Short-range interaction between hydrogen molecules
Mcmahan, A. K.; Beck, H.; Krumhansl, J. A.
1974-01-01
Recent calculations of the ground state energy of a system of four hydrogen atoms are reviewed with the aim of discerning the short-range repulsive part of the interaction potential between two hydrogen molecules. Extended-basis CI calculations which include a diffuse 2p orbital appear to be capable of determining the total interaction energy between to hydrogen molecules for any separation. Consistent results of such calculations suggest that the potential for intermolecular separations in the region from 1 to 2.5 A can now be specified to better than 10% with considerable confidence. Analytic fits to spherical averages of these results are presented.
International Nuclear Information System (INIS)
Tullney, Kathlynne
2014-01-01
The standard model (SM) of particle physics describes all known particles and their interactions. However, the SM leaves many issues unresolved. For example, it only includes three of the four fundamental forces and does not clarify the question why in the strong interaction CP symmetry is violated due to its non-trivial vacuum structure is predicted (Θ-term), but experimentally unverifiable. The latter one is known as the strong CP-problem of quantum chromodynamics (QCD) and is solved by the Peccei-Quinn-Weinberg-Wilczek theory. This theory predicts a new and almost massless boson which is known as the axion. The axion feebly interacts with matter and therefore it is a good candidate for cold dark matter, too. Axions are produced by the Primakoff-effect, i.e. by conversion of photons which are scattered in the electromagnetic field, e.g. of atoms. The inverse Primakoff-effect, which converts axions to photons again, can be used for direct detection of galactic, solar, or laboratory axions. Cosmological and astrophysical observations constrain the mass of the axion from a few μeV to some meV (''axion mass window''). If the axion exists, then it mediates a CP violating, spin-dependent, short-range interaction between a fermion and the spin of another fermion. By verification of this interaction, the axion can be detected indirectly. In the framework of the present thesis an experiment to search for this spindependent short-range interaction was performed in the magnetically shielded room BMSR-2 of the Physikalisch-Technische Bundesanstalt Berlin. An ultra-sensitive low-field co-magnetometer was employed which is based on the detection of free precession of 3 He and 129 Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The two nuclear spin polarized gases are filled into a glass cell which is immersed in a low magnetic field of about B 0 = 0.35 μT with absolute field gradients in the order of pT/cm. The spin precession frequencies of 3 He and 129
Schroedinger operators with point interactions and short range expansions
International Nuclear Information System (INIS)
Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.
1984-01-01
We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)
Folding of polymer chains with short-range binormal interactions
International Nuclear Information System (INIS)
Craig, A; Terentjev, E M
2006-01-01
We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils
Designing tangible interaction using short-range RFID
Directory of Open Access Journals (Sweden)
Kjetil Nordby
2010-12-01
Full Text Available Short-range Radio Frequency IDentification (SR-RFID technology embedded in mobile phones offers interaction design practitioners the potential to design new forms of mobile experiences. The article presents a design oriented research study that seeks to develop affordances specifically in support of such practice. To do so the authors draw on Activity Theory. They present three levels of SR-RFID related design affordances: need related design affordances, instrumental design affordances and operational design affordances. Included also is what they label ‘RFID based Tap and Hold’; a term used so as to frame tangible interaction on SR-RFID. A generative and descriptive model of Tap and Hold is proposed, as is a set of input techniques derived from the Tap and Hold model. Overall, the study suggests opening out from functional views of SR-RFID to ones that view it as a technology applicable for designers exploring potential new interactions. This is important since such work may be used to support the generation of new designs, an area often overlooked in research on RFID.
Short-range interaction energy for ground state H2+
Battezzati, Michele; Magnasco, Valerio
2006-12-01
Two of the Hermitian eigenvalue equations resulting from the separation of the three-dimensional Schroedinger equation for H2+ in spheroidals are solved perturbatively for the ground state by expanding the action in positive powers of the internuclear distance R near the united atom He+. The dispersion relations between the separation constants A and Ee are seen to have rigorous analytic solutions, the third-order equation leading to an exact expansion for the inner determinantal equation up to R10. The explicit form for the expansion coefficients is determined up to n = 10, and is seen to contain up to the third power of (γ + ln 4R) logarithmic terms. Even if the general range of validity of the short-range Rn-expansion is expected to be smaller than the corresponding long-range R-n-expansion, it is important to stress that such higher expansion coefficients are calculated exactly for the first time. These formulae give extremely accurate numerical results up to R cong 0.3a0.
Spherical harmonic expansion of short-range screened Coulomb interactions
Energy Technology Data Exchange (ETDEWEB)
Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)
2006-07-07
Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.
Pattern formation in binary fluid mixtures induced by short-range competing interactions.
Bores, Cecilia; Lomba, Enrique; Perera, Aurélien; Almarza, Noé G
2015-08-28
Molecular dynamics simulations and integral equation calculations of a simple equimolar mixture of diatomic molecules and monomers interacting via attractive and repulsive short-range potentials show the existence of pattern formation (microheterogeneity), mostly due to depletion forces away from the demixing region. Effective site-site potentials extracted from the pair correlation functions using an inverse Monte Carlo approach and an integral equation inversion procedure exhibit the features characteristic of a short-range attractive and a long-range repulsive potential. When charges are incorporated into the model, this becomes a coarse grained representation of a room temperature ionic liquid, and as expected, intermediate range order becomes more pronounced and stable.
Asymptotic Completeness for Relativistic Kinetic Equations with Short-range Interaction Forces
Ha, Seung-Yeal; Kim, Yong Duck; Lee, Ho; Noh, Se Eun
2007-01-01
We present an $L^1$-asymptotic completeness results for relativistic kinetic equations with short range interaction forces. We show that the uniform phase space-time bound for nonlinear terms to the relativistic nonlinear kinetic equations yields the asymptotic completeness of the relativistic kinetic equations. For this space-time bound, we employ dispersive estimates and explicit construction of a Lyapunov functional.
Guo, J L; Zhang, X Z
2016-09-06
Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented.
Fornari, Rocco P; Rowe, Patrick; Padula, Daniele; Troisi, Alessandro
2017-08-08
The singlet excitonic coupling between many pairs of chromophores is evaluated in three different light harvesting complexes (LHCs) and two organic semiconductors (amorphous and crystalline). This large database of structures is used to assess the relative importance of short-range (exchange, overlap, orbital) and long-range (Coulombic) excitonic coupling. We find that Mulliken atomic transition charges can introduce systematic errors in the Coulombic coupling and that the dipole-dipole interaction fails to capture the true Coulombic coupling even at intermolecular distances of up to 50 Å. The non-Coulombic short-range contribution to the excitonic coupling is found to represent up to ∼70% of the total value for molecules in close contact, while, as expected, it is found to be negligible for dimers not in close contact. For the face-to-face dimers considered here, the sign of the short-range interaction is found to correlate with the sign of the Coulombic coupling, i.e. reinforcing it when it is already strong. We conclude that for molecules in van der Waals contact the inclusion of short-range effects is essential for a quantitative description of the exciton dynamics.
Short-range interactions and scaling near integer quantum Hall transitions
Energy Technology Data Exchange (ETDEWEB)
Wang, Ziqiang [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Fisher, Matthew P. A. [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (United States); Girvin, S. M. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Chalker, J. T. [Theoretical Physics, Oxford University, Oxford OX1 3NP, (United Kingdom)
2000-03-15
We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency {omega} and temperature T is determined by the scaling variable {omega}/T{sup p} (where p is the exponent for the temperature dependence of the inelastic scattering rate) and not by {omega}/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent p and the thermal exponent z{sub T} in terms of the scaling dimension -{alpha}<0 of the interaction strength and the dynamical exponent z (which has the value z=2), obtaining p=1+2{alpha}/z and z{sub T}=2/p. (c) 2000 The American Physical Society.
Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction
International Nuclear Information System (INIS)
Ahmad, I.; Auger, J.P.
1981-12-01
The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)
Effect of long- and short-range interactions on the thermodynamics of dipolar spin ice
Energy Technology Data Exchange (ETDEWEB)
Shevchenko, Yuriy, E-mail: shevchenko.ya@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Makarov, Aleksandr, E-mail: makarov.ag@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Nefedev, Konstantin, E-mail: nefedev.kv@dvfu.ru [School of Natural Sciences, Far Eastern Federal University, Vladivostok (Russian Federation); Institute of Applied Mathematics of Far Eastern Branch, Russian Academy of Science, 7 Radio Str, Vladivostok (Russian Federation)
2017-02-05
The thermodynamic properties of dipolar spin ice on square, honeycomb and shakti lattices in the long-range and short-range dipole interaction models are studied. Exact solutions for the density of states, temperature dependencies of heat capacity, and entropy are obtained for these lattices with a finite number of point dipoles by means of complete enumeration. The magnetic susceptibility and average size of the largest low-energy cluster are calculated for square spin ice by means of Wang–Landau and Metropolis methods. We show that the long-range interaction leads to a blurring of the energy spectrum for all considered lattices. The inclusion of the long-range interaction leads to a significant change in the thermodynamic behaviour. An additional peak of heat capacity appears in the case of the honeycomb lattice. The critical temperature shifts in the direction of low or high temperatures; the direction depends on the lattice geometry. The critical temperature of the phase transition of square spin ice in the long-range model with frustrated ground states is obtained with the Wang–Landau and Metropolis methods independently. - Highlights: • The long-range and short-range dipole interaction effects are compared. • Differences are showed for Honeycomb, Shakti and Square spin ice lattices. • The additional heat capacity peaks appear for long-range interaction. • The temperature of heat capacity peak shifts while changing the interaction range.
Short-range interactions versus long-range correlations in bird flocks.
Cavagna, Andrea; Del Castello, Lorenzo; Dey, Supravat; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano
2015-07-01
Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of flocking is the presence of long range velocity correlations between individuals, which allow them to influence each other over the large scales, keeping a high level of group coordination. A crucial question is to understand what is the mutual interaction between birds generating such nontrivial correlations. Here we use the maximum entropy (ME) approach to infer from experimental data of natural flocks the effective interactions between individuals. Compared to previous studies, we make a significant step forward as we retrieve the full functional dependence of the interaction on distance, and find that it decays exponentially over a range of a few individuals. The fact that ME gives a short-range interaction even though its experimental input is the long-range correlation function, shows that the method is able to discriminate the relevant information encoded in such correlations and single out a minimal number of effective parameters. Finally, we show how the method can be used to capture the degree of anisotropy of mutual interactions.
Scattering of polarized 7Li by 120Sn and projectile-target spin-dependent interactions
International Nuclear Information System (INIS)
Sakuragi, Y.; Yahiro, M.; Kamimura, M.; Tanifuji, M.
1986-07-01
Scattering of 7 Li by 120 Sn targets at E lab = 44 MeV is investigated in the coupled-channel frame by taking account of the projectile virtual excitations to the lowest three excited states. Calculations are performed by the cluster-folding (CF) interactions and the double-folding (DF) one. Both interactions reproduce very well the expeimental data on the cross section, the vector analyzing power, the second-rank tensor ones and the third-rank tensor one in elastic and projectile inelastic scattering, although some differences are found between the CF results and the DF ones. In the calculation, the virtual excitations of the projectile are important for most of the analyzing powers and the spin-orbit interaction is indispensable for the vector analyzing power. These features are in contrast to those in 7 Li - 58 Ni scattering at 20 MeV and are interpreted as over-Coulomb-barrier effects. The scattering amplitudes and the analyzing powers are investigated by the invariant amplitude method, which provides a key connecting the spin-dependent interactions to the analyzing powers. The method proposes an important relationship between the tensor analyzing powers, which is useful in analyses of both theoretical and experimental results. Finally, it is found that in the elastic scattering the second-rank tensor analyzing powers are proportional to the strength of the second-rank tensor interaction and the vector and third-rank tensor analyzing powers to the square or cube of the strength of this interaction, while in the inelastic scattering the cross section is proportional to the square of the strength of the tensor interaction, other quantities being weakly dependent on the strength. (author)
Bond lifetime and diffusion coefficient in colloids with short-range interactions.
Ndong Mintsa, E; Germain, Ph; Amokrane, S
2015-03-01
We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.
Summary of measurements of the spin dependence in NN interactions from 2 to 12 GeV/c
International Nuclear Information System (INIS)
Rust, D.R.
1975-01-01
The status of experimental measurements of the spin dependence in NN interactions from 2 to 12 GeV/c as of June 1975 is summarized. Older data have been left out if more accurate or more complete results are available
Neutrino-Nucleus Interactions and the Short-Range Structure of Nuclei
Energy Technology Data Exchange (ETDEWEB)
Cavanna, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palamara, O. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schiavilla, R. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wiringa, R. B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-08
Improvements in theoretical modeling of Short Range structures and phenomena, and comparisons with data, will require sustained collaboration between nuclear theorists and neutrino experimentalists. The extensive history of studying this area of nuclear physics in electron- and hadron-scattering experiments, coupled with the transformative capabilities of LArTPCs to identify neutrinos, will provide a ripe opportunity for new discoveries that will further our understanding of the nucleus.
Kinetic glass transition in a micellar system with short-range attractive interaction
Mallamace; Gambadauro; Micali; Tartaglia; Liao; Chen
2000-06-05
We show that percolation and structural arrest transitions coexist in different regions of the phase diagram of a copolymer-micellar system and relate them to short-range intermicellar attraction. The intermediate scattering function shows a nonergodic transition along a temperature and concentration dependent line. Analyses show a logarithmic time dependence, attributed to a higher-order glass transition singularity predicted by mode-coupling theory, followed by a power law.
Absorption of multipion systems in nuclei and the nature of the hadronic short-range interaction
Bertocchi, L
1973-01-01
The author rederives the first part of a paper by Gottfried (CERN preprint 7H1545) using a related but different formalism based upon the use of Feynmann diagrams in the interactions of high energy particles with nuclei. (10 refs).
Renormalization of the three-boson system with short-range interactions revisited
Energy Technology Data Exchange (ETDEWEB)
Epelbaum, E. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Gegelia, J. [Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Tbilisi State University, Tbilisi (Georgia); Meissner, Ulf G. [Universitaet Bonn, Helmholtz Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Yao, De-Liang [Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany)
2017-05-15
We consider renormalization of the three-body scattering problem in low-energy effective field theory of self-interacting scalar particles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation. The obtained leading-order equation is perturbatively renormalizable and non-perturbatively finite and does not require a three-body counter term in contrast to its non-relativistic approximation. (orig.)
Analytical evaluation of the short-range interaction energy for ground state H+2
Battezzati, Michele; Magnasco, Valerio
2004-11-01
This work aims at the extension of the power series in R and ln R of interaction energy k and separation constant A for the system of two protons and one electron in the Born-Oppenheimer approximation. The wave equation is separated into confocal elliptic coordinates, in order to obtain two one-dimensional problems. The approach that we present here is based upon our previous calculations, where a relation between A and k for the (outer) ξ-equation was obtained in two different but substantially equivalent ways: either by an integral equation representation of the solution or by a logarithmic-perturbative expansion, in powers of the energy difference k, from the united atom state. At variance with our previous work, we make use of the (inner) η-equation of a remarkably simple determinantal equation proposed long ago by Hylleraas for which we develop a recursive method of calculation. By combining the two procedures we obtain the solution of the problem by solving for the coefficients of the R and ln R expansion. We calculate in this way coefficients up to O(R7) and show how higher order coefficients may be evaluated recursively.
International Nuclear Information System (INIS)
Baktybaev, K.; Koilyk, N.; Ramankulov, K.
2006-01-01
Full text: Collective Schrodinger equations are applied to describe low-energy spectra of even-even nuclei [1]. Spectra for even-odd nuclei are calculated by coupling the single particle degrees of freedom to the collective degree of freedom of the core nucleus, which is of even-even type. The collective spin has a value of 3/2. This leads to the assumption that the linearized equation may be applied to describe nuclei with spin 3/2 in the ground state. Good description of the low energy spectra and electromagnetic transition probabilities can be obtained only with introduction of spin-dependent potentials, which apart from coordinates and momenta also depend on the matrices of the Clifford algebra arising in the linearization,. The interacting boson-fermion models (IBFM) [2] represent another approach to describe spectra of even-odd nuclei. For even-odd nuclei with spin 3/2 in the ground state one uses so-called j=3/2 - IBFM, which is also denoted as the U B (6)xU F (4) IBFM. In this paper we establish the relation between the matrices of the Clifford algebra, which arise in the linearization procedure, and the fermion operators of the j=3/2 IBFM. This allows us to establish a connection between the j=3/2 IBFM and spin dependent generalized collective model (SGCM). The results of the SGCM for Ir and Au nuclei are presented and compared with the results of the j=3/2 IBFM with a dynamical spin symmetry [3] present. In this respect we could apply the linearized collective Schrodinger equation and IBFM with arbitrary spin to all other even-odd nuclei. (author)
Directory of Open Access Journals (Sweden)
J Matthew Mahoney
Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.
Uthaman, Bhagya; Manju, P; Thomas, Senoy; Jaiswal Nagar, Deepshikha; Suresh, K G; Varma, Manoj Raama
2017-05-17
We report on the observation of double transition - a first order and a second order transition in Gd 5 Si 2-x Co x Ge 2 with x = 0, 0.1, 0.2 and 0.4 with the appearance of short-range ferromagnetic correlations. The first order phase transition is due to a combined magnetostructural transition from monoclinic paramagnetic phase to orthorhombic ferromagnetic phase on cooling while the second order transition arises from an orthorhombic paramagnetic to ferromagnetic phase on cooling. Structural studies show that the substituted compounds crystallize in a combination of Gd 5 Si 2 Ge 2 and Gd 5 Si 4 phases. Low-temperature X-ray diffraction measurements confirm the complete transformation from monoclinic to orthorhombic phase. DC magnetization measurements reveal an anomalous low field magnetic behaviour indicating a Griffiths-like phase. This unusual behaviour is attributed to the local disorder within the crystallographic structure indicating the presence of short-range magnetic correlations and ferromagnetic clustering, which is stabilized and enhanced by competing intra-layer and inter-layer magnetic interactions. The magnetostructural transition results in entropy changes (-ΔS M ) of 9 J kg -1 K -1 at 260 K for x = 0.1, 8.5 J kg -1 K -1 at 245 K for x = 0.2 and 4.2 J kg -1 K -1 at 210 K for x = 0.4 for a field change of 50 kOe. Co substitution induces compelling crystallographic and magnetoresponsive effects in the Gd-Si-Ge system, which could be useful for potential and smart applications such as solid-state magnetic refrigeration and sensitive magnetic switching from paramagnetic to ferromagnetic state. Universal curve analysis has been carried out on the substituted samples to study the order of the magnetic transition.
Furuichi, Mikito; Nishiura, Daisuke
2017-10-01
We developed dynamic load-balancing algorithms for Particle Simulation Methods (PSM) involving short-range interactions, such as Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-implicit method (MPS), and Discrete Element method (DEM). These are needed to handle billions of particles modeled in large distributed-memory computer systems. Our method utilizes flexible orthogonal domain decomposition, allowing the sub-domain boundaries in the column to be different for each row. The imbalances in the execution time between parallel logical processes are treated as a nonlinear residual. Load-balancing is achieved by minimizing the residual within the framework of an iterative nonlinear solver, combined with a multigrid technique in the local smoother. Our iterative method is suitable for adjusting the sub-domain frequently by monitoring the performance of each computational process because it is computationally cheaper in terms of communication and memory costs than non-iterative methods. Numerical tests demonstrated the ability of our approach to handle workload imbalances arising from a non-uniform particle distribution, differences in particle types, or heterogeneous computer architecture which was difficult with previously proposed methods. We analyzed the parallel efficiency and scalability of our method using Earth simulator and K-computer supercomputer systems.
Thanh, Tran Dang; Yen, Nguyen Hai; Duc, Nguyen Huu; Phan, The-Long; Dan, Nguyen Huy; Yu, Seong-Cho
2016-05-01
In this work, we present a detailed study on the magnetocaloric effect and the critical behaviors of an amorphous Fe88Gd2Zr10 alloy ribbon prepared by using a rapid quenching method. We point out that the value of maximum magnetic entropy change (|Δ S max|) of amorphous Fe88Gd2Zr10 alloy ribbon appeared at near room temperature and versus Δ H obeys a power law, |Δ S max| = a·Δ H n. In addition, all Δ S m( T, Δ H) data measured at different Δ H values are collapsed onto a universal master curve. Interestingly, M 2 versus H/ M curves prove amorphous Fe88Gd2Zr10 ribbon exhibitied a second-order magnetic phase transition. The critical exponents ( β, γ, and δ) obtained from the modified Arrott plots and the Kouvel-Fisher methods, and critical isotherm analysis are very close to those expected for the 3D-Heisenberg model, proving ferromagnetic short-range interactions exist in amorphous Fe88Gd2Zr10 ribbon.
Tchamba Yimga, Nadine; Ramanan, Charusheela; Borchert, Holger; Parisi, Jürgen; Untenecker, Harald; Kirsch, Peer; von Hauff, Elizabeth
2017-02-22
We investigated the influence of molecular packing on the optical and electrical properties of the liquid crystalline dye 4,7-bis[5-(2-fluoro-4-pentyl-phenyl)-2-thienyl]-2,1,3-benzothiadiazole (FPPTB). FPPTB is crystalline at room temperature, exhibits a nematic phase at temperatures above 149 °C and is in an isotropic melt at temperatures above 230 °C. Solution processed FPPTB films were subject to thermal annealing through these phase transition temperatures and characterized with X-ray diffraction and polarized optical microscopy. Cooling FPPTB films from the nematic and isotropic phases increased crystal domain size, but also induced local structural variations in the molecular packing of crystalline FPPTB. The decrease in long-range order was correlated with an increase in short-range π-π interactions, leading to changes in molecular aggregation which persisted even when the FPPTB films were cooled to room temperature. Annealing-induced changes in molecular aggregation were confirmed with optical spectroscopy. The carrier mobility in FPPTB films increased over 2 orders of magnitude from (2.2 ± 0.4) × 10 -5 cm 2 V -1 s -1 in as-spun films to μ = (5.0 ± 0.8) × 10 -3 cm 2 V -1 s -1 in films cooled from the isotropic melt. We discuss the relationship between thermal stability and high carrier mobility values in terms of the interplay between long-range molecular order and increased π-π interactions between molecular pairs in the FPPTB film.
Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator
Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko
2017-07-01
In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.
Energy Technology Data Exchange (ETDEWEB)
Treder, H.J.
1975-08-01
A unified field theory of gravitation is formulated in which the field equations correspond to the Einstein equations of general relativity in the same way as electromagnetic bi-wave equations correspond to the Maxwell equations. The metric is a linear functional of an Einsteinian long-range potential and of a subatomic short-range potential. The quanta of the field are rest-massless gravitons and tensor bosons. It is suggested that the Compton wave length of heavy gravitons is given by the Planck length. (JFP)
Ebbinghaus, Simon; Meister, Konrad; Prigozhin, Maxim B; Devries, Arthur L; Havenith, Martina; Dzubiella, Joachim; Gruebele, Martin
2012-07-18
Short-range ice binding and long-range solvent perturbation both have been implicated in the activity of antifreeze proteins and antifreeze glycoproteins. We study these two mechanisms for activity of winter flounder antifreeze peptide. Four mutants are characterized by freezing point hysteresis (activity), circular dichroism (secondary structure), Förster resonance energy transfer (end-to-end rigidity), molecular dynamics simulation (structure), and terahertz spectroscopy (long-range solvent perturbation). Our results show that the short-range model is sufficient to explain the activity of our mutants, but the long-range model provides a necessary condition for activity: the most active peptides in our data set all have an extended dynamical hydration shell. It appears that antifreeze proteins and antifreeze glycoproteins have reached different evolutionary solutions to the antifreeze problem, utilizing either a few precisely positioned OH groups or a large quantity of OH groups for ice binding, assisted by long-range solvent perturbation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Fries, S.M.; Crummenauer, J.; Gonser, U.; Schaaf, P.; Chien, C.L.
1989-01-01
The Moessbauer study of the mixed magnetic dipole and electric quadrupole interaction in the paramagnetic state of amorphous Fe-Zr and Fe-Hf alloys is presented. Strong evidence for chemical short range order of the iron-pure alloys is found. The hyperfine parameters of the iron-rich alloys are marked by a complex applied field and temperature dependence, suggesting a not negligible spin-correlation well above Tc. (orig.)
Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.
2018-03-01
We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.
Spin-dependent optics with metasurfaces
Directory of Open Access Journals (Sweden)
Xiao Shiyi
2016-11-01
Full Text Available Optical spin-Hall effect (OSHE is a spin-dependent transportation phenomenon of light as an analogy to its counterpart in condensed matter physics. Although being predicted and observed for decades, this effect has recently attracted enormous interests due to the development of metamaterials and metasurfaces, which can provide us tailor-made control of the light-matter interaction and spin-orbit interaction. In parallel to the developments of OSHE, metasurface gives us opportunities to manipulate OSHE in achieving a stronger response, a higher efficiency, a higher resolution, or more degrees of freedom in controlling the wave front. Here, we give an overview of the OSHE based on metasurface-enabled geometric phases in different kinds of configurational spaces and their applications on spin-dependent beam steering, focusing, holograms, structured light generation, and detection. These developments mark the beginning of a new era of spin-enabled optics for future optical components.
Short-range communication system
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2012-01-01
A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.
Kasamatsu, Kenichi; Eto, Minoru; Nitta, Muneto
2016-01-01
We study the interaction and dynamics of two half-quantized vortices in two-component Bose-Einstein condensates. Using the Padé approximation for the vortex core profile, we calculate the intervortex potential, whose asymptotic form for a large distance has been derived by Eto et al. [Phys. Rev. A 83, 063603 (2011), 10.1103/PhysRevA.83.063603]. Through numerical simulations of the two-dimensional Gross-Pitaevskii equations, we reveal different kinds of dynamical trajectories of the vortices depending on the combinations of signs of circulations and the intercomponent density coupling. Under the adiabatic limit, we derive the equations of motion for the vortex coordinates, in which the motion is caused by the balance between Magnus force and the intervortex forces. The initial velocity of the vortex motion can be explained quantitatively by this point vortex approximation, but understanding the long-time behavior of the dynamics needs more consideration beyond our model.
WPC's Short Range Forecast Coded Bulletin
National Oceanic and Atmospheric Administration, Department of Commerce — Short Range Forecast Coded Bulletin. The Short Range Forecast Coded Bulletin describes the expected locations of high and low pressure centers, surface frontal...
Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang
2011-12-12
The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
Magnetic short range order in Gd
International Nuclear Information System (INIS)
Child, H.R.
1976-01-01
Quasielastic neutron scattering has been used to investigate magnetic short range order in Gd for 80 0 K 0 K. Short range order exists throughout this range from well below T/sub C/ = 291 0 K to well above it and can be reasonably well described by an anisotropic Orstein-Zernike form for chi
[Spin dependent phenomena in medium energy physics
International Nuclear Information System (INIS)
Souder, P.A.
1992-11-01
The Syracuse University Medium Energy Physics Group was actively engaged in several research projects. A laser was used to polarize muonic atoms with the goal of measuring fundamental spin-dependent parameters in the reaction μ - + 3 He → 3 H + ν. Time-averaged polarizations of 26.8±2.3% were achieved for the muon in muonic 3 He. The new approach uses atomic spin-dependent reactions between laser polarized Rb vapor and muonic helium. To exploit these high polarizations in a muon capture experiment an ion chamber which will detect the recoil tritons and also serve as a polarizing cell. Final data-taking will begin for an experiment to measure the spin-dependent structure functions of the neutron. A 288-element hodoscope system which features good timing and precise mechanical tolerances was constructed and evaluated
Spin-dependent relativistic effect on heavy quarkonium properties in medium
International Nuclear Information System (INIS)
Dong Yubing
1997-01-01
Spin-dependent relativistic effect on the binding and dissociation of the heavy quarkonium in a thermal environment is investigated. The result shows that the interactions could influence the heavy quarkonium properties in medium
Short range order of selenite glasses
Czech Academy of Sciences Publication Activity Database
Neov, S.; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr
1999-01-01
Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA AV ČR KSK1010104 Keywords : short range * selenite glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.822, year: 1999
Short range radio research in Twente
Meijerink, Arjan
2010-01-01
The research and education by the Telecommunication Engineering Group at the University of Twente is dedicated to physical layer topics in communications. Three research tracks have prominence: Short Range Radio, Microwave Photonics, and Electromagnetic Compatibility. Arjan is active in the Short
OMV--Short Range Vehicle Concept
1986-01-01
In this 1986 artist's concept, the Orbital Maneuvering Vehicle (OMV), is shown without its main propulsion module. Essentially two propulsion vehicles in one, the OMV could be powered by a main propulsion module , or, in its short range vehicle configuration shown here, use its own hydrazine and cold gas thrusters. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.
Spin Dependence in Tidal Disruption Events
Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert
2018-01-01
A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.
The spin dependent odderon in the diquark model
Energy Technology Data Exchange (ETDEWEB)
Szymanowski, Lech [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Zhou, Jian, E-mail: jzhou@sdu.edu.cn [School of Physics, & Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan, Shandong 250100 (China); Nikhef and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands)
2016-09-10
In this short note, we report a di-quark model calculation for the spin dependent odderon and demonstrate that the asymmetrical color source distribution in the transverse plane of a transversely polarized hadron plays an essential role in yielding the spin dependent odderon. This calculation confirms the earlier finding that the spin dependent odderon is closely related to the parton orbital angular momentum.
Transverse spin dependent azimuthal asymmetries at COMPASS
Parsamyan, Bakur
2011-01-01
In semi-inclusive deep inelastic scattering of polarized leptons on a transversely polarized target eight target transverse spin-dependent azimuthal modulations are allowed. In the QCD parton model half of these asymmetries can be interpreted within the leading order approach and the other four are twist-three contributions. The first two leading twist asymmetries extracted by HERMES and COMPASS experiments are related: one to the transversity distribution and the Collins effect, the other to the Sivers distribution function. These results triggered a lot of interest in the past few years and allowed the first extractions of the transversity and the Sivers distribution functions of nucleon. The remaining six asymmetries were obtained by the COMPASS experiment using a 160 GeV/c longitudinally polarized muon beam and transversely polarized deuteron and proton targets. Here we review preliminary results from COMPASS proton data of 2007.
Short-range correlations of partons & 3D nucleon structure
Directory of Open Access Journals (Sweden)
Schweitzer P.
2014-03-01
Full Text Available Dynamical breaking of chiral symmetry in QCD is caused by non-perturbative interactions on a scale ρ ∼ 0.3 fm much smaller than the hadronic size R ∼ 1 fm. This has important consequences for the nucleon structure such as the prediction that the transverse momentum distribution of sea quarks is significantly broader than the pT -distribution of valence quarks due to short-range correlations between sea quarks in the nucleon’s light-cone wave function.
Impact of prescribed diabatic heating on short range weather forecasts
Marx, L.; Shukla, J.
1984-01-01
Using the 9 layer general circulation model developed at the Goddard Laboratory for Atmospheric Sciences (GLAS), several 4 to 5 day integrations were made to assess the impact that latent heating processes (supersaturation and moist convective) have on the model forecasts. In an earlier study by Shukla (1981) it was hypothesized that because of strong interaction between dynamics and moist convection, small initial errors grow very fast and make short range forecasting difficult. The purpose of this study was to examine if prescribed heating rates can improve the forecasts for a few days.
Level shifts induced by a short-range potential
International Nuclear Information System (INIS)
Karnakov, B.M.; Mur, V.D.
1984-01-01
Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels
DEFF Research Database (Denmark)
Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aagaard
2007-01-01
be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(µ r12) / r12, which is based on the standard error function......, and where µ is a free parameter which controls the range of the long-/short-range decomposition. In order to formulate a general method, they propose a recipe for the definition of an optimal µopt parameter, which is independent of the approximate short-range functional and the approximate wave function...... MCSCF-DFT method for the dissociation energies of H2, N2, and H2O, with both short-range local-density approximation and PBE-type functionals. © 2007 American Institute of Physics. [DOI: 10.1063/1.2566459]...
Spin-dependent rectification in the C59N molecule
Indian Academy of Sciences (India)
2013-02-05
Feb 5, 2013 ... organic semiconductors, is placed as a bridge in magnetic tunnel junctions, because its lowest unoccupied molecular orbital (LUMO) is located at relatively lower energies. The spin-dependent transport in FM/C60/FM junction was studied [26], but spin-dependent transport through a single C59N molecule, ...
Short range correlations: few-body systems
International Nuclear Information System (INIS)
Silvestre-Brac, B.
1987-01-01
In these lectures, we present the correlations in few-body systems. The probability densities for quarks inside a baryon and for nucleons inside a nucleus are commented in detail and reported on a number of photos. The emphasis is put on the link between the forces acting upon quarks and the forces acting upon nucleons. Several systems are analysed carefully: the diquarks, the baryons, the N-N interaction, the H dibaryon and the nuclei 2 H, 3 H, 4 He [fr
On spin dependence of relativistic acoustic geometry
International Nuclear Information System (INIS)
Pu, Hung-Yi; Chang, Hsiang-Kuang; Maity, Ishita; Das, Tapas Kumar
2012-01-01
relevant observables associated with the spectral signature of the black hole candidates. Our result indicates that the modified dispersion relation evaluated at the close proximity of the acoustic horizon (and hence the nonuniversal feature of Hawking-like effects) is a sensitive function of the spin angular momentum of the astrophysical black hole. We propose that the black hole spin dependence of such dispersion relation may be used to distinguish a corotating flow from a counter rotating flow for axisymmetric accretion onto a Kerr black hole. (paper)
Spin-dependent shot noise in semiconductor and graphene nanostructures
Dragomirova, Ralitsa L.
Shot noise is the name given to the time-dependent non-equilibrium current (or voltage) fluctuations which persist down to zero temperature and are fundamentally related to the discrete nature of the electron charge. Over the past two decades it has become a major tool for gathering information about microscopic mechanisms of transport and correlations between charges which cannot be extracted from traditional conductance measurements. Recently a handful of theoretical and experimental studies have suggested that shot noise in systems with spin-dependent interactions provides a sensitive probe to differentiate between scattering from magnetic impurities, spin-flip scattering, and continuous spin precession effects on semiclassical or quantum transport of injected spin-polarized currents. This is due to the fact that any spin flip converts spin-↑ subsystem particle into a spin-↓ subsystem particle, where the two subsystems differ when spin degeneracy is lifted. Thus, the nonconservation of the number of particles in each subsystem generates additional source of current fluctuations. Here we generalize the scattering theory of quantum shot noise to include the full spin-density matrix of electrons. This formalism yields the spin-resolved shot noise power applicable for a generic spintronic device where partially polarized charge current or even pure spin current is injected from a spin-filtering or ferromagnetic electrode into a quantum-coherent nanostructure governed by arbitrary spin-dependent interactions. The developed formalism [2, 5] is applied in Chapter 5 to diffusive multichannel quantum wires with the Rashba spin-orbit (SO) coupling sandwiched between ferromagnetic source and ferromagnetic or normal drain electrodes. The crucial role played by the SO interactions in all-electrical control of spin in semiconductor nanostructures has ignited recent studies of their signatures on the shot noise. We investigate what is the effect of the Rahsba SO coupling
Short range correlation of the erythrocyte membrane fluctuations
Buimagă-Iarinca, Luiza; Morariu, Vasile V.
2009-08-01
The erythrocyte membrane fluctuations analysis was performed for two suspension media, plasma and phosphate buffered saline (PBS) respectively. The investigation methods consist of detrended fluctuation analysis (DFA) and spectral analysis applied on data series formed by successive values of cellular area which were obtained by managing the sequential images set for each cell. We have shown that the suspension media influences significantly the membrane fluctuation characteristics. Detrended fluctuation analysis revealed two short range correlations both for cells suspended in their natural medium and artificial medium. Moreover, we found out the strength on interaction between terms in series by using spectral analysis and autoregressive modeling. The correlation between parameters obtained by the above mentioned methods was evidenced by theoretical models and certified by our experiments.
Numerical challenges of short range wake field calculations
Energy Technology Data Exchange (ETDEWEB)
Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)
2011-07-01
For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.
Spin-Dependent Quasiparticle Transport in Aluminum Single Electron Transistors
Ferguson, A. J.; Andresen, S. E.; Brenner, R.; Clark, R. G.
