WorldWideScience

Sample records for spin valve structure

  1. The magnetoresistive effect induced by stress in spin-valve structures

    International Nuclear Information System (INIS)

    Li-Jie, Qian; Xiao-Yong, Xu; Jing-Guo, Hu

    2009-01-01

    Using a method of free energy minimization, this paper investigates the magnetization properties of a ferromagnetic (FM) monolayer and an FM/antiferromagnetic (AFM) bilayer under a stress field, respectively. It then investigates the magnetoresistance (MR) of the spin-valve structure, which is built by an FM monolayer and an FM/AFM bilayer, and its dependence upon the applied stress field. The results show that under the stress field, the magnetization properties of the FM monolayer is obviously different from that of the FM/AFM bilayer, since the coupled AFM layer can obviously block the magnetization of the FM layer. This phenomenon makes the MR of the spin-valve structure become obvious. In detail, there are two behaviors for the MR of the spin-valve structure dependence upon the stress field distinguished by the coupling (FM coupling or AFM coupling) between the FM layer and the FM/AFM bilayer. Either behavior of the MR of the spin-valve structure depends on the stress field including its value and orientation. Based on these investigations, a perfect mechanical sensor at the nano-scale is suggested to be devised experimentally

  2. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  3. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    Science.gov (United States)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  4. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    Science.gov (United States)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  5. Magnetic structure of the spin valve interface

    International Nuclear Information System (INIS)

    Nicholson, D.M.C.; Butler, W.H.; Zhang, X.; MacLaren, J.M.; Gurney, B.A.; Speriosu, V.S.

    1994-01-01

    Nonferromagnetic atoms present at Ni/Cu and Permalloy/Cu interfaces in sputtered spin valve magnetoresistive layered structures have been shown to cause reduced magnetoresistance. Here we show that a model in which the moments on the Ni atoms in the interfacial region of Ni/Cu are reduced substantially by interdiffusion with Cu is consistent with the experimental results. In contrast, we believe that moments persist at the permalloy/Cu interface, which first principle total energy calculations suggest will be disordered at finite temperatures. These reduced or disordered moments are expected to significantly reduce the GMR

  6. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    Science.gov (United States)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  7. Improved corrosion resistance of spin-valve film

    International Nuclear Information System (INIS)

    Tetsukawa, H.; Hommura, H.; Okabe, A.; Soda, Y.

    2007-01-01

    We investigated the corrosion behavior and magnetoresistance of spin-valve film in order to improve the corrosion resistance of the spin-valve head for a tape recording system. The conventional spin-valve head (sub./Ta/NiFe/CoFe/Cu/CoFe/PtMn/Ta) with no diamond-like carbon (DLC) protective layer showed poor corrosion resistance. This is because the CoFe for ferromagnetic layer and Cu for spacer in the spin-valve film exhibited poor corrosion resistance. The corrosion resistance of the CoFe film and Cu film improved with the addition of Ni and Au, respectively. The spin-valve film (sub./Ta/NiFe/CoNiFe/CuAu/CoNiFe/PtMn/Ta) showed higher pitting potential than the conventional spin-valve film by +0.45 V. This presents a significant improvement over the conventional spin-valve film. We also investigated the effect of the composition of ferromagnetic layer and spacer on the magnetoresistance of the spin-valve film. The magnetoresistance of the spin-valve film by substitution of CoNiFe for CoFe in ferromagnetic layer decreased slightly. The magnetoresistance of the spin-valve film decreased as the addition of Au of the spacer increased. The diffusion at CoNiFe/CuAu interface has not been observed in annealing process. The quantitative relation between corrosion resistance and magnetoresistance of spin-valve film, and its ferromagnetic layer and spacer's compositions have been clarified. The output voltage at 50 Oe of the corrosion-resistant spin-valve head with CoNiFe ferromagnetic layer and CuAu spacer was about 50% of that of the conventional spin-valve head

  8. Improved corrosion resistance of spin-valve film

    Energy Technology Data Exchange (ETDEWEB)

    Tetsukawa, H. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)]. E-mail: tetsukaw@arc.sony.co.jp; Hommura, H. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan); Okabe, A. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan); Soda, Y. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)

    2007-06-15

    We investigated the corrosion behavior and magnetoresistance of spin-valve film in order to improve the corrosion resistance of the spin-valve head for a tape recording system. The conventional spin-valve head (sub./Ta/NiFe/CoFe/Cu/CoFe/PtMn/Ta) with no diamond-like carbon (DLC) protective layer showed poor corrosion resistance. This is because the CoFe for ferromagnetic layer and Cu for spacer in the spin-valve film exhibited poor corrosion resistance. The corrosion resistance of the CoFe film and Cu film improved with the addition of Ni and Au, respectively. The spin-valve film (sub./Ta/NiFe/CoNiFe/CuAu/CoNiFe/PtMn/Ta) showed higher pitting potential than the conventional spin-valve film by +0.45 V. This presents a significant improvement over the conventional spin-valve film. We also investigated the effect of the composition of ferromagnetic layer and spacer on the magnetoresistance of the spin-valve film. The magnetoresistance of the spin-valve film by substitution of CoNiFe for CoFe in ferromagnetic layer decreased slightly. The magnetoresistance of the spin-valve film decreased as the addition of Au of the spacer increased. The diffusion at CoNiFe/CuAu interface has not been observed in annealing process. The quantitative relation between corrosion resistance and magnetoresistance of spin-valve film, and its ferromagnetic layer and spacer's compositions have been clarified. The output voltage at 50 Oe of the corrosion-resistant spin-valve head with CoNiFe ferromagnetic layer and CuAu spacer was about 50% of that of the conventional spin-valve head.

  9. Large spin current injection in nano-pillar-based lateral spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Tatsuya [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2016-08-26

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization by the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.

  10. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-01-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  11. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  12. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  13. Spin motive forces, 'measurements', and spin-valves

    International Nuclear Information System (INIS)

    Barnes, S.E.

    2007-01-01

    Discussed is the spin motive force (smf) produced by a spin valve, this reflecting its dynamics. Relaxation implies an implicit measurement of the magnetization of the free layer of a valve. It is shown this has implications for the angular dependence of the torque transfer. Some discussion of recent experiments is included

  14. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  15. Local spin valve effect in lateral (Ga,MnAs/GaAs spin Esaki diode devices

    Directory of Open Access Journals (Sweden)

    M. Ciorga

    2011-06-01

    Full Text Available We report here on a local spin valve effect observed unambiguously in lateral all-semiconductor all-electrical spin injection devices, employing p+ −(Ga,MnAs/n+ −GaAs Esaki diode structures as spin aligning contacts. We discuss the observed local spin-valve signal as a result of the interplay between spin-transport-related contribution and the tunneling anisotropic magnetoresistance of the magnetic contacts. The magnitude of the spin-related magnetoresistance change is equal to 30 Ω which is twice the magnitude of the measured non-local signal.

  16. Thermal stability of low dose Ga+ ion irradiated spin valves

    International Nuclear Information System (INIS)

    Qi Xianjin; Wang Yingang; Zhou Guanghong; Li Ziquan

    2009-01-01

    The thermal stability of low dose Ga + ion irradiated spin valves has been investigated and compared with that of the as-prepared ones. The dependences of exchange field, measured using vibrating sample magnetometer at room temperature, on magnetic field sweep rate and time spent at negative saturation of the pinned ferromagnetic layer, and training effect were explored. The training effect is observed on both the irradiated spin valves and the as-prepared ones. The magnetic field sweep rate dependence of the exchange bias field of the irradiated spin valves is nearly the same as that of the as-prepared ones. For the as-prepared structure thermal activation has been observed, which showed that holding the irradiated structure at negative saturation of the pinned ferromagnetic layer for up to 28 hours results in no change in the exchange field. The results indicate that the thermal stability of the ion irradiated spin valves is the same as or even better than the as-prepared ones.

  17. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  18. Spin injection and detection in lateral spin valves with hybrid interfaces

    Science.gov (United States)

    Wang, Le; Liu, Wenyu; Ying, Hao; Chen, Luchen; Lu, Zhanjie; Han, Shuo; Chen, Shanshan; Zhao, Bing; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Spin injection and detection in lateral spin valves with hybrid interfaces comprising a Co/Ag transparent contact and a Co/MgO/Ag junction (III) are investigated at room temperature in comparison with pure Co/Ag transparent contacts (I) and Co/MgO/Ag junctions (II). The measured spin-accumulation signals of a type III device are five times higher than those for type I. The extracted spin diffusion length in Ag is 180 nm for all three types of devices. The enhancement of the spin signal of the hybrid structure is mainly attributed to the increase of the interfacial spin polarization from the Co/MgO/Ag junction.

  19. Spin injection and spin accumulation in all-metal mesoscopic spin valves

    NARCIS (Netherlands)

    Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ

    2003-01-01

    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin

  20. Interlayer quality dependent graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul, 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Ramay, Shahid Mahmood [Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2017-01-15

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  1. Interlayer quality dependent graphene spin valve

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas; Murtaza, Ghulam; Ramay, Shahid Mahmood

    2017-01-01

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  2. Nanosized perpendicular organic spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Richter, Tim [Institut für Physik, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany); Fuhrmann, Bodo [Interdisziplinäres Zentrum für Materialwissenschaften, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany); Schmidt, Georg, E-mail: georg.schmidt@physik.uni-halle.de [Institut für Physik, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany); Interdisziplinäres Zentrum für Materialwissenschaften, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany)

    2015-03-09

    A fabrication process for perpendicular organic spin-valve devices based on the organic semiconductor Alq3 has been developed which offers the possibility to achieve active device areas of less than 500 × 500 nm{sup 2} and is flexible in terms of material choice for the active layers. Characterization of the resulting devices shows a large magnetoresistance of sometimes more than 100%, however with equally large variation from device to device. Comparison with large area spin-valves indicates that the magnetoresistance of both large and small devices most likely originates from tunneling through pinholes and tunneling magnetoresistance.

  3. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  4. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  5. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  6. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  7. Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves

    International Nuclear Information System (INIS)

    Lari, L; Sizeland, J; Gilks, D; Uddin, G M; Nedelkoski, Z; Hasnip, P J; Lazarov, V K; Yoshida, K; Galindo, P L; Sato, J; Oogane, M; Ando, Y; Hirohata, A

    2014-01-01

    We show that the magnetoresistance of Co 2 Fe x Mn 1−x Si-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co 2 Fe x Mn 1−x Si/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350 °C and 500 °C creates partial B2/L2 1 and fully L2 1 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co 2 Fe x Mn 1−x Si interface is more ordered compared to the Co 2 Fe x Mn 1−x Si/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible. (fast track communication)

  8. Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs

    Science.gov (United States)

    Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.

  9. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  10. Magnetic transport property of NiFe/WSe{sub 2}/NiFe spin valve structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kangkang [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Xing, Yanhui, E-mail: xingyanhui@bjut.edu.cn [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Han, Jun [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Feng, Jiafeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190 (China); Shi, Wenhua; Zhang, Baoshun [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zeng, Zhongming, E-mail: zmzeng2012@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2017-06-15

    Highlight: • Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. • In this article, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. • In this junction, the WSe{sub 2} spacer exhibits metallic behavior. • We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. • A general phenomenological analysis of the negative MR property is discussed. • Our result is anticipated to be beneficial for future spintronic applications. - Abstract: Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. In this junction, the WSe{sub 2} spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  11. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    International Nuclear Information System (INIS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-01-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.

  12. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  13. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  14. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  15. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  16. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  17. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  18. Effective suppression of thermoelectric voltage in nonlocal spin-valve measurement

    Science.gov (United States)

    Ariki, Taisei; Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi

    2017-06-01

    We demonstrate that the background signal in the nonlocal spin-valve measurement can be sufficiently suppressed by optimizing the electrode design of the lateral spin valve. A relatively long length scale of heat propagation produces spin-independent thermoelectric signals under the combination of the Peltier and Seebeck effects. These unfavorable signals can be reduced by mixing the Peltier effects in two transparent ferromagnetic/nonmagnetic junctions. Proper understanding of the contribution from the heat current in no spin-current area is a key for effective reduction of the spin-independent background signal.

  19. Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves

    Science.gov (United States)

    Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.

    2015-03-01

    We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.

  20. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  1. Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves

    Science.gov (United States)

    Cheng, Yihong; Chen, Kai; Zhang, Shufeng

    2018-01-01

    We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.

  2. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers

    International Nuclear Information System (INIS)

    Steiner, Roland Johannes

    2006-01-01

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T c (H)- and the R(H)-curve. (orig.)

  3. Stretchable Spin Valve with Stable Magnetic Field Sensitivity by Ribbon-Patterned Periodic Wrinkles.

    Science.gov (United States)

    Li, Huihui; Zhan, Qingfeng; Liu, Yiwei; Liu, Luping; Yang, Huali; Zuo, Zhenghu; Shang, Tian; Wang, Baomin; Li, Run-Wei

    2016-04-26

    A strain-relief structure by combining the strain-engineered periodic wrinkles and the parallel ribbons was employed to fabricate flexible dual spin valves onto PDMS substrates in a direct sputtering method. The strain-relief structure can accommodate the biaxial strain accompanying with stretching operation (the uniaxial applied tensile strain and the induced transverse compressive strain due to the Poisson effect), thus significantly reducing the influence of the residual strain on the giant magnetoresistance (GMR) performance. The fabricated GMR dual spin-valve sensor exhibits the nearly unchanged MR ratio of 9.9%, magnetic field sensitivity up to 0.69%/Oe, and zero-field resistance in a wide range of stretching strain, making it promising for applications on a conformal shape or a movement part.

  4. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  5. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    International Nuclear Information System (INIS)

    Huong Giang, D.T.; Thuc, V.N.; Duc, N.H.

    2012-01-01

    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni 80 Fe 20 /Cu/Fe 50 Co 50 /IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: ► Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. ► Magnetization, magnetoresistance changes under electric field across piezoelectric. ► Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. ► This advance shows great implications for low-power electronics and spintronics.

  6. Magnon detection using a ferroic collinear multilayer spin valve.

    Science.gov (United States)

    Cramer, Joel; Fuhrmann, Felix; Ritzmann, Ulrike; Gall, Vanessa; Niizeki, Tomohiko; Ramos, Rafael; Qiu, Zhiyong; Hou, Dazhi; Kikkawa, Takashi; Sinova, Jairo; Nowak, Ulrich; Saitoh, Eiji; Kläui, Mathias

    2018-03-14

    Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y 3 Fe 5 O 12 |CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y 3 Fe 5 O 12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.

  7. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    Science.gov (United States)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  8. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  9. Spin valve effect in single-atom contacts

    International Nuclear Information System (INIS)

    Ziegler, M; Neel, N; Berndt, R; Lazo, C; Ferriani, P; Heinze, S; Kroeger, J

    2011-01-01

    Magnetic single-atom contacts have been controllably fabricated with a scanning tunnelling microscope. A voltage-dependent spin valve effect with conductance variations of ∼40% is reproducibly observed from contacts comprising a Cr-covered tip and Co and Cr atoms on ferromagnetic nanoscale islands on W(110) with opposite magnetization. The spin-dependent conductances are interpreted from first-principles calculations in terms of the orbital character of the relevant electronic states of the junction.

  10. Nanostructures based on superconducting Nb and ferromagnetic CuNi alloy for elaboration of spin-valve core

    International Nuclear Information System (INIS)

    Morari, Roman

    2013-01-01

    The main goal of our research group is the elaboration of superconducting spin-switch (valve) based on Ferromagnetic/Superconductor/Ferromagnetic core. We could realize all building blocks necessary for the fabrication of the core structure of the superconducting spin valve, consisting of two mirror symmetric bilayers. In other words, the spin valve consists of a F/S * /F trilayer, which can be regarded as a package of a F/S and S/F bilayer so that S * =2S in the trilayer. For such a trilayer, the theory predicts that the critical temperature depends on the relative orientation of the magnetization of the ferromagnetic layers. To enable a reversal of one of the magnetizations of the layers with respect to the other by an external magnetic field, the coercive forces of the F layers have to be different due to either intrinsic properties or to an antiferromagnetic pinning layer delivering an exchange bias. The main points of our study are presented here. (author)

  11. Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2012-01-01

    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt (Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer. The devices were specifically designed to separate heat-related effects from

  12. Superconducting spin valve effect in Fe/In based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Kataev, Vladislav; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences (Russian Federation)

    2015-07-01

    We report on magnetic and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. The Superconducting Spin Valve Effect (SSVE) assumes the T{sub c} difference between parallel (P) and antiparallel (AP) orientations of the Fe1 and Fe2 layers' magnetizations. The SSVE value oscillates and changes its sign when the Fe2 layer thickness d{sub Fe2} is varied from 0 to 5 nm. The SSVE value is positive, as expected, in the range 0.4 nm ≤ d{sub Fe2} ≤ 0.8 nm. For a rather broad range of thicknesses 1 nm ≤ d{sub Fe2} ≤ 2.6 nm the SSVE has negative sign assuming the inverse SSVE. Moreover, the magnitude of the inverse effect is larger than that of the positive direct effect. We attribute these oscillations to a quantum interference of the cooper pair wave functions in the magnetic part of the system. For most of the spin-valve samples from this set we experimentally realized the full switching between normal and superconducting states due to direct and inverse SSVE. The analysis of the experimental data has enabled the determination of all microscopic parameters of the studied system.

  13. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2014-10-01

    We propose a hole-doped molybdenum disulfide (MoS2) superconducting spin valve (F/S/F) hybrid structure in which the Andreev reflection process is suppressed for all incoming waves with a determined range of the chemical potential in ferromagnetic (F) region and the cross-conductance in the right F region depends crucially on the configuration of magnetizations in the two F regions. Using the scattering formalism, we find that the transport is mediated purely by elastic electron cotunneling (CT) process in a parallel configuration and changes to the pure crossed Andreev reflection (CAR) process in the low-energy regime, without fixing of a unique parameter, by reversing the direction of magnetization in the right F region. This suggests both valley- and spin-switch effects between the perfect elastic CT and perfect CAR processes and makes the nonlocal charge current to be fully valley- and spin-polarized inside the right F region where the type of the polarizations can be changed by reversing the magnetization direction in the right F region. We further demonstrate that the presence of the strong spin-orbit interaction λ and an additional topological term (β ) in the Hamiltonian of MoS2 result in an enhancement of the charge conductance of the CT and CAR processes and make them to be present for long lengths of the superconducting region. Besides, we find that the thermal conductance of the structure with a small length of the highly doped superconducting region exhibits linear dependence on the temperature at low temperatures, whereas it enhances exponentially at higher temperatures. In particular, we demonstrate that the thermal conductance versus the strength of the exchange field (h ) in F region displays a maximum value at h <λ , which moves towards larger exchange fields by increasing the temperature.

  14. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  15. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    Science.gov (United States)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  16. Aging effect of spin accumulation in non-local spin valves

    International Nuclear Information System (INIS)

    Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng; Wang, Le; Xu, Xiaoguang; Jiang, Yong

    2017-01-01

    Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.

  17. Aging effect of spin accumulation in non-local spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Le, E-mail: wangle@ruc.edu.cn [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, Xiaoguang, E-mail: xgxu@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiang, Yong [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-06-15

    Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.

  18. Current-induced magnetization changes in a spin valve due to incoherent emission of non-equilibrium magnons

    OpenAIRE

    Kozub, V. I.; Caro, J.

    2004-01-01

    We describe spin transfer in a ferromagnet/normal metal/ferromagnet spin-valve point contact. Spin is transferred from the spin-polarized device current to the magnetization of the free layer by the mechanism of incoherent magnon emission by electrons. Our approach is based on the rate equation for the magnon occupation, using Fermi's golden rule for magnon emission and absorption and the non-equilibrium electron distribution for a biased spin valve. The magnon emission reduces the magnetizat...

  19. Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

    2012-01-01

    New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light

  20. Effect of nano-oxide layers on giant magnetoresistance in pseudo-spin-valves using Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Miao, J.; Jiang, Y.

    2011-01-01

    We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2 FeAl/NOL 1 /Co 2 FeAl/Cu/Co 2 FeAl/NOL 2 /Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2 FeAl (CFA) PSV with a structure of Ta/Co 2 FeAl/Cu/Co 2 FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2 O 3 )(Al 2 O 3 )] in NOL 1 and [(Fe 2 O 3 )(Al 2 O 3 )(Ta 2 O 5 )] in NOL 2 . Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure. - Research highlights: → Nano-oxide layers are applied in the pseudo-spin-valves with the Heusler alloy. → The CIP-GMR of pseudo-spin-valves is improved from 0.03% to 5.84%. → The GMR ratio is decided by the position of nano-oxide layers.

  1. Flexible semi-transparent organic spin valve based on bathocuproine

    International Nuclear Information System (INIS)

    Sun, Xiangnan; Bedoya-Pinto, Amilcar; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    Organic semiconductors are attractive materials for advanced spintronic applications due to their long spin lifetimes and, simultaneously, their mechanical flexibility. With the aim of combining these advantages in a single device, we report on the fabrication and properties of a mechanically flexible bathocuproine-based spin valve. This organic spin device shows great stability on both electrical and magneto-transport properties upon mechanical bending at different radius (up to r = 5 mm), while featuring long-lasting endurance (on bending over 50 times). The room-temperature magnetoresistance ratio reaches up to 3.5%, and is notably preserved under air atmosphere. The observation of spin transport at room-temperature, combined with the outstanding mechanical properties and air stability, highlights the potential of bathocuproine-based spin devices towards applications.

