × 7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ∼2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(1 1 1)-(7 × 7) surfaces has been investigated by in situ RHEED and STM and ex situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550 °C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [11 ¯ 0] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si along with its twin [1 ¯ 10] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si , as observed for epitaxial growth of Ag on Si(1 1 1) surfaces. The twins are thus rotated by a 180° rotation of the Ag unit cell about the Si[1 1 1] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(1 1 1) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short-range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.
Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard
2016-01-21
The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.
Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi
2017-10-06
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Energy Technology Data Exchange (ETDEWEB)
Castro, P.; Velarde, M.; Ardao, J.; Perlado, J.; Sedano, L.; Xiberta, J.
2015-07-01
In this paper we assumes the hydrogen isotopes permeation from a liquid metal ITER breeder blanket (assuming normal operation and a LM as DCLL or HCLL blanket) as one of the possible sources of a leak and tritium release,mainly but not only. The paper presents a short range low impact of HT gas activity over France, Swiss or Spain from same cases in 2014 and 2015 releases from ITER. The permeation of hydrogen isotopes is an important experimental issue to take into account into the development of a Tritium Breeder Module for ITER [1]. Tritium cannot be confined -without an uncertainty of 5% in the flux permeation- and therefore HT can be detected (e.g. by ionization chamber) as permeates though the structure of RAFM steel towards the coolant [1]. HT from Pb15.7Li and permeated in Eurofer97 can contaminate the other parts of the system and may be delivered though the normal-vent detritiation system (NVDS). Real time forecast of transport of tritium in air from the fusion reactor towards off-site far downwind though extended tritium clouds into the low levels of the atmosphere is calculated for the short range (up to 24 hours) by the coupling of 2 models the European Centre for Medium Range Weather Forecast (ECMWF) [2] model and the FLEXPART lagrangian dispersion model [3] verified with NORMTRI simulation [4] and implemented in many different cases and scenarios [5, 6, 7]. As a function of daily weather conditions the release will affect just France or already can be delivered towards Swiss when cyclonic circulation, or towards the Iberian Peninsula or Balearic Islands (Spain) when high produce anticyclonic circulation of the air over the Mediterranean Sea. (Author)
International Nuclear Information System (INIS)
Liu Xuan; Ito, Haruhiko; Torikai, Eiko
2012-01-01
We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.
International Nuclear Information System (INIS)
Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus; Thaler, Jesse
2005-01-01
We study the universal low-energy dynamics associated with the spontaneous breaking of Lorentz invariance down to spatial rotations. The effective lagrangian for the associated Goldstone field can be uniquely determined by the non-linear realization of a broken time diffeomorphism symmetry, up to some overall mass scales. It has previously been shown that this symmetry breaking pattern gives rise to a Higgs phase of gravity, in which gravity is modified in the infrared. In this paper, we study the effects of direct couplings between the Goldstone boson and standard model fermions, which necessarily accompany Lorentz-violating terms in the theory. The leading interaction is the coupling to the axial vector current, which reduces to spin in the non-relativistic limit. A spin moving relative to the 'ether' rest frame will emit Goldstone Cerenkov radiation. The Goldstone also induces a long-range inverse-square law force between spin sources with a striking angular dependence, reflecting the underlying Goldstone shockwaves and providing a smoking gun for this theory. We discuss the regime of validity of the effective theory describing these phenomena, and the possibility of probing Lorentz violations through Goldstone boson signals in a way that is complementary to direct tests in some regions of parameter space
Energy Technology Data Exchange (ETDEWEB)
Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)
2012-08-15
We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.
Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.
2009-04-01
The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically
International Nuclear Information System (INIS)
Kroeger, D.M.; Koch, C.C.; Scarbrough, J.O.; McKamey, C.G.
1984-01-01
Measurements of the low-temperature specific heat C/sub p/ of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at. % Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(E/sub F/). Furthermore, for some compositions the variation of C/sub p/ near the superconducting transition temperature T/sub c/ indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual T/sub c/'s in phase-separated samples to the composition dependence of T/sub c/ for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at. % Zr occur. We discuss these results in terms of an ''association model'' for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr 3 Ni 2 and Zr 2 Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(E/sub F/) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency
Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.