2006-01-01
We investigate the effect of Zeeman-splitting on quasiparticle transport in normal-superconducting-normal (NSN) aluminum single electron transistors (SETs). In the above-gap transport the interplay of Coulomb blockade and Zeeman-splitting leads to spin-dependence of the sequential tunneling. This creates regimes where either one or both spin species can tunnel onto or off the island. At lower biases, spin-dependence of the single quasiparticle state is studied and operation of the device as a...
Moments of nucleon spin-dependent generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Wolfram Schroers; Richard Brower; Patrick Dreher; Robert Edwards; George Fleming; P. Hagler; Urs Heller; Thomas Lippert; John Negele; Andrew Pochinsky; Dru Renner; David Richards; Klaus Schilling
2004-03-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.
47 CFR 90.371 - Dedicated short range communications service.
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Dedicated short range communications service. 90.371 Section 90.371 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Communications Service (dsrcs) § 90.371 Dedicated short range communications service. (a) These provisions...
Short Range Stabilization Actions: Good But Not Enough.
Kemerer, Frank R.
An alternative approach to achieve short-time enrollment stabilization based in part on experiences at the State University of New York, Geneseo, is described. It is suggested that a short-range effort will not be enough to assure institutional vitality in the difficult years ahead. Short-range stabilization should be followed by the integration…
Spin dependence of heavy quark fragmentation
International Nuclear Information System (INIS)
Cornet, Fernando; Garcia Canal, Carlos A.
2008-01-01
We propose that the non-perturbative part of the fragmentation function describing the transition from a heavy quark to a heavy meson is proportional to the square of the produced meson wave function at the origin, taking into account hyperfine interactions. We analyze the effects of this proposal on the number of pseudoscalar mesons compared to the number of vector mesons produced and find a good agreement with experimental data. Finally, we discuss further experimental checks for our hypothesis
Short-Range Seismic and Acoustic Signature Measurements Through Forest
National Research Council Canada - National Science Library
Decato, Stephen N; Albert, Donald G; Perron, Frank E., Jr; Carbee, David L
2005-01-01
.... In this report, the short-range measurements conducted by ERDC-CRREL are documented. Blast noise waveforms produced by C4 explosions at distances from 30 to 567 m were recorded and are presented in this report...
Dedicated short-range communications roadside unit specifications.
2017-04-28
The Intelligent Transportation Systems (ITS) Program definition of connected vehicles includes both 5.9 Gigahertz (GHz) Dedicated Short Range Communications (DSRC) and non-DSRC technologies as means of facilitating communication for vehicle-to-vehicl...
Enhanced adaptive signal control using dedicated short-range communications.
2014-05-01
Connected vehicle technology with dedicated short-range communications can provide traffic : information in a spatial domain that conventional fixed-point detectors cannot provide. However, because : of low market penetration with this new data sourc...
Computational study of short-range interactions in bacteriochlorophyll aggregates
Czech Academy of Sciences Publication Activity Database
Alster, J.; Kabeláč, Martin; Tůma, R.; Pšenčík, J.; Burda, J. V.
2012-01-01
Roč. 998, SI (2012), s. 87-97 ISSN 2210-271X R&D Projects: GA AV ČR IAA400550808 Grant - others:GA ČR(CZ) GA206/09/0375; GA MŠk(CZ) ME10149 Program:GA Institutional support: RVO:61388963 Keywords : chlorosome * bacteriochlorophyll * molecular simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.139, year: 2012
Very short range forecasts of visibility and ceiling
Hilsenrod, A.
1980-01-01
The development of methods for the short range forecasting of visibility and ceiling conditions is discussed. Short range forecasts of one hour or less (5 or 30 minutes), immediately after a series of local observations can be expected to be more accurate and reliable than any forecast of more than one hour. These forecasts can be accomplished by the operational implementation of fully automated aviation observation systems and the utilization of statistical techniques such as the Generalized Equivalent Markov model.
Optical control of spin-dependent thermal transport in a quantum ring
Abdullah, Nzar Rauf
2018-05-01
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.
Influence of soliton distributions on the spin-dependent electronic ...
Indian Academy of Sciences (India)
pp. 669–680. Influence of soliton distributions on the spin-dependent electronic transport through polyacetylene molecule. S A KETABI. ∗ and M NAKHAEE. School of Physics, Damghan University, Damghan, Iran. ∗. Corresponding author. E-mail: saketabi@du.ac.ir. MS received 10 April 2014; revised 25 January 2015; ...
Influence of soliton distributions on the spin-dependent electronic ...
Indian Academy of Sciences (India)
In this paper, a detailed numerical study of the role of selected soliton distributions on the spin-dependent ... Based on Su–. Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green's function formalism, we ... walls or solitons, which appear to be responsible for many of the remarkable properties of trans-PA ...
Influence of soliton distributions on the spin-dependent electronic ...
Indian Academy of Sciences (India)
Based on Su–Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green's function formalism, wecalculate the spin-dependent currents, the electronic transmission and tunnelling magnetoresistance (TMR). We found that the presence of a uniform distribution of the soliton centres along the molecular chain ...
A method of short range system analysis for nuclear utilities
International Nuclear Information System (INIS)
Eng, R.; Mason, E.A.; Benedict, M.
1976-01-01
An optimization procedure has been formulated and tested that is capable of solving for the optimal generation schedule of several nuclear power reactors in an electric power utility system, under short-range, resource-limited, conditions. The optimization procedure utilizes a new concept called the Opportunity Cost of Nuclear Power (OCNP) to optimally assign the resource-limited nuclear energy to the different weeks and hours in the short-range planning horizon. OCNP is defined as the cost of displaced energy when optimally distributed nuclear energy is marginally increased. Under resource-limited conditions, the short-range 'value' of nuclear power to a utility system is not its actual generation cost, but the cost of the next best alternative supply of energy, the OCNP. OCNP is a function of a week's system reserve capacity, the system's economic loading order, the customer demand function, and the nature of the available utility system generating units. The optimized OCNP value of the short-range planning period represents the utility's short-range energy replacement cost incurred when selling nuclear energy to a neighbouring utility. (author)
Impact of Disorder on Spin Dependent Transport Phenomena
Saidaoui, Hamed
2016-07-03
The impact of the spin degree of freedom on the transport properties of electrons traveling through magnetic materials has been known since the pioneer work of Mott [1]. Since then it has been demonstrated that the spin angular momentum plays a key role in the scattering process of electrons in magnetic multilayers. This role has been emphasized by the discovery of the Giant Magnetoresistance in 1988 by Fert and Grunberg [2, 3]. Among the numerous applications and effects that emerged in mesoscopic devices two mechanisms have attracted our attention during the course of this thesis: the spin transfer torque and the spin Hall effects. The former consists in the transfer of the spin angular momentum from itinerant carriers to local magnetic moments [4]. This mechanism results in the current-driven magnetization switching and excitations, which has potential application in terms of magnetic data storage and non-volatile memories. The latter, spin Hall effect, is considered as well to be one of the most fascinating mechanisms in condensed matter physics due to its ability of generating non-equilibrium spin currents without the need for any magnetic materials. In fact the spin Hall effect relies only on the presence of the spin-orbit interaction in order to create an imbalance between the majority and minority spins. The objective of this thesis is to investigate the impact of disorder on spin dependent transport phenomena. To do so, we identified three classes of systems on which such disorder may have a dramatic influence: (i) antiferromagnetic materials, (ii) impurity-driven spin-orbit coupled systems and (iii) two dimensional semiconducting electron gases with Rashba spin-orbit coupling. Antiferromagnetic materials - We showed that in antiferromagnetic spin-valves, spin transfer torque is highly sensitive to disorder, which prevents its experimental observation. To solve this issue, we proposed to use either a tunnel barrier as a spacer or a local spin torque using
Long- versus Short-Range Scattering in Doped Epitaxial Graphene.
Straßer, C; Ludbrook, B M; Levy, G; Macdonald, A J; Burke, S A; Wehling, T O; Kern, K; Damascelli, A; Ast, C R
2015-05-13
Tuning the electronic properties of graphene by adatom deposition unavoidably introduces disorder into the system, which directly affects the single-particle excitations and electrodynamics. Using angle-resolved photoemission spectroscopy (ARPES) we trace the evolution of disorder in graphene by thallium adatom deposition and probe its effect on the electronic structure. We show that the signatures of quasiparticle scattering in the photoemission spectral function can be used to identify thallium adatoms, although charged, as efficient short-range scattering centers. Employing a self-energy model for short-range scattering, we are able to extract a δ-like scattering potential δ = -3.2 ± 1 eV. Therefore, isolated charged scattering centers do not necessarily act just as good long-range (Coulomb) scatterers but can also act as efficient short-range (δ-like) scatterers; in the case of thallium, this happens with almost equal contributions from both mechanisms.
A new matrix for long and short range potential scattering
International Nuclear Information System (INIS)
Kolsrud, M.
1979-01-01
A new matrix f(p,k) is given for scattering in both long and short range potentials, and which becomes equal to the scattering amplitude when p=k. In the Coulomb case there are thus no anomalies. The f-matrix is established by means of an irregular scattering solution of the Schroedinger equation. The connection with the T-matrix is shown. The Coulomb f-matrix is given in closed form. The Yukawa and two other short range f-matrices are calculated to first order. The partial Coulomb f(sub l)-matrix is given. (Auth.)
Combined Search for Lorentz Violation in Short-Range Gravity.
Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan
2016-08-12
Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.
Short-range order of germanium selenide glass
Indian Academy of Sciences (India)
tion in technological devices, such as optical fibers, memory materials and switching devices, but their use is limited due to several factors. One of them is the difficulty in obtain- ing information about atomic structures. The structure of chalcogenide glasses in the short-range order (SRO) or intermediate-range order (IRO) is ...
Small Device For Short-Range Antenna Measurements Using Optics
DEFF Research Database (Denmark)
Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten
2011-01-01
This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...... measurements using off-the-shelf components. Verification measurements are made to confirm the benefits....
Modeling short-range stiffness of feline lower hindlimb muscles
Cui, L.; Perreault, E.J.; Maas, H.; Sandercock, T.G.
2008-01-01
The short-range stiffness (SRS) of skeletal muscles is a critical property for understanding muscle contributions to limb stability, since it represents a muscle's capacity to resist external perturbations before reflexes or voluntary actions can intervene. A number of studies have demonstrated that
Short-range self-pulsed optical radar
Berdahl, C. M.
1981-01-01
Laser for radar device is retriggered when previous laser pulse is reflected from target. Target range R is computed from number of pulses triggered per time interval. Radar accurately measures distances up to 500 meters; it is useful for determining surface shape of relfectors in large, high-gain, highly directional antennas and for other short-range surveying.
OAM-enhanced transmission for multimode short-range links
DEFF Research Database (Denmark)
Tatarczak, Anna; Usuga Castaneda, Mario A.; Tafur Monroy, Idelfonso
2015-01-01
We propose, experimentally demonstrate, and evaluate the performance of a multimode (MM) transmission fiber data link which is based on orbital angular momentum (OAM) modes. The proposed scheme uses OAM modes to increase capacity or reach without recurring to mode division multiplexing (MDM) or s...... interconnects and short range links that employ the existing multimode fiber infrastructure....
Measuring spin-dependent structure functions at CEBAF
Energy Technology Data Exchange (ETDEWEB)
Schaefer, A. [Universitaet Frankfurt (Germany)
1994-04-01
The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.
Groucho corepressor functions as a cofactor for the Knirps short-range transcriptional repressor.
Payankaulam, Sandhya; Arnosti, David N
2009-10-13
Despite the pervasive roles for repressors in transcriptional control, the range of action of these proteins on cis regulatory elements remains poorly understood. Knirps has essential roles in patterning the Drosophila embryo by means of short-range repression, an activity that is essential for proper regulation of complex transcriptional control elements. Short-range repressors function in a local fashion to interfere with the activity of activators or basal promoters within approximately 100 bp. In contrast, long-range repressors such as Hairy act over distances >1 kb. The functional distinction between these two classes of repressors has been suggested to stem from the differential recruitment of the CtBP corepressor to short-range repressors and Groucho to long-range repressors. Contrary to this differential recruitment model, we report that Groucho is a functional part of the Knirps short-range repression complex. The corepressor interaction is mediated via an eh-1 like motif present in the N terminus and a conserved region present in the central portion of Knirps. We also show that this interaction is important for the CtBP-independent repression activity of Knirps and is required for regulation of even-skipped. Our study uncovers a previously uncharacterized interaction between proteins previously thought to function in distinct repression pathways, and indicates that the Groucho corepressor can be differentially harnessed to execute short- and long-range repression.
Direct observation of the spin-dependent Peltier effect.
Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J
2012-02-05
The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.
Migdal's short range correlations in a covariant model
International Nuclear Information System (INIS)
Lutz, M.F.M.; Technische Univ. Darmstadt
2002-11-01
We construct a covariant model for short range correlations of a pion emerged in nuclear matter. Once the delta-hole contribution is considered an additional and so far neglected channel opens that leads to significant modifications in the vicinity of the kinematical region defined by ω ∝ | vectorq |. We speculate that this novel effect should be important for the quantitative interpretation of charge exchange reactions like 12 C( 3 He,t). (orig.)
Recent results on short-range gravity experiment
International Nuclear Information System (INIS)
Hata, Maki; Akiyama, Takashi; Ikeda, Yuki; Kawamura, Hirokazu; Narita, Keigo; Ninomiya, Kazufumi; Ogawa, Naruya; Sato, Toshiaki; Seitaibashi, Etsuko; Sekiguchi, Yuta; Tsutsui, Ryosuke; Yazawa, Kazumasa; Murata, Jiro
2009-01-01
According to the ADD model, deviation from Newton's inverse square law is expected at below sub-millimeter scale. Present study is an experimental investigation of the Newton's gravitational law at a short range scale. We have developed an experimental setup using torsion balance bar, and succeeded to confirm the inverse square law at a centimeter scale. In addition, composition dependence of gravitational constant G is also tested at the centimeter scale, motivated to test the weak equivalence principle.
Short-range correlations in quark and nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Froemel, Frank
2007-06-15
In the first part of this thesis, the role of short-range correlations in quark matter is explored within the framework of the Nambu-Jona-Lasinio model. Starting from a next-to-leading order expansion in the inverse number of the quark colors, a fully self-consistent model constructed that employs the close relations between spectral functions and self-energies. In contrast to the usual quasiparticle approximations, this approach allows the investigation of the collisional broadening of the quark spectral function. Numerical calculations at various chemical potentials and zero temperature show that the short-range correlations do not only induce a finite width of the spectral function but also have some influence on the structure of the chiral phase transition. In the second part of this thesis, the temperature and density dependence of the nucleon spectral function in symmetric nuclear matter is investigated. The short-range correlations can be well described by a simple, self-consistent model on the one-particle-two-hole and two-particle-one-hole level (1p2h, 2p1h). The thermodynamically consistent description of the mean-field properties of the nucleons is ensured by incorporating a Skyrme-type potential. Calculations at temperatures and densities that can also be found in heavy-ion collisions or supernova explosions and the formation of neutron stars show that the correlations saturate at high temperatures and densities. (orig.)
Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aa.
2007-02-01
In many cases, the dynamic correlation can be calculated quite accurately and at a fairly low computational cost in Kohn-Sham density-functional theory (KS-DFT), using current standard approximate functionals. However, in general, KS-DFT does not treat static correlation effects (near degeneracy) adequately which, on the other hand, can be described in wave-function theory (WFT), for example, with a multiconfigurational self-consistent field (MCSCF) model. It is therefore of high interest to develop a hybrid model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts. The long-range part is then treated by WFT and the short-range part by DFT. In this work the authors consider the so-called "erf" long-range interaction erf(μr12)/r12, which is based on the standard error function, and where μ is a free parameter which controls the range of the long-/short-range decomposition. In order to formulate a general method, they propose a recipe for the definition of an optimal μopt parameter, which is independent of the approximate short-range functional and the approximate wave function, and they discuss its universality. Calculations on a test set consisting of He, Be, Ne, Mg, H2, N2, and H2O yield μopt≈0.4a.u.. A similar analysis on other types of test systems such as actinide compounds is currently in progress. Using the value of 0.4a.u. for μ, encouraging results are obtained with the hybrid MCSCF-DFT method for the dissociation energies of H2, N2, and H2O, with both short-range local-density approximation and PBE-type functionals.
Two-dimensional short-range disordered crystalline networks from flexible molecular modules.
Ecija, David; Vijayaraghavan, Saranyan; Auwärter, Willi; Joshi, Sushobhan; Seufert, Knud; Aurisicchio, Claudia; Bonifazi, Davide; Barth, Johannes V
2012-05-22
Studies of complex condensed matter systems have led to the discovery of materials of unexpected spatial organization as glasses, glassy crystals, quasicrystals, and protein and virus crystals. Here, we present two-dimensional (2D) short-range disordered molecular crystalline networks, which, regarding spatial organization, can be considered as surface analogues of 3D glassy crystals. In particular, the deposition of a flexible molecular module on Cu(111) gives rise to distinct phases whose characteristics have been examined in real space by scanning tunneling microscopy: a 2D short-range distortional disordered crystalline network and a 2D short-range orientational disordered crystalline network, respectively. Both phases exhibit a random arrangement of nanopores that are stabilized by the simultaneous presence of metal-organic and pyridyl-pyridyl interactions. The 2D short-range distortional disordered crystalline network displayed intriguing flexibility, as probed by the STM tip that modifies the pore shape, a prerequisite for adaptive behavior in host-guest processes.
Precision measurement of the neutron spin dependent structure functions
International Nuclear Information System (INIS)
Kolomensky, Y.G.
1997-02-01
In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g 1 n (x, Q 2 ) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3 He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 ≤ x ≤ 0.7 with an average Q 2 of 5 GeV 2 . The author reports the integral of the spin dependent structure function in the measured range to be ∫ 0.014 0.7 dx g 1 n (x, 5 GeV 2 ) = -0.036 ± 0.004(stat.) ± 0.005(syst.). The author observes relatively large values of g 1 n at low x that call into question the reliability of data extrapolation to x → 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g 1 p and g 1 n paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q 2 = 5 GeV 2 , determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule
Precision measurement of the neutron spin dependent structure functions
Energy Technology Data Exchange (ETDEWEB)
Kolomensky, Y.G.
1997-02-01
In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.
Amorphous photonic crystals with only short-range order.
Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian
2013-10-04
Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Capacity Short-Range Optical Communication Links
DEFF Research Database (Denmark)
Tatarczak, Anna
offered by data centers. As the popularity of cloud computing soars, the demand for high-speed, short-range data center links grows. Vertical cavity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove especially well-suited for such scenarios. VCSELs have high modulation bandwidths......, are energy efficient, reliable, and cheap to fabricate. MMFs are highly tolerant to coupling misalignment and bending. However, because of the large spectral width of VCSELs and, consequently, chromatic and modal dispersion effects in the fiber, the VCSEL-MMF links have a limited bandwidth{distance product...
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
Energy Technology Data Exchange (ETDEWEB)
Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)
2010-03-15
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Characterizing short-range vs. long-range spatial correlations in dislocation distributions
International Nuclear Information System (INIS)
Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul
2010-01-01
Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.
Spin-dependent tunneling transport in a lateral magnetic diode
International Nuclear Information System (INIS)
Wang, Yu; Shi, Ying
2012-01-01
Based on the gate-tunable two-dimensional electron gas, we have constructed laterally a double-barrier resonant tunneling structure by employing a peculiar triple-gate configuration, namely a ferromagnetic gate sandwiched closely by a pair of Schottky gates. Because of the in-plane stray field of ferromagnetic gate, the resulting bound spin state in well gives rise to the remarkable resonant spin polarization following the spin-dependent resonant tunneling regime. Importantly, by aligning the bound spin state through surface gate-voltage configuration, this resonant spin polarization can be externally manipulated, showing the desirable features for the spin-logic device applications. -- Highlights: ► A lateral spin-RTD was proposed by applying triple-gate modulated 2DEG. ► Spin-dependent resonant tunneling transport and large resonant spin polarization has been clarified from the systematic simulation. ► Both electric and/or magnetic strategies can be employed to modulate the system spin transport, providing the essential features for the spin-logic application.
Short-range guiding can result in the formation of circular aggregates in myxobacteria populations.
Janulevicius, Albertas; van Loosdrecht, Mark; Picioreanu, Cristian
2015-04-01
Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. It has been suggested that myxobacterial development depends on short-range contact-mediated interactions between individual cells, i.e. cell aggregation does not require long-range signaling in the population. In this study, by means of a computational mass-spring model, we investigate what types of short-range interactions between cells can result in the formation of streams and circular aggregates during myxobacterial development. We consider short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We demonstrate that stable streams and circular aggregates can arise only when the trailing cell, in addition to being steered by the tail of the leading cell, is able to speed up to catch up with it. It is suggested that necessary head-to-tail interactions between cells can arise from physical adhesion, response to a diffusible substance or slime extruded by cells, or pulling by motility engine pili. Finally, we consider a case of long-range guiding between cells and show that circular aggregates are able to form without cells increasing speed. These findings present a possibility to discriminate between short-range and long-range guiding mechanisms in myxobacteria by experimentally measuring distribution of cell speeds in circular aggregates.
Short range order in FeCo-X alloys
International Nuclear Information System (INIS)
Fultz, B.
1988-01-01
Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)
Chemical Short-Range Order in Selenide and Telluride Glasses.
Pethes, Ildikó; Chahal, Radwan; Nazabal, Virginie; Prestipino, Carmelo; Trapananti, Angela; Michalik, Stefan; Jóvári, Pál
2016-09-01
The structure of Ge20SbxSe80-x (x = 5, 15, 20) glasses was investigated by neutron diffraction, X-ray diffraction, and extended X-ray fine structure measurements at the Ge, Sb, and Se K-edges. For each composition, large-scale structural models were obtained by fitting simultaneously the experimental data sets in the framework of the reverse Monte Carlo simulation technique. It was found that the structures of these glasses can be described mostly by the chemically ordered network model. Ge-Se and Sb-Se bonds are preferred; Se-Se bonds in the Se-poor composition (x = 20) and M-M (M = Ge, Sb) bonds in strongly Se-rich glass (x = 5) are not needed. The quality of the fits was significantly improved by introducing Ge-Ge bonding in the nearly stoichiometric composition (x = 15), showing a violation of chemical ordering. The structure of Ge20SbxSe80-x was compared to that of several glasses from the three analogous systems (Ge-As-Se, Ge-As-Te, Ge-Sb-Te), and it was found that chemical short-range order becomes more pronounced upon substituting As with Sb and Se with Te. Ge-As-Se glasses behave as random covalent networks over a very broad composition range. Chemical short-range order and disorder coexist in both Te-rich and Te-poor Ge-As-Te glasses, whereas amorphous Ge14Sb29Te57 and Ge22Sb22Te56 are governed by strict chemical preferences.
Particle simulation algorithms with short-range forces in MHD and fluid flow
International Nuclear Information System (INIS)
Cable, S.; Tajima, T.; Umegaki, K.
1992-07-01
Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced
Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields.
Van Vleet, Mary J; Misquitta, Alston J; Stone, Anthony J; Schmidt, J R
2016-08-09
Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach.
Attractive short-range interatomic potential in the lattice dynamics of niobium and tantalum
International Nuclear Information System (INIS)
Onwuagba, B.N.; Pal, S.
1987-01-01
It is shown in the framework of the pseudopotential approach that there is a sizable attractive short-range component of the interatomic potential due to the s-d interaction which has the same functional form in real space as the Born-Mayer repulsion due to the overlap of core electron wave functions centred on neighbouring ions. The magnitude of this attractive component is such as to completely cancel the conventional Born-Mayer repulsion, making the resultant short-range interatomic potential attractive rather than repulsive. Numerical calculations show that the attractive interatomics potential, which represents the local-field correction, leads to a better understanding of the occurrence of the soft modes in the phonon dispersion curves of niobium and tantalum
Bottom quark contribution to spin-dependent dark matter detection
Directory of Open Access Journals (Sweden)
Jinmian Li
2016-05-01
Full Text Available We investigate a previously overlooked bottom quark contribution to the spin-dependent cross section for Dark Matter (DM scattering from the nucleon. While the mechanism is relevant to any supersymmetric extension of the Standard Model, for illustrative purposes we explore the consequences within the framework of the Minimal Supersymmetric Standard Model (MSSM. We study two cases, namely those where the DM is predominantly Gaugino or Higgsino. In both cases, there is a substantial, viable region in parameter space (mb˜−mχ≲O(100 GeV in which the bottom contribution becomes important. We show that a relatively large contribution from the bottom quark is consistent with constraints from spin-independent DM searches, as well as some incidental model dependent constraints.
Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain
Sattari, Farhad; Mirershadi, Soghra
2018-01-01
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.
Spin-dependent phonon-assisted optical transition in Si and Ge under strain
Li, Pengke; Trivedi, Dhara; Dery, Hanan
2013-03-01
In indirect bandgap semiconductors like Si and Ge, the transfer of angular momentum between free carriers and photons is intricate since they involve both radiation-matter and electron-phonon interactions. Moreover, the multi-valley conduction band of Si and Ge leads to dependence on light propagation. By breaking the degeneracies of conduction valleys and of valence bands, strain could be used as an experimental tool to regulate and validate the relation between the measured circular polarization degree of photons and the spin polarization of charge carriers. Using symmetry arguments, we present a theoretical study of the spin-dependent selection rules for various phonon-assisted optical transitions. We show how these selection rules are changed under different configurations of strain. These selection rules are verified by rigorous numerical calculation of the spin-dependent luminescence spectra in strained Si and Ge, as well as in relaxed SiGe alloys. Lastly, we also provide results of the inverse process, namely optical orientation. NSF-NRI Contract DMR-1124601 (NEB 2020), NSF Contract ECCS-1231570
Combining 2-m temperature nowcasting and short range ensemble forecasting
Directory of Open Access Journals (Sweden)
A. Kann
2011-12-01
Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous
Spin-dependent transport and functional design in organic ferromagnetic devices
Directory of Open Access Journals (Sweden)
Guichao Hu
2017-09-01
Full Text Available Organic ferromagnets are intriguing materials in that they combine ferromagnetic and organic properties. Although challenges in their synthesis still remain, the development of organic spintronics has triggered strong interest in high-performance organic ferromagnetic devices. This review first introduces our theory for spin-dependent electron transport through organic ferromagnetic devices, which combines an extended Su–Schrieffer–Heeger model with the Green’s function method. The effects of the intrinsic interactions in the organic ferromagnets, including strong electron–lattice interaction and spin–spin correlation between π-electrons and radicals, are highlighted. Several interesting functional designs of organic ferromagnetic devices are discussed, specifically the concepts of a spin filter, multi-state magnetoresistance, and spin-current rectification. The mechanism of each phenomenon is explained by transmission and orbital analysis. These works show that organic ferromagnets are promising components for spintronic devices that deserve to be designed and examined in future experiments.
Short range spread-spectrum radiolocation system and method
Smith, Stephen F.
2003-04-29
A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.
Short-range quantitative precipitation forecasting using Deep Learning approaches
Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.
2017-12-01
Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.
Short-range harmonic radar: chirp waveform, electronic targets
Mazzaro, Gregory J.; Gallagher, Kyle A.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.
2015-05-01
Radio-frequency (RF) electronic targets, such as man-portable electronics, cannot be detected by traditional linear radar because the radar cross section of those targets is much smaller than that of nearby clutter. One technology that is capable of separating RF electronic targets from naturally-occurring clutter is nonlinear radar. Presented in this paper is the evolution of nonlinear radar at the United States Army Research Laboratory (ARL) and recent results of short-range over-the-air harmonic radar tests there. For the present implementation of ARL's nonlinear radar, the transmit waveform is a chirp which sweeps one frequency at constant amplitude over an ultra-wide bandwidth (UWB). The receiver captures a single harmonic of this entire chirp. From the UWB received harmonic, a nonlinear frequency response of the radar environment is constructed. An inverse Fourier Transform of this nonlinear frequency response reveals the range to the nonlinear target within the environment. The chirped harmonic radar concept is validated experimentally using a wideband horn antenna and commercial off-the-shelf electronic targets.
Hybrid gesture recognition system for short-range use
Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun
2012-03-01
In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.
Standoff Stack Emissions Monitoring Using Short Range Lidar
Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin
2016-06-01
There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.
Standoff Stack Emissions Monitoring Using Short Range Lidar
Directory of Open Access Journals (Sweden)
Gravel Jean-Francois Y.
2016-01-01
Full Text Available There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.
Inferring short-range linkage information from sequencing chromatograms.
Directory of Open Access Journals (Sweden)
Bastian Beggel
Full Text Available Direct Sanger sequencing of viral genome populations yields multiple ambiguous sequence positions. It is not straightforward to derive linkage information from sequencing chromatograms, which in turn hampers the correct interpretation of the sequence data. We present a method for determining the variants existing in a viral quasispecies in the case of two nearby ambiguous sequence positions by exploiting the effect of sequence context-dependent incorporation of dideoxynucleotides. The computational model was trained on data from sequencing chromatograms of clonal variants and was evaluated on two test sets of in vitro mixtures. The approach achieved high accuracies in identifying the mixture components of 97.4% on a test set in which the positions to be analyzed are only one base apart from each other, and of 84.5% on a test set in which the ambiguous positions are separated by three bases. In silico experiments suggest two major limitations of our approach in terms of accuracy. First, due to a basic limitation of Sanger sequencing, it is not possible to reliably detect minor variants with a relative frequency of no more than 10%. Second, the model cannot distinguish between mixtures of two or four clonal variants, if one of two sets of linear constraints is fulfilled. Furthermore, the approach requires repetitive sequencing of all variants that might be present in the mixture to be analyzed. Nevertheless, the effectiveness of our method on the two in vitro test sets shows that short-range linkage information of two ambiguous sequence positions can be inferred from Sanger sequencing chromatograms without any further assumptions on the mixture composition. Additionally, our model provides new insights into the established and widely used Sanger sequencing technology. The source code of our method is made available at http://bioinf.mpi-inf.mpg.de/publications/beggel/linkageinformation.zip.
Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron.
Glover, William J; Schwartz, Benjamin J
2016-10-11
The hydrated electron, e - (aq) , has often served as a model system to understand the influence of condensed-phase environments on electronic structure and dynamics. Despite over 50 years of study, however, the basic structure of e - (aq) is still the subject of controversy. In particular, the structure of e - (aq) was long assumed to be an electron localized within a solvent cavity, in a manner similar to halide solvation. Recently, however, we suggested that e - (aq) occupies a region of enhanced water density with little or no discernible cavity. The potential we developed was only subtly different from those that give rise to a cavity solvation motif, which suggests that the driving forces for noncavity solvation involve subtle electron-water attractive interactions at close distances. This leads to the question of how dispersion interactions are treated in simulations of the hydrated electron. Most dispersion potentials are ad hoc or are not designed to account for the type of close-contact electron-water overlap that might occur in the condensed phase, and where short-range dynamic electron correlation is important. To address this, in this paper we develop a procedure to calculate the potential energy surface between a single water molecule and an excess electron with high-level CCSD(T) electronic structure theory. By decomposing the electron-water potential into its constituent energetic contributions, we find that short-range electron correlation provides an attraction of comparable magnitude to the mean-field interactions between the electron and water. Furthermore, we find that by reoptimizing a popular cavity-forming one-electron model potential to better capture these attractive short-range interactions, the enhanced description of correlation predicts a noncavity e - (aq) with calculated properties in better agreement with experiment. Although much attention has been placed on the importance of long-range dispersion interactions in water cluster
Spin-dependent tunnelling in magnetic tunnel junctions
International Nuclear Information System (INIS)
Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R
2003-01-01
The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)
Organic light-emitting devices using spin-dependent processes
Vardeny, Z. Valy; Wohlgenannt, Markus
2010-03-23
The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.
Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors
Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John
2001-10-01
Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.
Energy Technology Data Exchange (ETDEWEB)
Arrington, John
2016-03-25
The past decade has provided a much clearer picture of the structure of highmomentum components in nucleons, associated with hard, short-distance interactions between pairs of nucleons. Recent Jefferson Lab data on light nuclei suggest a connection between these so-called ’short-range correlations’ and the modification of the quark structure of nucleons in the nuclear environment. In light of this discovery that the detailed nuclear structure is important in describing the nuclear quark distributions, we examine the potential impact of the isospin-dependent structure of nuclei to see at what level this might yield flavor-dependent effects in nuclear quark distributions.
Zhao, S Z; Li, J H; Liu, B X
2013-03-06
Based on the recently constructed Ni-Zr-Al n-body potential, Monte Carlo simulations are performed to study the glass formation and associated structural evolutions in the system. The micro-chemical inhomogeneity (MCI) parameter and Honeycutt and Anderson (HA) pair analysis are employed to investigate both the chemical short-range orders and topological short-range orders for the ternary Ni-Zr-Al metallic glasses. Results reveal that remarkable chemical short-range orders (CSROs) exist in the ternary Ni-Zr-Al metallic glasses and are strongly influenced by the chemical interactions among the constituent elements. Moreover, topological short-range orders are clearly formed in the ternary Ni-Zr-Al metallic glasses, with the most remarkable characteristic being the icosahedral local packing. Similarly to CSRO, the extent of icosahedral short-range orders formed in the Ni-Zr-Al system varies distinctly with the chemical composition. In addition, simulation results reveal that chemical short-range orders and topological short-range orders turn out to be influenced by different factors. Unlike CSRO, both chemical interactions and geometrical constraints play important roles in forming the topological short-range orders.
The role of short-range magnetic correlations in the gap opening of topological Kondo insulators.
Ramos, E; Franco, R; Silva-Valencia, J; Foglio, M E; Figueira, M S
2017-08-31
In this article we investigate the effects of short-range anti-ferromagnetic correlations on the gap opening of topological Kondo insulators. We add a Heisenberg term to the periodic Anderson model at the limit of strong correlations in order to allow a small degree of hopping of the localized electrons between neighboring sites of the lattice. This new model is adequate for studying topological Kondo insulators, whose paradigmatic material is the compound [Formula: see text]. The main finding of the article is that the short-range antiferromagnetic correlations, present in some Kondo insulators, contribute decisively to the opening of the Kondo gap in their density of states. These correlations are produced by the interaction between moments on the neighboring sites of the lattice. For simplicity, we solve the problem on a two dimensional square lattice. The starting point of the model is the [Formula: see text] ions orbitals, with [Formula: see text] multiplet in the presence of spin-orbit coupling. We present results for the Kondo and for the antiferromagnetic correlation functions. We calculate the phase diagram of the model, and as we vary the [Formula: see text] level position from the empty regime to the Kondo regime, the system develops metallic and topological Kondo insulator phases. The band structure calculated shows that the model describes a strong topological insulator.
Billington, David; Ernsting, David; Millichamp, Thomas E.; Lester, Christopher; Dugdale, Stephen B.; Kersh, David; Duffy, Jonathan A.; Giblin, Sean R.; Taylor, Jonathan W.; Manuel, Pascal; Khalyavin, Dmitry D.; Takatsu, Hiroshi
2015-01-01
Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589
Multi-component quantum gases in spin-dependent hexagonal lattices
Soltan-Panahi, P.; Struck, J.; Hauke, P.; Bick, A.; Plenkers, W.; Meineke, G.; Becker, C.; Windpassinger, P.; Lewenstein, M.; Sengstock, K.
2011-05-01
In solid-state materials, the static and dynamic properties as well as the magnetic and electronic characteristics are crucially influenced by the crystal symmetry. Hexagonal structures play a particularly important role and lead to novel physics, such as that of carbon nanotubes or graphene. Here we report on the realization of ultracold atoms in a spin-dependent optical lattice with hexagonal symmetry. We show how the combined effects of the lattice and interactions between atoms lead to a forced antiferromagnetic Néel order when two spin-components localize at different lattice sites. We also demonstrate that the coexistence of two components--one Mott-insulating and the other one superfluid--leads to an interaction-induced modulation of the superfluid density, which is observed spectroscopically. Our studies reveal the vast impact of the interaction-induced modulation on the superfluid-to-Mott-insulator transition. The observations are consistent with theoretical predictions using Gutzwiller mean-field theory.
Structure of spin-dependent scattering amplitude and spin effects at small angles at RHIC energies
International Nuclear Information System (INIS)
Akchurin, N.; Goloskokov, S.V.; Selyugin, O.V.