  2. The multi-step tunneling analogue of conductivity mismatch in organic spin valves

    NARCIS (Netherlands)

    Tran, T. Lan Ahn; Le, T.Q.; Sanderink, Johannes G.M.; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    Carbon-based, molecular semiconductors offer several attractive attributes for spintronics, such as exceptionally weak spin-orbit coupling and compatibility with bottom-up nanofabrication. In spite of the promising properties of organic spin valves, however, the physical mechanisms governing

  3. Magnon Valve Effect between Two Magnetic Insulators

    Science.gov (United States)

    Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.

    2018-03-01

    The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.

  4. Current-induced magnetic switching of a single molecule magnet on a spin valve

    International Nuclear Information System (INIS)

    Zhang, Xiao; Wang, Zheng-Chuan; Zheng, Qing-Rong; Zhu, Zheng-Gang; Su, Gang

    2015-01-01

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs

  5. Current-induced magnetic switching of a single molecule magnet on a spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zheng-Chuan, E-mail: wangzc@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Qing-Rong [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Zheng-Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); School of Electronics, Electric and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Su, Gang, E-mail: gsu@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-04-17

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs.

  6. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  8. Microwave spectroscopy and electronic transport properties of ferromagnetic Josephson junctions and superconducting spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Pietsch, Torsten [Zukunftskolleg and Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2016-07-01

    Hybrid superconducting nanostructures recently attracted tremendous interest, due to their great potential in dissipation-less spin-electronics with unprecedented switching rates. The practical realisation of such devices, however, requires a complete understanding of the transfer and dynamics of spin- and charge currents between superconducting (S) and ferromagnetic (F) circuit elements, as well as the coupling between spin- and charge degrees of freedom in these systems. We investigate novel transport phenomena in superconductor-ferromagnet hybrid nanostructures under non-equilibrium conditions. Microwave spectroscopy is used to elucidate fundamental questions related to the complex interplay of competing order parameters and the question of relaxation mechanisms of non-equilibrium distributions with respect to spin, charge and energy. Recent experiments on two complimentary device structures are discussed: (I) in diffusive S/F/S Josephson junctions with non-sinusoidal current-phase relationship and (II) local and non-local transport measurements and microwave spectroscopy in F/S/F lateral spin-valves.

  9. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  10. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  11. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling

    NARCIS (Netherlands)

    Schoonus, J.J.H.M.; Lumens, P.G.E.; Wagemans, W.; Kohlhepp, J.T.; Bobbert, P.A.; Swagten, H.J.M.; Koopmans, B.

    2009-01-01

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5nm)/tris(8- hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of

  12. Effect of NiAl underlayer and spacer on magnetoresistance of current-perpendicular-to-plane spin valves using Co2Mn(Ga0.5Sn0.5) Heusler alloy

    International Nuclear Information System (INIS)

    Hase, N.; Nakatani, T.M.; Kasai, S.; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2012-01-01

    We investigated the effect of a NiAl underlayer and spacer on magnetoresistive (MR) properties in current-perpendicular-to-plane spin valves (CPP-SVs) using Co 2 Mn(Ga 0.5 Sn 0.5 ) (CMGS) Heusler alloy ferromagnetic layers. The usage of a NiAl underlayer allowed a high temperature annealing for the L2 1 ordering of the bottom CMGS layer, giving rise to a MR ratio of 10.2% at room temperature. We found that the usage of a NiAl spacer layer also improved the tolerance of the multilayer structure against thermal delamination, which allowed annealing to induce the L2 1 structure in both the bottom and top CMGS layers. However, the short spin diffusion length of NiAl resulted in a lower MR ratio compared to that obtained using a Ag spacer. Transmission electron microscopy of the multilayer structure of CPP-SVs showed that the atomically flat layered structure was maintained after the annealing. - Highlights: → CPP spin valves using Co 2 Mn(Ga 0.5 Sn 0.5 ) ferromagnetic layers with a new underlayer material. → NiAl underlayer and spacer improve the thermal tolerance of the spin valve structure. → NiAl underlayer improves MR ratio compared to Ag because of higher annealing temperature. → NiAl spacer degrades MR ratios compared to Ag because of short spin diffusion length. → Potential of heat resistant underlayer and spacer layer for CPP-SV using Heusler alloy.

  13. Gate-tunable large magnetoresistance in an all-semiconductor spin valve device.

    Science.gov (United States)

    Oltscher, M; Eberle, F; Kuczmik, T; Bayer, A; Schuh, D; Bougeard, D; Ciorga, M; Weiss, D

    2017-11-27

    A large spin-dependent and electric field-tunable magnetoresistance of a two-dimensional electron system is a key ingredient for the realization of many novel concepts for spin-based electronic devices. The low magnetoresistance observed during the last few decades in devices with lateral semiconducting transport channels between ferromagnetic source and drain contacts has been the main obstacle for realizing spin field effect transistor proposals. Here, we show both a large two-terminal magnetoresistance in a lateral spin valve device with a two-dimensional channel, with up to 80% resistance change, and tunability of the magnetoresistance by an electric gate. The enhanced magnetoresistance is due to finite electric field effects at the contact interface, which boost spin-to-charge conversion. The gating scheme that we use is based on switching between uni- and bidirectional spin diffusion, without resorting to spin-orbit coupling. Therefore, it can also be employed in materials with low spin-orbit coupling.

  14. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers; Magnetotransport in Spinventil-Systemen mit amorphen magnetischen und supraleitenden Teilschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Roland Johannes

    2006-04-27

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T{sub c}(H)- and the R(H)-curve. (orig.)

  15. Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves

    NARCIS (Netherlands)

    Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.

    2010-01-01

    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third

  16. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Tang, XiaoLi, E-mail: tangtang1227@163.com; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan

    2017-05-01

    A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from −80 Oe – +80 Oe to −150 Oe – +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors. - Highlights: • Increasing exchange bias was achieved in bilayer at ultra-low-pressure sputtering. • The low void density and smooth surface were achieved in low pressure. • Varying exchange bias achieved tunable linear range in spin valve.

  17. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  18. Large Magnetoresistance at High Bias Voltage in Double-layer Organic Spin Valves

    Science.gov (United States)

    Subedi, R. C.; Liang, S. H.; Geng, R.; Zhang, Q. T.; Lou, L.; Wang, J.; Han, X. F.; Nguyen, T. D.

    We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages. University of Georgia start-up fund, Ministry of Education, Singapore, National Natural Science Foundation of China.

  19. MnNi-based spin valve sensors combining high thermal stability, small footprint and pTesla detectivities

    Science.gov (United States)

    Silva, Marília; Leitao, Diana C.; Cardoso, Susana; Freitas, Paulo

    2018-05-01

    Magnetoresistive sensors with high thermal robustness, low noise and high spatial resolution are the answer to a number of challenging applications. Spin valve sensors including MnNi as antiferromagnet layer provide higher exchange bias field and improved thermal stability. In this work, the influence of the buffer layer type (Ta, NiFeCr) and thickness on key sensor parameters (e.g. offset field, Hf) is investigated. A Ta buffer layer promotes a strong (111) texture which leads to a higher value of MR. In contrast, Hf is lower for NiFeCr buffer. Micrometric sensors display thermal noise levels of 1 nT/Hz1/2 and 571 pT/Hz1/2 for a sensor height (h) of 2 and 4 μm, respectively. The temperature dependence of MR and sensitivity is also addressed and compared with MnIr based spin valves. In this case, MR abruptly decreases after heating at 160°C (without magnetic field), contrary to MnNi-based spin valves, where only a 10% MR decrease (relative to the initial value) is seen at 275°C. Finally, to further decrease the noise levels and improve detectivity, MnNi spin-valves are deposited vertically, and connected in parallel and series (in-plane) to create a device with low resistance and high sensitivity. A field detection at thermal level of 346 pT/Hz1/2 is achieved for a device with a total of 300 SVs (4 vertical, 15 in series, 5 in parallel).

  20. Pseudo spin-valve behavior in oxide ferromagnet/superconductor/ferromagnet trilayers

    International Nuclear Information System (INIS)

    Pang, B.S.H.; Bell, C.; Tomov, R.I.; Durrell, J.H.; Blamire, M.G.

    2005-01-01

    La 0.7 Ca 0.3 MnO 3 /YBa 2 Cu 3 O 7-δ /La 0.67 Sr 0.33 MnO 3 heterostructural devices with double coercivity have been fabricated. The superconducting critical current (I c ) and critical temperature in both parallel (P) and antiparallel (AP) magnetic configurations remained unchanged within our measurement limits. This observation is contrary to results obtained elsewhere using similar metallic systems. A pseudo spin-valve magnetoresistive (MR) characteristic was observed at bias current (I bias )∼I c at temperatures below the onset of superconductivity. The effect increased with decreasing temperature and I bias and can be explained using the assumption of the electron spin-charge separation

  1. Electronic heat, charge and spin transport in superconductor-ferromagnetic insulator structures

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, Sebastian [Materials Physics Center (CFM-CSIC), San Sebastian (Spain); Donostia International Physics Center (DIPC), San Sebastian (Spain)

    2015-07-01

    It is known for some time that a superconducting (S) film in contact with a ferromagnetic insulator (FI) exhibits a spin-splitting in the density of states (DoS). Recently we have explored different S-FI hybrid structures and predicted novel effects exploiting such spin-splitting of the DoS. In this talk I will briefly discuss (i) a heat valve based on a FI-S-I-S-FI Josephson junction; (ii) a thermoelectric transistor and (iii) the occurrence of a giant thermophase in a thermally-biased Josephson junction.

  2. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling.

    Science.gov (United States)

    Schoonus, J J H M; Lumens, P G E; Wagemans, W; Kohlhepp, J T; Bobbert, P A; Swagten, H J M; Koopmans, B

    2009-10-02

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

  3. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    Science.gov (United States)

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  4. Interfacial spectroscopic characterization of organic/ferromagnet hetero-junction of 3,4,9,10-perylene-teracarboxylic dianhydride-based organic spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jhen-Yong; Ou Yang, Kui-Hon; Li, Kai-Shin [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Wang, Bo-Yao [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China); Shiu, Hung-Wei; Chen, Chia-Hao; Chan, Yuet-Loy; Wei, Der-Hsin; Chang, Fan-Hsiu; Lin, Hong-Ji [National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan (China); Chiang, Wen-Chung, E-mail: wchiang@faculty.pccu.edu.tw [Department of Physics, Chinese Culture University, 11114 Taipei, Taiwan (China); Lin, Minn-Tsong, E-mail: mtlin@phys.ntu.edu.tw [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China)

    2014-02-24

    We report interfacial characterization of 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA)-based organic spin valves (OSV) dusted with a thin layer of partially oxidized alumina at the organic semiconductor (OSC)/ferromagnet (FM) interfaces. Up to 13.5% magnetoresistance is achieved at room temperature. X-ray photoelectron spectroscopy measurements reveal interfacial electronic interaction between PTCDA and FM while the application of a thin alumina layer at the PTCDA/FM interfaces prevents the electronic hybridization and effectively preserves the spin injection into the OSC spacer. This finding demonstrates the critical effect of interfacial structure on magnetotransport behavior in OSV.

  5. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  6. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  7. Photoemission microscopy study of picosecond magnetodynamics in spin-valve-type thin film elements

    International Nuclear Information System (INIS)

    Schneider, C.M.; Kaiser, A.; Wiemann, C.; Tieg, C.; Cramm, S.

    2010-01-01

    Exploring ultimate time scales of magnetic switching processes is an important issue in spin electronics. In spin valves or magnetic tunnelling junctions magnetic anisotropies and coupling phenomena alter the magnetodynamic response of the entire system. Understanding the role of these interactions is a key to the design of optimized devices. We have employed time-resolved X-ray photoemission microscopy to address the magnetodynamics in spin-valve-type model systems in the ns- and ps-regime. In Co/Cr/Fe(0 0 1) single crystal elements we find a strong influence of the magnetocrystalline anisotropy, which tends to suppress rotation processes. In addition, we observe a dynamic 'decoupling' of the layers. In low-anisotropy FeNi/Cr/FeCo trilayers, the interlayer coupling character determines the dynamic response. Particularly, rotational processes in the FeNi and FeCo layers are temporarily shifted to each other, which can be related to different coercivities of the individual layers. By contrast, the domain wall motion in both layers closely agrees, caused by an enhanced coupling due to the domain wall stray fields. Our examples demonstrate that the detailed magnetodynamics in coupled magnetic layers is quite complex and depends strongly on the timescale under consideration.

  8. Magnetic resonance imaging in patients with heart valve prostheses

    International Nuclear Information System (INIS)

    Bachmann, R.; Juengehuelsing, M.; Schicha, H.; Deutsch, H.J.; Sechtem, U.; Hilger, H.H.

    1991-01-01

    Artifical valve prostheses are often regarded as a contraindication for magnetic resonance imaging (MRI), although preliminary in vitro studies suggested, that patients with these metallic implants might safely undergo MR examination. This study reports on the experience with a group of 89 patients with 100 heart valve prostheses who were examined by spin-echo MR and gradient-echo MR. MR examination was performed in all patients without complications. The spin-echo sequence showed advantages in the depiction of anatomical structures like paravalvular abcesses. Anatomical structures adjacent to the artificial valve were clearly visivle and the metal components of the valves showes no or only small artifacts. Artifacts were accentuated when using gradient-echo sequences. Gradient-echo sequences provided valuable information regarding the presence of valvular insufficiency. Physiological valvular regurgitation was easy to differentiate from pathological paravalvular or transvalvular regurgitation. These results demonstrate that patients with artificial valve prostheses can be imaged by MR without risk and that prosthesis-induced artifacts do no interfere with image interpretation. (orig.) [de

  9. Measurement of variable magnetic reversal paths in electrically contacted pseudo-spin-valve rings

    International Nuclear Information System (INIS)

    Hayward, T J; Llandro, J; Schackert, F D O; Morecroft, D; Balsod, R B; Bland, J A C; Castano, F J; Ross, C A

    2007-01-01

    In this work we show that the measurement of single magnetic reversal events is of critical importance in order to correctly characterize the switching of magnetic microstructures. Magnetoresistance measurements are performed on two pseudo-spin-valve ring structures with high enough signal to noise to allow the probing of single reversal events. Using this technique we acquire 'switching spectra' which demonstrate that the rings exhibit a range of variable reversal paths, including a bistable reversal mechanism of the hard layer, where the two switching routes have substantially different switching fields. The signature of the variable reversal paths would have been obscured in field cycle averaged data and in the bistable case would cause a fundamental misinterpretation of the reversal behaviour

  10. Spin injection and transport in semiconductor and metal nanostructures

    Science.gov (United States)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes

  11. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  12. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  13. Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film

    Science.gov (United States)

    Elda Swastika, P.; Antarnusa, G.; Suharyadi, E.; Kato, T.; Iwata, S.

    2018-04-01

    A potential wheatstone bridge giant magnetoresistance (GMR) biosensor have been successfully developed for biomolecule detection. [IrMn(10 nm)/CoFe(3 nm)/Cu(2.2 nm)/CoFeB(10 nm)] spin-valve structure has been chosen as the magnetic sensing surface, showing a magnetoresistance (MR) of 6% fabricated by DC magnetron sputtering method. The Fe3O4 magnetic nanoparticles used as biomolecular labels (nanotags) was synthesized by co-precipitation method, exhibiting soft magnetic behavior with saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 77.2 emu/g, 7.8 emu/g and 51 Oe, respectively. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and grew in their inverse spinel structure, highly uniform morphology with an average grain size was about 20 nm. Fe3O4 was coated with polyethylene-glycol (PEG)-4000 for surface functionalization. Detection of biomolecule such as formalin, gelatin from bovine-skin and porcine-skin were dispersed in ethanol at room temperature. Induction would cause a shift in output voltage with a minimum delta output voltage (ΔV) 4.937 mV (10%) for formalin detection, 2.268 mV (7%) for bovine-skin gelatin and 2.943 mV (7%) for porcine-skin gelatin detection. The ΔV of the wheatstone bridge in real-time measurement decrease by increase in biomolecules concentration. The change of ΔV with various concentration of biomolecule indicates that the spin-valve thin film with wheatstone-bridge circuit is potential as a biosensor.

  14. On the temperature dependence of spin pumping in ferromagnet–topological insulator–ferromagnet spin valves

    Directory of Open Access Journals (Sweden)

    A.A. Baker

    Full Text Available Topological insulators (TIs have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet–TI–ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature. Keywords: Topological insulator, Spin pumping, Spintronics, Ferromagnetic resonance

  15. Determining the spin dependent mean free path in Co90Fe10 using giant magnetoresistance

    Science.gov (United States)

    Shakespear, K. F.; Perdue, K. L.; Moyerman, S. M.; Checkelsky, J. G.; Harberger, S. S.; Tamboli, A. C.; Carey, M. J.; Sparks, P. D.; Eckert, J. C.

    2005-05-01

    The spin dependent mean free path in Co90Fe10 is determined as a function of temperature down to 5K using two different spin valve structures. At 5K the spin dependent mean free path for one structure was measured to be 9.4±1.4nm, decreasing by a factor of 3 by 350K. For the other structure, it is 7.5±0.5nm at 5K and decreased by a factor of 1.5 by 350K. In both cases, the spin dependent mean free path approaches the typical thickness of ferromagnetic layers in spin valves at room temperature and, thus, has an impact on the choice of design parameters for the development of new spintronic devices.

  16. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  17. Role of motive forces for the spin torque transfer for nano-structures

    Science.gov (United States)

    Barnes, Stewart

    2009-03-01

    Despite an announced imminent commercial realization of spin transfer random access memory (SPRAM) the current theory evolved from that of Slonczewski [1,2] does not conserve energy. Barnes and Maekawa [3] have shown, in order correct this defect, forces which originate from the spin rather than the charge of an electron must be accounted for, this leading to the concept of spin-motive-forces (smf) which must appear in Faraday's law and which significantly modifies the theory for spin-valves and domain wall devices [4]. A multi-channel theory in which these smf's redirect the spin currents will be described. In nano-structures it is now well known that the Kondo effect is reflected by conductance peaks. In essence, the spin degrees of freedom are used to enhance conduction. In a system with nano-magnets and a Coulomb blockade [5] the similar spin channels can be the only means of effective conduction. This results in a smf which lasts for minutes and an enormous magneto-resistance [5]. This implies the possibility of ``single electron memory'' in which the magnetic state is switched by a single electron. [4pt] [1] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers J. Magn. Magn. Mater. 159, L1 (1996). [0pt] [2] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [3] S. E. Barnes and S. Maekawa, Generalization of Faraday's Law to Include Nonconservative Spin Forces Phys. Rev. Lett. 98, 246601 (2007); S. E. Barnes and S. Maekawa, Currents induced by domain wall motion in thin ferromagnetic wires. arXiv:cond-mat/ 0410021v1 (2004). [0pt] [4] S. E., Barnes, Spin motive forces, measurement, and spin-valves. J. Magn. Magn. Mat. 310, 2035-2037 (2007); S. E. Barnes, J. Ieda. J and S. Maekawa, Magnetic memory and current amplification devices using moving domain walls. Appl. Phys. Lett. 89, 122507 (2006). [0pt] [5] Pham-Nam Hai, Byung-Ho Yu

  18. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  19. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  20. An analytical method for optimal design of MR valve structures

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2009-01-01

    This paper proposes an analytical methodology for the optimal design of a magnetorheological (MR) valve structure. The MR valve structure is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the yield stress pressure drop of a MR valve or the yield stress damping force of a MR damper. In this paper, the single-coil and two-coil annular MR valve structures are considered. After describing the schematic configuration and operating principle of a typical MR valve and damper, a quasi-static model is derived based on the Bingham model of a MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying Kirchoff's law and the magnetic flux conservation rule. Based on quasi-static modeling and magnetic circuit analysis, the optimization problem of the MR valve and damper is built. In order to reduce the computation load, the optimization problem is simplified and a procedure to obtain the optimal solution of the simplified optimization problem is presented. The optimal solution of the simplified optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution of the original optimization problem and the optimal solution obtained from the finite element method

  1. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  2. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  3. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei; Wang, Xianghao

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10 4  J/m 3 and 10 × 10 4  J/m 3 , the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  4. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface.

    Science.gov (United States)

    Burton, J D; Tsymbal, E Y

    2011-04-15

    A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.

  5. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers.

    Science.gov (United States)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E; Hankiewicz, Ewelina M; Žutić, Igor

    2016-10-14

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  6. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  7. Towards sub-200 nm nano-structuring of linear giant magneto-resistive spin valves by a direct focused ion beam milling process

    International Nuclear Information System (INIS)

    Riedmüller, Benjamin; Huber, Felix; Herr, Ulrich

    2014-01-01

    In this work, we present a detailed investigation of a focused ion beam (FIB) assisted nano-structuring process for giant magneto-resistive (GMR) spin valve sensors. We have performed a quantitative study of the dependence of the GMR ratio as well as the sensor resistance on the ion dose, which is implanted in the active region of our sensors. These findings are correlated with the decrease of magneto-resistive properties after micro- and nano-structuring by the FIB and reveal the importance of ion damage which limits the applicability of FIB milling to GMR devices in the low μm range. Deposition of a protective layer (50 nm SiO 2 ) on top of the sensor structure before milling leads to a preservation of the magneto-resistive properties after the milling procedure down to sensor dimensions of ∼300 nm. The reduction of the sensor dimensions to the nanometer regime is accompanied by a shift of the GMR curves, and a modification of the saturation behavior. Both effects can be explained by a micromagnetic model including the magnetic interaction of free and pinned layer as well as the effect of the demagnetizing field of the free layer on the sensor behavior. The results demonstrate that the FIB technology can be successfully used to prepare spintronic nanostructures

  8. Highly Efficient Spin-Current Operation in a Cu Nano-Ring

    Science.gov (United States)

    Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi

    2016-11-01

    An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.