1984-02-01
Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.
Saleh, Nehal; Chittka, Lars
2007-04-01
To test the relative importance of long-term and working spatial memories in short-range foraging in bumblebees, we compared the performance of two groups of bees. One group foraged in a stable array of six flowers for 40 foraging bouts, thereby enabling it to establish a long-term memory of the array, and adjust its spatial movements accordingly. The other group was faced with an array that changed between (but not within) foraging bouts, and thus had only access to a working memory of the flowers that had been visited. Bees in the stable array started out sampling a variety of routes, but their tendency to visit flowers in a repeatable, stable order ("traplining") increased drastically with experience. These bees used shorter routes and converged on four popular paths. However, these routes were mainly formed through linking pairs of flowers by near-neighbour movements, rather than attempting to minimize overall travel distance. Individuals had variations to a primary sequence, where some bees used a major sequence most often, followed by a minor less used route, and others used two different routes with equal frequency. Even though bees foraging in the spatially randomized array had access to both spatial working memory and scent marks, this manipulation greatly disrupted foraging efficiency, mainly via an increase in revisitation to previously emptied flowers and substantially longer search times. Hence, a stable reference frame greatly improves foraging even for bees in relatively small arrays of flowers.
Nesterova, Anna P; Chiffard, Jules; Couchoux, Charline; Bonadonna, Francesco
2013-04-15
King penguins (Aptenodytes patagonicus) live in large and densely populated colonies, where navigation can be challenging because of the presence of many conspecifics that could obstruct locally available cues. Our previous experiments demonstrated that visual cues were important but not essential for king penguin chicks' homing. The main objective of this study was to investigate the importance of non-visual cues, such as magnetic and acoustic cues, for chicks' orientation and short-range navigation. In a series of experiments, the chicks were individually displaced from the colony to an experimental arena where they were released under different conditions. In the magnetic experiments, a strong magnet was attached to the chicks' heads. Trials were conducted in daylight and at night to test the relative importance of visual and magnetic cues. Our results showed that when the geomagnetic field around the chicks was modified, their orientation in the arena and the overall ability to home was not affected. In a low sound experiment we limited the acoustic cues available to the chicks by putting ear pads over their ears, and in a loud sound experiment we provided additional acoustic cues by broadcasting colony sounds on the opposite side of the arena to the real colony. In the low sound experiment, the behavior of the chicks was not affected by the limited sound input. In the loud sound experiment, the chicks reacted strongly to the colony sound. These results suggest that king penguin chicks may use the sound of the colony while orienting towards their home.
Energy Technology Data Exchange (ETDEWEB)
Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik
1999-09-01
The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)
International Nuclear Information System (INIS)
L'Haridon, P.; David, J.; Lang, J.; Parthe, E.
1976-01-01
Single-crystal studies on BeP 2 indicate that this compound possesses an OD structure. The substructure has a tetragonal unit cell with: a = 3.546 A, c = 15.01 A, Z = 4, space group: I4 1 /amd. The final R factor has a value of 0.033. The atom sites in this substructure correspond to the sites of diamond if the latter is described with a tetragonal cell, where a = (2/sup 1/2//a/sub diamond/ and c = 3a/sub diamond/. A short-range order governs the occupation of these sites with Be and P atoms. Each Be has four tetrahedral P neighbors and every P has two Be and two P neighbors. Consideration of the maxima on the diffuse streaks between the sharp reflectins of the substructure leads to an intermediate unit cell with a = 7.09 A and c = 30.02 A. Coordination considerations allow a structure proposal to be formulated for this intermediate structure which is triclinic but pseudotetragonal. The true unit cell is also pseudotetragonal with a = 7.09 A and c = N . 15.01 A, where N is a large integer
International Nuclear Information System (INIS)
Lee, H. S.; Bhang, H. C.; Choi, J. H.; Kim, D. W.; Kim, S. C.; Kim, S. K.; Kwak, J. W.; Lee, J.; Lee, J. H.; Lee, M. J.; Lee, S. J.; Myung, S. S.; Ryu, S.; Dao, H.; Li, J.; Li, X.; Li, Y. J.; Yue, Q.; Zhu, J. J.; Hahn, I. S.
