WorldWideScience

Sample records for spin wave dynamics

  1. Low temperature spin wave dynamics in classical Heisenberg chains

    International Nuclear Information System (INIS)

    Heller, P.; Blume, M.

    1977-11-01

    A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions

  2. Nonlinear dynamics and chaotic behaviour of spin wave instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, S M; Aguiar, F.M. de.

    1986-09-01

    Recent experiments revealed that spin wave instabilities driven by microwave fields, either parallel or transverse to the static magnetic field, display chaotic dynamics similar to other physical systems. A theory based on the coupled nonlinear equations of motion for two spin wave modes is presented which explains most features of the experimental observations. The model predicts subharmonic routes to chaos that depend on the parameter values. For certain parameters the system exhibits a Feigenbaum scenario characteristic of one-dimensional maps. Other parameters lead to different subharmonic routes indicative of multidimensional behavior, as observed in some experiments.

  3. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  4. Part I: Spin wave dynamics in YIG spheres

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    An experimental study is made of the interactions between spin wave modes excited in a sphere of yttrium iron garnet by pumping the Suhl subsidiary absorption with microwaves. The dynamical behavior of the magnetization is observed under high resolution by varying the dc field and microwave pump power. Varied behavior is found: (1) onset of the Suhl instability by excitation of a single spin wave mode; (2) when two or more modes are excited, interactions lead to auto-oscillations displaying period-doubling to chaos; (3) quasiperiodicity, locking, and chaos occur when three or more modes are excited; (4) abrupt transition to wide band power spectra (i.e., turbulence), with hysteresis; (5) irregular relaxation oscillations and aperiodic spiking behavior. A theoretical model is developed using the plane wave approximation obtaining the lowest order nonlinear interaction terms between the excited modes. Extension of this analysis to the true spherical spin-modes is discussed. Bifurcation behavior is examined, and dynamical behavior is numerically computed and compared to the experimental data. A theory is developed regarding the nature of the experimentally observed relaxation oscillations and spiking behavior based on the interaction of ''weak'' and ''strong'' modes, and this is demonstrated in the numerical simulations for two modes. Quasiperiodicity is shown to occur in the numerical study when at least 3 modes are excited with appropriate parameter values. A possible mechanism for generating microwave subharmonics at half of the pumping frequency is discussed. 57 refs., 25 figs., 5 tabs

  5. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  6. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-15

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  7. Imaging of propagation dynamics of optically-excited spin waves in a garnet film

    International Nuclear Information System (INIS)

    Hashimoto, Yusuke; Saitoh, Eiji

    2016-01-01

    We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)

  8. Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3

    Science.gov (United States)

    Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser

    α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.

  9. Spin dynamics and implications for superconductivity. Some problems with the d-wave scenario

    International Nuclear Information System (INIS)

    Levin, K.; Zha, Y.; Radtke, R.J.; Si, Q.; Norman, M.R.; Schuettler, H.B.

    1994-01-01

    We review the spin dynamics of the normal state of the cuprates with special emphasis on neutron data in both the YBa 2 Cu 3 O 7-δ and La 2-x Sr x CuO 4 systems. When realistic models of the Fermi surface shapes are incorporated, along with a moderate degree of spin fluctuations, we find good semiquantitative agreement with experiment for both cuprates. Building on the success of this Fermi-liquid-based scheme, we explore the implications for d-wave pairing from a number of vantage points. We conclude that our present experimental and theoretical understanding is inadequate to confirm or refute the d-wave scenario. 26 refs., 6 figs

  10. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  11. Spin-Wave Diode

    Directory of Open Access Journals (Sweden)

    Jin Lan (兰金

    2015-12-01

    Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  12. Studies on spin waves

    International Nuclear Information System (INIS)

    Prets, A.

    1998-07-01

    In the present Ph. D. thesis we are considering a special form of scaling limits, namely the hydrodynamic limit. Such limits are considered to explain macroscopic behavior of matter by means of microscopic dynamic laws. In this procedure a rescaling of space and time plays a central role. The limit will be formulated in a quantum mechanical way. Within this framework we study derivations of the Landau Lifshitz equation for ferromagnets. This equation is a macroscopic equation of motion for the magnetization vector and results into the theory of spin waves. Since we have no exact knowledge of the Heisenberg operator's time evolution no definitive statement an how to regain the Landau Lifshitz equation from the microscopic dynamics can be given. In contrast to the Heisenberg operator, for an Ising type interaction inside a ferromagnet one is able to recover macroscopically a solution of a linearized Landau Lifschitz equation. (author)

  13. Acoustic parametric pumping of spin waves

    Science.gov (United States)

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2014-11-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  14. Acoustic parametric pumping of spin waves

    OpenAIRE

    Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.

    2013-01-01

    Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.

  15. Excitation of coherent propagating spin waves by pure spin currents.

    Science.gov (United States)

    Demidov, Vladislav E; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O

    2016-01-28

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics.

  16. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results......, which are corrected for the effect of the direct coupling between the magnons and the phonons, and for the field dependence of the relative magnetization at finite temperatures. A large q⃗-dependent difference between the two energy components is observed, showing that the anisotropy of the two...

  17. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, M. [School of Physics, M013, University of Western Australia, Crawley, Perth 6009, Western Australia (Australia)

    2014-06-21

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.

  18. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  19. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    Science.gov (United States)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  20. Spin waves in quantum crystals

    International Nuclear Information System (INIS)

    Kondratenko, P.S.

    1975-01-01

    The paper considers the spectrum of spin waves of a quantum magnetic crystal. It has been assumed that the crystal is characterized by gapless Fermi excitations. The properties of a single-particle Green function for a magnetic crystal are briefly outlined. The dispersion equation system describing the spin wave spectrum has been derived. The spectrum described by the equation system comprises a group of Goldstone modes and a family of spin waves of the zero sound type, associated with the group by an interaction. The maximum number of Goldstone modes in an antiferromagnet is three, whereas in a ferromagnet it is two. At frequencies higher than the characteristic frequencies of magnetic interactions, in an antiferromagnet all three modes have a linear spectrum, whereas in a ferromagnet the longitudinal mode is represented by a linear spectrum and the transverse mode, by a quadratic one. The dynamical susceptibility of a magnetically ordered crystal has been calculated. The thermodynamical potential of the crystal has been proved to vary as a function of the angular crystal orientation in a spin subspace. The results have been obtained by methods of the quantum field theory for the case of zero temperature

  1. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  2. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  3. Dual Band Magnonic Crystals: Model System and Basic Spin Wave Dynamics

    Directory of Open Access Journals (Sweden)

    Federico Montoncello

    2016-01-01

    Full Text Available We investigate a special design of two-dimensional magnonic crystal, consisting of two superimposed lattices with different lattice constants, such that spin waves (SWs can propagate either in one or the other sublattice, depending on which of the two frequency bands they belong to. The SW bands are separated by a very large bandgap (in our model system, 6 GHz, easily tunable by changing the direction of an applied magnetic field, and the overlap of their spatial distribution, for any frequency of their bands, is always negligible. These properties make the designed system an ideal test system for a magnonic dual band waveguide, where the simultaneous excitation and subsequent propagation of two independent SW signals are allowed, with no mutual interference.

  4. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  5. Dynamics of Coupled Quantum Spin Chains

    International Nuclear Information System (INIS)

    Schulz, H.J.

    1996-01-01

    Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated using a mean-field approximation for the interchain coupling and exact results for the resulting effective one-dimensional problem. Results for staggered magnetization, Nacute eel temperature, and spin wave excitations are in agreement with experiments on KCuF 3 . The existence of a narrow longitudinal mode is predicted. The results are in agreement with general scaling arguments, contrary to spin wave theory. copyright 1996 The American Physical Society

  6. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  7. Spin Waves in Ho2Co17

    DEFF Research Database (Denmark)

    Clausen, Kurt Nørgaard; Lebech, Bente

    1980-01-01

    Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed.......Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed....

  8. The impact of wave number selection and spin up time when using spectral nudging for dynamical downscaling applications

    Science.gov (United States)

    Gómez, Breogán; Miguez-Macho, Gonzalo

    2017-04-01

    Nudging techniques are commonly used to constrain the evolution of numerical models to a reference dataset that is typically of a lower resolution. The nudged model retains some of the features of the reference field while incorporating its own dynamics to the solution. These characteristics have made nudging very popular in dynamic downscaling applications that cover from shot range, single case studies, to multi-decadal regional climate simulations. Recently, a variation of this approach called Spectral Nudging, has gained popularity for its ability to maintain the higher temporal and spatial variability of the model results, while forcing the large scales in the solution with a coarser resolution field. In this work, we focus on a not much explored aspect of this technique: the impact of selecting different cut-off wave numbers and spin-up times. We perform four-day long simulations with the WRF model, daily for three different one-month periods that include a free run and several Spectral Nudging experiments with cut-off wave numbers ranging from the smallest to the largest possible (full Grid Nudging). Results show that Spectral Nudging is very effective at imposing the selected scales onto the solution, while allowing the limited area model to incorporate finer scale features. The model error diminishes rapidly as the nudging expands over broader parts of the spectrum, but this decreasing trend ceases sharply at cut-off wave numbers equivalent to a length scale of about 1000 km, and the error magnitude changes minimally thereafter. This scale corresponds to the Rossby Radius of deformation, separating synoptic from convective scales in the flow. When nudging above this value is applied, a shifting of the synoptic patterns can occur in the solution, yielding large model errors. However, when selecting smaller scales, the fine scale contribution of the model is damped, thus making 1000 km the appropriate scale threshold to nudge in order to balance both effects

  9. Spin Waves in a Classical Compressible Heisenberg Chain

    NARCIS (Netherlands)

    Fivez, J.; Raedt, H. De

    1980-01-01

    The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.

  10. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    Science.gov (United States)

    Lucassen, M. E.

    2012-05-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate thermal fluctuations for rigid domain walls, as shown above. In Chapter 2, we study a different kind of fluctuations: shot noise. This noise is caused by the fact that an electric current consists of electrons, and therefore has fluctuations. In the process, we also compute transmission and reflection coefficients for a rigid domain wall, and from them the linear momentum transfer. More work on fluctuations is done in Chapter 3. Here, we consider a (extrinsically pinned) rigid domain wall under the influence of thermal fluctuations that induces a current via spin motive force. We compute how the resulting noise in the current is related to the β parameter. In Chapter 4 we look into in more detail into the spin motive forces from field driven domain walls. Using micro magnetic simulations, we compute the spin motive force due to vortex domain walls explicitly. As mentioned before, this gives qualitatively different results than for a rigid domain wall. The final subject in Chapter 5 is the application of the general expression for spin motive forces to magnons. Although this might seem to be unrelated to domain-wall motion, this calculation allows us to relate the β parameter to macroscopic transport coefficients. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC) under the Seventh Framework Program (FP7).

  11. Spin-wave dynamics in the helimagnet FeGe studied by small-angle neutron scattering

    Science.gov (United States)

    Siegfried, S.-A.; Sukhanov, A. S.; Altynbaev, E. V.; Honecker, D.; Heinemann, A.; Tsvyashchenko, A. V.; Grigoriev, S. V.

    2017-04-01

    We have studied the spin-wave stiffness of the Dzyaloshinskii-Moriya helimagnet FeGe in a temperature range from 225 K up to TC≈278.7 K by small-angle neutron scattering. The method we have used is based on [Grigoriev et al., Phys. Rev. B 92, 220415(R) (2015), 10.1103/PhysRevB.92.220415] and was extended here for the application in polycrystalline samples. We confirm the validity of the anisotropic spin-wave dispersion for FeGe caused by the Dzyaloshinskii-Moriya interaction. We have shown that the spin-wave stiffness A for the FeGe helimagnet decreases with a temperature as A (T ) =194 [1 -0.7 (T/TC) 4.2] meVÅ 2 . The finite value of the spin-wave stiffness A =58 meVÅ 2 at TC classifies the order-disorder phase transition in FeGe as being the first-order one.

  12. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  13. Spin-wave dynamics and exchange interactions in multiferroic NdFe3(BO3)4 explored by inelastic neutron scattering

    Science.gov (United States)

    Golosovsky, I. V.; Ovsyanikov, A. K.; Aristov, D. N.; Matveeva, P. G.; Mukhin, A. A.; Boehm, M.; Regnault, L.-P.; Bezmaternykh, L. N.

    2018-04-01

    Magnetic excitations and exchange interactions in multiferroic NdFe3(BO3)4 were studied by inelastic neutron scattering in the phase with commensurate antiferromagnetic structure. The observed spectra were analyzed in the frame of the linear spin-wave theory. It was shown that only the model, which includes the exchange interactions within eight coordination spheres, describes satisfactorily all observed dispersion curves. The calculation showed that the spin-wave dynamics is governed by the strongest antiferromagnetic intra-chain interaction and three almost the same inter-chain interactions. Other interactions, including ferromagnetic exchange, appeared to be insignificant. The overall energy balance of the antiferromagnetic inter-chain exchange interactions, which couple the moments from the adjacent ferromagnetic layers as well as within a layer, stabilizes ferromagnetic arrangement in the latter. It demonstrates that the pathway geometry plays a crucial role in forming of the magnetic structure.

  14. Spin wave spectrum of magnetic nanotubes

    International Nuclear Information System (INIS)

    Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.

    2010-01-01

    We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.

  15. Skyrmion creation and annihilation by spin waves

    International Nuclear Information System (INIS)

    Liu, Yizhou; Yin, Gen; Lake, Roger K.; Zang, Jiadong; Shi, Jing

    2015-01-01

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resulting from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes

  16. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  17. Bifurcation of the spin-wave equations

    International Nuclear Information System (INIS)

    Cascon, A.; Koiller, J.; Rezende, S.M.

    1990-01-01

    We study the bifurcations of the spin-wave equations that describe the parametric pumping of collective modes in magnetic media. Mechanisms describing the following dynamical phenomena are proposed: (i) sequential excitation of modes via zero eigenvalue bifurcations; (ii) Hopf bifurcations followed (or not) by Feingenbaum cascades of period doubling; (iii) local and global homoclinic phenomena. Two new organizing center for routes to chaos are identified; in the classification given by Guckenheimer and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary eigenvalues and a zero eigenvalue, to which many dynamical consequences are known; secondly, global homoclinic bifurcations associated to splitting of separatrices, in the limit where the system can be considered a Hamiltonian subjected to weak dissipation and forcing. We outline what further numerical and algebraic work is necessary for the detailed study following this program. (author)

  18. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation

    International Nuclear Information System (INIS)

    Macia, Ferran; Kent, Andrew D; Hoppensteadt, Frank C

    2011-01-01

    Magnetization dynamics in nanomagnets has attracted broad interest since it was predicted that a dc current flowing through a thin magnetic layer can create spin-wave excitations. These excitations are due to spin momentum transfer, a transfer of spin angular momentum between conduction electrons and the background magnetization, that enables new types of information processing. Here we show how arrays of spin-torque nano-oscillators can create propagating spin-wave interference patterns of use for memory and computation. Memristic transponders distributed on the thin film respond to threshold tunnel magnetoresistance values, thereby allowing spin-wave detection and creating new excitation patterns. We show how groups of transponders create resonant (reverberating) spin-wave interference patterns that may be used for polychronous wave computation and information storage.

  19. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  20. Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics

    OpenAIRE

    Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies

    1997-01-01

    We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...

  1. Spin-current emission governed by nonlinear spin dynamics.

    Science.gov (United States)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  2. SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, Joseph

    1962-12-15

    The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)

  3. Magnetization oscillations and waves driven by pure spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, V.E. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Urazhdin, S. [Department of Physics, Emory University, Atlanta, GA 30322 (United States); Loubens, G. de [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France); Demokritov, S.O., E-mail: demokrit@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation)

    2017-02-23

    Recent advances in the studies of pure spin currents–flows of angular momentum (spin) not accompanied by the electric currents–have opened new horizons for the emerging technologies based on the electron’s spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.

  4. Spin waves theory and applications

    CERN Document Server

    Stancil, Daniel D

    2009-01-01

    Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions

  5. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  6. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  7. Unidirectional spin-wave heat conveyer.

    Science.gov (United States)

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  8. Spin wave scattering and interference in ferromagnetic cross

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, Kasuni; Kozhanov, Alexander [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303 (United States); Jacob, Ajey P. [Exploratory Research Device and Integration, GLOBALFOUNDRIES, Albany, New York 12203 (United States)

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  9. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  10. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  12. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  13. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  14. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  15. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  16. Nonreciprocity of spin waves in metallized magnonic crystal

    International Nuclear Information System (INIS)

    Mruczkiewicz, M; Krawczyk, M; Gubbiotti, G; Tacchi, S; Filimonov, Yu A; Kalyabin, D V; Lisenkov, I V; Nikitov, S A

    2013-01-01

    The nonreciprocal properties of spin waves in metallized one-dimensional bi-component magnonic crystal composed of two materials with different magnetizations are investigated numerically. Nonreciprocity leads to the appearance of indirect magnonic band gaps for magnonic crystals with both low and high magnetization contrast. Specific features of the nonreciprocity in low contrast magnonic crystals lead to the appearance of several magnonic band gaps located within the first Brillouin zone for waves propagating along the metallized surface. Analysis of the spatial distribution of dynamic magnetization amplitudes explains the mechanism of dispersion band formation and hybridization between magnonic bands in magnonic crystals with metallization. (paper)

  17. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  18. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zheng-min; Ge, Su-qin; Wang, Xi-guang; Li, Zhi-xiong; Xia, Qing-lin; Wang, Dao-wei; Nie, Yao-zhuang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2016-05-15

    The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  19. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Directory of Open Access Journals (Sweden)

    Zheng-min Xiong

    2016-05-01

    Full Text Available The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  20. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    Science.gov (United States)

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  1. Demonstration of a robust magnonic spin wave interferometer.

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  2. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-01-01

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide

  3. Light-front wave function of composite system with spin

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1979-01-01

    The method to construct the relativistic wave function with spin on the light front is developed. The spin structure of the deuteron wave function in relativistic range is found. The calculation methods are illustrated by the calculation of elastic pd-scattering cross section. The consideration carried out is equivalent to the solution of the problem of taking into account the spins and angular momenta in the parton wave functions in the infinite momentum frame

  4. Topics in numerical relativity : the periodic standing-wave approximation, the stability of constraints in free evolution, and the spin of dynamical black holes

    Science.gov (United States)

    Owen, Robert

    This thesis concerns numerical relativity, the attempt to study Einstein's theory of gravitation using numerical discretization. The goal of the field, the study of gravitational dynamics in cases where symmetry reduction or perturbation theory are not possible, finally seems to be coming to fruition, at least for the archetypal problem of the inspiral and coalescence of binary black hole systems. This thesis presents three episodes that each bear some relationship to this story.Chapters 2 and 3 present previously published work in collaboration with Richard Price and others on the so-called periodic standing-wave (PSW) approximation for binary inspiral. The approximation is to balance outgoing radiation with incoming radiation, stabilizing the orbit and making the problem stationary in a rotating frame. Chapters 2 and 3 apply the method to the problem of co-orbiting charges coupled to a nonlinear scalar field in three dimensions.Chapters 4, 5, and 6 concern the stability of constraint fields in conventional numerical relativity simulations. Chapter 4 (also previously published work, in collaboration with the Caltech numerical relativity group, along with Michael Holst and Lawrence Kidder) presents a method for immediately correcting violations of constraints after they have arisen. Chapters 5 and 6 present methods to ``damp' away constraint violations dynamically in two specific contexts. Chapter 5 (previously published work in collaboration with the Caltech numerical relativity group and Lawrence Kidder) presents a first-order linearly degenerate symmetric hyperbolic representation of Einstein's equations in generalized harmonic gauge. A representation is presented that stabilizes all constraints, including those that appear when the system is written in first-order form. Chapter 6 presents a generalization of the Kidder-Scheel-Teukolsky evolution systems that provides much-improved stability. This is investigated with numerical simulations of a single black hole

  5. A switchable spin-wave signal splitter for magnonic networks

    Science.gov (United States)

    Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.

    2017-09-01

    The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

  6. Nonlinear spin wave coupling in adjacent magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2016-07-25

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  7. Information processing in patterned magnetic nanostructures with edge spin waves.

    Science.gov (United States)

    Lara, Antonio; Robledo Moreno, Javier; Guslienko, Konstantin Y; Aliev, Farkhad G

    2017-07-17

    Low dissipation data processing with spins is one of the promising directions for future information and communication technologies. Despite a significant progress, the available magnonic devices are not broadband yet and have restricted capabilities to redirect spin waves. Here we propose a breakthrough approach to spin wave manipulation in patterned magnetic nanostructures with unmatched characteristics, which exploits a spin wave analogue to edge waves propagating along a water-wall boundary. Using theory, micromagnetic simulations and experiment we investigate spin waves propagating along the edges in magnetic structures, under an in-plane DC magnetic field inclined with respect to the edge. The proposed edge spin waves overcome important challenges faced by previous technologies such as the manipulation of the spin wave propagation direction, and they substantially improve the capability of transmitting information at frequencies exceeding 10 GHz. The concept of the edge spin waves allows to design a broad of logic devices such as splitters, interferometers, or edge spin wave transistors with unprecedented characteristics and a potentially strong impact on information technologies.

  8. Nonlinear spin wave coupling in adjacent magnonic crystals

    International Nuclear Information System (INIS)

    Sadovnikov, A. V.; Nikitov, S. A.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.

    2016-01-01

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  9. Universal spin dynamics in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, E. A.; Zülicke, U.; Winkler, R.

    2017-10-01

    We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.

  10. Stimulated polarization wave process in spin 3/2 chains

    International Nuclear Information System (INIS)

    Furman, G. B.