1997-01-01
Spin-dependent pomeron effects are analyzed for elastic pp-scattering and calculations for spin-dependent differential cross sections, analyzing power and double-spin correlation parameters are carried out for the energy range of the Relativistic Heavy Ion Collider (RHIC) at BNL. In this energy range, 50 ≤√≤500 GeV, the structure of pomeron-proton coupling can be measured at RHIC with colliding polarized proton beams
Spin-dependent observable effect for free particles using the arrival time distribution
International Nuclear Information System (INIS)
Ali, Md. Manirul; Majumdar, A.S.; Home, Dipankar; Sengupta, Shyamal
2003-01-01
The mean arrival time of free particles is computed using the quantum-mechanical probability current. This is uniquely determined in the nonrelativistic limit of Dirac equation, although the Schroedinger probability current has an inherent nonuniqueness. Since the Dirac probability current contains a spin-dependent term, an arrival time distribution based on the probability current shows an observable spin-dependent effect, even for free particles. This arises essentially from relativistic quantum dynamics, but persists even in the nonrelativistic regime
Utilizing Context in Location-Aware Short-Range Wireless Communication
Directory of Open Access Journals (Sweden)
Vesa A. Korhonen
2010-01-01
Full Text Available We discuss how a short-range wireless communication service implemented for modern mobile communication devices can provide additional value for both the consumer and the service/product provider. When used as an information search tool, such systems allow services and products being promoted at the location they are available. For the customer, it may provide a “digitally augmented vision”, an enhanced view to the current environment. With data filtering and search rules, this may provide a self-manageable context, where the user's own personal environment and preferences to the features available in the current surroundings cooperate with a direct connection to the web-based social media. A preliminary design for such service is provided. The conclusion is that the method can generate additional revenue to the company and please the customers' buying process. In addition to the marketing, the principles described here are also applicable to other forms of human interaction.
Long-Range Critical Exponents near the Short-Range Crossover.
Behan, Connor; Rastelli, Leonardo; Rychkov, Slava; Zan, Bernardo
2017-06-16
The d-dimensional long-range Ising model, defined by spin-spin interactions decaying with the distance as the power 1/r^{d+s}, admits a second-order phase transition with continuously varying critical exponents. At s=s_{*}, the phase transition crosses over to the usual short-range universality class. The standard field-theoretic description of this family of models is strongly coupled at the crossover. We find a new description, which is instead weakly coupled near the crossover, and use it to compute critical exponents. The existence of two complementary UV descriptions of the same long-range fixed point provides a novel example of infrared duality.
Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.
The influence of state dependent short range correlations on the depletion of the nuclear Fermi sea
International Nuclear Information System (INIS)
Lalazissis, G.A.; Massen, S.E.; Panos, C.P.
1994-01-01
The influence of state dependent short range correlations on the occupation numbers of the single particle shell model orbits of the doubly closed shell nuclei 16 O and 40 Ca is examined. The study shows that the effect of the state dependence of the short range correlations is rather small. The total depletion of the nuclear Fermi sea changes slightly compared with the one calculated by considering state independent short range correlations. (orig.)
Vieira, D; Krems, R V; Tscherbul, T V
2017-01-14
We use accurate quantum scattering calculations to elucidate the role of short-range molecule-field interactions in atom-molecule inelastic collisions and abstraction chemical reactions at low temperatures. We consider two examples: elastic and inelastic scattering of NH(Σ3) molecules with Mg(S1) atoms in a magnetic field; reactive scattering LiF + H → Li + HF in an electric field. Our calculations suggest that, for non-reactive collision systems and abstraction chemical reactions, the molecule-field interactions cannot generally be neglected at short range because the atom-molecule potential passes through zero at short range. An important exception occurs for Zeeman transitions in atom-molecule collisions at magnetic fields ≲1000 G, for which the molecule-field couplings need only be included at large ρ outside the range of the atom-molecule interaction. Our results highlight the importance of an accurate description of ρ-dependent molecule-field interactions in quantum scattering calculations on molecular collisions and chemical reactions at low temperatures.
Senouci, B.; Kerkhoff, Hans G.; Annema, Anne J.; Bentum, Marinus Jan
2015-01-01
A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of hundreds meters. Behind these embedded applications, a complex heterogeneous architecture is built. Moreover, these short range communications are introduced into
Link Design Rules for Cost-Effective Short-Range Radio Over Multimode Fiber Systems
DEFF Research Database (Denmark)
Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal
2010-01-01
Referring to short-range radio over multimode fiber links, we find out important guidelines for the realization of cost-effective intensity modulated directly detected systems. Since the quality of today's connectors is considerably higher than in the past, we demonstrate that two important...... for short-range applications, where the transmittable bandwidth does not constitute the main limitation....
Yang, Fan; Yao, Hong
2012-10-05
Resonating valence bond (RVB) states are of crucial importance in our intuitive understanding of quantum spin liquids in 2D. We systematically classify short-range bosonic RVB states into symmetric or nematic spin liquids by examining their flux patterns. We further map short-range bosonic RVB states into projected BCS wave functions, on which we perform large-scale Monte Carlo simulations without the minus sign problem. Our results clearly show that both spin and dimer correlations decay exponentially in all the short-range frustrated (nonbipartite or Z2) bosonic RVB states we studied, indicating that they are gapped Z2 quantum spin liquids. Generically, we conjecture that all short-range frustrated bosonic RVB states in 2D have only short-range correlations.
Quarkonium and hydrogen spectra with spin-dependent relativistic ...
Indian Academy of Sciences (India)
Abstract. The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin ...
Quarkonium and hydrogen spectra with spin-dependent relativistic ...
Indian Academy of Sciences (India)
... of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential.
Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.
Song, Yipu; Schmitt, Andrew L; Jin, Song
2008-08-01
Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.
Spin-dependent quasiparticle transport in aluminum single-electron transistors.
Ferguson, A J; Andresen, S E; Brenner, R; Clark, R G
2006-08-25
We investigate the effect of Zeeman splitting on quasiparticle transport in normal-superconducting-normal (NSN) aluminum single-electron transistors (SETs). In the above-gap transport, the interplay of Coulomb blockade and Zeeman splitting leads to spin-dependence of the sequential tunneling. This creates regimes where either one or both spin species can tunnel onto or off the island. At lower biases, spin-dependence of the single quasiparticle state is studied, and operation of the device as a bipolar spin filter is suggested.
Directory of Open Access Journals (Sweden)
Marco Finazzi
2016-11-01
Full Text Available In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the conversion of a spin current into an electrical signal, represents a powerful tool to generate and detect spin currents in solids. We consider a few examples where these two phenomena together allow addressing the spin-dependent transport properties across homogeneous samples or metal/semiconductor Schottky junctions.
Short Range Air Defense in Army Divisions: Do We Really Need It
National Research Council Canada - National Science Library
Anderson, Charles
2000-01-01
Ever since the Soviet threat collapsed, coupled with the demonstrated, overwhelming, capability of our air forces during numerous operations in the 1990s, the relevance of the Short Range Air Defense (SHORAD...
Short-range airborne transmission of expiratory droplets between two people
DEFF Research Database (Denmark)
Liu, Li; Li, Yuguo; Nielsen, Peter Vilhelm
2017-01-01
, ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold...... distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus...... are different; their effective control methods also differ. Neither the current droplet precautions nor dilution ventilation prevents short-range airborne transmission, so new control methods are needed....
2017-04-28
The document describes the overall process for evaluating Dedicated Short Range Communication (DSRC) Roadside Units (RSU) against USDOT RSU Specification 4.1 in preparation for field evaluation. The Test Cases contained in this document only evaluate...
Screening methods for linear-scaling short-range hybrid calculations on CPU and GPU architectures.
Beuerle, Matthias; Kussmann, Jörg; Ochsenfeld, Christian
2017-04-14
We present screening schemes that allow for efficient, linear-scaling short-range exchange calculations employing Gaussian basis sets for both CPU and GPU architectures. They are based on the LinK [C. Ochsenfeld et al., J. Chem. Phys. 109, 1663 (1998)] and PreLinK [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] methods, but account for the decay introduced by the attenuated Coulomb operator in short-range hybrid density functionals. Furthermore, we discuss the implementation of short-range electron repulsion integrals on GPUs. The introduction of our screening methods allows for speedups of up to a factor 7.8 as compared to the underlying linear-scaling algorithm, while retaining full numerical control over the accuracy. With the increasing number of short-range hybrid functionals, our new schemes will allow for significant computational savings on CPU and GPU architectures.
Short-range transit planning : current practice and a proposed framework
1984-06-01
The research described in this report explored the service and operations : planning process in the transit industry in a two-phase approach. In the first : phase a detailed assessment of current short range transit planning practice was : undertaken...
Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon
Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.
International Nuclear Information System (INIS)
Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.
2002-01-01
Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism
Evaluation of NCEP TIGGE short-range forecast for Indian summer monsoon intraseasonal oscillation
Tirkey, Snehlata; Mukhopadhyay, P.
2017-08-01
This study focuses on the short-range prediction of Monsoon Intraseasonal Oscillations (MISOs) using the National Centers for Environmental Prediction(NCEP) Ensemble Prediction System (EPS) data from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The Indian Summer Monsoon Rainfall (ISMR), which plays an important role in the socio-economic growth of the country, is highly variable and is mostly governed by the MISOs. In addition to this, deterministic forecasts of ISMR are not very reliable. Hence, a probabilistic approach at daily scale is required. Keeping this in mind, the present analysis is done by using daily forecast data for up to 7-day lead time and compared with observations. The analysis shows that the ensemble forecast well captures the variability as compared to observations even up to 7 days. The spatial characteristics and the northward propagation of MISO are observed thoroughly in the EPS. The evolution of dynamical and thermodynamical parameters such as specific humidity, moist static energy, moisture divergence, and vorticity is also captured well but show deviation from the observation from 96 h lead time onwards. The tropospheric temperature forecast captures the observed gradient but with certain bias in magnitude whereas the wind shear is simulated quite well both in pattern and magnitude. These analyses bring out the biases in TIGGE EPS forecast and also point out the possible moist processes which needs to be improved.
International Nuclear Information System (INIS)
Hedegård, Erik Donovan; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan; Kongsted, Jacob; Jensen, Hans Jørgen Aagaard
2015-01-01
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks
Hedegârd, Erik Donovan; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan; Kongsted, Jacob; Jensen, Hans Jørgen Aagaard
2015-03-01
We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of Dalton. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.
Short-range second order screened exchange correction to RPA correlation energies
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range airborne transmission of expiratory droplets between two people.
Liu, L; Li, Y; Nielsen, P V; Wei, J; Jensen, R L
2017-03-01
The occurrence of close proximity infection for many respiratory diseases is often cited as evidence of large droplet and/or close contact transmission. We explored interpersonal exposure of exhaled droplets and droplet nuclei of two standing thermal manikins as affected by distance, humidity, ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes are different; their effective control methods also differ. Neither the current droplet precautions nor dilution ventilation prevents short-range airborne transmission, so new control methods are needed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ouyang, Minhui; Kang, Huiying; Detre, John A; Roberts, Timothy P L; Huang, Hao
2017-12-01
The human brain is remarkably complex with connectivity constituting its basic organizing principle. Although long-range connectivity has been focused on in most research, short-range connectivity is characterized by unique and spatiotemporally heterogeneous dynamics from infancy to adulthood. Alterations in the maturational dynamics of short-range connectivity has been associated with neuropsychiatric disorders, such as autism and schizophrenia. Recent advances in neuroimaging techniques, especially diffusion magnetic resonance imaging (dMRI), resting-state functional MRI (rs-fMRI), electroencephalography (EEG) and magnetoencephalography (MEG), have made quantification of short-range connectivity possible in pediatric populations. This review summarizes findings on the development of short-range functional and structural connections at the macroscale. These findings suggest an inverted U-shaped pattern of maturation from primary to higher-order brain regions, and possible "hyper-" and "hypo-" short-range connections in autism and schizophrenia, respectively. The precisely balanced short- and long-range connections contribute to the integration and segregation of the connectome during development. The mechanistic relationship among short-range connectivity maturation, the developmental connectome and emerging brain functions needs further investigation, including the refinement of methodological approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Micromagnetic Design of Spin Dependent Tunnel Junctions for Optimized Sensing Performance
National Research Council Canada - National Science Library
Tondra, Mark; Daughton, James M; Nordman, Catherine; Wang, Dexin; Taylor, John
1999-01-01
Pinned Spin Dependent Tunneling (SDT) devices have been fabricated into high sensitivity magnetic field sensors with many favorable properties including high sensitivity (̃ 10 umOe / Hz @ 1 Hz and ̃ 100 nOe / Hz @ > 10 kHz...
Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves
Dejene, F. K.; Flipse, J.; van Wees, B. J.
2012-01-01
We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt (Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer. The devices were specifically designed to separate heat-related effects from
Energy Technology Data Exchange (ETDEWEB)
Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)
2014-03-01
The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.
Role of short-range order in manipulating light absorption in disordered media
Liu, M. Q.; Zhao, C. Y.; Wang, B. X.; Fang, Xing
2018-03-01
Structural correlations have a significant effect on light propagation in disordered media. We numerically investigate the role of short-range order in light absorption in thin films with disordered nanoholes. Two types of disordered distributions, including stealthy hyperuniform (SHU) and hard disk (HD) patterns with different degrees of short-range order, are studied. We find that Bragg scattering induced by short-range order results in the appearance of a gradually sharper absorption peak with the increasing of degrees of short-range order ($\\chi$, $\\phi$). A physical model is proposed to calculate the in-plane angularly differential scattering cross section $d \\sigma^*/d \\theta$ of thin-film nanostructures with consideration of {the} structure factor $S(q)$. Results reveal that higher level of short-range order can enhance in-plane Bragg scattering in certain wavelengths and directions corresponding to rich and sharp peaks in {the} structure factor $S(q)$, which can further modify morphology-dependent-like resonances of an individual scatterer {and leads } to {large} improvement of absorptivity in thin films. Besides, the comparison results show that SHU structures exhibit better integrated absorption ($IA$) enhancement than both HD and periodic structures. And there is a transition of local-order phase between hexagonal lattice{s} and square lattice{s for SHU structures}, leading to an optimal absorption performance when $\\chi$ is around 0.5 of interest. The present study paves a way in controlling light absorption and scattering using novel disordered nanostructures.
Short-range order above the Curie temperature in the dynamic spin-fluctuation theory
International Nuclear Information System (INIS)
Melnikov, N.B.; Reser, B.I.
2016-01-01
Based on the dynamic spin-fluctuation theory, we study the spin-density correlations in the ferromagnetic metals. We obtain computational formulae for the correlation function and correlation radius in different approximations of the theory. Using these formulae, we calculate the magnetic short-range order above the Curie temperature in bcc Fe. Results of the calculation confirm our theoretical prediction that the inverse correlation radius increases linearly with temperature for T sufficiently large. The calculated short-range order is small but sufficient to correctly describe neutron scattering experiments. A considerable amount of the short-range order is shown to persist up to temperatures much higher than the Curie temperature. - Highlights: • We study the spin correlations in ferromagnetic metals above the Curie temperature. • We derive computational formulae for the spin correlator and correlation radius. • The correlation radius decreases inversely with temperature over a wide interval. • The calculated short-range order in Fe is small, in agreement with experiment. • A considerable amount of short-range order in Fe persists up to high temperatures.
Constraining interactions mediated by axion-like particles with ultracold neutrons
Directory of Open Access Journals (Sweden)
S. Afach
2015-05-01
Full Text Available We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ∼1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence of a short range spin-dependent interaction that could possibly be mediated by axions or axion-like particles. The interaction strength is proportional to the CP violating product of scalar and pseudoscalar coupling constants gSgP. Our result confirms limits from complementary experiments with spin-polarized nuclei in a model-independent way. Limits from other neutron experiments are improved by up to two orders of magnitude in the interaction range of 10−6<λ<10−4m.
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
Colloidal Crystallization in 2D for Short-Ranged Attractions: A Descriptive Overview
Directory of Open Access Journals (Sweden)
Agustín E. González
2016-04-01
Full Text Available With the aid of 2D computer simulations, the whole colloidal crystallization process for particles interacting with a short-ranged attractive potential is described, emphazising the visualization of the different subprocesses at the particle level. Starting with a supercooled homogeneous fluid, the system undergoes a metastable fluid-fluid phase separation. Afterwards, crystallite nucleation is observed and we describe the obtainment of the critical crystallite size and other relevant quantities for nucleation. After the crystal formation, we notice the shrinking and eventual disappearance of the smaller crystals, which are close to larger ones; a manifestation of Ostwald ripening. When two growing crystal grains impinge on each other, the formation of grain boundaries is found; it is appreciated how a grain boundary moves, back and forth, not only on a perpendicular direction to the boundary, but with a rotation and a deformation. Subsequently, after the healing of the two extremes of the boundary, the two grains end up as a single imperfect grain that contains a number of complex dislocations. If these dislocations are close to the boundary with the fluid, they leave the crystal to make it more perfect. Otherwise, they migrate randomly inside the grain until they get close enough to the boundary to leave the grain. This last process of healing, trapping and getting rid of complex dislocations occurs preferentially for low-angle grain boundaries. If the angle between the symmetry axes of the two grains is not low, we end up with a polycrystal made of several touching crystal grains.
Double scattering of light from Biophotonic Nanostructures with short-range order
Energy Technology Data Exchange (ETDEWEB)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)
2010-07-28
We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.
The effect of short-range spatial variability on soil sampling uncertainty
Energy Technology Data Exchange (ETDEWEB)
Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)
2008-11-15
This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.
Short-range wireless communication fundamentals of RF system design and application
Bensky, Alan
2004-01-01
The Complete "Tool Kit for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen
Influence of transmitter chirp and receiver imperfections on RF gain in short-range ROMMF systems
DEFF Research Database (Denmark)
Petersen, Martin Nordal; Tartarini, Giovanni; Visani, Davide
2011-01-01
Two important effects that can lead to extensive detrimental effects on short-range radio-over-multimode-fiber systems are presented. The work experimentally shows how transmitter chirp and receiver imperfections determine the degree of both small signal RF variations as well as optical power...... variations. Both theoretical and experimental results conclude that without taking proper precautions in designing even short-range links, the potential power variations can reach more than 5 dB over just 150m multimode-fiber....
Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.
Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G
2013-08-27
Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene.
Spin-dependent electrical transport in Fe-MgO-Fe heterostructures
Directory of Open Access Journals (Sweden)
A A Shokri
2016-09-01
Full Text Available In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR. For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in the transport direction. The transmission is calculated by Green's function formalism based on a single-band tight-binding approximation. The transport properties are investigated as a function of the barrier thickness in the limit of coherent tunneling. We have demonstrated that dependence of the TMR on the applied voltage and barrier thickness. Our numerical results may be useful for designing of spintronic devices. The numerical results may be useful in designing of spintronic devices.
Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Delgado, Pedro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Accardi, Alberto [Hampton University, Hampton, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-02-01
We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.
A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA
Energy Technology Data Exchange (ETDEWEB)
Kahn, Y.F.; Melnitchouk, W.
2009-01-01
High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.
Spin-dependent recombination involving oxygen-vacancy complexes in silicon
Franke, David P.; Hoehne, Felix; Vlasenko, Leonid S.; Itoh, Kohei M.; Brandt, Martin S.
2014-01-01
Spin-dependent relaxation and recombination processes in $\\gamma$-irradiated $n$-type Czochralski-grown silicon are studied using continuous wave (cw) and pulsed electrically detected magnetic resonance (EDMR). Two processes involving the SL1 center, the neutral excited triplet state of the oxygen-vacancy complex, are observed which can be separated by their different dynamics. One of the processes is the relaxation of the excited SL1 state to the ground state of the oxygen-vacancy complex, t...
2012-09-10
... short-range projects, combined with various scenarios for land use designations on the installation for... Department of the Army Environmental Impact Statement for Short Range-Projects and Update of the Real... proposed short-range improvement projects and the proposed update of the Real Property Master Plan (RPMP...
Directory of Open Access Journals (Sweden)
Sengupta Dhriti
2012-06-01
Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at
Sengupta, Dhriti; Kundu, Sudip
2012-06-21
The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. The largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don't. While the nature of transitions of LCC's sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher interaction strength between amino acids
2012-01-01
Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher interaction
Yan, Haochen; STAR Collaboration
2017-09-01
High-energy heavy-ion collisions can create a hot and dense nuclear medium in which local domains could obtain a chirality imbalance. The chirality imbalance, together with a strong magnetic field, can induce an electric charge separation along the magnetic field direction, owing to the chiral magnetic effect (CME). The γ correlator measures the two-particle azimuthal correlations relative to the reaction plane, and provides a probe to the electric charge separation due to the CME. However, the γ correlator contains short-range correlations caused by other physics mechanisms, such as quantum effects, Coulomb interaction and resonance decays. In this poster, we decompose the γ correlator into two parts, along and across the reaction plane, respectively, and separate the contributions of particle pairs with small relative pseudorapidity (short range). The results will be presented for 200 GeV Au +Au collisions, and the physics implications on the short-range background will be discussed.
Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode
International Nuclear Information System (INIS)
Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J
2012-01-01
Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)
"Spin-dependent" \\varvec{μ → e} conversion on light nuclei
Davidson, Sacha; Kuno, Yoshitaka; Saporta, Albert
2018-02-01
The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years, making it interesting to consider the "spin-dependent" (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin-dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models. It is found that comparing the rate on isotopes with and without spin could allow one to detect spin-dependent coefficients that are at least a factor of few larger than the spin-independent ones. Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs. odd neutron could allow one to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators.
Spin-dependent charge recombination along para-phenylene molecular wires
Fay, Thomas P.; Lewis, Alan M.; Manolopoulos, David E.
2017-08-01
We have used an efficient new quantum mechanical method for radical pair recombination reactions to study the spin-dependent charge recombination along PTZ•+-Phn-PDI•- molecular wires. By comparing our results with the experimental data of Weiss et al. [J. Am. Chem. Soc. 126, 5577 (2004)], we are able to extract the spin-dependent (singlet and triplet) charge recombination rate constants for wires with n = 2-5. These spin-dependent rate constants have not been extracted previously from the experimental data because they require fitting its magnetic field-dependence to the results of quantum spin dynamics simulations. We find that the triplet recombination rate constant decreases exponentially with the length of the wire, consistent with the superexchange mechanism of charge recombination. However, the singlet recombination rate constant is nearly independent of the length of the wire, suggesting that the singlet pathway is dominated by an incoherent hopping mechanism. A simple qualitative explanation for the different behaviours of the two spin-selective charge recombination pathways is provided in terms of Marcus theory. We also find evidence for a magnetic field-independent background contribution to the triplet yield of the charge recombination reaction and suggest several possible explanations for it. Since none of these explanations is especially compelling given the available experimental evidence, and since the result appears to apply more generally to other molecular wires, we hope that this aspect of our study will stimulate further experimental work.
Scattering of flexural waves in Euler-Bernoulli beams by short-range potentials
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Iermakova, Sofia V.; Gaididei, Yuri B.
2018-01-01
Time-harmonic flexural waves on a beam and on two elastically coupled beams with short-range localized imperfections in the mass distribution and in the position dependant coupling are considered. Thus scattering of an incident wave solution to the Euler-Bernoulli equation by a Dirac delta function...
Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses
Czech Academy of Sciences Publication Activity Database
Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.
1999-01-01
Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999
Senouci, B.; Annema, Anne J.; Bentum, Marinus Jan; Kerkhoff, Hans G.
2011-01-01
A new direction in short-range wireless applications has appeared in the form of high-speed data communication devices for distances of a few meters. Behind these embedded applications, a complex Hardware/Software architecture is built. Dependability is one of the major challenges in these systems.
Link Budget Analysis and Modeling of Short-Range UWB Channels
Irahhauten, Z.; Dacuna, J.; Janssen, G.J.M.; Nikookar, H.; Yarovoy, A.G.; Ligthart, L.P.
2008-01-01
Ultrawideband (UWB) technology is an attractive alternative for short-range applications, e.g., wireless personal area networks. In these applications, transmit and receive antennas are very close to each other and the far-field condition assumed in most of the link budget models may not be
Investigations of multiphoton excitation and ionization in a short range potential
Energy Technology Data Exchange (ETDEWEB)
Susskind, S.M.; Cowley, S.C.; Valeo, E.J.
1989-02-01
We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.
Investigations of multiphoton excitation and ionization in a short range potential
International Nuclear Information System (INIS)
Susskind, S.M.; Cowley, S.C.; Valeo, E.J.
1989-02-01
We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs
Short-range transit plan for the Phoenix urbanized area : fiscal years 1982-1986
1981-07-21
Report presents the FY 1980-81 update of the Phoenix, Arizona, urbanized area Short Range Transit Plan. It describes a five-year plan to guide improvements of the public transportation sytem. Planning aspects of the report will be incorporated into t...
Non-relativistic and relativistic scattering by short-range potentials
DEFF Research Database (Denmark)
Arnbak, H.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich
2011-01-01
Relativistic and non-relativistic scattering by short-range potentials is investigated for selected problems. Scattering by the δ′ potential in the Schrödinger equation and δ potentials in the Dirac equation must be solved by regularization, efficiently carried out by a perturbation technique...
Kirkpatrick, T R; Bhattacherjee, J K; Sengers, J V
2017-07-21
It is shown that the work fluctuations and work distribution functions are fundamentally different in systems with short-range versus long-range correlations. The two cases considered with long-range correlations are magnetic work fluctuations in an equilibrium isotropic ferromagnet and work fluctuations in a nonequilibrium fluid with a temperature gradient. The long-range correlations in the former case are due to equilibrium Goldstone modes, while in the latter they are due to generic nonequilibrium effects. The magnetic case is of particular interest, since an external magnetic field can be used to tune the system from one with long-range correlations to one with only short-range correlations. It is shown that in systems with long-range correlations the work distribution is extraordinarily broad compared to systems with only short-range correlations. Surprisingly, these results imply that fluctuation theorems such as the Jarzynski fluctuation theorem are more useful in systems with long-range correlations than in systems with short-range correlations.
Status of the dedicated short-range communications technology and applications : report to Congress.
2015-07-01
This report responds to a Congressional request for an assessment of the 5.9 Gigahertz (GHz) Dedicated Short Range : Communications (DSRC) in accordance with the requirements provided by Congress in the Moving Ahead for Progress in the : 21st Century...
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
Kern, N.; Frenkel, D.
2003-01-01
We present a systematic numerical study of the phase behavior of square-well fluids with a "patchy" short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere
Structure of the conversion laws in quantum integrable spin chains with short range interactions
International Nuclear Information System (INIS)
Grabowski, M.P.; Mathieu, P.
1995-01-01
The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, for two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form. 62 refs., 4 figs
Trapped fermions with short-range and dipolar interactions in 2D optical lattices
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.
Ultracold atoms in optical lattices are ideal quantum simulators of complex many-body Hamiltonians that arise in condensed matter systems. Manipulation of these model systems allows us to explore a variety of physical phenomena taking place in solid state systems. Here, we present mean-field calc...
1983-03-31
need to move from a manual, labor -intensive weather support function to provide more timely re- sponse to operational needs, the USAF has embarked on a...namely from the Air Force Global Weather Central (AFGVC) and the Automated Weather Network (AWN). The AWN collects, edits, reforma :-s and transmits...n wkillI affect thle kasa aUI ArICa late in the 1 2-h forecast period. Thus, showers <car be explected in \\k ausan after 2000 GAI~lT wvith steady
Anders, M. A.; Lenahan, P. M.; Lelis, A. J.
2017-12-01
We report on a new electrically detected magnetic resonance (EDMR) approach involving spin dependent charge pumping (SDCP) and spin dependent recombination (SDR) at high (K band, about 16 GHz) and ultra-low (360 and 85 MHz) magnetic resonance frequencies to investigate the dielectric/semiconductor interface in 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). A comparison of SDCP and SDR allows for a comparison of deep level defects and defects with energy levels throughout most of the bandgap. Additionally, a comparison of high frequency and ultra-low frequency measurements allows for (1) the partial separation of spin-orbit coupling and hyperfine effects on magnetic resonance spectra, (2) the observation of otherwise forbidden half-field effects, which make EDMR, at least, in principle, quantitative, and (3) the observation of Breit-Rabi shifts in superhyperfine measurements. (Observation of the Breit-Rabi shift helps in both the assignment and the measurement of superhyperfine parameters.) We find that, as earlier work also indicates, the SiC silicon vacancy is the dominating defect in n-MOSFETs with as-grown oxides and that post-oxidation NO anneals significantly reduce their population. In addition, we provide strong evidence that NO anneals result in the presence of nitrogen very close to a large fraction of the silicon vacancies. The results indicate that the presence of nearby nitrogen significantly shifts the silicon vacancy energy levels. Our results also show that the introduction of nitrogen introduces a disorder at the interface. This nitrogen induced disorder may provide at least a partial explanation for the relatively modest improvement in mobility after the NO anneals. Finally, we compare the charge pumping and SDCP response as a function of gate amplitude and charge pumping frequency.
Short-range order in alloys of nickel with the elements of group VIII of the periodic table
International Nuclear Information System (INIS)
Khwaja, F.A.
1981-08-01
Experimental measurements of the diffuse X-ray scattering intensity were performed on alloys of Ni with Rh and Os. The atomic short-range order (SRO) parameters αsub(i) and the size-effect parameters βsub(i) were calculated from these measurements. It is established that SRO and size-effect exist in Ni-Rh and Ni-Os alloys analogously as in a few other alloys of Ni with the elements of group VIII of the periodic table. The experimental data was interpreted theoretically by calculating the interaction energies from the pseudo-potentials and the effective valencies of the individual components of the systems studied. It was found that theoretically calculated values of the interaction energies for these alloys are inconsistent with the experimentally determined sign of the SRO parameter. (author)
Robust short-range-ordered nematicity in FeSe evidenced by high-pressure NMR
Wang, P. S.; Zhou, P.; Sun, S. S.; Cui, Y.; Li, T. R.; Lei, Hechang; Wang, Ziqiang; Yu, Weiqiang
2017-09-01
We report high-pressure 77Se NMR studies on FeSe single crystals that reveal a prominent inhomogeneous NMR linewidth broadening upon cooling, with the magnetic field applied along the tetragonal [110] direction. The data indicate the existence of short-range-ordered, inhomogeneous electronic nematicity, which has surprisingly long time scales over milliseconds. The short-range order survives temperatures up to eight times the structural transition temperature, and remains robust against pressure, in contrast to the strong pressure-dependence of the orbital ordering, structural transition, and the ground state magnetism. Such an extended region of static nematicity in the (P ,T ) space of FeSe indicates an enormously large fluctuating regime, and provides fresh insights and constraints to the understanding of electronic nematicity in iron-based superconductors.
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review.
Gu, Changzhan
2016-07-26
Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.
Demonstration of short-range wind lidar in a high-performance wind tunnel
DEFF Research Database (Denmark)
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm
2012-01-01
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...
Demonstration of short-range wind lidar in a high-performance wind tunnel
DEFF Research Database (Denmark)
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...
Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review
Directory of Open Access Journals (Sweden)
Changzhan Gu
2016-07-01
Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.
Ac Stark effect for short-range potentials with intense electromagnetic fields
International Nuclear Information System (INIS)
Bardsley, J.N.; Comella, M.J.
1989-01-01
The energy spectrum of a charged particle bound by a short-range potential and subjected to an intense ac electromagnetic field is computed by using complex coordinates within the Floquet formalism. As the field strength is raised, additional discrete states appear and the lifetime of the states increase. The adequacy of a high-frequency model of the strong-field spectra is assessed
Heng, Kiang Huat; Zhong, Wen-De; Cheng, Tee Hiang; Liu, Ning; He, Yingjie
2009-03-10
The problems associated with using a single fixed beam divergence for short-range inter-unmanned aerial vehicle free-space optical communications are discussed. To overcome the problems, a beam divergence changing mechanism is proposed. Four different methods are then proposed to implement the beam divergence changing mechanism. The performance of these methods is evaluated in terms of transmission distance under adverse weather conditions. The results show that the performance is greatly improved when the beam divergence changing mechanism is used.
Development of short-range white matter in healthy children and adolescents.
Oyefiade, Adeoye A; Ameis, Stephanie; Lerch, Jason P; Rockel, Conrad; Szulc, Kamila U; Scantlebury, Nadia; Decker, Alexandra; Jefferson, Jaleel; Spichak, Simon; Mabbott, Donald J
2018-01-01
Neural communication is facilitated by intricate networks of white matter (WM) comprised of both long and short range connections. The maturation of long range WM connections has been extensively characterized, with projection, commissural, and association tracts showing unique trajectories with age. There, however, remains a limited understanding of age-related changes occurring within short range WM connections, or U-fibers. These connections are important for local connectivity within lobes and facilitate regional cortical function and greater network economy. Recent studies have explored the maturation of U-fibers primarily using cross-sectional study designs. Here, we analyzed diffusion tensor imaging (DTI) data for healthy children and adolescents in both a cross-sectional (n = 78; mean age = 13.04 ± 3.27 years) and a primarily longitudinal (n = 26; mean age = 10.78 ± 2.69 years) cohort. We found significant age-related differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) across the frontal, parietal, and temporal lobes of participants within the cross-sectional cohort. By contrast, we report significant age-related differences in only FA for participants within the longitudinal cohort. Specifically, larger FA values were observed with age in frontal, parietal, and temporal lobes of the left hemisphere. Our results extend previous findings restricted to long range WM to demonstrate regional changes in the microstructure of short range WM during childhood and adolescence. These changes possibly reflect continued myelination and axonal organization of short range WM with increasing age in more anterior regions of the left hemisphere. Hum Brain Mapp 39:204-217, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Directional and short-range ordering kinetics in metallic alloys, crystalline and amorphous
International Nuclear Information System (INIS)
Hillairet, J.
1985-01-01
This presentation describes the methods (resistometric and anelastic) based on analysis of stress-induced directional ordering and short-range ordering and their application to the study of metallic alloys, crystalline and amorphous. It focuses on the determination of the atomic mobility and point defect properties. It discusses also the structural information which can be gained by Zener relaxation studies about the order-disorder transition and self-induced directional ordering phenomena
Short-Range Cooperation of Mobile Devices for Energy-Efficient Vertical Handovers
Directory of Open Access Journals (Sweden)
Xenofon Foukas
2018-01-01
Full Text Available The availability of multiple collocated wireless networks using heterogeneous technologies and the multiaccess support of contemporary mobile devices have allowed wireless connectivity optimization, enabled through vertical handover (VHO operations. However, this comes at high energy consumption on the mobile device due to the inherently expensive nature of some of the involved operations. This work proposes exploiting short-range cooperation among collocated mobile devices to improve the energy efficiency of vertical handover operations. The proactive exchange of handover-related information through low-energy short-range communication technologies, like Bluetooth, can help in eliminating expensive signaling steps when the need for a VHO arises. A model is developed for capturing the mean energy expenditure of such an optimized VHO scheme in terms of relevant factors by means of closed-form expressions. The descriptive power of the model is demonstrated by investigating various typical usage scenarios and is validated through simulations. It is shown that the proposed scheme has superior performance in several realistic usage scenarios considering important relevant factors, including network availability, the local density of mobile devices, and the range of the cooperation technology. Finally, the paper explores cost/benefit trade-offs associated with the short-range cooperation protocol. It is demonstrated that the protocol may be parametrized so that the trade-off becomes nearly optimized and the cost is maintained affordable for a wide range of operational scenarios.
Long and short range order structural analysis of In-situ formed biphasic calcium phosphates.
Kim, Dong-Hyun; Hwang, Kyu-Hong; Lee, Ju Dong; Park, Hong-Chae; Yoon, Seog-Young
2015-01-01
Biphasic calcium phosphates (BCP) have attracted considerable attention as a bone graft substitute. In this study, BCP were prepared by aqueous co-precipitation and calcination method. The crystal phases of in-situ formed BCP consisting of hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) were controlled by the degree of calcium deficiency of precursors. The long and short range order structures of biphasic mixtures was investigated using Rietveld refinement technique and high resolution Raman spectroscopy. The refined structural parameters of in-situ formed BCP confirmed that all the investigated structures have crystallized in the corresponding hexagonal (space group P63/m) and rhombohedral (space group R3c) structures. The crystal phases, Ca/P molar ratio, and lattice parameters of in-situ formed BCP consisting of HAp and β-TCP were controlled by the degree of calcium deficiency of calcium phosphate precursors. The significant short range order structural change of BCP was determined by Raman analysis. The long and short range order structural changes of in-situ formed BCP might be due to the coexistence of β-TCP and HAp crystal phases.
Wave function and strange correlator of short-range entangled states.