2007-01-01
The Korea Invisible Mass Search (KIMS) experiment presents new limits on the weakly interacting massive particle (WIMP)-nucleon cross section using data from an exposure of 3409 kg·d taken with low-background CsI(Tl) crystals at the Yangyang Underground Laboratory. The most stringent limit on the spin-dependent interaction for a pure proton case is obtained. The DAMA signal region for both spin-independent and spin-dependent interactions for the WIMP masses greater than 20 GeV/c 2 is excluded by the single experiment with crystal scintillators
2002-01-01
The aim of the experiment is to measure @*N spin obssservables using a frozen spin target and a high resolution spectrometer (SPES II). The &bar.NN scattering is usually described with NN potentials transformed by G-parity, where the large annihilation cross section (@s^a^n/@s^e^l$>$2) is taken into account. The different theoretical approaches fit reasonably well the existing data on spin integrated cross sections. For the spin dependent observables, the predictions depend consistently on the theoretical inputs.\\\\ \\\\ A strong energy dependence of the @*p polarization Ay(@q) is predicted. We plan to check it measuring the angular distribution of Ay(@q) for @* momenta between 300 and 700 MV/c. Using a deuterium target, measurements of Ay(@q) for @*d in the same energy range will provide information on @*n scattering.\\\\ \\\\ The @* beam hits a 5 mm thick frozen spin target which has a large opening aperture. We expect a polarization of @=~80\\% with a low holding field of (.35Tm). The incident trajectory is de...
Badelek, Barbara
2018-01-01
This paper summarizes the COMPASS Collaboration legacy on measurements of the proton and deuteron spin-dependent structure functions, $g_1^p$ and $g_1^d$ at $Q^2 1$ (GeV/c)$^2$. In both regions and at the lowest measured $x, g^d_1 (x)$ is consistent with zero while $g^p_1 (x)$ is positive. This is the first time that the spin effects are observed at such low values of $x$. The NLO QCD fit of $g_1$ world data gives well constrained quark helicity distributions; gluons are poorly determined. Quark helicity contribution to nucleon spin is $0.26 < \\Delta \\Sigma < 0.36$. From the COMPASS data alone the Bjorken sum rule is verified to $9\\%$ accuracy and the extracted flavour-singlet axial charge is $a_0 (Q^2 = 3 (\\text{GeV/}c)^2) = 0.32 \\pm 0.02_{stat.} \\pm 0.04_{syst.} \\pm 0.05_{evol.}$.
Directory of Open Access Journals (Sweden)
S. Mohammad Moosavi Nejad
2017-08-01
Full Text Available In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC in proton–proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t(↑→bH+→BH++X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+−tanβ parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, X.; Huang, H. Z.; Huang, T.; Huang, B.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, C.; Li, X.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, H.; Liu, F.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, X.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Tu, B.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, N.; Xu, Y. F.; Xu, Q. H.; Xu, Z.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, J.; Zhang, S.; Zhang, Z.; Zhang, Y.; Zhang, L.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, C.; Zhou, L.; Zhu, X.; Zhu, Z.; Zyzak, M.
2018-05-01
The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized p↑ + p collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb-1 integrated luminosity of p↑ + p collisions at √{ s } = 500 GeV, an increase of more than a factor of ten compared to our previous measurement at √{ s } = 200 GeV. Non-zero asymmetries sensitive to transversity are observed at a Q2 of several hundred GeV and are found to be consistent with the former measurement and a model calculation. We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.