  9. The proton spin structure; La structure en spin du proton

    Energy Technology Data Exchange (ETDEWEB)

    Breton, V.

    1996-05-13

    The author presents first the theoretical frame of the nucleon spin structure study carried out through the deep inelastic scattering of polarised leptons on a polarised target. The interest of the lepton scattering reaction to study the hadronic structure is discussed and the formalism of the inclusive inelastic scattering presented. If the target and the beam are both polarised, the formalism enables to connect the experimentally measured asymmetries to the contribution of quarks to the spin of nucleon. The recent knowledge about the nucleon spin structure is also presented. The Bjorken sum rule is then discussed: it correlates the difference of spin structure between proton and neutron to the neutron lifetime. Then, the author mentions the experimental results of SMC (CERN) and E142, E143 (SLAC). The transition from rough asymmetry to the g sub 1 structure function integral is discussed as well as the main causes of uncertainty. Compared to theoretical data, the measurements confirm the reliability of the Bjorken sum rule. They also confirm the deficit of the quark contribution with respect to the naive unpolarized strange sea model. The possible origins of this discrepancy and the contributions of the current and planned experiments are also discussed. Finally, the author brings up the next major step for nucleon spin studies: the estimation of the gluon contribution. He discusses the experimental knowledge about the polarised gluon distribution function with regard to the multiple existing parameter set. Concerning the experimental determination of this distribution function, outlooks are proposed with respect to feasibility on current experimental facilities. (N.T.). 134 refs.

  10. Exchange bias mechanism in FM/FM/AF spin valve systems in the presence of random unidirectional anisotropy field at the AF interface: The role played by the interface roughness due to randomness

    Science.gov (United States)

    Yüksel, Yusuf

    2018-05-01

    We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.

  11. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  12. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  13. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  14. Structural valve deterioration in the Mitroflow biological heart valve prosthesis

    DEFF Research Database (Denmark)

    Issa, Issa Farah; Poulsen, Steen Hvitfeldt; Waziri, Farhad

    2018-01-01

    OBJECTIVES: Concern has been raised regarding the long-term durability of the Mitroflow biological heart valve prosthesis. Our aim was to assess the incidence of structural valve degeneration (SVD) for the Mitroflow bioprosthesis in a nationwide study in Denmark including all patients alive......: A total of 173 patients were diagnosed with SVD by echocardiography. Of these, 64 (11%) patients had severe SVD and 109 (19%) patients moderate SVD. Severe SVD was associated with the age of the prosthesis and small prosthesis size [Size 21: hazard ratio (95% confidence interval, CI) 2.72 (0.97-8.56), P...

  15. Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves

    Science.gov (United States)

    Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer

    2018-05-01

    Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.

  16. Investigations of the polymer/magnetic interface of organic spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.A., E-mail: n.a.morley@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Dost, R.; Lingam, A.S.V. [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Barlow, A.J. [National EPSRC XPS Users’ Service, School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-12-30

    Graphical abstract: - Highlights: • Metal carbide and sulphide species are detected at a polymer–magnetic interface. • Top magnetic electrodes on P3HT have uniaxial anisotropy. • Top magnetic electrodes on PBTTT are isotropic. - Abstract: This work investigates the top interface of an organic spin-valve, to determine the interactions between the polymer and top magnetic electrode. The polymers studied are regio-regular poly(3-hexylthiophene) (RR-P3HT) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and the magnetic top electrodes are NiFe and Fe. X-ray photoelectron spectroscopy (XPS) is used to determine the bonding at the interface, along with the extent of how oxidised the magnetic layers are, while atomic force microscopy (AFM) is used to determine the surface roughness. A magneto-optic Kerr effect (MOKE) magnetometer is used to study the magnetic properties of the top electrode. It is shown that at the organic–magnetic interface the magnetic atoms interact with the polymer, as metallic–sulphide and metallic-carbide species are present at the interface. It is also shown that the structure of the polymer influences the anisotropy of the magnetic electrode, such that the magnetic electrodes grown on RR-P3HT have uniaxial anisotropy, while those grown on PBTTT are isotropic.

  17. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  18. Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Brandbyge, Mads

    2012-01-01

    Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....

  19. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.

    Science.gov (United States)

    Toma, Milan; Einstein, Daniel R; Bloodworth, Charles H; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2017-04-01

    Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be 'invisible' to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Internal spin structure of the nucleon

    International Nuclear Information System (INIS)

    Hughes, V.W.; Kuti, J.

    1983-01-01

    The study of the structure of the proton and neutron through deep inelastic scattering, initially with electrons but subsequently with muons and neutrinos as well, has played a central role in establishing the quark-parton theory of the composition of hadrons and of quantum chromodynamics (QCD). One important aspect of these theoretical and experimental developments is the two spin-dependent structure functions, which are independent of the two spin-averaged structure functions and define the internal spin structure of the nucleon. Since both quarks and gluons possess spin and the forces between them are spin dependent, we can expect important information on these forces and on nucleon structure to be obtained through the study of the spindependent aspects of the nucleon wave function, as has been the case before in atomic and nuclear physics

  1. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  2. Spin injection into Pt-polymers with large spin-orbit coupling

    Science.gov (United States)

    Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy

    2014-03-01

    Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.

  3. Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

    Directory of Open Access Journals (Sweden)

    Mohammad Koleini

    2012-08-01

    Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.

  4. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  5. Infective endocarditis involving an apparently structurally normal valve: new epidemiological trend?

    Science.gov (United States)

    Song, Jae-Kwan

    2015-07-01

    Infective endocarditis (IE) has been increasingly diagnosed in patients without previously detected predisposing heart disease, but its clinical features have yet to be fully determined. A recent single-center study including echocardiographic images and surgical findings investigated the incidence of undiagnosed, clinically silent valvular or congenital heart diseases and healthcare-associated infective endocarditis (HAIE). The study confirmed that a large proportion of patients with IE have no previous history of heart disease. Analysis of underlying disease in these patients showed that undetected mitral valve prolapse was the most common disease, followed by an apparently structurally normal valve. The patients who developed IE of apparently structurally normal valves had different clinical characteristics and worse outcomes. IE involving a structurally normal valve was associated with both nosocomial and non-nosocomial HAIE, whereas community-acquired IE was more frequent than HAIE. The pathophysiologic mechanism involving the development of non-HAIE or community-acquired IE due to predominantly staphylococcal infection in an apparently structurally normal valve is not yet clearly understood. Structurally normal valves are not necessarily free of regurgitation or abnormal turbulence and, given the dynamic nature and fluctuating hemodynamic effects of conditions such as poorly controlled hypertension, end-stage renal disease, and sleep apnea, further investigation is necessary to evaluate the potential role of these diseases in the development of IE. An apparently normal-looking valve is associated with IE development in patients without previously recognized predisposing heart disease, warranting repartition of at-risk groups to achieve better clinical outcomes.

  6. Patient-prosthesis mismatch and risk of structural valve deterioration in patients undergoing bioprosthetic aortic valve implantation

    OpenAIRE

    Urso, Stefano

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Medicina. Fecha de lectura: 15-06-2015 Patient-prosthesis mismatch (PPM) has been identified as a risk factor for mortality after aortic valve replacement. Recently PPM has been also reported to increase the risk of structural valve degeneration (SVD) in patients receiving a bioprosthetic aortic valve. The aim of the present study was to compare the incidence of reoperation because of S...

  7. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  8. Structural alterations in heart valves during left ventricular pressure overload in the rat

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; Smits, J. F.; Daemen, M. J.

    1994-01-01

    Heart valves are an important denominator of the function of the heart but detailed studies of structural alterations of heart valves after hemodynamic changes are lacking. Structural alterations of heart valves, including DNA synthesis, collagen mRNA, and protein concentration were measured in

  9. A Structural Analysis of a Mechanical Heart Valve Prosthesis with Flat Leaflet

    Science.gov (United States)

    Kwon, Young Joo

    This paper addresses the basic concept of MDO methodology and the structural analysis that should be performed in the design process of a mechanical heart valve prosthesis with flat leaflet using MDO methodology. In the structural design of the mechanical heart valve (MHV) prosthesis, the fluid mechanics analysis is executed for the blood flow passing through the leaflets of a mechanical heart valve prosthesis. Thereafter, the rigid body dynamics analysis of the leaflet motion is performed to obtain the structural condition for the structural mechanics analysis of the deformed leaflet. Then the structural mechanics analysis of the deformed leaflet follows to confirm the minimum thickness of the leaflet for the structural durability of the mechanical heart valve prosthesis. This paper shows that the minimum leaflet thickness can be evaluated to be 0.6mm among the suggested thicknesses.

  10. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    Science.gov (United States)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  11. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  12. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  13. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Deur, A.

    2008-02-01

    This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon

  14. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  15. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  16. Spin dependent photon structure functions

    International Nuclear Information System (INIS)

    Manohar, A.V.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    Spin dependent structure functions of the photon are studied using the operator product expansion. There are new twist-two photon and gluon operators which contribute. The structure functions g 1 and F 3 are calculable in QCD, but differ from their free quark values. The corrections to F 3 are suppressed by 1/log Q 2 . The calculation is an extension of the analysis of Witten for the spin averaged structure functions F 1 and F 2 . (orig.)

  17. Spin Transfer Torque in Graphene

    Science.gov (United States)

    Lin, Chia-Ching; Chen, Zhihong

    2014-03-01

    Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.

  18. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  19. Magnetic proximity control of spin currents and giant spin accumulation in graphene

    Science.gov (United States)

    Singh, Simranjeet

    Two dimensional (2D) materials provide a unique platform to explore the full potential of magnetic proximity driven phenomena. We will present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to the ferromagnetic-insulator (FMI) magnetization in graphene/FMI heterostructures. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. We also discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the non-local spin signals in graphene, which is due to spin relaxation by thermally-induced transverse fluctuations of the FMI magnetization. Additionally, it has been a challenge to grow a smooth, robust and pin-hole free tunnel barriers on graphene, which can withstand large current densities for efficient electrical spin injection. We have experimentally demonstrated giant spin accumulation in graphene lateral spin valves employing SrO tunnel barriers. Nonlocal spin signals, as large as 2 mV, are observed in graphene lateral spin valves at room temperature. This high spin accumulations observed using SrO tunnel barriers puts graphene on the roadmap for exploring the possibility of achieving a non-local magnetization switching due to the spin torque from electrically injected spins. Financial support from ONR (No. N00014-14-1-0350), NSF (No. DMR-1310661), and C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  20. Heterostructures for Realizing Magnon-Induced Spin Transfer Torque

    Directory of Open Access Journals (Sweden)

    P. B. Jayathilaka

    2012-01-01

    Full Text Available This work reports efforts fabricating heterostructures of different materials relevant for the realization of magnon-induced spin transfer torques. We find the growth of high-quality magnetite on MgO substrates to be straightforward, while using transition metal buffer layers of Fe, Cr, Mo, and Nb can alter the structural and magnetic properties of the magnetite. Additionally, we successfully fabricated and characterized Py/Cr/Fe3O4 and Fe3O4/Cr/Fe3O4 spin valve structures. For both, we observe a relatively small giant magnetoresistance and confirm an inverse dependence on spacer layer thickness. Thus, we have shown certain materials combinations that may form the heterostructures that are the building blocks necessary to achieve magnon-induced spin transfer torque devices.

  1. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  2. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  3. The spin structure of the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Frois, B. [DAPNIA/SPHN, Gif-sur-Yvette (France)

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{sup p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.

  4. Nucleon Spin Structure: Longitudinal and Transverse

    International Nuclear Information System (INIS)

    Chen, Jian-Ping

    2011-01-01

    Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.

  5. Fluid-Structure Interaction of a Reed Type Valve Subjected to Piston Displacement

    OpenAIRE

    Estruch, Olga; Lehmkuhl, Oriol; Rigola, Joaquim; Pérez-Segarra, Carles David

    2014-01-01

    In the field of reciprocating compressors, the developing of reed type valves is a challenging task. The understanding of the fluid flow behaviour through the valve reed is essential to improve the valve design. Hence, this work attempts the dynamic simulation of this fluid-structure interaction (FSI) problem, taking into account valve movement due to piston displacement. In this work attends the in-house implemented CFD&HT and moving mesh coupled code TermoFluids [1]. The CFD&HT solver consi...

  6. Assessment of structural valve deterioration of transcatheter aortic bioprosthetic balloon-expandable valves using the new European consensus definition.

    Science.gov (United States)

    Eltchaninoff, Hélène; Durand, Eric; Avinée, Guillaume; Tron, Christophe; Litzler, Pierre-Yves; Bauer, Fabrice; Dacher, Jean-Nicolas; Werhlin, Camille; Bouhzam, Najime; Bettinger, Nicolas; Candolfi, Pascal; Cribier, Alain

    2018-03-30

    Durability of transcatheter aortic bioprosthetic valves remains a major issue. Standardised definitions of deterioration and failure of bioprosthetic valves have recently been proposed. The aim of this study was to assess structural transcatheter valve deterioration (SVD) and bioprosthetic valve failure (BVF) using these new definitions. All TAVI patients implanted up to September 2012 with a minimal theoretical five-year follow-up were included. Systematic clinical and echocardiographic follow-up was performed annually. New standardised definitions were used to assess durability of transcatheter aortic bioprosthetic valves. From 2002 to 2012, 378 patients were included. Mean age and logistic EuroSCORE were 83.3±6.8 years and 22.8±13.1%. Thirty-day mortality was 13.2%. Nine patients had SVD including two severe forms and two patients had definite late BVF. The incidence of SVD and BVF at eight years was 3.2% (95% CI: 1.45-6.11) and 0.58% (95% CI: 0.15-2.75), respectively. Even though limited by the poor survival of the very high-risk/compassionate early population, our data do not demonstrate any alarm concerning transcatheter aortic valve durability. Careful prospective assessment in younger and lower-risk patients and comparison with surgical bioprosthetic valves are required for further assessment of the long-term durability of transcatheter valves.

  7. Ultra-Compact 100 × 100 μm2 Footprint Hybrid Device with Spin-Valve Nanosensors

    Directory of Open Access Journals (Sweden)

    Diana C. Leitao

    2015-12-01

    Full Text Available Magnetic field mapping with micrometric spatial resolution and high sensitivity is a challenging application, and the technological solutions are usually based on large area devices integrating discrete magnetic flux guide elements. In this work we demonstrate a high performance hybrid device with improved field sensitivity levels and small footprint, consisting of a ultra-compact 2D design where nanometric spin valve sensors are inserted within the gap of thin-film magnetic flux concentrators. Pole-sensor distances down to 400 nm are demonstrated using nanofabrication techniques combined with an optimized liftoff process. These 100 × 100 μm 2 pixel sensors can be integrated in modular devices for surface mapping without moving parts.

  8. Nanoscale magnetic characterization of tunneling magnetoresistance spin valve head by electron holography.

    Science.gov (United States)

    Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira

    2012-12-07

    Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Zdravkov, Vladimir I.; Kehrle, Jan; Obermeier, Guenther; Krug von Nidda, Hans-Albrecht; Mueller, Claus; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Sidorenko, Anatolie S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Tagirov, Lenar [Solid State Physics Department, Kazan Federal University (Russian Federation)

    2015-07-01

    We investigated the triplet spin-valve effect in nanoscale layered S/F{sub 1}/N/F{sub 2}/AF heterostructures with varying F{sub 1}-layer thickness (where S=Nb is a singlet superconducting, F{sub 1}=Cu{sub 41}Ni{sub 59} and F{sub 2}=Co a ferromagnetic, and N a normal-conducting, non-magnetic layer). The theory predicts a long-range, odd-in-frequency triplet component of superconductivity at non-collinear alignment of the magnetizations of F{sub 1} and F{sub 2}. This triplet component exhausts the singlet state and, thus, lowers the superconducting transition temperature, T{sub c}, yielding a global minimum of T{sub c} close to the perpendicular mutual orientations of the magnetizations. We found an oscillating decay of T{sub c} suppression, due to the generation of the triplet component, with increasing F{sub 1} layer thickness, which we discuss in the framework of recent theories.

  10. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  11. Laser-assisted spin-polarized transport in graphene tunnel junctions

    International Nuclear Information System (INIS)

    Ding Kaihe; Zhu Zhengang; Berakdar, Jamal

    2012-01-01

    The Keldysh nonequilibrium Green’s function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency. (paper)

  12. Modeling the collective excitations in a full Heusler Co2 FeAl0.5 Si0.5 (CFAS) spin valve magnetic nanopillar in the electromagnetic field

    International Nuclear Information System (INIS)

    David, Cherine; Arumugam, Brinda; Rajamani, Amuda; Natarajan, Kanimozhi

    2014-01-01

    This paper describes the physics of collective excitations that are caused by spin-transfer torques in CFAS magnetic multilayer. When the magnetizations of the pinned and free layers are not collinear with each other, the spin-polarized currents transfer angular momentum to the magnetizations near the interfaces, giving rise to spin-transfer torques. The currents in magnetic multilayer are spin polarised and can carry enough angular momentum. When an electron spin carried by the current interacts with a magnetic layer, the exchange interaction leads to torque between the spin and the magnetization vector of the free layer. This is Spin Transfer Torque (STT) and it excites the magnetization when it is large enough. The Spin Transfer Torque induced collective excitations for the CFAS spin valve pillar have been extensively studied in this paper. - Highlights: • We have modeled LLGS equation for CFAS multilayer array. • The dynamics of collective excitation induced by STT is investigated. • The interactions exhibit solitonic behaviour at both limiting modes of polarization. • The spin components of the solitons are graphically represented

  13. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    Science.gov (United States)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  14. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    International Nuclear Information System (INIS)

    Park, J.-S.; Lee, S.-R.; Kim, Y.K.

    2004-01-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field (H ex.eff ) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply

  15. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    Science.gov (United States)

    Park, Jeong-Suk; Lee, Seong-Rae; Kim, Young Keun

    2004-08-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field ( Hex.eff) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply.

  16. Structure and magnetoresistive properties of current-perpendicular-to-plane pseudo-spin valves using polycrystalline Co2Fe-based Heusler alloy films

    International Nuclear Information System (INIS)

    Nakatani, T.M.; Du, Ye; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2013-01-01

    We report current-perpendicular-to-plane giant magnetoresistance (CPP–GMR) of pseudo-spin valves (PSVs) with polycrystalline Co 2 Fe(Al 0.5 Si 0.5 ) (CFAS) and Co 2 Fe(Ga 0.5 Ge 0.5 ) (CFGG) Heusler alloy films. Strongly [0 1 1] textured polycrystalline Heusler alloy films grew on the Ta/Ru/Ag underlayer. Relatively large CPP–GMR values of ΔRA up to 4 mΩ μm 2 and ΔR/R up to 10% were obtained with 5 nm thick Heusler alloy films and Ag spacer layer by annealing CFAS PSV at 450 °C and CFGG PSV at 350 °C. Transmission electron microscopy revealed a flat and sharp interface between the [0 1 1] textured CFAS layers and the [1 1 1] textured Ag spacer layer. Annealing above an optimal temperature for each PSV led to reductions in MR values as a result of the thickening of the spacer layer induced by the Ag diffusion from the outer Ag layers

  17. Experimental validation of the fluid–structure interaction simulation of a bioprosthetic aortic heart valve

    International Nuclear Information System (INIS)

    Kemp, I.; Dellimore, K.; Rodriguez, R.; Scheffer, C.; Blaine, D.; Weich, H.; Doubell, A.

    2013-01-01

    Experiments performed on a 19 mm diameter bioprosthetic valve were used to successfully validate the fluid–structure interaction (FSI) simulation of an aortic valve at 72 bpm. The FSI simulation was initialized via a novel approach utilizing a Doppler sonogram of the experimentally tested valve. Using this approach very close quantitative agreement (≤12.5 %) between the numerical predictions and experimental values for several key valve performance parameters, including the peak systolic transvalvular pressure gradient, rapid valve opening time and rapid valve closing time, was obtained. The predicted valve leaflet kinematics during opening and closing were also in good agreement with the experimental measurements.

  18. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  19. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  20. Impact of hypertension on left ventricular structure in patients with asymptomatic aortic valve stenosis (a SEAS substudy)

    DEFF Research Database (Denmark)

    Rieck, Ashild E; Cramariuc, Dana; Staal, Eva M

    2010-01-01

    Both hypertension and aortic valve stenosis induce left ventricular hypertrophy. However, less is known about the influence of concomitant hypertension on left ventricular structure in patients with aortic valve stenosis.......Both hypertension and aortic valve stenosis induce left ventricular hypertrophy. However, less is known about the influence of concomitant hypertension on left ventricular structure in patients with aortic valve stenosis....

  1. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  2. Proton spin structure in the rest frame

    International Nuclear Information System (INIS)

    Zavada, P.

    1997-01-01

    It is shown that the quark-parton model in the standard infinite momentum approach overestimates the proton spin structure function g 1 (x) in comparison with the approach taking consistently into account the internal motion of quarks described by a spherical phase space in the proton rest frame. Particularly, it is shown the first moment of the spin structure function in the latter approach, assuming only the valence quarks contribution to the proton spin, does not contradict the experimental data. copyright 1997 The American Physical Society

  3. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    dependence of the magnetisation in certain nanoparticle systems, as welll bulk systems with spin canting due to defects. In accordance with this model magnetisation measurements on goethtie (a-FeOOH) nanoparticles are presented, showing a low temperature increase in the magnetisation. The spin orientation...... experimental data from unpolarised neutron diffraction. The spin orientation is found to be close to the particle plane, which is the (111) plane of the FCC structure of NiO for particles with thickness ranging from 2.2 nm to bulk (= 200 nm) particles. In the smallest particles, with a thickness of 2.0 nm, we...