    2007-01-01

    Stimulated wave of polarization, triggered by a flip of a single spin, presents a simple model of quantum amplification. Recently, it has been demonstrated that, in an idealized one-dimensional Ising spin 1/2 chain with nearest-neighbor interactions and realistic spin 1/2 chain including the natural dipole-dipole interactions, irradiated by a weak resonant transverse field, a wave of flipped spins can be triggered by a single spin flip. Here we focuse on control of polarization wave in chain of spin 3/2, where the nuclear quadrupole interaction is dominant. Results of simulations for 1D spin chains and rings with up to five spins are presented.

  11. Spin-wave wavelength down-conversion at thickness steps

    Science.gov (United States)

    Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.

    2018-05-01

    We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.

  12. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    International Nuclear Information System (INIS)

    Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2015-01-01

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves

  13. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw-muenchen.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2015-05-25

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.

  14. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  15. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    Science.gov (United States)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  16. Theory of Spin Waves in Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Cooke, J. F.

    1976-01-01

    A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...

  17. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  18. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  19. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Directory of Open Access Journals (Sweden)

    Naoki Kanazawa

    2016-09-01

    Full Text Available Spin waves (SWs have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  20. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    International Nuclear Information System (INIS)

    Kumar, D.; Barman, A.; Kłos, J. W.; Krawczyk, M.

    2014-01-01

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain iso–frequency contours of spin waves. Iso–frequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable

  1. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  2. Spin-wave damping in ferromagnets in the ordered regime

    International Nuclear Information System (INIS)

    Reinecke, T.L.; Stinchcombe, R.B.

    1978-01-01

    Theoretical results based on a high-density approach are compared with experimental measurements for the damping of long-wavelength spin waves in the nearly isotropic ferromagnet for temperatures up to the critical regime. The theory, which has no adjustable parameters, is shown to account well for the overall magnitude of the spin-wave widths measured in recent neutron scattering experiments on EuO, and it is also in satisfactory agreement with the measured wave vector and temperature dependence of these widths. An estimate is also given for the contribution of dipolar coupling to the spin-wave widths

  3. Width dependent transition of quantized spin-wave modes in Ni80Fe20 square nanorings

    Science.gov (United States)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Rousseau, Olivier; Otani, YoshiChika; Barman, Anjan

    2014-10-01

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni80Fe20 nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  4. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    International Nuclear Information System (INIS)

    Kim, Sang-Koog

    2010-01-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  5. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    Science.gov (United States)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  6. ONR Ocean Wave Dynamics Workshop

    Science.gov (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  7. Perspectives of using spin waves for computing and signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Csaba, György, E-mail: gcsaba@gmail.com [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Papp, Ádám [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Porod, Wolfgang [Center for Nano Science and Technology, University of Notre Dame (United States)

    2017-05-03

    Highlights: • We give an overview of spin wave-based computing with emphasis on non-Boolean signal processors. • Spin waves can combine the best of electronics and photonics and do it in an on-chip and integrable way. • Copying successful approaches from microelectronics may not be the best way toward spin-wave based computing. • Practical devices can be constructed by minimizing the number of required magneto-electric interconnections. - Abstract: Almost all the world's information is processed and transmitted by either electric currents or photons. Now they may get a serious contender: spin-wave-based devices may just perform some information-processing tasks in a lot more efficient and practical way. In this article, we give an engineering perspective of the potential of spin-wave-based devices. After reviewing various flavors for spin-wave-based processing devices, we argue that the niche for spin-wave-based devices is low-power, compact and high-speed signal-processing devices, where most traditional electronics show poor performance.

  8. Tunable spin waves in diluted magnetic semiconductor nanoribbon

    Science.gov (United States)

    Lyu, Pin; Zhang, Jun-Yi

    2018-01-01

    The spin wave excitation spectrum in diluted magnetic semiconductor (DMS) nanoribbons was calculated by taking account of the quantum confinement effect of carriers and spin waves. By introducing the boundary condition for the spin waves, we derived the spin wave dispersion using the path-integral formulation and Green's function method. It was shown that the spin wave excitation spectrum is discrete due to the confinement effect and strongly dependent on the carrier density, the magnetic ion density, and the width of the nanoribbon. When the width of the nanoribbon is beyond the typical nanoscales, the size effect on the excitation energies of the spin waves disappears in our calculation, which is in qualitative agreement with no obvious size effect observed in the as-made nanodevices of (Ga,Mn)As in this size regime. Our results provide a potential way to control the spin waves in the DMS nanoribbon not only by the carrier density and the magnetic ion density but also by the nanostructure geometry.

  9. Spin effect on parametric interactions of waves in magnetoplasmas

    International Nuclear Information System (INIS)

    Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.

    2012-01-01

    The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfvén wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfvén wave even in classical regime.

  10. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  11. Gravitational waves from spinning eccentric binaries

    Science.gov (United States)

    Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás

    2012-12-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.

  12. Frequency selective tunable spin wave channeling in the magnonic network

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Odincov, S. A.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Stognij, A. I. [Scientific-Practical Materials Research Center, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2016-04-25

    Using the space-resolved Brillouin light scattering spectroscopy, we study the frequency and wavenumber selective spin-wave channeling. We demonstrate the frequency selective collimation of spin-wave in an array of magnonic waveguides, formed between the adjacent magnonic crystals on the surface of yttrium iron garnet film. We show the control over spin-wave propagation length by the orientation of an in-plane bias magnetic field. Fabricated array of magnonic crystal can be used as a magnonic platform for multidirectional frequency selective signal processing applications in magnonic networks.

  13. Magnetic domain walls as reconfigurable spin-wave nano-channels

    Science.gov (United States)

    Wagner, Kai

    Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.

  14. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  15. Self-generation and management of spin-electromagnetic wave solitons and chaos

    International Nuclear Information System (INIS)

    Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.

    2014-01-01

    Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.

  16. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.

    1975-01-01

    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin........ The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...

  17. Relativistic fluid dynamics with spin

    Science.gov (United States)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  18. Scattering of spinning test particles by gravitational plane waves

    International Nuclear Information System (INIS)

    Bini, D.; Gemelli, G.

    1997-01-01

    The authors study the motion of spinning particles in the gravitational plane-wave background and discuss particular solutions under a suitable choice of supplementary conditions. An analysis of the discontinuity of the motion across the wavefront is presented too

  19. Quasiclassical Theory of Spin Dynamics in Superfluid ^3He: Kinetic Equations in the Bulk and Spin Response of Surface Majorana States

    Science.gov (United States)

    Silaev, M. A.

    2018-06-01

    We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.

  20. Spin waves and the order-disorder transition in chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.

    1969-01-01

    The inelastic magnetic scattering of neutrons has been studied in Cr and Cr0.95-Mn0.05 both below and above the Neel temperature. The temperature dependence of the spin-wave velocity in the alloy has been measured below TN. The scattering above TN may also be interpreted in terms of spin-wavelike...

  1. Gravitational Waves and the Maximum Spin Frequency of Neutron Stars

    NARCIS (Netherlands)

    Patruno, A.; Haskell, B.; D'Angelo, C.

    2012-01-01

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient

  2. Splitting of standing spin-wave modes in circular submicron ferromagnetic dot under axial symmetry violation

    OpenAIRE

    Bunyaev, S. A.; Golub, V. O.; Salyuk, O. Yu.; Tartakovskaya, E. V.; Santos, N. M.; Timopheev, A. A.; Sobolev, N. A.; Serga, A. A.; Chumak, A. V.; Hillebrands, B.; Kakazei, G. N.

    2015-01-01

    The spin wave dynamics in patterned magnetic nanostructures is under intensive study during the last two decades. On the one hand, this interest is generated by new physics that can be explored in such structures. On the other hand, with the development of nanolithography, patterned nanoelements and their arrays can be used in many practical applications (magnetic recording systems both as media and read-write heads, magnetic random access memory, and spin-torque oscillators just to name a fe...

  3. Improved spin wave theory: An application to the spin-1/2 antiferromagnetic Heisenberg model on a square lattice

    International Nuclear Information System (INIS)

    Tao, Ruibao.

    1991-09-01

    A method is developed to make a Bose transformation which is restricted in proper space. A self-consistent independent spin wave representation (SCISWR) is found for two dimensional isotropic antiferromagnet of Heisenberg square lattices. In the SCISWR, we have successfully done the renormalization from both the dynamic and kinematic interaction and calculated the corrections from the correlations of the nearest neighbour and next nearest neighbour sites. An anisotropic excitation energy of spin wave in improper space is found self-consistently and has a gap. The difficulty of divergence appearing from higher order perturbation terms in the conventional spin wave theory has been overcome and the convergence in our approach seems quite good. We find the energy of ground state E approx. -0.659 in low order approximation and the magnetization of sublattice M z = 0.430 x (N/2) for system with spin 1/2. It is also proved that a physical spin excitation restricted in proper space is still isotropic and has no gap. (author). 17 refs

  4. Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Delrieu, J.M.

    1981-08-01

    The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff

  5. Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [TPPD, PINSTECH Nilore, 44000 Islamabad (Pakistan); National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Maroof, R.; Ahmad, Zulfiaqr [Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan); Qamar, A. [National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan)

    2012-05-15

    Low frequency magnetosonic waves are studied in magnetized degenerate electron-positron-ion plasmas with spin effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, and spin magnetization energy, a generalized dispersion relation for oblique magnetosonic waves is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. For three different values of angle {theta}, the generalized dispersion relation is reduced to three different relations under the low frequency magnetohydrodynamic assumptions. It is found that the effect of quantum corrections in the presence of positron concentration significantly modifies the dispersive properties of these modes. The importance of the work relevant to compact astrophysical bodies is pointed out.

  6. Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes

    Science.gov (United States)

    Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2017-10-01

    We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.

  7. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2

    Science.gov (United States)

    Maryasov, Alexander G.; Bowman, Michael K.

    2012-08-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.

  8. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    Science.gov (United States)

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  9. Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem

    Science.gov (United States)

    Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2017-07-01

    Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.

  10. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    Science.gov (United States)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  11. Spin dynamics on percolating networks

    International Nuclear Information System (INIS)

    Aeppli, G.; Guggenheim, H.; Uemura, Y.J.

    1985-01-01

    We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb 2 CoMg/sub 1-c/F 4 with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig

  12. The classical and quantum dynamics of molecular spins on graphene

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  13. Multiple quantum spin dynamics of entanglement

    International Nuclear Information System (INIS)

    Doronin, Serge I.

    2003-01-01

    The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems

  14. Spin waves propagation and confinement in magnetic microstructures

    International Nuclear Information System (INIS)

    Bailleul, Matthieu

    2002-01-01

    In this thesis, ferromagnetic thin film elements have been studied on a small scale (μm) and at high frequencies (GHz). For those studies, a microwave spectrometer based on the use of micro-antennae has been developed. It had been applied to two different systems. In a first time, we have launched and detected spin waves in continuous films. This allowed us to describe both the transduction process and the relaxation law for long wavelength spin waves. In a second time, we have studied micrometer-wide stripe for which the magnetic ground state is inhomogeneous. The obtained microwave response has been interpreted in terms of micro-magnetic phase transitions and in terms of spin waves confinement. (author)

  15. Tunable Snell's law for spin waves in heterochiral magnetic films

    Science.gov (United States)

    Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.

    2018-03-01

    Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.

  16. Spin-wave utilization in a quantum computer

    Science.gov (United States)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  17. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  18. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...

  19. Four-wave neutron-resonance spin echo

    International Nuclear Information System (INIS)

    Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.

    2004-01-01

    We develop a technique of scattering from many-body systems. It is based on the principle of the neutron spin echo (SE), where a neutron wave in the magnetic field splits into two waves, which are separated in space or in time after propagation in this field. The neutron thus prepared as a probe passes through the sample to test its properties on a space R or time t scale. This separation in space or in time can be measured using coherence of these two waves as a phase shift φ between them. These two waves are collected or focused and compensated by the SE technique in order to compare their phases after interaction with the sample. In this way one studies interference between these waves and thus can directly measure the pair-correlation function in space or in time. Instead of two-wave SE we propose to realize the four-wave neutron-resonance spin-echo (NRSE). In our experiments, spin precession produced by a couple of the neutron-resonance coils in one arm is compensated by an identical couple of other NR coils in a second arm of a spin-echo machine. The neutron spin-flip probability ρ in the resonance coils is a key parameter of the NRSE arm. The limiting cases, ρ=0 and ρ=1, provide, in quantum terms, a two-level-two-wave k splitting of the neutron and result in the separation of the split waves into two different lengths in space (R 1 ,R 2 ) or in time (t 1 ,t 2 ). These two cases correspond to Larmor precession with phase φ 1 in the static magnetic fields of the NR flippers or to NRSE precession with φ 2 , respectively. The intermediate case, 0 1 ,R 2 ,R 3 ) or in time (t 1 ,t 2 ,t 3 ). The interference of each pair of waves after compensation results in three different echos with phases φ 1 , φ 2 , and φ 3 =(φ 1 +φ 2 )/2. Focusing or compensating all four waves into a single point of the phase-of-waves diagram produces quantum interference of all newly created waves. This task of focusing is experimentally performed. Different options for the

  20. Magnetic monopole dynamics in spin ice.

    Science.gov (United States)

    Jaubert, L D C; Holdsworth, P C W

    2011-04-27

    One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

  1. Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions

    International Nuclear Information System (INIS)

    Ashokan, V.; Abou Ghantous, M.; Ghader, D.; Khater, A.

    2014-01-01

    Calculations are presented for the scattering and ballistic transport of spin waves (SW) incident from cobalt leads, on ultrathin ferrimagnetic cobalt–gadolinium ‥Co][Co (1−c) Gd (c) ] ℓ [Co‥ nanojunction systems. The nanojunction [Co (1−c) Gd (c) ] ℓ itself is a randomly disordered alloy of thickness ℓ hcp lattice planes between matching hcp planes of the Co leads, at known stable concentrations c≤0.5 for this alloy system. To compute the spin dynamics, and the SW scattering and ballistic transport, this alloy nanojunction is modeled in the virtual crystal approximation (VCA), valid in particular at the length scale of the nanojunction for submicroscopic SW wavelengths. The phase field matching theory (PFMT) is applied to compute the localized and resonant magnons on the nanojunction. These magnons, characteristic of the embedded nanostructure, propagate in its symmetry plane with spin precession amplitudes that decay or match the spin wave states in the semi-infinite leads. The eigenvectors of these magnon modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach is also used to calculate the reflection and transmission spectra for the spin waves incident from the Co leads on the nanojunction. The results demonstrate resonance assisted maxima for the ballistic SW transmission spectra due to interactions between the incident spin waves and the nanojunction magnon modes. These properties are general for variable nanojunction thicknesses and alloy stable concentrations c≤0.5. In particular, the positions of the resonance assisted maxima of spin wave transmission can be modified with nanojunction thickness and alloy concentration. - Highlights: • Model is presented for spin wave scattering at CoGd disordered alloy nanojunctions. • Computations yield the localized and resonant magnon modes on the nanojunctions. • The spin waves ballistic reflection and transmission

  2. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  3. Control phase shift of spin-wave by spin-polarized current and its application in logic gates

    International Nuclear Information System (INIS)

    Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2015-01-01

    We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates

  4. Coherence and stiffness of spin waves in diluted ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav

    2016-01-01

    Roč. 94, č. 17 (2016), č. článku 174447. ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 ; RVO:68378271 Keywords : spin wave s * diluted ferromagnets * disordered systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  5. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general...

  6. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  7. Spin waves in two-dimensional ferromagnet with large easy-plane anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Spirin, D.V.

    2002-01-01

    Spin waves in easy-plane two-dimensional ferromagnet when anisotropy is much stronger than exchange are investigated. The spectra of magnons, the spin-spin and quadrupolar correlation functions have been derived. It is shown that in such a system there exist spin waves at low temperatures. Some properties of the quadrupolar ordering in ferromagnets are discussed

  8. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  9. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    Science.gov (United States)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  10. Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain

    International Nuclear Information System (INIS)

    Daniel, M.; Amuda, R.

    1994-11-01

    We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs

  11. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  12. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  13. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  14. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  15. Magnetization rotation or generation of incoherent spin waves? Suggestions for a spin-transfer effect experiment

    International Nuclear Information System (INIS)

    Bazaliy, Y. B.; Jones, B. A.

    2002-01-01

    ''Spin-transfer'' torque is created when electric current is passed through metallic ferromagnets and may have interesting applications in spintronics. So far it was experimentally studied in ''collinear'' geometries, where it is difficult to predict whether magnetization will coherently rotate or spin-waves will be generated. Here we propose an easy modification of existing experiment in which the spin-polarization of incoming current will no longer be collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with the magnetization rotation theory will be achieved. That can be an important step in reconciling alternative points of view on the effect of spin-transfer torque

  16. Collective spin waves on a nanowire array with step-modulated thickness

    International Nuclear Information System (INIS)

    Gubbiotti, G; Tacchi, S; Kostylev, M; Ivanov, E; Samarin, S; Madami, M; Carlotti, G; Ding, J; Adeyeye, A O; Zighem, F; Stashkevich, A A

    2014-01-01

    It is shown experimentally that collective Bloch spin waves are able to propagate in a dense periodic array of nanowires with step-modulated thickness along the periodicity direction. The spin wave dispersion (frequency versus wave vector k) was measured using the Brillouin light scattering technique by sweeping the wave vector perpendicularly to the wire length. Remarkably, the mode measured at the lowest frequency exhibits an oscillating dispersion and its frequency is up-shifted with respect to the homogeneous-thickness wires of the same width. The modes located at higher frequencies have negligible dependencies on the wave number, i.e. are practically dispersionless. Complementary ferromagnetic resonance measurements enabled us to independently measure the whole set of modes at k = 0, showing a good agreement with the Brillouin light scattering data. These results have been successfully reproduced in a numerical simulation employing a two-dimensional Green's function description of the dynamic dipole field of the precessing magnetization. The theory also allowed visualizing the non-trivial distribution of dynamic magnetization across the wire cross-section and estimating the Brillouin light scattering cross-section. The analysis of these intensities suggests complicated magneto-optical coupling between the light and the dynamic magnetization in the arrays of nanowires with step-modulated thickness. This work can stimulate the design, tailoring, and characterization of three-dimensional magnonic crystals. (paper)

  17. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  18. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  19. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    International Nuclear Information System (INIS)

    Ono, K.; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-01-01

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D sw (100.0 ± 4.9 meV.Å 2 ) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  20. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    Science.gov (United States)

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  1. Resonant spin wave excitations in a magnonic crystal cavity

    Science.gov (United States)

    Kumar, N.; Prabhakar, A.

    2018-03-01

    Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.

  2. Spin waves at the liquid 3He-4He interface

    International Nuclear Information System (INIS)

    Heff, A.; Candela, D.; Edwards, D.O.; Kumar, S.

    1987-01-01

    The properties of various interfaces in helium and, in particular, the interface between liquid 3 He and a solution of 3 He in 4 He, may be studied using spin waves. Assuming no transverse relaxation, the boundary condition for the transverse magnetization contains one complex kinetic coefficient, b. For the normal 3 He to 3 He- 4 He interface, b is related to the 3 He quasi-particle transmission probability antiτ, which we estimate from a simple model. A calculation of the spin wave absorption spectrum for a typical geometry shows that b and antiτ may be measured by NMR. Neither b nor antiτ is greatly affected when the pure 3 He enters the A phase, but both are strongly reduced in the B phase

  3. Collective spin wave and phonon excitations in ferromagnetic organic polymers

    International Nuclear Information System (INIS)

    Leong, Jit-Liang; Sun, Shih-Jye

    2013-01-01

    We proposed a model to investigate the properties of a conductive and ferromagnetic organic-polymer (OCP), which contains two collective excitations—spin wave and phonon—competing with each other; namely, the spin wave excitation accompanies the electron–phonon (e–ph) interactions in the conductive and ferromagnetic OCP. The ferromagnetism of the OCP is induced from the conductive carriers which couple with the phonon to become polarons. Due to the competition between both excitations, the Curie temperature (T C ) is sensitively suppressed by the e–ph interaction. In addition, an optimal T C with a small e–ph interaction exists in a specific density of conduction carrier, yet is contrary to the large e–ph interaction case. Furthermore, the dimerization, i.e. the atomic displacement induced from the e–ph interactions, increases with the strength of the e–ph interaction and decreases upon reaching the maximum dimerization. (paper)

  4. Spin wave steering in three-dimensional magnonic networks

    Science.gov (United States)

    Beginin, E. N.; Sadovnikov, A. V.; Sharaevskaya, A. Yu.; Stognij, A. I.; Nikitov, S. A.

    2018-03-01

    We report the concept of three-dimensional (3D) magnonic structures which are especially promising for controlling and manipulating magnon currents. The approach for fabrication of 3D magnonic crystals (MCs) and 3D magnonic networks is presented. A meander type ferromagnetic film grown at the top of the initially structured substrate can be a candidate for such 3D crystals. Using the finite element method, transfer matrix method, and micromagnetic simulations, we study spin-wave propagation in both isolated and coupled 3D MCs and reconstruct spin-wave dispersion and transmission response to elucidate the mechanism of magnonic bandgap formation. Our results show the possibility of the utilization of proposed structures for fabrication of a 3D magnonic network.

  5. Spin-density wave state in simple hexagonal graphite

    Science.gov (United States)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  6. Spin wave propagation in perpendicular magnetized 20 nm Yttrium Iron Garnet with different antenna design

    Science.gov (United States)

    Chen, Jilei; Stueckler, Tobias; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Chang, Houchen; Liu, Tao; Wu, Mingzhong; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Fert Beijing research institute Team; Colorado State University Team; Peking University Collaboration

    Magnonics offers a new way to transport information using spin waves free of charge current and could lead to a new paradigm in the area of computing. Forward volume (FV) mode spin wave with perpendicular magnetized configuration is suitable for spin wave logic device because it is free of non-reciprocity effect. Here, we study FV mode spin wave propagation in YIG thin film with an ultra-low damping. We integrated differently designed antenna i.e., coplanar waveguide and micro stripline with different dimensions. The k vectors of the spin waves defined by the design of the antenna are calculated using Fourier transform. We show FV mode spin wave propagation results by measuring S12 parameter from vector network analyzer and we extract the group velocity of the FV mode spin wave as well as its dispersion relations.