Badelek, Barbara
2017-01-01
This paper summarizes the COMPASS Collaboration legacy on measurements of the proton and deuteron spin-dependent structure functions, $g_1^p$ and $g_1^d$ at $Q^2 1$ (GeV/c)$^2$. In both regions and at the lowest measured $x, g^d_1 (x)$ is consistent with zero while $g^p_1 (x)$ is positive. This is the first time that the spin effects are observed at such low values of $x$. The NLO QCD fit of $g_1$ world data gives well constrained quark helicity distributions; gluons are poorly determined. Quark helicity contribution to nucleon spin is $0.26 < \\Delta \\Sigma < 0.36$. From the COMPASS data alone the Bjorken sum rule is verified to $9\\%$ accuracy and the extracted flavour-singlet axial charge is $a_0 (Q^2 = 3 (\\text{GeV/}c)^2) = 0.32 \\pm 0.02_{stat.} \\pm 0.04_{syst.} \\pm 0.05_{evol.}$.
Gayazova, Anna; Abdullaev, Sanjar
2014-05-01
Short-range forecasting of algal blooms in drinking water reservoirs and other waterbodies is an actual element of water treatment system. Particularly, Shershnevskoie reservoir - the source of drinking water for Chelyabinsk city (South Ural region of Russia) - is exposed to interannual, seasonal and short-range fluctuations of blue-green alga Aphanizomenon flos-aquae and other dominant species abundance, which lead to technological problems and economic costs and adversely affect the water treatment quality. Whereas the composition, intensity and the period of blooms affected not only by meteorological seasonal conditions but also by ecological specificity of waterbody, that's important to develop object-oriented forecasting, particularly, search for an optimal number of predictors for such forecasting. Thereby, firstly fuzzy logic and fuzzy artificial neural network patterns for blue-green alga Microcystis aeruginosa (M. aeruginosa) blooms prediction in nearby undrained Smolino lake were developed. These results subsequently served as the base to derive membership functions for Shernevskoie reservoir forecasting patterns. Time series with the total lenght about 138-159 days of dominant species seasonal abundance, water temperature, cloud cover, wind speed, mineralization, phosphate and nitrate concentrations were obtained through field observations held at Lake Smolino (Chelyabinsk) in the warm season of 2009 and 2011 with time resolution of 2-7 days. The cross-correlation analysis of the data revealed the potential predictors of M. aeruginosa abundance quasi-periodic oscillations: green alga Pediastrum duplex (P. duplex) abundance and mineralization for 2009, P. duplex abundance, water temperature and concentration of nitrates for 2011. According to the results of cross-correlation analysis one membership function "P. duplex abundance" and one rule linking M. aeruginosa and P. duplex abundances were set up for database of 2009. Analogically, for database of 2011
International Nuclear Information System (INIS)
Garger, E.K.; Shynkarenko, V.K.; Kashpur, V.A.; Skoryak, G.G.; Kalinovsky, A.K.
2017-01-01
Variability of 137 Cs volume activity in a subsurface layer of the atmosphere of a short-range region of the object ''Shelter'' (object ''Ukryttya'') during the works on building of a new safety confinement in 2016 was investigated. Influence of the type and location of works, weather conditions, and sampling points was shown. Excess of medial permissible concentrations of 137 Cs in the air was not fixed during the observations. However, due to the averaging of the measured values of the volume activity for the exposure time of the filter and use of the stationary aerosol samplers, it cannot ensure the absence of excess of the permissible concentrations at the locations of works and on the propagation path of the local emission plumes. In 2016, as well as in 2013 - 2015, high levels of 137 Cs volume activity in the air were preferentially localized near to the machine hall of the 4th block and near to the places of ground works at the industrial site [ 1]. Concurrently the levels of volume activity essentially grew (practically by the order of magnitude) due to the intense works on the machine hall transformation. The conservative estimation of volume activity of isotopes of the plutonium, executed in the assumption of fuel composition of hot particles, showed the presence of substantial excess of permissible limits even for the average values within, at least, four weeks. Absence of reliable correlation (R = -0.09) of 137 Cs volume activity in the air near to the machine hall and near to the aerosol sampler 1,4 km remote from it testifies the localization of pollution within the industrial site.
Bustamante, J. F. F.; Chou, S. C.; Gomes, J. L.