  4. Spin structure of the proton

    International Nuclear Information System (INIS)

    Nathan Isgur

    1995-01-01

    In these lectures the author argues that their response to the spin crisis should not be to abandon the naive quark model baby, but rather to allow it to mature. He begin by recalling what a beautiful baby the quark model is via an overview of its successes in spectroscopy, dynamics, and valence spin structure. He also introduces the conservative hypothesis that dynamical qanti q pairs are its key missing ingredient. He then discusses dressing the baby. He first shows that it can be clothed in glue without changing its spectroscopic successes. In the process, several dynamical mysteries associated with quark model spectroscopy are potentially explained. Next, he dresses the baby in qanti q pairs, first showing that this can be done without compromising the naive quark model's success with either spectroscopy or the OZI rule. Finally, he shows that despite their near invisibility elsewhere, pairs do play an important role in the proton's spin structure by creating an antipolarized qanti q sea. In the context of an explicit calculation he demonstrate that it is plausible that the entire ''spin crisis'' arises from this effect

  5. Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure.

    Science.gov (United States)

    Xiao, Wen; Song, Wendong; Herng, Tun Seng; Qin, Qing; Yang, Yong; Zheng, Ming; Hong, Xiaoliang; Feng, Yuan Ping; Ding, Jun

    2016-08-25

    Herein, we design a room-temperature spin-valve-like magnetoresistance in a nano-column Fe3O4/Ni heterostructure without using a non-magnetic spacer or pinning layer. An Fe3O4 nano-column film is self-assembled on a Ni underlayer by the thermal decomposition method. The wet-chemical self-assembly is facile, economical and scalable. The magnetoresistance (MR) response of the Ni underlayer in the heterostructure under positive and negative out-of-plane magnetic fields differ by ∼0.25 at room temperature and ∼0.43 at 100 K. We attribute the spin-valve-like magnetoresistance to the unidirectional magnetic anisotropy of the Ni underlayer when being magnetically coupled by the Fe3O4 nano-column film. The out-of-plane negative-field magnetization is higher than the positive-field magnetization, affirming the unidirectional magnetic anisotropy of the Fe3O4/Ni heterostructure. Temperature-dependent magnetic and resistivity studies illustrate a close correlation between the magnetization transition of Fe3O4 and resistivity transition of Ni and prove a magnetic coupling between the Fe3O4 and Ni. First-principles calculations reveal that the Fe3O4/Ni model under a negative magnetic field is energetically more stable than that under a positive magnetic field. Furthermore, partial density of states (PDOS) analysis demonstrates the unidirectional magnetic anisotropy of the Ni 3d orbital. This is induced by the strong ferromagnetic coupling between Fe3O4 and Ni via oxygen-mediated Fe 3d-O 2p-Ni 3d hybridizations.

  6. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    Science.gov (United States)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  7. Molecular structure of human aortic valve by μSR- FTIR microscopy

    Science.gov (United States)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very

  8. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  9. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  10. Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide.

    Science.gov (United States)

    Dankert, André; Pashaei, Parham; Kamalakar, M Venkata; Gaur, Anand P S; Sahoo, Satyaprakash; Rungger, Ivan; Narayan, Awadhesh; Dolui, Kapildeb; Hoque, Md Anamul; Patel, Ram Shanker; de Jong, Michel P; Katiyar, Ram S; Sanvito, Stefano; Dash, Saroj P

    2017-06-27

    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS 2 ) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS 2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5-2% has been observed, corresponding to spin polarization of 5-10% in the measured temperature range of 300-75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS 2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

  11. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  12. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Directory of Open Access Journals (Sweden)

    Robert Göckeritz

    2016-04-01

    Full Text Available Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  13. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  14. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    Science.gov (United States)

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  15. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices

    Science.gov (United States)

    Lou, Xiaohua

    2007-03-01

    A fully electrical scheme of spin injection, transport, and detection in a single ferromagnet-semiconductor structure has been a long-standing goal in the field of spintronics. In this talk, we report on an experimental demonstration of such a scheme. The devices are fabricated from epitaxial Fe/GaAs (100) heterostructures with highly doped GaAs as a Schottky tunnel barrier. A set of closely spaced Fe contacts on the top of an n-GaAs channel are used as spin injectors and detectors. Reference electrodes are placed at the far ends of the channel, allowing for non-local spin detection [1]. The electro-chemical potential of the detector is sensitive to the relative magnetizations of the injector and detector. In spin-valve measurements, a magnetic field is applied along the Fe easy axis to switch the relative magnetizations of injector and detector from parallel to antiparallel, resulting in a voltage jump that is proportional to the non-equilibrium spin polarization in the channel. A more rigorous test of electrical spin detection is the observation of the Hanle effect, in which an out-of-plane magnetic field is used to modulate and dephase the spin polarization in the channel. The magnitudes of the observed Hanle curves agree with the results of the spin-valve measurements. The dependence of the Hanle curves on temperature and contact separation is studied in detail and is consistent with a drift-diffusion model incorporating spin precession and relaxation. The spin polarization generated by spin injection (reverse bias at the injector) or spin accumulation (forward bias at the injector) is measured using the magneto-optical Kerr effect and is found to be in good agreement with the spin-dependent non-local voltage. Both the transport and optical measurements show a non-linear relationship between the bias voltage at the injector and the spin polarization in the channel. [1] M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).

  16. Direct observation of the spin-dependent Peltier effect.

    Science.gov (United States)

    Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J

    2012-02-05

    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

  17. Resistive Switching and Voltage Induced Modulation of Tunneling Magnetoresistance in Nanosized Perpendicular Organic Spin Valves

    Science.gov (United States)

    Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo

    Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.

  18. Spin structure of nucleon in QCD: inclusive and exclusive processes

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    2001-01-01

    There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes

  19. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  20. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  1. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  2. Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers

    Science.gov (United States)

    Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.

    2003-05-01

    Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.

  3. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  4. Spin as a probe of hadron structure

    International Nuclear Information System (INIS)

    Ali, R.

    1995-01-01

    In this thesis, hadron structure was explored by studying three problems. In each case some underlying hard process, or a characteristic hard momentum, yielded important physical information such as structure and fragmentation functions describing hadrons. This provided a test of QCD predictions. In the first problem, spin dependent quark structure functions were estimated for nuclei. The multipole L=2 structure function, measurable in deeply inelastic scattering of unpolarized leptons off a polarized J > 1 nuclear target, is a good indicator of exotic quark gluon components in the nucleus. I estimated this structure function for two different classes of nuclei light nuclei describable in an independent particle model approach, as well as for heavy nuclei described by slowly rotating collective variables. In the second problem, spin dependent gluonic structure functions in a transversely polarized proton were identified and the classification according to twist was discussed. I found that there were two twist three transverse spin gluonic structure functions, called herein H1(x,Q2) and H2(x,Q2). Cross section formulae were calculated for a variety of polarization states, assuming a simple effective interaction for X2 production from gluon fusion. In the third, and final problem, the emphasis shifted from spin dependent structure functions of polarised hadrons to the formulation of an effective, low energy, field theory of s wave quarkonia, constituent heavy quarks, and gluons. and radiative transitions were shown to be easily recovered. The light-cone gluon momentum distribution at very small x was calculated and shown to be uniquely determined by the non relativistic wave function. I found that the emission of low momentum gluons made this process quite sensitive to assumptions about the binding energy of heavy quarks in quarkonia. This gauge invariant theory is extend able to p-wave quarkonia where the non locality of the meson state is enhanced by the

  5. Measurement of the proton spin structure function g1p

    International Nuclear Information System (INIS)

    Pussieux, T.

    1994-10-01

    In order to check the Bjorken sum rule and confirm the EMC surprising conclusion on the spin structure of the proton, the measurement of the spin structure function of the proton has been performed by the Spin Muon Collaboration via the polarized muon nucleon deep inelastic scattering. The results of the 1993 run are presented within a kinematical range of 0.003 2 = 10 GeV 2 . The first moment of the polarized spin structure function g 1 p is found to be two standard deviations below the Ellis-Jaffe sum rule. Assuming SU(3) for hyperons β decays, the quark spin contribution to the proton spin is extracted. Combining all available data on proton, neutron and deuton, The Bjorken sum rule is confirmed within 10%. (author). 25 refs., 3 figs., 2 tabs

  6. Injection and Scattering of Polarized Spins at Nanoscale Polymer Interfaces

    National Research Council Canada - National Science Library

    Epstein, Arthur J

    2004-01-01

    We made excellent progress several directions. We demonstrated that V[TCNE]̃2 is a room temperature fully spin polarized magnetic semiconductor of interest for spintronic applications, including spin valves...

  7. Spin relaxation through lateral spin transport in heavily doped n -type silicon

    Science.gov (United States)

    Ishikawa, M.; Oka, T.; Fujita, Y.; Sugiyama, H.; Saito, Y.; Hamaya, K.

    2017-03-01

    We experimentally study temperature-dependent spin relaxation including lateral spin diffusion in heavily doped n -type silicon (n+-Si ) layers by measuring nonlocal magnetoresistance in small-sized CoFe/MgO/Si lateral spin-valve (LSV) devices. Even at room temperature, we observe large spin signals, 50-fold the magnitude of those in previous works on n+-Si . By measuring spin signals in LSVs with various center-to-center distances between contacts, we reliably evaluate the temperature-dependent spin diffusion length (λSi) and spin lifetime (τSi). We find that the temperature dependence of τSi is affected by that of the diffusion constant in the n+-Si layers, meaning that it is important to understand the temperature dependence of the channel mobility. A possible origin of the temperature dependence of τSi is discussed in terms of the recent theories by Dery and co-workers.

  8. Reduction of ballistic spin scattering in a spin-FET using stray electric fields

    International Nuclear Information System (INIS)

    Nemnes, G A; Manolescu, A; Gudmundsson, V

    2012-01-01

    The quasi-bound states which appear as a consequence of the Rashba spin-orbit (SO) coupling, introduce a strongly irregular behavior of the spin-FET conductance at large Rashba parameter. Moreover, the presence of the bulk inversion asymmetry, i.e. the Dresselhaus SO coupling, may compromise the spin-valve effect even at small values of the Rashba parameter. However, by introducing stray electric fields in addition to the SO couplings, we show that the effect of the SO induced quasi-bound states can be tuned. The oscillations of the spin-resolved conductance become smoother and the control of the spin-FET characteristics becomes possible. For the calculations we employ a multi-channel scattering formalism, based on the R-matrix method extended to spin transport, in the presence of Rashba and Dresselhaus SO couplings.

  9. Research on micro-structure and hemo-compatibility of the artificial heart valve surface

    International Nuclear Information System (INIS)

    Ye Xia; Shao Yunliang; Zhou Ming; Li Jian; Cai Lan

    2009-01-01

    In order to seek the method to improve the hemo-compatibility of artificial mechanical heart valve, the surface of rabbit's heart valve was observed using the scanning electron microscopy (SEM). The results showed that the dual-scale structure which consists of cobblestones-like structure of 8 μm in underside diameter and 3 μm in height, and the fine cilia of about 150 nm in diameter, was helpful to the hemo-compatibility of the heart valve. Therefore, the polydimethylsiloxane (PDMS) surface with hierarchical micro-structure was fabricated using femtosecond laser fabrication technique and soft lithography. At the same time, the tests of apparent contact angle and platelet adhesion on both smooth and textured PDMS surfaces were carried out to study their wettability and hemo-compatibility. The results demonstrated that the surface with textured structure displayed more excellent wettabililty and anti-coagulation property than that of smooth surface. The apparent contact angle of textured surface enhanced from 113.1 deg. to 163.6 deg. and the amount of adsorbed platelet on such surface was fewer, no distortion and no activation were found.

  10. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  11. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  12. Effect of resistance feedback on spin torque-induced switching of nanomagnets

    International Nuclear Information System (INIS)

    Garzon, Samir; Webb, Richard A.; Covington, Mark; Kaka, Shehzaad; Crawford, Thomas M.

    2009-01-01

    In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.

  13. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  14. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  15. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  16. Spin structure of the nucleon and polarization

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1994-09-01

    Recent experiments at CERN and SLAC have added new knowledge about the spin structure of the proton and the deuteron. A brief historical background is presented, the status of experiments is discussed, and progress in the understanding of the spin of the nucleon in the context of the quark parton model is summarized

  17. Bioprinting a cardiac valve.

    Science.gov (United States)

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  19. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine

    2014-01-01

    for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  20. Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2014-01-01

    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80Fe20/Cu/Ni80Fe20 nanopillar spin valve device subjected to either an electrical or a

  1. Spin fine structure of optically excited quantum dot molecules

    Science.gov (United States)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  2. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    Energy Technology Data Exchange (ETDEWEB)

    Czapla-Masztafiak, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland); Lis, G.J.; Gajda, M.; Jasek, E. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków (Poland); Czubek, U. [Department of Coronary Disease, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków (Poland); Bolechała, F. [Department of Forensic Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków (Poland); Borca, C. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kwiatek, W.M. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland)

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe{sup 3+} is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe{sup 3+} form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  3. Supra-annular structure assessment for self-expanding transcatheter heart valve size selection in patients with bicuspid aortic valve.

    Science.gov (United States)

    Liu, Xianbao; He, Yuxin; Zhu, Qifeng; Gao, Feng; He, Wei; Yu, Lei; Zhou, Qijing; Kong, Minjian; Wang, Jian'an

    2018-04-01

    To explore assessment of supra-annular structure for self-expanding transcatheter heart valve (THV) size selection in patients with bicuspid aortic stenosis (AS). Annulus-based device selection from CT measurement is the standard sizing strategy for tricuspid aortic valve before transcatheter aortic valve replacement (TAVR). Because of supra-annular deformity, device selection for bicuspid AS has not been systemically studied. Twelve patients with bicuspid AS who underwent TAVR with self-expanding THVs were included in this study. To assess supra-annular structure, sequential balloon aortic valvuloplasty was performed in every 2 mm increments until waist sign occurred with less than mild regurgitation. Procedural results and 30 day follow-up outcomes were analyzed. Seven patients (58.3%) with 18 mm; three patients (25%) with sequential 18 mm, 20 mm; and only two patients (16.7%) with sequential 18 mm, 20 mm, and 22 mm balloon sizing were performed, respectively. According to the results of supra-annular assessment, a smaller device size (91.7%) was selected in all but one patient compared with annulus based sizing strategy, and the outcomes were satisfactory with 100% procedural success. No mortality and 1 minor stroke were observed at 30 d follow-up. The percentage of NYHA III/IV decreased from 83.3% (9/12) to 16.7% (2/12). No new permanent pacemaker implantation and no moderate or severe paravalvular leakage were found. A supra-annular structure based sizing strategy is feasible for TAVR in patients with bicuspid AS. © 2018 The Authors Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc.

  4. Chemical properties and GMR improvement of specular spin valves with nano-oxide layers, formed in ambient mixed gases

    International Nuclear Information System (INIS)

    Quang, H D; Hien, N T; Oh, S K; Sinh, N H; Yu, S C

    2004-01-01

    Specular spin valves (SVs) containing nano-oxide layers (NOLs) structured as substrate/seed/AF/P 1 /NOL/P 2 /Cu/F/NOL, have been fabricated. The NOLs were formed by natural oxidation in different ambient atmospheres of pure oxygen, oxygen/nitrogen and oxygen/argon gas mixtures. The fabrication conditions were optimized to enhance the magnetoresistance (MR) ratio, to suppress the interlayer coupling fields (H f ) between the free and pinned layers, to suppress the high interface density of the NOL, to ease the control of the NOL thickness and to form a smooth NOL/P 2 interface for promoting specular electron scattering. The characteristics of our specular SVs are the MR ratio of 14.1%, the exchange bias field of 44-45 mT, and H f weaker than 1.0 mT. The optimal conditions for oxidation time, total oxidation pressure and the annealing temperature were found to be 300 s, 0.14 Pa (oxygen/argon = 80/20) and 250 deg. C, respectively. Also, the origin of thermal stability of MMn-based (M = Fe, Pt, Ir, etc) specular SVs has been explained in detail by chemical properties of NOL using secondary-ion mass spectroscopy and x-ray photoelectron spectroscopy depth profile analyses. Thermal stability turns out to be caused by a decrease in MR ratios at high temperatures (>250 deg. C), which is a serious problem for device applications using the SV structure as a high density read head device

  5. Spin-related transport phenomena in HgTe-based quantum well structures

    International Nuclear Information System (INIS)

    Koenig, Markus

    2007-12-01

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg 0.3 Cd 0.7 Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  6. Spin-related transport phenomena in HgTe-based quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Markus

    2007-12-15

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  7. Probing spin-1 diquarks in deep inelastic structure functions

    International Nuclear Information System (INIS)

    Fredriksson, S.; Jaendel, M.; Larsson, T.

    1983-01-01

    Within the scope of a new diquark model for deep inelastic structure functions presented by us recently we use the existing data on F 1 sup(ep)(x,Q 2 ) to learn about the admixture of spin-1 diquarks in nucleons. It turns out that they are so rare, heavy and extended compared to spin-0 diquarks that they are presumably accidental and not dynamical. Their number and form factors can be understood qualitatively within this picture. Still, the spin-1 diquarks give interesting structures in data and, together with quarks and spin-0 diquarks, carry enough momentum to account for the full nucleon energy. A gluon component is hence not needed in the nucleon. (orig.)

  8. Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures

    Science.gov (United States)

    Cho, Soonha; Baek, Seung-heon Chris; Lee, Kyeong-Dong; Jo, Younghun; Park, Byong-Guk

    2015-01-01

    The phenomena based on spin-orbit interaction in heavy metal/ferromagnet/oxide structures have been investigated extensively due to their applicability to the manipulation of the magnetization direction via the in-plane current. This implies the existence of an inverse effect, in which the conductivity in such structures should depend on the magnetization orientation. In this work, we report a systematic study of the magnetoresistance (MR) of W/CoFeB/MgO structures and its correlation with the current-induced torque to the magnetization. We observe that the MR is independent of the angle between the magnetization and current direction but is determined by the relative magnetization orientation with respect to the spin direction accumulated by the spin Hall effect, for which the symmetry is identical to that of so-called the spin Hall magnetoresistance. The MR of ~1% in W/CoFeB/MgO samples is considerably larger than those in other structures of Ta/CoFeB/MgO or Pt/Co/AlOx, which indicates a larger spin Hall angle of W. Moreover, the similar W thickness dependence of the MR and the current-induced magnetization switching efficiency demonstrates that MR in a non-magnet/ferromagnet structure can be utilized to understand other closely correlated spin-orbit coupling effects such as the inverse spin Hall effect or the spin-orbit spin transfer torques. PMID:26423608

  9. Ordinary and triplet superconducting spin valve effect in Fe/Pb based systems

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Krupskaya, Yulia; Kataev, Vladislav; Hess, Christian; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute of RAS, Kazan (Russian Federation); Fominov, Yakov [L. D. Landau Institute for Theoretical Physics of RAS, Moscow (Russian Federation)

    2015-07-01

    We report on experimental evidence for the occurrence of the long range triplet correlations (LRTC) of the superconducting (SC) condensate in the spin-valve heterostructures CoO{sub x}/Fe1/Cu/Fe2/Pb. The LRTC generation in this layer sequence is accompanied by a T{sub c} suppression near the orthogonal mutual orientation of the Fe1 and Fe2 layers' magnetization. This T{sub c} drop reaches its maximum of 60mK at the Fe2 layer thickness d{sub Fe2} = 0.6 nm and falls down when d{sub Fe2} is increased. The modification of the Fe/Pb interface by using a thin Cu layer between Fe and Pb layers reduces the SC transition width without preventing the interaction between Pb and Fe2 layers. The dependence of the SSVE magnitude on Fe1 layer thickness d{sub Fe1} reveals maximum of the effect when d{sub Fe1} and d{sub Fe2} are equal and the d{sub Fe2} value is minimal. Using the optimal d{sub Fe1}, d{sub Fe2} and the intermediate Cu layer we realized almost full switching from normal to SC state due to SSVE.

  10. New Results on Testing Duality in Spin Structure from Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nilanga Liyanage

    2005-10-01

    The Bloom-Gilman duality has been experimentally demonstrated for spin independent structure functions. Duality is observed when the smooth scaling curve at high momentum transfer is an average over the resonance bumps at lower momentum transfer, but at the same value of scaling variable x. Signs of quark-hadron duality for the spin Dependant structure function g1 of the proton has been recently reported by the Hermes collaboration. Experimental Halls A, B and C at Jefferson lab have recently measured spin structure functions in the resonance region for the proton and the neutron. Data from these experiments combined with Deep-Inelastic-Scattering data provide a precision test of quark-hadron duality predictions for spin structure functions for both the proton and the neutron. This will be one of the first precision tests of spin and flavor dependence of quark-hadron duality.

  11. An overview of recent nucleon spin structure measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.

  12. RosettaEPR: rotamer library for spin label structure and dynamics.

    Directory of Open Access Journals (Sweden)

    Nathan S Alexander

    Full Text Available An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta's ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2 is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.