  7. Linear spin waves in a trapped Bose gas

    International Nuclear Information System (INIS)

    Nikuni, T.; Williams, J.E.; Clark, C.W.

    2002-01-01

    An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role

  8. Inelastic scattering of neutrons by spin waves in terbium

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Houmann, Jens Christian Gylden

    1966-01-01

    Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...... does not have very high thermal-neutron capture cross section, so that inelastic neutron scattering experiments can give satisfactory information on magnon dispersion relations....

  9. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  10. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  11. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Buchelt, R.J.

    2000-05-01

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  12. Overcoming thermal noise in non-volatile spin wave logic

    Science.gov (United States)

    Dutta, Sourav; Nikonov, Dmitri; Manipatruni, Sasikanth; Young, Ian; Naeemi, Azad

    Spin waves are propagating disturbances in magnetically ordered materials. To compete as a promising candidate for beyond-CMOS application, the all-magnon based computing system must undergo the essential steps of careful selection of materials and demonstrate robustness with respect to thermal noise/variability. Here, we identify suitable materials and investigate two viable options for translating the theoretical idea of phase-dependent switching of the spin wave detector to a practical realization of a thermally reliable magnonic device by - (a) using the built-in strain in the ME cell, arising from the lattice mismatch and/or thermal expansion coefficient mismatch between the film and the substrate, for compensation of the demagnetization, and (b) using an exchange-spring structure that exhibits a strong exchange-coupling between the ME cell and PMA SWB and provides a modification of the energy landscape of the ME cell magnet. A high switching success and error-free logic functionality can be ensured if the amplitude of the detected spin wave () remains higher than a threshold value of around 6°C and the detected phase falls within the window from 280°C through 0 to 20°C or from 100°C to 200°C with a maximum allowable ϕ range of around 100°C.

  13. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  14. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  15. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Science.gov (United States)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  16. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  17. Freezing optical rogue waves by Zeno dynamics

    Science.gov (United States)

    Bayındır, Cihan; Ozaydin, Fatih

    2018-04-01

    We investigate the Zeno dynamics of the optical rogue waves. Considering their usage in modeling rogue wave dynamics, we analyze the Zeno dynamics of the Akhmediev breathers, Peregrine and Akhmediev-Peregrine soliton solutions of the nonlinear Schrödinger equation. We show that frequent measurements of the wave inhibits its movement in the observation domain for each of these solutions. We analyze the spectra of the rogue waves under Zeno dynamics. We also analyze the effect of observation frequency on the rogue wave profile and on the probability of lingering of the wave in the observation domain. Our results can find potential applications in optics including nonlinear phenomena.

  18. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    Science.gov (United States)

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.

  19. Excitation of spin waves in BiFeO3 multiferroic film by the slot line transducer

    Science.gov (United States)

    Korneev, V. I.; Popkov, A. F.; Solov'yov, S. V.

    2018-01-01

    Analysis of the efficiency of magnetoelectric excitation of spin-waves in BiFeO3 multiferroic films by a slot line is performed based on the solution of dynamic Ginzburg-Landau equations for the antiferromagnetic vector. The excitation efficiency is determined by the magnitude of the conversion coefficient of the electromagnetic wave to the spin wave by the slot line transducer or in other words, losses on conversion in the slot line. Calculations are made for a homogeneous antiferromagnetic state of the multiferroic in the presence of a sufficiently large magnetic field and for a spatially modulated spin state (SMSS) at zero magnetic field. It is shown that in the case of a homogeneous antiferromagnetic state, the losses on the excitation of spin waves exceed the excitation efficiency in the SMSS state; however, as the frequency approaches the spin excitation gap, it falls and becomes lower than in the SMSS state. Spin wave excitation in the presence of antiferromagnetic cycloid strongly depends on the relation of the slot width of the transducer to the cycloid periodicity and on the magnitude of the shift of the position of the transducer along the cycloid on its period. The usage of multiferroics for delay lines in the considered frequency range from 100 to 600 GHz requires significant reduction in conversion and propagation losses. More promising seems multiferroic usage in phase shifters and switches for this range.

  20. Modulated spin waves and robust quasi-solitons in classical Heisenberg rings

    International Nuclear Information System (INIS)

    Schmidt, Heinz-Juergen; Schroeder, Christian; Luban, Marshall

    2011-01-01

    We investigate the dynamical behavior of finite rings of classical spin vectors interacting via nearest-neighbor isotropic exchange in an external magnetic field. Our approach is to utilize the solutions of a continuum version of the discrete spin equations of motion (EOM) which we derive by assuming continuous modulations of spin wave solutions of the EOM for discrete spins. This continuum EOM reduces to the Landau-Lifshitz equation in a particular limiting regime. The usefulness of the continuum EOM is demonstrated by the fact that the time-evolved numerical solutions of the discrete spin EOM closely track the corresponding time-evolved solutions of the continuum equation. It is of special interest that our continuum EOM possesses soliton solutions, and we find that these characteristics are also exhibited by the corresponding solutions of the discrete EOM. The robustness of solitons is demonstrated by considering cases where initial states are truncated versions of soliton states and by numerical simulations of the discrete EOM equations when the spins are coupled to a heat bath at finite temperatures. (paper)

  1. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  2. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    Science.gov (United States)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  3. Dynamics and control of the GyroPTO wave energy point absorber under sea waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...... to a ring. At certain conditions, the ring starts to rotate at a frequency equal to the excitation angular frequency. In this synchronized state, the generator is running at almost constant speed and the generated power becomes constant. In this paper, theoretical modeling of the GyroPTO device is carried...... out based on analytical rigid body dynamics, and a 3-DOF nonlinear model is established. Simulation results show that synchronization of the device is maintained under harmonic sea wave, but is lost easily under non-harmonic sea waves.To overcome this problem, a magnetic coupling mechanism is added...

  4. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2016-09-15

    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  5. Non-equilibrium study of spin wave interference in systems with both Rashba and Dresselhaus (001) spin-orbit coupling

    International Nuclear Information System (INIS)

    Chen, Kuo-Chin; Su, Yu-Hsin; Chang, Ching-Ray; Chen, Son-Hsien

    2014-01-01

    We study the electron spin transport in two dimensional electron gas (2DEG) system with both Rashba and Dresselhaus (001) spin-orbital coupling (SOC). We assume spatial behavior of spin precession in the non-equilibrium transport regime, and study also quantum interference induced by non-Abelian spin-orbit gauge field. The method we adopt in this article is the non-equilibrium Green's function within a tight binding framework. We consider one ferromagnetic lead which injects spin polarized electron to a system with equal strength of Rashba and Dresselhaus (001) SOC, and we observe the persistent spin helix property. We also consider two ferromagnetic leads injecting spin polarized electrons into a pure Dresselhaus SOC system, and we observe the resultant spin wave interference pattern

  6. Foldover, quasi-periodicity, spin-wave instabilities in ultra-thin films subject to RF fields

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)]. E-mail: mdaquino@unina.it; Bertotti, G. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Serpico, C. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States); Bonin, R. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Turin (Italy); Guida, G. [Department of Electrical Engineering, University of Napoli ' Federico II' , Naples I-80125 (Italy)

    2007-09-15

    We study magnetization dynamics in a uniaxial ultra-thin ferromagnetic disk subject to spatially uniform microwave external fields. The rotational invariance of the system is such that the only admissible spatially uniform steady states are periodic (P-modes) and quasi-periodic (Q-modes) modes. The stability of P-modes versus spatially uniform and nonuniform perturbations is studied by using spin-wave analysis and the instability diagram for all possible P-modes is computed. The predictions of the spin-wave analysis are compared with micromagnetic simulations.

  7. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  8. Gravity dual of spin and charge density waves

    Science.gov (United States)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2014-12-01

    At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.

  9. Spin-waves in antiferromagnetic single crystal LiFePO$_4$

    OpenAIRE

    Li, Jiying; Garlea, Vasile O.; Zarestky, Jerel L.; Vaknin, David

    2005-01-01

    Spin-wave dispersions in the antiferromagnetic state of single crystal LiFePO$_4$ were determined by inelastic neutron scattering measurements. The dispersion curves measured from the (010) reflection along both {\\it a}$^\\ast$ and {\\it b}$^\\ast$ reciprocal-space directions reflect the anisotropic coupling of the layered Fe$^{2+}$ (S = 2) spin-system. The spin-wave dispersion curves were theoretically modeled using linear spin-wave theory by including in the spin-Hamiltonian in-plane nearest- ...

  10. Spin Interactions and Spin Dynamics in Electronic Nanostructures

    Science.gov (United States)

    2006-08-31

    041302(R) (2005). 30. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya. and G...Yazdani, Journal of Superconductivity: Incorporating Novel Magnetism 18, 23 (2005). 32. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W...C. Ralph, invited lecture presented by at 2005 Electrochemistry Gordon Research Conference, February 20-25, 2005, Ventura, CA 94. “Tools for Studying

  11. Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain

    Directory of Open Access Journals (Sweden)

    P.Hlushak

    2005-01-01

    Full Text Available One-dimensional quantum spin-1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic susceptibilities, the dynamic structure factors. This becomes possible after exploiting the Jordan-Wigner transformation which reduces the spin model to a model of spinless noninteracting fermions. A number of dynamic quantities (e.g. related to transverse spin operator or dimer operator fluctuations are entirely determined by two-fermion excitations and can be examined in much detail.

  12. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  13. Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...

  14. Design of a spin-wave majority gate employing mode selection

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: klingler@physik.uni-kl.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2014-10-13

    The design of a microstructured, fully functional spin-wave majority gate is presented and studied using micromagnetic simulations. This all-magnon logic gate consists of three-input waveguides, a spin-wave combiner, and an output waveguide. In order to ensure the functionality of the device, the output waveguide is designed to perform spin-wave mode selection. We demonstrate that the gate evaluates the majority of the input signals coded into the spin-wave phase. Moreover, the all-magnon data processing device is used to perform logic AND-, OR-, NAND-, and NOR- operations.

  15. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa; Monsivais, Guillermo [Instituto de Física, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico); Drozdovskii, Andrey; Kalinikos, Boris [St. Petersburg Electrotechnical University, 197376 St. Petersburg (Russian Federation); International laboratory “MultiferrLab,” ITMO University, 197101 St. Petersburg (Russian Federation); Domínguez-Juárez, J. L. [Cátedras CONACyT, CFATA, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 (Mexico); Lopez-Maldonado, Guillermo [Universidad Autónoma Metropolitana, Lerma de Villada, 52006 Estado de México (Mexico); Qureshi, Naser; Kolokoltsev, Oleg [CCADET, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico)

    2016-07-28

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.

  16. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  17. Spin waves in terbium. II. Magnon-phonon interaction

    International Nuclear Information System (INIS)

    Jensen, J.; Houmann, J.G.

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating in the c direction of Tb have been studied experimentally by means of inelastic neutron scatttering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed by Liu. The coupled magnon--transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory

  18. Spin dynamics in 122-type iron-based superconductors

    International Nuclear Information System (INIS)

    Park, Jitae

    2012-01-01

    In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba 1-x K x Fe 2 As 2 compound, we report the phase separation between

  19. Spin dynamics in 122-type iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jitae

    2012-07-16

    In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} compound, we report the phase

  20. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  1. Spatiotemporal Wave Patterns: Information Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail Rabinovich; Lev Tsimring

    2006-01-20

    Pattern formation has traditionally been studied in non-equilibrium physics from the viewpoint of describing the basic structures and their interactions. While this is still an important area of research, the emphasis in the last few years has shifted towards analysis of specific properties of patterns in various complex media. For example, diverse and unexpected phenomena occur in neuro-like media that are characterized by highly non-trivial local dynamics. We carried out an active research program on analysis of spatio-temporal patterns in various physical systems (convection, oscillating fluid layer, soap film), as well as in neuro-like media, with an emphasis on informational aspects of the dynamics. Nonlinear nonequilibrium media and their discrete analogs have a unique ability to represent, memorize, and process the information contained in spatio-temporal patterns. Recent neurophysiological experiments demonstrated a certain universality of spatio-temporal representation of information by neural ensembles. Information processing is also revealed in the spatio-temporal dynamics of cellular patterns in nonequilibrium media. It is extremely important for many applications to study the informational aspects of these dynamics, including the origins and mechanisms of information generation, propagation and storage. Some of our results are: the discovery of self-organization of periodically oscillatory patterns in chaotic heterogeneous media; the analysis of the propagation of the information along a chaotic media as function of the entropy of the signal; the analysis of wave propagation in discrete non-equilibrium media with autocatalytic properties, which simulates the calcium dynamics in cellular membranes. Based on biological experiments we suggest the mechanism by which the spatial sensory information is transferred into the spatio-temporal code in the neural media. We also found a new mechanism of self-pinning in cellular structures and the related phenomenon

  2. Bifurcation analysis of magnetization dynamics driven by spin transfer

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.

    2005-01-01

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined

  3. Bifurcation analysis of magnetization dynamics driven by spin transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)

    2005-04-15

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.

  4. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin

    2015-01-01

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films

  5. Binary black holes: Spin dynamics and gravitational recoil

    International Nuclear Information System (INIS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius

  6. Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius

    2007-01-01

    LiNiPO4 is a magneto-electric material, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied at low temperatures. Such systems have received growing interest in recent years, but the nature of the magneticelectric couplings is yet to be fully...... through the last three years, it is not the primary subject of this thesis. The objective of the phD project has been to provide groundwork that may be beneficiary to future studies of LiNiPO4. More specifically, we have mapped out the magnetic HT phase diagram with magnetic fields below 14.7 T applied...... along the crystallographic c-axis, determined the magnetic structures for the phases in the phase diagram, and have set up a spin model Hamiltonian describing the spin wave dynamics and estimating the relevant magnetic interactions....

  7. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    Science.gov (United States)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  8. Linear spin-wave theory of incommensurably modulated magnets

    DEFF Research Database (Denmark)

    Ziman, Timothy; Lindgård, Per-Anker

    1986-01-01

    Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...

  9. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  10. Magnetic Spin Waves in CsNiF3 with an Applied Field

    DEFF Research Database (Denmark)

    Steiner, M.; Kjems, Jørgen

    1977-01-01

    The spin wave dispersion in the planar 1D ferromagnet CsNiF3 has been measured by inelastic neutron scattering in an external field. The spin wave linewidths are found to decrease with increasing field and become resolution-limited for H>10 kG at 4.2K. At high fields, H>10 kG, both energies...

  11. SD-CAS: Spin Dynamics by Computer Algebra System.

    Science.gov (United States)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Vallisneri, Michele

    2003-01-01

    Black-hole (BH) binaries with single-BH masses m=(5-20)M · , moving on quasicircular orbits, are among the most promising sources for first-generation ground-based gravitational-wave (GW) detectors. Until now, the development of data-analysis techniques to detect GWs from these sources has been focused mostly on nonspinning BHs. The data-analysis problem for the spinning case is complicated by the necessity to model the precession-induced modulations of the GW signal, and by the large number of parameters needed to characterize the system, including the initial directions of the spins, and the position and orientation of the binary with respect to the GW detector. In this paper we consider binaries of maximally spinning BHs, and we work in the adiabatic-inspiral regime to build families of modulated detection templates that (i) are functions of very few physical and phenomenological parameters, (ii) model remarkably well the dynamical and precessional effects on the GW signal, with fitting factors on average > or approx. 0.97, (iii) but, however, might require increasing the detection thresholds, offsetting at least partially the gains in the fitting factors. Our detection-template families are quite promising also for the case of neutron-star-black-hole binaries, with fitting factors on average ≅0.93. For these binaries we also suggest (but do not test) a further template family, which would produce essentially exact waveforms written directly in terms of the physical spin parameters

  13. Spin dynamics in tunneling decay of a metastable state

    OpenAIRE

    Ban, Yue; Sherman, E. Ya.

    2012-01-01

    We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...

  14. Are Gravitational Waves Spinning Down PSR J1023+0038?

    Science.gov (United States)

    Haskell, B; Patruno, A

    2017-10-20

    The pulsar J1023+0038 rotates with a frequency ν≈592  Hz and has been observed to transition between a radio state, during which it is visible as a millisecond radio pulsar, and a low-mass x-ray binary (LMXB) state, during which accretion powered x-ray pulsations are visible. Timing during the two phases reveals that during the LMXB phase the neutron star is spinning down at a rate of ν[over ˙]≈-3×10^{-15}  Hz/s, which is approximately 27% faster than the rate measured during the radio phase, ν[over ˙]≈-2.4×10^{-15}  Hz/s, and is at odds with the predictions of accretion models. We suggest that the increase in spin-down rate is compatible with gravitational wave emission, particularly with the creation of a "mountain" during the accretion phase. We show that asymmetries in pycnonuclear reaction rates in the crust can lead to a large enough mass quadrupole to explain the observed spin-down rate, which thus far has no other self-consistent explanation. We also suggest two observational tests of this scenario, involving radio timing at the onset of the next millisecond radio pulsar phase, when the mountain should dissipate, and accurate timing during the next LMXB phase to track the increase in torque as the mountain builds up. Another possibility is that an unstable r mode with an amplitude α≈5×10^{-8} may be present in the system.

  15. NMR with generalized dynamics of spin and spatial coordinates

    International Nuclear Information System (INIS)

    Lee, Chang Jae.

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences

  16. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  17. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength

    OpenAIRE

    Savochkin, I. V.; J?ckl, M.; Belotelov, V. I.; Akimov, I. A.; Kozhaev, M. A.; Sylgacheva, D. A.; Chernov, A. I.; Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Yakovlev, D. R.; Zvezdin, A. K.; Bayer, M.

    2017-01-01

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with ...

  18. Engineering spin-wave channels in submicrometer magnonic waveguides

    Directory of Open Access Journals (Sweden)

    XiangJun Xing

    2013-03-01

    Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.

  19. Synchronization of propagating spin-wave modes in a double-contact spin-torque oscillator: A micromagnetic study

    International Nuclear Information System (INIS)

    Puliafito, V.; Consolo, G.; Lopez-Diaz, L.; Azzerboni, B.

    2014-01-01

    This work tackles theoretical investigations on the synchronization of spin-wave modes generated by spin-transfer-torque in a double nano-contact geometry. The interaction mechanisms between the resulting oscillators are analyzed in the case of propagating modes which are excited via a normal-to-plane magnetic bias field. To characterize the underlying physical mechanisms, a multi-domain analysis is performed. It makes use of an equivalent electrical circuit, to deduce the output electrical power, and of micromagnetic simulations, through which information on the frequency spectra and on the spatial distribution of the wavefront of the emitted spin-waves is extracted. This study provides further and intriguing insights into the physical mechanisms giving rise to synchronization of spin-torque oscillators

  20. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  1. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)

    2016-01-28

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.

  2. Phase-dependent deterministic switching of magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sourav, E-mail: sdutta38@gatech.edu; Naeemi, Azad [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A. [Components Research, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2015-11-09

    The possibility of achieving phase-dependent deterministic switching of the magnetoelectric spin wave detector in the presence of thermal noise has been discussed. The proposed idea relies on the modification of the energy landscape by partially canceling the out-of-plane demagnetizing field and the resultant change in the intrinsic magnetization dynamics to drive the nanomagnet towards a preferential final magnetization state. The remarkable increase in the probability of successful switching can be accounted for by the shift in the location of the saddle point in the energy landscape and a resultant change in the nature of the relaxation dynamics of the magnetization from a highly precessional to a fairly damped one and an increased dependence on the initial magnetization values, a crucial requirement for phase-dependent spin wave detection.

  3. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    Energy Technology Data Exchange (ETDEWEB)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  4. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    International Nuclear Information System (INIS)

    Evelt, M.; Demidov, V. E.; Bessonov, V.; Demokritov, S. O.; Prieto, J. L.; Muñoz, M.; Ben Youssef, J.; Naletov, V. V.; Loubens, G. de; Klein, O.; Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A.

    2016-01-01

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  5. Quantum dynamics and entanglement of spins on a square lattice

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis

    2007-01-01

    in understanding quantum effects in one-dimensional quantum antiferromagnets, but a complete experimental description of even simple two-dimensional antiferromagnets is lacking. Here we describe a comprehensive set of neutron scattering measurements that reveal a non-spin-wave continuum and strong quantum effects...

  6. Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode

    International Nuclear Information System (INIS)

    Vladimirov, A.A.; Plakida, N.M.; Ihle, D.

    2010-01-01

    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found

  7. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  8. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  9. Interplay of charge density wave and spin density wave in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in

    2008-12-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.

  10. Interplay of charge density wave and spin density wave in high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2008-01-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters

  11. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  12. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    NARCIS (Netherlands)

    Kamra, A.

    2015-01-01

    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In

  13. Production of entropy on simplified dynamics in spin glass systems

    CERN Document Server

    Saakyan, D B

    2001-01-01

    In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space

  14. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    Science.gov (United States)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  15. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  16. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  17. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  18. Optically induced dynamic nuclear spin polarisation in diamond

    International Nuclear Information System (INIS)

    Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)

  19. Entanglement dephasing dynamics driven by a bath of spins

    International Nuclear Information System (INIS)

    Xu Jie; Jing Jun; Yu Ting

    2011-01-01

    We have studied the entanglement dynamics for a two-qubit system coupled to a spin environment of different configurations by a z-x-type interaction. Quantum dynamics of the models considered in this paper is solved analytically. Moreover, we show that simple and concise results may be obtained when certain approximations are properly made. Our purpose is to find out how the entanglement of a central spin system is affected by the pre-designed factors of the system and its environment, such as their initial states and the coupling constants between the system and its environment. Clearly, how the system is coupled to its environment will inevitably change the feature of entanglement evolution of the central spin system. Our major findings include the following: (i) the entanglement of the system of interest is sensitive to the number of spins in the environment, (ii) the initial states of the environment can profoundly affect the dynamics of the entanglement of the central spin system and (iii) the entangled environment can speed up the decay and revival of the entanglement of the central spin system. Our results exhibit some interesting features that have not been found for a bosonic environment.