2009-04-01
The Southeast Brazil, in the coastal and mountain region called Serra do Mar, between Sao Paulo and Rio de Janeiro, is subject to frequent events of landslides and floods. The Eta Model has been producing good quality forecasts over South America at about 40-km horizontal resolution. For that type of hazards, however, more detailed and probabilistic information on the risks should be provided with the forecasts. Thus, a short-range ensemble prediction system (SREPS) based on the Eta Model is being constructed. Ensemble members derived from perturbed initial and lateral boundary conditions did not provide enough spread for the forecasts. Members with model physics perturbation are being included and tested. The objective of this work is to construct more members for the Eta SREPS by adding physics perturbed members. The Eta Model is configured at 10-km resolution and 38 layers in the vertical. The domain covered is most of Southeast Brazil, centered over the Serra do Mar region. The constructed members comprise variations of the cumulus parameterization Betts-Miller-Janjic (BMJ) and Kain-Fritsch (KF) schemes. Three members were constructed from the BMJ scheme by varying the deficit of saturation pressure profile over land and sea, and 2 members of the KF scheme were included using the standard KF and a momentum flux added to KF scheme version. One of the runs with BMJ scheme is the control run as it was used for the initial condition perturbation SREPS. The forecasts were tested for 6 cases of South America Convergence Zone (SACZ) events. The SACZ is a common summer season feature of Southern Hemisphere that causes persistent rain for a few days over the Southeast Brazil and it frequently organizes over Serra do Mar region. These events are particularly interesting because of the persistent rains that can accumulate large amounts and cause generalized landslides and death. With respect to precipitation, the KF scheme versions have shown to be able to reach the
International Nuclear Information System (INIS)
Wolverton, C.; Ozolins, V.; Zunger, A.
1998-01-01
We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American
Directory of Open Access Journals (Sweden)
Cristiana L. Ciobanu
2017-11-01
Full Text Available Atomic-scale high angle annular dark field scanning transmission electron microscopy (HAADF STEM imaging and electron diffractions are used to address the complexity of lattice-scale intergrowths of REE-fluorocarbonates from an occurrence adjacent to the Olympic Dam deposit, South Australia. The aims are to define the species present within the intergrowths and also assess the value of the HAADF STEM technique in resolving stacking sequences within mixed-layer compounds. Results provide insights into the definition of species and crystal-structural modularity. Lattice-scale intergrowths account for the compositional range between bastnäsite and parasite, as measured by electron probe microanalysis (at the µm-scale throughout the entire area of the intergrowths. These comprise rhythmic intervals of parisite and bastnäsite, or stacking sequences with gradational changes in the slab stacking between B, BBS and BS types (B—bastnäsite, S—synchysite. An additional occurrence of an unnamed B2S phase [CaCe3(CO34F3], up to 11 unit cells in width, is identified among sequences of parisite and bastnäsite within the studied lamellar intergrowths. Both B2S and associated parisite show hexagonal lattices, interpreted as 2H polytypes with c = 28 and 38 Å, respectively. 2H parisite is a new, short hexagonal polytype that can be added to the 14 previously reported polytypes (both hexagonal and rhombohedral for this mineral. The correlation between satellite reflections and the number of layers along the stacking direction (c* can be written empirically as: Nsat = [(m × 2 + (n × 4] − 1 for all BmSn compounds with S ≠ 0. The present study shows intergrowths characterised by short-range stacking disorder and coherent changes in stacking along perpendicular directions. Knowing that the same compositional range can be expressed as long-period stacking compounds in the group, the present intergrowths are interpreted as being related to disequilibrium
Fisher, Aileen
The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without
Energy Technology Data Exchange (ETDEWEB)
Alvarez, G., E-mail: memodin@yahoo.com [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico); Montiel, H. [Departamento de Tecnociencias, Centro de Ciencias Aplicadas y Desarrollo Tecnologico de la Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Mexico DF 04510 (Mexico); Castellanos, M.A. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Mexico DF 04510 (Mexico); Heiras, J. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km. 107, Carretera Tijuana Ensenada, Ensenada, Baja California 22860 (Mexico); Zamorano, R. [Seccion de Estudios de Posgrado e Investigacion, ESFM-IPN, U.P. Adolfo Lopez Mateos Edificio 9, Av. Instituto Politecnico Nacional S/N, San Pedro Zacatenco, Mexico DF 07738 (Mexico)
2011-10-17
Highlights: {yields} LFMA spectra showed straight lines with positive slope and non-hysteretic traces. {yields} The spectral changes for the plot of the slope vs. temperature give evidence of the formation of iron clusters. {yields} These small orderly regions of iron ions generate short-range magnetic correlations, and that they produce changes in dynamics of microwave absorption. - Abstract: An electron paramagnetic resonance (EPR) study of the complex perovskite Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3} (PFT) at X-band (8.8-9.8 GHz) is presented. The EPR spectra show a single broad line in the 300-480 K temperature range, attributable to Fe{sup 3+} (S = 5/2) ions. The temperature dependence of the EPR parameters: the peak-to-peak linewidth ({Delta}H{sub pp}), the resonance field (H{sub res}) and the integrated intensity (I{sub EPR}), suggests the existence of short-range magnetic correlations; which are associated with the presence of small orderly regions of iron ions in B-sites of the perovskites-type structure, and that they give origin to formation of iron clusters. Low-field microwave absorption (LFMA) is used to give further knowledge on this material; where this technique also gives evidence of these short-range orderly regions.