  13. Reoperation for non-structural valvular dysfunction caused by pannus ingrowth in aortic valve prosthesis.

    Science.gov (United States)

    Oh, Se Jin; Park, Samina; Kim, Jun Sung; Kim, Kyung-Hwan; Kim, Ki Bong; Ahn, Hyuk

    2013-07-01

    The authors' clinical experience is presented of non-structural valvular dysfunction of the prosthetic aortic valve caused by pannus ingrowth during the late postoperative period after previous heart valve surgery. Between January 1999 and April 2012, at the authors' institution, a total of 33 patients underwent reoperation for increased mean pressure gradient of the prosthetic aortic valve. All patients were shown to have pannus ingrowth. The mean interval from the previous operation was 16.7 +/- 4.3 years, and the most common etiology for the previous aortic valve replacement (AVR) was rheumatic valve disease. The mean effective orifice area index (EOAI) of the previous prosthetic valve was 0.97 +/- 0.11 cm2/m2, and the mean pressure gradient on the aortic prosthesis before reoperation was 39.1 +/- 10.7 mmHg. Two patients (6.1%) died in-hospital, and late death occurred in six patients (18.2%). At the first operation, 30 patients underwent mitral or tricuspid valve surgery as a concomitant procedure. Among these operations, mitral valve replacement (MVR) was combined in 24 of all 26 patients with rheumatic valve disease. Four patients underwent pannus removal only while the prosthetic aortic valve was left in place. The mean EOAI after reoperation was significantly increased to 1.16 +/- 0.16 cm2/m2 (p pannus ingrowth was shown in patients with a small EOAI of the prosthetic aortic valve and combined MVR for rheumatic disease. As reoperation for pannus overgrowth showed good clinical outcomes, an aggressive resection of pannus and repeated AVR should be considered in symptomatic patients to avoid the complications of other cardiac diseases.

  14. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  15. Measurement of the spin dependent structure functions of proton and neutron

    International Nuclear Information System (INIS)

    Rith, K.

    1989-01-01

    Recent results from the EMC experiment on the spin dependent structure function g 1 p (x) of the proton are discussed. They suggest that the nucleon spin does not originate from quark spins but rather from angular orbital momentum and gluon contributions. A proposed experiment at HERA is presented which will allow a very accurate measurement of the spin dependent structure functions and their integrals of both proton and neutron and a precise test of the Bjorken sum rule. (orig.)

  16. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit

    2015-01-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  17. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  18. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  19. [Tricuspid valve insufficiency: what should be done?].

    Science.gov (United States)

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G

    1998-12-01

    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  20. Masses, magnetic moments, QCD and proton spin structure

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1990-10-01

    This talk is dedicated to the memory of Andrei D. Sakharov. In addition to his well-known contributions to society, Sakharov was also a pioneer in spin physics and the application of the basic ideas of QCD to spin structure of hadrons. He took quarks seriously at the time when the particle physicists ridiculed the quark model. Immediately after the quark proposal Sakharov asked: 'Why is M Λ ≠ M Σ ? They contain the same quarks' His answer was 'Spin Physics! A flavor-dependent hyperfine interaction'. (author)

  1. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  2. Magnetic vortex excitation as spin torque oscillator and its unusual trajectories

    Science.gov (United States)

    Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda

    2018-05-01

    We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.

  3. [Functional characteristics of flexible supporting structures for heart valve bioprosthesis].

    Science.gov (United States)

    Dobrova, N B; Agafonov, A V; Barbarash, L S; Zavalishin, N N; Neniukov, A K

    1984-01-01

    Hydraulic characteristics of heart valve bioprostheses mounted on supporting structures of various rigidity have been studied under physiologic conditions. An actual mobility of the supporting structures made of different polymers is determined. Static and dynamic components of the support displacements have been shown to develop as the bioprosthesis is under the load, the dynamic component being strongly dependent upon the rigidity of fastening the bioprosthesis on the axis. It is noted that considerable improvements in hydraulic characteristics of bioprostheses are achieved through the use of flexible supporting structures.

  4. Large spin accumulation due to spin-charge coupling across a break-junction

    Science.gov (United States)

    Chen, Shuhan; Zou, Han; Chui, Siu-Tat; Ji, Yi

    2013-03-01

    We investigate large spin signals in break-junction nonlocal spin valves (NLSV). The break-junction is a nanometer-sized vacuum tunneling gap between the spin detector and the nonmagnetic channel, formed by electro-static discharge. The spin signals can be either inverted or non-inverted and the magnitudes are much larger than those of standard NLSV. Spin signals with high percentage values (10% - 0%) have been observed. When the frequency of the a.c. modulation is varied, the absolute magnitudes of signals remain the same although the percentage values change. These observations affirm the nonlocal nature of the measurements and rule out local magnetoresistive effects. Owing to the spin-charge coupling across the break-junction, the spin accumulation in a ferromagnet splits into two terms. One term decays on the charge screening length (0.1 nm) and the other decays on the spin diffusion length (10 nm nm). The magnitude of the former is proportional to the resistance of the junction. Therefore a highly resistive break-junction leads to a large spin accumulation and thereby a large spin signal. The signs of the spin signal are determined by the relationship between spin-dependent conductivities, diffusion constants, and density of states of the ferromagnet. This work was supported by US DOE grant No. DE-FG02-07ER46374.

  5. Controlling the efficiency of spin injection into graphene by carrier drift

    NARCIS (Netherlands)

    Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.

    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room-temperature nonlocal spin valve measurements in

  6. Electrical spin injection and detection in silicon nanowires with axial doping gradient.

    Science.gov (United States)

    Kountouriotis, Konstantinos; Barreda, Jorge L; Keiper, Timothy David; Zhang, Mei; Xiong, Peng

    2018-06-13

    The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nano-spintronic devices with quasi-1D semiconductor channels.

  7. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  8. Lagrangian coherent structures in the left ventricle in the presence of aortic valve regurgitation

    Science.gov (United States)

    di Labbio, Giuseppe; Vetel, Jerome; Kadem, Lyes

    2017-11-01

    Aortic valve regurgitation is a rather prevalent condition where the aortic valve improperly closes, allowing filling of the left ventricle of the heart to occur partly from backflow through the aortic valve. Although studies of intraventricular flow are rapidly gaining popularity in the fluid dynamics research community, much attention has been given to the left ventricular vortex and its potential for early detection of disease, particularly in the case of dilated cardiomyopathy. Notably, the subsequent flow in the left ventricle in the presence of aortic valve regurgitation ought to be appreciably disturbed and has yet to be described. Aortic valve regurgitation was simulated in vitro in a double-activation left heart duplicator and the ensuing flow was captured using two-dimensional time-resolved particle image velocimetry. Further insight into the regurgitant flow is obtained by computing attracting and repelling Lagrangian coherent structures. An interesting interplay between the two inflowing jets and their shear layer roll-up is observed for various grades of regurgitation. This study highlights flow features which may find use in further assessing regurgitation severity.

  9. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-02-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  10. Spin diffusion and torques in disordered antiferromagnets

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  11. Spin-torsion effects in the hyperfine structure of methanol

    International Nuclear Information System (INIS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-01-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling

  12. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  13. Energy efficient hybrid computing systems using spin devices

    Science.gov (United States)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  14. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  15. Modulation of pure spin currents with a ferromagnetic insulator

    Science.gov (United States)

    Villamor, Estitxu; Isasa, Miren; Vélez, Saül; Bedoya-Pinto, Amilcar; Vavassori, Paolo; Hueso, Luis E.; Bergeret, F. Sebastián; Casanova, Fèlix

    2015-01-01

    We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3F e5O12 (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the nonlocal resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a path towards the development of spin logics.

  16. Fully coupled fluid-structure interaction model of reed valves in a multi-cylinder reciprocating piston compressor

    Science.gov (United States)

    Xie, F.; Nieter, J.; Lifson, A.; Reba, R.; Sishtla, V.

    2017-08-01

    For years compressor researchers have tried to account for the fluid interaction effect of the working fluid on valve motion in displacement compressors. In recent years, the computing capacities and available CFD and FEA programs have allowed fully coupled interaction of fluids and moving structures to be modelled more comprehensively. This paper describes our experience and results from developing a model of a multi-cylinder reciprocating piston compressor with suction and discharge valve systems that are fully coupled with the pressure pulsation in the adjacent plenum. Valve dynamics are captured by the model that affects compressor performance. The results show that higher running speed causes more discharge valve delay on closing due to higher pressure pulsation in discharge plenum. The acoustic property of the discharge plenum as it relates to valve motion is studied by the developed cost-effective standalone model.

  17. Shot noise of spin current and spin transfer torque

    Science.gov (United States)

    Yu, Yunjin; Zhan, Hongxin; Wan, Langhui; Wang, Bin; Wei, Yadong; Sun, Qingfeng; Wang, Jian

    2013-04-01

    We report the theoretical investigation of the shot noise of the spin current (Sσ) and the spin transfer torque (Sτ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear Sσ - V and Sτ - V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage Nτ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque Nτ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period Nτ(θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters.

  18. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    Science.gov (United States)

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves

    Science.gov (United States)

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading

  20. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  1. Observation of spin-polarized electron transport in Alq3 by using a low work function metal

    Science.gov (United States)

    Jang, Hyuk-Jae; Pernstich, Kurt P.; Gundlach, David J.; Jurchescu, Oana D.; Richter, Curt. A.

    2012-09-01

    We present the observation of magnetoresistance in Co/Ca/Alq3/Ca/NiFe spin-valve devices. Thin Ca layers contacting 150 nm thick Alq3 enable the injection of spin-polarized electrons into Alq3 due to the engineering of the band alignment. The devices exhibit symmetric current-voltage (I-V) characteristics indicating identical metal contacts on Alq3, and up to 4% of positive magnetoresistance was observed at 4.5 K. In contrast, simultaneously fabricated Co/Alq3/NiFe devices displayed asymmetric I-V curves due to the different metal electrodes, and spin-valve effects were not observed.

  2. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  3. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  4. Spin current and electrical polarization in GaN double-barrier structures

    OpenAIRE

    Litvinov, V. I.

    2007-01-01

    Tunnel spin polarization in a piezoelectric AlGaN/GaN double barrier structure is calculated. It is shown that the piezoelectric field and the spontaneous electrical polarization increase an efficiency of the tunnel spin injection. The relation between the electrical polarization and the spin orientation allows engineering a zero magnetic field spin injection manipulating the lattice-mismatch strain with an Al-content in the barriers.

  5. The boundary condition at the valve for numerical modelling of transient pipe flow with fluid structure interaction

    Science.gov (United States)

    Henclik, S.

    2014-08-01

    Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.

  6. Fractional vortex lattice structures in spin-triplet superconductors

    International Nuclear Information System (INIS)

    Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A

    2009-01-01

    Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .

  7. Classification of heart valve condition using acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  8. Quark-hadron duality of nucleon spin structure function

    International Nuclear Information System (INIS)

    Dong, Y.B.

    2005-01-01

    Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)

  9. Valve Corporation: Strategy Tipping Points and Thresholds

    OpenAIRE

    Teppo Felin

    2015-01-01

    Valve Corporation represents an intriguing case study of flat structure and self organization (Puranam & Håkonsson, 2015; Valve, 2012).  The structures and practices of Valve of course are not new. But the company provides an interesting experiment and illustration that powerfully highlights how organizational design can impact individual and collective behavior, strategy and performance.

  10. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  11. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin-orbit coupling

    Science.gov (United States)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Newrock, Richard S.; Cahay, Marc; Herbert, Stephen T.

    2013-03-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta-Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin-orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin-orbit coupling and a strong e-e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. Keynote talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  12. Valve Corporation: Strategy Tipping Points and Thresholds

    Directory of Open Access Journals (Sweden)

    Teppo Felin

    2015-06-01

    Full Text Available Valve Corporation represents an intriguing case study of flat structure and self organization (Puranam & Håkonsson, 2015; Valve, 2012.  The structures and practices of Valve of course are not new. But the company provides an interesting experiment and illustration that powerfully highlights how organizational design can impact individual and collective behavior, strategy and performance.

  13. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.

    Science.gov (United States)

    Tien, W-H; Chen, H Y; Berwick, Z C; Krieger, J; Chambers, S; Dabiri, D; Kassab, G S

    2014-10-01

    Chronic venous insufficiency (CVI) of the lower extremities is a common clinical problem. Although bioprosthetic valves have been proposed to treat severe reflux, clinical success has been limited due to thrombosis and neointima overgrowth of the leaflets that is, in part, related to the hemodynamics of the valve. A bioprosthetic valve that mimics native valve hemodynamics is essential. A computational model of the prosthetic valve based on realistic geometry and mechanical properties was developed to simulate the interaction of valve structure (fluid-structure interaction, FSI) with the surrounding flow. The simulation results were validated by experiments of a bioprosthetic bicuspid venous valve using particle image velocimetry (PIV) with high spatial and temporal resolution in a pulse duplicator (PD). Flow velocity fields surrounding the valve leaflets were calculated from PIV measurements and comparisons to the FSI simulation results were made. Both the spatial and temporal results of the simulations and experiments were in agreement. The FSI prediction of the transition point from equilibrium phase to valve-closing phase had a 7% delay compared to the PD measurements, while the PIV measurements matched the PD exactly. FSI predictions of reversed flow were within 10% compared to PD measurements. Stagnation or stasis regions were observed in both simulations and experiments. The pressure differential across the valve and associated forces on the leaflets from simulations showed the valve mechanism to be pressure driven. The flow velocity simulations were highly consistent with the experimental results. The FSI simulation and force analysis showed that the valve closure mechanism is pressure driven under the test conditions. FSI simulation and PIV measurements demonstrated that the flow behind the leaflet was mostly stagnant and a potential source for thrombosis. The validated FSI simulations should enable future valve design optimizations that are needed for

  14. Coherent spin transport through a 350 micron thick silicon wafer.

    Science.gov (United States)

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  15. Spin Hall Effect in Doped Semiconductor Structures

    Science.gov (United States)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  16. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  17. Development of magnetic drive packless valves for commercial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Tae; Choi, Yoon Dong; Jeong, Ji Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    A study on development of magnetic drive packless valves for commercial purpose showed the results as follows; A. Maximization of torque (1) Arranging method of magnets (2) Effects on the distance between magnetic holders (3) Improvement of the valve disc for the torque maximization. B. Study on the high pressure structure of the valve (1) Analysis of the pressure-resisting structure of the magnetic power transmitting device (2) Calculation model and program (a) Calculation model (b) Program used in calculation (3) Structure analysis and verification test for the pressurized plate. C. Study on the valve compacting. D. Technical specification for the valve manufacture. E. Inspection and test method for valve. 10 tabs., 10 figs. (Author).

  18. Development of magnetic drive packless valves for commercial purpose

    International Nuclear Information System (INIS)

    Hwang, Seong Tae; Choi, Yoon Dong; Jeong, Ji Young

    1995-12-01

    A study on development of magnetic drive packless valves for commercial purpose showed the results as follows; A. Maximization of torque (1) Arranging method of magnets (2) Effects on the distance between magnetic holders (3) Improvement of the valve disc for the torque maximization. B. Study on the high pressure structure of the valve (1) Analysis of the pressure-resisting structure of the magnetic power transmitting device (2) Calculation model and program (a) Calculation model (b) Program used in calculation (3) Structure analysis and verification test for the pressurized plate. C. Study on the valve compacting. D. Technical specification for the valve manufacture. E. Inspection and test method for valve. 10 tabs., 10 figs. (Author)

  19. Zero-Field Spin Structure and Spin Reorientations in Layered Organic Antiferromagnet, κ-(BEDT-TTF)2Cu[N(CN)2]Cl, with Dzyaloshinskii-Moriya Interaction

    Science.gov (United States)

    Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki

    2018-06-01

    Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the

  20. Nanoscale spin-dependent transport of electrons and holes in Si-ferromagnet structures

    NARCIS (Netherlands)

    Ul Haq, E.

    Given the rapid development of magnetic data storage and spin-electronics into the realm of nanotechnology, the understanding of the spin-dependent electronic transport and switching behavior of magnetic structures at the nanoscale is an important issue. We have developed spin-sensitive techniques

  1. Chiral effective-field theory of the nucleon spin structure

    Science.gov (United States)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  2. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  3. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  4. Lateral spin injection and detection via electrodeposited Fe/GaAs contacts

    OpenAIRE

    Majumder, Sarmita

    2013-01-01

    Experimental studies of lateral spin injection and detection through electrodeposited Fe/GaAs tunnel contacts are reported in this thesis. An enhanced spin valve voltage is demonstrated via non-local lateral spin transport measurements compared to their vacuum-deposited counterparts. We have proposed a simple theoretical model to explain this result. Combined with experimental evidence for interfacial oxygen from atom probe tomography, we speculate that the enhancements occur due to a magne...

  5. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    International Nuclear Information System (INIS)

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  6. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  7. Shot noise of spin current and spin transfer torque

    International Nuclear Information System (INIS)

    Yu Yunjin; Zhan Hongxin; Wan Langhui; Wang Bin; Wei Yadong; Sun Qingfeng; Wang Jian

    2013-01-01

    We report the theoretical investigation of the shot noise of the spin current (S σ ) and the spin transfer torque (S τ ) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green’s function method, and general nonlinear S σ − V and S τ − V relations were derived as a function of the angle θ between the magnetizations of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that, for the MNM system, the auto-correlation of the spin current is enough to characterize the fluctuation of the spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of the spin current are needed to characterize the noise of the spin current. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ when the system is far away from resonance. When the system is near resonance, the spin transfer torque becomes a non-sinusoidal function of θ. The derivative of the noise of the spin transfer torque with respect to the bias voltage N τ behaves differently when the system is near or far away from resonance. Specifically, the differential shot noise of the spin transfer torque N τ is a concave function of θ near resonance while it becomes a convex function of θ far away from resonance. For certain bias voltages, the period N τ (θ) becomes π instead of 2π. For small θ, it was found that the differential shot noise of the spin transfer torque is very sensitive to the bias voltage and the other system parameters. (paper)

  8. Unique spin-polarized transmission effects in a QD ring structure

    Science.gov (United States)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  9. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model

    Directory of Open Access Journals (Sweden)

    Jeannette H. Spühler

    2018-04-01

    Full Text Available Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening or regurgitation (leaking and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  10. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.

    Science.gov (United States)

    Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  11. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  12. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    Science.gov (United States)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  13. Interface-induced spin Hall magnetoresistance enhancement in Pt-based tri-layer structure.

    Science.gov (United States)

    Huang, Shun-Yu; Li, Hong-Lin; Chong, Cheong-Wei; Chang, Yu-Ying; Lee, Min-Kai; Huang, Jung-Chun-Andrew

    2018-01-08

    In this study, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0648 and 1.31 nm, respectively, can be fitted by changing the Pt thickness in the longitudinal SMR function. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y 3 Fe 5 O 12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.

  14. Thermally induced pressure locking of gate valves: A survey of valve bonnet pressurization rates

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Moore, W.E.

    1996-01-01

    Closed, water filled gate valves run the risk of becoming pressurized due to heat input from the environment or from adjacent connected piping. Thermal pressurization of gate valve bonnets may lead to the valves failing to open on demand and can even induce structural failure of valves. This paper presents an analytical prediction of the pressurization rate of a closed pressure vessel subject to uniform heating which may be considered as an upper bound to the pressurization rate that may occur in the field. Then actual valve experiences described in the literature are reviewed to determine the expected pressurization rate in existing hardware designs. A statistical approach is applied to reconcile the differing pressurization rates reported in the literature and determine a rate that can be applied in valve evaluations. The limitations of the reconciled rate are discussed

  15. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  16. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  17. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  18. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  19. Spin-orbit coupling effects in indium antimonide quantum well structures

    Science.gov (United States)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  20. Unravelling the spin-state of solvated [Fe(bpp)2]2+ spin-crossover complexes: structure-function relationship.

    Science.gov (United States)

    Giménez-López, Maria Del Carmen; Clemente-León, Miguel; Giménez-Saiz, Carlos

    2018-05-23

    This paper reports firstly the syntheses, crystal structures, and thermal and magnetic properties of spin crossover salts of formulae [Fe(bpp)2]3[Cr(CN)6]2·13H2O (1) and [Fe(bpp)2][N(CN)2]2·H2O (2) (bpp = 2,6-bis(pyrazol-3-yl)pyridine) exhibiting hydrogen-bonded networks of low-spin [Fe(bpp)2]2+ complexes and [Cr(CN)6]3- or [N(CN)2]- anions, with solvent molecules located in the voids. Desolvation of 1 is accompanied by a complete low-spin (LS) to a high-spin (HS) transformation that becomes reversible after rehydration by exposing the sample to the humidity of air. The influence of the lattice water on the magnetic properties of spin-crossover [Fe(bpp)2]X2 complex salts has been documented. In most cases, it stabilises the LS state over the HS one. In other cases, it is rather the contrary. The second part of this paper is devoted to unravelling the reasons why the lattice solvent stabilises one form over the other through magneto-structural correlations of [Fe(bpp)2]2+ salts bearing anions with different charge/size ratios (Xn-). The [Fe(bpp)2]2+ stacking explaining these two different behaviours is correlated here with the composition of the second coordination sphere of the Fe centers and the ability of these anions to form hydrogen bonds and/or π-π stacking interactions between them or the bpp ligand.

  1. Level Structure of 103Ag at high spins

    OpenAIRE

    Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.

    2007-01-01

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...

  2. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  3. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  4. Autonomous booster device of a safety valve

    International Nuclear Information System (INIS)

    Namand, H.