  20. Spin-waves in Antiferromagnetic Single-crystal LiFePO4

    International Nuclear Information System (INIS)

    Li, Jiying; Garlea, Vasile O.; Zarestky, Jarel; Vaknin, D.

    2006-01-01

    Spin-wave dispersions in the antiferromagnetic state of single-crystal LiFePO 4 were determined by inelastic neutron scattering measurements. The dispersion curves measured from the (0,1,0) reflection along both a* and b* reciprocal-space directions reflect the anisotropic coupling of the layered Fe 2+ (S=2) spin system. The spin-wave dispersion curves were theoretically modeled using linear spin-wave theory by including in the spin Hamiltonian in-plane nearest- and next-nearest-neighbor interactions (J 1 and J 2 ), inter-plane nearest-neighbor interactions (J(perpendicular)) and a single-ion anisotropy (D). A weak (0,1,0) magnetic peak was observed in elastic neutron scattering studies of the same crystal indicating that the ground state of the staggered iron moments is not along the (0,1,0) direction, as previously reported from polycrystalline samples studies, but slightly rotated away from this axis.

  1. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  2. NMR study of spin dynamics in mesoscopic molecular clusters

    Science.gov (United States)

    Borsa, Ferdinando

    1998-03-01

    Recent published and umpublished work regarding the magnetic properties and the spin dynamics of molecules containing rings of 6,8 and 10 spins and of molecules containing clusters of 8 and 12 spins are reviewed. The 1H nuclear spin-lattice relaxation rate (NSLR) and the Muon Spin Resonance relaxation in Mn12 (A.Lascialfari, D.Gatteschi, F.Borsa, A.Shastri, Z.H.Jang and P.Carretta, Phys.Rev. B 1 January 1998) and Fe8 clusters are presented and discussed with regards to the high temperature spin dynamics of the Mn (Fe) magnetic moments and with regards to the low temperature superparamagnetic behavior. 1H and 63Cu NMR results are presented for two "quantum" spin rings : Cu6 and Cu8. The Cu6 is a weakly coupled (J/k=60K) ferromagnetic S=1/2 spin ring while Cu8 is a strongly coupled (J/k greater than 400K) antiferromagnetic S=1/2 spin ring.The dependence of the NSRL from temperature and from applied magnetic field are analyzed in terms of the calculated magnetic energy levels of the magnetic ring. The values of the energy gap between the ground state and the first excited state are extracted from the exponential decrease of the NSLR as the temperature is lowered. The results in the Cu ( S=1/2) "quantum" rings are compared with the results in "quantum" chains and ladders and with the results in "classical" Fe (S=5/2) antiferromagnetic rings : Fe6 and Fe10 (A.Lascialfari, D.Gatteschi, F.Borsa and A.Cornia , Phys.Rev. 55B,14341,1997) ).

  3. Spin Glasses : Statics and Dynamics : Summer School

    CERN Document Server

    Bovier, Anton

    2009-01-01

    Over the last decade, spin glass theory has turned from a fascinating part of t- oretical physics to a ?ourishing and rapidly growing subject of probability theory as well. These developments have been triggered to a large part by the mathem- ical understanding gained on the fascinating and previously mysterious “Parisi solution” of the Sherrington–Kirkpatrick mean ?eld model of spin glasses, due to the work of Guerra, Talagrand, and others. At the same time, new aspects and applications of the methods developed there have come up. The presentvolumecollects a number of reviewsaswellas shorterarticlesby lecturers at a summer school on spin glasses that was held in July 2007 in Paris. These articles range from pedagogical introductions to state of the art papers, covering the latest developments. In their whole, they give a nice overview on the current state of the ?eld from the mathematical side. The review by Bovier and Kurkova gives a concise introduction to mean ?eld models, starting with the Curie–...

  4. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  5. A cluster-bethe-lattice approach to spin-waves in dilute ferromagnets

    International Nuclear Information System (INIS)

    Salzberg, J.B.; Silva, C.E.T.G. da; Falicov, L.M.

    1975-01-01

    The spin-wave spectra of a dilute ferromagnet within the cluster-bethe-lattice approximation is studied. Short range order effects for the alloy are included. A study of finite size clusters connected at their edges to Bethe lattices of the same coordination number allows one to determine:(i) the stability condition for the magnetic system; (ii) the continuum spin-wave local density of states and (iii) the existence of localized states below and above the continuum states

  6. Suhl instabilities for spin waves in ferromagnetic nanostripes and ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Haghshenasfard, Zahra, E-mail: zhaghshe@uwo.ca; Nguyen, Hoa T.; Cottam, Michael G., E-mail: cottam@uwo.ca

    2017-03-15

    A microscopic (or Hamiltonian-based) theory is employed for the spin-wave instability thresholds of nonlinear processes in ultrathin ferromagnetic stripes and films under perpendicular pumping with an intense microwave field. The spatially-quantized linear spin waves in these nanostructures may participate in parametric processes through the three-magnon interactions (the first-order Suhl process) and the four-magnon interactions (the second-order Suhl process) when pumped. By contrast with most previous studies of spin-wave instabilities made for larger samples, where macroscopic (or continuum) theories involving Maxwell's equations for magnetic dipolar effects are used, a discrete lattice of effective spins is employed. Then a dipole-exchange spin Hamiltonian is employed to investigate the behavior of the quantized spin waves under perpendicular pumping, when modifications due to the more extensive spatial confinement and edges effects in these nanostructures become pronounced. The instability thresholds versus applied magnetic field are calculated, with emphasis on the size effects and geometries of the nanostructures and on the different relative strengths of the magnetic dipole-dipole and exchange interactions in materials. Numerical results are presented using parameters for Permalloy, YIG, and EuS. - Highlights: • Suhl instabilities for spin waves in magnetic stripes and films are investigated. • Three- and four-magnon processes in perpendicular pumping are taken into account. • Numerical applications are made to Permalloy, YIG, and EuS.

  7. Assessing the Detectability of Gravitational Waves from Coalescing Binary Black Holes with Precessing Spin

    Science.gov (United States)

    Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration

    2015-01-01

    The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.

  8. Magnetic ground state of low-doped manganites probed by spin dynamics under magnetic field

    International Nuclear Information System (INIS)

    Kober, P.; Hennion, M.; Moussa, F.; Ivanov, A.; Regnault, L.-P.; Pinsard, L.; Revcolevschi, A.

    2004-01-01

    We present a neutron scattering study of spin dynamics under magnetic field in La 0.9 Ca 0.1 MnO 3 . In zero field, the spin wave spectrum consists of two branches, a high and a low-energy one. In applied field, the high-energy branch splits into two branches due to twinned domains. The gap of the new intermediate-energy branch strongly decreases above a spin-flop transition that occurs for H//b and H>2 T. Furthermore, this branch, that we could attribute to the twinned domain H//b, shows a q-discontinuity under field. The low-energy branch, measurable only around ferromagnetic zone centers at H=0, appears at all q-values under field

  9. Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum

    Science.gov (United States)

    Ando, Koji

    2018-03-01

    A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.

  10. Experimental evidence for dynamic scaling in spin glasses

    CERN Document Server

    Pappas, C; Ehlers, G; Campbell, I A

    2002-01-01

    Dynamics is the key to the understanding of glassy transitions. A detailed analysis of s(Q,t) in the spin glass system Au sub 0 sub . sub 8 sub 6 Fe sub 0 sub . sub 1 sub 4 shows that at T sub g the autocorrelation function decays as t sup - sup x , with x propor to 0.12. Above T sub g , s(Q,t) is then described by the form proposed by Ogielski: t sup - sup x exp(-(t/tau sub 0) supbeta). These results agree with predictions of large scale numerical simulations and are a direct confirmation of dynamic scaling in spin glasses. (orig.)

  11. Nearshore Wave and Current Dynamics

    Science.gov (United States)

    1999-09-30

    bottom perturbation and an " influence function ". This influence function has its maximum at the shoreline and decays away from the shore. Also, the...magnitude of the influence function increases with edge-wave mode. These results show that the dispersion relationship is more sensitive to the

  12. Dynamics of quantum wave packets

    International Nuclear Information System (INIS)

    Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K 2 ), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses

  13. Electric-field tunable spin waves in PMN-PT/NiFe heterostructure: Experiment and micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ziȩtek, Slawomir, E-mail: zietek@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Chȩciński, Jakub [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków (Poland); Frankowski, Marek; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    We present a comprehensive theoretical and experimental study of voltage-controlled standing spin waves resonance (SSWR) in PMN-PT/NiFe multiferroic heterostructures patterned into microstrips. A spin-diode technique was used to observe ferromagnetic resonance (FMR) mode and SSWR in NiFe strip mechanically coupled with a piezoelectric substrate. Application of an electric field to a PMN-PT creates a strain in permalloy and thus shifts the FMR and SSWR fields due to the magnetostriction effect. The experimental results are compared with micromagnetic simulations and a good agreement between them is found for dynamics of FMR and SSWR with and without electric field. Moreover, micromagnetic simulations enable us to discuss the amplitude and phase spatial distributions of FMR and SSWR modes, which are not directly observable by means of spin diode detection technique.

  14. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    International Nuclear Information System (INIS)

    Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid

    2015-01-01

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields

  15. The su(2 vertical bar 3) dynamic spin chain

    International Nuclear Information System (INIS)

    Beisert, Niklas

    2004-01-01

    The complete one-loop, planar dilatation operator of the N=4 superconformal gauge theory was recently derived and shown to be integrable. Here, we present further compelling evidence for a generalisation of this integrable structure to higher orders of the coupling constant. For that we consider the su(2 vertical bar 3) subsector and investigate the restrictions imposed on the spin chain Hamiltonian by the symmetry algebra. This allows us to uniquely fix the energy shifts up to the three-loop level and thus prove the correctness of a conjecture in hep-th/0303060. A novel aspect of this spin chain model is that the higher-loop Hamiltonian, as for N=4 SYM in general, does not preserve the number of spin sites. Yet this dynamic spin chain appears to be integrable

  16. Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors

    International Nuclear Information System (INIS)

    Kantar, Ersin; Kocakaplan, Yusuf

    2015-01-01

    The dynamic behaviors of a mixed spin (1/2–1) hexagonal Ising nanowire (HIN) with core–shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types. - Highlights: • Dynamic behaviors of mixed spin HIN system are obtained within the EFT. • The system exhibits i, p and nm fundamental phases. • The dynamic phase diagrams are presented in (h, T), (D, T), (Δ S , T) and (r, T) planes. • The dynamic phase diagrams exhibit the dynamic tricritical point (TCP). • Different dynamic compensation types are obtained

  17. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  18. Nonlinear waves and pattern dynamics

    CERN Document Server

    Pelinovsky, Efim; Mutabazi, Innocent

    2018-01-01

    This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...

  19. Enhanced spin wave propagation in magnonic rings by bias field modulation

    Science.gov (United States)

    Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.

    2018-05-01

    We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.

  20. Counter-rotating standing spin waves: A magneto-optical illusion

    Science.gov (United States)

    Shihab, S.; Thevenard, L.; Lemaître, A.; Gourdon, C.

    2017-04-01

    We excite perpendicular standing spin waves by a laser pulse in a GaMnAsP ferromagnetic layer and detect them using time-resolved magneto-optical effects. Quite counterintuitively, we find the first two excited modes to be of opposite chirality. We show that this can only be explained by taking into account absorption and optical phase shift inside the layer. This optical illusion is particularly strong in weakly absorbing layers. These results provide a correct identification of spin waves modes, enabling a trustworthy estimation of their respective weight as well as an unambiguous determination of the spin stiffness parameter.

  1. Quantum dynamics of spin qubits in optically active quantum dots

    International Nuclear Information System (INIS)

    Bechtold, Alexander

    2017-01-01

    The control of solid-state qubits for quantum information processing requires a detailed understanding of the mechanisms responsible for decoherence. During the past decade a considerable progress has been achieved for describing the qubit dynamics in relatively strong external magnetic fields. However, until now it has been impossible to experimentally test many theoretical predictions at very low magnetic fields and uncover mechanisms associated with reduced coherence times of spin qubits in solids. In particular, the role of the quadrupolar coupling of nuclear spins in this process is to date poorly understood. In the framework of this thesis, a spin memory device is utilized to optically prepare individual electron spin qubits in a single InGaAs quantum dot. After storages over timescales extending into the microsecond range the qubit��s state is read out to monitor the impact of the environment on it the spin dynamics. By performing such pump-probe experiments, the dominant electron spin decoherence mechanisms are identified in a wide range of external magnetic fields (0-5 T) and lattice temperatures of ∝10 K. The results presented in this thesis show that, without application of external magnetic fields the initially orientated electron spin rapidly loses its polarization due to precession around the fluctuating Overhauser field with a dispersion of 10.5 mT. The inhomogeneous dephasing time associated with these hyperfine mediated dynamics is of the order of T * 2 =2 ns. Over longer timescales, an unexpected stage of central spin relaxation is observed, namely the appearance of a second feature in the relaxation curve around T Q =750 ns. By comparison with theoretical simulations, this additional decoherence channel is shown to arise from coherent dynamics in the nuclear spin bath itself. Such coherent dynamics are induced by a quadrupolar coupling of the nuclear spins to the strain induced electric field gradients in the quantum dot. These processes

  2. Investigation of the stationary state of parametric spin waves in antiferromagnetics by the modulation technique

    International Nuclear Information System (INIS)

    Andrienko, A.V.; Safonov, V.L.; Yakubovskij, A.Yu.

    1987-01-01

    The response of parametric electron and nuclear spin waves to weak modulation of a stationary magnetic field is investigated in the antiferromagnetics MnCO 3 and CsMnF 3 . The modulation response is calculated by taking into accout the phase mechanism of restriction of the parametric wave amplitude and positive nonlinear attenuation of the waves. Some characteristics of the stationary state of parametric electron and nuclear magnons are determined within the framework of the model by analysis of the experimental results: the nonlinear magnon interaction coefficient S k and the parameter κ which characterizes the relative contribution from positive nonlinear attenuation and the phase mechanism to the restriction of the number of parametric magnons. An anomaly in the behavior of the modulation response of the parametric nuclear magnons is observed in CsMnF 3 ; this is manifest in asubstantial decrease of the modulation response in a narrow supercriticality and modulation frequency range. A giant hexagonal anisotropy of the modulation response and nonlinear dynamic susceptibility of the nuclear magnons is observed in the same crystal. This may indicate a nonisotropic distribution of the magnons in k-space

  3. Particle spin dynamics as the grassmann variant of classical mechanics

    International Nuclear Information System (INIS)

    Berezin, F.A.; Marinov, M.S.

    1976-01-01

    A generalization of the calssical mechanics is presented. The dynamical variables are assumed to be elements of an algebra with anticommuting generators (The Grassmann algebra). The action functional and the Poisson brackets are defined. The equations of motion are deduced from the variational principle. The dynamics is described also by means of the Liouville equation for the phase-space distribution. The canonical quantization lead phase-space path integral approach to the quantum theory is also formulated. The theory is applied to describe the particle spin. Classical description of the spin precession and of the spin-orbital forces is given. The phase-space distribution and the interaction with an external field are also considered

  4. On the stochastic dynamics of disordered spin models

    International Nuclear Information System (INIS)

    Semerjian, G.; Montanari, A.; Cugliandolo, L.F.

    2003-09-01

    In this article we discuss several aspects of the stochastic dynamics of spin models. The paper has two independent parts. Firstly, we explore a few properties of the multi-point correlations and responses of generic systems evolving in equilibrium with a thermal bath. We propose a fluctuation principle that allows us to derive fluctuation-dissipation relations for many-time correlations and linear responses. We also speculate on how these features will be modified in systems evolving slowly out of equilibrium, as finite-dimensional or dilute spin-glasses. Secondly, we present a formalism that allows one to derive a series of approximated equations that determine the dynamics of disordered spin models on random (hyper) graphs. (author)

  5. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    Science.gov (United States)

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  6. Bandwidth broadening and asymmetric softening of collective spin waves in magnonic crystals

    International Nuclear Information System (INIS)

    Montoncello, F.; Giovannini, L.

    2014-01-01

    We investigate the dependence on the applied field of the frequency/wavevector dispersion relations of collective spin waves in arrays of dots, close to a magnetic transition. In particular, we focus on the low frequency “soft” modes in three different cases: end modes in the transition between two different saturated states in ellipses, fundamental mode in the saturated-to-vortex transition in disks, and gyrotropic mode in the vortex-to-saturated transition in disks. Noteworthy, the spin waves with nonzero Bloch wavevector along the direction of the applied field happen to soften earlier than spin waves with a Bloch wavevector along different directions, and this feature is responsible for an asymmetric broadening of the bandwidth along the different lattice directions. This is particularly useful in magnonic/spin-logic device research, if different binary digits are associated to modes with the same cell function but different propagation directions.

  7. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  8. Spin dynamics in storage rings and linear accelerators

    International Nuclear Information System (INIS)

    Irwin, J.

    1994-04-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included

  9. Spin dynamics in storage rings and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J. [Stanford Univ., CA (United States)

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  10. Anomalous quantum critical spin dynamics in YFe2Al10

    Science.gov (United States)

    Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.

    2018-04-01

    We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.

  11. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  12. Multi spin-flip dynamics: a solution of the one-dimensional Ising model

    International Nuclear Information System (INIS)

    Novak, I.

    1990-01-01

    The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is generalized to p spin-flip dynamics with a simultaneous flip of up to p spins in a single configuration move. The p spin-flip dynamics is studied of the one-dimensional Ising model with uniform nearest-neighbour interaction. For this case, an exact relation is given for the time dependence of magnetization. It was found that the critical slowing down in this model could be avoided when p spin-flip dynamics with p>2 was considered. (author). 17 refs

  13. Spin currents and magnon dynamics in insulating magnets

    Science.gov (United States)

    Nakata, Kouki; Simon, Pascal; Loss, Daniel

    2017-03-01

    Nambu-Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu-Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann-Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin-Wagner-Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga-Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.

  14. Spin currents and magnon dynamics in insulating magnets

    International Nuclear Information System (INIS)

    Nakata, Kouki; Loss, Daniel; Simon, Pascal

    2017-01-01

    Nambu–Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu–Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann–Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin–Wagner–Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga–Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics. (paper)

  15. Dynamics of the conservative and dissipative spin-orbit problem

    CERN Document Server

    Celletti, A; Lega, E

    2006-01-01

    We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.

  16. Dynamical phase transitions in spin models and automata

    International Nuclear Information System (INIS)

    Derrida, B.

    1989-01-01

    Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions

  17. Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation

    International Nuclear Information System (INIS)

    Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A

    2006-01-01

    The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering

  18. Spin waves in ferromagnetic Tb/sub 0.76/Y/sub 0.24/

    International Nuclear Information System (INIS)

    Wakabayashi, N.; Nicklow, R.M.; Child, H.R.

    1978-01-01

    The conduction electron susceptibility chi (q) is considered to play an important role in the magnetism of rare-earth metals and alloys. In order to obtain information about chi (q), studies of the spin waves in the alloy Tb/sub 0.76/Y/sub 0.24/ have been carried out in a magnetic field. The magnetic structure of this alloy was found to remain spiral down to liquid helium temperature with zero field. The spin-wave dispersion curve in this structure has already been studied along the c*-direction, and the results were analyzed successfully in terms of a susceptibility function corresponding to a one-dimensional system with a slight modification. In order to obtain somewhat independent information about chi (q), the spin-wave dispersion curve for the ferromagnetic phase has been studied. A field of 14 kG was necessary to transform the structure into a ferromagnet at liquid helium temperature. Spin-wave energies which are calculated in terms of the susceptibility function determined from the measurements in the spiral structure agree rather well with the observed energies. A large damping and softening of the spin wave has been observed near the wave vector q=0.16 which characterized the spiral configuration. The origin of the phenomenon may be related to the instability of the ferromagnetic structure

  19. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    International Nuclear Information System (INIS)

    Kryshtal, R.G.; Medved, A.V.

    2015-01-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined

  20. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Kryshtal, R.G.; Medved, A.V., E-mail: avm@ms.ire.rssi.ru

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined.

  1. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  2. Wave dynamics of generalized continua

    CERN Document Server

    Bagdoev, Alexander G; Shekoyan, Ashot V

    2016-01-01

    This monograph is devoted to problems of propagation and stability of linear and nonlinear waves in continuous media with complex structure. It considers the different media, such as solid with cavities, preliminary deformed disperse medium, solid with porosity filled by the electrically conductive and non-conductive liquid, magnetoelastic, piezo-semiconductors, crystals with dislocations, composites with inclusions, an electrically conductive asymmetrical liquid, a mixture of gas with a drop liquid. The book also considers the propagation of a laser beam through a two-level medium. The presented results are based on methods of evolution and modulation equations that were developed by the authors. The book is intended for scientific and technical researchers, students and post-graduate students specializing in mechanics of continuous media, physical acoustics, and physics of the solid state.

  3. Visualization of hydrodynamic pilot-wave dynamics

    Science.gov (United States)

    Prost, Victor; Quintela, Julio; Harris, Daniel; Brun, Pierre-Thomas; Bush, John

    2015-11-01

    We present a low-cost device for examining the dynamics of droplets bouncing on a vibrating fluid bath, suitable for educational purposes. Dual control of vibrational and strobing frequency from a cell phone application allowed us to reduce the total cost to 60 dollars. Illumination with inhomogeneous colored light allows for striking visualization of the droplet dynamics and accompanying wave field via still photography or high-speed videography. Thanks to the NSF.

  4. Superconductor to spin-density-wave transition in quasi-one-dimensional metals with repulsive anisotropic interaction

    International Nuclear Information System (INIS)

    Rozhkov, A.V.