Energy Technology Data Exchange (ETDEWEB)
Sykora, Steffen [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Becker, Klaus W. [Technische Universitaet Dresden, D-01062 Dresden (Germany)
2016-07-01
In this paper we discuss a new phase of the Kondo lattice model which arises from the competition of Kondo and RKKY energy scales. Normally the Kondo lattice model is used to capture the low-energy physics of heavy fermion systems. However, according to the so-called Doniach picture the Kondo state will be replaced by an antiferromagnetic state for the case that the Kondo energy scale becomes smaller than the magnetic interaction between magnetic ions. In the present study we start instead from a modified electronic one-particle dispersion which avoids nesting of particle-hole excitations. Thus the magnetic ordered state should be suppressed which provides an opportunity for the inset of a new low-energy state with competing Kondo and magnetic energies. As will be shown, this new state avoids magnetic symmetry breaking but leads to a number of physical properties which are relevant for the understanding of the hidden order state in URu{sub 2}Si{sub 2}.
Energy Technology Data Exchange (ETDEWEB)
Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.
1984-07-01
Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like.
International Nuclear Information System (INIS)
Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.
1984-01-01
Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like. (Auth.)
International Nuclear Information System (INIS)
Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.
1983-12-01
Anti pAg/Br reactions at 1.4 GeV/c incident momentum were studied by means of the emulsion technique. A group of short range charged particles was observed. For the events with one short track, a backward and transversal emission was seen, probably due to some very fast process. For the events with two short tracks, a back-to-back emission was seen, indicating some two-body decay where the target nucleus possibly behaves spectator-like. The rates and forward collimations suggest that the same physical process causes the different multiplicities
Short-range order in irradiated diamonds
International Nuclear Information System (INIS)
Agafonov, S.S.; Glazkov, V.P.; Nikolaenko, V.A.; Somenkov, V.A.
2005-01-01
Structural changes in irradiated diamond with a change in its density were studied. Natural diamond powders with average particle size from 14-20 μm to 0.5 mm, irradiated in beryllium block of the MR reactor up to a fluence of 1.51 x 10 21 were used as samples. Using the neutron-diffraction method, it has been established that, when density in irradiated diamonds varies, a transition from a diamond-like amorphous structure to a graphite-like structure occurs. The transition occurs at a density ρ ∼ 2.7-2.9 g/cm 3 and is accompanied by a sharp change in resistivity [ru
Short range order in amorphous polycondensates
Energy Technology Data Exchange (ETDEWEB)
Lamers, C.; Richter, D.; Schweika, W. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Batoulis, J.; Sommer, K. [Bayer AG, Leverkusen (Germany); Cable, J.W. [Oak Ridge National Lab., TN (United States); Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States)
1992-12-01
The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.
Short range order of selenite glasses
Czech Academy of Sciences Publication Activity Database
Neov, Dimitar; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr; Dimitriev, Y.