    1983-01-01

    The invention concerns an autonomous booster device of a protection safety valve of a pressure vessel. The valve comprises a hollow structure, a seat connected with a mobile flap forming one piece with a stem and a calibration spring bearing on the stem and on the valve structure to maintain the flap bearing on the seat. The stem of the flap is prolongated in a box forming one piece with the valve structure and receives an added push of a spring. The box acts as a pressure device of which the piston can exercise on the stem a push opposite to and larger than the spring one. The feeding device of the pressure box is finally described in detail [fr

  5. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  6. Local quark-hadron duality of nucleon spin structure functions with target mass corrections

    International Nuclear Information System (INIS)

    Dong, Y.B. . E-mail dongyb@mail.ihep.ac.cn; Chen, D.Y.

    2007-01-01

    Target mass corrections to nucleon spin structure functions are analyzed. Our results show that the corrections are important to the structure functions in a large x region. Moreover, they play a remarkable role to the local quark-hadron duality of the nucleon spin structure functions in three individual inelastic resonance production regions

  7. The Spin Structure of the Proton in the Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Renee H. [Univ. of Virginia, Charlottesville, VA (United States)

    2002-01-01

    Inclusive double spin asymmetries have been measured for $\\vec{p}$($\\vec{e}$,e') using the CLAS detector and a polarized 15NH3 target at Jefferson Lab in 1998. The virtual photon asymmetry A1, the longitudinal spin structure function, g1 (x, Q2), and the first moment Γ$1\\atop{p}$, have been extracted for a Q2 range of 0.15-2.0 GeV2. These results provide insight into the low Q2 evolution of spin dependent asymmetries and structure functions as well as the transition of Γ$1\\atop{p}$ from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.

  8. The spin structure of the pion

    Energy Technology Data Exchange (ETDEWEB)

    Broemmel, D. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)]|[Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Diehl, M. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2007-08-15

    We present the first calculation of the transverse spin structure of the pion in lattice QCD. We find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in magnitude to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike. (orig.)

  9. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    Science.gov (United States)

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  10. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  11. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].

    Science.gov (United States)

    Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P

    2015-12-01

    Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl  · min(-1) and 2.7 × 10(-3) mmHg/µl  · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost

  12. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains

    International Nuclear Information System (INIS)

    García-Fuente, A; Gallego, L J; Vega, A

    2015-01-01

    By means of density-functional-theoretic calculations, we investigated the structural, electronic and transport properties of hydrogen-passivated zigzag graphene nanoribbons (ZGNRs) on which a one-atom-thick Mo chain was adsorbed (with or without one or two missing atoms), or in which the passivating hydrogen atoms were replaced by Mo atoms. Mo-passivated ZGNRs proved to be nonmagnetic. ZGNRs with an adsorbed defect-free Mo chain were most stable with the Mo atoms forming dimers above edge bay sites, which suppressed the magnetic moments of the C atoms in that half of the ribbon; around the Fermi level of these systems, each spin component had a transmission channel via the Mo sp z band and one had an additional channel created by polarization of the ZGNR π * band, leading to a net spin current. The absence of an Mo dimer from an Mo chain adsorbed at the ZGNR edge made the system a perfect spin filter at low voltage bias by suppressing the Mo sp z band channels. Thus this last kind of hybrid system is a potential spin valve. (paper)

  13. David valve-sparing aortic root replacement: equivalent mid-term outcome for different valve types with or without connective tissue disorder.

    Science.gov (United States)

    Kvitting, John-Peder Escobar; Kari, Fabian A; Fischbein, Michael P; Liang, David H; Beraud, Anne-Sophie; Stephens, Elizabeth H; Mitchell, R Scott; Miller, D Craig

    2013-01-01

    Although implicitly accepted by many that the durability of valve-sparing aortic root replacement in patients with bicuspid aortic valve disease and connective tissue disorders will be inferior, this hypothesis has not been rigorously investigated. From 1993 to 2009, 233 patients (27% bicuspid aortic valve, 40% Marfan syndrome) underwent Tirone David valve-sparing aortic root replacement. Follow-up averaged 4.7 ± 3.3 years (1102 patient-years). Freedom from adverse outcomes was determined using log-rank calculations. Survival at 5 and 10 years was 98.7% ± 0.7% and 93.5% ± 5.1%, respectively. Freedom from reoperation (all causes) on the aortic root was 92.2% ± 3.6% at 10 years; 3 reoperations were aortic valve replacement owing to structural valve deterioration. Freedom from structural valve deterioration at 10 years was 96.1% ± 2.1%. No significant differences were found in survival (P = .805, P = .793, respectively), reoperation (P = .179, P = .973, respectively), structural valve deterioration (P = .639, P = .982, respectively), or any other functional or clinical endpoints when patients were stratified by valve type (tricuspid aortic valve vs bicuspid aortic valve) or associated connective tissue disorder. At the latest echocardiographic follow-up (95% complete), 202 patients (94.8%) had none or trace aortic regurgitation, 10 (4.7%) mild, 0 had moderate to severe, and 1 (0.5%) had severe aortic regurgitation. Freedom from greater than 2+ aortic regurgitation at 10 years was 95.3% ± 2.5%. Six patients sustained acute type B aortic dissection (freedom at 10 years, 90.4% ± 5.0%). Tirone David reimplantation valve-sparing aortic root replacement in carefully selected young patients was associated with excellent clinical and echocardiographic outcome in patients with either a tricuspid aortic valve or bicuspid aortic valve. No demonstrable adverse influence was found for Marfan syndrome or connective tissue disorder on durability, clinical outcome

  14. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  15. Structural and magnetic characterization of Fe2CrSi Heusler alloy nanoparticles as spin injectors and spin based sensors

    Science.gov (United States)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.

    2018-05-01

    Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.

  16. Structural analysis strategies of the pressurized relief and safety valves discharge piping of NPP Angra 1

    International Nuclear Information System (INIS)

    Lima, Maria Ines Prates de; Kuramoto, Edson; Suanno, Rodolfo

    2002-01-01

    The pressurizer relief and safety valve system provides the reactor coolant system overpressure protection and, therefore, it is fundamental for the security of a nuclear plant. This paper discusses the safety valve loop seal strategies adopted by others nuclear power plants over the world in order to attend the recommendations of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short Term Recommendations). The technical option adopted for Angra 1 consists in making specific modifications on the original piping and support configuration of the pressurizer relief and safety valve system. These modifications were proposed in order to reduce the high stress levels induced by the thermal-hydrodynamic loads caused by the discharge of the sub-cooled water during the opening of the relief or the safety valves. Several thermal-hydraulic models were tested to assess the influence of the seal water heating and the simultaneous opening of the valves in order to minimize the thermal hydrodynamic loads effects. The piping structural analysis was performed, using the computer program system KWUROHR, to satisfy the requirements of the appropriate equations of the code ASME Section III, Subsections NB3650 and NC3650. (author)

  17. Gate-tunable valley-spin filtering in silicene with magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X. Q., E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, H. [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)

    2015-05-28

    We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.

  18. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  19. Q2 dependence of the spin structure function in the resonance region

    International Nuclear Information System (INIS)

    Li, Z.; Li, Z.

    1994-01-01

    In this paper, we show what we can learn from the CEBAF experiments on spin-structure functions, and the transition from the Drell-Hearn-Gerasimov sum rule in the real photon limit to the spin-dependent sum rules in deep inelastic scattering, and how the asymmetry A 1 (x,Q 2 ) approaches the scaling limit in the resonance region. The spin structure function in the resonance region alone cannot determine the spin-dependent sum rule due to the kinematic restriction of the resonance region. The integral ∫ 0 1 {A 1 (x,Q 2 )F 2 (x,Q 2 )/2x[1+R(x,Q 2 )]}dx is estimated from Q 2 =0--2.5 GeV 2 . The result shows that there is a region where both contributions from the baryon resonances and the deep inelastic scattering are important; thus it provides important information on the high twist effects on the spin-dependent sum rule

  20. The Spin Structure of the Proton at Low Q2: A Measurement of the Structure Function g2p

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chao [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-31

    The spin structure of the nucleon has remained as one of the key points of interest in hadronic physics, which has attracted many efforts from both experimentalists and theorists. Quantum Chromodynamics (QCD) is the fundamental theory that describes the strong interaction. It has been verified in the asymptotically free region. However, the non-perturbative confinement of quarks within the nucleon is still not well understood within QCD. In the non-perturbative regime, low-energy effective field theories such as chiral perturbation theory (XPT) provide predictions for the spin structure functions. The neutron spin structure functions, gp1 and gp2 , and the proton spin structure function, gp1, have been measured over a wide kinematic range and compared with the theoretical predictions. However, the proton spin structure function, gp2, remains largely unmeasured. The E08-027 collaboration successfully performed the first measurement of the inclusive electron-proton scattering in the kinematic range 0.02 < Q2 < 0.2 GeV2. The experiment took place in experimental Hall A at Jefferson Lab in 2012. A longitudinally polarized electron beam with incident energies between 1.1 GeV and 3.3 GeV was scattered from a longitudinally or transversely polarized NH3 target. Asymmetries and polarized cross-section differences were measured in the resonance region to extract the proton spin structure functions g2. The results allow us to obtain the generalized spin polarizabilities γ0 and δLT and test the Burkhardtt-Cottingham (BC) sum rule. Chiral perturbation theory is expected to work in this kinematic range and this measurement of δLT will give a benchmark test to XPT calculations. This thesis will discuss preliminary results from the E08-027 data analysis.

  1. Porcine Tricuspid Valve Anatomy and Human Compatibility

    DEFF Research Database (Denmark)

    Waziri, Farhad; Lyager Nielsen, Sten; Hasenkam, J. Michael

    2016-01-01

    before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. METHODS: The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin...

  2. Spin and lattice structures of single-crystalline SrFe2As2

    Science.gov (United States)

    Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng

    2008-10-01

    We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.

  3. The spin dependent structure function g1 of the deuteron and the proton

    International Nuclear Information System (INIS)

    Klostermann, L.

    1995-01-01

    This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarised nuons on polarised proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one con determine the spin dependent structure function g 1 , which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g 1 p by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g 1 p and g 1 d to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. (orig./WL)

  4. M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures

    International Nuclear Information System (INIS)

    Tsimpis, Dimitrios

    2006-01-01

    The requirement of N = 1 supersymmetry for M-theory backgrounds of the form of a warped product M x w X, where X is an eight-manifold and M is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ on X. ξ lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y: = X x S 1 , where S 1 is a circle of constant radius, implying the reduction of the structure group of Y to Spin(7). In general, however, there is no reduction of the structure group of X itself. This situation can be described in the language of generalized Spin(7) structures, defined in terms of certain spinors of Spin(TY+T*Y). We express the condition for N = 1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in X in terms of a 'preferred' Spin(7) structure, we show that the requirement of N = 1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27 of Spin(7), in terms of the warp factor and a one-form L on X (not necessarily nowhere-vanishing) constructed as a ξ bilinear; in addition, L is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7) holonomy

  5. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  6. Baking Powder Actuated Centrifugo-Pneumatic Valving for Automation of Multi-Step Bioassays

    Directory of Open Access Journals (Sweden)

    David J. Kinahan

    2016-10-01

    Full Text Available We report a new flow control method for centrifugal microfluidic systems; CO2 is released from on-board stored baking powder upon contact with an ancillary liquid. The elevated pressure generated drives the sample into a dead-end pneumatic chamber sealed by a dissolvable film (DF. This liquid incursion wets and dissolves the DF, thus opening the valve. The activation pressure of the DF valve can be tuned by the geometry of the channel upstream of the DF membrane. Through pneumatic coupling with properly dimensioned disc architecture, we established serial cascading of valves, even at a constant spin rate. Similarly, we demonstrate sequential actuation of valves by dividing the disc into a number of distinct pneumatic chambers (separated by DF membranes. Opening these DFs, typically through arrival of a liquid to that location on a disc, permits pressurization of these chambers. This barrier-based scheme provides robust and strictly ordered valve actuation, which is demonstrated by the automation of a multi-step/multi-reagent DNA-based hybridization assay.

  7. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the effects of valve body and valve seat by steam experiments

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2007-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop the countermeasures by CFD (Computational Fluid Dynamics) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the new valve shape (named 'Extended Valve') that can suppress the pressure fluctuations by air experiments and CFD calculations. Then, we also conducted steam experiments and CFD calculations to understand the differences between air and the steam, and found that the pressure fluctuations in the middle opening condition also occurred in the steam tests and the differences between the air and steam were not remarkable. In this report, to clarify the effects of valve and valve seat shape in steam flow condition, we conduct the steam experiments with various valve and seat shape. As a result, we find the change of the valve seat can decrease the amplitude of pressure fluctuations, but can not quite suppress the pressure fluctuations in the middle opening condition. Then, we apply the 'Extended Valve' to clarify the valve shape effect, and find that the extended valve suppresses the pressure fluctuations in the middle opening condition completely and decreases the pressure amplitude drastically. (author)

  8. Soil-structure interaction for transient loads due to safety relief valve discharges

    International Nuclear Information System (INIS)

    Tseng, W.S.; Tsai, N.C.

    1978-01-01

    Dynamic responses of BWR Mark II containment structures subjected to axisymmetric transient pressure loadings due to simultaneous safety relief valve discharges were investigated using finite element analysis, including the soil-structure interaction effect. To properly consider the soil-structure interaction effect, a simplified lumped parameter foundation model and axisymmetric finite element foundation model with viscous boundary impedance are used. Analytical results are presented to demonstrate the effectiveness of the simplified foundation model and to exhibit the dynamic response behavior of the structure as the transient loading frequency and the foundation rigidity vary. The impact of the dynamic structural response due to this type of loading on the equipment design is also discussed. (Auth.)

  9. Tuning spin-polarized transport in organic semiconductors

    Science.gov (United States)

    Mattana, Richard; Galbiati, Marta; Delprat, Sophie; Tatay, Sergio; Deranlot, Cyrile; Seneor, Pierre; Petroff, Frederic

    Molecular spintronics is an emerging research field at the frontier between organic chemistry and the spintronics. Compared to traditional inorganic materials molecules are flexible and can be easily tailored by chemical synthesis. Due to their theoretically expected very long spin lifetime, they were first only seen as the ultimate media for spintronics devices. It was recently that new spintronics tailoring could arise from the chemical versatility brought by molecules. The hybridization between a ferromagnet and molecules induces a spin dependent broadening and energy shifting of the molecular orbitals leading to an induced spin polarization on the first molecular layer. This spin dependent hybridization can be used to tailor the spin dependent transport in organic spintronics devices. We have studied vertical Co/Alq3/Co organic spin valves. The negative magnetoresistance observed is the signature of different coupling strengths at the top and bottom interfaces. We have then inserted an inorganic tunnel barrier at the bottom interface in order to suppress the spin-dependent hybridization. In this case we restore a positive magnetoresistance. This demonstrates that at the bottom Co/Alq3 interface a stronger coupling occurs which induces an inversion of the spin polarization.

  10. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P. [Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France and Université Paris Sud, 91405 Orsay (France); Weatherup, R. S.; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Yang, H. [IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Blume, R. [Helmholtz-Zentrum Berlin fur Materialien und Energie, 12489 Berlin (Germany); Schloegl, R. [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  11. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  12. The Spin Structure of the Neutron

    Energy Technology Data Exchange (ETDEWEB)

    Churchwell, S

    2003-12-18

    A description of SLAC experiment E154, a precision measurement of the neutron's longitudinal spin structure function g{sub 1}{sup n}, is presented. Deep inelastic electron scattering was used to measure the structure function in the kinematic range 0.014 < x < 0.7, and 1 < Q{sup 2} < 17 GeV{sup 2}. A measurement of the transverse spin structure function g{sub 2}{sup n} was also made, but with significantly lower statistical precision. Electrons with an average polarization of 82 {+-} 2% and an energy of 48.3 GeV were scattered off polarized {sup 3}He nuclei having an average polarization of 38%. Two independent magnetic spectrometers set at scattering angles of 2.75{sup o} and 5.5{sup o} were used to acquire about 100 million events during a two month run in late 1995. The data were analyzed to yield the integral over the measured region: {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst), which is several standard deviations below the Ellis-Jaffe sum rule predictions. When these data were combined with the proton g{sub 1}{sup p} structure function data from the SMC and E143 experiments, the Bjorken sum rule over the measured x range was found to be within 10% of the predicted value. The integral of the g{sub 2}{sup n} data, dominated by the statistical uncertainty, was found to be {integral}{sub 0.014}{sup 0.7} g{sub 2}{sup n}(x)dx = 0.19 {+-} 0.17(stat) {+-} 0.02(syst), in agreement with the Burkhardt-Cottingham sum rule prediction. The g{sub 1}{sup n} structure function data at low x were found to be inconsistent with the traditional asymptotic forms, bringing into question the methods used in the past.

  13. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve.

    Science.gov (United States)

    Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie

    2018-04-01

    The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.

  14. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  15. The spin-dependent structure function g1 of the deuteron

    International Nuclear Information System (INIS)

    Bueltmann, S.

    1996-01-01

    Results on the spin-dependent structure function g 1 d of the deuteron measured by the Spin Muon Collaboration at CERN are presented. They are based on deep-inelastic scattering of 190 GeV polarized muons off a polarized deuteron target in the kinematic range of 0.003 ≤ x Bj ≤ 0.7 and 1 GeV 2 ≤ Q 2 ≤ 60 GeV 2 . The structure function is found to be negative for small values of x Bj , while the proton structure function g 1 p measured earlier by the SMC is positive over the whole x Bj -range. The Bjorken sum rule is in good agreement with the first moments of the structure functions, while the Ellis-Jaffe sum rule is violated by more than three standard deviations for the deuteron measurement. (author)

  16. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  17. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices

    DEFF Research Database (Denmark)

    Piraux, L.; Renard, K.; Guillemet, R.

    2007-01-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena....... The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin...

  18. Measuring spin-dependent structure functions at CEBAF

    International Nuclear Information System (INIS)

    Schaefer, A.

    1994-01-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q 2 dependence of the spin-dependent structure functions g 1 (x) and G 2 (x) and (2) the by far most precise determination of the third moments of g 1 (x) and g 2 (x) the latter of which the author argues to be related to a fundamental property of the nucleon

  19. The determination of the in situ structure by nuclear spin contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS Forschungszentrum, Geesthacht (Germany); Nierhaus, K.H. [Max-Planch-Institut fuer Molekulare Genetik, Berlin (Germany)

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  20. The determination of the in situ structure by nuclear spin contrast variation

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-01-01

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome

  1. Steel-fabricated butterfly valves for condenser circulating water system

    International Nuclear Information System (INIS)

    Kawase, Hiroshi; Yasuoka, Masahiro; Nanao, Teruaki.

    1979-01-01

    The steel-fabricated butterfly valves, which are large in general, and gave rubber linings inside to prevent the corrosion due to sea Water, are utilized for the condenser circulating water systems of thermal and nuclear power plants. Cast iron butterfly valves, having been used hitherto, have some technical irrationalities, such as corrosion prevention, the techniques for manufacturing large castings, severe thermal transient operation. On the contrary, the steel plate-fabricated butterfly valves have the following advantages; much superior characteristics in strength, rigidity and shock resistance, the streamline shape of valve plates, the narrow width between two flanges, superior execution of works for rubber lining, the perfect sealed structure, safety to vibration, light weight and easy maintenance. The structural design and the main specifications for the steel plate butterfly valves with the nominal bore from 1350 mm to 3500 mm are presented. Concerning the design criteria, the torque of operating butterfly valves and the strength of valve bodies, valve plates and valve stems are explained. The performance tests utilizing the mock-up valve were carried out for the measurements of stress distribution, the deformation of valve body, the endurance and the operating torque. In the welding standards for steel plate butterfly valves, three kinds of welded parts are classified, and the inspection method for each part is stipulated. The vibration of the valves induced by flow vortexes and cavitation is explained. (Nakai, Y.)

  2. Mechanical versus bioprosthetic aortic valve replacement.

    Science.gov (United States)

    Head, Stuart J; Çelik, Mevlüt; Kappetein, A Pieter

    2017-07-21

    Mechanical valves used for aortic valve replacement (AVR) continue to be associated with bleeding risks because of anticoagulation therapy, while bioprosthetic valves are at risk of structural valve deterioration requiring reoperation. This risk/benefit ratio of mechanical and bioprosthetic valves has led American and European guidelines on valvular heart disease to be consistent in recommending the use of mechanical prostheses in patients younger than 60 years of age. Despite these recommendations, the use of bioprosthetic valves has significantly increased over the last decades in all age groups. A systematic review of manuscripts applying propensity-matching or multivariable analysis to compare the usage of mechanical vs. bioprosthetic valves found either similar outcomes between the two types of valves or favourable outcomes with mechanical prostheses, particularly in younger patients. The risk/benefit ratio and choice of valves will be impacted by developments in valve designs, anticoagulation therapy, reducing the required international normalized ratio, and transcatheter and minimally invasive procedures. However, there is currently no evidence to support lowering the age threshold for implanting a bioprosthesis. Physicians in the Heart Team and patients should be cautious in pursuing more bioprosthetic valve use until its benefit is clearly proven in middle-aged patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  3. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    Science.gov (United States)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  4. Precision measurement of the neutron spin dependent structure functions

    International Nuclear Information System (INIS)

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g 1 n (x, Q 2 ) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3 He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 ≤ x ≤ 0.7 with an average Q 2 of 5 GeV 2 . The author reports the integral of the spin dependent structure function in the measured range to be ∫ 0.014 0.7 dx g 1 n (x, 5 GeV 2 ) = -0.036 ± 0.004(stat.) ± 0.005(syst.). The author observes relatively large values of g 1 n at low x that call into question the reliability of data extrapolation to x → 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g 1 p and g 1 n paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q 2 = 5 GeV 2 , determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule

  5. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations

    Science.gov (United States)

    Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.