    2007-01-01

    A mechanism for superconductivity in a quasi-one-dimensional system with repulsive Ising-anisotropic interaction is studied. The Ising anisotropy opens the gap Δ s in the spin sector of the model. This gap allows the triplet superconductivity and the spin-density wave as the only broken symmetry phases. These phases are separated by the first order transition. The transport properties of the system are investigated in different parts of the phase diagram. The calculation of DC conductivity σ(T) in the high-temperature phase shows that the function σ(T) cannot be used as an indicator of a superconducting ground state: even if σ(T) is a decreasing function at high temperature, yet, the ground state may be insulating spin-density wave; the opposite is also true. The calculation of the spin dynamical structure factor S zz (q, ω) demonstrates that it is affected by the superconducting phase transition in a qualitative fashion: below T c the structure factor develops a gap with a coherent excitation inside this gap

  5. Computer studies of multiple-quantum spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  6. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.

    Science.gov (United States)

    Miah, M Idrish

    2009-01-17

    We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.

  7. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.

  8. Computer studies of multiple-quantum spin dynamics

    International Nuclear Information System (INIS)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment

  9. Comprehensive study of the dynamics of a classical Kitaev Spin Liquid

    Science.gov (United States)

    Samarakoon, Anjana; Banerjee, Arnab; Batista, Cristian; Kamiya, Yoshitomo; Tennant, Alan; Nagler, Stephen

    Quantum spin liquids (QSLs) have achieved great interest in both theoretical and experimental condensed matter physics due to their remarkable topological properties. Among many different candidates, the Kitaev model on the honeycomb lattice is a 2D prototypical QSL which can be experimentally studied in materials based on iridium or ruthenium.Here we study the spin-1/2 Kitaev model using classical Monte-Carlo and semiclassical spin dynamics of classical spins on a honeycomb lattice. Both real and reciprocal space pictures highlighting the differences and similarities of the results to the linear spin wave theory will be discussed in terms dispersion relations of the pure-Kitaev limit and beyond. Interestingly, this technique could capture some of the salient features of the exact quantum solution of the Kitaev model, such as features resembling the Majorana-like mode comparable to the Kitaev energy, which is spectrally narrowed compared to the quantum result, can be explained by magnon excitations on fluctuating onedimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of a magnon to Majorana fermions. The calculations will be directly compared with our neutron scattering data on α-RuCl3 which is a prime candidate for experimental realization of Kitaev physics.

  10. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2017-02-01

    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived for the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  11. Spin-wave resonances and surface spin pinning in Ga1-xMnxAs thin films

    Science.gov (United States)

    Bihler, C.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2009-01-01

    We investigate the dependence of the spin-wave resonance (SWR) spectra of Ga0.95Mn0.05As thin films on the sample treatment. We find that for the external magnetic field perpendicular to the film plane, the SWR spectrum of the as-grown thin films and the changes upon etching and short-term hydrogenation can be quantitatively explained via a linear gradient in the uniaxial magnetic anisotropy field in growth direction. The model also qualitatively explains the SWR spectra observed for the in-plane easy-axis orientation of the external magnetic field. Furthermore, we observe a change in the effective surface spin pinning of the partially hydrogenated sample, which results from the tail in the hydrogen-diffusion profile. The latter leads to a rapidly changing hole concentration/magnetic anisotropy profile acting as a barrier for the spin-wave excitations. Therefore, short-term hydrogenation constitutes a simple method to efficiently manipulate the surface spin pinning.

  12. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  13. Design of a CMOS integrated on-chip oscilloscope for spin wave characterization

    Directory of Open Access Journals (Sweden)

    Eugen Egel

    2017-05-01

    Full Text Available Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA. Then, it is down-converted by a mixer to Intermediate Frequency (IF. Finally, an Operational Amplifier (OpAmp brings the IF signal to higher voltages (50-300 mV. The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.

  14. Spin-dynamics in a p(bar p) ring

    International Nuclear Information System (INIS)

    Pisent, A.

    1990-01-01

    In this paper after a short introduction on the main concepts of spin dynamics, like the conservation of the polarization as a stability condition, the depolarizing resonances and their care by the Siberian Snake schema, two particular applications are discussed. In the European hadron Facility, and in the other future hadron machines in the same range of energies (30--40 Gev), the polarization in the main ring can be maintained using a Siberian Snake. We shall discuss the design of such a device. As a second example is considered the Spin Splitter, a proposed experiment with the aim of polarizing bar p. Also in this case the spin stability is realized by the Siberian Snake schema

  15. Spinning Flight Dynamics of Frisbees, Boomerangs, Samaras, and Skipping Stones

    CERN Document Server

    Lorenz, Ralph D

    2006-01-01

    More frisbees are sold each year than baseballs, basketballs, and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Many readers will have enjoyed these vehicles and their dynamics in recreational settings, so this book will be of wide interest. In addition to spinning objects of various shapes, several exotic manned aircraft with disc platforms have been proposed and prototypes built - these include a Nazi ‘secret weapon’ and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by cou...

  16. Effects of finite size on spin glass dynamics

    Science.gov (United States)

    Sato, Tetsuya; Komatsu, Katsuyoshi

    2010-12-01

    In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.

  17. Epidemic Dynamics in Open Quantum Spin Systems

    Science.gov (United States)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  18. Energy-imbalance mechanism of domain wall motion induced by propagation spin waves in finite magnetic nanostripe

    International Nuclear Information System (INIS)

    Zhu, Jinrong; Han, Zhaoyan; Su, Yuanchang; Hu, Jingguo

    2014-01-01

    The mechanism of the domain wall (DW) motions induced by spin wave in finite magnetic nanostripe is studied by micromagnetic simulations. We find that the spin-wave induced DM motions are always accompanied by an energy imbalance between two sides of the DW. The DW motion can be attributed to the expansion of the low-energy-density area and the contraction of the high-energy-density area. The energy imbalance strongly depends on whether the spin wave passes through the DW or is reflected by the DW. In the area of the spin wave propagation, the energy density increases with the time. However, in the superposition area of the incident spin wave and the reflected spin wave, the energy density decreases with the increasing of the time. It shows that this energy imbalance can be controlled by tuning the frequency of the spin wave. Finally, the effect of the damping parameter value is discussed. - Highlights: • The mechanism of the spin-wave induced DW motions is studied. • The spin-wave induced DW motions and the energy imbalance mechanism are given. • The DW motion with the same direction to that of SW is explained. • The DW motion with the opposite direction to that of SW is explained

  19. Spin dynamics of large-spin fermions in a harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn

    2017-04-15

    Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. We also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.

  20. Observation of linear spin wave dispersion in the reentrant spin glass Fe sub 0 sub . sub 7 Al sub 0 sub . sub 3

    CERN Document Server

    Shapiro, S M; Raymond, S; Lee, S H; Motoya, K

    2002-01-01

    Fe sub 0 sub . sub 7 Al sub 0 sub . sub 3 is a reentrant spin glass, which undergoes a transition from a paramagnet to a disordered ferromagnet at T sub c propor to 500 K; at a lower temperature the spins progressively freeze and it exhibits a spin-glass-like behavior. In the ferromagnetic phase spin waves with a q sup 2 dispersion are observed at small q, which broaden rapidly and become diffusive beyond a critical wave vector q sub 0. On cooling the spin waves also disappear and a strong elastic central peak develops. For measurements around the (1,1,1) Bragg peak, a new sharp excitation is observed which has a linear dispersion behavior. It disappears above T sub c , but persists throughout the spin-glass phase. It is not present in the stoichiometric Fe sub 3 Al material. (orig.)

  1. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  2. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  3. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  4. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  5. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    Science.gov (United States)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  6. Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes

    Science.gov (United States)

    Zhang, Beining; Wang, Zhenyu; Cao, Yunshan; Yan, Peng; Wang, X. R.

    2018-03-01

    One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave nanochannels formed by a magnetic domain wall with a width of 10-100 nm [Wagner et al., Nat. Nano. 11, 432 (2016), 10.1038/nnano.2015.339]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave. Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel, which guarantees the information security to some extent. In this work, we theoretically propose a scheme to detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes. We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall, where kb is parallel with the domain-wall channel defined as the z ̂ axis. Two kinds of three-magnon processes, i.e., confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω (k ) =ωi+ωb and (ki+kb-k ) .z ̂=0 , while the momentum perpendicular to the domain wall is not necessary to be conserved due to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or "magnon laser") effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the incident wave into two modes, one is ω1=ωb,k1=kb identical to the bound mode in the channel, and the other one is ω2=ωi-ωb with (ki-kb-k2) .z ̂=0 propagating in the opposite magnetic domain. Micromagnetic simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely

  7. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    Science.gov (United States)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  8. Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy

    Directory of Open Access Journals (Sweden)

    Hermann eStoll

    2015-04-01

    Full Text Available The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM, combining magnetic (XMCD contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.

  9. Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin

    International Nuclear Information System (INIS)

    Yang, Ciann-Dong; Weng, Hung-Jen

    2012-01-01

    Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.

  10. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  11. Dynamical spin structure factors of α-RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-03-01

    Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.

  12. Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards

    CERN Document Server

    Rastelli, Enrico

    2013-01-01

    The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc

  13. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  14. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  15. Second post-Newtonian Lagrangian dynamics of spinning compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)

    2016-09-15

    The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)

  16. Spin wave differential circuit for realization of thermally stable magnonic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Okajima, Shingo; Hasegawa, Takashi [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Granovsky, Alexander B. [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Sekiguchi, Koji [Department of Physics, Keio University, Yokohama 223-8522 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Ross, Caroline A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-03-30

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K{sup −1}, which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K{sup −1}. The SWDC architecture opens the way to design YIG-based magnonic devices.

  17. Spin wave differential circuit for realization of thermally stable magnonic sensors

    International Nuclear Information System (INIS)

    Goto, Taichi; Kanazawa, Naoki; Buyandalai, Altansargai; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru; Okajima, Shingo; Hasegawa, Takashi; Granovsky, Alexander B.; Sekiguchi, Koji; Ross, Caroline A.

    2015-01-01

    A magnetic-field sensor with a high sensitivity of 38 pT/Hz was demonstrated. By utilizing a spin-wave differential circuit (SWDC) using two yttrium iron garnet (YIG) films, the temperature sensitivity was suppressed, and the thermal stability of the phase of the spin waves was −0.0095° K −1 , which is three orders of magnitude better than a simple YIG-based sensor, ∼20° K −1 . The SWDC architecture opens the way to design YIG-based magnonic devices

  18. Bias-free spin-wave phase shifter for magnonic logic

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Lisenkov, Ivan, E-mail: ivan.lisenkov@phystech.edu [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Nikitov, Sergei [Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Moscow Institute of Physics and Technology, 9 Instituskij per., Dolgoprudny, 141700, Moscow Region (Russian Federation); Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012 (Russian Federation)

    2016-06-15

    A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.

  19. Glass transition in the spin-density wave phase of (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Lasjaunias, J.C.; Biljakovic, K.; Nad, F.

    1994-01-01

    We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static'......'' glass transition around 2 K. The jump in the specific heat in different controlled kinetic conditions shows all the characteristics of freezing in supercooled liquids. Both effects give direct evidence of a glass transition in the spin-density wave ground state....

  20. The phase accumulation and antenna near field of microscopic propagating spin wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Crosby S.; Kostylev, Mikhail, E-mail: mikhail.kostylev@uwa.edu.au; Ivanov, Eugene [School of Physics M013, The University of Western Australia, Crawley, WA 6009 (Australia); Ding, Junjia; Adeyeye, Adekunle O. [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2014-01-20

    We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy.

  1. The phase accumulation and antenna near field of microscopic propagating spin wave devices

    International Nuclear Information System (INIS)

    Chang, Crosby S.; Kostylev, Mikhail; Ivanov, Eugene; Ding, Junjia; Adeyeye, Adekunle O.

    2014-01-01

    We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy

  2. Interaction dynamics of electrostatic solitary waves

    Directory of Open Access Journals (Sweden)

    V. L. Krasovsky

    1999-01-01

    Full Text Available Interaction of nonlinear electrostatic pulses associated with electron phase density holes moving in a collisionless plasma is studied. An elementary event of the interaction is analyzed on the basis of the energy balance in the system consisting of two electrostatic solitary waves. It is established that an intrinsic property of the system is a specific irreversibility caused by a nonadiabatic modification of the internal structure of the holes and their effective heating in the process of the interaction. This dynamical irreversibility is closely connected with phase mixing of the trapped electrons comprising the holes and oscillating in the varying self-consistent potential wells. As a consequence of the irreversibility, the "collisions" of the solitary waves should be treated as "inelastic" ones. This explains the general tendency to the merging of the phase density holes frequently observed in numerical simulation and to corresponding coupling of the solitary waves.

  3. Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well

    Science.gov (United States)

    Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.

    2018-03-01

    Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.

  4. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    Science.gov (United States)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  5. In-plane angular dependence of the spin-wave nonreciprocity of an ultrathin film with Dzyaloshinskii-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Vanessa Li; Di, Kai; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau, E-mail: phykmh@nus.edu.sg [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Yu, Jiawei; Yoon, Jungbum; Qiu, Xuepeng; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-07-13

    The nonreciprocal propagation of spin waves in an ultrathin Pt/Co/Ni film has been measured by Brillouin light scattering. The frequency nonreciprocity, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI), has a sinusoidal dependence on the in-plane angle between the magnon wavevector and the applied magnetic field. The results, which are in good agreement with analytical predictions reported earlier, yield a value of the DMI constant which is the same as that obtained previously from a study of the magnon dispersion relations. We have demonstrated that our magnon-dynamics based method can experimentally ascertain the DMI constant of multilayer thin films.

  6. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  7. Dynamical TAP equations for non-equilibrium Ising spin glasses

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....

  8. Dynamical spin susceptibility in the TD-LDA and QSGW approximations

    Energy Technology Data Exchange (ETDEWEB)

    Schilfgaarde, Mark Van [Arizona State Univ., Mesa, AZ (United States); Kotani, Takao [Arizona State Univ., Mesa, AZ (United States)

    2012-10-15

    Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and -MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For -MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs2 the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe2As2 are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the ´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.

  9. Contrasting dynamic spin susceptibility models and their relation to high-temperature superconductivity

    International Nuclear Information System (INIS)

    Schuettler, H.; Norman, M.R.

    1996-01-01

    We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society

  10. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  11. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    Science.gov (United States)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  12. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    Science.gov (United States)

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  13. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    Science.gov (United States)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  14. Dynamical sensitivity control of a single-spin quantum sensor.

    Science.gov (United States)

    Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan

    2017-07-26

    The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.

  15. Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics

    Science.gov (United States)

    Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2018-02-01

    Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.

  16. Spin dynamics and exchange interactions in CuO measured by neutron scattering

    Science.gov (United States)

    Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.

    2018-04-01

    The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

  17. Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro

    2012-12-21

    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude.

  18. Spin wave isolator based on frequency displacement nonreciprocity in ferromagnetic bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Shichi, Shinsuke, E-mail: shinsuke-shichi@murata.com; Matsuda, Kenji; Okajima, Shingo; Hasegawa, Takashi; Okada, Takekazu [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Kanazawa, Naoki; Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Takagi, Hiroyuki; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

    2015-05-07

    We demonstrated the spin wave isolator using bilayer ferromagnetic media comprising single crystalline and poly-crystalline yttrium iron garnet films, which can control the propagation frequency of magnetostatic waves by the direction of applied magnetic field. This isolator's property does not depend on their thickness then this can be downsized and integrated for nano-scale magnonic circuits. Calculated dispersion relationship shows good agreement with measured one.

  19. The technique of the modified hamiltonian for construction of the spin-projected wave function

    International Nuclear Information System (INIS)

    Tsaune, A.Ya.; Glushkov, V.N.

    1991-01-01

    A method is suggested to construct the wave function, which is an eigenfunction for operator S 2 . A combination of Lowdin's projection operators and the method of taking into account the orthogonality conditions in variational problems previously developed by the authors is used for determination of the spin-current wave functions component. It is shown that the suggested method gives better results for the energies that the traditional restricted Hartee-Fock scheme

  20. Signatures of a quantum dynamical phase transition in a three-spin system in presence of a spin environment

    International Nuclear Information System (INIS)

    Alvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.

    2007-01-01

    We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states vertical bar ↑,↓> and vertical bar ↓,↑> gives an oscillation with a Rabi frequency b/ℎ (the spin-spin coupling). The interaction, ℎ/τ SE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτ SE > or approx. ℎ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form

  1. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  2. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  3. Dynamics of spins in semiconductor quantum wells under drift

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2009-01-01

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  4. Dynamics of spins in semiconductor quantum wells under drift

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-15

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  5. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  6. Dynamics of carrions in the spin-fermion model

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.; Marvakov, D.

    1996-01-01

    The spectrum of hole quasiparticles (carrions) and the role of magnetic correlations has been considered in the framework of spin-fermion (Kondo-Heisenberg) model by means of the equation-of-motion method. The hole quasiparticle dynamics has been discussed for t-J model and compared with that of for spin-fermion model to determine how the one- and two-magnon processes define the true nature of carriers in HTSC. For this Kondo-Heisenberg-type model it was clearly pointed out on the self-energy level, beyond Hartree-Fock approximation, that two-magnon processes can play a role for the formation of the superconducting state. 60 refs

  7. Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.

    2013-04-01

    In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.

  8. Partial wave expansions for arbitrary spin and the role of non-central forces

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1976-09-01

    The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and nondiagonal in orbital angular momentum can be distinguished in observables

  9. Partial wave expansions for arbitrary spin and the role of non-central forces

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1977-01-01

    The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and non-diagonal in orbital angular momentum can be distinguished in observables. (Auth.)

  10. Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.

  11. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    Science.gov (United States)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  12. The influence of boundary conditions on domain structure stability in spin wave approximation

    International Nuclear Information System (INIS)

    Wachinewski, A.

    1974-01-01

    Instead of the usually used Born-Karman cyclic conditions, boundary conditions which take into account the situation of the boundary lattice sites lying on the crystal's surface are assumed. It is shown that the particular choice of the boundary conditions secures the stability of domain structure in ferromagnet (positive spin wave energies), without including the Winter term in Hamiltonian. (author)

  13. Ferroelectricity Induced by Acentric Spin-Density Waves in YMn2O5

    NARCIS (Netherlands)

    Chapon, L.C.; Radaelli, P.G.; Blake, G.R.; Park, S.; Cheong, S.-W.

    2006-01-01

    The commensurate and incommensurate magnetic structures of the magnetoelectric system YMn2O5, as determined from neutron diffraction, were found to be spin-density waves lacking a global center of symmetry. We propose a model, based on a simple magnetoelastic coupling to the lattice, which enables

  14. Theory of magnetic properties and spin-wave dispersion for ferroamgnetic (Ga, Mn)As

    Czech Academy of Sciences Publication Activity Database

    König, J.; Jungwirth, Tomáš; MacDonald, A. H.

    2001-01-01

    Roč. 64, č. 18 (2001), s. 184423-1 - 184423-7 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * spin waves Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.070, year: 2001

  15. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    Science.gov (United States)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  16. Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer

    Science.gov (United States)

    Wang, P.; Zhou, L. F.; Jiang, S. W.; Luan, Z. Z.; Shu, D. J.; Ding, H. F.; Wu, D.

    2018-01-01

    We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y3Fe5O12 (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013), 10.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.

  17. Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2005-01-01

    The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory

  18. Constrained dynamics of universally coupled massive spin 2-spin 0 gravities

    International Nuclear Information System (INIS)

    Pitts, J Brian

    2006-01-01

    The 2-parameter family of massive variants of Einsteins gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom

  19. Quantum dynamics of a particle with a spin-dependent velocity

    International Nuclear Information System (INIS)

    Aslangul, Claude

    2005-01-01

    We study the dynamics of a particle in continuous time and space, the displacement of which is governed by an internal degree of freedom (spin). In one definite limit, the so-called quantum random walk is recovered but, although quite simple, the model possesses a rich variety of dynamics and goes far beyond this problem. Generally speaking, our framework can describe the motion of an electron in a magnetic sea near the Fermi level when linearization of the dispersion law is possible, coupled to a transverse magnetic field. Quite unexpected behaviours are obtained. In particular, we find that when the initial wave packet is fully localized in space, the J z angular momentum component is frozen; this is an interesting example of an observable which, although it is not a constant of motion, has a constant expectation value. For a non-completely localized wave packet, the effect still occurs although less pronounced, and the spin keeps for ever memory of its initial state. Generally speaking, as time goes on, the spatial density profile looks rather complex, as a consequence of the competition between drift and precession, and displays various shapes according to the ratio between the Larmor period and the characteristic time of flight. The density profile gradually changes from a multimodal quickly moving distribution when the scattering rate is small, to a unimodal standing but flattening distribution in the opposite case

  20. Generalized spin-wave theory: Application to the bilinear-biquadratic model

    Science.gov (United States)

    Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.

    2014-08-01

    We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.

  1. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  2. Spin effects in nonlinear Compton scattering in a plane-wave laser pulse

    International Nuclear Information System (INIS)

    Boca, Madalina; Dinu, Victor; Florescu, Viorica

    2012-01-01

    We study theoretically the electron angular and energy distribution in the non-linear Compton effect in a finite plane-wave laser pulse. We first present analytical and numerical results for unpolarized electrons (described by a Volkov solution of the Dirac equation), in comparison with those corresponding to a spinless particle (obeying the Klein–Gordon equation). Then, in the spin 1/2 case, we include results for the spin flip probability. The regime in which the spin effects are negligible, i.e. the results for the unpolarized spin 1/2 particle coincide practically with those for the spinless particle, is the same as the regime in which the emitted radiation is well described by classical electrodynamics.

  3. Numerical Investigations of Post-Newtonian Hamiltonian Dynamics for Spinning Compact Binaries

    Science.gov (United States)

    Zhong, S. Y.