1999-01-01
Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA ČR GV202/97/K038; GA AV ČR KSK1048601 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.822, year: 1999
QCD and short-range nuclear phenomena
International Nuclear Information System (INIS)
Frankfurt, L.L.; Strikman, M.I.
1981-01-01
In terms of pertubative QCD we estimate the shape of the high-momentum tail of the nucleus wave function. We derive QCD predictions for the yield of leading particles in nucleus fragmentation processes. The predicted yield is much larger than the expectations of the quark counting rules. Obtained formulae are in reasonable agreement with the momentum and angular dependence of cumulative particle production. We derive general expressions for deep inelastic lepton-nucleus scattering using the LSZ representation for the amplitude and use it to calculate the scaling violation in high Q 2 near threshold eD scattering at x >= 1. It is shown that the existence of few-nucleon correlations explains the large cross section of the deep inelastic process e + 3 He → e +... and leads to a larger effect for heavier nuclei. We demonstrate that the observed features of ν(anti ν) + A → μsup(+-) + backward proton + X data indicate the dominance of few-nucleon correlations in the nucleus wave function over average field configurations at momenta > 0.4 GeV/c. Implications of these data for the magnitude of smearing in deep inelastic processes are also considered. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Popovic, Z V [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Thijssen, W H A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Paunovic, N [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Dohcevic-Mitrovic, Z [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Sapina, F [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)
2005-01-19
We have measured the reflectivity spectra of La{sub 1-x}Sr{sub x}Mn{sub 1-z}B{sub z}O{sub 3} (B = Cu, Zn; 0.17 {<=} x {<=} 0.30; 0 {<=} z {<=} 0.10) manganites over wide frequency (100-4000 cm{sup -1}) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm{sup -1} (external mode), 350 cm{sup -1} (bond bending mode) and 590 cm{sup -1} (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm{sup -1} below the temperature T{sub 1} (T{sub 1}
Aghasyan, M.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtsev, V.E.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr.,M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.
2018-06-10
We present a precise measurement of the proton longitudinal double-spin asymmetry A1p and the proton spin-dependent structure function g1p at photon virtualities 0.006(GeV/c)2
Directory of Open Access Journals (Sweden)
Craig A. Scurti
2014-08-01
Full Text Available We present an electron diffraction study of three sillenites, Bi12SiO20, Bi25FeO39, and Bi25InO39 synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi25FeO39 and Bi25InO39 show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi3+, random and ordered oxygen-vacancies, and a frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.
International Nuclear Information System (INIS)
Khwaja, F.A.
1980-08-01
The calculations for the temperature dependence of the first shell short-range order (SRO) parameter for Ni 3 Fe using the cubic approximation of Tahir Kheli, and the concentration dependence of order-disorder temperature Tsub(c) for Ni-Fe and Ni-Pt systems using the linear approximation, have been carried out in the framework of pseudopotential theory. It is shown that the cubic approximation yields a good agreement between the theoretical prediction of the α 1 and the experimental data. Results for the concentration dependence of the Tsub(c) show that improvements in the statistical pseudo-potential approach are essential to achieve a good agreement with experiment. (author)
CSIR Research Space (South Africa)
Britton, JW
2012-04-01
Full Text Available of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction , where 0=a=3 and di,j is the distance between spin pairs. These power laws correspond physically to infinite...
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...
Energy Technology Data Exchange (ETDEWEB)
Li, Chun-Lei, E-mail: licl@cnu.edu.cn [Laboratory for Micro-sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing 100048 (China); Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Yuan, Rui-Yang [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Guo, Yong, E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2016-01-07
Using the effective-mass approximation and Floquet theory, we theoretically investigate the terahertz photon-assisted transport through a ZnSe/Zn{sub 1−x}Mn{sub x}Se heterostructure under an external magnetic field, an electric field, and a spatially homogeneous oscillatory field. The results show that both amplitude and frequency of the oscillatory field can accurately manipulate the magnitude of the spin-dependent transmission probability and the positions of the Fano-type resonance due to photon absorption and emission processes. Transmission resonances can be enhanced to optimal resonances or drastically suppressed for spin-down electrons tunneling through the heterostructure and for spin-up ones tunneling through the same structure, resonances can also be enhanced or suppressed, but the intensity is less than the spin-down ones. Furthermore, it is important to note that transmission suppression can be clearly seen from both the spin-down component and the spin-up component of the current density at low magnetic field; at the larger magnetic field, however, the spin-down component is suppressed, and the spin-up component is enhanced. These interesting properties may provide an alternative method to develop multi-parameter modulation electron-polarized devices.