    2017-11-01

    We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.

  6. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  7. Simplicity of state and overlap structure in finite-volume realistic spin glasses

    International Nuclear Information System (INIS)

    Newman, C.M.; Stein, D.L.

    1998-01-01

    We present a combination of heuristic and rigorous arguments indicating that both the pure state structure and the overlap structure of realistic spin glasses should be relatively simple: in a large finite volume with coupling-independent boundary conditions, such as periodic, at most a pair of flip-related (or the appropriate number of symmetry-related in the non-Ising case) states appear, and the Parisi overlap distribution correspondingly exhibits at most a pair of δ functions at ±q EA . This rules out the nonstandard mean-field picture introduced by us earlier, and when combined with our previous elimination of more standard versions of the mean-field picture, argues against the possibility of even limited versions of mean-field ordering in realistic spin glasses. If broken spin-flip symmetry should occur, this leaves open two main possibilities for ordering in the spin glass phase: the droplet-scaling two-state picture, and the chaotic pairs many-state picture introduced by us earlier. We present scaling arguments which provide a possible physical basis for the latter picture, and discuss possible reasons behind numerical observations of more complicated overlap structures in finite volumes. copyright 1998 The American Physical Society

  8. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    Science.gov (United States)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  9. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  10. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Liu Peng

    2015-01-01

    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  11. Echocardiographic evaluation of heart valve prosthetic dysfunction

    Directory of Open Access Journals (Sweden)

    Yuriy Ivaniv

    2018-02-01

    Full Text Available Patients with replaced heart valve submitted to echocardiographic examination may have symptoms related either to valvular malfunction or ventricular dysfunction from different causes. Clinical examination is not reliable in a prosthetic valve evaluation and the main information regarding its function could be obtained using different cardiac ultrasound modalities. This review provides a description of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. For the interpretation of echocardiography there is a need in special knowledge of prosthesis types and possible reasons of prosthetic function deterioration. Echocardiography allows to reveal valve thrombosis, pannus formation, vegetation and such complications of infective endocarditis as valve ring abscess or dehiscence. Transthoracic echocardiography requires different section plane angles and unconventional views. Transesophageal echocardiography is more often used than in native valve examination due to better visualization of prosthetic valve structure and function. Three-dimensional echocardiography could provide more detailed visual information especially in the assessment of paravalvular regurgitation or valve obstruction.

  12. Proposal for a graphene-based all-spin logic gate

    Science.gov (United States)

    Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Zhang, Youguang; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud

    2015-02-01

    In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (˜μm), higher data throughput, faster computing speed (˜ns), and lower power consumption (˜μA) can be expected from the G-ASLG.

  13. Proposal for a graphene-based all-spin logic gate

    International Nuclear Information System (INIS)

    Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud; Zhang, Youguang

    2015-01-01

    In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (∼μm), higher data throughput, faster computing speed (∼ns), and lower power consumption (∼μA) can be expected from the G-ASLG

  14. Effects of structure parameters on flow and cavitation characteristics within control valve of fuel injector for modern diesel engine

    International Nuclear Information System (INIS)

    Wang, Chao; Li, Guo-Xiu; Sun, Zuo-Yu; Wang, Lan; Sun, Shu-Ping; Gu, Jiao-Jiao; Wu, Xiao-Jun

    2016-01-01

    Highlights: • The Schnerr-Sauer model was used to calculate the cavitation source term. • The development process and influencing factors of cavitation were studied. • The flow process inside control valve during the ball valve opened were studied. • The effects of the structure parameters of the control valve on the cavitation and flow were studied. - Abstract: Cavitation is a common phenomenon in diesel injector and has a strong influence on the internal flow. However, studies so far have focused on cavitation characteristics inside the nozzle. Its influence on the flow during control valve opening remains still unclear. In the paper, a computational study focused on the flow and cavitation phenomena within control valve has been reported and the effects of control valve’s structure parameters (including rounded edge, seal cone angle and outflowing control-orifice structure) on the flow and cavitation characteristics have been investigated in detail. Firstly the 3D model has been validated in terms of single injection quantity and fuel injection duration, showing a good consistency. And then, the development from sheet cavitation to cloud cavitation and the relationship between cavitation, pressure and velocity has been discussed. Based on the numerical results obtained, it is shown that not only the variation of pressure but also the velocity is the important factor which affects cavitation. The increase of the flow velocity reduces the pressure within the flow field which can aggravate the development of cavitation. As cavitation region increases, the fuel flow is hindered and the flow velocity decreases. However, the decrease of flow velocity has suppressed the development of cavitation. All of those variations form a cyclical process.

  15. Structure of large spin expansion of anomalous dimensions at strong coupling

    International Nuclear Information System (INIS)

    Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.

    2009-01-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions

  16. Is valve choice a significant determinant of paravalular leak post-transcatheter aortic valve implantation? A systematic review and meta-analysis.

    LENUS (Irish Health Repository)

    O'Sullivan, Katie E

    2013-11-01

    Paravalvular regurgitation (PVR) following transcatheter aortic valve implantation (TAVI) is associated with poor survival. The two main valve delivery systems used to date differ significantly in both structure and deployment technique. The primary objective of this study was to perform a systematic review and meta-analysis of studies identifying PVR in patients post-TAVI using Medtronic CoreValve (MCV) and Edward Sapien (ES) valves in order to identify whether a significant difference exists between valve types. The secondary objective was to identify additional factors predisposing to PVR to provide an overview of the other associated considerations.

  17. Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions

    KAUST Repository

    Dolui, Kapildeb; Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2014-01-01

    bias as long as transport is in the tunneling limit. A general recipe for improving the magnetoresistance in spin valves incorporating layered transition metal dichalcogenides is proposed. © 2014 American Physical Society.

  18. High spin structure in 130,131Ba

    International Nuclear Information System (INIS)

    Kaur, Navneet; Kumar, A.; Singh, Amandeep; Kumar, S.; Kaur, Rajbir; Singh, Varinderjit; Behera, B.R.; Singh, K.P.; Singh, G.; Mukherjee, G.; Sharma, H.P.; Kumar, Suresh; Kumar Raju, M.; Madhusudhan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, N.; Bhowmik, R.K.

    2014-01-01

    High spin states of 130,131 Ba have been investigated via fusion evaporation reactions 122 Sn( 13 C,4n) 131 Ba and 122 Sn( 13 C, 5n) 130 Ba at E beam =65 MeV. The level schemes of 130,131 Ba have been extended by placing several new γ transitions. A few interband transitions connecting two negative-parity bands, which are the experimental fingerprints of signature partners, have been established in 130 Ba. Spin and parity of a side band have been assigned in 131 Ba and this dipole band is proposed to have a three-quasiparticle configuration, νh 11/2 x πh 11/2 x πg 7/2 . The observed band structures and nuclear shape evolution as a function of the angular momentum have been discussed in the light of Total-Routhian-Surface calculations. (orig.)

  19. Measuring spin-dependent structure functions at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Universitaet Frankfurt (Germany)

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  20. Check valve

    Science.gov (United States)

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  1. Check valve

    International Nuclear Information System (INIS)

    Upton, H.A.; Garcia, P.

    1999-01-01

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  2. Measuring the Neutron and 3He Spin Structure at Low Q2

    International Nuclear Information System (INIS)

    Vince Sulkosky

    2005-01-01

    The spin structure of the nucleon has been of great interest over the past few decades. Sum rules, including the Gerasimov-Drell-Hearn (GDH), and moments of the spin structure functions are powerful tools for understanding nucleon structure. The GDH sum rule, originally derived for real photon absorption, has been generalized to nonzero Q 2 . The goal of Jefferson Lab experiment E97-110 is to perform a precise measurement of the Q 2 dependence of the generalized GDH integral and of the moments of the neutron and 3 He spin structure functions between 0.02 and 0.3 GeV 2 . This Q 2 range will allow us to test predictions of Chiral Perturbation Theory, and verify the GDH sum rule by extrapolating the integral to the real photon point. The measurement will also contribute to the understanding of nucleon resonances. The data have been taken in Hall A using a high resolution spectrometer with the addition of a septum magnet, which allowed us to access the low Q 2 region. The analysis's status, prospects and impact will be discussed

  3. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    Science.gov (United States)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  4. NRC valve performance test program - check valve testing

    International Nuclear Information System (INIS)

    Jeanmougin, N.M.

    1987-01-01

    The Valve Performance Test Program addresses the current requirements for testing of pressure isolation valves (PIVs) in light water reactors. Leak rate monitoring is the current method used by operating commercial power plants to survey the condition of their PIVs. ETEC testing of three check valves (4-inch, 6-inch, and 12-inch nominal diameters) indicates that leak rate testing is not a reliable method for detecting impending valve failure. Acoustic emission monitoring of check valves shows promise as a method of detecting loosened internals damage. Future efforts will focus on evaluation of acoustic emission monitoring as a technique for determining check valve condition. Three gate valves also will be tested to evaluate whether the check valve results are applicable to gate type PIVs

  5. Transcatheter, valve-in-valve transapical aortic and mitral valve implantation, in a high risk patient with aortic and mitral prosthetic valve stenoses

    Directory of Open Access Journals (Sweden)

    Harish Ramakrishna

    2015-01-01

    Full Text Available Transcatheter valve implantation continues to grow worldwide and has been used principally for the nonsurgical management of native aortic valvular disease-as a potentially less invasive method of valve replacement in high-risk and inoperable patients with severe aortic valve stenosis. Given the burden of valvular heart disease in the general population and the increasing numbers of patients who have had previous valve operations, we are now seeing a growing number of high-risk patients presenting with prosthetic valve stenosis, who are not potential surgical candidates. For this high-risk subset transcatheter valve delivery may be the only option. Here, we present an inoperable patient with severe, prosthetic valve aortic and mitral stenosis who was successfully treated with a trans catheter based approach, with a valve-in-valve implantation procedure of both aortic and mitral valves.

  6. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    Science.gov (United States)

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Structure of high-spin isomers in trans-lead nuclei

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1990-01-01

    The structure of core-excited high-spin isomers in the N ≤ 126 isotopes of At, Rn and Fr is reviewed. New results for high-spin states in 211 Rn and 212 Rn, approaching the limit of the available angular momentum from the valence particles, are presented. The recurring experimental feature is decay by very enhanced E3 transitions. These, and other properties are explained in a natural way by inclusion of particle-octupole vibration coupling, in a semi-empirical shell model. The deformed independent particle model is not successful in explaining these features. 40 refs., 4 tabs., 11 figs

  8. Self-actuated Polymeric Valve for Autonomous Sensing and Mixing

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Marie, Rodolphe Charly Willy; Boisen, Anja

    2005-01-01

    We present an autonomously operated microvalve array for chemical sensing and mixing, which gains the actuation energy from a chemical reaction on the valve structure. An 8-μm-thick flapper valve made in SU-8 is coated with stress-loaded Al on one side and Ti on the other side. The metal films ke...... a reservoir. Calculations reveal that valve operation with stress originating from biochemical processes will require considerable enhancement of the actuation efficiency.......We present an autonomously operated microvalve array for chemical sensing and mixing, which gains the actuation energy from a chemical reaction on the valve structure. An 8-μm-thick flapper valve made in SU-8 is coated with stress-loaded Al on one side and Ti on the other side. The metal films keep...

  9. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  10. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  11. Structural Safety Analysis Based on Seismic Service Conditions for Butterfly Valves in a Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Sang-Uk Han

    2014-01-01

    Full Text Available The structural integrity of valves that are used to control cooling waters in the primary coolant loop that prevents boiling within the reactor in a nuclear power plant must be capable of withstanding earthquakes or other dangerous situations. In this study, numerical analyses using a finite element method, that is, static and dynamic analyses according to the rigid or flexible characteristics of the dynamic properties of a 200A butterfly valve, were performed according to the KEPIC MFA. An experimental vibration test was also carried out in order to verify the results from the modal analysis, in which a validated finite element model was obtained via a model-updating method that considers changes in the in situ experimental data. By using a validated finite element model, the equivalent static load under SSE conditions stipulated by the KEPIC MFA gave a stress of 135 MPa that occurred at the connections of the stem and body. A larger stress of 183 MPa was induced when we used a CQC method with a design response spectrum that uses 2% damping ratio. These values were lower than the allowable strength of the materials used for manufacturing the butterfly valve, and, therefore, its structural safety met the KEPIC MFA requirements.

  12. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  13. General structure of a two-body operator for spin-(1/2) particles

    International Nuclear Information System (INIS)

    Ershov, S.N.

    2004-01-01

    A direct derivation of the operator structure for two spin-(1/2) particles is presented subject to invariance under basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions, valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum decomposition for general spin-dependent potentials are obtained

  14. Bipolar spintronics: from spin injection to spin-controlled logic

    International Nuclear Information System (INIS)

    Zutic, Igor; Fabian, Jaroslav; Erwin, Steven C

    2007-01-01

    An impressive success of spintronic applications has been typically realized in metal-based structures which utilize magnetoresistive effects for substantial improvements in the performance of computer hard drives and magnetic random access memories. Correspondingly, the theoretical understanding of spin-polarized transport is usually limited to a metallic regime in a linear response, which, while providing a good description for data storage and magnetic memory devices, is not sufficient for signal processing and digital logic. In contrast, much less is known about possible applications of semiconductor-based spintronics and spin-polarized transport in related structures which could utilize strong intrinsic nonlinearities in current-voltage characteristics to implement spin-based logic. Here we discuss the challenges for realizing a particular class of structures in semiconductor spintronics: our proposal for bipolar spintronic devices in which carriers of both polarities (electrons and holes) contribute to spin-charge coupling. We formulate the theoretical framework for bipolar spin-polarized transport, and describe several novel effects in two- and three-terminal structures which arise from the interplay between nonequilibrium spin and equilibrium magnetization

  15. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  16. Structure of large spin expansion of anomalous dimensions at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk

    2009-05-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.

  17. Leaflet escape in a new bileaflet mechanical valve: TRI technologies.

    Science.gov (United States)

    Bottio, Tomaso; Casarotto, Dino; Thiene, Gaetano; Caprili, Luca; Angelini, Annalisa; Gerosa, Gino

    2003-05-13

    Leaflet escape is a mode of structural valve failure for mechanical prostheses. This complication previously has been reported for both monoleaflet and bileaflet valve models. We report 2 leaflet escape occurrences observed in 2 patients who underwent valve replacement with a TRI Technologies valve prosthesis. At the University of Padua, between November 2000 and February 2002, 36 TRI Technologies valve prostheses (26 aortic and 10 mitral) were implanted in 34 patients (12 women and 22 men) with a mean age of 59.9+/-10.3 years (range, 30 to 75 years). There were 5 deaths: 3 in hospital, 1 early after discharge, and 1 late. Two patients experienced a catastrophic prosthetic leaflet escape; the first patient was a 52-year-old man who died 10 days after aortic valve and ascending aorta replacement, and the second was a 58-year-old man who underwent a successful emergency reoperation 20 months after mitral valve replacement. Examination of the explanted prostheses showed in both cases a leaflet escape caused by a leaflet's pivoting system fracture. Prophylactic replacement was then successfully accomplished so far in 12 patients, without evidence of structural valve failure in any of them. Among other significant postoperative complications, we observed 3 major thromboembolisms, 1 hemorrhage, and 1 paravalvular leak. These catastrophes prompted us to interrupt the implantation program, and they cast a shadow on the durability of the TRI Technologies valve prosthesis because of its high risk of structural failure.

  18. Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers

    Science.gov (United States)

    Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.

    2018-04-01

    In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.

  19. Quasiparticle-mediated spin Hall effect in a superconductor.

    Science.gov (United States)

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  20. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard; Pemmaraju, C. D.; Sanvito, Stefano; Ruiz, Eliseo

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green's function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  1. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  2. The build up of the correlation between halo spin and the large-scale structure

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  3. Function analysis of steam isolation valves

    International Nuclear Information System (INIS)

    Persson, R.; Sjoeberg, A.; Aakesson, H.; Kilpi, K.; Noro, H.; Siikonen, T.; Wallen, G.

    1981-01-01

    Function analysis of system-medium-operated steam isolation valves has been the objective of the Swedish-Finnish IVLS project, the results of which are presented in this report. Theoretical models were to be verified against available experimental data, to some extent from the HDR blowdown experiments, which are part of a German reactor safety program. Finnish hydraulic measurements on a valve model (scale 1:2.15) have been performed to give complementary data. The analysis work has covered the thermal-hydraulic behaviour of steam isolation valves as well as phenomena related to structural mechanics. (Auth.)

  4. In Situ Transmission Electron Microscopy Studies of the Magnetization Reversal Mechanism in Information Storage Materials.

    Science.gov (United States)

    Petford-Long; Portier; Bayle-Guillemaud; Anthony; Brug

    1998-05-01

    : The Foucault and Fresnel modes of Lorentz microscopy, together with a quantitative magnetization mapping technique, summed image differential phase-contrast imaging, were used to study the magnetization reversal mechanism of the sense layer in spin-valve structures exhibiting the giant magnetoresistance effect. In addition to studies of sheet film, lithographically defined spin-valve elements were investigated. A current can be passed through the element during magnetizing so that the effect of the applied current on the giant magnetoresistance and magnetization reversal mechanism can be studied. Results are presented for a number of different spin-valve structures.

  5. Dynamical spin structure factors of α-RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-03-01

    Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.

  6. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  7. Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems

    Directory of Open Access Journals (Sweden)

    Vikram S. Vijayaraghavan

    2017-05-01

    Full Text Available Collective organization in matter plays a significant role in its expressed physical properties. Typically, it is detected via an order parameter, appropriately defined for each given system’s observed emergent patterns. Recent developments in information theory, however, suggest quantifying collective organization in a system- and phenomenon-agnostic way: decomposing the system’s thermodynamic entropy density into a localized entropy, that is solely contained in the dynamics at a single location, and a bound entropy, that is stored in space as domains, clusters, excitations, or other emergent structures. As a concrete demonstration, we compute this decomposition and related quantities explicitly for the nearest-neighbor Ising model on the 1D chain, on the Bethe lattice with coordination number k = 3 , and on the 2D square lattice, illustrating its generality and the functional insights it gives near and away from phase transitions. In particular, we consider the roles that different spin motifs play (in cluster bulk, cluster edges, and the like and how these affect the dependencies between spins.

  8. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  9. The MONSTER solves nuclear structure problems at low and high spins

    International Nuclear Information System (INIS)

    Hammaren, E.; Schmid, K.W.; Gruemmer, F.

    1984-01-01

    A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region

  10. Superdeformed and high-spin nuclear structure data on the INTERNET

    International Nuclear Information System (INIS)

    Singh, B.; Firestone, R.B.; Chu, S.Y.F.

    1997-01-01

    With the advent of the large detector arrays GAMMASPHERE, EUROGAM, and GASP, a wealth of new information about the properties of nuclei at high spin has become available. Superdeformed and high-spin nuclear structure data and associated bibliographic information made available on INTERNET by the Isotopes Project at LBNL are described. The Table of Superdeformed Bands and Fission Isomers on the INTERNET will be updated continuously, and new recent reference lists will be provided approximately every three months. This information will also be published annually in the Table of Isotopes CD-ROM updates. (author)

  11. ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS

    KAUST Repository

    Monteblanco, Elmer

    2017-03-14

    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  12. ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS

    KAUST Repository

    Monteblanco, Elmer; Ortiz Pauyac, Christian; Savero, Williams; RojasSanchez, J. Carlos; Schuhl, A.

    2017-01-01

    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  13. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  14. Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene

    OpenAIRE

    Han, Wei; Wang, W. H.; Pi, K.; McCreary, K. M.; Bao, W.; Li, Yan; Miao, F.; Lau, C. N.; Kawakami, R. K.

    2009-01-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by non-local spin valve measurements at room temperature. Gate voltage dependence shows that the non-local magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic/nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the non-local MR reveal an electron-hole asymmetry in which the non-...

  15. The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2

    Science.gov (United States)

    Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.

    2018-05-01

    The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.

  16. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  17. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  18. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.

    Science.gov (United States)

    Lefèvre, Thierry; Paquet-Mercier, François; Rioux-Dubé, Jean-François; Pézolet, Michel

    2012-06-01

    Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers. Copyright © 2011 Wiley Periodicals, Inc.

  19. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    Science.gov (United States)

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  20. Intracardiac echocardiography to diagnose pannus formation after aortic valve replacement.

    Science.gov (United States)

    Yamamoto, Yoshiya; Ohara, Takahiro; Funada, Akira; Takahama, Hiroyuki; Amaki, Makoto; Hasegawa, Takuya; Sugano, Yasuo; Kanzaki, Hideaki; Anzai, Toshihisa

    2016-03-01

    A 66-year-old female, under regular follow-up for 20 years after aortic valve replacement (19-mm Carbomedics), presented dyspnea on effort and hypotension during hemodialysis. A transthoracic echocardiogram showed elevation of transvalvular velocity up to 4 m/s, but the structure around the aortic prosthesis was difficult to observe due to artifacts. Fluoroscopy revealed normal motion of the leaflets of the mechanical valve. Intracardiac echocardiography (ICE) revealed a pannus-like structure in the left ventricular outflow tract. Transesophageal echocardiogram also revealed this structure. ICE can visualize structural abnormalities around a prosthetic valve after cardiac surgery even in patients in whom conventional imaging modalities failed.