    2012-03-01

    Spinning compact binaries, consisting of neutron stars or black holes, not only have rich dynamic phenomena of resonance and chaos, but also are the most promising source for detecting gravitational waves. There should be a certain relation between the dynamics of the gravitational bodies and the gravitational waveforms. Based on the least-squares correction, several manifold correction schemes like the single-scaling method and the dual-scaling method are designed to suppress numerical errors from 6 integrals of motion in a conservative post-Newtonian (PN) Hamiltonian of spinning compact binaries. Taking a fifth order Runge-Kutta algorithm as a basic integrator, we wonder whether the PN contributions, the spin effects, and the classification of orbits exert some influences on these correction schemes and the Nacozy's approach. It is found that they are almost the same in correcting the integrals for the pure Kepler problem. Once the third-order PN contributions are added to the pure orbital part, there are explicit differences of correction effectiveness among these methods. As an interesting case, the efficiency of correction is better for chaotic eccentric orbits than for quasicircular regular ones. In all cases tested, the new momentum-position dual-scaling scheme does always have the optimal performance. It costs a little but not much expensive additional computational cost when the spin effects exist, and several time-saving techniques are used. The corrected numerical results are more accurate than the uncorrected ones, so that chaos from the numerical errors can be avoided. See Phys. Rev. D 81, 104037 (2010) for more details. Lubich et al. (Phys. Rev. D 81, 104025 (2010)) presented a noncanonically symplectic integrator for the PN Hamiltonian of a spinning compact binary. However, the Euler mixed integrator is problematic because of its bad numerical stability.We improved the work by constructing the second-order and the fourth-order fixed symplectic

  4. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    Science.gov (United States)

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  5. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  6. On the spin-axis dynamics of a Moonless Earth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  7. Spin dynamics of EuS in the paramagnetic phase

    International Nuclear Information System (INIS)

    Chaudhury, R.; Shastry, B.S.

    1988-07-01

    The spin dynamics of the semiclassical Heisenberg model on the fcc lattice, with ferromagnetic interaction in the first neighbour shell, anti-ferromagnetic interaction in the second neighbour shell and which undergoes a ferromagnetic transition, is studied in the paramagnetic phase at the temperature 1.1 T c using the Monte-Carlo molecular dynamics technique. The important quantities calculated are the dynamic structure function S(q-vector,ω) and the spin auto-correlation function i (O)·S-vector i (t)>. Our results for S(q-vector,ω) show the existence of purely diffusive modes in the low q regime. For q-vector close to the zone boundary, our calculated S(q-vector,ω) shows multi-peaked structure, signifying damped propagating modes. This result disagrees with the theoretical predictions of Young and Shastry and also of Lindgard. Our results for S(q-vector,ω) in the entire q-vector-space are in good qualitative and quantitative agreement with the recent neutron scattering experiments of Boni et al. and also Bohn et al. Our calculated auto-correlation function shows a diffusive behaviour temporally. (author). 15 refs, 5 figs

  8. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  9. Dynamics of the two-spin spin-boson model with a common bath

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tianrui [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058 (China); Yan, Yiying; Chen, Lipeng; Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-04-14

    Dynamics of the two-spin spin-boson model in the presence of Ohmic and sub-Ohmic baths is investigated by employing a multitude of the Davydov D{sub 1} trial states, also known as the multi-D{sub 1} Ansatz. Its accuracy in dynamics simulations of the two-spin SBM is improved significantly over the single D{sub 1} Ansatz, especially in the weak to moderately strong coupling regime. Validity of the multi-D{sub 1} Ansatz for various coupling strengths is also systematically examined by making use of the deviation vector which quantifies how faithfully the trial state obeys the Schrödinger equation. The time evolution of population difference and entanglement has been studied for various initial conditions and coupling strengths. Careful comparisons are carried out between our approach and three other methods, i.e., the time-dependent numerical renormalization group (TD-NRG) approach, the Bloch-Redfield theory, and a method based on a variational master equation. For strong coupling, the multi-D{sub 1} trial state yields consistent results as the TD-NRG approach in the Ohmic regime while the two disagree in the sub-Ohmic regime, where the multi-D{sub 1} trial state is shown to be more accurate. For weak coupling, the multi-D{sub 1} trial state agrees with the two master-equation methods in the presence of both Ohmic and sub-Ohmic baths, but shows considerable differences with the TD-NRG approach in the presence of a sub-Ohmic bath, calling into question the validity of the TD-NRG results at long times in the literature.

  10. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Energy Technology Data Exchange (ETDEWEB)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  11. General partial wave analysis of the decay of a hyperon of spin 1/2

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    This note is to consider the general problem of the decay of a hyperon of spin 1/2 into a pion and a nucleon under the general assumption of possible violations of parity conservation, charge-conjugation invariance, and time-reversal invariance. The discussion is in essence a partial wave analysis of the decay phenomena and is independent of the dynamics of the decay. Nonrelativistic approximations are not made on either of the decay products. In the reference system in which the hyperon is at rest there are two possible final states of the pion-nucleon system:s/sub 1/2/ and p/sub 1/2/. Denoting the amplitudes of these two states by A and B, one observes that the decay is physically characterized by three real constants specifying the magnitudes and the relative phase between these amplitudes. One of these constants can be taken to be absolute value a 2 + absolute value B 2 , and is evidently proportional to the decay probability per unit time. The other two constants are best defined in terms of experimentally measurable quantities. They discuss three types of experiments: (a) The angular distribution of the decay pion from a completely polarized hyperon at rest. (b) The longitudinal polarization of the nucleon emitted in the decay of unpolarized hyperons at rest. (c) Transverse polarization of the nucleon emitted in a given direction in the decay of a polarized hyperon

  12. Supersymmetry and pseudoclassical dynamics of particle with any spin

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1976-12-01

    The use of anticommuting c-numbers in describing physical systems and their simmetries has recently drawn much interest. Supersymmetry among bosons and fermions can be given an adequate formulation using them. Applications to Hamiltonian dynamics of electron adapting Dirac's method of handling singular Lagrangians were quite successful. An extension to particle of any spin following the systematic treatment of Casalbuoni et al. is discussed here. Formulation of Bargmann and Wigner for relativistic particle is obtained on quantization in self-consistent manner. It may be remarked that some of the Dirac brackets between anticommuting variables are required to go to commutators instead of anticommutators

  13. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  14. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    International Nuclear Information System (INIS)

    Abbott, B.; Babak, S.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Ajith, P.; Allen, B.; Aulbert, C.; Allen, G.; Amin, R.; Anderson, W. G.; Armor, P.; Arain, M. A.; Aso, Y.; Aston, S.; Aufmuth, P.; Bantilan, H.

    2008-01-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  15. Template banks to search for compact binaries with spinning components in gravitational wave data

    International Nuclear Information System (INIS)

    Van Den Broeck, Chris; Cokelaer, Thomas; Harry, Ian; Jones, Gareth; Sathyaprakash, B. S.; Brown, Duncan A.; Tagoshi, Hideyuki; Takahashi, Hirotaka

    2009-01-01

    Gravitational waves from coalescing compact binaries are one of the most promising sources for detectors such as LIGO, Virgo, and GEO600. If the components of the binary possess significant angular momentum (spin), as is likely to be the case if one component is a black hole, spin-induced precession of a binary's orbital plane causes modulation of the gravitational-wave amplitude and phase. If the templates used in a matched-filter search do not accurately model these effects then the sensitivity, and hence the detection rate, will be reduced. We investigate the ability of several search pipelines to detect gravitational waves from compact binaries with spin. We use the post-Newtonian approximation to model the inspiral phase of the signal and construct two new template banks using the phenomenological waveforms of Buonanno, Chen, and Vallisneri [A. Buonanno, Y. Chen, and M. Vallisneri, Phys. Rev. D 67, 104025 (2003)]. We compare the performance of these template banks to that of banks constructed using the stationary phase approximation to the nonspinning post-Newtonian inspiral waveform currently used by LIGO and Virgo in the search for compact binary coalescence. We find that, at the same false alarm rate, a search pipeline using phenomenological templates is no more effective than a pipeline which uses nonspinning templates. We recommend the continued use of the nonspinning stationary phase template bank until the false alarm rate associated with templates which include spin effects can be substantially reduced.

  16. Spin-wave stiffness in the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi

    Science.gov (United States)

    Grigoriev, S. V.; Altynbaev, E. V.; Siegfried, S.-A.; Pschenichnyi, K. A.; Menzel, D.; Heinemann, A.; Chaboussant, G.

    2018-01-01

    The small-angle neutron scattering is used to measure the spin-wave stiffness in the field-polarized state of the Dzyaloshinskii-Moriya helimagnets Mn1 -xFexSi with x =0.03 , 0.06, 0.09, and 0.10. The Mn1 -xFexSi compounds are helically ordered below Tc and show a helical fluctuation regime above Tc in a wide range up to TDM. The critical temperatures Tc and TDM decrease with x and tend to 0 at x =0.11 and 0.17, respectively. We have found that the spin-wave stiffness A change weakly with temperature for each individual Fe-doped compound. On the other hand, the spin-wave stiffness A decreases with x duplicating the TDM dependence on x , rather than Tc(x ) . These findings classify the thermal phase transition in all Mn1 -xFexSi compounds as an abrupt change in the spin state caused, most probably, by the features of an electronic band structure. Moreover, the criticality in these compounds is not related to the value of the ferromagnetic interaction but demonstrates the remarkable role of the Dzyaloshinskii-Moriya interaction as a factor destabilizing the magnetic order.

  17. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  18. Information-flux approach to multiple-spin dynamics

    International Nuclear Information System (INIS)

    Di Franco, C.; Paternostro, M.; Kim, M. S.; Palma, G. M.

    2007-01-01

    We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics

  19. Neutron scattering study on the spin dynamics of the two dimensional square lattice antiferromagnet, La2NiO4

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Yamada, Kazuyoshi; Hosoya, Syoichi; Endoh, Yasuo; Omata, Tomoya; Arai, Masatoshi; Taylor, A.

    1993-01-01

    The spin dynamics of an S = 1, two dimensional (2D) square lattice antiferromagnet, La 2 NiO 4 was studied by neutron scattering experiments in wide energy (E N ), the spin wave excitations of La 2 NiO 4 are well described by a classical spin wave theory. The nearest-neighbor-exchange coupling constant, the in-plane and the out-of-plane anisotropy constants at 10 K were determined to be 28.7±0.7 meV, 0.10±0.02 meV and 1.26±0.12 meV, respectively. Above T N , the 2D spin fluctuation was observed over 600 K. The critical slowing down behavior of the fluctuation was observed in the enhancement of the low energy component toward T N . On the other hand, the high energy component is hardly affected by the three dimensional magnetic transition and still exists even at T N as observed in La 2 CuO 4 . The spin correlation length and the static structure factor at the 2D zone center were measured and compared with theoretical calculations for 2D Heisenberg antiferromagnets. (author)

  20. Nuclear spin dynamics in soap solutions and related systems

    International Nuclear Information System (INIS)

    Bloom, M.

    1973-01-01

    Soap molecules consist of a hydrophilic head and a hydrophobic lipid tail. For example, potassium laureate, the soap molecule on which the most complete study of nuclear spin dynamics has been made has the chemical formula KCOO(CH 2 ) 10 CH 3 . High concentration (greater than or approximately equal to 20% soap molecules by weight) soap solutions in water form ordered, liquid crystal structures in which the polar heads are arranged on regular surfaces which define a lattice having long range order. The soap molecules diffuse very rapidly parallel to the surfaces and undergo rapid conformational changes. Studies of T 1 , Tsub(1p) and Tsub(D) have indicated a wide spectrum of correlation times associated with these changes. Because of the orientational order of the soap molecules, the dipolar interactions between nuclear spins on a single molecule are not averaged to zero by the molecular motions. Thus, it is possible to use NMR techniques normally applied to solids (i.e. transfer of Zeeman into dipolar order, etc.) to study their static and dynamical properties. These systems are unusual in that they are basically one-dimensional systems in which the effective, time-averaged, dipolar coupling constants become progressively stronger for protons closer to the polar heads ot the molecules. A review will be presented of the experimental and theoretical NMR work performed on such systems to date. (author)

  1. Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency

    NARCIS (Netherlands)

    Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.

    2011-01-01

    Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin

  2. Influence of temperature on spin polarization dynamics in dilute nitride semiconductors—Role of nonparamagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, M.; Misiewicz, J. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wroclaw University of Technology, Wybrzeze, Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-10-21

    We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.

  3. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  4. Dynamics of spin-flip photon-assisted tunneling

    NARCIS (Netherlands)

    Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under

  5. Wave-particle dualism of spiral waves dynamics.

    Science.gov (United States)

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  6. Comparison of continuous wave, spin echo, and rapid scan EPR of irradiated fused quartz

    International Nuclear Information System (INIS)

    Mitchell, Deborah G.; Quine, Richard W.; Tseitlin, Mark; Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2011-01-01

    The E' defect in irradiated fused quartz has spin lattice relaxation times (T 1 ) about 100-300 μs and spin-spin relaxation times (T 2 ) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (∼9.5 GHz) by three EPR methods: conventional slow-scan field-modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.

  7. Spin-wave resonance in magnetic films in conditions of skin effect

    International Nuclear Information System (INIS)

    Nosov, R.N.; Sementsov, D.I.

    2002-01-01

    The effect of the finite depth of the high-frequency field penetration into the ferromagnetic metal on the spin-wave resonance spectrum perpendicular to the magnetized layer with different types of the spins surface fixation and by availability of attenuation in the spin system is studied. The exact numerical solution of the magnetization motion equation with an account of the skin-layer finite thickness is obtained. The change in the form of the resonance curve on the frequencies close to the frequency of the ferromagnetic resonance is identified in the case of essentially nonuniform high-frequency field distribution by the layer thickness along with widening and decreasing in the amplitude of all resonance peaks [ru

  8. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    International Nuclear Information System (INIS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-01-01

    The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived

  9. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    Science.gov (United States)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  10. Spin-charge coupled dynamics driven by a time-dependent magnetization

    Science.gov (United States)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  11. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    International Nuclear Information System (INIS)

    Gündoğan, M; Mazzera, M; Ledingham, P M; Cristiani, M; De Riedmatten, H

    2013-01-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr 3+ :Y 2 SiO 5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light. (paper)

  12. Relativistic wave functions of two spin 1/2 quarks in a model with QCD interaction

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Solovtsov, I.L.

    1981-01-01

    Within the hamiltonian formulation of quantum field theory an equation is obtained for the vertex and wave functions of a composite system of two spin 1/2 quarks. Exact solutions are found for the relativistic potential having in the momentum representation the ''asymptotically-free'' behaviour at large values of momentum transfer Q 2 . It is shown that within the given model the π-meson wave function has zero at a finite distance corresponding to the point of discontinuity of the effective potential [ru

  13. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Science.gov (United States)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  14. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  15. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  16. Theory of Collective Spin-Wave Modes of Interacting Ferromagnetic Spheres

    Science.gov (United States)

    2004-09-29

    Office (Durham) through Contract No. CS0001028. R. A. thanks also Proyecto Fondecyt Grant No. 7030063. *Present address: Universidad de Chile...Departamento de Fisica FCFM, Santiago, Chile. 1 For examples of experimental studies of the collective spin wave modes of superlattices and multilayers, see M...character to those shown above. In this case, there is no simple symmetry de - composition one canmake for the collective modes, so all branches appear

  17. Competition between spin, charge, and bond waves in a Peierls-Hubbard model

    International Nuclear Information System (INIS)

    Venegas, P.A.; Henriquez, C.; Roessler, J.

    1996-01-01

    We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature. copyright 1996 The American Physical Society

  18. Spin-Wave Dispersion and Sublattice Magnetization in NiCl_2

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Birgeneau, R. J.; Als-Nielsen, Jens Aage

    1975-01-01

    temperature dependence on the sublattice magnetization, gap energy and specific heat. The authors report an inelastic neutron scattering study of the spin waves both at low temperatures and, for selected q-vectors, for temperatures up to TN=52.3K. The sublattice magnetization has been measured from 1.5K to TN......-dependent dispersion relations (together with the sublattice magnetization) and the gap energy up to approximately 0.4 TN are properly predicted....

  19. Spin-wave excitations and magnetism of sputtered Fe/Au multilayers

    Indian Academy of Sciences (India)

    2LMPG, Ecole supérieure de technologie, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Morocco. 3LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Morocco. MS received 15 September 2015; accepted 15 February 2016. Abstract. The spin-wave excitations and ...

  20. Polarization dependence of the spin-density-wave excitations in single-domain chromium

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)

    1997-09-01

    A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.

  1. su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame

    International Nuclear Information System (INIS)

    Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin

    2008-01-01

    The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics

  2. Two-magnon Raman scattering in a spin density wave antiferromagnet

    OpenAIRE

    Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin

    1996-01-01

    We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...

  3. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert

    2017-01-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...

  4. S, P, D, F, G-waves KN phase shifts in a constituent quark model with a spin-orbit interaction

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2002-01-01

    The I=1 and I=0 kaon-nucleon s, p, d, f, g-waves phase shifts have been calculated in a nonrelativistic quark potential model using the resonating group method (RGM). The interquark potential includes gluon exchanges with a spin-orbit interaction. This force has been determined to reproduce as well as possible the meson and baryon spectra. The same force is employed for the cluster and intercluster dynamics and the relative KN wave-function is calculated without any approximation. While some channels are correctly described, the theory is still unable to explain others

  5. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco); LMPG, Ecole supérieure de technologie, Université Hassan de Casablanca, Casablanca (Morocco); Moubah, R.; El Bahoui, A.; Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Casablanca (Morocco)

    2017-04-15

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t{sub Fe}). The change of magnetization as a function of temperature is well depicted by a T{sup 3/2} law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  6. Magnetic studies of spin wave excitations in Fe/Mn multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Moubah, R.; El Bahoui, A.; Lassri, H.

    2017-01-01

    The structural and magnetic properties of Fe/Mn multilayers grown by thermal evaporation technique were investigated by transmission electron microscopy, vibrating sample magnetometer and spin wave theory. Transmission electron microscopy shows that the Fe and Mn layers are continuous with a significant interfacial roughness. The magnetic properties of Fe/Mn multilayers were studied for various Fe thicknesses (t Fe ). The change of magnetization as a function of temperature is well depicted by a T 3/2 law. The Fe spin-wave constant was extracted and found to be larger than that reported for bulk Fe, which we attribute to the fluctuation of magnetic moments at the interface, due to the interfacial roughness. The experimental M (T) data were satisfactory fitted for multilayers with different Fe thicknesses; and several exchange interactions were extracted. - Highlights: • The structural and magnetic properties of Fe/Mn multilayers were studied. • Fe and Mn layers are continuous with an important interfacial roughness. • The Fe spin-wave constant is larger than that reported for bulk Fe due to the fluctuation of the interfacial magnetic moments.

  7. Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films

    Science.gov (United States)

    Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2013-06-01

    A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.

  8. Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi

    Science.gov (United States)

    Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng

    2018-03-01

    The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.

  9. Influence of external magnetic field on parameters of surface two-focus spin-wave ferromagnetic lens

    International Nuclear Information System (INIS)

    Reshetnyak, S.A.; Berezhinskij, A.S.

    2012-01-01

    The influence of external magnetic field on refraction of surface spin wave propagating through inhomogeneity created in the form of a lens, that is a biaxial ferromagnet placed into uniaxial ferromagnetic medium, is studied.

  10. Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap.

    Science.gov (United States)

    Xing, X J; Zhang, D; Li, S W

    2012-12-14

    We have investigated the tunneling of dipole-exchange spin waves across an air gap in submicrometer-sized permalloy magnetic strips by means of micromagnetic simulations. The magnetizations beside the gap could form three distinct end-domain states with various strengths of dipolar coupling. Spin-wave tunneling through the gap at individual end-domain states is studied. It is found that the tunneling behavior is strongly dependent on these domain states. Nonmonotonic decay of transmission of spin waves with the increase of the gap width is observed. The underlying mechanism for these behaviors is proposed. The tunneling characteristics of the dipole-exchange spin waves differ essentially from those of the magnetostatic ones reported previously.

  11. Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal

    Science.gov (United States)

    Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk

    2018-04-01

    Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.

  12. Coercivity of magneto-optical media by spin dynamics

    International Nuclear Information System (INIS)

    Suits, J.C.

    1990-01-01

    Spin dynamics computer simulations have been carried out to study the effect of pinning on domain-wall motion in TbFeCo-like media. These calculations were done on a 30x30x1 mesh, where the spin direction at each lattice site was calculated with the Landau--Lifshitz--Gilbert equation. The simulations were made in an IBM 3090 mainframe--personal computer environment where the result of the calculation is a movie that runs at three frames/second on an AT and shows graphically the domain-wall--defect interaction. The domain wall is caused to move in an external field toward a defect, and the maximum field that pins the domain wall was observed. The defects have finite length and zero magnetization, which correspond to voids or nonmagnetic second phase in the media. The simulation shows that small defects on the order of 100 A in size can pin walls with pinning strength appropriate to the coercivity of magneto-optical media, i.e., local coercivities in the range 1--10 kOe. For sufficiently high fields a single wall may break up into two separate sections at the defect, and then join together beyond the defect to become a single wall again. For rectangular defects, the coercivity depends strongly and nearly linearly on defect length (parallel to the domain-wall surface) and only weakly on defect width for widths greater than about 50 A (perpendicular to the wall surface)

  13. Spin-wave thermal population as temperature probe in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T. [Institut d' Electronique Fondamentale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Nikitin, V. [SAMSUNG Electronics Corporation, 601 McCarthy Blvd Milpitas, California 95035 (United States)

    2016-07-14

    We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axis (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.

  14. Magnetic properties of the spin-density wave in (TMTSF)2X and (TMTTF)2Br

    International Nuclear Information System (INIS)

    Matsunaga, N.; Hosokawa, Y.; Iwasaki, H.; Nomura, K.; Nakamura, T.; Takahashi, T.; Saito, G.