Davis, Mark A; Douglas, Marlis R; Webb, Colleen T; Collyer, Michael L; Holycross, Andrew T; Painter, Charles W; Kamees, Larry K; Douglas, Michael E
2015-01-01
Biodiversity elements with narrow niches and restricted distributions (i.e., 'short range endemics,' SREs) are particularly vulnerable to climate change. The New Mexico Ridge-nosed Rattlesnake (Crotalus willardi obscurus, CWO), an SRE listed under the U.S. Endangered Species Act within three sky islands of southwestern North America, is constrained at low elevation by drought and at high elevation by wildfire. We combined long-term recapture and molecular data with demographic and niche modeling to gauge its climate-driven status, distribution, and projected longevity. The largest population (Animas) is numerically constricted (N = 151), with few breeding adults (Nb = 24) and an elevated inbreeding coefficient (ΔF = 0.77; 100 years). Mean home range (0.07 km2) is significantly smaller compared to other North American rattlesnakes, and movements are within, not among sky islands. Demographic values, when gauged against those displayed by other endangered/Red-Listed reptiles [e.g., Loggerhead Sea Turtle (Caretta caretta)], are either comparable or markedly lower. Survival rate differs significantly between genders (femalesky islands. CWO is a rare organism in a unique environment, with a conserved niche and a predisposition towards extinction. It is a bellwether for the eventual climate-driven collapse of the Madrean pine-oak ecosystem, one of Earth's three recognized megadiversity centers.
Spin-dependent transport in cobalt nanocontacts
Energy Technology Data Exchange (ETDEWEB)
Sarau, G.
2007-04-16
The magnetoresistance response of cobalt nanocontacts with varying geometries formed between two extended electrodes has been experimentally investigated and linked to micromagnetic simulations. The contribution of the nanoconstriction to the measured magnetoresistance signal has been separated from that of the electrode bulk. The different nanocontact geometries exhibit different shape anisotropies resulting in a characteristic behavior of the magnetization at each nanocontact. The magnetization reversal processes are explained on the basis of the anisotropic magnetoresistance and domain wall scattering effects. The domain wall resistance takes positive values, which is in agreement with models based on the spin mistracking inside the domain wall. The 4 K MR measurements are found to be influenced by the exchange bias effect between the ferromagnetic cobalt electrodes and the antiferromagnetic oxidized Co surface. When cooling down in an applied magnetic field, the uniform biased Co layer behaves as if it possesses a unidirectional anisotropy axis along the field cooling direction. In the zero field cooling case, the exchange bias varies locally throughout the sample giving rise to non-reproducible successive MR traces. (orig.)
Spin dependent spectroscopy of heavy quarkonium
International Nuclear Information System (INIS)
Gupta, Pramila; Mehrotra, I.
2011-01-01
In the present work mass spectroscopy of charmonium and bottonium systems has been studied using energy dependent quark interquark potential in the framework of non-relativistic Schroedinger wave equation. Energy dependence gives rise to nonlocality in the potential. These authors have used the interquark potential to be of the form of harmonic oscillator with a small linear energy dependent perturbation. Their main conclusion is that energy dependence can account for saturation of the energy levels at higher excitation energies, a feature that is observed experimentally
DEFF Research Database (Denmark)
Christensen, O. B.; Ditlevsen, Peter; Jacobsen, Karsten Wedel
1989-01-01
-medium theory to calculate total energies we show the same tendency for the short-range part of the H-H interaction when two H atoms are squeezed into a single site in Pd or PdH. At longer range (of the order a lattice constant) there is an attractive, lattice-mediated H-H interaction. On the basis...
Bischoff, Christian; Schuller, Katherine; Martin, Steve W
2014-04-03
The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.