You, Yi-Zhuang; Bi, Zhen; Rasmussen, Alex; Slagle, Kevin; Xu, Cenke
2014-06-20
We demonstrate the following conclusion: If |Ψ⟩ is a one-dimensional (1D) or two-dimensional (2D) nontrivial short-range entangled state and |Ω⟩ is a trivial disordered state defined on the same Hilbert space, then the following quantity (so-called "strange correlator") C(r,r('))=⟨Ω|ϕ(r)ϕ(r('))|Ψ⟩/⟨Ω|Ψ⟩ either saturates to a constant or decays as a power law in the limit |r-r(')|→+∞, even though both |Ω⟩ and |Ψ⟩ are quantum disordered states with short-range correlation; ϕ(r) is some local operator in the Hilbert space. This result is obtained based on both field theory analysis and an explicit computation of C(r,r(')) for four different examples: 1D Haldane phase of spin-1 chain, 2D quantum spin Hall insulator with a strong Rashba spin-orbit coupling, 2D spin-2 Affleck-Kennedy-Lieb-Tasaki state on the square lattice, and the 2D bosonic symmetry-protected topological phase with Z(2) symmetry. This result can be used as a diagnosis for short-range entangled states in 1D and 2D.
Triana, C A; Araujo, C Moyses; Ahuja, R; Niklasson, G A; Edvinsson, T
2017-05-17
Solid state materials with crystalline order have been well-known and characterized for almost a century while the description of disordered materials still bears significant challenges. Among these are the atomic short-range order and electronic properties of amorphous transition metal oxides [aTMOs], that have emerged as novel multifunctional materials due to their optical switching properties and high-capacity to intercalate alkali metal ions at low voltages. For decades, research on aTMOs has dealt with technological optimization. However, it remains challenging to unveil their intricate atomic short-range order. Currently, no systematic and broadly applicable methods exist to assess atomic-size structure, and since electronic localization is structure-dependent, still there are not well-established optical and electronic mechanisms for modelling the properties of aTMOs. We present state-of-the-art systematic procedures involving theory and experiment in a self-consistent computational framework to unveil the atomic short-range order and its role for the electronic properties. The scheme is applied to amorphous tungsten trioxide aWO 3 , which is the most studied electrochromic aTMO in spite of its unidentified atomic-size structure. Our approach provides a one-to-one matching of experimental data and corresponding model structure from which electronic properties can be directly calculated in agreement with the electronic transitions observed in the XANES spectra.
Potential of the neutron lloyd's mirror interferometer for the search for new interactions
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu. N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)
2013-04-15
We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.
Constraints on spin-dependent parton distributions at large x from global QCD analysis
Directory of Open Access Journals (Sweden)
P. Jimenez-Delgado
2014-11-01
Full Text Available We investigate the behavior of spin-dependent parton distribution functions (PDFs at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x→1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.
Spin dependence of even-even nucleus shape in the model of Davydov-Chaban
Kashuba, I E
2002-01-01
The shape parameters of the even-even nuclei sup 1 sup 5 sup 4 Gd, sup 1 sup 5 sup 6 sup , sup 1 sup 5 sup 8 sup , sup 1 sup 6 sup 0 Dy, sup 1 sup 6 sup 4 sup , sup 1 sup 6 sup 8 Er, sup 1 sup 6 sup 8 Yb, sup 1 sup 7 sup 6 Hf, sup 1 sup 8 sup 0 W are calculated within the phenomenological model of the nonaxial soft by beta-oscillation deformed nucleus. The spin dependence of the softness, nonaxiality and energy factor is assumed
Goldstein, G R
2001-01-01
Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.
Spin-dependent Hall effect in degenerate semiconductors: a theoretical study
International Nuclear Information System (INIS)
Idrish Miah, M
2008-01-01
The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V SDH ) is derived, and drift and diffusive contributions to V SDH are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V SDH increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V SDH is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2008-01-01
We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance....... The presence of the adsorbate causes scattering of electrons of mainly one spin type. The scattering is shown to be due to a coupling of the two armchair band states to the metal 3d orbitals with matching symmetry, giving rise to Fano antiresonances appearing as dips in the transmission function. The spin type...
van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K
2009-04-09
We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.
An, Jing; Wang, Li; Li, Ke; Zeng, Yawei; Su, Yunai; Jin, Zhen; Yu, Xin; Si, Tianmei
2017-08-31
Although we have some basic understanding of the neurochemical mechanisms of the antidepressants, the network-level effect of antidepressant treatment is still not fully understood. This study was conducted to investigate the effects of antidepressant on functional brain networks of patients with major depressive disorder (MDD). We performed resting-state fMRI scans on 20 first-episode drug-naive MDD patients at baseline and after escitalopram medication for 8 weeks. Twenty healthy controls also received MRI scans with an 8-week interval. The graph theory indices, long- and short-range functional connectivity strength (FCS), were computed to characterize the brain connectivity. The analysis of covariance was conducted on FCS maps of patients and controls to obtain the interaction effect of group and time, which indicate treatment-related effect. Following treatment, increased long-range FCS in the bilateral posterior cingulate cortex/precuneus and right thalamus in MDD patients at baseline were reduced. Meanwhile, increased short-range FCS in the bilateral ventromedial prefrontal cortex and left amygdala in patients were reduced, while reduced short-range FCS in the right parahippocampal gyrus was increased. Results suggest that the brain regions associated with negative emotional processing and regulation, and self-referential function could be modulated by escitalopram treatment; long- and short-range FCS are differentially affected by antidepressant.
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
Energy Technology Data Exchange (ETDEWEB)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology (Finland)
2017-01-15
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in the quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.
Spin-dependent Seebeck effects in a graphene superlattice p-n junction with different shapes.
Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming
2017-10-11
We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p-n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green's function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p-n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV [Formula: see text] by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p-n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p-n junction by tuning its geometric structure and physical parameters.
Spin-dependent Seebeck effects in a graphene superlattice p-n junction with different shapes
Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming
2017-10-01
We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p-n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green’s function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p-n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV K-1 by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p-n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p-n junction by tuning its geometric structure and physical parameters.
Fotoohi, Somayeh; Haji-Nasiri, Saeed
2018-04-01
Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.
Study of the short-range 3He structure from the dd→3Hen reaction
International Nuclear Information System (INIS)
Ladygin, V.P.; Ladygina, N.V.
1995-01-01
An experiment on studying of the tensor analysing power C 0,NN,0,0 and spin correlation C N,N,0,0 due to the transverse polarization of both initial particles from the dd→ 3 Hen reaction has been proposed. Those polarization observables are very sensitive to the short-range 3 He structure. This experiment is proposed to be done at the LHE Accelerator Complex using both a polarized deuteron beam and a polarized deuterium target. 25 refs., 2 figs
Influence of short range chemical order on density of states in α-ZrNi
International Nuclear Information System (INIS)
Duarte Junior, J.
1986-01-01
Calculations of the density of electronic states for amorphous alloys of ZrNi and ZrCu with different chemical order degrees, in order to verify the effect of chemical ordering on this property, are presented. The results obtained for ZrCu shown that the density of states at Fermi level do not vary significantly with the ordering. The results for ZrNi shown that the introduction of short range chemical order can decrease significantly the density of states at Fermi level, leading to better agreement with experimental results. (M.C.K.) [pt
Perturbation theory for short-range weakly-attractive potentials in one dimension
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CONICET), Division Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2017-03-15
We have obtained the perturbative expressions up to sixth order for the energy of the bound state in a one dimensional, arbitrarily weak, short range finite well, applying a method originally developed by Gat and Rosenstein Ref. [1]. The expressions up to fifth order reproduce the results already known in the literature, while the sixth order had not been calculated before. As an illustration of our formulas we have applied them to two exactly solvable problems and to a nontrivial problem.
Highly excited bound-state resonances of short-range inverse power-law potentials
Hod, Shahar
2017-11-01
We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.
Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin
2018-03-01
An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.
Highly excited bound-state resonances of short-range inverse power-law potentials
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-11-15
We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)
Effects of short-range order on the electronic structure of disordered metallic systems
Rowlands, Derwyn A.; Staunton, Julie B.; Györffy, Balazs L.; Bruno, Ezio; Ginatempo, Beniamino
2005-07-01
For many years the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA) has been widely used to describe the electronic structure of disordered systems based upon a first-principles description of the crystal potential. However, as a single-site theory the KKR-CPA is unable to account for important environmental effects such as short-range order (SRO) in alloys and spin fluctuations in magnets, among others. Using the recently devised KKR-NLCPA (where NL stands for nonlocal), we show how to remedy this by presenting explicit calculations for the effects of SRO on the electronic structure of the bcc Cu50Zn50 solid solution.
Measurement based scenario analysis of short-range distribution system planning
DEFF Research Database (Denmark)
Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe
2009-01-01
This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....
Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Ye, Zhihong [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)^{2} for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1
Short range laser obstacle detector. [for surface vehicles using laser diode array
Kuriger, W. L. (Inventor)
1973-01-01
A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.
Short-range energy budget simulator of single photon lidar demonstrator
Murtazin, Mark V.; Prochazka, Ivan; Blazej, Josef; Pershin, Sergey M.; Lednev, Vasily N.
2017-05-01
The compact single photon lidar demonstrator dedicated for asteroid rendezvous missions has been designed and realized in our laboratory two years ago. The instrument provides crucial data on altitude and terrain profile for altitudes exceeding 5 km with a precision of less than 10 cm fulfilling the Rayleigh criterion. One of the calibration procedure of demonstrator is the positioning of receiver and transmitter optics related to detector and laser and the aligning of transmitter and receiver optical common paths. To improve this particular indoor calibration procedure the new simulator of single photon energy budget during short range operation has been created. The comparison of simulated and experimental data will be presented and discussed.
Demonstration of short-range wind lidar in a high-performance wind tunnel
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm; Harris, Michael; Mikkelsen, Torben
2012-01-01
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good cor...
Short-range correlations and cooling of ultracold fermions in the honeycomb lattice.
Tang, Baoming; Paiva, Thereza; Khatami, Ehsan; Rigol, Marcos
2012-11-16
We use determinantal quantum Monte Carlo simulations and numerical linked-cluster expansions to study thermodynamic properties and short-range spin correlations of fermions in the honeycomb lattice. We find that, at half filling and finite temperatures, nearest-neighbor spin correlations can be stronger in this lattice than in the square lattice, even in regimes where the ground state in the former is a semimetal or a spin liquid. The honeycomb lattice also exhibits a more pronounced anomalous region in the double occupancy that leads to stronger adiabatic cooling than in the square lattice. We discuss the implications of these findings for optical lattice experiments.
EXAFS study of short range order in Fe-Zr amorphous alloys
International Nuclear Information System (INIS)
Fernandez-Gubieda, M.L.; Gorria, P.; Barandiaran, J.M.; Barquin, L.F.
1995-01-01
Room temperature X-ray absorption spectra on Fe K-edge have been performed in Fe 100-x-y Zr x B y and Fe 86 Zr 7 Cu 1 B 6 alloys (x=7, 7.7, 9; y=0, 2, 4, 6). Fe-Fe coordination number and interatomic distances do not change in any sample. However, small changes in the Fe-Zr short range order, which could explain the evolution of the magnetic properties, have been observed. (orig.)
SHORT RANGE ORDER IN ANNEALED FexSi1-x AMORPHOUS FILMS
Alameda, J.; Fuertes, J.; Givord, D.; Liènard, A.; Martínez, B.; Moreu, M.; Tejada, J.
1988-01-01
Magnetic properties of as-prepared (sputtered) and annealed FexSi1-x (0.64 ≤ x ≤ 0.78) amorphous films deposited at room temperature, are interpreted in terms of chemical short-range order and compared with evaporated films deposited at 77 K. Low temperature (≤ 30 K) magnetization behaviour follows ; M (T) / M (0) = 1 - BT3/2 - CT5/2 with B = 1.5 x 10-2 K-3/2 ; C = -2.610 x-4 K-5/2. Related spin wave stiffness constant is D = 0.9 meV Å2.
CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications
Aznar, Francisco; Calvo Lopez, Belén
2013-01-01
This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints. These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip. The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length. This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...
Puertas, Antonio M; Fuchs, Matthias; Cates, Michael E
2003-03-01
Computer simulations were used to study the gel transition occurring in colloidal systems with short-range attractions. A colloid-polymer mixture was modeled and the results were compared with mode coupling theory (MCT) expectations and with the results for other systems (hard-spheres system and Lennard-Jones system). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, alpha-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular nonergodicity transition within MCT. The leading mechanism for the novel nonergodicity transition is identified as the bond formation caused by the short-range attraction. The time scale and diffusion coefficient also show qualitatively the expected behavior, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and a very large correction to Gaussian behavior was found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing alpha scaling to fail, but the general expectations for nonergodicity transitions still hold.
Short-range contacts govern the performance of industry-relevant battery cathodes
Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.
2018-05-01
Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with carbon black with active material decreases the relative fraction of bulk (free) carbon, as shown by small angle oscillatory shear and microscopy. More free carbon leads to a stronger gel network (more long-range particle contacts) and higher electronic conductivity of the dried films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.
Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm)
Energy Technology Data Exchange (ETDEWEB)
Sun, Shengtong [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; School of Chemical Engineering, State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road Shanghai 200237 P.R. China; Chevrier, Daniel M. [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Zhang, Peng [Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax Nova Scotia B3H 4R2 Canada; Gebauer, Denis [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany; Cölfen, Helmut [Physical Chemistry, University of Konstanz, Universitätsstrasse 10 78457 Konstanz Germany
2016-09-09
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO_{3} units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO_{3} entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO_{3} core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.
Vliegenthart, J.F.G.; Soest, J.J.G. van; Tournois, H.; Wit, D. de
1995-01-01
A fast and direct method, based on infrared spectroscopy, for quantitative determination of starch short-range structure has been developed. The IR spectrum of starch is sensitive to changes in short-range structure in the CC and CO stretching region at 1300-800 cm−1. The IR absorbance band at
Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films.
Li, D L; Ma, Q L; Wang, S G; Ward, R C C; Hesjedal, T; Zhang, X-G; Kohn, A; Amsellem, E; Yang, G; Liu, J L; Jiang, J; Wei, H X; Han, X F
2014-12-02
Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.
Measurement of the spin-dependent structure function g$_{1}$(x) of the proton
Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Bradamante, F.; Bressan, A.; Brull, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Clocchiatti, M.; Corcoran, M.D.; Crabb, D.; Cranshaw, J.; Crawford, M.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kaiser, R.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kukhtin, V.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Lau, K.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lopez-Ponte, S.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Parks, D.P.; Penzo, A.; Perez, G.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Shumeiko, N.; Smirnov, G.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Teichert, K.M.; Tessarotto, F.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zhao, J.; the SMC
1994-01-01
Abstract : We have measured the spin-dependent structure function g_1^p of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003
Spin-dependent recombination involving oxygen-vacancy complexes in silicon
Franke, David P.; Hoehne, Felix; Vlasenko, Leonid S.; Itoh, Kohei M.; Brandt, Martin S.
2014-05-01
Spin-dependent relaxation and recombination processes in γ-irradiated n-type Czochralski-grown silicon are studied using continuous wave (cw) and pulsed electrically detected magnetic resonance (EDMR). Two processes involving the SL1 center, the neutral excited triplet state of the oxygen-vacancy complex, are observed which can be separated by their different dynamics. One of the processes is the relaxation of the excited SL1 state to the ground state of the oxygen-vacancy complex, the other a charge transfer between 31P donors and SL1 centers forming close pairs, as indicated by electrically detected electron double resonance. For both processes, the recombination dynamics is studied with pulsed EDMR techniques. We demonstrate the feasibility of true zero-field cw and pulsed EDMR for spin-1 systems and use this to measure the lifetimes of the different spin states of SL1 also at vanishing external magnetic field.
Spin-dependent Hall effect in degenerate semiconductors: a theoretical study
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au
2008-10-15
The spin-dependent Hall (SDH) effect in degenerate semiconductors is investigated theoretically. Starting from a two-component drift-diffusion equation, an expression for SDH voltage (V{sub SDH}) is derived, and drift and diffusive contributions to V{sub SDH} are studied. For the possible enhancement of the diffusive part, degenerate and nondegenerate cases are examined. We find that due to an increase in the diffusion coefficient V{sub SDH} increases in a degenerate semiconductor, consistent with the experimental observations. The expression for V{sub SDH} is reduced in three limiting cases, namely diffusive, drift-diffusion crossover and drift, and is analysed. The results agree with those obtained in recent theoretical investigations.
The Deuteron Spin-dependent Structure Function $g^{d}_1$ and its First Moment
Alexakhin, V.Yu.; Alexeev, G.D.; Alexeev, M.; Amoroso, A.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; M. Finger jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu. V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Zvyagin, A.
2007-01-01
We present a measurement of the deuteron spin-dependent structure function g^d_1 based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for \\Gamma^d_1, the first moment of g^d_1(x), and for the matrix element of the singlet axial current, a_0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function \\Delta_G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3(GeV/c)^2 the first moment of \\Delta G is found to be of the order of 0:2 - 0:3 in absolute value.
International Nuclear Information System (INIS)
Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min
2015-01-01
We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO 3 /Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO 3 /Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances
Energy Technology Data Exchange (ETDEWEB)
Dai, Jian-Qing, E-mail: djqkust@sina.com; Zhang, Hu; Song, Yu-Min [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)
2015-08-07
We report on first-principles calculations of a Ni monolayer inserted at one interface in the epitaxial Fe/PbTiO{sub 3}/Fe multiferroic heterostructure, focusing on the magnetoelectric coupling and the spin-dependent transport properties. The results of magnetoelectric coupling calculations reveal an attractive approach to realize cumulative magnetoelectric effects in the ferromagnetic/ferroelectric/ferromagnetic superlattices. The underlying physics is attributed to the combinations of several different magnetoelectric coupling mechanisms such as interface bonding, spin-dependent screening, and different types of magnetic interactions. We also demonstrate that inserting a Ni monolayer at one interface in the Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction is an efficient method to produce considerable tunneling electroresistance effect by modifying the tunnel potential barrier and the interfacial electronic structure. Furthermore, coexistence of tunneling magnetoresistance and tunneling electroresistance leads to the emergence of four distinct resistance states, which can be served as a multistate-storage device. The complicated influencing factors including bulk properties of the ferromagnetic electrodes, decay rates of the evanescent states in the tunnel barrier, and the specific interfacial electronic structure provide us promising opportunities to design novel multiferroic tunnel junctions with excellent performances.
Hoi, Bui Dinh; Yarmohammadi, Mohsen
2018-04-01
The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.
Scattering of flexural waves in Euler-Bernoulli beams by short-range potentials
Christiansen, Peter L.; Iermakova, Sofia V.; Gaididei, Yuri B.; Sørensen, Mads Peter
2018-03-01
Time-harmonic flexural waves on a beam and on two elastically coupled beams with short-range localized imperfections in the mass distribution and in the position dependant coupling are considered. Thus scattering of an incident wave solution to the Euler-Bernoulli equation by a Dirac delta function and its derivative up to order three is studied, and the possible physical interpretations are outlined. Reflected, transmitted and evanescent waves exist, and their scattering data are determined. For δ (x) and δ' (x) , the scattering problem is solved by standard integration. For δ'' (x) and δ''' (x) , the standard integration procedure does not work and solutions are obtained by regularization. In the latter case the scatterer is in general nontransparent and only partially penetrable at discrete resonances. The first few of these as well as their scattering data are determined numerically.
Cellular Controlled Short-Range Communication for Cooperative P2P Networking
DEFF Research Database (Denmark)
Fitzek, Frank H. P.; Katz, Marcos; Zhang, Qi
2009-01-01
This article advocates a novel communication architecture and associated collaborative framework for future wireless communication systems. In contrast to the dominating cellular architecture and the upcoming peer-to-peer architecture, the new approach envisions a cellular controlled short-range ...... to establish cooperation with them. The novel architecture together with several possible cooperative strategies will bring clear benefits for the network and service providers, mobile device manufacturers and also end users.......-range communication network among cooperating mobile and wireless devices. The role of the mobile device will change, from being an agnostic entity in respect to the surrounding world to a cognitive device. This cognitive device is capable of being aware of the neighboring devices as well as on the possibility...
OTDM Networking for Short Range High-Capacity Highly Dynamic Networks
DEFF Research Database (Denmark)
Medhin, Ashenafi Kiros
is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra......This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... Tbit/s data packets, and time lens based serial-to-parallel converter is employed to demultiplex each high-capacity packet into lower bit rate tributaries. A novel optical label scheme is suggested and experimentally demonstrated, where the label information is inserted in-band in the broad signal...
Data transmission techniques for short-range optical fiber and wireless communication links
DEFF Research Database (Denmark)
Pham, Tien Thang
-speed optical/wireless integration and advanced modulation formats for intensity modulation with direct detection (IM/DD) optical systems. Regarding optical/wireless integration, this thesis focuses on integration of broadband ultra-wide band (UWB) and 60-GHz band wireless systems into optical fiber access...... signals into a unified optical fiber platform. Additionally, half-cycle QAM modulation has prospects to increase SE and bit rates in high-speed short-range optical communication systems.......The research work described in this thesis is devoted to experimental investigation of techniques for cost-effective high-speed optical communications supporting both wired and wireless services. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high...
A review of short-range gravity experiments in the LHC era
International Nuclear Information System (INIS)
Murata, Jiro; Tanaka, Saki
2015-01-01
This paper briefly reviews recent short-range gravity experiments that were performed at below laboratory scales to test the Newtonian inverse square law of gravity. To compare the sensitivities of these measurements, estimates using the conventional Yukawa parametrization are introduced. Since these experiments were triggered by the prediction of the large extra-dimension model, experiments performed at different length scales are compared with this prediction. In this paper, a direct comparison between laboratory-scale experiments and the LHC results is presented for the first time. A laboratory experiment is shown to determine the best limit at M D >4.6 TeV and λ<23 μm. In addition, new analysis results are described for atomic systems used as gravitational microlaboratories. (topical review)
International Nuclear Information System (INIS)
Massen, S. E.; Garistov, V. P.; Grypeos, M. E.
1996-01-01
The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q
Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration
Stupakov, G.
2018-04-01
In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.
DEFF Research Database (Denmark)
Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa
2016-01-01
inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become......-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2...
Radiometric analysis and simulation of signal power function in a short-range laser radar.
Wang, J; Kostamovaara, J
1994-06-20
A key issue in designing laser radar devices for short-range applications is the ability to estimate accurately the power seen by the receiver as a function of the measurement distance. To obtain a reasonable approximation of this power, the irradiance distribution over the sensor as well as the target surface, which is highly dependent on the type of the detector used, must be analyzed in detail. The calculation of signal power function by means of radiometry is discussed. A software package developed for simulating power transfer as a function of various optical parameters is presented. It can be applied to various types of laser sources, including high-power laser diodes (wide-stripe or stacked) and pigtailed laser diodes.
Evidence for short range corelations from high Q2 (e,e') reactions
International Nuclear Information System (INIS)
Strikman, M.I.; Frankfurt, L.L.; Sargayan, M.M.
1994-01-01
For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e') reactions, where Q 2 > 1 (GeV/c) 2 , x = Q 2 /2mq o > 1 and 1 GeV > q o > 300 ∼ 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration
An Empirical Path-Loss Model for Wireless Channels in Indoor Short-Range Office Environment
Directory of Open Access Journals (Sweden)
Ye Wang
2012-01-01
Full Text Available A novel empirical path-loss model for wireless indoor short-range office environment at 4.3–7.3 GHz band is presented. The model is developed based on the experimental datum sampled in 30 office rooms in both line of sight (LOS and non-LOS (NLOS scenarios. The model is characterized as the path loss to distance with a Gaussian random variable X due to the shadow fading by using linear regression. The path-loss exponent n is fitted by the frequency using power function and modeled as a frequency-dependent Gaussian variable as the standard deviation σ of X. The presented works should be available for the research of wireless channel characteristics under universal indoor short-distance environments in the Internet of Things (IOT.
Electron diffraction study on chemical short-range order in covalent amorphous solids
Ishimaru, Manabu; Hirata, Akihiko; Naito, Muneyuki
2012-04-01
Studies on radiation-induced structural changes of solids are of technological importance for realizing desirable material properties and for predicting the fate of materials under radiation environments. It is known that energetic particles, such as electrons, neutrons, and ions, produce extensive damage, and may eventually lead to amorphization. Amorphization is often accompanied with significant volume changes and concomitant microcracking. To clarify the amorphization mechanism, knowledge of amorphous structures is required. Radial distribution function analysis is one of the useful ways to characterize topological and chemical disorder in amorphous networks. Here, we review the advantage of electron diffraction for analyzing short-range order of amorphous materials and show some examples of radial distribution functions obtained by our group.
Electron diffraction study on chemical short-range order in covalent amorphous solids
International Nuclear Information System (INIS)
Ishimaru, Manabu; Hirata, Akihiko; Naito, Muneyuki
2012-01-01
Studies on radiation-induced structural changes of solids are of technological importance for realizing desirable material properties and for predicting the fate of materials under radiation environments. It is known that energetic particles, such as electrons, neutrons, and ions, produce extensive damage, and may eventually lead to amorphization. Amorphization is often accompanied with significant volume changes and concomitant microcracking. To clarify the amorphization mechanism, knowledge of amorphous structures is required. Radial distribution function analysis is one of the useful ways to characterize topological and chemical disorder in amorphous networks. Here, we review the advantage of electron diffraction for analyzing short-range order of amorphous materials and show some examples of radial distribution functions obtained by our group.
Observation of short range three-particle correlations in e+e- annihilations at LEP energies
Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Barrio, J A; Bartl, Walter; Barão, F; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brunet, J M; Brückman, P; Bugge, L; Buran, T; Buys, A; Bärring, O; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Da Silva, W; Dahl-Jensen, Erik; Dahm, J; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; De Angelis, A; De Boeck, H; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; Di Ciaccio, Lucia; Dijkstra, H; Djama, F; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Dönszelmann, M; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Föth, H; Fürstenau, H; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Guy, J; Guz, Yu; Górski, M; Günther, M; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Joram, Christian; Juillot, P; Jönsson, L B; Jönsson, P E; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Królikowski, J; Kubinec, P; Kucewicz, W; Kurvinen, K L; Kuznetsov, O; Köhne, J H; Köne, B; La Vaissière, C de; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lokajícek, M; Loken, J G; Loukas, D; Lutz, P; Lyons, L; López, J M; López-Aguera, M A; López-Fernandez, A; Lörstad, B; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martí i García, S; Martínez-Rivero, C; Martínez-Vidal, F; Maréchal, B; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Monge, M R; Morettini, P; Mundim, L M; Murray, W J; Muryn, B; Myagkov, A; Myatt, Gerald; Mönig, K; Møller, R; Müller, H; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Némécek, S; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rídky, J; Rückstuhl, W; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Stäck, H; Szczekowski, M; Szeptycka, M; Sánchez, J; Tabarelli de Fatis, T; Tavernet, J P; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; Van Eldik, J; Van der Velde, C; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; de Boer, Wim; van Apeldoorn, G W; van Dam, P; Åsman, B; Österberg, K; Überschär, B; Überschär, S
1995-01-01
\\def\\tpc{three-particle correlation} \\def\\twopc{two-particle correlation} Measurements are presented of short range three-particle correlations in e^+ e^- annihilations at LEP using data collected by the DELPHI detector. %The jet structure is studied using three-particle correlation functions. At small values of the four-momentum difference, strong three-particle correlations are observed for like-sign (+++ and ---) and for unlike-sign (++- and +--) pion combinations which are not a consequence of two-particle correlations. A possible explanation of the observed effects in like-sign combinations is the existence of higher order Bose-Einstein interference, which significantly changes the particle distributions in jets.
Direct separation of short range order in intermixed nanocrystalline and amorphous phases
International Nuclear Information System (INIS)
Frenkel, Anatoly I.; Kolobov, Alexander V.; Robinson, Ian K.; Cross, Julie O.; Maeda, Yoshihito; Bouldin, Charles E.
2002-01-01
Diffraction anomalous fine-structure (DAFS) and extended x-ray absorption fine-structure (EXAFS) measurements were combined to determine short range order (SRO) about a single atomic type in a sample of mixed amorphous and nanocrystalline phases of germanium. EXAFS yields information about the SRO of all Ge atoms in the sample, while DAFS determines the SRO of only the ordered fraction. We determine that the first-shell distance distribution is bimodal; the nanocrystalline distance is the same as the bulk crystal, to within 0.01(2) A ring , but the mean amorphous Ge-Ge bond length is expanded by 0.076(19) Angstrom. This approach can be applied to many systems of mixed amorphous and nanocrystalline phases
Molecular dynamics simulations of short-range force systems on 1024-node hypercubes
International Nuclear Information System (INIS)
Plimpton, S.J.
1990-01-01
In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined
Reflection Phase and Amplitude Determination of Short-Range Ordered Plasmonic Nanohole Arrays.
Junesch, Juliane; Sannomiya, Takumi
2014-01-02
The reflection phase and amplitude of a short-range ordered gold plasmonic nanohole array are measured in the vis-NIR range using an interferometric substrate. The phase flip is observed around the minimum of the reflection amplitude, which is consistent with the resonance of a single oscillator. Above the resonance wavelength, the phase shift roughly follows that of a continuous metal film with the same thickness. Numerical simulation of the corresponding hexagonal long-range ordered nanohole array exhibits similar phase behavior with a sharper phase flip at the amplitude minimum, where the field enhancement is strongest. By changing the refractive index of the surrounding medium, larger phase shifts as well as positive and negative amplitude changes were observed around the resonance wavelength. This interferometric substrate method enables simultaneous broad-band phase and amplitude acquisition on the second time scale.
Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation
Altaf, Muhammad
2013-08-01
This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.
79 GHz UWB automotive short range radar – Spectrum allocation and technology trends
Directory of Open Access Journals (Sweden)
H.-L. Bloecher
2009-05-01
Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.
LGBT Students’ Short Range Narratives and Gender Performance in the EFL Classroom
Directory of Open Access Journals (Sweden)
Francisco Rondón Cardenas
2012-06-01
Full Text Available By means of the analysis of six short range narratives, utilizing as a methodology (Feminist Post –Structuralist Discourse Analysis FPDA,this paper unveils some significant moments which evidence the way LGBT EFL students draw on different discourses to adapt, negotiate,resist, emancipate, and reproduce heteronormativity. EFL students Methodological FrameworkConstantly shift positions and perform their gender assuming simultaneously powerful and powerless stances in the EFL classroom.The study categorizes the emancipatory discourse as a way to resist, the discourse of vulnerability as a way to reproduce and cope withmarginalization, and the homophobic discourse as a way to position LGBT individuals as abnormal. Finally, the article will reflect on themoments LGBT student mitigate their oral skills and constrain their participation in class, due to the fact that they are frequently evaluatingtheir comments to avoid accidental disclosure of their sexual identity.
International Nuclear Information System (INIS)
Nazarova, S.Z.; Gusev, A.I.
2001-01-01
Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru
Beyond the displacement limit: an analysis of short-range processes in apparent motion.
Bischof, W F; Groner, M
1985-01-01
If a circle of random dots is presented in two successive displays in which the second is rotated in relation to the first, then observers are able to accurately discriminate the direction of apparent rotation as long as the rotation is small. Rotations beyond this short-range apparent motion can produce the impression of motion in the reverse direction. The performance in identifying the direction of rotation further depends on the eccentricity of stimulation and the density of the random dots. Simulations of the experiments using the Marr and Ullman model of motion detection are in good quantitative agreement with the data except for low dot density patterns and large displacements. In these situations perception seems to be dominated by the operation of long-range processes.
Multi-channel, passive, short-range anti-aircraft defence system
Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew
2018-01-01
The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.
Air defense planning for an area with the use of very short range air defense sets
Directory of Open Access Journals (Sweden)
Tadeusz Pietkiewicz
2017-12-01
Full Text Available This paper presents a heuristic method of planning the deployment of very short-range anti-air missile and artillery sets (VSHORAD around an area (‘protected area’ in order to protect it. A function dependent on the distance between the earliest feasible points of destroying targets and the centre of the protected area was taken as an objective function. This is a different indicator from those commonly used in the literature, and based on the likelihood of a defense zone penetration by means of an air attack (MAA: the kill probability of the MAA and the probability of area losses. The model constraints resulted directly from the restrictions imposed by real air defense systems and the nature of the area being defended. This paper assumes that the VSHORAD system operates as a part of a general, superordinate air defense command and control system based on the idea of network-centric warfare, which provides the VSHORAD system with a recognized air picture, air defense plans, and combat mission specifications. The presented method has been implemented. The final part of the paper presents the computational results. Keywords: optimal planning, air defense system, area installation protection, deployment of very short range anti-air missile and artillery sets (VSHORAD
Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games
Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon
2016-04-01
The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.
Verma, A; Wanderka, N; Singh, J B; Kumar, B; Banhart, J
2013-09-01
In the solution treated state Ni-Cr-Mo based alloys exhibit short-range order characterized by the appearance of diffuse intensity spots in electron diffraction patterns at {1 ½ 0} positions. This short-range order appears due to of the formation of chemical heterogeneities. In the present work we report on the investigation of short-range order in Ni-33 at% Cr and Ni-16.7 at% Cr-16.7 at% Mo alloys using transmission electron microscopy. Chemical heterogeneities and their sizes are analyzed by statistical methods applied to three-dimensional atom probe data obtained on the same alloys. The obtained chemical heterogeneities are correlated to regions of short-range order in Ni-33 at% Cr and Ni-16.7 at% Cr-16.7 at% Mo alloys. Copyright © 2013 Elsevier B.V. All rights reserved.
0νββ-decay nuclear matrix elements with self-consistent short-range correlations
International Nuclear Information System (INIS)
Simkovic, Fedor; Faessler, Amand; Muether, Herbert; Rodin, Vadim; Stauf, Markus
2009-01-01
A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0νββ) of 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, 128 Te, 130 Te, and 136 Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0νββ decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0νββ-decay matrix elements.
Hoffmann, M.; Marmodoro, A.; Ernst, A.; Hergert, W.; Dahl, J.; Lång, J.; Laukkanen, P.; Punkkinen, M. P. J.; Kokko, K.
2016-08-01
We investigate the effect of short-range order (SRO) on the electronic structure in alloys from the theoretical point of view using density of states (DOS) data. In particular, the interaction between the atoms at different lattice sites is affected by chemical disorder, which in turn is reflected in the fine structure of the DOS and, hence, in the outcome of spectroscopic measurements. We aim at quantifying the degree of potential SRO with a proper parameter. The theoretical modeling is done with the Korringa-Kohn-Rostoker Green’s function method. Therein, the extended multi-sublattice non-local coherent potential approximation is used to include SRO. As a model system, we use the binary solid solution Ag c Pd1-c at three representative concentrations c = 0.25, 0.5 and 0.75. The degree of SRO is varied from local ordering to local segregation through an intermediate completely uncorrelated state. We observe some pronounced features, which change over the whole energy range of the valence bands as a function of SRO in the alloy. These spectral variations should be traceable in modern photoemission experiments.
Short-time dynamics in dispersions with competing short-range attraction and long-range repulsion.
Riest, Jonas; Nägele, Gerhard
2015-12-28
Dynamic clustering of globular Brownian particles in dispersions exhibiting competing short-range attraction and long-range repulsion (SALR) such as low-salinity protein solutions has gained a lot of interest over the past few years. While the structure of the various cluster phases has been intensely explored, little is known about the dynamics of SALR systems. We present the first systematic theoretical study of short-time diffusion and rheological transport properties of two-Yukawa potential SALR systems in the single-particle dominated dispersed-fluid phase, using semi-analytic methods where the salient hydrodynamic interactions are accounted for. We show that the dynamics has unusual features compared to reference systems with pure repulsion or attraction. Results are discussed for the hydrodynamic function characterizing short-time diffusion that reveals an intermediate-range-order (cluster) peak, self-diffusion and sedimentation coefficients, and high-frequency viscosity. As important applications, we discuss the applicability of two generalized Stokes-Einstein relations, and assess the wavenumber range required for the determination of self-diffusion in a dynamic scattering experiment.
Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.
Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua
2017-10-11
By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.
Lobregat, Xabier; Moreno, Daniel; Petrossian-Byrne, Rudin
2018-03-01
We obtain the renormalization group improved expressions of the Wilson coefficients associated to the O (1 /m3) spin-dependent heavy quark effective theory Lagrangian operators, with leading logarithmic approximation, in the case of zero light quarks. We have employed the Coulomb gauge.
Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions
Energy Technology Data Exchange (ETDEWEB)
Strikman, M.I. [Pennsylvania State Univ., University Park, PA (United States); Frankfurt, L.L.; Sargayan, M.M. [Tel Aviv Univ. (Iceland)] [and others
1994-04-01
For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.