    1999-01-01

    Magnetic properties of the spin density wave (SDW) phase in (TMTSF) 2 X (X=AsF 6 , PF 6 ) and (TMTTF) 2 Br were investigated through analyses of 1 H-NMR and static magnetization measurements. A divergent peak was observed, at the temperature T * well below the SDW transition temperature, in the 1 H spin-lattice relaxation rate in the incommensurate SDW phase of (TMTSF) 2 X. A decrease of the differential magnetic susceptibility of (TMTSF) 2 X with the field parallel to the a-axis was observed around T * . This anomaly indicates a difference of the spin canting above and below T * which divides the SDW phase. In the measurements of magnetic susceptibility on the commensurate SDW phase of (TMTTF) 2 Br, a large decrease of the spin susceptibility was observed above T SDW and non-activated type behavior in the b'-axis susceptibility is observed below the spin-flop field at low temperature. The data are discussed on the basis of commensurability. (orig.)

  15. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  16. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  17. A new and unifying approach to spin dynamics and beam polarization in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.; Ellison, J.A.

    2014-09-01

    With this paper we extend our studies on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.

  18. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    Science.gov (United States)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  19. Banks of templates for directed searches of gravitational waves from spinning neutron stars

    International Nuclear Information System (INIS)

    Pisarski, Andrzej; Jaranowski, Piotr; Pietka, Maciej

    2011-01-01

    We construct efficient banks of templates suitable for directed searches of almost monochromatic gravitational waves originating from spinning neutron stars in our Galaxy in data being collected by currently operating interferometric detectors. We thus assume that the position of the gravitational-wave source in the sky is known, but we do not assume that the wave's frequency and its derivatives are a priori known. In the construction we employ a simplified model of the signal with constant amplitude and phase which is a polynomial function of time. All our template banks enable usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood F-statistic for nodes of the grids defining the bank. We study and employ the dependence of the grid's construction on the choice of the position of the observational interval with respect to the origin of time axis. We also study the usage of the fast Fourier transform algorithms with nonstandard frequency resolutions achieved by zero padding or folding the data. In the case of the gravitational-wave signal with one spin-down parameter included we have found grids with covering thicknesses which are only 0.1-16% larger than the thickness of the optimal 2-dimensional hexagonal covering.

  20. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    Science.gov (United States)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  1. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  2. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Acharyya, Muktish, E-mail: muktish.physics@presiuniv.ac.in; Halder, Ajay, E-mail: ajay.rs@presiuniv.ac.in

    2017-03-15

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases. - Highlights: • The Blume-Capel ferromagnet in propagating and standing magnetic wave. • Monte Carlo single spin flip Metropolis algorithm is employed. • The dynamical modes are observed. • The nonequilibrium phase transitions are studied. • The phase boundaries are drawn.

  3. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  4. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  5. Self-consistent treatment of interacting spin waves at finite temperatures; Etude a temperature finie d'un systeme d'ondes de spin en interaction dans une approximation self-consistante

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spin wave theory is developed where account is taken of spin wave interactions at finite temperatures. The temperature dependence of the spin wave energies and of the magnetization is derived. The theory is developed for ferro-, ferri-, and antiferromagnets. (author) [French] On expose une theorie d'ondes de spin en interaction a temperature finie. On en deduit l'evolution avec la temperature du spectre en energie des ondes de spin et de l'aimantation. La theorie est developpee pour les corps ferro-, ferri-, et antiferromagnetiques. (auteur)

  6. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  7. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  8. Magnetic field dependence of static correlations and spin dynamics of reentrant spin glasses studied by neutron scattering

    International Nuclear Information System (INIS)

    Hennion, M.; Hennion, B.; Mirebeau, I.; Lequien, S.; Hippert, F.

    1988-01-01

    We report small angle (SANS) and inelastic neutron scattering in zero and applied field for a-FeMn, NiMn and AuFe at composition where both ferromagnetic and frustration characters occur. We discuss the field evolution of the transverse correlations which arise below T c . A study of the field sensitivity of the spin wave anomalies in a-FeMn is reported

  9. Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)

    2014-10-01

    Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.

  10. Dirac-fermions in graphene d-wave superconducting heterojunction with the spin orbit interaction

    Science.gov (United States)

    Wang, Juntao; Wang, Andong; Zhang, Rui; Sun, Deng; Yang, Yanling

    2017-09-01

    In this study, based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the interaction effect between the anisotropic d-wave pairing symmetry and the spin orbit interaction (the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI)) in a graphene superconducting heterojunction. We find that the spin orbit interaction (SOI) plays a critical role on the tunneling conductance in the pristine case, but minimally affecting the tunneling conductance in the heavily doped case. As for the zero bias state, in contrast to the keep intact feature in the heavily doped case, it exhibits a distinct dependence on the RSOI and the DSOI in the pristine case. In particular, the damage of the zero bias state with a slight DSOI results in the disappearance of the zero bias conductance peak. Moreover, the tunneling conductances also show a qualitative difference with respect to the RSOI when both the RSOI and the DSOI are finite. These remarkable results suggest that the SOI and the anisotropic superconducting gap can be regarded as a key tool for diagnosing the specular Andreev reflection.

  11. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3

    Science.gov (United States)

    Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng

    2017-03-01

    Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.

  12. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Madami, M., E-mail: marco.madami@fisica.unipg.it; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Moriyama, T.; Tanaka, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Siracusano, G.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, Bari (Italy)

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  13. Basic mode of nonlinear spin-wave resonance in normally magnetized ferrite films

    International Nuclear Information System (INIS)

    Gulyaev, Yu.V.; Zil'berman, P.E.; Timiryazev, A.G.; Tikhomirova, M.P.

    2000-01-01

    Modes of nonlinear and spin-wave resonance (SWR) in the normally magnetized ferrite films were studied both theoretically and experimentally. The particular emphasis was placed on the basic mode of SWR. One showed theoretically that with the growth of the precession amplitude the profile of the basic mode changed. The nonlinear shift of the resonance field depends on the parameters of fixing of the surface spins. Films of ferroyttrium garnet (FYG) with strong gradient of the single-axis anisotropy field along the film thickness, as well as, FYG films of the submicron thickness where investigated experimentally. With the intensification of Uhf-power one observed the sublinear shift of the basic mode resonance field following by the superlinear growth of the absorbed power. That kind of behaviour is explained by variation of the profile of the varying magnetization space distribution [ru

  14. Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices

    Science.gov (United States)

    Rana, Bivas; Otani, YoshiChika

    2018-01-01

    Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.

  15. Quantum Monte Carlo studies of a metallic spin-density wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Max Henner

    2017-01-20

    Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.

  16. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  17. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains

    Directory of Open Access Journals (Sweden)

    Phillip Weinberg, Marin Bukov

    2017-02-01

    Full Text Available We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i Standard exact diagonalisation of XXZ chain (ii adiabatic ramping of parameters in the many-body localised XXZ model, (iii heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.

  18. Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics

    International Nuclear Information System (INIS)

    Trukhanova, Mariya Iv.

    2015-01-01

    We have developed a method of quantum hydrodynamics (QHD) that describes particles with spin-up and with spin-down in separate. We have derived the equation of the spin current evolution as a part of the set of the quantum hydrodynamics equations that treat particles with different projection of spin on the preferable direction as two different species. We have studied orthogonal propagation of waves in the external magnetic field and determined the contribution of quantum corrections due to the Bohm potential and to magnetization energy of particles with different projections of spin in the spin-current wave dispersion. We have analyzed the limits of weak and strong magnetic fields. - Highlights: • We derive the spin current equation for particles with different projection of spin. • We predict the contribution of Bohm potential to the dynamics of spin current. • We derive the spin-current wave in the system of spin-polarized particles. • We study the propagation of spin-acoustic wave in magnetized dielectrics.

  19. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  20. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.

    2013-01-01

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges

  1. Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets

    OpenAIRE

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-01-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the pr...

  2. Spin dynamics in the anisotropic spin glass Fe2TiO5

    DEFF Research Database (Denmark)

    Yeshurun, Y.; Tholence, J. L.; Kjems, Jørgen

    1985-01-01

    We have studied spin-freezing phenomena along the magnetic easy axis of the insulating spin glass Fe2TiOS by magnetisation, AC susceptibility and neutron scattering experiments. The characteristic measurement time for these techniques varies over more than fourteen orders of magnitude. The results...

  3. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments.

    Science.gov (United States)

    Etienne, E; Le Breton, N; Martinho, M; Mileo, E; Belle, V

    2017-08-01

    Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics

    International Nuclear Information System (INIS)

    Barrat, Alain; Berthier, Ludovic

    2001-01-01

    The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard 'mean-field theory' versus 'droplet picture' debate of the past decades. The main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed

  5. Spin wave energy dispersion in KCuF/sub 3/: a nearly one-dimensional spin-1/2 antiferromagnet. [4. 7/sup 0/K

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, M T; Ikeda, H; Milne, J M

    1979-09-28

    Using inelastic neutron scattering techniques, the spin wave energy dispersion in the (010) plane of the distorted perovskite KCuF/sub 3/, which exhibits many magnetic properties of the spin-1/2 one-dimensional antiferromagnet, has been investigated at 4.7 K (T/sub N/ = 39 K). The measurements confirm the very strong exchange interaction between the spins in the (001) direction, and show that in this direction the expression for the excitation energies of the spin-1/2 antiferromagnetic chain given by J des Cloizeaux and J J Pearson is obeyed. The exchange interaction between these chains is found to be only 1.6% of that within the chains.

  6. Spin-wave excitation and Moessbauer spectrometry of amorphous interface in Tb/Fe multilayer

    International Nuclear Information System (INIS)

    El Khiraoui, S.; Sajieddine, M.; Lassri, H.; Sahlaoui, M.

    2009-01-01

    Magnetic properties of Tb(48 A)/Fe(26 A) multilayer were studied with Moessbauer spectrometry at different temperatures before and after isothermal annealing at 673 K. For this last case, a significant perpendicular magnetic anisotropy is induced. This phenomenon is related to the existence of an amorphous and homogenous Tb-Fe alloy, located at the interfaces, which is produced by interdiffusion during the heat processing. The thermal evolution of hyperfine field deduced for interfacial Tb-Fe alloy is found to obey the Bloch law. The spin-wave stiffness constant, the distance between nearest magnetic atoms and the exchange parameter A were calculated from the experimental results

  7. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  8. Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Mason, T.E.

    1997-01-01

    The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition to...

  9. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...

  10. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  11. X-ray detected magnetic resonance of YIG thin films in the nonlinear regime of spin waves

    Energy Technology Data Exchange (ETDEWEB)

    Goulon, J., E-mail: goulon@esrf.f [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Rogalev, A.; Wilhelm, F.; Goujon, G. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Brouder, Ch. [Institut de Mineralogie et de Physique des Milieux Condenses, UMR-CNRS 7590, Universite Paris VI-VII, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Yaresko, A. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Ben Youssef, J.; Indenbom, M.V. [Laboratoire de Magnetisme de Bretagne, CNRS FRE 2697, UFR Sciences et Techniques, F-29328 Brest Cedex (France)

    2010-08-15

    We discuss the information content of element/edge resolved X-ray detected magnetic resonance (XDMR) experiments carried out on yttrium iron garnet (YIG) thin films. Starting with a phenomenological approach, it is shown that the photoionisation of deep atomic core levels by circularly polarized X-rays can be used to probe the precession dynamics of spin or orbital magnetization components in empty final states of proper symmetry. Crude estimates of the opening angle of the uniform precession mode were tentatively deduced from the ratio of the XDMR and XMCD absorption cross-sections either at the iron or yttrium absorbing sites. The implications of the most recent experimental results collected at the ESRF are analyzed, keeping in mind that: (i) the Fe K-edge XDMR signal is largely dominated by the precession of orbital magnetization components at the tetrahedral iron sites; (ii) the Y L-edges XDMR signal essentially describes the precession of induced spin magnetization involving the 4d states of yttrium. In the magnetostatic regime, we produce clear experimental evidence of collective excitations of orbital magnetization waves, especially under high pumping power. Several coupling mechanisms could explain our observations, starting with pseudo-dipolar interactions in ferromagnetic systems. In ferrimagnetic systems in which orbital degeneracy and orbital ordering make the excitation of orbitons possible, one may envisage additional modes of excitation or relaxation of orbital magnetization waves. This interpretation looks fully consistent with the results of band structure calculations carried out recently on YIG with fully relativistic LMTO-LSDA methods.

  12. Cell shape dynamics: from waves to migration.

    Directory of Open Access Journals (Sweden)

    Meghan K Driscoll

    Full Text Available We observe and quantify wave-like characteristics of amoeboid migration. Using the amoeba Dictyostelium discoideum, a model system for the study of chemotaxis, we demonstrate that cell shape changes in a wave-like manner. Cells have regions of high boundary curvature that propagate from the leading edge toward the back, usually along alternating sides of the cell. Curvature waves are easily seen in cells that do not adhere to a surface, such as cells that are electrostatically repelled from surfaces or cells that extend over the edge of micro-fabricated cliffs. Without surface contact, curvature waves travel from the leading edge to the back of a cell at -35 µm/min. Non-adherent myosin II null cells do not exhibit these curvature waves. At the leading edge of adherent cells, curvature waves are associated with protrusive activity. Like regions of high curvature, protrusive activity travels along the boundary in a wave-like manner. Upon contact with a surface, the protrusions stop moving relative to the surface, and the boundary shape thus reflects the history of protrusive motion. The wave-like character of protrusions provides a plausible mechanism for the zig-zagging of pseudopods and for the ability of cells both to swim in viscous fluids and to navigate complex three dimensional topography.

  13. Dynamic equations for gauge-invariant wave functions

    International Nuclear Information System (INIS)

    Kapshaj, V.N.; Skachkov, N.B.; Solovtsov, I.L.

    1984-01-01

    The Bethe-Salpeter and quasipotential dynamic equations for wave functions of relative quark motion, have been derived. Wave functions are determined by the gauge invariant method. The V.A. Fock gauge condition is used in the construction. Despite the transl tional noninvariance of the gauge condition the standard separation of variables has been obtained and wave function doesn't contain gauge exponents

  14. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  15. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    Science.gov (United States)

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  16. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    Science.gov (United States)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  17. Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries

    International Nuclear Information System (INIS)

    Pürrer, Michael

    2014-01-01

    Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body models for binaries with aligned-spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation (PE) studies. I provide a frequency-domain singular value decomposition-based surrogate reduced order model that is thousands of times faster for typical system masses and has a faithfulness mismatch of better than ∼0.1% with the original SEOBNRv1 model for advanced LIGO detectors. This model enables PE studies up to signal-to-noise ratios (SNRs) of 20 and even up to 50 for total masses below 50 M ⊙ . This paper discusses various choices for approximations and interpolation over the parameter space that can be made for reduced order models of spinning compact binaries, provides a detailed discussion of errors arising in the construction and assesses the fidelity of such models. (paper)

  18. Dynamics of a driven spin coupled to an antiferromagnetic spin bath

    International Nuclear Information System (INIS)

    Yuan Xiaozhong; Goan, Hsi-Sheng; Zhu, Ka-Di

    2011-01-01

    We study the behavior of the Rabi oscillations of a driven central spin (qubit) coupled to an antiferromagnetic spin bath (environment). It is found that the decoherence behavior of the central spin depends on the detuning, driving strength, qubit-bath coupling and an important factor Ω, associated with the number of coupled atoms, the detailed lattice structure and the temperature of the environment. If detuning exists, Rabi oscillations may show the behavior of collapses and revivals; however, if detuning is absent, such a behavior will not appear. We investigate the weighted frequency distribution of the time evolution of the central spin inversion and give a reasonable explanation of this phenomenon of collapses and revivals. We also discuss the decoherence and pointer states of the qubit from the perspective of von Neumann entropy. We found that the eigenstates of the qubit self-Hamiltonian emerge as pointer states in the weak system-environment coupling limit.

  19. Modeling aspects of wave kinematics in offshore structures dynamics

    International Nuclear Information System (INIS)

    Spanos, P.D.; Ghanem, R.; Bhattacharjee, S.

    1993-01-01

    Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response of a simple model of a guyed tower

  20. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.

    Science.gov (United States)

    Chesler, Paul M; Loeb, Abraham

    2017-07-21

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  1. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  2. Effect of spin-orbit coupling on the wave vector and spin dependent transmission probability for the GaN/AlGaN/GaN heterostructure

    International Nuclear Information System (INIS)

    Li, M; Zhao, Z B; Fan, L B

    2015-01-01

    The effect of the Rashba and Dresselhaus spin–orbit coupling (SOC) on the transmission of electrons through the GaN/AlGaN/GaN heterostructure is studied. It is found that the Dresselhaus SOC causes the evident dependence of the transmission probability on the spin polarization and the in-plane wave vector of electrons, and also induces evident spin splitting of the resonant peaks in the (E z -k) plane. Because the magnitude of the Rashba SOC is relatively small, its effect on the transmission of electrons is much less. As k increases, the peaks of transmission probability for spin-up electrons (T + ) shift to a higher energy region and increase in magnitude, while the peaks of transmission probability for spin-down electrons (T − ) shift to a lower energy region and decrease in magnitude. The polarization efficiency (P) is found to peak at the resonant energies and increases with the in-plane wave vector. Moreover, the built-in electric field caused by the spontaneous and piezoelectric polarization can increase the amplitude of P. Results obtained here are helpful for the efficient spin injection into the III-nitride heterostructures by nonmagnetic means from the device point of view. (paper)

  3. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2018-05-01

    Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  4. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Science.gov (United States)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.

    2018-05-01

    We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  5. Spin-wave dispersion of nanostructured magnonic crystals with periodic defects

    Directory of Open Access Journals (Sweden)

    V. L. Zhang

    2016-11-01

    Full Text Available The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.

  6. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  7. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  8. Itinerant spin dynamics in iron-based superconductors and cerium-based heavy-fermion antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Friemel, Gerd

    2014-05-26

    This thesis contains a comprehensive study of the spin excitations by inelastic neutron scattering (INS) in two different correlated electron systems: the alkali-metal iron selenide superconductors (FeSe122) A{sub x}Fe{sub 2-y}Se{sub 2} (A=K, Rb, Cs) and the heavy-fermion antiferromagnet CeB6. Both systems exhibit intense modes in their spin-fluctuation spectrum below their respective transition temperatures that can be derived from the spin dynamics of the itinerant quasiparticles. However, the implications of these observations, presented here, are different for each particular compound. The A{sub x}Fe{sub 2-y}Se{sub 2} superconductors, with a uniform T{sub c} of 32 K, belong to a qualitative new family of superconductors. They possess a distinctly different Fermi surface compared to the iron-arsenide-based analogues XFe{sub 2}As{sub 2} (X=Ca, Sr, Ba). Instead of the central hole pockets at Γ and the electron pockets at X((1)/(2) 0), which are nested by the Q{sub AFM} = ((1)/(2) 0) vector, there exist only large electron pockets at the X point. Therefore, the magnetic instability along Q{sub AFM} that presumably provides the pairing glue for the superconductivity in the shape of spin fluctuations is absent in the FeSe122. The search for spin fluctuations by INS was motivated by a theoretical analysis that predicted their presence at an incommensurate wave vector near Q = (0.5 δ), δ = 0.3125 which results from a quasinesting by Q between the flat parts of the electron pockets. Two samples, namely Rb{sub 0.8}Fe{sub 1.6}Se{sub 2} and K{sub 0.77}Fe{sub 1.85}Se{sub 2}, were prepared and both showed a sizable anisotropic magnetic response at Q{sub sf} = ((1)/(2) (1)/(4)) in the normal state. Furthermore, upon entering the superconducting (SC) state a strong excitation appears at ℎω{sub res} = 14 meV in the spectrum at Q{sub sf}, which is referred to as magnetic resonant mode. This mode is interpreted as a bound spin-1 exciton below the SC charge gap. Its presence

  9. Itinerant spin dynamics in iron-based superconductors and cerium-based heavy-fermion antiferromagnets

    International Nuclear Information System (INIS)

    Friemel, Gerd

    2014-01-01

    This thesis contains a comprehensive study of the spin excitations by inelastic neutron scattering (INS) in two different correlated electron systems: the alkali-metal iron selenide superconductors (FeSe122) A x Fe 2-y Se 2 (A=K, Rb, Cs) and the heavy-fermion antiferromagnet CeB6. Both systems exhibit intense modes in their spin-fluctuation spectrum below their respective transition temperatures that can be derived from the spin dynamics of the itinerant quasiparticles. However, the implications of these observations, presented here, are different for each particular compound. The A x Fe 2-y Se 2 superconductors, with a uniform T c of 32 K, belong to a qualitative new family of superconductors. They possess a distinctly different Fermi surface compared to the iron-arsenide-based analogues XFe 2 As 2 (X=Ca, Sr, Ba). Instead of the central hole pockets at Γ and the electron pockets at X((1)/(2) 0), which are nested by the Q AFM = ((1)/(2) 0) vector, there exist only large electron pockets at the X point. Therefore, the magnetic instability along Q AFM that presumably provides the pairing glue for the superconductivity in the shape of spin fluctuations is absent in the FeSe122. The search for spin fluctuations by INS was motivated by a theoretical analysis that predicted their presence at an incommensurate wave vector near Q = (0.5 δ), δ = 0.3125 which results from a quasinesting by Q between the flat parts of the electron pockets. Two samples, namely Rb 0.8 Fe 1.6 Se 2 and K 0.77 Fe 1.85 Se 2 , were prepared and both showed a sizable anisotropic magnetic response at Q sf = ((1)/(2) (1)/(4)) in the normal state. Furthermore, upon entering the superconducting (SC) state a strong excitation appears at ℎω res = 14 meV in the spectrum at Q sf , which is referred to as magnetic resonant mode. This mode is interpreted as a bound spin-1 exciton below the SC charge gap. Its presence implies an unconventional order parameter, which changes the sign between the electron

  10. Dynamic response of a riser under excitation of internal waves

    Science.gov (United States)

    Lou, Min; Yu, Chenglong; Chen, Peng

    2015-12-01

    In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.