Gattenlöhner, S; Hannes, W-R; Ostrovsky, P M; Gornyi, I V; Mirlin, A D; Titov, M
2014-01-17
We explore the longitudinal conductivity of graphene at the Dirac point in a strong magnetic field with two types of short-range scatterers: adatoms that mix the valleys and "scalar" impurities that do not mix them. A scattering theory for the Dirac equation is employed to express the conductance of a graphene sample as a function of impurity coordinates; an averaging over impurity positions is then performed numerically. The conductivity σ is equal to the ballistic value 4e2/πh for each disorder realization, provided the number of flux quanta considerably exceeds the number of impurities. For weaker fields, the conductivity in the presence of scalar impurities scales to the quantum-Hall critical point with σ≃4×0.4e2/h at half filling or to zero away from half filling due to the onset of Anderson localization. For adatoms, the localization behavior is also obtained at half filling due to splitting of the critical energy by intervalley scattering. Our results reveal a complex scaling flow governed by fixed points of different symmetry classes: remarkably, all key manifestations of Anderson localization and criticality in two dimensions are observed numerically in a single setup.
Directory of Open Access Journals (Sweden)
Vandana Bassoo
2015-12-01
Full Text Available Vehicular communication is a widely researched field and aims at developing technologies that may complement systems such as the advanced driver assistance systems. It is therefore important to analyse and infer on the performance of vehicular technologies for different driving and on-road criteria. This study considers the dedicated short range communications technology and more precisely the IEEE 802.11p standard for a performance and practicability analysis. There is also the proposal of a new classification scheme for typical driving conditions, which includes the main categories of Emergency and Safety scenarios while sub-classifications of Critical and Preventive Safety also exist. The scheme is used to build up scenarios as well as related equations relevant to developing countries for practical network simulation. The results obtained indicate that the relative speed of nodes is a determining factor in the overall performance and effectiveness of wireless vehicular communication systems. Moreover, delay values of low order were observed while an effective communication range of about 800 m was calculated for highway scenarios. The research thus indicates suitability of the system for an active use in collision avoidance even though independent factors such as climatic conditions and driver behaviour may affect its effectiveness in critical situations.
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
International Nuclear Information System (INIS)
Moreno, I.F.
1987-01-01
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt
Short-range ferromagnetism in alloy ribbons of Fe-Cr-Si-Nb-(Ag, Cu)
Energy Technology Data Exchange (ETDEWEB)
THANH, P. Q.; HOA, N. Q.; CHAU, N. [Vietnam National University, Hanoi (Viet Nam); HUU, C. X. [Danang University of Technology, Danang (Viet Nam); NGO, D. T. [Technical University of Denmark, Kgs. Lyngby (Denmark); PHAN, T. L. [Chungbuk National University, Cheongju (Korea, Republic of)
2014-04-15
We have studied the magnetic properties of two amorphous alloy ribbons Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Ag{sub 1} (FCSNB-Ag) and Fe{sub 72}Cr{sub 6}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1} (FCSNB-Cu), prepared by using a melt-spinning technique. Magnetization (M) measurements for various temperatures (T) and magnetic fields (H) indicate that ferromagnetic-paramagnetic (FM-PM) phase transitions take place in FCSNB-Ag and FCSNB-Cu at Curie temperatures (T{sub C} ) of about 308.3 K and 322.5 K, respectively. Analyses of M - H data at different temperatures in the vicinity of the FM-PM phase transition based on the modified Arrott plot method and scaling hypothesis yielded the exponent values of β = 0.369 ± 0.005, γ = 1.359 ± 0.005 and δ = 4.7 ± 0.1 for FCSNB-Ag, and β = 0.376 ± 0.002, γ = 1.315 ± 0.006 and δ = 4.5 ± 0.1 for FCSNB-Cu. Compared with the values from theoretical models, these values are close to those expected for the 3D Heisenberg model, demonstrating the existence of short-range FM order in the amorphous alloy ribbons.
Supercoiling Effects on Short-Range DNA Looping in E. coli.
Directory of Open Access Journals (Sweden)
Lauren S Mogil
Full Text Available DNA-protein loops can be essential for gene regulation. The Escherichia coli lactose (lac operon is controlled by DNA-protein loops that have been studied for decades. Here we adapt this model to test the hypothesis that negative superhelical strain facilitates the formation of short-range (6-8 DNA turns repression loops in E. coli. The natural negative superhelicity of E. coli DNA is regulated by the interplay of gyrase and topoisomerase enzymes, adding or removing negative supercoils, respectively. Here, we measured quantitatively DNA looping in three different E. coli strains characterized by different levels of global supercoiling: wild type, gyrase mutant (gyrB226, and topoisomerase mutant (ΔtopA10. DNA looping in each strain was measured by assaying repression of the endogenous lac operon, and repression of ten reporter constructs with DNA loop sizes between 70-85 base pairs. Our data are most simply interpreted as supporting the hypothesis that negative supercoiling facilitates gene repression by small DNA-protein loops in living bacteria.
Objectives for next generation of practical short-range atmospheric dispersion models
International Nuclear Information System (INIS)
Olesen, H.R.; Mikkelsen, T.
1992-01-01
The proceedings contains papers from the workshop ''Objectives for Next Generation of Practical Short-Range Atmospheric Dispersion Models''. They deal with two types of models, namely models for regulatory purposes and models for real-time applications. The workshop was the result of an action started in 1991 for increased cooperation and harmonization within atmospheric dispersion modelling. The focus of the workshop was on the management of model development and the definition of model objectives, rather than on detailed model contents. It was the intention to identify actions that can be taken in order to improve the development and use of atmospheric dispersion models. The papers in the proceedings deal with various topics within the broad spectrum of matters related to up-to-date practical models, such as their scientific basis, requirements for model input and output, meteorological preprocessing, standardisation within modelling, electronic information exchange as a potentially useful tool, model evaluation and data bases for model evaluation. In addition to the papers, the proceedings contain summaries of the discussions at the workshop. These summaries point to a number of recommended actions which can be taken in order to improve ''modelling culture''. (AB)
Statistical Short-Range Forecast Guidance for Cloud Ceilings Over the Shuttle Landing Facility
Lambert, Winifred C.
2001-01-01
This report describes the results of the AMU's Short-Range Statistical Forecasting task. The cloud ceiling forecast over the Shuttle Landing Facility (SLF) is a critical element in determining whether a Shuttle should land. Spaceflight Meteorology Group (SMG) forecasters find that ceilings at the SLF are challenging to forecast. The AMU was tasked to develop ceiling forecast equations to minimize the challenge. Studies in the literature that showed success in improving short-term forecasts of ceiling provided the basis for the AMU task. A 20-year record of cool-season hourly surface observations from stations in east-central Florida was used for the equation development. Two methods were used: an observations-based (OBS) method that incorporated data from all stations, and a persistence climatology (PCL) method used as the benchmark. Equations were developed for 1-, 2-, and 3-hour lead times at each hour of the day. A comparison between the two methods indicated that the OBS equations performed well and produced an improvement over the PCL equations. Therefore, the conclusion of the AMU study is that OBS equations produced more accurate forecasts than the PCL equations, and can be used in operations. They provide another tool with which to make the ceiling forecasts that are critical to safe Shuttle landings at KSC.
Sánchez-Higueras, Carlos; Hombría, James Castelli-Gair
2016-06-01
Many organs are specified far from the location they occupy when functional, having to migrate long distances through the heterogeneous and dynamic environment of the early embryo. We study the formation of the main Drosophila endocrine organ, the ring gland, as a new model to investigate in vivo the genetic regulation of collective cell migration. The ring gland results from the fusion of three independent gland primordia that migrate from the head towards the anterior aorta as the embryo is experiencing major morphogenetic movements. To complete their long-range migration, the glands extend filopodia moving sequentially towards a nearby intermediate target and from there to more distal ones. Thus, the apparent long-range migration is composed of several short-range migratory steps that facilitate reaching the final destination. We find that the target tissues react to the gland's proximity by sending filopodia towards it. Our finding of a succession of independent migration stages is consistent with the stepwise evolution of ring gland assembly and fits with the observed gland locations found in extant crustaceans, basal insects and flies. Copyright © 2016 Elsevier Inc. All rights reserved.
Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions
Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas
2018-02-01
Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.
Effects of vacancies on spin-dependent behavior of monolayer and bilayer graphene nanoribbons
Safari, E. Keshavarz; Shokri, A. A.; BabaeiPour, M.
2017-11-01
In this work, the effect of vacancies on magnetic properties and spin-dependent behaviors of monolayer and bilayer armchair and zigzag graphene nanoribbons is investigated using first principles calculations based on density functional theory (DFT). The armchair and zigzag graphene nanoribbons are composed of 6 rows and 4 rows of carbon atoms with the edges closed by the hydrogen atoms, respectively. Our results show that vacancies affect the magnetic properties and spin polarization of the graphene nanoribbons. It is seen that the monolayer armchair graphene nanoribbon with one vacancy in its supercell (24 carbon sites + 8 hydrogen sites) gives the magnetic moment of 0.79 μB , while magnetic moment in the monolayer zigzag graphene nanoribbon with one vacancy in its supercell (24 carbon sites + 6 hydrogen sites) is 1.72 μB (for site α) and 1.84 μB (for site β). The highest and lowest values of magnetic moment in different configurations of the bilayer armchair (zigzag) graphene nanoribbons with one vacancy in each layer of the supercell give 1.54 μB and 1.29 μB (3.51 μB and 2.72 μB), respectively. Numerical values of the magnetic moment in different configurations depended on the distance of vacancies from each other and from nanoribbon's edge as well as their orientations.
Spin dependent disorder in a junction device with spin orbit couplings
International Nuclear Information System (INIS)
Ganguly, Sudin; Basu, Saurabh
2016-01-01
Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)
Measurement of the spin-dependent structure-functions of the proton and the deuteron
2002-01-01
% NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent structure functions $g _{1}(x)$ of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...
Nuclear spin dependence of the reaction of H(3)+ with H2. I. Kinetics and modeling.
Crabtree, Kyle N; Tom, Brian A; McCall, Benjamin J
2011-05-21
The chemical reaction H(3)(+) + H(2) → H(2) + H(3)(+) is the simplest bimolecular reaction involving a polyatomic, yet is complex enough that exact quantum mechanical calculations to adequately model its dynamics are still unfeasible. In particular, the branching fractions for the "identity," "proton hop," and "hydrogen exchange" reaction pathways are unknown, and to date, experimental measurements of this process have been limited. In this work, the nuclear-spin-dependent steady-state kinetics of the H(3)(+) + H(2) reaction is examined in detail, and employed to generate models of the ortho:para ratio of H(3)(+) formed in plasmas of varying ortho:para H(2) ratios. One model is based entirely on nuclear spin statistics, and is appropriate for temperatures high enough to populate a large number of H(3)(+) rotational states. Efforts are made to include the influence of three-body collisions in this model by deriving nuclear spin product branching fractions for the H(5)(+) + H(2) reaction. Another model, based on rate coefficients calculated using a microcanonical statistical approach, is appropriate for lower-temperature plasmas in which energetic considerations begin to compete with the nuclear spin branching fractions. These models serve as a theoretical framework for interpreting the results of laboratory studies on the reaction of H(3)(+) with H(2). © 2011 American Institute of Physics.
Measurement of the spin-dependent structure-functions of the proton and the deuteron
2002-01-01
% NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent stucture functions g$ _{1} $(x) of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2018-03-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and
Importance of achromatic contrast in short-range fruit foraging of primates.
Directory of Open Access Journals (Sweden)
Chihiro Hiramatsu
2008-10-01
Full Text Available Trichromatic primates have a 'red-green' chromatic channel in addition to luminance and 'blue-yellow' channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini, consisting of both dichromats (n = 12 and trichromats (n = 9 in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations.
Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.
2017-12-01
There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and
Short-range and long-range forces in quantum theory: selected topics
International Nuclear Information System (INIS)
Hiller, J.R.
1980-01-01
Short-range forces (SRF) are encountered when the effects of the parity-violating (PV) weak neutral current are considered in atomic systems. We consider these and other SRF that are associated with operators that contain delta functions. Identities which convert a delta-function matrix element to that of a global operator are reviewed. Past and possible future applications of such identities are described. It has been found that use of these identities can substantially improve the results obtained with less accurate wave functions. We present a further application to the hyperfine structure of the ground state of lithium where we again find that results are improved by the use of an identity. A long-range force (LRF) is here defined to be one that is associated with a potential V(r) that is asymptotically of the form lambda r - 1 (r 0 /r)/sup N-1/. We use a dispersion-theoretic approach to study LRF between hadrons due to two-glucon exchange within the framework of quantum chromodynamics. Such an LRF is usually related to the presence of a spectrum of physical states that extends to zero mass. A speculative scheme put forward by Feinberg and Sucher is used to avoid requiring the existence of massless gluons as observable particles. Semi-quantitative expressions for the two-glucon exchange potential between hadrons and, in particular, between two nucleons are obtained. Limits on two-gluon corrections to πp forward scattering dispersion relations are used to provide an upper bound for lambda, the coupling constant in the nucleon-nucleon potential. For N greater than or equal to 7, expected on heuristic grounds, we obtain the bound lambda less than or equal to 10 6 , which is very weak; gluon effects as treated here do not lead to significant effects in the dispersion-theoretic analysis of πp scattering
A Confidence Index Approach Based on ERA-40 Data for Numerical Short Range Forecasts
Directory of Open Access Journals (Sweden)
Thomas Prenosil
2014-09-01
Full Text Available Critical weather related missions increasingly rely on highly automated numerical products, even if only limited computer capacities are available to generate them. This holds true especially for military tactical decision aids but also for civil requirements from firebrigades, the Red Cross or technical relief organizations. With respect to inherent atmospheric indeterminateness, a systematic quality control of numerical input turns out to become more and more essential for the users. As an economical alternative to the complex and expensive ensemble prediction method, the German Bundeswehr Geoinformation Centre has decided in favour of an analogue approach called similar synoptic situations (3s, which is based on ECMWF's ERA-40 re-analysis archive. Similarity is defined by a special distance measure for synoptic fields. The typical range of interest is 2500km×2500km$2500\\,\\text{km}\\times2500\\,\\text{km}$ in space with approximately one degree of horizontal resolution and up to 36 hours of forecast time. Historical 12, 24 and 36 hours ERA-40 forecast qualities are merged by 3s into a confidence index, indicating current anomalies of numerical quality versus monthly means in special areas of interest. As the results from the ERA-40 archive are used without any statistical adaption, this assessment is exclusively valid for trouble-free synoptic model runs in the short range. For a better understanding of the estimated anomalies in numerical forecast quality, the involved synoptic conditions are classified by a well established weather type classification. The overall method has been verified from 45 years of ERA-40 data and 10 years of GME forecasts from the Deutscher Wetterdienst. The 3s technique is highly flexible all over the globe with the exception of the tropics, because the present version includes the geostrophic approximation. At present, 3s runs operationally within four geographic areas: (1 Central Europe, (2 Kosovo with
Research of Short-range Missile Motion in Terms of Different Wind Loads
Directory of Open Access Journals (Sweden)
A. N. Klishin
2015-01-01
Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the
Paine, Robert T; Buhle, Eric R; Levin, Simon A; Kareiva, Peter
2017-06-01
The annual brown alga Postelsia palmaeformis is dependent for its survival on short-distance dispersal (SDD) where it is already established, as well as occasional long-distance colonization of novel sites. To quantify SDD, we transplanted Postelsia to sites lacking established plants within ≥10 m. The spatial distribution of the first naturally produced sporophyte generation was used to fit dispersal kernels in a hierarchical Bayesian framework. Mean dispersal distance within a year ranged from 0.16 to 0.50 m across sites; 95% of the recruits were within 0.38-1.32 m of the transplant. The fat-tailed exponential square root kernel was the best among the candidate models at describing offspring density and dispersal. Independent measurements of patch size over two to five generations permitted an evaluation of whether models parameterized by individual-level data could adequately predict longer-term persistence and spread at the patch scale. The observed spread rates generally fell within the 95% predictive intervals. Finally, Postelsia was eliminated from 14 occupied sites that were then followed for ≥27 yr. The probability of invasion when unoccupied declined and the probability of extinction when occupied increased with distance from the nearest propagule source. Sites >10 m from a source were rarely invaded, and one initially densely populated site isolated by 39 m has remained Postelsia-free since 1981. In spite of dispersal that is almost entirely within 2 m of the parent, the ability of our models to capture the observed dynamics of Postelsia indicates that short-range dispersal adequately explains the persistent and thriving Postelsia metapopulation on Tatoosh Island. However, the presence of Postelsia over a 2000-km coastal range with many gaps >1 km makes it clear that rare long-distance dispersal must be required to explain the geographic range of the species. © 2017 by the Ecological Society of America.
Spin-dependent thermoelectric effects in graphene-based spin valves.
Zeng, Minggang; Huang, Wen; Liang, Gengchiau
2013-01-07
Using first-principles calculations combined with non-equilibrium Green's function (NEGF), we investigate spin-dependent thermoelectric effects in a spin valve which consists of zigzag graphene nanoribbon (ZGNR) electrodes with different magnetic configurations. We find that electron transport properties in the ZGNR-based spin valve are strongly dependent on the magnetic configurations. As a result, with a temperature bias, thermally-induced currents can be controlled by switching the magnetic configurations, indicating a thermal magnetoresistance (MR) effect. Moreover, based on the linear response assumption, our study shows that the remarkably different Seebeck coefficients in the various magnetic configurations lead to a very large and controllable magneto Seebeck ratio. In addition, we evaluate thermoelectric properties, such as the power factor, electron thermal conductance and figure of merit (ZT), of the ZGNR-based spin valve. Our results indicate that the power factor and the electron thermal conductance are strongly related to the transmission gap and electron-hole symmetry of the transmission spectrum. Moreover, the value of ZT can reach 0.15 at room temperature without considering phonon scattering. In addition, we investigate the thermally-controlled magnetic distributions in the ZGNR-based spin valve and find that the magnetic distribution, especially the local magnetic moment around the Ni atom, is strongly related to the thermal bias. The very large, multi-valued and controllable thermal magnetoresistance and Seebeck effects indicate the strong potential of ZGNR-based spin valves for extremely low-power consuming spin caloritronics applications. The thermally-controlled magnetic moment in the ZGNR-based spin valve indicates its possible applications for information storage.
Chung, Charles S; Mitov, Mihail I; Callahan, Leigh Ann; Campbell, Kenneth S
2014-06-15
Diastolic dysfunction is a clinically significant problem for patients with diabetes and often reflects increased ventricular stiffness. Attached cross-bridges contribute to myocardial stiffness and produce short-range forces, but it is not yet known whether these forces are altered in diabetes. In this study, we tested the hypothesis that cross-bridge-based short-range forces are increased in the streptozotocin (STZ) induced rat model of type 1 diabetes. Chemically permeabilized myocardial preparations were obtained from 12week old rats that had been injected with STZ or vehicle 4weeks earlier, and activated in solutions with pCa (=-log10[Ca(2+)]) values ranging from 9.0 to 4.5. The short-range forces elicited by controlled length changes were ∼67% greater in the samples from the diabetic rats than in the control preparations. This change was mostly due to an increased elastic limit (the length change at the peak short-range force) as opposed to increased passive muscle stiffness. The STZ-induced increase in short-ranges forces is thus unlikely to reflect changes to titin and/or collagen filaments. Gel electrophoresis showed that STZ increased the relative expression of β myosin heavy chain. This molecular mechanism can explain the increased short-ranges forces observed in the diabetic tissue if β myosin molecules remain bound between the filaments for longer durations than α molecules during imposed movements. These results suggest that interventions that decrease myosin attachment times may be useful treatments for diastolic dysfunction associated with diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.
Tulip, P. R.; Staunton, J. B.; Lowitzer, S.; Ködderitzsch, D.; Ebert, H.
2008-04-01
We present an ab initio formalism for the calculation of transport properties in compositionally disordered systems within the framework of the Korringa-Kohn-Rostoker nonlocal coherent potential approximation. Our formalism is based on the single-particle Kubo-Greenwood linear response and provides a natural means of incorporating the effects of short-range order upon the transport properties. We demonstrate the efficacy of the formalism by examining the effects of short-range order and clustering upon the transport properties of disordered AgPd and CuZn alloys.
Scaling Properties of the D-Short Range Order in PdDx for Higher D Concentrations
DEFF Research Database (Denmark)
Krexner, G.; Ernst, G; Fratzl, P.
1984-01-01
New measurements of D-short range order (SRO) in PdDx and Pd1−yAgyDx−y are presented. A scaling behaviour of the complicated SRO- features with temperature and electronic concentration is proposed and discussed with respect to the Clapp-Moss-de Fontaine theory of ordering.......New measurements of D-short range order (SRO) in PdDx and Pd1−yAgyDx−y are presented. A scaling behaviour of the complicated SRO- features with temperature and electronic concentration is proposed and discussed with respect to the Clapp-Moss-de Fontaine theory of ordering....
Froufe-Pérez, Luis S; Engel, Michael; Damasceno, Pablo F; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C; Scheffold, Frank
2016-07-29
We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.
Optical orientation and spin-dependent recombination in GaAsN alloys under continuous-wave pumping.
Ivchenko, E L; Kalevich, V K; Shiryaev, A Yu; Afanasiev, M M; Masumoto, Y
2010-11-24
We present a systematic theoretical study of spin-dependent recombination and its effect on optical orientation of photoelectron spins in semiconductors with deep paramagnetic centers. For this aim we generalize the Shockley-Read theory of recombination of electrons and holes through the deep centers with allowance for optically-induced spin polarization of free and bound electrons. Starting from consideration of defects with three charge states we turn to the two-charge-state model possessing nine parameters and show that it is compatible with available experimental data on undoped GaAsN alloys. In the weak- and strong-pumping limits, we derive simple analytic equations which are useful in prediction and interpretation of experimental results. Experimental and theoretical dependences of the spin-dependent recombination ratio and degree of photoluminescence circular polarization on the pumping intensity and the transverse magnetic field are compared and discussed.
A sum rule for the spin-dependent structure function b1(x) for spin-one hadrons
International Nuclear Information System (INIS)
Close, F.E.
1990-05-01
We show that the spin-dependent structure function of spin-one hadrons, b 1 (x), is related to the electric quadrupole moment of the target and obtain ∫ dx b 1 (x) = lim t→0 - 5/3 t/4M 2 F q (t) = 0 for isoscalar targets if the sea of quarks and antiquarks is unpolarised. We show how this sum rule is modified in the presence of a polarised sea. (author)
Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars
Ming, Douglas W.; Morris, R. V.; Golden, D. C.
2011-01-01
Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be
Short-range optical air data measurements for aircraft control using rotational Raman backscatter.
Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus
2013-07-15
A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm
Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts
Directory of Open Access Journals (Sweden)
S. R. Kolusu
2015-11-01
Full Text Available The direct radiative impacts of biomass burning aerosols (BBA on meteorology are investigated using short-range forecasts from the Met Office Unified Model (MetUM over South America during the South American Biomass Burning Analysis (SAMBBA. The impacts are evaluated using a set of three simulations: (i no aerosols, (ii with monthly mean aerosol climatologies and (iii with prognostic aerosols modelled using the Coupled Large-scale Aerosol Simulator for Studies In Climate (CLASSIC scheme. Comparison with observations show that the prognostic CLASSIC scheme provides the best representation of BBA. The impacts of BBA are quantified over central and southern Amazonia from the first and second day of 2-day forecasts during 14 September–3 October 2012. On average, during the first day of the forecast, including prognostic BBA reduces the clear-sky net radiation at the surface by 15 ± 1 W m−2 and reduces net top-of-atmosphere (TOA radiation by 8 ± 1 W m−2, with a direct atmospheric warming of 7 ± 1 W m−2. BBA-induced reductions in all-sky radiation are smaller in magnitude: 9.0 ± 1 W m−2 at the surface and 4.0 ± 1 W m−2 at TOA. In this modelling study the BBA therefore exert an overall cooling influence on the Earth–atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation. Due to the reduction of net radiative flux at the surface, the mean 2 m air temperature is reduced by around 0.1 ± 0.02 °C. The BBA also cools the boundary layer (BL but warms air above by around 0.2 °C due to the absorption of shortwave radiation. The overall impact is to reduce the BL depth by around 19 ± 8 m. These differences in heating lead to a more anticyclonic circulation at 700 hPa, with winds changing by around 0.6 m s−1. Inclusion of climatological or prognostic BBA in the MetUM makes a small but significant improvement in forecasts of temperature and relative humidity, but improvements were
Search for Novel Short-Range Forces between Elementary Particles in Neutron Scattering
Voronin, V. V.; Kuznetsov, I. A.; Shapiro, D. D.
2018-01-01
The sensitivity of the method of neutron scattering to novel neutron-nucleon interactions is analyzed. Upper limits on the coupling constant of such interactions are imposed using the available data on neutron powder diffraction on polycrystalline silicon. For the forces acting at ranges of λ limits are already competitive with the best existing constraints on their coupling constant. A dedicated experiment can help improve the sensitivity to this coupling constant by nearly two orders of magnitude.
DEFF Research Database (Denmark)
Hedegård, Erik Donovan
2017-01-01
We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...
Short-range magnetic correlations and spin dynamics in the paramagnetic regime of (Mn,Fe)2(P,Si)
Miao, X.F.; Caron, L.; Cedervall, J.; Gubbens, P.C.M.; Dalmas de Réotier, P; Yaouanc, A; Qian, F.; Wildes, A. R.; Luetkens, H.; Amato, A; van Dijk, N.H.; Brück, E.H.
2016-01-01
The spatial and temporal correlations of magnetic moments in the paramagnetic regime of (Mn,Fe)2(P,Si) have been investigated by means of polarized neutron diffraction and muon-spin relaxation techniques. Short-range magnetic correlations are present at temperatures far above the ferromagnetic
On-chip patch antenna on InP substrate for short-range wireless communication at 140 GHz
DEFF Research Database (Denmark)
Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy
2017-01-01
This paper presents the design of an on-chip patch antenna on indium phosphide (InP) substrate for short-range wireless communication at 140 GHz. The antenna shows a simulated gain of 5.3 dBi with 23% bandwidth at 140 GHz and it can be used for either direct chip-to-chip communication or chip...
Influence of short-range atomic order on mechanical properties of metallic glasses Fe80-XNiXB20
Bengus, V.Z.; Korolkova, E.B.; Duhaj, P.; Diko, P.; Ocelik, V.; Tabachnikova, E.D.
1990-01-01
Variation of the chemical composition of Fe80-xNixB20 metallic glasses causes changes of the short-range atomic order and of some thermodynamic characteristics leading to nonmonotonic change of the ductile shear fracture normal stress σf under tension at 300 and 77 K. σf is maximal at xEQ30 and
Michels, M.A.J.; Suttorp, L.G.
1972-01-01
The long-range asymptotic expression for the multipole expansion of the retarded interatomic dispersion energy is shown to consist of contributions from electric dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions, all varying as the inverse seventh power of the interatomic
Critical properties of short-range Ising spin glasses on a Wheatstone-bridge hierarchical lattice
Almeida, Sebastião T. O.; Nobre, Fernando D.
2015-08-01
An Ising spin-glass model with nearest-neighbor interactions, following a symmetric probability distribution, is investigated on a hierarchical lattice of the Wheatstone-bridge family characterized by a fractal dimension D ≈3.58 . The interaction distribution considered is a stretched exponential, which has been shown recently to be very close to the fixed-point coupling distribution, and such a model has been considered lately as a good approach for Ising spin glasses on a cubic lattice. An exact recursion procedure is implemented for calculating site magnetizations, mi=T , as well as correlations between pairs of nearest-neighbor spins, T (T denote thermal averages), for a given set of interaction couplings on this lattice. From these local magnetizations and correlations, one can compute important physical quantities, such as the Edwards-Anderson order parameter, the internal energy, and the specific heat. Considering extrapolations to the thermodynamic limit for the order parameter, such as a finite-size scaling approach, it is possible to obtain directly the critical temperature and critical exponents. The transition between the spin-glass and paramagnetic phases is analyzed, and the associated critical exponents β and ν are estimated as β =0.82 (5 ) and ν =2.50 (4 ) , which are in good agreement with the most recent results from extensive numerical simulations on a cubic lattice. Since these critical exponents were obtained from a fixed-point distribution, they are universal, i.e., valid for any coupling distribution considered.
High-energy X-ray study of short range order and phase transformations in titanium-vanadium
International Nuclear Information System (INIS)
Ramsteiner, I.B.
2005-01-01
This work presents a study of configurational correlations and phase transformations in the binary alloy Ti-V, using high-energy X-ray diffraction. The experiments have been performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-energy (60-100 keV) technique developed recently allows in-situ measurements on bulk material in transmission geometry. The first part of the thesis discusses multiple scattering effects which might occur with this method. These effects are experimentally verified and discussed. Special emphasis is put on the questions, whether they affect the results obtained with this method, and how they can be avoided. Understanding alloys on the most fundamental level requires knowledge about the atomic interaction potentials. Competing with entropy, these potentials determine the configurational short range order in a disordered alloy, which generates together with static and dynamic distortions the diffuse scattering. The thesis presents measurements and calculations of the diffuse scattering patterns of Ti-V. The calculations, taking into account configurational correlations, static distortions induced by atomic size mismatch and thermal diffuse scattering, agree with the experimental data. Structural transformations in Ti-V are carefully characterized using high-energy x-ray diffraction in combination with the complementary transmission electron microscopy (TEM). While the first technique allows to study the phenomena in-situ and time-resolved, TEM yields real space images and chemical information about the phases. Ti-V near the equiatomic composition is a beta-Ti-alloy. The body centered cubic beta phase is retained at room temperature by fast quenching. Aging the material below the phase transformation temperature, however, leads to the precipitation of hexagonal alpha titanium. Another transformation process confusing earlier works is identified as TiC formation from carbon impurities in the material. In addition
2H(p, pp) n reaction as a probe of the short-range nuclear force
International Nuclear Information System (INIS)
Haftel, M.I.; Petersen, E.L.; Wallace, J.M.
1976-01-01
We examine the feasibility of using the 2 H(p, pp) n reaction as a means of extracting information about the short-range behavior of the nuclear force not obtainable from N-N scattering experiments. To do this we use several separable potentials and examine the predicted cross section in various regions of phase space and for beam energies between 14 and 65 MeV. The questions that we address are likely to be insensitive to Coulomb effects. Both the form factor and the energy dependence of the potentials have been modified from the usual Yamaguchi form. The form of the energy dependence is chosen to obtain phase-shift equivalence for two different form factors while guaranteeing a unitary two-body scattering amplitude. The sensitivity of breakup results to the on-shell and off-shell aspects of the nuclear force is examined and discussed. Significant on-shell sensitivity occurs for breakup amplitudes in all states and for cross sections over all regions of phase space. Off-shell sensitivity appears only in the S = 1/2, L = 0 breakup amplitudes, with all S = 3/2 and all L > 0 amplitudes exhibiting negligible off-shell dependence. This result leads to only a very small (< or = 5%) off-shell sensitivity for quasifree scattering. However, cross sections far from quasifree scattering, and in particular cross sections in the final-state interaction region of phase space, exhibit as much as a 50% variation for phase-shift-equivalent potentials. This sensitivity is small at low beam energy and increases with increasing energy. The energy dependence at negative energies of one potential is also altered to adjust the triton binding energy. This enables us to compare phase-shift-equivalent potentials differing off shell but predicting the same triton binding energy. The energy dependence of this potential is somewhat unconventional. Fixing of the triton binding energy reduces the off-shell sensitivity appreciably only for E approximately-less-than 20 MeV
Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni
Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.
2017-10-01
Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.
Chaos and stiffness exponents for short-range Gaussian Ising spin glasses
Almeida, Sebastião T. O.; Curado, Evaldo M. F.; Nobre, Fernando D.
2013-06-01
Two important exponents in spin-glass theory, namely, the chaos (ζ) and stiffness (y) exponents, are studied for Ising spin glasses with nearest-neighbor Gaussian interactions on different approaches to Bravais lattices. We consider hierarchical lattices of the Migdal-Kadanoff type (both diamond and tress families), with varying fractal dimensions, as well as two lattices of the Wheatstone-bridge family, more specifically, those with fractal dimensions D ≈ 2.32 and D ≈ 3.58. Whenever it is possible to compare, our estimates agree with those obtained from extensive numerical simulations on Bravais lattices, suggesting the present results represent good approximations for these exponents.
Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction
Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.
2018-01-01
Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.
Changes in structure of the short-range order of the InP melt when heated
International Nuclear Information System (INIS)
Glazov, V.M.; Dovletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.
1977-01-01
An investigation of the temperature dependence of the InP viscosity has indicated an ''after-melting'' effect similar to that observed in other A 3 V 5 compounds having a sphalerite structure. The termodynamic parameters of the viscous flow of indium phosphide melt have been calculated, and a suggestion has been made on the loosening of the short-range order structure of the melt during the period preceding solidification. With the similarity in the behaviour of InP and of A 3 Sb compound melts as a basis, a suggestion has been put forward that the influence of the thermal dissociation upon the character of the changes in the short-range order structure directly after transition from the solid to the liquid phase is negligible
Qin, Heng; Zuo, Yong; Zhang, Dong; Li, Yinghui; Wu, Jian
2017-03-06
Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.
Marceau, R K W; Ceguerra, A V; Breen, A J; Raabe, D; Ringer, S P
2015-10-01
Short-range-order (SRO) has been quantitatively evaluated in an Fe-18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D03 ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of laser frequency chirp on modal noise in short-range radio over multimode fiber links
DEFF Research Database (Denmark)
Visani, Davide; Tartarini, Giovanni; Petersen, Martin Nordal
2010-01-01
An important effect of the frequency chirp of the optical transmitter in radio over multimode fiber links is put into evidence experimentally and modeled theoretically for the first time, to our knowledge. This effect can have an important impact in short-range connections, where, although...... intermodal dispersion does not generally cause unacceptable limitations to the transmittable bandwidth, the presence of modal noise must be accurately kept under control, since it determines undesired real-time fluctuations of the link....
Proix, Timothée; Spiegler, Andreas; Schirner, Michael; Rothmeier, Simon; Ritter, Petra; Jirsa, Viktor K
2016-11-15
Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered. Copyright © 2016 Elsevier Inc. All rights reserved.
Guo, Wenbin; Liu, Feng; Xiao, Changqing; Liu, Jianrong; Yu, Miaoyu; Zhang, Zhikun; Zhang, Jian; Zhao, Jingping
2015-08-01
Schizophrenia is conceived as a disconnection syndrome and anatomical distance may affect functional connectivity (FC) in schizophrenia patients. However, whether and how anatomical distance affects FC remains unclear in first-episode, medication-naive schizophrenia at rest. Forty-nine schizophrenia patients and 50 age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging scanning. Regional FC strength was computed for each voxel in the brain, which was further divided into short-range and long-range FC strength. The patients exhibited increased short-range positive FC strength in the left superior medial frontal gyrus, and increased long-range positive FC strength in the right angular gyrus and bilateral posterior cingulate cortex (PCC)/precuneus compared with the controls. Further seed-based FC analysis showed that the left superior medial frontal gyrus had increased short-range FC with the right inferior frontal gyrus, while the right angular gyrus and bilateral PCC/precuneus had increased long-range FC with the prefrontal gyrus. No significant correlation was observed between abnormal FC strength and clinical variables in the patient group. The findings reveal a pattern of increased anatomical distance affecting FC in the patients, with the results of increased short-range positive FC strength in the anterior default-mode network (DMN) and increased long-range positive FC strength in the posterior DMN in schizophrenia, and highlight the importance of the DMN in the neurobiology of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
Electron irradiation effect on short-range ordering in Cu-Al and Ag-Al alloys
International Nuclear Information System (INIS)
Kulish, N.P.; Mel'nikova, N.A.; Petrenko, P.V.; Ryabishchuk, A.L.; Tatarov, A.A.
1990-01-01
Method of X-ray diffuse scattering is used to study short-range order variation in Cu-Al and Ag-Al alloys under radiation effect and the following heat treatment. Irradiation was carried out at -40 deg C by 1.6 MeV electrons, fluence of 5x10 7 cm -2 and 0.5 MeV gamma-rays, the dose being 10 7 pH
Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties
Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.
1972-01-01
The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.
Fixed-point distributions of short-range Ising spin glasses on hierarchical lattices
Almeida, Sebastião T. O.; Nobre, Fernando D.
2015-03-01
Fixed-point distributions for the couplings of Ising spin glasses with nearest-neighbor interactions on hierarchical lattices are investigated numerically. Hierarchical lattices within the Migdal-Kadanoff family with fractal dimensions in the range 2.58 ≤D ≤7 , as well as a lattice of the Wheatstone-Bridge family with fractal dimension D ≈3.58 are considered. Three initial distributions for the couplings are analyzed, namely, the Gaussian, bimodal, and uniform ones. In all cases, after a few iterations of the renormalization-group procedure, the associated probability distributions approached universal fixed shapes. For hierarchical lattices of the Migdal-Kadanoff family, the fixed-point distributions were well fitted either by stretched exponentials, or by q -Gaussian distributions; both fittings recover the expected Gaussian limit as D →∞ . In the case of the Wheatstone-Bridge lattice, the best fit was found by means of a stretched-exponential distribution.
Coulomb systems with a short-range interaction: the Σ-p atom and resonant levels of light nuclei
International Nuclear Information System (INIS)
Kudryavtsev, A.E.; Lisin, V.I.; Popov, V.S.
1981-01-01
An equation relating the shift and width of atomic levels to the strong scattering length, which was derived previously ]T. L. Trueman, Nucl. Phys. 26, 57 (1961); A. E. Kudryavtsev and V. S. Popov, Pis'ma Zh. Eksp. Teor. Fiz. 29, 311 (1979) [JETP Lett. 29, 280 (1979)]; V. S. Popov, A. E. Kudryavtsev, and V. D. Mir, Zh. Eksp. Teor. Fiz. 77, 1727 (1979) [Sov. Phys. JETP 50, 865 (1979)
Directory of Open Access Journals (Sweden)
Junling Gao
Full Text Available The integrity of structural connectivity in a functional brain network supports the efficiency of neural processing within relevant brain regions. This study aimed to quantitatively investigate the short- and long-range fibers, and their differential roles in the lower cognitive efficiency in aging and dementia. Three groups of healthy young, healthy older adults and patients with Alzheimer's disease (AD participated in this combined functional magnetic resonance imaging (fMRI and diffusion tensor imaging (DTI study on prospective memory (PM. Short- and long-range fiber tracts within the PM task engaged brain networks were generated. The correlation between the fMRI signal change, PM performance and the DTI characters were calculated. FMRI results showed that the PM-specific frontal activations in three groups were distributed hierarchically along the rostrocaudal axis in the frontal lobe. In an overall PM condition generally activated brain network among the three groups, tractography was used to generate the short-range fibers, and they were found impaired in both healthy older adults and AD patients. However, the long-range fiber tracts were only impaired in AD. Additionally, the mean diffusivity (MD of short-range but not long-range fibers was positively correlated with fMRI signal change and negatively correlated with the efficiency of PM performance. This study suggests that the disintegrity of short-range fibers may contribute more to the lower cognitive efficiency and higher compensatory brain activation in healthy older adults and more in AD patients.
Energy Technology Data Exchange (ETDEWEB)
Marceau, R.K.W., E-mail: r.marceau@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia); Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ceguerra, A.V.; Breen, A.J. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Raabe, D. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia)
2015-10-15
Short-range-order (SRO) has been quantitatively evaluated in an Fe–18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D0{sub 3} ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity. - Highlights: • Short-range-order (SRO) is quantitatively evaluated using atom probe tomography data. • Chemical species-specific SRO parameters have been calculated. • The accuracy of this method is tested against simulated D0{sub 3} ordered data. • Imperfect spatial resolution combined with finite detector efficiency causes a randomising effect. • Lattice rectification of the data prior to GM-SRO analysis is demonstrated to improve information sensitivity.
Yu, Chen-Chieh; Lin, Keng-Te; Su, Pao-Yun; Wang, En-Yun; Yen, Yu-Ting; Chen, Hsuen-Li
2016-02-14
In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.
Gao, Junling; Cheung, Raymond T F; Chan, Ying-Shing; Chu, Leung-Wing; Mak, Henry K F; Lee, Tatia M C
2014-01-01
The integrity of structural connectivity in a functional brain network supports the efficiency of neural processing within relevant brain regions. This study aimed to quantitatively investigate the short- and long-range fibers, and their differential roles in the lower cognitive efficiency in aging and dementia. Three groups of healthy young, healthy older adults and patients with Alzheimer's disease (AD) participated in this combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study on prospective memory (PM). Short- and long-range fiber tracts within the PM task engaged brain networks were generated. The correlation between the fMRI signal change, PM performance and the DTI characters were calculated. FMRI results showed that the PM-specific frontal activations in three groups were distributed hierarchically along the rostrocaudal axis in the frontal lobe. In an overall PM condition generally activated brain network among the three groups, tractography was used to generate the short-range fibers, and they were found impaired in both healthy older adults and AD patients. However, the long-range fiber tracts were only impaired in AD. Additionally, the mean diffusivity (MD) of short-range but not long-range fibers was positively correlated with fMRI signal change and negatively correlated with the efficiency of PM performance. This study suggests that the disintegrity of short-range fibers may contribute more to the lower cognitive efficiency and higher compensatory brain activation in healthy older adults and more in AD patients.
von Wegner, F; Tagliazucchi, E; Brodbeck, V; Laufs, H
2016-11-01
We analyze temporal autocorrelations and the scaling behaviour of EEG microstate sequences during wakeful rest. We use the recently introduced random walk approach and compute its fluctuation function analytically under the null hypothesis of a short-range correlated, first-order Markov process. The empirical fluctuation function and the Hurst parameter H as a surrogate parameter of long-range correlations are computed from 32 resting state EEG recordings and for a set of first-order Markov surrogate data sets with equilibrium distribution and transition matrices identical to the empirical data. In order to distinguish short-range correlations (H ≈ 0.5) from previously reported long-range correlations (H > 0.5) statistically, confidence intervals for H and the fluctuation functions are constructed under the null hypothesis. Comparing three different estimation methods for H, we find that only one data set consistently shows H > 0.5, compatible with long-range correlations, whereas the majority of experimental data sets cannot be consistently distinguished from Markovian scaling behaviour. Our analysis suggests that the scaling behaviour of resting state EEG microstate sequences, though markedly different from uncorrelated, zero-order Markov processes, can often not be distinguished from a short-range correlated, first-order Markov process. Our results do not prove the microstate process to be Markovian, but challenge the approach to parametrize resting state EEG by single parameter models. Copyright © 2016 Elsevier Inc. All rights reserved.
Simor, Péter; Gombos, Ferenc; Blaskovich, Borbála; Bódizs, Róbert
2017-12-23
Rapid Eye Movement (REM) sleep is characterized by the alternation of two markedly different microstates, phasic and tonic REM. These periods differ in awakening and arousal thresholds, sensory processing, and spontaneous cortical oscillations. Previous studies indicate that whereas in phasic REM, cortical activity is independent of the external environment, attentional functions and sensory processing are partially maintained during tonic periods. Large-scale synchronization of oscillatory activity, especially in the alpha and beta frequency ranges can accurately distinguish different states of vigilance and cognitive processes of enhanced alertness and attention. Therefore, we examined long-range inter-and intrahemispheric, as well as short-range EEG synchronization during phasic and tonic REM periods quantified by the weighted phase lag index. Based on the nocturnal polysomnographic data of 19 healthy, adult participants we showed that long-range inter-and intrahemispheric alpha and beta synchrony were enhanced in tonic REM states in contrast to phasic ones, and resembled alpha and beta synchronization of resting wakefulness. On the other hand, short-range synchronization within the gamma frequency range was higher in phasic as compared to tonic periods. Increased short-range synchrony might reflect local, and inwardly driven sensorimotor activity during phasic REM periods, whereas enhanced long-range synchrony might index frontoparietal activity that reinstates environmental alertness after phasic REM periods. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Song, Jong-Won; Peng, Daoling; Hirao, Kimihiko
2011-11-30
We applied an improved long-range correction scheme including a short-range Gaussian attenuation (LCgau) to the Becke97 (B97) exchange correlation functional. In the optimization of LCgau-B97 functional, the linear parameters are determined by least squares fitting. Optimizing μ parameter (0.2) that controls long-range portion of Hartree-Fock (HF) exchange to excitation energies of large molecules (Chai and Head-Gordon, J Chem Phys 2008, 128, 084106) and additional short-range Gaussian parameters (a = 0.15 and k = 0.9) that controls HF exchange inclusion ranging from short-range to mid-range (0.5-3 Å) to ground state properties achieved high performances of LCgau-B97 simultaneously on both ground state and excited state properties, which is better than other tested semiempirical density functional theory (DFT) functionals, such as ωB97, ωB97X, BMK, and M0x-family. We also found that while a small μ value (∼0.2) in LC-DFT is appropriate to the local excitation and intramolecular charge-transfer excitation energies, a larger μ value (0.42) is desirable in the Rydberg excitation-energy calculations. Copyright © 2011 Wiley Periodicals, Inc.
Precision Measurement of the Spin-dependent Asymmetry in the Threshold Region of Quasielastic ^{3}He
Energy Technology Data Exchange (ETDEWEB)
Xiong, Feng [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2002-09-01
The first precision measurement of the spin-dependent asymmetry in the threshold region of polarized ^{3}He(polarized e, e') was carried out in Hall A at the Jefferson Laboratory, using a longitudinally polarized continuous electron beam incident on a high-pressure polarized ^{3}He gas target. The polarized electron beam was generated by illuminating a strained GaAs cathode with high intensity circularly polarized laser light, and an average beam polarization of about 70% was achieved. The ^{3}He target was polarized based on the principle of spin-exchange optical pumpint and the average target polarization was about 30%. The scattered electrons were detected in the two Hall A high resolution spectrometers, HRSe and HRSh. The data from HRSh were used for this analysis and covered both the elastic peak and the threshold region. Two kinematic points were measured in the threshold region, one with a central Q^{2}-value of 0.1 (GeV/c)^{2} at an incident beam energy E_{0} = 0.778 GeV and the other with a central Q^{2}-value of 0.2 (GeV/c)^{2} at E-0 = 1.727 GeV. The average beam current was 10 mu-A, which was mainly due to the limitation of the polarized ^{3}He target. The measured asymmetry was compared with both plane wave impulse approximation (PWIA) calculations and non-relativistic full Faddeev calculations which include both final-state interactions (FSIs) and meson-exchange currents (MECs) effects. The poor description of the data by PWIA calculations at both Q^{2}-values suggests the existence of strong FSI and MEC effects in the threshold region of polarized ^{3}He (polarized e, e'). Indeed, the agreement between the data and full calculations is very good at Q^{2} = 0.1 (GeV/c)^{2}. On the other hand, a small discrepancy at Q^{2} = 0.2 (GeV/c)^{2} is observed, which might be due to some Q^{2} -dependent effects such as
Cai, W P; Yan, Z R; Liu, R M; Qin, M H; Zeng, M; Lu, X B; Gao, X S; Liu, J-M
2017-10-11
Based on the modified Heisenberg-Kitaev model, the effects of magnetic substitution on the magnetic properties of the honeycomb-lattice iridate [Formula: see text] [Formula: see text] are studied using Monte Carlo simulations. It is observed that the long-range zigzag state of the original system is rather fragile and can be replaced by a spin-glass state even for small substitution, well consistent with the experimental observation in Ru-substituted samples (Mehlawat et al 2015 Phys. Rev. B 92 134412). Both the disordered Heisenberg and Kitaev interactions caused by the magnetic ion-doping are suggested to be responsible for the magnetic phase transitions in the system. More interestingly, a short-range zigzag order is suggested to survive above the freezing temperature even at high magnetic impurity doping levels.
Fukuda, Kunito; Asakawa, Naoki
2017-08-01
Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures
International Nuclear Information System (INIS)
Kaidatzis, A.
2008-10-01
In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)
Directory of Open Access Journals (Sweden)
Kunito Fukuda
2017-08-01
Full Text Available Spin-dependent space-charge-limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived, respectively, from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
Cao, Liemao; Li, Xiaobo; Liu, Guang; Liu, Ziran; Zhou, Guanghui
2017-05-01
The influence of chemical side groups is significant in physical or chemical understanding the transport through the single molecular junction. Motivated by the recent successful fabrication and measurement of a single organic molecule sandwiched between graphene electrodes (Prins et al., 2011), here we study the spin-dependent transport properties through a junction of a fused oligothiophenes molecule embedded between two zigzag-edged graphene nanoribbon (ZGNR) electrodes. The molecule with and without an attached amino NH2 side group is considered, respectively, and external magnetic fields or FM stripes are applied onto the ZGNRs to initially orient the magnetic alignment of the electrodes for the spin-dependent consideration. By the ab initio calculations based on the density functional theory combined with nonequilibrium Green's function formalism, we have demonstrated the remarkable difference in the spin-charge transport property between the junctions of the molecule with and without NH2 side group. In particular, the junction with side group shows more obvious NDR. In addition, it exhibits an interesting dual spin-filtering effect when the magnetic alignment in electrodes is initially antiparallel-oriented. The mechanisms of the results are revealed and discussed in terms of the spin-resolved transmission spectrum associated with the frontier molecular orbitals evolution, the molecular projected self-consistent Hamiltonian eigenvalues, and the local density of states.
Energy Technology Data Exchange (ETDEWEB)
Hassel, Christoph
2009-08-11
In the present thesis, the spin dependent transport in epitaxial Fe wires as well as in perpendicularly magnetized multilayer wires is investigated. The main focus is on the investigation of quantum transport phenomena, the domain wall resistance as well as the current induced domain wall motion. Epitaxial Fe wires are prepared from epitaxial Fe films by means of electron beam lithography. Because of the intrinsic magnetic anisotropy, it is possible to prepare wires with a remanent transversal magnetization. Magnetic force microscopy is used to image the magnetic state of single wires. The magnetization reversal behaviour of these wires is investigated in detail using magnetoresistance measurements. These measurements are dominated by effects of the anisotropic magnetoresistance and can be explained by micromagnetic calculations. For the first time, quantum transport phenomena in epitaxial Fe wires are studied by magnetoresistance measurements for temperatures down to 20 mK. These measurements clearly indicate that, independent of the wire width and orientation, no contribution due to weak electron localization can be observed. The results are quantitatively explained within the framework of enhanced electron-electron interactions. Furthermore, by reducing the wire width the onset of the transition from two-dimensional to one-dimensional behaviour is found. To determine the domain wall resistance, a different number of domain walls is created in various structures, whereby the epitaxial samples allow to investigate different domain wall structures. First, a technique based on the stray field of a magnetic force microscope tip is presented. Furthermore, the influence of the shape anisotropy on the coercive field of single wires is used. Contributions to the observed resistance change due to the anisotropic magnetoresistance are calculated using micromagnetic simulations. A positive intrinsic relative resistance increase of 0.2% within the domain wall is found at
Directory of Open Access Journals (Sweden)
Catherine C. Chuang
2012-09-01
Full Text Available Aerosol-cloud interactions begin with the direct involvement of aerosols in cloud nucleation followed by its indirect contribution to the formation of precipitation through autoconversion. Since the treatments of cloud microphysics in climate models are highly parameterized, a thorough study is needed to examine the range of simulations associated with different parameterizations of aerosol-cloud interactions. Unlike previous studies focused on climate-mode simulations, our interest is in short-range model response before the development of model bias and the compensation of multiple feedback mechanisms. In this study, we modified CAM4 to explore model sensitivity to treatments of cloud nucleation and autoconversion over the Atmospheric Radiation Measurement Southern Great Plains (SGP facility during the May 2003 Aerosol Intensive Operations Period (IOP under the Cloud-Associated Parameterizations Testbed framework. Simulated liquid water path and low cloud fraction were sensitive to the choice of parameterization; however, change of modeled precipitation was insignificant with varying parameterization in short-range (∼3 day simulation. In general, simulated cloud properties were more sensitive to the treatment of autoconversion than nucleation. Calculations of sulfate indirect effects indicate that the change of shortwave fluxes from cloud lifetime effect is much more sensitive to cloud parameterizations than cloud albedo effect. Microphysical feedbacks complicate the local response of the climate system and can yield a positive 2nd indirect sulfate forcing that counters the expectation that increases in aerosol concentration decrease the shortwave fluxes. As a result, the calculated total sulfate indirect forcing over SGP varies widely ranging from −0.1 to −2.1 W m−2 during the IOP.
International Nuclear Information System (INIS)
Goodwin, Zachary A.H.; Feng, Guang; Kornyshev, Alexei A.
2017-01-01
We develop the theory of the electrical double layer in ionic liquids as proposed earlier by Kornyshev (2007). In the free energy function we keep the so called ‘short-range correlation terms’ which were omitted there. With some simplifying assumptions, we arrive at a modified expression for differential capacitance, which makes differential capacitance curves less sharply depending on electrode potential and having smaller values at extrema than in the previous theory. This brings the results closer to typical experimental observations, and makes it appealing to use this formalism for treatment of experimental data. Implications on Debye length and the extent of ion paring in ionic liquids are then briefly discussed.
DEFF Research Database (Denmark)
Zhao, Ying; Deng, Lei; Pang, Xiaodan
2011-01-01
We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission...
Carrier, Benjamin; MacKinnon, David; Cournoyer, Luc; Beraldin, J.-Angelo
2011-03-01
The National Research Council of Canada (NRC) is currently evaluating and designing artifacts and methods to completely characterize 3-D imaging systems. We have gathered a set of artifacts to form a low-cost portable case and provide a clearly-defined set of procedures for generating characteristic values using these artifacts. In its current version, this case is specifically designed for the characterization of short-range (standoff distance of 1 centimeter to 3 meters) triangulation-based 3-D imaging systems. The case is known as the "NRC Portable Target Case for Short-Range Triangulation-based 3-D Imaging Systems" (NRC-PTC). The artifacts in the case have been carefully chosen for their geometric, thermal, and optical properties. A set of characterization procedures are provided with these artifacts based on procedures either already in use or are based on knowledge acquired from various tests carried out by the NRC. Geometric dimensioning and tolerancing (GD&T), a well-known terminology in the industrial field, was used to define the set of tests. The following parameters of a system are characterized: dimensional properties, form properties, orientation properties, localization properties, profile properties, repeatability, intermediate precision, and reproducibility. A number of tests were performed in a special dimensional metrology laboratory to validate the capability of the NRC-PTC. The NRC-PTC will soon be subjected to reproducibility testing using an intercomparison evaluation to validate its use in different laboratories.
Directory of Open Access Journals (Sweden)
A Moameni
2011-02-01
Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics
Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS
Lin, Zhicheng; Martins, Rui Paulo
2016-01-01
This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. · Summarizes the state-of-the-art i...
Short range structure of amorphous Ni50Ta50-alloys by means of X-ray- and neutron-diffraction
International Nuclear Information System (INIS)
Uhlig, H.; Lamparter, P.; Steeb, S.; Rohr, L.; Guentherodt, H.J.; Fischer, P.
1992-01-01
Amorphous Ni 50 Ta 50 -samples with their high crystallization temperature of 985 K were investigated. To evaluate the three partial structure factors of amorphous Ni 50 Ta 50 one X-ray diffraction experiment was performed with Ni 50 Ta 50 and two neutron diffraction experiments with Co 10 Ni 40 Ta 50 and with Ni 50 Ta 50 , respectively. The Bhatia-Thornton partial structure factor S cc (Q) indicates rather strong chemical short range order which also explains the premaximum observed in the Faber-Ziman partial S NiNi (Q)-function. The nearest neighbor distance is 2.82 A for Ni-Ni, 2.91 A for Ta-Ta, and is shortest for Ni-Ta, 2.44 A. The coordination numbers are N NiNi = 4.9, N TaTa = 8.2, and N NiTa = 6.0. We report on the chemical short range order and the possible binding behavior in a-Ni 50 Ta 50 and compare the present results with those reported in the literature on a-Ni 40 Ti 60 as well as on a-Ni 55 Ta 45 . (orig.)
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping
2016-08-01
Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Sbaizero, O; DelFavero, G; Martinelli, V; Long, C S; Mestroni, L
2015-04-01
Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip-cell interface under circumstances where the actin cytoskeleton has been disrupted. Copyright © 2014. Published by Elsevier B.V.
Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm).
Sun, Shengtong; Chevrier, Daniel M; Zhang, Peng; Gebauer, Denis; Cölfen, Helmut
2016-09-26
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mao, Xiao-Yuan; Tokay, Tursonjan; Zhou, Hong-Hao; Jin, Wei-Lin
2016-05-31
Epileptic seizures are frequently caused by brain tumors. Traditional anti-epileptic treatments do not acquire satisfactory responses. Preoperative and postoperative seizures seriously influence the quality of life of patients. Thus, tumor-associated epilepsy (TAE) is an important subject of the current research. The delineation of the etiology of epileptogenesis in patients with primary brain tumor may help to find the novel and effective drug targets for treating this disease. In this review, we describe the current status of treatment of TAE. More importantly, we focus on the factors that are involved in the functional connectivity between tumors and stromal cells. We propose that there exist two modes, namely, long-range and short-range modes, which likely trigger neuronal hyperexcitation and subsequent epileptic seizures. The long-range mode is referred to as factors released by tumors including glutamate and GABA, binding to the corresponding receptor on the cellular membrane and causing neuronal hyperactivity, while the short-range mode is considered to involve direct intracellular communication between tumor cells and stromas. Gap junctions and tunneling nanotube network are involved in cellular interconnections. Future investigations focused on those two modes may find a potential novel therapeutic target for treating TAE.
Spin-dependent tunneling conductance in 2D structures in zero magnetic field
International Nuclear Information System (INIS)
Rozhansky, I.V.; Averkiev, N.S.
2009-01-01
The influence of the spin-orbit interaction on the tunneling between two-dimensional electron layers is considered. A general expression for the tunneling current is obtained with the Rashba and Dresselhaus effects and also elastic scattering of charge carriers on impurities taken into account. It is shown that the particular form of the tunneling conductance as a function of the voltage between layers is extremely sensitive to the relationship between the Rashba and Dresselhaus parameters. This makes it possible to determine the parameters of the spin-orbit interaction and the quantum scattering time directly from measurements of the tunneling conductance in the absence of magnetic field
concentration on spin-dependent resonant tunnelling in InAs/Ga1 ...
Indian Academy of Sciences (India)
2Department of Physics, Alagappa Arts College, Karaikudi 630003, India. 3Department of Physics, Sree Sevugan-Annamalai College, Devakottai 630303, India. MS received 29 April 2015; accepted 11 April 2016 ..... However in this present study, our calculations indicate that Dresselhaus spin–orbit interaction alone can.
Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)
International Nuclear Information System (INIS)
Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.
1995-01-01
Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties
2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets
Directory of Open Access Journals (Sweden)
Teshome Senbeta
2012-03-01
Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.
Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.
2017-09-01
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
International Nuclear Information System (INIS)
Wawrzyniak, M.; Gmitra, M.; Barnas, J.
2006-01-01
Resonant tunneling through an interacting single-level quantum dot, coupled to ferromagnetic electrodes with non-collinear magnetizations has been analyzed theoretically. The dot is additionally subject to an external magnetic field. The non-equilibrium Green function technique and the equation of motion method have been applied to calculate electric current, tunnel magnetoresistance, and the average spin components in the dot. The relevant Green functions have been calculated in the Hartree-Fock approximation, and the calculations are restricted to the weak coupling regime. Numerical results are presented for a dot which is empty at equilibrium, but can be singly or doubly occupied when a bias voltage is applied
Alpert, P.; Getenio, B.; Zak-Rosenthal, R.
1988-01-01
The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Directory of Open Access Journals (Sweden)
Ashutosh Vatsyayan
2016-08-01
Full Text Available Gunshot injuries are always known to cause severe morbidity and mortality when head and neck are involved. They vary in morbidity, which can occur in civilian surroundings. The wound largely depends on the type of weapon, mass and velocity of the bullet, and the distance from where it has been shot. Close-range gunshot wounds in the head and neck region can result in devastating aesthetic and functional impairment. The complexity in facial skeletal anatomy cause multiple medical and surgical challenges to an operating surgeon, demanding elaborate soft and hard tissue reconstruction. Here we presented the successful management of three patients shot by short-range pistol with basic life support measures, wound management, reconstruction and rehabilitation.
Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach
Energy Technology Data Exchange (ETDEWEB)
Galván-Colín, Jonathan, E-mail: jgcolin@ciencias.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Ariel A., E-mail: valladar@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, D.F. 04510, México (Mexico); Valladares, Renela M.; Valladares, Alexander [Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, México, D.F. 04510, México (Mexico)
2015-10-15
Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of Cu{sub x}Zr{sub 100−x} (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.
Short-range order in ab initio computer generated amorphous and liquid Cu-Zr alloys: A new approach
Galván-Colín, Jonathan; Valladares, Ariel A.; Valladares, Renela M.; Valladares, Alexander
2015-10-01
Using ab initio molecular dynamics and a new approach based on the undermelt-quench method we generated amorphous and liquid samples of CuxZr100-x (x=64, 50, 36) alloys. We characterized the topology of our resulting structures by means of the pair distribution function and the bond-angle distribution; a coordination number distribution was also calculated. Our results for both amorphous and liquids agree well with experiment. Dependence of short-range order with the concentration is reported. We found that icosahedron-like geometry plays a major role whenever the alloys are Cu-rich or Zr-rich disregarding if the samples are amorphous or liquid. The validation of these results, in turn would let us calculate other properties so far disregarded in the literature.
Marmodoro, Alberto; Ernst, Arthur; Ostanin, Sergei; Staunton, Julie B.
2013-03-01
The coherent potential approximation has historically allowed the efficient study of disorder effects over a variety of solid state systems. Its original formulation is, however, limited to a single-site or uncorrelated model of local substitutions. This neglects the effects of correlation and short-range ordering, often found in real materials. Recent theoretical work has shown one possible way to systematically address such shortcomings for simple materials with only one element per unit cell. We briefly review the basic ideas of such development within the framework of multiple scattering theory and suggest its generalization to materials with complex lattices. We validate our extension through a systematic comparison with a classic Cu1-cZnc reference test case and propose, for further illustration of local environment effects, the example of the yttria-stabilized cubic phase of zirconia, re-examined through various techniques for the first-principles treatment of disorder.
Rowlands, D. A.; Ernst, A.; Györffy, B. L.; Staunton, J. B.
2006-04-01
For many years, density-functional-based calculations for the total energies of substitutionally disordered alloys have been based upon the Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA). However, as a result of the single-site nature of the KKR-CPA, such calculations do not take into account important local environmental effects such as charge correlations (the Madelung energy) and chemical short-range order (SRO). Here the above approach is generalized by combining the recently developed Korringa-Kohn-Rostoker nonlocal coherent-potential approximation with density functional theory, showing how these effects may be systematically taken into account. As a first application of the theory, total energy calculations for the bcc Cu50Zn50 solid solution are presented, showing how the total energy varies as a function of SRO. The fcc Cu60Pd40 and Cu77Ni23 systems are also investigated.
Gu, Yongfeng; VanCourt, Tom; Herbordt, Martin C.
2008-01-01
FPGA-based acceleration of molecular dynamics simulations (MD) has been the subject of several recent studies. The short-range force computation, which dominates the execution time, is the primary focus. Here we combine: a high level of FPGA-specific design including cell lists, systematically determined interpolation and precision, handling of exclusion, and support for MD simulations of up to 256K particles. The target system consists of a standard PC with a 2004-era COTS FPGA board. There are several innovations: new microarchitectures for several major components, including the cell list processor and the off-chip memory controller; and a novel arithmetic mode. Extensive experimentation was required to optimize precision, interpolation order, interpolation mode, table sizes, and simulation quality. We obtain a substantial speed-up over a highly tuned production MD code. PMID:19412319
Gu, Yongfeng; Vancourt, Tom; Herbordt, Martin C
2008-05-01
FPGA-based acceleration of molecular dynamics simulations (MD) has been the subject of several recent studies. The short-range force computation, which dominates the execution time, is the primary focus. Here we combine: a high level of FPGA-specific design including cell lists, systematically determined interpolation and precision, handling of exclusion, and support for MD simulations of up to 256K particles. The target system consists of a standard PC with a 2004-era COTS FPGA board. There are several innovations: new microarchitectures for several major components, including the cell list processor and the off-chip memory controller; and a novel arithmetic mode. Extensive experimentation was required to optimize precision, interpolation order, interpolation mode, table sizes, and simulation quality. We obtain a substantial speed-up over a highly tuned production MD code.
Directory of Open Access Journals (Sweden)
Munir M. El-Desouki
2015-05-01
Full Text Available The demand for radio frequency (RF transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN.
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed S; Deen, M Jamal
2015-05-07
The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN).
Energy Technology Data Exchange (ETDEWEB)
Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy); University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States); DelFavero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States)
2015-04-01
Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip–cell interface under circumstances where the actin cytoskeleton has been disrupted. - Highlights: • AFM force–deformation curve was used to characterize the cardiac fibroblast adhesion behavior. • The amount and nature of adhesion were assessed using a Poisson analysis applied to the AFM curve. • The work of adhesion for control cells was about four times higher than that of the Cyt-D treated cells. • Short- and long-range contributions to adhesion are nearly equal for both control and treated cells.
Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao
2016-03-01
From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.
Ge, Liming; Xu, Yongbin; Liang, Weijie; Li, Xinying; Li, Defu; Mu, Changdao
2016-11-01
Genipin is an ideal cross-linking agent in biomedical applications, which can undergo ring-opening polymerization in alkaline condition. The polygenipin can create short-range and long-range intermolecular cross-linking between protein chains. In this article, the polygenipin with different degree of polymerization was successfully prepared and used to fix gelatin composite materials. The short-range and long-range cross-linking effects of polygenipin were systematically studied. The results show that the composite materials present porous structure with tunable pore sizes in the gel state, which can be easily controlled by adjusting the degree of polymerization of polygenipin. Long-range cross-linking can increase the pore size of the gel. However, during the drying process, the composite films cross-linked by polygenipin with higher degree of polymerization shrank to smaller size to create more compact structure, resulting in the improvement of water resistance properties, thermal stability, tensile strength, and darker color for the composite films. It is interesting that the composite films can partly swell to the original gel structure when in contact with water and saturated water vapor. All the composite films have excellent barrier properties against UV light. However, the compatibility of gelatin and polygenipin is reduced when the degree of polymerization of polygenipin increases to a certain extent, which will result in the formation of phase separation structure. The obtained composite films are ideal candidates for food and pharmaceutical packaging materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2712-2722, 2016. © 2016 Wiley Periodicals, Inc.
Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao
2016-02-27
From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T 1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T 1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.
Density functional approximation for spin dependent quantum transport in magnetic nano structures
International Nuclear Information System (INIS)
Nyunt, Khine
2009-01-01
In quasi-classical theoretical framework, the transport of electrons and holes in semiconductor devices is treated with the Boltzmann transport equation or quantum-mechanical energy band theory - viz., the effective mass approximation and the random phase approximation. On the other hand, in the mesoscopic, nano electronic devices, for three- and lower- dimensional structures with nanometer scaling, the wave properties, spin, charge and the interactions between spin and charge of electrons are fully utilized, such as in artificial mini-Brillouin zones, quantum size effects, Coulomb blockade of single-electron tunneling and spin-polarized giant magnetoresistance tunneling. The complexity associated with the classical quantum-mechanical formalism in the study of transport in magnetic nano structures can be avoided by applying the so-called, Hohenberg-Kohns density functional theory. In particular, the N-electron problem is formulated as N one-electron equations where each electron interacts with all other electrons via an effective exchange-correlation potential. These interactions are augmented using the electron charge density. Plane wave sets and total energy pseudo-potential methods can be used self-consistently, to solve the Kohn-Sham one-electron equations. Because of the limitations of quasi-classical theory, it is more appropriate to treat the magneto-transport problem in nano structures by using quantum many-body theory. The starting point of the quantum transport theory is to take an external field as a perturbation for the many-particle system in equilibrium. This leads to a linear response and gives corresponding transport coefficients. One useful application of the Greens function techniques in quantum magneto-transport is to convert a homogeneous differential equation into an integral equation, viz., as in the time-dependent Schrodinger equation. We have applied to scattering of nano structural defects (impurities) in the electron gas (metal) as many
Chepulskii, R. V.; Staunton, J. B.; Bruno, Ezio; Ginatempo, B.; Johnson, D. D.
2002-02-01
We combine the first-principles, Korringa-Kohn-Rostoker coherent potential approximation based calculations of compositional fluctuations with a statistical mechanical ring approximation to study the temperature (T) and composition (c) dependence of the atomic short-range order (SRO) in disordered, face-centred cubic, Cu-Pd alloys. The fourfold splitting of SRO peaks around the equivalent X(0,1,0) points in reciprocal space is obtained in a wide T-c region. Such splitting is shown to be an ``energy'' effect caused by the absolute minima of the Fourier transform of the effective atomic interactions and related previously to the existence of nested sheets of the disordered alloy's Fermi surface. However, we find that the T dependence of the SRO peak position is mostly an ``entropy'' effect. Both the calculated T and c dependences of the SRO peaks position are in good correspondence with the experimental data. The real-space effective atomic interactions and SRO parameters indicate the tendency for longer-period structures with increasing Pd concentration, as observed.
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas
2018-02-01
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi
Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J; Godfrin, P Douglas
2018-02-14
Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi
Energy Technology Data Exchange (ETDEWEB)
Vilja, I. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kokko, K., E-mail: kalevi.kokko@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland)
2014-11-25
Highlights: • We demonstrate that atomic site correlations can be extracted from random alloy data. • A method to obtain short-range order from total energy of random alloys is proposed. • Obtaining statistical quantities from the total energy of random alloys is proposed. • Correct structural tendencies of Ag–Pd alloys obtained from random alloy data. • Correct Warren–Cowley parameter obtained from random AgAu alloy data. - Abstract: Short-range correlations in Ag–Au and Ag–Pd alloys are investigated by analyzing the ab initio total energy of face centered cubic (fcc) based random Ag{sub c}Au{sub 1−c} and Ag{sub c}Pd{sub 1−c}. Since the information on the atomic interactions is incorporated in the energetics of alloys it is possible with a suitable model, Bethe–Peierls–Weiss model is used in the present work, to invert the problem, i.e. to obtain information on the short-range correlation from the total energy of a random system. As an example we demonstrate how site correlations can be extracted from random alloy data. Bethe–Peierls–Weiss model predicts negative (positive) first neighbor correlator for substitutional fcc Ag–Au and (Ag–Pd) alloys at low temperature which can be related to the optimal structures of Ag{sub 0.5}Au{sub 0.5} (and Ag{sub 0.5}Pd{sub 0.5})
International Nuclear Information System (INIS)
Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B
2011-01-01
Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)
Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem
2002-09-01
Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.
Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies
International Nuclear Information System (INIS)
Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej
2014-01-01
The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed
Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket
Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin
2015-01-01
The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.
Roermund, Arthur; Baschirotto, Andrea
2012-01-01
The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
Short-range CDW correlations in CoxNbSe2 and MnxNbSe2
Lee, J.; di Capua, R.; Karapetrov, G.; Nishizaki, T.; Kobayashi, N.; Iavarone, M.
2013-03-01
Scanning tunneling microscopy and transport measurements were performed on NbSe2 and Co- and Mn-intercalated NbSe2 single crystals, to address the effect of disorder induced on the CDW structure by the effect of intercalation. We find that the CDW transition at TCDW=33 K in the pure compound is accompanied by a small anomaly in resistivity, a strong non linearity of the Hall effect, with a sign reversal occurring at CDW transition, and high magnetoresistance in agreement with previous reports. The system remains metallic below the CDW transition. Upon increase of disorder the anomaly in resistivity moves at a lower temperature and eventually disappears for higher doping levels. By increasing the disorder also the magnetoresistance decreases and the Hall effect does not show any sign reversal. STM measurements on a pure sample reveal that CDW phase is long-range ordered below TCDW. For doped samples short range CDW correlations dominate a large part of the phase diagram.