  11. Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution

    DEFF Research Database (Denmark)

    Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel

    2009-01-01

    ) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN......Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes...

  12. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  13. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    Science.gov (United States)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  14. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  15. Experimental investigation and modeling of dynamic performance of wave springs

    OpenAIRE

    Tang, N.; Rongong, J.; Lord, C.; Sims, N.

    2016-01-01

    This paper investigates vibration suppression potentials for a novel frictional system - a wave spring.\\ud Two different types of wave springs, crest-to-crest and nested ones, were used in this work. Compared with\\ud nested wave springs, crest-to-crest wave springs have lower damping and a larger range for the linear stiffness\\ud due to a reduced level of contact. Dynamic compressive tests, subject to different static compression levels,\\ud are carried out to investigate the force-displacemen...

  16. Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm

    Science.gov (United States)

    Maendl, Stefan; Grundler, Dirk

    2018-05-01

    We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits.

  17. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  18. Dynamics of ionizing shock waves on adiabatic motions of gases

    International Nuclear Information System (INIS)

    Zorev, N.N.; Sklizkov, G.V.; Shikanov, A.S.

    1982-01-01

    Results are presented of an experimental investigation of free (adiabatic) motion of a spherical ionizing wave in deuterium produced by an expanding laser plasma. It is shown that the discrepancy between the free movement of shock waves (which lead to total ionization of the gas) and the Sedov-Taylor model of a spontaneous point explosion is not related to variations in the adiabat exponent γ and the motion occurs for a constant γ=5/3. The effect is ascribed to the influence of the shock wave front structure on the dynamics of its propagation. An analytic expression for the motion of symmetric ionizing shock waves is found which has an accuracy of better than 1%. As a result the adiabat exponent was determined experimentally. A method for determining the energy of a shock wave on the basis of its dynamics of motion is developed which has an accuracy of approximately 5% [ru

  19. Phase dynamics of oscillating magnetizations coupled via spin pumping

    Science.gov (United States)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  20. Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors

    International Nuclear Information System (INIS)

    Krauss, Michael

    2010-01-01

    This thesis is concerned with spin-dependent carrier dynamics in semiconductors and metals. We are especially interested in the dynamics on ultrashort timescales, which can be driven by ultrashort optical excitation, and use of a theoretical description in terms of the dynamical spin-density matrix. The first part of this thesis is concerned with spin-dependent carrier dynamics in bulk GaAs. For conduction electrons in GaAs, the most important mechanisms, by which an electron spin polarization can be destroyed, are the Dyakonov-Perel and Bir-Aronov-Pikus mechanisms. For the Dyakonov-Perel effect, our treatment is the first calculation of the dynamics of the spindensity matrix for bulk GaAs. From our microsopic calculation, we extract spin-dephasing times. In particular, we can describe the dependence of the spin-dephasing time for a wide range of n-doping concentrations and explain the spin-dephasing dynamics in and out of the motional-narrowing regime. For the Bir-Aronov-Pikus mechanism, i.e., the exchange interaction of electronics with holes, approximate relaxation times for limiting cases were derived about 30 years ago. We show that these approaches provide an incomplete picture of spin relaxation, and are only valid for high or low densities, whereas the microscopic calculation is capable of explaining the electronic dynamics also for intermediate doping densities, which are most interesting for typical experiments. The spin-dependent hole dynamics in GaAs is much faster than that of electrons, because the p-like hole bands experience the spin-orbit interaction directly, rather than through the interaction with other bands. The resulting spin relaxation is sometimes referred to as an Elliott-Yafet mechanism. For the first time, we present results for the microscopic dynamics of this mechanism for holes in bulk GaAs, and we discuss the different results that may be obtained with different measurement techniques. We also analyze the importance of ''spin hot

  1. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    Science.gov (United States)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  2. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    Science.gov (United States)

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Theory of unidirectional spin heat conveyer

    Science.gov (United States)

    Adachi, Hiroto; Maekawa, Sadamichi

    2015-05-01

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  4. Coulomb singularities in scattering wave functions of spin-orbit-coupled states

    International Nuclear Information System (INIS)

    Bogdanski, P.; Ouerdane, H.

    2011-01-01

    We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.

  5. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  6. Collation of offshore wind‐wave dynamics

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Larsen, Søren Ejling; Matha, D.

    2012-01-01

    wave climate can be constructed. If needed, this climate can be supplemented by the user with the combined directional distribution of wind and waves, either based on data or in terms of parametric studies. The scaling method proposed is the dynamic‐elastic scaling, which maintains the ratios between...... hydrodynamic, aerodynamic, stiffness‐induced and gravitational forces. This scaling preserves the Froude number for the water phase and the tip speed ratio for the rotor. The Reynolds numbers for air and water, however, are not conserved. A redesign of the model‐scale blades will therefore be needed. Here...

  7. Spin wave collapse and incommensurate fluctuations in URu2Si2

    DEFF Research Database (Denmark)

    Buyers, W.J.L.; Tun, Z.; Petersen, T.

    1994-01-01

    To test if the T(N) = 17.7 K transition in URu2Si2 is driven by a divergence of a magnetic order parameter we performed high-resolution neutron scattering. At the ordering wave vector the spin-wave energy collapsed. and the susceptibility diverged as T(N) was approached. This confirms that the or...... that the order parameter is the magnetic dipole, as shown by recent symmetry arguments and polarized neutron experiments [1]. We also observe incommensurate fluctuations, suggesting that competing temperature-dependent interactions may influence this weak-moment transition.......To test if the T(N) = 17.7 K transition in URu2Si2 is driven by a divergence of a magnetic order parameter we performed high-resolution neutron scattering. At the ordering wave vector the spin-wave energy collapsed. and the susceptibility diverged as T(N) was approached. This confirms...

  8. Control of propagation characteristics of spin wave pulses via elastic and thermal effects

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Arista, Ivan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Kolokoltsev, O., E-mail: oleg.kolokoltsev@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Acevedo, A.; Qureshi, N. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU, 04510 D.F., México (Mexico)

    2017-05-01

    A study of the magnetoelastic (ME) and thermal effects governing the phase (φ) and amplitude of magnetostatic surface spin wave (MSSW) pulses propagating in Ga:YIG/GGG and permalloy magnonic waveguides is presented. The ME effects were studied in a flexural configuration, under punctual mechanical force (F). Thermally induced ME and demagnetization phenomena were controlled by optically injected thermal power P{sub th}. It was determined that in an unclamped Ga:YIG waveguide, the force F that induces the phase shift Δφ=π, decreases by a quadratic law in the range from 1 mN to nN, and the P{sub th} at which Δφ=π decreases linearly from mW to μW as the waveguide volume decreases from mm{sup 3} to nm{sup 3}. For nano-volume waveguides the ME control energy (E{sub me}) can be of order of aJ, and the thermal control energy (ΔE{sub th}) can be as small as 50 fJ. The response time of these effects lies in the ns time scale. Both the mechanical and the thermo-magnetic forces provide an effective control of MSSW pulse amplitude, in addition to its phase shift. The thermo-magnetic effect allows one to realize variable delays of a MSSW pulse. - Highlights: • The Magneto-elastic (ME) and optically induced thermal effects governing the phase and amplitude of magnetostatic surface spin wave (MSSW) pulses propagating in Ga:YIG/GGG and permalloy magnonic waveguides are presented. • A mechanical force that causes phase shift Δφ=π for spin waves in the waveguides decreases by a quadratic law in the range from 1 mN to nN, and the optical power that induces the phase shift Δφ=π, decreases linearly from mW to μW as the waveguide volume decreases from mm{sup 3} to nm{sup 3}. • The response time of these effects can lie in the ns time scale.

  9. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    International Nuclear Information System (INIS)

    Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie

    2017-01-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)

  10. Polarization study of non-resonant X-ray magnetic scattering from spin-density-wave modulation in chromium

    International Nuclear Information System (INIS)

    Ohsumi, Hiroyuki; Takata, Masaki

    2007-01-01

    We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal

  11. Wave dynamics of regular and chaotic rays

    International Nuclear Information System (INIS)

    McDonald, S.W.

    1983-09-01

    In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space

  12. Spin-orbit maps and electron spin dynamics for the luminosity upgrade project at HERA

    International Nuclear Information System (INIS)

    Berglund, G.Z.M.

    2001-09-01

    HERA is the high energy electron(positron)-proton collider at deutsches elektronen-synchrotron (DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudinally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been modified to increase the luminosity by a factor of about five and spin rotators have been installed for the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping magnetic fields and other aspects which have profound implications for the polarization. This thesis addresses the problem of calculating the polarization in the upgraded machine and the measures needed to maintain the polarization. A central topic is the construction of realistic spin-orbit transport maps for the regions of overlapping fields and their implementation in existing software. This is the first time that calculations with such fields have been possible. Using the upgraded software, calculations are presented for the polarization that can be expected in the upgraded machine and an analysis is made of the contributions to depolarization from the various parts of the machine. It is concluded that about 50% polarization should be possible. The key issues for tuning the machine are discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model of spin motion to describe electron depolarization and thereby expose a misconception appearing in the literature. (orig.)

  13. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules; Theoretische Untersuchung zur Quantendynamik der Kernspinisomere nicht-linearer Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, Thomas

    2012-05-31

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  14. Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity

    Science.gov (United States)

    Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.

    2017-07-01

    We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

  15. Spin dynamics and Kondo physics in optical tweezers

    Science.gov (United States)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  16. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.; Szunyogh, Istvan; Gyarmati, Gyorgyi; Wilson, R. John

    2013-01-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  17. Local Dynamics of Baroclinic Waves in the Martian Atmosphere

    KAUST Repository

    Kavulich, Michael J.

    2013-11-01

    The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars general circulation model (GCM). The main diagnostic tool of the study is the (local) eddy kinetic energy equation. Results are shown for a prewinter season of the Northern Hemisphere, in which a deep baroclinic wave of zonal wavenumber 2 circles the planet at an eastward phase speed of about 70° Sol-1 (Sol is a Martian day). The regular structure of the wave gives the impression that the classical models of baroclinic instability, which describe the underlying process by a temporally unstable global wave (e.g., Eady model and Charney model), may have a direct relevance for the description of the Martian baroclinic waves. The results of the diagnostic calculations show, however, that while the Martian waves remain zonally global features at all times, there are large spatiotemporal changes in their amplitude. The most intense episodes of baroclinic energy conversion, which take place in the two great plain regions (Acidalia Planitia and Utopia Planitia), are strongly localized in both space and time. In addition, similar to the situation for terrestrial baroclinic waves, geopotential flux convergence plays an important role in the dynamics of the downstream-propagating unstable waves. © 2013 American Meteorological Society.

  18. Spin-wave dispersion relations in disordered Fe-V alloys

    International Nuclear Information System (INIS)

    Nakai, Y.; Schibuya, N.; Kunitomi, N.; Wakabayashi, N.; Cooke, J.F.

    1982-01-01

    The spin-wave dispersion relations of the ferromagnetic disordered alloys Fe/sub 1-x/V/sub x/(x = 0.076, 0.135, 0.160, and 0.187) were studied by means of the inelastic scattering of neutrons. The observed dispersion relations are adequately represented by the power law, E = Dq 2 (1-βq 2 ), in a wide energy range up to 80 meV. The concentration dependence of the exchange stiffness constant D shows good agreement with previous results obtained by means of the small-angle scattering of neutrons and by the analysis of the temperature dependence of the bulk magnetization. The observed results can be explained by the Heisenberg model and, to some extent, by the itinerant-electron model

  19. Ferromagnetic resonance and spin-wave resonances in GaMnAsP films

    Science.gov (United States)

    Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.

    2018-05-01

    A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.

  20. Spin wave propagation in perpendicularly magnetized nm-thick yttrium iron garnet films

    Science.gov (United States)

    Chen, Jilei; Heimbach, Florian; Liu, Tao; Yu, Haiming; Liu, Chuanpu; Chang, Houchen; Stückler, Tobias; Hu, Junfeng; Zeng, Lang; Zhang, Youguang; Liao, Zhimin; Yu, Dapeng; Zhao, Weisheng; Wu, Mingzhong

    2018-03-01

    Magnonics offers a new way for information transport that uses spin waves (SWs) and is free of charge currents. Unlike Damon-Eshbach SWs, the magneto-static forward volume SWs offer the reciprocity configuration suitable for SW logic devices with low power consumption. Here, we study forward volume SW propagation in yttrium iron garnet (YIG) thin films with an ultra-low damping constant α = 8 ×10-5 . We design different integrated microwave antenna with different k-vector excitation distributions on YIG thin films. Using a vector network analyzer, we measured SW transmission with the films magnetized in perpendicular orientation. Based on the experimental results, we extract the group velocity as well as the dispersion relation of SWs and directly compare the power efficiency of SW propagation in YIG using coplanar waveguide and micro stripline for SW excitation and detection.

  1. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  2. Integrable open spin chain in Super Yang-Mills and the plane-wave/SYM duality

    International Nuclear Information System (INIS)

    Chen Bin; Wang Xiaojun; Wu Yongshi

    2004-01-01

    We investigate the integrable structures in an N = 2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime. (author)

  3. Galvanomagnetic properties in the spin-density-wave phase of (TMTSF)2PF6

    International Nuclear Information System (INIS)

    Korin-Hamzic, B.; Bechgaard, K.

    1999-01-01

    We have measured the magnetoresistance and the Hall effect in the spin-density-wave (SDW) state of (TMTSF) 2 PF 6 down to 2 K and in magnetic fields up to 9 T in order to gain an additional insight into the nature of the possible subphases in the SDW state. We have found that the temperature dependent magnetoresistance anisotropy changes below 4 K; this change being maximal for the current in the lowest conductivity direction. The Hall resistivity has showed different magnetic field dependencies for T>4 K and T<4 K. The resistivity and the Hall resistivity were also investigated as the function of the electric field. The backflow coefficient α does not change below 4 K. (orig.)

  4. Magnetic studies of spin wave excitations in Ni/Au multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Chafai, K.; Benkirane, K.; Lassri, H.; Abid, M.; Hlil, E.K.

    2010-01-01

    Ni/Au multilayers were prepared by the electron beam evaporation method under ultra high vacuum conditions. The multilayer films have a coherent structure with (1 1 1) texture. The magnetic properties of Ni/Au multilayers are examined as a function of Ni layer thickness t Ni . The temperature dependence of the spontaneous magnetization M(T) is well described by a T 3/2 law in all multilayers. A spin wave theory has been used to explain the magnetization versus temperature. Based on this theory, the approximate values for the bulk exchange interaction J b , surface exchange interaction J S and the interlayer coupling strength J I have been obtained for various Ni layer thicknesses.

  5. Elastic Wave-equation Reflection Traveltime Inversion Using Dynamic Warping and Wave Mode Decomposition

    KAUST Repository

    Wang, T.

    2017-05-26

    Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.

  6. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  7. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei; Yan, Buyi; Li, Ruipeng; Li, Erqiang; Zhao, Kui; Anjum, Dalaver H.; Alvarez, Steven; Gassaway, Robert; Biocca, Alan K.; Thoroddsen, Sigurdur T; Hexemer, Alexander; Amassian, Aram

    2013-01-01

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Long-range spin wave mediated control of defect qubits in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Andrich, Paolo; de las Casas, Charles F.; Liu, Xiaoying; Bretscher, Hope L.; Berman, Jonson R.; Heremans, F. Joseph; Nealey, Paul F.; Awschalom, David D.

    2017-07-17

    Hybrid architectures that combine nitrogen-vacancy (NV) centers in diamond with other materials and physical systems have been proposed to enhance the NV center’s capabilities in many quantum sensing and information applications. In particular, spin waves (SWs) in ferromagnetic materials are a promising candidate to implement these platforms due to their strong magnetic fields, which could be used to efficiently interact with the NV centers. Here we develop an yttrium iron garnet-nanodiamond hybrid architecture constructed with the help of directed assembly and transfer printing techniques. Operating at ambient conditions, we demonstrate that surface confined SWs excited in the ferromagnet (FM) can strongly amplify the interactions between a microwave source and the NV centers by enhancing the local microwave magnetic field by several orders of magnitude. Crucially, we show the existence of a regime in which coherent interactions between SWs and NV centers dominate over incoherent mechanisms associated with the broadband magnetic field noise generated by the FM. These accomplishments enable the SW mediated coherent control of spin qubits over distances larger than 200 um, and allow low power operations for future spintronic technologies.

  10. CFD model of a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2006-07-01

    Full Text Available Slides on: Spinning Pipe Gas Lens; Focal Length; Refractive Index; Gas Dynamics; Guess at the gas dynamics; Density Profile; Flow Profile; Rosby Waves; Rayleigh–Taylor Instabilities...

  11. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  12. Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing...

  13. Inelastic neutron scattering in the spin wave energy gap of the polydomain γ-Mn(12%Ge) alloy

    International Nuclear Information System (INIS)

    Jankowska-Kisielinska, J.; Mikke, K.

    1999-01-01

    The subject of the present experiment was the investigation of the inelastic neutron scattering (INS) for energy transfers lower than and close to the energy gap of the spin wave spectrum for long wavelengths. The aim was a search for the excitations at the magnetic Brillouin zone (MBZ) boundary in polydomain Mn(12%Ge) alloy. The present measurements were performed by a 3-axis spectrometer at Maria Reactor at IEA in Swierk. We observed the INS in the polydomain Mn(12%Ge) alloy for energies smaller than and close to the energy gap value of the spin wave spectrum at room temperature. The observed intensity can be treated as a sum of intensity of neutrons scattered on spin waves around magnetic Brillouin zone centre and that of neutrons scattered on fluctuations at the zone boundary. The intensity of both components for energies 2-6 MeV was found to be of the same order. For higher energies spin waves around magnetic zone centre dominate. (author)

  14. Effects of disorder on atomic density waves and spin-singlet dimers in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Gao Xianlong

    2008-01-01

    Using the Bethe-ansatz density-functional theory, we study a one-dimensional Hubbard model of confined attractively interacting fermions in the presence of a uniformly distributed disorder. The strongly correlated Luther-Emery nature of the attractive one-dimensional Hubbard model is fully taken into account as the reference system in the density-functional theory. The effects of the disorder are investigated on the atomic density waves in the weak-to-intermediate attractive interaction and on the spin-singlet dimers of doubly occupied sites in the strongly attractive regime. It is found that atomic density waves are sensitive to the disorder and the spin-singlet dimers of doubly occupied sites are quite unstable against the disorder. We also show that a very weak disorder could smear the singularities in the stiffness, thus, suppresses the spin-singlet pairs

  15. Magneto- to electroactive transmutation of spin waves in ErMnO3.

    Science.gov (United States)

    Chaix, L; de Brion, S; Petit, S; Ballou, R; Regnault, L-P; Ollivier, J; Brubach, J-B; Roy, P; Debray, J; Lejay, P; Cano, A; Ressouche, E; Simonet, V

    2014-04-04

    The low-energy dynamical properties of the multiferroic hexagonal perovskite ErMnO3 have been studied by inelastic neutron scattering as well as terahertz and far infrared spectroscopies on a synchrotron source. From these complementary techniques, we have determined the magnon and crystal field spectra and identified a zone center magnon excitable only by the electric field of an electromagnetic wave. Using a comparison with the isostructural YMnO3 compound and crystal field calculations, we propose that this dynamical magnetoelectric process is due to the hybridization of a magnon with an electroactive crystal field transition.

  16. Azimuthally spinning wave modes and heat release in an annular combustor

    Science.gov (United States)

    Nygard, Hakon; Mazur, Marek; Dawson, James R.; Worth, Nicholas A.

    2017-11-01

    In order to reduce NOx emissions from aeroengines and stationary gas turbines the fuel-air mixture can be made leaner, at the risk of introducing potentially damaging thermo-acoustic instabilities. At present this phenomenon is not understood well enough to eliminate these instabilities at the design stage. Recently, the presence of different azimuthal modes in annular combustors has been demonstrated both experimentally and numerically. These naturally occurring instabilities in annular geometry have been observed to constantly switch between spinning and standing modes, making it more difficult to analyse the flame structure and dynamics. Very recently this issue was partially addressed using novel acoustic forcing to generate a standing mode. In the present study this concept has been developed further by creating an azimuthal array of loud speakers, which for the first time permits predominantly spinning modes to be set up inside the combustion chamber. The use of pressure and high speed OH* measurements enables the study of the flame dynamics and heat release rate oscillations of the combustor, which will be reported in the current paper. The ability to precisely control the azimuthal mode of oscillation greatly enhances our further understanding of the phenomenon. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 677931 TAIAC).

  17. Dynamical chaos of plasma ions in electrostatic waves

    International Nuclear Information System (INIS)

    Fasoli, A.; Kleiber, R.; Tran, M.Q.; Paris, P.J.; Skiff, F.

    1992-09-01

    Chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric response and the microscopic heating mechanisms have been investigated via optical diagnostic techniques based on laser induced fluorescence. Observations of test-particle dynamical evolution indicate an exponential separation of initially close ion trajectories. (author) 5 figs., 20 refs

  18. Modeling Stop-and-Go Waves in Pedestrian Dynamics

    OpenAIRE

    Portz, Andrea; Seyfried, Armin

    2010-01-01

    Several spatially continuous pedestrian dynamics models have been validated against empirical data. We try to reproduce the experimental fundamental diagram (velocity versus density) with simulations. In addition to this quantitative criterion, we tried to reproduce stop-and-go waves as a qualitative criterion. Stop-and-go waves are a characteristic phenomenon for the single file movement. Only one of three investigated models satisfies both criteria.

  19. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    International Nuclear Information System (INIS)

    Zhang Kai-Cheng; Liu Yong; Chi Feng

    2014-01-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Effects of three-body interactions on the dynamics of entanglement in spin chains

    International Nuclear Information System (INIS)

    Shi Cuihua; Wu Yinzhong; Li Zhenya

    2009-01-01

    With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.