Anguelova, Galia V; de Vlugt, Erwin; Vardy, Alistair N; van Zwet, Erik W; van Dijk, J Gert; Malessy, Martijn J A; de Groot, Jurriaan H
2017-10-03
We suggest short range stiffness (SRS) at the elbow joint as an alternative diagnostic for EMG to assess cocontraction. Elbow SRS is compared between obstetric brachial plexus lesion (OBPL) patients and healthy subjects (cross-sectional study design). Seven controls (median 28years) and five patients (median 31years) isometrically flexed and extended the elbow at rest and three additional torques [2.1,4.3,6.4Nm] while a fast stretch stimulus was applied. SRS was estimated in silico using a neuromechanical elbow model simulating the torque response from the imposed elbow angle. SRS was higher in patients (250±36Nm/rad) than in controls (150±21Nm/rad, p=0.014), except for the rest condition. Higher elbow SRS suggested greater cocontraction in patients compared to controls. SRS is a promising mechanical alternative to assess cocontraction, which is a frequently encountered clinical problem in OBPL due to axonal misrouting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asscher, Yotam; Dal Sasso, Gregorio; Nodari, Luca; Angelini, Ivana; Boffa Ballaran, Tiziana; Artioli, Gilberto
2017-08-16
Local atomic disorder and crystallinity are structural properties that influence greatly the resulting chemical and mechanical properties of inorganic solids, and are used as indicators for different pathways of material formation. Here, these structural properties are assessed in the crystals of quartz based on particle-size-related scattering processes in transmission infra-red spectroscopy. Independent determinations of particle size distributions in the range 2-100 μm of a single crystal of quartz and defective quartz with highly anisotropic micro-crystallites show that particle sizes below the employed wavelength (approx 10 μm) exhibit asymmetric narrowing of absorption peak widths, due to scattering processes that depend on the intra-particle structural defects and long range crystallinity. In particular, we observe that the 1079 cm -1 peak could be used to assess crystallinity, because it shows an asymmetric peak shape shift toward a higher wavelength, depending on the crystallite size. We observe that the 694 cm -1 peak could be used to assess local atomic disorder as it does not show scattering and peak shape changes when absorption effects dominate, below 2 μm. We propose coupling particle size assessments with infra-red peak shape analysis as a method to characterize crystallinity and short range order for studying recrystallization in natural silica, as well as defectivity in many different types of silicas used for industrial and technological applications.
X-ray diffraction study of atomic short-range order in Pt-15.0 at.% Cr alloy
Saha, D K; Shishido, T
2002-01-01
The X-ray diffuse scattering intensities were measured at room temperature for the Pt rich Pt-15.0 at.% Cr single crystal quenched from 800degC three-dimensionally. The atomic short-range order (ASRO) intensity component from the total diffuse ones was separated with the use of Borie-Sparks method [Acta Cryst. A 27 (1971) 198]. The ASRO intensity maxima were observed at the 100, 110 and their equivalent positions (X-point) on the reciprocal lattice plane, which are widely diffused. We did not find any ASRO diffuse scattering intensity at 1/2 1/2/1/2 and its equivalent positions (L-point) for the alloy. The diffuse maxima at the X-point are due to the Cu sub 3 Au type ASRO in the present alloy case. The ASRO parameters were determined from the data and the required number of ASRO parameters, to reconstruct the peaks, indicates that the maxima are widely diffused. The correlation length is deduced to be about 10 A. Any superlattice reflections were not found from the specimen, which was annealed below 400degC f...
Karalis, Konstantinos T; Dellis, Dimitrios; Antipas, Georgios S E; Xenidis, Anthimos
2016-07-26
The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273-2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09-87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m(3) vs. an experimental value of 2940 kg/m(3)) and for electrical conductivity (5.3-233 S/m within a temperature range of 1273.15-2273.15 K).
International Nuclear Information System (INIS)
Zhang, Hu; Dai, Jian-Qing; Song, Yu-Min
2016-01-01
We investigate the magnetoelectric coupling and spin-polarized tunneling in Ni/KNbO 3 /Ni multiferroic tunnel junctions with asymmetric interfaces based on density functional theory. The junctions have two stable polarization states. We predict a peculiar magnetoelectric effect in such junctions originating from the magnetic reconstruction of Ni near the KO-terminated interface. This reconstruction is induced by the reversal of the ferroelectric polarization of KNbO 3 . Furthermore, the change in the magnetic ordering filters the spin-dependent current. This effect leads to a change in conductance by about two orders of magnitude. As a result we obtain a giant tunneling electroresistance effect. In addition, there exist sizable tunneling magnetoresistance effects for two polarization states. - Highlights: • We study the ME coupling and electron tunneling in Ni/KNbO 3 /Ni junctions. • There is magnetic reconstruction of Ni atoms near the KO-terminated interface. • A peculiar magnetoelectric coupling effect is obtained. • Predicted giant tunneling electroresistance effects.
International Nuclear Information System (INIS)
Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui
2016-01-01
We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.
The Spin-dependent Structure Function of the Proton $g_{1}^p$ and a Test of the Bjorken Sum Rule
Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chaberny, D.; Cotic, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schluter, T.; Schopferer, S.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.
2010-01-01
The inclusive double-spin asymmetry, $A_{1}^{p}$, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x < 0.7 and improve the statistical precision of g_{1}^{p}(x) by a factor of two in the region x < 0.02. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants g_A/g_V = 1.28+-0.07(stat)+-0.10(syst).
Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J
1997-01-01
We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.
Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi
2018-01-01
We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.
Directory of Open Access Journals (Sweden)
Sajid Shah
2015-05-01
Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.
Directory of Open Access Journals (Sweden)
M. Jamal Deen
2013-08-01
Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.
1995-01-01
These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.
Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.
2017-09-01
Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.
De Groote, Friedl; Allen, Jessica L; Ting, Lena H
2017-04-11
Simulating realistic musculoskeletal dynamics is critical to understanding neural control of muscle activity evoked in sensorimotor feedback responses that have inherent neural transmission delays. Thus, the initial mechanical response of muscles to perturbations in the absence of any change in muscle activity determines which corrective neural responses are required to stabilize body posture. Muscle short-range stiffness, a history-dependent property of muscle that causes a rapid and transient rise in muscle force upon stretch, likely affects musculoskeletal dynamics in the initial mechanical response to perturbations. Here we identified the contributions of short-range stiffness to joint torques and angles in the initial mechanical response to support surface translations using dynamic simulation. We developed a dynamic model of muscle short-range stiffness to augment a Hill-type muscle model. Our simulations show that short-range stiffness can provide stability against external perturbations during the neuromechanical response delay. Assuming constant muscle activation during the initial mechanical response, including muscle short-range stiffness was necessary to account for the rapid rise in experimental sagittal plane knee and hip joint torques that occurs simultaneously with very small changes in joint angles and reduced root mean square errors between simulated and experimental torques by 56% and 47%, respectively. Moreover, forward simulations lacking short-range stiffness produced unreasonably large joint angle changes during the initial response. Using muscle models accounting for short-range stiffness along with other aspects of history-dependent muscle dynamics may be important to advance our ability to simulate inherently unstable human movements based on principles of neural control and biomechanics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Renaud, J; Rossomme, S; Sarfehnia, A; Vynckier, S; Palmans, H; Kacperek, A; Seuntjens, J
2016-09-21
In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min -1 , with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.
Long- and/or short-range transportation of local Asian aerosols in DRAGON-Osaka Experiment
Nakata, M.; Sano, I.; Mukai, S.; Holben, B. N.
2013-12-01
same day afternoon, large value of PM mass concentration was measured in Osaka. It is found from the simultaneous measurements of atmospheric particles, especially those on March 11, which present the maximum efficiency of DRAGON-Osaka, and numerical model simulations indicate that the long- and/or short- range transportation factors influence the characterization of atmospheric particles.
Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu
2018-05-01
The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.
Zhao, Yi; Duan, Suqing; Zhang, Wei
2012-06-20
Correlation effects and phase transitions are central issues in current studies on disordered systems. In this paper, we study the electronic properties of a disordered double chain with long-range intrachain correlation and short-range interchain correlation. Based on detailed numerical calculations, finite size scaling analysis and empirical analytical calculations, we obtain a phase diagram containing rich physics due to the interplay among the disorder, short-range and long-range correlations. Besides the long-range correlation induced localization-delocalization transitions, we find both first-order and second-order quantum phase transitions on changing the short-range correlation. Interestingly, the localization may be suppressed by increasing the disorder strength in some parameter regime and the 'anti-correlation' leads to the most delocalized state. Our studies shine some light on the mechanism of the charge transport in DNA molecules, where both types of correlated disorders are present.
Yong, Gao-Chan; Li, Bao-An
2017-12-01
Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.
Zhang, Xiao-Dong; Wen, Ji-Qiu; Xu, Qiang; Qi, Rongfeng; Chen, Hui-Juan; Kong, Xiang; Wei, Lu-De; Xu, Min; Zhang, Long Jiang; Lu, Guang Ming
2015-10-01
To investigate alterations of functional connectivity density (FCD) in patients with end-stage renal disease (ESRD) by using resting-state functional magnetic resonance imaging (rs-fMRI). Medical research ethics committee approval from Jinling hospital and written informed consent from each subject were obtained. Forty six patients with ESRD, consisting of 21 patients minimal nephrotic encephalopathy (MNE) and 25 non-nephro-encephalopathy (non-NE), as well as 23 healthy controls underwent rs-fMRI. Neuropsychological tests were performed in all subjects, while laboratory tests were performed in ESRD patients. A voxel-wise whole brain functional connectivity analysis was used to generate long- and short-range FCD maps. The maps among MNE, non-NE, and healthy controls groups were compared by using one-way analysis of variance tests. A multiple regression analysis was performed to evaluate the correlations between FCD and the variables of neuropsychological or laboratory tests. Compared with healthy controls, non-NE showed decreased long-range FCD mainly in parietal lobe. Moreover, MNE showed further decreased long-range FCD in bilateral middle prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and right superior frontal gyrus. Meanwhile, non-NE showed decreased short-range FCD mainly in frontal cortex, and further reduction in bilateral ACC and right superior parietal gyrus in MNE. In addition, patients with ESRD mainly exhibited increased long-range FCD in left temporal lobe and caudate; and increased short-range FCD in bilateral orbitofrontal cortex and temporal gyri (P short-range FCD in left inferior parietal lobule (all P short-range FCD reduction was found mainly in default mode network (DMN) and bilateral frontal and parietal lobes, while the progressively decreased long- and short-range FCD in ACC/MPFC and the long-range FCD in left superior frontal gyrus from non-NE to MNE was associated with cognition dysfunction in ESRD patients.
Vodopyanov, B P
2010-05-12
The influence of the spin-dependent phase shifts (SDPSs) associated with the electronic reflection and transmission amplitudes acquired by electrons upon scattering at the potential barrier on the Andreev reflection probability of electron and hole excitations for a ferromagnet/isolator/d-wave superconductor (FIS) contact and on the charge conductance of the FIS contact is studied. Various superconductor orientations are considered. It has been found that for strong ferromagnets and ultrathin interface potential for the {110} oriented d-wave superconductor the presence of the SDPS can lead to the appearance of finite-voltage peaks in the charge conductance of the F/I/d-wave superconductor contact. On the contrary, for the {100} orientation of the d-wave superconductor the presence of the SDPS can lead to restoration of the zero-voltage peak and suppression of finite-voltage peaks. The spin-dependent amplitudes of the Andreev reflection probability and energy levels of the spin-dependent Andreev bound states are found.
Deuterium short-range order in Pd0.975Ag0.025D0.685 by diffuse neutron scattering
DEFF Research Database (Denmark)
Blaschko, O.; Klemencic, R.; Fratzl, P.
1983-01-01
By diffuse neutron scattering the D short-range order in a Pd0.975Ag0.025D0.685 crystal was investigated at 50 and 70K. The results are compared with the D ordering in the PdDx system previously investigated, and it is shown that the isointensity contours around the (1/2,1,0) point are similar...... to that observed in PdD0.71. One may conclude that the characteristic changes in the short-range-order intensity which occur near x=0.7 in PdDx with concentration are due to changes of the electronic structure....
International Nuclear Information System (INIS)
Kumar, V.; Mookerjee, A.; Srivastava, V.K.
1980-09-01
We have developed here a self-consistent coherent potential approximation generalized to take into account effect of clusters. Off-diagonal disorder and short-range order are taken into account. A graphical method married to the recursion technique, enables us to work on realistic three-dimensional lattices. Calculations are shown for a binary alloy on a diamond lattice. (author)
Czech Academy of Sciences Publication Activity Database
Melnyk, R.; Nezbeda, Ivo; Trokhymchuk, A.
2016-01-01
Roč. 114, 16-17 (2016), s. 2523-2529 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : hard-core fluid * reference system * short-range Yukawa attraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016
Tuniz, Alessandro; Chemnitz, Mario; Dellith, Jan; Weidlich, Stefan; Schmidt, Markus A
2017-02-08
We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.
International Nuclear Information System (INIS)
Proebst, Franz.
1983-01-01
The system palladium-hydrogen has been investigated for the range of the β-phase by means of Moessbauer measurements for 57 Co sources in PdHsub(x) and absorbers of 57 Fe in PdHsub(x)(0.6< x<1.0). Thus informations on the magnetic behaviour of the impurities were found and on their spin relation for temperatures down to 0.086 K, moreover on the local hydrogen surroundings of the impurities and thus on the strength of the impurity-hydrogen-interaction and the hydrogen-hydrogen-interaction close to the impurities. Moreover, the diffusion of the hydrogen and the resulting lattice distortions are discussed. (BHO)
PAC experiments for a short range study of the Zr(10%Pr)O{sub 2} solid solution
Energy Technology Data Exchange (ETDEWEB)
Martinez, J. A.; Caracoche, M. C., E-mail: cristina@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica - IFLP, Facultad de Ciencias Exactas (Argentina); Rivas, P. C. [Universidad Nacional de La Plata, IFLP - Facultad de Ciencias Agronomicas y Forestales (Argentina); Rodriguez, A. M. [Universidad Nacional de La Plata, Departamento de Fisica - IFLP, Facultad de Ciencias Exactas (Argentina)
2006-07-15
A Zr(10 mol % Pr)O{sub 2} powder obtained by high-energy ball milling has been investigated at nanoscopic scale using primarily the Perturbed Angular Correlations technique. The aim has been to determine the nanoconfigurations around Zr{sup 4+} cations present in the solid solution and their thermal evolution with the intention of providing knowledge on the stability of the system. Results indicate that the milled product is a substitutional cubic solid solution described by two hyperfine interactions: a highly disordered interaction due to oxygen vacancies located very close to Zr{sup 4+} and an ordered interaction probably depicting a charge distribution including Pr{sup 3+} as nearest neighbor to Zr{sup 4+} probes. On cooling from high temperatures, monoclinic zirconia appears mostly at the expense of the oxygen defective cubic form. A gradual cooling indicates that destabilization of the solid solution takes place around 500{sup o}C. Thermal cycling leads to increasing amounts of the monoclinic phase.
Directory of Open Access Journals (Sweden)
Meera Ramaswamy
2017-10-01
Full Text Available Confined systems ranging from the atomic to the granular are ubiquitous in nature. Experiments and simulations of such atomic and granular systems have shown a complex relationship between the microstructural arrangements under confinement, the short-ranged particle stresses, and flow fields. Understanding the same correlation between structure and rheology in the colloidal regime is important due to the significance of such suspensions in industrial applications. Moreover, colloidal suspensions exhibit a wide range of structures under confinement that could considerably modify such force balances and the resulting viscosity. Here, we use a combination of experiments and simulations to elucidate how confinement-induced structures alter the relative contributions of hydrodynamic and short-range repulsive forces to produce up to a tenfold change in the viscosity. In the experiments we use a custom-built confocal rheoscope to image the particle configurations of a colloidal suspension while simultaneously measuring its stress response. We find that as the gap decreases below 15 particle diameters, the viscosity first decreases from its bulk value, shows fluctuations with the gap, and then sharply increases for gaps below 3 particle diameters. These trends in the viscosity are shown to strongly correlate with the suspension microstructure. Further, we compare our experimental results to those from two different simulations techniques, which enables us to determine the relative contributions of hydrodynamic and short-range repulsive stresses to the suspension rheology. The first method uses the lubrication approximation to find the hydrodynamic stress and includes a short-range repulsive force between the particles while the second is a Stokesian dynamics simulation that calculates the full hydrodynamic stress in the suspension. We find that the decrease in the viscosity at moderate confinements has a significant contribution from both the
International Nuclear Information System (INIS)
Znojil, M.
1986-01-01
The radial Schroedinger equation and its bound-state solutions for the interaction V(r)=Vsub(coulomb)+Vsub(Pade), where Vsub(Pade)(r)=(b+cr)/(1+drsup(2)) are considered. In order to construct exactly the Feshbach effective Hamiltonian Hsup(eff), the fixed-point-substraction technique is employed and its simplification is proposed. The first two terms in the resulting asymptotic expansions of PSIsub(n) and Hsup(eff) are calculated and interpreted as a new type of perturbation theory
Sharov, V. I.; Adiasevich, B. P.; Anischenko, N. G.; Antonenko, V. G.; Averichev, S. A.; Azhgirey, L. S.; Bartenev, V. D.; Bazhanov, N. A.; Blinov, N. A.; Borisov, N. S.; Borzakov, S. B.; Borzunov, Yu. T.; Borzunova, T. N.; Bunyatova, E. I.; Burinov, V. F.; Bushuev, Yu. P.; Chernenko, L. P.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Drobin, V. M.; Durand, G.; Dzyubak, A. P.; Fedorov, A. N.; Fimushkin, V. V.; Finger, M.; Finger, M.; Golovanov, L. B.; Gurevich, G. M.; Janata, A.; Khachaturov, B. A.; Kirillov, A. D.; Kochelev, N. I.; Kolomiets, V. G.; Konskii, I. G.; Kovalenko, A. D.; Kovalev, A. I.; Kuzmin, E. S.; Ladygin, V. P.; Lazarev, A. B.; Lehar, F.; de Lesquen, A.; Lukhanin, A. A.; Maniakov, P. K.; Matafonov, V. N.; Matyushevsky, E. A.; Motina, Z. P.; Neganov, A. B.; Nikolaevsky, G. P.; Nomofilov, A. A.; Orlova, V. V.; Panteleev, Tz.; Pavlova, T. F.; Pilipenko, Yu. K.; Pisarev, I. L.; Plis, Yu. A.; Polunin, Yu. P.; Polyakova, R. V.; Prokofiev, A. N.; Prytkov, V. Yu.; Rukoyatkin, P. A.; Schedrov, V. A.; Schevelev, O. N.; Shavrina, T. V.; Shilov, S. N.; Starikov, Yu. A.; Shutov, V. B.; Slunecka, M.; Slunečková, V.; Starikov, A. Yu.; Stoletov, G. D.; Strunov, L. N.; Svetov, A. L.; Usov, Yu. A.; Volkov, V. I.; Vorobiev, E. I.; Yershov, V. P.; Yudin, I. P.; Zaitsev, I. V.; Zaporozhets, S. A.; Zhdanov, A. A.; Zhmyrov, V. N.
2001-01-01
New data on the spin-dependent np observables measured with quasi-monochromatic polarized neutron beam in the energy region from 1.2 to 3.7 GeV are presented. Further measurements of np scattering observables using the JINR LHE polarization facility (longitudinal and transverse polarized neutron beams and a polarized proton target) are discussed. The aim of these studies is to determine the imaginary and real parts of the forward scattering amplitudes for np and for isospin I=0 systems above 1.1 GeV.
Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; He, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sans, M.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.-W.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.
2007-01-01
We present a precise measurement of the deuteron longitudinal spin asymmetry $A_1^d$ and of the deuteron spin-dependent structure function $g_1^d$ at $Q^2 < $ 1~(GeV/$c$)$^2$ and $4\\cdot$10$^{-5} < x < $~2.5$\\cdot$10$^{-2}$ based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured $A_1^d$ and $g_1^d$ are found to be consistent with zero in the whole range of $x$.
Frank, Bettina; Kahl, Philip; Podbiel, Daniel; Spektor, Grisha; Orenstein, Meir; Fu, Liwei; Weiss, Thomas; Horn-von Hoegen, Michael; Davis, Timothy J; Meyer Zu Heringdorf, Frank-J; Giessen, Harald
2017-07-01
We experimentally and theoretically visualize the propagation of short-range surface plasmon polaritons using atomically flat single-crystalline gold platelets on silicon substrates. We study their excitation and subfemtosecond dynamics via normal-incidence two-photon photoemission electron microscopy. By milling a plasmonic disk and grating structure into a single-crystalline gold platelet, we observe nanofocusing of the short-range surface plasmon polariton. Localized two-photon ultrafast electron emission from a spot with a smallest dimension of 60 nm is observed. Our novel approach opens the door toward reproducible plasmonic nanofocusing devices, which do not degrade upon high light intensity or heating due to the atomically flat surface without any tips, protrusions, or holes. Our nanofoci could also be used as local emitters for ultrafast electron bunches in time-resolved electron microscopes.
Sous, Abdulla Jameel; El-Kawni, M. I.
2018-01-01
Recently, the Asymptotic Iteration Method (AIM) was used to calculate the energy spectrum for a short rang three parameter central potential which was introduced by H. Bahlouli and A. D. Alhaidari. The S-orbital wave solution of the Schr\\"odinger equation was obtained for different parameters of the potential. In this work a non-zero angular momentum term were introduced to the problem and the energy eigenvalues were obtained for different potential parameters. Our results show very good agre...
Directory of Open Access Journals (Sweden)
Tao Liu
2016-12-01
Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.
Energy Technology Data Exchange (ETDEWEB)
Choi, Woo Suk; Kim, Eui Jong; Lee, Jae Gue; Rhee, Bong Arm [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)
1998-08-01
To evaluate the diagnostic efficacy of three-dimensional(3D) short-range MR angiography(MRA) and multiplanar reconstruction(MPR) imaging in hemifacial spasm(HS). Materials and Methods : Two hundreds patients with HS were studied using a 1.5T MRI system with a 3D time-of-flight(TOF) MRA sequence. To reconstruct short-range MRA, 6-10 source images near the 7-8th cranial nerve complex were processed using a maximum-intensity projection technique. In addition, an MPR technique was used to investigate neurovascular compression. We observed the relationship between the root-exit zone(REZ) of the 7th cranial nerve and compressive vessel, and identified the compressive vessels on symptomatic sides. To investigate neurovascular contact, asymptomatic contralateral sides were also evaluated. Results : MRI showed that in 197 of 200 patients there was vascular compression or contact with the facial nerve REZ on symptomatic sides. One of the three remaining patients was suffering from acoustic neurinoma on the symptomatic side, while in two patients there were no definite abnormal findings.Compressive vessels were demonstrated in all 197 patients; 80 cases involved the anterior inferior cerebellar artery(AICA), 74 the posterior cerebellar artery(PICA), 13 the vertebral artery(VA), 16 the VA and AICA, eight the VA and PICA, and six the AICA and PICA. In all 197 patients, compressive vessels were reconstructed on one 3D short-range MRA image without discontinuation from vertebral or basilar arteries. 3D MPR studies provided additional information such as the direction of compression and course of the compressive vessel. In 31 patients there was neurovascular contact on the contralateral side at the 7-8th cranial nerve complex. Conclusion : Inpatients with HS, 3D short-range MRA and MPR images are excellent and very helpful for the investigation of neurovascular compression and the identification of compressive vessels.
Liu, Tao; Li, Jianjun; Zhang, Zhiqiang; Xu, Qiang; Lu, Guangming; Huang, Shixiong; Pan, Mengjie; Chen, Feng
2016-01-01
Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD) have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD) maps. We tested this hypothesis using functional magnetic resonance imaging (fMRI) data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy controls (HCs) (n = 32) in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC) and increased in the left cerebellum posterior lobe (CPL) and bilateral inferior parietal lobule (IPL) in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC), and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS) (r=-0.432, P=0.012), and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002) in BQD individuals. fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD. © 2016 The Author(s) Published by S. Karger AG, Basel.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping
2017-06-30
Abnormal short-range and long-range functional connectivities (FCs) have been implicated in the neurophysiology of schizophrenia. This study was conducted to examine the potential of short-range and long-range FCs for differentiating the patients from the controls with a family-based case-control design. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 unaffected siblings of the patients (family-based controls, FBCs), and 40 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (fMRI) scans. The data were analyzed by short-range and long-range FC analyses, receiver operating characteristic curve (ROC) and support vector machine (SVM). Compared with the FBCs/HCs, the patients exhibit increased short-range positive FC strength (spFCS) and/or long-range positive FC strength (lpFCS) in the default-mode network (DMN) and decreased spFCS and lpFCS in the sensorimotor circuits. Furthermore, a combination of the spFCS values in the right superior parietal lobule and the lpFCS values in the left fusiform gyrus/cerebellum VI can differentiate the patients from the FBCs with high sensitivity and specificity. The findings highlight the importance of the DMN and sensorimotor circuits in the pathogenesis of schizophrenia. Combining with family-based case-control design may be a viable option to limit the confounding effects of environmental risk factors in neuroimaging studies of schizophrenia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Short-range correlations in d-f cyanido-bridged assemblies with XY and XY-Heisenberg anisotropy.
Tanase, Stefania; Evangelisti, Marco; de Jongh, L Jos
2011-09-07
Two new d-f cyanido-bridged 1D assemblies [RE(pzam)(3)(H(2)O)Mo(CN)(8)]·H(2)O (RE = Sm(III), Er(III)) were synthesized and their magneto-structural properties have been studied by field-dependent magnetization and specific heat measurements at low temperatures (≥0.3 K). Below ≈ 10 K the ground state of both the Sm(III) and Er(III) ions is found to be a Kramers doublet with effective spin S = 1/2. From analyses of the low-temperature magnetic specific heat and magnetization the exchange coupling between these RE(III) effective spins and the Mo(v) spins S = 1/2 along the structural chains has been determined. It is found to be antiferromagnetic, with J(∥)/k(B) = -2.6 K and Ising-Heisenberg symmetry of the interaction (J(∥)/J(⊥) = 0.3) for RE = Sm(III), whereas the compound with RE = Er(III) behaves as a pure XY chain, with J(⊥)/k(B) = -1.0 K. For the compound [Sm(pzam)(3)(H(2)O)Mo(CN)(8)]·H(2)O a small λ-type anomaly in the specific heat is observed at about 0.6 K, which is ascribed to a transition to long-range magnetic ordering induced by weak interchain interactions of dipolar origin. No evidence for 3D interchain magnetic ordering is found in the Er(III) analogue. This journal is © The Royal Society of Chemistry 2011
Wang, Shuai; Zhan, Yajing; Zhang, Yan; Lyu, Luxian; Lyu, Hailong; Wang, Guodong; Wu, Renrong; Zhao, Jingping; Guo, Wenbin
2018-02-02
Human brain is a topologically complex network embedded in anatomical space, and anatomical distance may affect functional connectivity (FC) in schizophrenia. However, little is known if and how this effect occurs in adolescent-onset schizophrenia (AOS). We explored long- and short-range FC through resting-state functional magnetic resonance imaging in 48 first-episode, drug-naive AOS patients and 31 healthy controls, and we examined if these abnormalities could be utilized to separate patients from controls using receiver operating characteristic curves and support vector machines (SVM). Patients had increased long-range positive FC (lpFC) and short-range positive FC (spFC) in the right middle frontal gyrus and right superior medial prefrontal cortex within the anterior default mode network (DMN), decreased lpFC and spFC in several regions of the posterior DMN, and decreased lpFC within the important hubs of salience network (SN). The decreased lpFC in the left superior temporal gyrus was positively correlated with cognitive impairment. We found that SVM has high accuracy (up to 92.4%) in classifying patients and control. Disrupted anatomical distance would underlie network-level dysconnectivity, highlighting the importance of the DMN and SN in the neurodevelopment of schizophrenia. Abnormalities of long- and short-range FC in brain regions could discriminate patients from controls with high accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Zhao, Jingping
2017-01-01
Treatment effects of antipsychotic drugs on cerebral function are seldom examined. Exploring functional connectivity (FC) in drug-free schizophrenia patients before and after antipsychotic treatment can improve the understanding of antipsychotic drug mechanisms. A total of 17 drug-free patients with recurrent schizophrenia and 24 healthy controls underwent resting-state functional magnetic resonance imaging scans. Long- and short-range FC strengths (FCS) were calculated for each participant. Compared with the controls, the patients at baseline exhibited increased long-range positive FCS (lpFCS) in the bilateral inferior parietal lobule (IPL) and decreased lpFCS in the brain regions of the default-mode network (DMN) regions and sensorimotor circuits of the brain. By contrast, increased short-range positive FCS was observed in the right IPL of the patients at baseline compared with the controls. After treatment with olanzapine, increased FC in the DMN and sensorimotor circuits of the brain was noted, whereas decreased FC was observed in the left superior temporal gyrus (STG). Moreover, the alterations of the FCS values and the reductions in symptom severity among the patients after treatment were correlated. The present study provides evidence that olanzapine normalizes the abnormalities of long- and short-range FCs in schizophrenia. FC reductions in the right IPL may be associated with early treatment response, whereas those in the left STG may be related to poor treatment outcome. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Coexistence of long- and short-range magnetic order in the frustrated magnet SrYb2O4
Quintero-Castro, D. L.; Lake, B.; Reehuis, M.; Niazi, A.; Ryll, H.; Islam, A. T. M. N.; Fennell, T.; Kimber, S. A. J.; Klemke, B.; Ollivier, J.; Sakai, V. Garcia; Deen, P. P.; Mutka, H.
2012-08-01
SrYb2O4 is a geometrically frustrated rare-earth magnet, which presents a variety of interrelated magnetic phenomena. The magnetic Yb3+ ions (J=7/2) form potentially frustrated “zigzag” chains along the c axis, arranged in a honeycomb fashion in the ab plane. Heat capacity reveals a magnetic phase transition at TN=0.9 K. The magnetic structure was solved by polarized neutron diffraction and found to be noncollinear with a reduction of the ordered spin moment from the full ionic moment. The low-energy excitations, which were measured by inelastic neutron scattering reveal diffuse scattering both above and below TN. Heat capacity and magnetocaloric effect were performed to map out the magnetic phase diagram as a function of magnetic field and temperature and show a complicated series of states. Altogether, the results suggest that the magnetic interactions in SrYb2O4 compete with each other and with the single-ion anisotropy to produce a highly degenerate ground state manifold that suppresses the magnetic order, broadens the excitations and gives rise to a complex phase diagram.
International Nuclear Information System (INIS)
Li, Xin-Mei; Long, Meng-Qiu; Cui, Li-Ling; Xiao, Jin; Zhang, Xiao-Jiao; Zhang, Dan; Xu, Hui
2014-01-01
Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS 2 ) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS 2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. - Highlights: • The spin-dependent electronic transport of zigzag MoS 2 nanoribbons. • The effects of V-shaped edge defect and H-saturation. • The effects of spin-filter and negative differential resistance can be observed
Directory of Open Access Journals (Sweden)
Geoffrey eMégardon
2015-10-01
Full Text Available Dynamic Neural Field models (DNF often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localisation, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC, a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted towards the strongest stimulus, reminiscent of well-known behavioural data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although those properties call for systematic testing, the discussion gathers neurophysiological and behavioural data suggesting that such properties are indeed present in target selection for saccadic eye movements.
Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain
2015-01-01
Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements.
International Nuclear Information System (INIS)
Xi, L.; Du, J.H.; Ma, J.H.; Wang, Z.; Zuo, Y.L.; Xue, D.S.
2013-01-01
Highlights: ► Spin-dependent transport property of LSMO/oleic acid nanoparticles is investigated. ► Transport properties and MR measured by Cu/nanoparticle assembly/elargol device. ► Non-linear I–V curve indicates a tunneling type transport properties. ► Tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting I–V curves. ► LFMR of LSMO/oleic acid molecules value reaches −18% with current of 0.1 μA at 10 K. - Abstract: Spin-dependent transport property through molecules is investigated using a monolayer of oleic acid molecule self-assembled half metallic La 0.7 Sr 0.3 MnO 3 (LSMO) nanoparticles, which was synthesized using a coprecipitation method. Fourier transform infrared spectroscopy was used to confirm that one-monolayer oleic acid molecules chemically bond to the LSMO nanoparticles. The transport properties and magnetoresistance (MR) effect of the oleic acid molecule coated LSMO nanoparticles were measured by a direct current four probes method using a Cu/nanoparticle assembly/elargol electrode sandwich device with various temperatures and bias voltages. The non-linear I–V curve indicates a tunneling type transport properties. The tunnel barrier height around 1.3 ± 0.15 eV was obtained by fitting the I–V curve according to the Simmons equation. The magnetoresistance curves can be divided to high-field MR and low-field MR (LFMR) parts. The former is ascribed to the influence of spin disorder or canting within the LSMO nanoparticle surface and the latter one with strong bias dependence is attributed to the spin-dependent tunneling effect through the insulating surface layer of LSMO and oleic acid molecules. The enhanced LFMR effect for oleic acid coated LSMO with respect to the bare LSMO was attributed to the enhanced tunneling transport and weak spin scattering in oleic acid molecule barrier.
Short range miniaturized biotelemetry system
Lorenz, R.
1975-01-01
A biotelemetry system for measuring and transmitting EKG, EMG, and EEG data by an RF link to a receiver was designed, developed, and delivered. The system is battery operated with the batteries and transmitting electronics an integral part of the electrode sensors. The low frequency response of 0.05 Hz assures faithful reproduction of detailed EKG and all measurements are made by the utilization of two electrode sensors.
Short range radio locator system
McEwan, T.E.
1996-12-31
A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information. 5 figs.
Liu, Er; Yuan, Honglei; Kou, Zhaoxia; Wu, Xiumei; Xu, Qingyu; Zhai, Ya; Sui, Yunxia; You, Biao; Du, Jun; Zhai, Hongru
2015-01-01
The core-shell structural Fe3O4/ZnS nanocomposites with controllable shell thickness were well-fabricated via seed-mediate growth method. Structural and morphological characterizations reveal the direct deposition of crystalline II-VI compound semiconductor ZnS shell layer on Fe3O4 particles. Spin dependent electrical transport is studied on Fe3O4/ZnS nanocomposites with different shell thickness, and a large magnetoresistance (MR) ratio is observed under the magnetic field of 1.0 T at room temperature and 100 K for the compacted sample by Fe3O4/ZnS nanocomposites, which is 50% larger than that of sample with pure Fe3O4 particles, indicating that the enhanced MR is contributed from the spin injection between Fe3O4 and ZnS layer. PMID:26053888
Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3(M = Cr, Mn, Fe).
Okugawa, Takuya; Ohno, Kaoru; Noda, Yusuke; Nakamura, Shinichiro
2018-02-21
We investigate the spin-dependent electronic states of antiferromagnetic (AFM) lanthanum chromite (LaCrO 3 ), lanthanum manganite (LaMnO 3 ), and lanthanum ferrite (LaFeO 3 ) using spin-polarized first-principles density functional theory with Hubbard U correction. The band structures are calculated for 15 types of their different AFM structures. It is verified for these structures that there is a very simple rule to identify which wave number [Formula: see text] exhibits spin splitting or degeneracy in the band structure. This rule uses the symmetry operations that map the up-spin atoms onto the down-spin atoms. The resulting spin splitting is very small for the most stable spin configuration of the most stable experimental structure. We discuss a plausible benefit of this characteristic, i.e. the direction-independence of the spin current, in electrode applications.
International Nuclear Information System (INIS)
Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki
2015-01-01
We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale
Thompson, Travis H.; Ochsenfeld, Christian
2017-10-01
We introduce both rigorous and non-rigorous distance-dependent integral estimates for four-center two-electron integrals derived from a distance-including Schwarz-type inequality. The estimates are even easier to implement than our so far most efficient distance-dependent estimates [S. A. Maurer et al., J. Chem. Phys. 136, 144107 (2012)] and, in addition, do not require well-separated charge-distributions. They are also applicable to a wide range of two-electron operators such as those found in explicitly correlated theories and in short-range hybrid density functionals. For two such operators with exponential distance decay [e-r12 and erfc (0.11 ṡr12 ) /r12], the rigorous bound is shown to be much tighter than the standard Schwarz estimate with virtually no error penalty. The non-rigorous estimate gives results very close to an exact screening for these operators and for the long-range 1/r12 operator, with errors that are completely controllable through the integral screening threshold. In addition, we present an alternative form of our non-rigorous bound that is particularly well-suited for improving the PreLinK method [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] in the context of short-range exchange calculations.
Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)
2002-01-01
This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.
Short range charge/orbital ordering in La1-xSrxMn1-zBzO3 (B Cu,Zn) manganites
International Nuclear Information System (INIS)
Popovic, Z V; Cantarero, A; Thijssen, W H A; Paunovic, N; Dohcevic-Mitrovic, Z; Sapina, F
2005-01-01
We have measured the reflectivity spectra of La 1-x Sr x Mn 1-z B z O 3 (B = Cu, Zn; 0.17 ≤ x ≤ 0.30; 0 ≤ z ≤ 0.10) manganites over wide frequency (100-4000 cm -1 ) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm -1 (external mode), 350 cm -1 (bond bending mode) and 590 cm -1 (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm -1 below the temperature T 1 (T 1 C ), which coincides with the phase transition temperature when the system transforms from ferromagnetic metallic into a ferromagnetic insulator state. This transition is related to the formation of short range charge/orbitally ordered domains. The temperature T 1 of the phase transition is dependent on the doping concentration and for optimally doped samples we have found that T 1 ∼(0.93 ± 0.02) T C . Electrical resistivity and magnetization measurements versus temperature and magnetic field support the short range charge/orbital ordering scenario
Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip
2016-02-15
We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.
Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti
2014-01-01
An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.
Directory of Open Access Journals (Sweden)
K. K. Hon
2014-01-01
Full Text Available Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear and turbulence associated with buildings or man-made structures, it would be necessary to involve meteorological instruments that offer greater spatial resolution. Therefore, the Observatory has set up a short-range LIDAR on the roof of the AsiaWorld-Expo during the summers over the past several years, conducting field research on the feasibility of strengthening early alerting for windshear and turbulence over the north runway’s eastern arrival runway (Runway 25RA and developing an automated early alerting algorithm. This paper takes the pilot reports for Runway 25RA during the 2013 field research as verification samples, using different thresholds for radial wind velocity spatial and temporal changes detected by the short-range LIDAR to calculate the relative operating characteristic (ROC curve, and analyzes its early alerting performance.
Thompson, Travis H; Ochsenfeld, Christian
2017-10-14
We introduce both rigorous and non-rigorous distance-dependent integral estimates for four-center two-electron integrals derived from a distance-including Schwarz-type inequality. The estimates are even easier to implement than our so far most efficient distance-dependent estimates [S. A. Maurer et al., J. Chem. Phys. 136, 144107 (2012)] and, in addition, do not require well-separated charge-distributions. They are also applicable to a wide range of two-electron operators such as those found in explicitly correlated theories and in short-range hybrid density functionals. For two such operators with exponential distance decay [e -r 12 and erfc(0.11⋅r 12 )/r 12 ], the rigorous bound is shown to be much tighter than the standard Schwarz estimate with virtually no error penalty. The non-rigorous estimate gives results very close to an exact screening for these operators and for the long-range 1/r 12 operator, with errors that are completely controllable through the integral screening threshold. In addition, we present an alternative form of our non-rigorous bound that is particularly well-suited for improving the PreLinK method [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013)] in the context of short-range exchange calculations.
Magnetic and spin-dependent transport properties of reactive sputtered epitaxial Ti 1-xCr xN films
Duan, Xiaofei
2012-05-01
Reactive-sputtered epitaxial Ti 1-xCr xN films are ferromagnetic in the range of 0.17 ≤ x ≤ 0.51 due to the Cr-N-Cr double-exchange interaction below the Curie temperature (T C). The T C first increases, then decreases as x increases, and a maximum of 120 K appears at x = 0.47. All of the films are metallic with a transition near T C. A resistivity minimum ρ min is observed below 60 K in the films with 0.10 ≤ x ≤ 0.51 due to the effects of the weak localization and electron-electron interaction. The negative magnetoresistance (MR) is caused by the double-exchange interaction below T C and the weak localization can also contribute to MR below T min where ρ min appears. The x-dependent electron carrier densities reveal that the ferromagnetism is not from the carrier-mediated mechanism. The anomalous Hall resistivity follows the relation of ρxyA∝ρxx2, which is from the side-jump mechanism. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Holdensen, Lars; Hauggaard-Nielsen, Henrik; Jensen, Erik Steen
2007-01-01
abundance in spring barley and N2-fixing pea was measured within the 0.15-4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley......-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop...
International Nuclear Information System (INIS)
Khwaja, F.A.; Alam, A.
1980-09-01
Diffuse X-ray scattering investigations about the existence of short-range order (SRO) have been carried out in the Ni-Ta system for different concentrations and annealing temperatures. It is observed that the values of the SRO parameters for the first co-ordination shell have anomalously large negative values for all the samples studied. These values of the α 1 depend upon the annealing temperatures and the concentration of Ta atoms in the Ni-Ta system. The results of the theoretical predictions of the ordering potential obtained using the formulae of the electronic theory of SRO, confirm the existence of very strong attractive correlation between the atoms of the different species in this system. (author)
Marmodoro, Alberto; Ernst, Arthur; Ostanin, Sergei; Sandratskii, Leonid; Trevisanutto, Paolo E.; Lathiotakis, Nektarios N.; Staunton, Julie B.
2016-12-01
The nonlocal coherent-potential approximation provides a systematic technique for the study of short-range ordering effects in a variety of disordered systems. In its original formulation the technique, however, shows an unwanted dependence on details in the coarse-grained effective medium construction. This is particularly evident in the study of k ⃗-resolved quantities, such as the Bloch spectral function and other non-site-diagonal observables. We remove the issue and recover fully physical results in first principles studies of real materials, by means of a resampling procedure first proposed for model tight-binding Hamiltonians. The prescription is further generalized to the case of complex unit cell compounds, with more than a single sublattice, and illustrated through examples from metallic alloys and disordered local moment simulations of paramagnetism in the prototype iron-based superconductor FeSe.
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R
2017-10-31
In this work, we report successful synthesis of a new intermetallic compound Tm_{2}Ni_{0.93}Si_{2.93} that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits large magnetic entropy change (-ΔS_{M} ~ 13.7 J/kg K) and adiabatic temperature change (ΔT_{ad} ~ 4.4 K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long range magnetic ordering down to 2 K, metastable nature of the low temperature spin dynamics and short range magnetic correlations are considered to be responsible for such large magnetocaloric effect (MCE) over a wide temperature region. © 2017 IOP Publishing Ltd.
Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R
2017-11-20
In this work, we report the successful synthesis of a new intermetallic compound Tm 2 [Formula: see text] [Formula: see text] that forms in single phase only in defect crystal structure. The compound does not show any long range magnetic ordering down to 2 K. The material exhibits a large magnetic entropy change ([Formula: see text] J [Formula: see text] K -1 ) and adiabatic temperature change ([Formula: see text] K) at 2.2 K for a field change of 20 kOe which can be realized by permanent magnets, thus being very beneficial for application purpose. In the absence of long-range magnetic ordering down to 2 K, the metastable nature of low-temperature spin dynamics and short-range magnetic correlations are considered to be responsible for such a large magnetocaloric effect over a wide temperature region.
Biava, D. A.; Johnson, D. D.
2009-03-01
Short-range order (SRO) is ubiquitous in metallic alloys, affecting changes in their electronic, thermodynamic, mechanical, magnetic, and structural properties. For example, SRO is responsible for the yield-strength anomalies observed in Cu-Al at high temperatures, i.e., the materials is more resistant to dislocation motion at high temperature than it is at room temperature. Within the Korringa-Kohn-Rostorker (KKR) electronic-structure method, we present results using the dynamical cluster approximations (DCA) to obtain the temperature-dependent SRO in disordered alloys. We obtain the KKR-DCA SRO energetics versus local neighbor SRO parameters and minimize it at fixed temperature to predict the SRO. We show that the calculated SRO at fixed temperature compares well with available experimental results, and then correlate the results to the electronic structure. We discuss how an accurate analytic estimate can be made for the SRO in most metals due to the dependence of the grand potential on SRO.
Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard
2016-01-21
The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.
Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi
2017-10-06
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Energy Technology Data Exchange (ETDEWEB)
Castro, P.; Velarde, M.; Ardao, J.; Perlado, J.; Sedano, L.; Xiberta, J.
2015-07-01
In this paper we assumes the hydrogen isotopes permeation from a liquid metal ITER breeder blanket (assuming normal operation and a LM as DCLL or HCLL blanket) as one of the possible sources of a leak and tritium release,mainly but not only. The paper presents a short range low impact of HT gas activity over France, Swiss or Spain from same cases in 2014 and 2015 releases from ITER. The permeation of hydrogen isotopes is an important experimental issue to take into account into the development of a Tritium Breeder Module for ITER [1]. Tritium cannot be confined -without an uncertainty of 5% in the flux permeation- and therefore HT can be detected (e.g. by ionization chamber) as permeates though the structure of RAFM steel towards the coolant [1]. HT from Pb15.7Li and permeated in Eurofer97 can contaminate the other parts of the system and may be delivered though the normal-vent detritiation system (NVDS). Real time forecast of transport of tritium in air from the fusion reactor towards off-site far downwind though extended tritium clouds into the low levels of the atmosphere is calculated for the short range (up to 24 hours) by the coupling of 2 models the European Centre for Medium Range Weather Forecast (ECMWF) [2] model and the FLEXPART lagrangian dispersion model [3] verified with NORMTRI simulation [4] and implemented in many different cases and scenarios [5, 6, 7]. As a function of daily weather conditions the release will affect just France or already can be delivered towards Swiss when cyclonic circulation, or towards the Iberian Peninsula or Balearic Islands (Spain) when high produce anticyclonic circulation of the air over the Mediterranean Sea. (Author)
Czech Academy of Sciences Publication Activity Database
Tober, E.D.; Palomares, F.J.; Ynzunza, R.X.; Denecke, R.; Morais, J.; Liesegang, J.; Hussain, Z.; Shick, Alexander; Pickett, W. E.; Fadley, C. S.
2013-01-01
Roč. 189, AUG (2013), s. 152-156 ISSN 0368-2048 Institutional support: RVO:68378271 Keywords : photoelectron spectroscopy * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2013 http://www.sciencedirect.com/science/article/pii/S0368204812001880
International Nuclear Information System (INIS)
Li Chun-Lei; Lv Yuan; Guo Yong; Wang Xiao-Ming
2017-01-01
We have investigated the photon-assisted shot noise properties in the magnetic field tunable heterostructures. Transport properties of the model structure are strongly dependent on the oscillatory field and the magnetic field. In this structure, electrons can absorb or emit one or multi-photons to reach the quasi-bound state. As a result, the transmission properties are affected considerably by photon-assisted tunneling and these features cause the nontrivial variations in the shot noise and Fano factor. It is found that the shot noise becomes spin-dependent and can be modulated not only by the magnetic field, but also by the oscillatory field. Both the spin-up and spin-down components of the shot noise can be greatly suppressed by the magnetic field, and can also be drastically enhanced by the harmonically driven field. Furthermore, with increasing external magnetic field, it is important to note that the enhanced intensity is decreased, even suppressed. These results suggest another method to suppress the shot noise via modulating the oscillatory field at a diluted-magnetic semiconductors/semiconductor structure. (paper)
Nunes, A S
2014-01-01
The COMPASS experiment at CERN has collected a large sample of events of inelastic scattering of longitudinally polarised muons off longitudinally polarised protons in the non-perturbative region (four-momentum transfer squared $Q^2<1$~(GeV$^2$/$c^2$), with a Bjorken scaling variable in the range $4\\times 10^{-5}
Badelek, Barbara
2017-01-01
This paper summarizes the COMPASS Collaboration legacy on measurements of the proton and deuteron spin-dependent structure functions, $g_1^p$ and $g_1^d$ at $Q^2 1$ (GeV/c)$^2$. In both regions and at the lowest measured $x, g^d_1 (x)$ is consistent with zero while $g^p_1 (x)$ is positive. This is the first time that the spin effects are observed at such low values of $x$. The NLO QCD fit of $g_1$ world data gives well constrained quark helicity distributions; gluons are poorly determined. Quark helicity contribution to nucleon spin is $0.26 < \\Delta \\Sigma < 0.36$. From the COMPASS data alone the Bjorken sum rule is verified to $9\\%$ accuracy and the extracted flavour-singlet axial charge is $a_0 (Q^2 = 3 (\\text{GeV/}c)^2) = 0.32 \\pm 0.02_{stat.} \\pm 0.04_{syst.} \\pm 0.05_{evol.}$.
2002-01-01
The aim of the experiment is to measure @*N spin obssservables using a frozen spin target and a high resolution spectrometer (SPES II). The &bar.NN scattering is usually described with NN potentials transformed by G-parity, where the large annihilation cross section (@s^a^n/@s^e^l$>$2) is taken into account. The different theoretical approaches fit reasonably well the existing data on spin integrated cross sections. For the spin dependent observables, the predictions depend consistently on the theoretical inputs.\\\\ \\\\ A strong energy dependence of the @*p polarization Ay(@q) is predicted. We plan to check it measuring the angular distribution of Ay(@q) for @* momenta between 300 and 700 MV/c. Using a deuterium target, measurements of Ay(@q) for @*d in the same energy range will provide information on @*n scattering.\\\\ \\\\ The @* beam hits a 5 mm thick frozen spin target which has a large opening aperture. We expect a polarization of @=~80\\% with a low holding field of (.35Tm). The incident trajectory is de...
Directory of Open Access Journals (Sweden)
S. Mohammad Moosavi Nejad
2017-08-01
Full Text Available In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC in proton–proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t(↑→bH+→BH++X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+−tanβ parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.
Brodie, Nicholas I; Petrotchenko, Evgeniy V; Borchers, Christoph H
2016-10-21
Short-distance molecular-modeling constraints are advantageous for elucidating the structures of individual proteins and protein conformational changes. Commonly used amine-reactive crosslinks are relatively long (14Å), partly due to the length of the lysine side-chain, and are sparsely distributed throughout a protein. Short-distance non-specific crosslinkers can provide a larger number of tighter molecular-modeling constraints. Here we describe the use of a short-range homo-trifunctional isotopically-coded non-specific photo-reactive crosslinking reagent, 2,4,6-triazido-1,3,5-triazine (TATA)- 12 C 3 / 13 C 3 , for MS-based protein crosslinking studies. Upon activation by 254nm UV light, TATA- 12 C 3 / 13 C 3 generates up to three nitrene radicals capable of non-selective crosslinking at ~5Å. This reagent was validated using cyclohexane, several test peptides, and myoglobin, and was found to react with a large number of amino acids, forming multiple crosslinked products. The myoglobin crosslinks detected by MS agreed with the known structure of myoglobin; arranging the protein's secondary-structure motifs into their correct fold was possible based solely on the constraints imposed by the crosslinks. Finally, TATA was used to crosslink the α-synuclein monomer. The 10 short-distance constraints provided by TATA crosslinking led to an initial model of the molten-globule form of the native α-synuclein monomer; this provides a suggested structure for the precursor of the misfolded α-synuclein proteoforms involved in synucleopathies. The isotopically labeled short-range non-specific crosslinker TATA- 12 C 3 / 13 C 3 was characterized for use in crosslinking-based protein structural studies. The crosslinking products of TATA can provide a distance constraint of merely 5Ǻ between crosslinked residues. TATA- 12 C 3 / 13 C 3 had broad reactivity, crosslinking a wide variety of amino acids, including lysine, glutamic and aspartic acid, asparagine, glutamine, glycine
International Nuclear Information System (INIS)
L'Haridon, P.; David, J.; Lang, J.; Parthe, E.
1976-01-01
Single-crystal studies on BeP 2 indicate that this compound possesses an OD structure. The substructure has a tetragonal unit cell with: a = 3.546 A, c = 15.01 A, Z = 4, space group: I4 1 /amd. The final R factor has a value of 0.033. The atom sites in this substructure correspond to the sites of diamond if the latter is described with a tetragonal cell, where a = (2/sup 1/2//a/sub diamond/ and c = 3a/sub diamond/. A short-range order governs the occupation of these sites with Be and P atoms. Each Be has four tetrahedral P neighbors and every P has two Be and two P neighbors. Consideration of the maxima on the diffuse streaks between the sharp reflectins of the substructure leads to an intermediate unit cell with a = 7.09 A and c = 30.02 A. Coordination considerations allow a structure proposal to be formulated for this intermediate structure which is triclinic but pseudotetragonal. The true unit cell is also pseudotetragonal with a = 7.09 A and c = N . 15.01 A, where N is a large integer
Nesterova, Anna P; Chiffard, Jules; Couchoux, Charline; Bonadonna, Francesco
2013-04-15
King penguins (Aptenodytes patagonicus) live in large and densely populated colonies, where navigation can be challenging because of the presence of many conspecifics that could obstruct locally available cues. Our previous experiments demonstrated that visual cues were important but not essential for king penguin chicks' homing. The main objective of this study was to investigate the importance of non-visual cues, such as magnetic and acoustic cues, for chicks' orientation and short-range navigation. In a series of experiments, the chicks were individually displaced from the colony to an experimental arena where they were released under different conditions. In the magnetic experiments, a strong magnet was attached to the chicks' heads. Trials were conducted in daylight and at night to test the relative importance of visual and magnetic cues. Our results showed that when the geomagnetic field around the chicks was modified, their orientation in the arena and the overall ability to home was not affected. In a low sound experiment we limited the acoustic cues available to the chicks by putting ear pads over their ears, and in a loud sound experiment we provided additional acoustic cues by broadcasting colony sounds on the opposite side of the arena to the real colony. In the low sound experiment, the behavior of the chicks was not affected by the limited sound input. In the loud sound experiment, the chicks reacted strongly to the colony sound. These results suggest that king penguin chicks may use the sound of the colony while orienting towards their home.
Directory of Open Access Journals (Sweden)
Konieczny Robert
2015-03-01
Full Text Available Mechanical alloying method was applied to prepare nanocrystalline iron-based Fe1−xZnx solid solutions with x in the range 0.01 ≤ x ≤ 0.05. The structural properties of the materials were investigated with the Mössbauer spectroscopy by measuring the room temperature spectra of 57Fe for as-obtained and annealed samples. The spectra were analyzed in terms of parameters of their components related to unlike surroundings of the iron probes, determined by different numbers of zinc atoms existing in the neighborhood of iron atoms. The obtained results gave clear evidence that after annealing process, the distribution of impurity atoms in the first coordination spheres of 57Fe nuclei is not random and it cannot be described by binomial distribution. The estimated, positive values of the short-range order parameters suggest clustering tendencies of Zn atoms in the Fe-Zn alloys with low zinc concentration. The results were compared with corresponding data derived from Calphad calculation and resulting from the cellular atomic model of alloys by Miedema.
Hub, Jochen S; Salditt, Tim; Rheinstädter, Maikel C; de Groot, Bert L
2007-11-01
We present an extensive comparison of short-range order and short wavelength dynamics of a hydrated phospholipid bilayer derived by molecular dynamics simulations, elastic x-ray, and inelastic neutron scattering experiments. The quantities that are compared between simulation and experiment include static and dynamic structure factors, reciprocal space mappings, and electron density profiles. We show that the simultaneous use of molecular dynamics and diffraction data can help to extract real space properties like the area per lipid and the lipid chain ordering from experimental data. In addition, we assert that the interchain distance can be computed to high accuracy from the interchain correlation peak of the structure factor. Moreover, it is found that the position of the interchain correlation peak is not affected by the area per lipid, while its correlation length decreases linearly with the area per lipid. This finding allows us to relate a property of the structure factor quantitatively to the area per lipid. Finally, the short wavelength dynamics obtained from the simulations and from inelastic neutron scattering are analyzed and compared. The conventional interpretation in terms of the three-effective-eigenmode model is found to be only partly suitable to describe the complex fluid dynamics of lipid chains.
Energy Technology Data Exchange (ETDEWEB)
Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik
1999-09-01
The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)
Saleh, Nehal; Chittka, Lars
2007-04-01
To test the relative importance of long-term and working spatial memories in short-range foraging in bumblebees, we compared the performance of two groups of bees. One group foraged in a stable array of six flowers for 40 foraging bouts, thereby enabling it to establish a long-term memory of the array, and adjust its spatial movements accordingly. The other group was faced with an array that changed between (but not within) foraging bouts, and thus had only access to a working memory of the flowers that had been visited. Bees in the stable array started out sampling a variety of routes, but their tendency to visit flowers in a repeatable, stable order ("traplining") increased drastically with experience. These bees used shorter routes and converged on four popular paths. However, these routes were mainly formed through linking pairs of flowers by near-neighbour movements, rather than attempting to minimize overall travel distance. Individuals had variations to a primary sequence, where some bees used a major sequence most often, followed by a minor less used route, and others used two different routes with equal frequency. Even though bees foraging in the spatially randomized array had access to both spatial working memory and scent marks, this manipulation greatly disrupted foraging efficiency, mainly via an increase in revisitation to previously emptied flowers and substantially longer search times. Hence, a stable reference frame greatly improves foraging even for bees in relatively small arrays of flowers.
Crawford, Winifred
2010-01-01
This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.
Emata, K N; Hedin, M
2016-05-01
The harvestmen genus Calicina is represented by 25 short-range endemic species occurring in the western Sierra Nevada, Transverse and Coast Ranges of California. Our principal aim was to reconstruct the temporal and spatial biogeographic history of this arachnid lineage. We inferred a time-calibrated species tree for 21 of 25 described Calicina species using multiple genes and multilocus coalescent-based methods. This species tree was used as a framework for algorithmic biogeographic and divergence time analyses, and a phylogenetic canonical correlation analysis (CCA) was used to examine the relationship between morphological evolution and environmental variables. Species tree and biogeographic analyses indicate that high-elevation Sierran taxa are early-diverging in Calicina, with subsequent biogeographic "criss-crossing" of lineages from the Sierra Nevada to the Coast Ranges, back to the Sierra Nevada, then back to Coast Ranges. In both the Sierra Nevada and Coast Ranges, distantly-related parapatric lineages essentially never occur in sympatry. CCA reveals that in both the Coast Ranges and the Sierra Nevada, distant phylogenetic relatives evolve convergent morphologies. Our evidence shows that Calicina is clearly dispersal-limited, with an ancient biogeographic history that provides unique insight into the complex geologic evolution of California since the mid-Paleogene. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
V. K. Khokhlov
2017-01-01
Full Text Available The article forms the rationale for using the regression algorithms to detect and recognize the non-stationary non-centered signals and noise taking into account the specifics of the short-range autonomous information systems (SRAIS under conditions of unknown mathematical expectations of informative parameters of signals.When representing each sample realization of the non-stationary processes, subordinated to the normal law of distribution of probabilities, in discrete time, based on the approximate Kotelnikov theorem to solve the problems of signal detection and recognition on the background of band white noise were obtained the expressions for the coefficients of private plausibility of the respective hypotheses. The resulting algorithms require computation of quadratic forms and knowledge of the expectations of selected informative parameters. It is shown that taking into consideration the specific SRAIS – equality relations of mathematical expectation to the RMS values in the samples and high correlation coefficients of the parameter estimates of informative parameters – it is possible to proceed from calculating the quadratic forms in the signal processing algorithms to calculating the modules of errors of multiple initial regression representations for linear correlation. The article justifies the regression algorithms to form the areas of decision-making in which relative distances from the initial regression line are restricted, that is, the algorithms have a clear geometric meaning. Such algorithms can be applied regardless of the probability distribution of estimated random parameters of the signals (for unimodal distributions, since a priori information about the coefficients of the initial regression is obtained when investigating the correlations curves of the random parameters of the signal in the entire area of their change in linear correlation. In non-linear correlation in the SRAIS, using the information on the
International Nuclear Information System (INIS)
Wolverton, C.; Ozolins, V.; Zunger, A.
1998-01-01
We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American
Fisher, Aileen
The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without
Nuclear spin-orbit interaction from chiral pion-nucleon dynamics
International Nuclear Information System (INIS)
Kaiser, N.
2002-01-01
Using the two-loop approximation of chiral perturbation theory, we calculate the momentum and density dependent nuclear spin-orbit strength U ls (p,k f ). This quantity is derived from the spin-dependent part of the interaction energy Σ spin =((i)/(2))σ→·(q→xp→)U ls (p,k f ) of a nucleon scattering off weakly inhomogeneous isospin symmetric nuclear matter. We find that iterated 1π-exchange generates at saturation density, k f0 =272.7 MeV, a spin-orbit strength at p=0 of U ls (0,k f0 )≅35 MeV fm 2 , in perfect agreement with the empirical value used in the shell model. This novel spin-orbit strength is neither of relativistic nor of short range origin. The potential V ls underlying the empirical spin-orbit strength Ubar ls =V ls r ls 2 becomes a rather weak one, V ls ≅17 MeV, after the identification r ls =m π -1 as suggested by the present calculation. We observe, however, a strong p-dependence of U ls (p,k f0 ) leading even to a sign change above p=200 MeV. This and other features of the emerging spin-orbit Hamiltonian which go beyond the usual shell model parametrization leave questions about the ultimate relevance of the spin-orbit interaction generated by 2π-exchange for a finite nucleus. We also calculate the complex-valued isovector single-particle potential U I (p,k f )+iW I (p,k f ) in isospin asymmetric nuclear matter proportional to τ 3 (N-Z)/(N+Z). For the real part we find reasonable agreement with empirical values and the imaginary part vanishes at the Fermi-surface p=k f
Energy Technology Data Exchange (ETDEWEB)
Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory, E-mail: gregory.chaboussant@cea.fr [Laboratoire Léon Brillouin, UMR12 CEA-CNRS, 91191 Gif-sur-Yvette (France); Catala, Laure; Mazérat, Sandra; Mallah, Talal [Institut de Chimie Moléculaire et des Matériaux d' Orsay, CNRS, Université Paris-Sud, 91405 Orsay (France)
2015-09-21
Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A new length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.
Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Mallah, Talal
2015-09-01
Prussian blue analogues magnetic nanoparticles (of radius R0 = 2.4-8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA+ (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a "single-particle" spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective "mean-field" model. A new length scale R* ≈ 3R0, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA+, electrostatic interactions play a crucial role and lead to a dense layer of CTA+ around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA+ are best described by a core-shell model without visible inter-particle structure factor.
International Nuclear Information System (INIS)
Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Mallah, Talal
2015-01-01
Prussian blue analogues magnetic nanoparticles (of radius R 0 = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA + (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A new length scale R * ≈ 3R 0 , corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA + , electrostatic interactions play a crucial role and lead to a dense layer of CTA + around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA + are best described by a core-shell model without visible inter-particle structure factor
Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.
2017-12-01
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
Energy Technology Data Exchange (ETDEWEB)
Sykora, Steffen [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Becker, Klaus W. [Technische Universitaet Dresden, D-01062 Dresden (Germany)
2016-07-01
In this paper we discuss a new phase of the Kondo lattice model which arises from the competition of Kondo and RKKY energy scales. Normally the Kondo lattice model is used to capture the low-energy physics of heavy fermion systems. However, according to the so-called Doniach picture the Kondo state will be replaced by an antiferromagnetic state for the case that the Kondo energy scale becomes smaller than the magnetic interaction between magnetic ions. In the present study we start instead from a modified electronic one-particle dispersion which avoids nesting of particle-hole excitations. Thus the magnetic ordered state should be suppressed which provides an opportunity for the inset of a new low-energy state with competing Kondo and magnetic energies. As will be shown, this new state avoids magnetic symmetry breaking but leads to a number of physical properties which are relevant for the understanding of the hidden order state in URu{sub 2}Si{sub 2}.
Zhang, Xiao-Dong; Cheng, Yue; Poon, Colin S; Qi, Rongfeng; Xu, Qiang; Chen, Hui-Juan; Kong, Xiang; Lu, Guang-Ming; Shen, Wen; Zhang, Long-Jiang
2015-09-16
To longitudinally evaluate long- and short-range functional connectivity density (FCD) alteration in cirrhotic patients one month after liver transplantation (LT) and their correlation with cognitive changes by using resting-state functional magnetic resonance imaging (rs-fMRI). Twenty seven candidates awaiting LT and 24 age-, gender-, and education-matched healthy controls (HCs) were studied. All 27 patients and HCs performed rs-fMRI examinations. Of 27 cirrhotic patients, 13 patients received LT underwent the repeated rs-fMRI examinations one month after LT. Laboratory and psychometric tests were carried out. The long- and short-range FCD maps derived from degree centrality calculation were compared. Correlations between FCD alteration and laboratory/psychometric changes were evaluated as well. In cirrhotic patients, most of the brain areas with altered long- and short-range FCD could reverse one month after LT, which was accompanied with cognitive and liver functional improvement. The reduced long-range FCD in right posterior cingulate cortex (PCC) and Left middle frontal gyrus (MFG), and reduced short-range FCD in right precuneus (PCu) persisted in the early period after LT. In addition, one month after LT, the post-LT group showed reduced long-range FCD in right rectus gyrus (REC) and left medial prefrontal cortex (MPFC), and reduced short-range FCD in left middle temporal gyrus (MTG), when compared with the pre-LT group. We found Δdigital symbol test (ΔDST) score positively correlated with long-range ΔFCD in right precentral gyrus (preCG) (r = 0.72, P < 0.01) and right supplementary motor area (SMA) (r = 0.59, P < 0.05). LT results in favorable effect on cognitive function in cirrhotic patient, which can be reflected by FCD alteration. However, persistence of PCC/PCu functional connectivity disturbance one month after LT indicates complete cognitive function restoration may need a longer time. Copyright © 2015. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor; Bermejo, Francisco Javier; Cuello, Gabriel Julio
2007-01-01
The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases
Nakajima, Yuya; Seino, Junji; Nakai, Hiromi
2016-05-10
An analytical energy gradient for the spin-dependent general Hartree-Fock method based on the infinite-order Douglas-Kroll-Hess (IODKH) method was developed. To treat realistic systems, the local unitary transformation (LUT) scheme was employed both in energy and energy gradient calculations. The present energy gradient method was numerically assessed to investigate the accuracy in several diatomic molecules containing fifth- and sixth-period elements and to examine the efficiency in one-, two-, and three-dimensional silver clusters. To arrive at a practical calculation, we also determined the geometrical parameters of fac-tris(2-phenylpyridine)iridium and investigated the efficiency. The numerical results confirmed that the present method describes a highly accurate relativistic effect with high efficiency. The present method can be a powerful scheme for determining geometries of large molecules, including heavy-element atoms.
Aghasyan, M.; The COMPASS collaboration; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badełek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Büchele, M.; Burtsev, V.E.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S.-U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Dünnweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; jr.,M.Finger; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Iwata, T.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu.V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Pešková, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.
2017-01-01
We present a precise measurement of the proton longitudinal double-spin asymmetry $A_1^{\\rm p}$ and the proton spin-dependent structure function $g_1^{\\rm p}$ at photon virtualities $0.006~({\\rm GeV}/c)^2< Q^2< 1~ ({\\rm GeV}/c)^2$ in the Bjorken $x$ range of $4 \\times 10^{-5} < x < 4 \\times 10^{-2}$. The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of $160~{\\rm GeV}$ and $200~ {\\rm GeV}$. The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of $x$, the measured values of $A_1^{\\rm p}$ and $g_1^{\\rm p}$ are found to be positive. It is for the first time that spin effects are found at such low values of $x$.
Short range order in amorphous polycondensates
Energy Technology Data Exchange (ETDEWEB)
Lamers, C.; Richter, D.; Schweika, W. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Batoulis, J.; Sommer, K. [Bayer AG, Leverkusen (Germany); Cable, J.W. [Oak Ridge National Lab., TN (United States); Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States)
1992-12-01
The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.
Short range order of selenite glasses
Czech Academy of Sciences Publication Activity Database
Neov, Dimitar; Gerasimova, I.; Yordanov, S.; Lakov, L.; Mikula, Pavol; Lukáš, Petr; Dimitriev, Y.
1999-01-01
Roč. 40, č. 2 (1999), s. 111-112 ISSN 0031-9090 R&D Projects: GA ČR GV202/97/K038; GA AV ČR KSK1048601 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.822, year: 1999
Short-Range Digital Optical Links
Dickinson, R. M.
1985-01-01
Concept based on multiple optoelectronic chips. Proposed network of semiconductor lasers used for communication and radar. Network includes small integrated transmitters, receivers, and data processors placed at strategic points on station and vehicles.
Short-range laser obstacle detector
Kuriger, W. L.
1974-01-01
Detector, designed for slow-moving vehicle to explore surface of Mars, will automatically divert vehicle from obstacles as small as 0.5 m in its path. Detector comprises injection laser operating in pulse time-delay measurement, or radar, mode. It is capable of scanning area extending from few meters to approximately 30 m.
Optimal short range trajectories for helicopters
Slater, G. L.; Erzberger, H.
1983-01-01
An optimal flight path algorithm using a simplified altitude state model and an apriori climb-cruise-descent flight profile has been developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. The performance model is based on standard flight manual data and is such that on-line trajectory optimization is feasible with a relatively small computer. The results show that the optimal flight path and optimal cruise altitude can represent a 10 percent fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability due to helicopter weight, ambient winds and the relative cost trade-off between time and fuel. In general, 'reasonable' variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost.
Energy Technology Data Exchange (ETDEWEB)
Popovic, Z V [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Thijssen, W H A [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Paunovic, N [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Dohcevic-Mitrovic, Z [Centre for Solid State Physics and New Materials, Institute of Physics, PO Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Sapina, F [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)
2005-01-19
We have measured the reflectivity spectra of La{sub 1-x}Sr{sub x}Mn{sub 1-z}B{sub z}O{sub 3} (B = Cu, Zn; 0.17 {<=} x {<=} 0.30; 0 {<=} z {<=} 0.10) manganites over wide frequency (100-4000 cm{sup -1}) and temperature (80-300 K) ranges. Besides the previously observed infrared active modes or mode pairs at about 160 cm{sup -1} (external mode), 350 cm{sup -1} (bond bending mode) and 590 cm{sup -1} (bond stretching mode), we have clearly observed two additional phonon modes at about 645 and 720 cm{sup -1} below the temperature T{sub 1} (T{sub 1}
Haaks, Michael; Martin, Steve W.; Vogel, Michael
2017-09-01
We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.
Density-dependent synthetic gauge fields using periodically modulated interactions
Greschner, Sebastian; Sun, G.; Poletti, D.; Santos, Luis
2014-01-01
We show that density-dependent synthetic gauge fields may be engineered by combining periodically modulated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to a density-dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between the created gauge field and the broken sublattice symmetry results, as well, in an intrig...
Energy Technology Data Exchange (ETDEWEB)
Li, Chun-Lei, E-mail: licl@cnu.edu.cn [Laboratory for Micro-sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing 100048 (China); Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Yuan, Rui-Yang [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Guo, Yong, E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2016-01-07
Using the effective-mass approximation and Floquet theory, we theoretically investigate the terahertz photon-assisted transport through a ZnSe/Zn{sub 1−x}Mn{sub x}Se heterostructure under an external magnetic field, an electric field, and a spatially homogeneous oscillatory field. The results show that both amplitude and frequency of the oscillatory field can accurately manipulate the magnitude of the spin-dependent transmission probability and the positions of the Fano-type resonance due to photon absorption and emission processes. Transmission resonances can be enhanced to optimal resonances or drastically suppressed for spin-down electrons tunneling through the heterostructure and for spin-up ones tunneling through the same structure, resonances can also be enhanced or suppressed, but the intensity is less than the spin-down ones. Furthermore, it is important to note that transmission suppression can be clearly seen from both the spin-down component and the spin-up component of the current density at low magnetic field; at the larger magnetic field, however, the spin-down component is suppressed, and the spin-up component is enhanced. These interesting properties may provide an alternative method to develop multi-parameter modulation electron-polarized devices.
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...
DEFF Research Database (Denmark)
The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as ......The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... such as Lorentz and Einstein as well as mathematicians such as Poincare, Minkowski, Hilbert and Weyl contributed to this development. They created the new physical theories and the mathematical disciplines that play such paramount roles in their mathematical formulations. These physicists and mathematicians were...... also key figures in the philosophical discussions of nature and science - from philosophical tendencies like logical empiricism via critical rationalism to various neo-Kantian trends....
Spin-dependent transport in cobalt nanocontacts
Energy Technology Data Exchange (ETDEWEB)
Sarau, G.
2007-04-16
The magnetoresistance response of cobalt nanocontacts with varying geometries formed between two extended electrodes has been experimentally investigated and linked to micromagnetic simulations. The contribution of the nanoconstriction to the measured magnetoresistance signal has been separated from that of the electrode bulk. The different nanocontact geometries exhibit different shape anisotropies resulting in a characteristic behavior of the magnetization at each nanocontact. The magnetization reversal processes are explained on the basis of the anisotropic magnetoresistance and domain wall scattering effects. The domain wall resistance takes positive values, which is in agreement with models based on the spin mistracking inside the domain wall. The 4 K MR measurements are found to be influenced by the exchange bias effect between the ferromagnetic cobalt electrodes and the antiferromagnetic oxidized Co surface. When cooling down in an applied magnetic field, the uniform biased Co layer behaves as if it possesses a unidirectional anisotropy axis along the field cooling direction. In the zero field cooling case, the exchange bias varies locally throughout the sample giving rise to non-reproducible successive MR traces. (orig.)
Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli
2014-03-01
We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...