  1. Aortic valve sparing root surgery for Marfan syndrome.

    Science.gov (United States)

    Matalanis, George; Perera, Nisal K

    2017-11-01

    Aortic valve sparing root surgery (AVSRS) is a safe and durable alternative for patients with dilated roots or pure aortic regurgitation (AR), which avoids the risks of anticoagulation or valvular degeneration with prosthetic valves. Notwithstanding the theoretical challenges of greater tissue fragility in Marfan syndrome (MFS), AVSRS has been demonstrated to have equal outcomes in this condition as it does in those without MFS. The benefits of retaining the native aortic valve in this generally younger age group extend beyond those of avoiding the inconvenience and complications of prolonged exposure to anticoagulants and include ease of management for future aortic, cardiac and non-cardiac procedures which are the norm for these patients. The essential principles of AVSRS in MFS do not differ from those for the rest of the population. Successful repair and durable valve function depend on a sound understanding of the close interaction between the structure and function of this exquisitely designed piece of engineering. We are fortunate to have numerous tools in our surgical armamentarium to preserve these valves. It is the purpose of this paper to demystify the complex structure-function interactions of the aortic valve, thereby gaining an intuition for AVSRS. We will also elaborate on specific technical details of established techniques that we have found successful in preserving the normal function of these valves in the long term.

  2. Seismic qualification of motor operated valves - alternate approach

    International Nuclear Information System (INIS)

    Bruck, P.M.; Eissa, M.A.

    1998-01-01

    This paper presents a potential alternate method for determining operating capacity of motor-operated valves subjected to seismic and other applicable loadings. As a result of programs at nuclear facilities to ensure the operational capability of MOVs (under NRC GL89-10), extensive analytical focus to develop the structural capability of valves has ensued. In the past, seismic qualification of valves typically addressed the strength of the topwork structure to resist inertial loading from excitation of the large valve actuator mass. These evaluations paid little or no consideration to the loading resulting from valve closing forces. The focus of the recent efforts is to develop the maximum operational capability of the valve, in terms of thrust, with consideration of seismic and other services loading as applicable. The alternate method outlined in this paper presents a series of thrust capacity curves, with reduction factors for seismic loading which can be applied and developed to determine safe thrust loadings without performing extensive analytical effort. A similar approach was put forward by the SQUG GIP approach to MOVs to ensure the safe operation of valves based on past earthquake experience. However, the GIP approach cannot be used to determine safe operational loads and thus has limited use in the necessary analysis required for GL89-10 programs at nuclear facilities. (orig.)

  3. Multifunctional four-port directional control valve constructed from logic valves

    International Nuclear Information System (INIS)

    Lisowski, E.; Czyżycki, W.; Rajda, J.

    2014-01-01

    Highlights: • Directional valve with standard ISO 440-08 has been constructed from logic valves. • Only one innovative valve may replace whole family of the standard valves. • CFD analysis and bench tests of the innovative valve has been carried. • Parameters of the innovative valve are equaling or surpassing the standard ones. • The innovative valve has additional possibilities of pressure and flow control. - Abstract: The paper refers to four-port solenoid pilot operated valves, which are subplate mounted in a hydraulic system in accordance with the ISO 4401 standard. Their widespread use in many machines and devices causes a continuing interest in the development of their design by both the scientific centers and the industry. This paper presents an innovative directional control valve based on the use of logic valves and a methodology followed for the design of it by using Solid Edge CAD and ANSYS/Fluent CFD software. The valve design methodology takes into account the need to seek solutions that minimize flow resistance through the valve. For this purpose, the flow paths are prepared by means of CAD software and pressure-flow curves are determined as a result of CFD analysis. The obtained curves are compared with the curves available in the catalogs of spool type directional control valves. The new solution allows to replace the whole family of spool type four-port directional control valves by one valve built of logic valves. In addition, the innovative directional control valve provides leak-proof shutting the flow paths off and also it can control flow rate and even pressure of working liquid. A prototype of the valve designed by the presented method has been made and tested on the test bench. The results quoted in the paper confirm that the developed logic type directional control valve is able to meet all designed connection configurations, and the obtained pressure-flow curves show very good conformity with the results of CFD analysis

  4. The spin structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J.M

    2005-02-15

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)

  5. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Le Goff, J.M.

    2005-02-01

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*ΔΣ + Δg + L q + L g where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L q and L g are the orbital momentum of the quark and the gluon respectively. The ΔΣ contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization Δg/g and the so-called transversity. (A.C.)

  6. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  7. Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)

    International Nuclear Information System (INIS)

    Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.

    1995-01-01

    Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties

  8. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    Science.gov (United States)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  9. The use of transcatheter aortic valve replacement vs surgical aortic valve replacement for the treatment of aortic stenosis

    Directory of Open Access Journals (Sweden)

    Jensen HA

    2015-08-01

    Full Text Available Hanna A Jensen, Lillian L Tsai, Vinod H Thourani Division of Cardiothoracic Surgery, Joseph B Whitehead Department of Surgery, Structural Heart and Valve Center, Emory University School of Medicine, Atlanta, GA, USA Abstract: Severe aortic stenosis (AS is associated with considerable morbidity and mortality and is increasing in prevalence as the global population increases. Since AS primarily affects the elderly, many of these patients have comorbidities that make them poor candidates for the gold standard treatment for AS, surgical aortic valve replacement. Transcatheter aortic valve replacement has emerged as a novel technology for the management of AS in higher risk patients over the past decade. Randomized trials have established the safety and efficacy of transcatheter aortic valve replacement, and the medical community has rallied to identify the patients who are most suitable for this transformative treatment. This review focuses on outlining the key procedural differences, describing the unique challenges of both operations, and finally assessing and comparing outcomes both on a general level and in challenging patient subgroups. Keywords: aortic valve replacement, transcatheter aortic valve replacement, surgical aortic valve replacement 

  10. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  11. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  12. Interfacial symmetry of Co–Alq_3–Co hybrid structures for effective spin filtering

    International Nuclear Information System (INIS)

    Lam, Tu-Ngoc; Lai, Yu-Ling; Chen, Chih-Han; Chen, Po-Hung; Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T.; Sheu, Jeng-Tzong; Hsu, Yao-Jane

    2015-01-01

    Graphical abstract: - Highlights: • The spin interface at Alq_3/Co and Co/Alq_3 contacts was examined. • An interfacial symmetry was determined at Co–Alq_3–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq_3 hybridized interface. • The spin-filter role at the top contact interface of Alq_3/Co is proved. • Effective spin-filtering at Co–Alq_3–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq_3 adsorption on Co, Co/Alq_3) and the top contact (Co atop Alq_3, Alq_3/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq_3 and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq_3/Co and Co/Alq_3 heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq_3–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq_3 at both contacts, proving Alq_3 a unique and promising organic material for spin filtering in OSV.

  13. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  14. Microwave frequency tuning in heterogeneous spin torque oscillator with perpendicular polarizer: A macrospin study

    Science.gov (United States)

    Bhoomeeswaran, H.; Vivek, T.; Sabareesan, P.

    2018-04-01

    In this article, we have theoretically devised a Spin Torque Nano Oscillator (STNO) with perpendicular polarizer using macro spin model. The devised spin valve structure is heterogeneous (i.e.) it is made of two different ferromagnetic materials [Co and its alloy CoFeB]. The dynamics of magnetization provoked by spin transfer torque is studied numerically by solving the famous Landau-Lifshitz-Gilbert-Slonczewski [LLGS] equation. The results are obtained for the perpendicular polarizer and for that particular out of plane orientation we vary the free layer angle from 10° to 90°. The obtained results are highly appealing, because frequency range is available in all the tilt angles of free layer and it is exceptionally tunable in all free layer tilt angles with zero applied field. Moreover, the utmost operating frequency of about 83.3 GHz and its corresponding power of 4.488 µW/mA2/GHz is acquired for the free layer tilt angle θ = 90° with the solid applied current density of 10 × 1010 A/m2. Also, our device emits high quality factor of about 396, which is remarkably desirable for making devices. These pioneering results provides a significant development for future spintronic based devices.

  15. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    Science.gov (United States)

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  16. Spin valve-like magnetic tunnel diode exhibiting giant positive junction magnetoresistance at low temperature in Co2MnSi/SiO2/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Kar, Uddipta; Nath, T. K.

    2018-02-01

    The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).

  17. Porcine Tricuspid Valve Anatomy and Human Compatibility: Relevance for Preclinical Validation of Novel Valve Interventions.

    Science.gov (United States)

    Waziri, Farhad; Lyager Nielsen, Sten; Michael Hasenkam, John

    2016-09-01

    Tricuspid regurgitation may be a precursor for heart failure, reduced functional capacity, and poor survival. A human compatible experimental model is required to understand the pathophysiology of the tricuspid valve disease as a basis for validating novel tricuspid valve interventions before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin-fixed porcine hearts obtained from Danish Landrace pigs (body weight 80 kg). All valvular dimensions were compared with human data acquired from literature sources. No difference was seen in the tricuspid annulus circumference between porcine and human hearts (13.0 ± 1.2 cm versus 13.5 ± 1.5 cm; p = NS), or in valve area (5.7 ± 1.6 cm2 versus 5.6 ± 1.0 cm2; p = NS). The majority of chordae types exhibited a larger chordal length and thickness in human hearts compared to porcine hearts. In both species, the anterior papillary muscle (PM) was larger than other PMs in the right ventricle, but muscle length varied greatly (range: 5.2-40.3 mm) and was significantly different in pigs and in humans (12.2 ± 3.2 mm versus 19.2 mm; p human hearts.

  18. Tight valve

    International Nuclear Information System (INIS)

    Guedj, F.

    1987-01-01

    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  19. Shell structure at high spin and the influence on nuclear shapes

    International Nuclear Information System (INIS)

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  20. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures

    Energy Technology Data Exchange (ETDEWEB)

    Deorani, Praveen; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2013-12-02

    From spin pumping measurements in Ta/Py devices for different thicknesses of Ta, we determine the spin Hall angle to be 0.021–0.033 and spin diffusion length to be 8 nm in Ta. We have also studied the effect of changing the properties of non-magnet/ferromagnet interface by adding a Cu interlayer. The experimental results show that the effective spin mixing conductance increases in the presence of Cu interlayer for Ta/Cu/Py devices whereas it decreases in Pt/Cu/Py devices. Our findings allow the tunability of the spin pumping efficiency by adding a thin interlayer at the non-magnet/ferromagnet interface.

  1. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  2. Function analysis of steam isolation valves

    International Nuclear Information System (INIS)

    Persson, R.; Kilpi, K.; Noro, H.; Siikonen, T.; Sjoeberg, A.; Wallen, G.; Aakesson, H.

    1981-01-01

    Function analysis of system-medium-operated steam isolation valves has been the objective of the Swedish-Finnish IVLS project, the results of which are presented in this report. Theoretical models were to be verified against available experimental data, to some extent from the HDR blowdown experiments, which are part of a German reactor safety program. Finnish hydraulic measurements on a valve model (scale 1:2.15) have been performed to give complementary data. The analysis work has covered the thermal-hydraulic behaviour of steam isolation valves as well as phenomena related to structural mechanics. Work performed under contract with the Swedish Nuclear Power Inspectorate. (Author)

  3. Spin temperature concept verified by optical magnetometry of nuclear spins

    Science.gov (United States)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  4. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  5. A next-to-leading order QCD analysis of the spin structure function $g_1$

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1998-01-01

    We present a next-to-leading order QCD analysis of the presently available data on the spin structure function $g_1$ including the final data from the Spin Muon Collaboration (SMC). We present resu lts for the first moments of the proton, deuteron and neutron structure functions, and determine singlet and non-singlet parton distributions in two factorization schemes. We also test the Bjor ken sum rule and find agreement with the theoretical prediction at the level of 10\\%.

  6. Structural concept of angle type of hot isolation valve and its test program at an out-of-pile test facility

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiko; Fujisaki, Katsuo; Shibata, Taijyu; Inagaki, Yoshiyuki; Hino, Ryutaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Koiso, Hiroshi

    1997-02-01

    The Japanese safety regulation generally requires to set an isolation valve at the penetration of the reactor containment vessel on the secondary helium piping system which connects a steam reforming hydrogen production system, located outside the reactor building, to an intermediate heat exchanger (IHX) in the HTTR reactor system. The hot secondary helium which is heated up to the high temperature of 905degC and at the high pressure of 4.1MPa is passing through the isolation valve. So far, such a hot isolation valve has not been industrialized. The present report presents a proposal of a structural design concept of an angle valve as a promising candidate of the hot isolation valve, and a proposal on a test program for demonstrating the technological feasibility of the concept at an out-of-pile test facility before installing at the HTTR. A closing time and a leak rate at a valve seat are the key design parameters for developing the design concept. To set a reasonable value to each parameter, safety requirements on the isolation valve were discussed at first. The target closing time and the acceptable design limit of leak rate at the valve seat for meeting the requirements were specified 30 seconds and 10 STP cm{sup 3}/s, respectively. A nickel-base superalloy Hastelloy XR is feasible as such a valve seat material as to withstand the internal/external pressure of 4.1MPa at the high temperature of 905degC, the severest loading conditions of the valve seat at the accident of secondary helium pipe rupture. Correlation of leak rate at the ambient temperature to that at an operating temperature (900degC) is one of key test subjects of test program at an out-of-pile test facility. Leak rate at the operating temperature is the real parameter to be checked but only the leak rate at the ambient temperature is measured at regulatory examination in service. A test method to develop such correlation was proposed. (author)

  7. Proposal to measure spin-structure functions and semi-exclusive asymmetries for the proton and neutron at HERA

    International Nuclear Information System (INIS)

    Jackson, H.E.; Hansen, J.O.; Jones, C.E.

    1995-01-01

    Nucleon spin physics will be studied in the HERMES experiment, that will use polarized internal targets of essentially pure atomic H, D, and 3 He in the HERA electron storage ring at DESY. A series of measurements of spin-dependent properties of the nucleon and few-body nuclei will be made; the spin structure function g 1 (x) of the proton and neutron will be measured to test the Bjorken sum rule and study the fraction of the nucleon spin carried by quarks; the spin structure function g 2 W, sensitive to quark-gluon correlations, and the structure functions b 1 (x), and Δ(x), sensitive to nuclear binding effects, will be measured; and, using the particle identification capability of the HERMES detector, pions will be detected in coincidence with the scattered electrons. The coincident hadron measurements represent the most important extension that can be made at this time to the existing measurements on the nucleon spin structure functions because they provide information about the flavor-dependence of the quark spin distribution in the nucleon. Argonne is providing the Cerenkov counter to be used for particle identification and developing the drifilm coating technique for the ultrathin target cell required for this experiment. The HERMES collaboration intends to use polarized targets with the highest available figures of merit, and the Argonne laser-driven source offers the most promise for a significant advance in present-day targets

  8. Study on stair-step liquid triggered capillary valve for microfluidic systems

    Science.gov (United States)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  9. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  10. A Determination of the Neutron Spin Structure Function

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Emlyn W

    2003-08-18

    The authors report the results of the experiment E142 which measured the spin dependent structure function of the neutron, g{sub 1}{sup n}(x, Q{sup 2}). The experiment was carried out at the Stanford Linear Accelerator Center by measuring an asymmetry in the deep inelastic scattering of polarized electrons from a polarized {sup 3}He target, at electron energies from 19 to 26 GeV. The structure function was determined over the kinematic range 0.03 < BJorken x < 0.6 and 1.0 < Q{sup 2} < 5.5 (GeV/c){sup 2}. An evaluation of the integral {integral}{sub 0}{sup 1} g{sub 1}{sup n}(x,Q{sup 2})dx at fixed Q{sup 2} = 2 (GeV/c){sup 2} yields the final result {Lambda}{sub 1}{sup n} = -0.032 {+-} 0.006 (stat.) {+-} 0.009 (syst.). This result, when combined with the integral of the proton spin structure function measured in other experiments, confirms the fundamental Bjorken sum rule with O({alpha}{sub s}{sup 3}) corrections to within one standard deviation. This is a major success for perturbative Quantum Chromodynamics. Some ancillary results include the findings that the Ellis-Jaffe sum rule for the neutron is violated at the 2 {sigma} level, and that the total contribution of the quarks to the helicity of the nucleon is 0.36 {+-} 0.10. The strange sea polarization is estimated to be small and negative, {Delta}s = -0.07 {+-} 0.04.

  11. The high-spin structure of 158Er - a theoretical study

    International Nuclear Information System (INIS)

    Bengtsson, Tord.

    1990-01-01

    To demonstrate the use of diabatic orbitals in high-spin calculations, the yrast structure of 158 Er is calculated and compared to experiment. A very satisfactory reproduction of the observed spectra is obtained form lowest spins through the collective bands up to band terminations. From results like this, a detailed understanding of the observed features emerge. In this case for example, the different alignment properties in negative parity bands can be understood as due to deformation differences and the existence of additional bands are predicted. Furthermore, the limitations of the cranked mean field approach can be investigated due to the high level of detail in this approach. (author)

  12. Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite

    Science.gov (United States)

    Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek

    2013-12-01

    It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of

  13. A computational method to predict fluid-structure interaction of pressure relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. K.; Lee, D. H.; Park, S. K.; Hong, S. R. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    An effective CFD (Computational fluid dynamics) method to predict important performance parameters, such as blowdown and chattering, for pressure relief valves in NPPs is provided in the present study. To calculate the valve motion, 6DOF (six degree of freedom) model is used. A chimera overset grid method is utilized to this study for the elimination of grid remeshing problem, when the disk moves. Further, CFD-Fastran which is developed by CFD-RC for compressible flow analysis is applied to an 1' safety valve. The prediction results ensure the applicability of the presented method in this study.

  14. Spin structures on algebraic curves and their applications in string theories

    International Nuclear Information System (INIS)

    Ferrari, F.

    1990-01-01

    The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)

  15. A 3D velocimetry study of the flow through prosthetic heart valves

    Science.gov (United States)

    Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.

    2006-11-01

    Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.

  16. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  17. Improvement of seawater booster pump outlet check valve

    International Nuclear Information System (INIS)

    Li Xuning; Du Yansong; Huang Huimin

    2010-01-01

    Conventional island seawater booster pump set of QNPC 310 MWe unit are very important in the whole circulating cooling system, and the integrate function of seawater booster pump outlet check valve is the foundation of steady operation of the seawater booster pump set. The article mainly introduce that through the analyses to the reason to the problem that the seawater booster pump outlet check valve of QNPC 310 MWe unit appeared in past years by our team, and considering the influence of operation condition and circumstance, the team improve the seawater booster pump outlet check valve from swing check valve to shuttle check valve which operate more appropriately in the system. By the test of continuous practice, we make further modification to the inner structure of shuttle check valve contrapuntally, and therefore we solve the problem in seawater booster pump outlet check valve fundamentally which has troubled the security of system operation in past years, so we realize the aim of technical improvement and ensure that the system operate in safety and stability. (authors)

  18. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...

  19. Nucleon spin structure functions

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    There has been recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future, and discuss the polarization dependence of inclusive hadron production. 35 refs

  20. Multidetector computed tomography sizing of bioprosthetic valves: guidelines for measurement and implications for valve-in-valve therapies

    International Nuclear Information System (INIS)

    Rajani, R.; Attia, R.; Condemi, F.; Webb, J.; Woodburn, P.; Hodson, D.; Nair, A.; Preston, R.; Razavi, R.; Bapat, V.N.

    2016-01-01

    Aim: To describe a technique for bioprosthetic multidetector computed tomography (MDCT) sizing and to compare MDCT-derived values against manufacturer-provided sizing. Materials and methods: Fourteen bioprosthetic stented valves commonly used in the aortic valve position were evaluated using a Philips 256 MDCT system. All valves were scanned using a dedicated cardiac CT protocol with a four-channel electrocardiography (ECG) simulator. Measurements were made of major and minor axes and the area and perimeter of the internal stent using varying reconstruction kernels and window settings. Measurements derived from MDCT (MDCT ID) were compared against the stent internal diameter (Stent ID) as provided by the valve manufacturer and the True ID (Stent ID + insertion of leaflets). All data were collected and analysed using SPSS for Mac (version 21). Results: The mean difference between the MDCT ID and Stent ID was 0.6±1.9 mm (r=0.649, p=0.012) and between MDCT ID and True ID 2.1±2 mm (r=0.71, p=0.005). There was no difference in the major (p=0.90), minor (p=0.87), area (p=0.92), or perimeter (p=0.92) measurements when sharp, standard, and detailed stent kernels were used. Similarly, the measurements remained consistent across differing windowing levels. Conclusion: Bioprosthetic stented valves may be reliably sized using MDCT in patients requiring valve-in-valve (VIV) interventions where the valve type and size are unknown. In these cases, clinicians should be aware that MDCT has a tendency to overestimate the True ID size. - Highlights: • Cardiac CT is likely to be ideally suited for bioprosthetic aortic valve sizing for valve in valve procedures. • We compared MDCT sizing for 14 varying bioprosthetic aortic valves across varying window settings and reconstruction kernels. • We provide “normal” MDCT sizing for varying valves and show their relationship to surgical sizing. • Bioprosthetic valves may be reliably sized by MDCT but require adjustment owing to

  1. Swing check valve

    International Nuclear Information System (INIS)

    Eminger, H.E.

    1977-01-01

    A swing check valve which includes a valve body having an inlet and outlet is described. A recess in the valve body designed to hold a seal ring and a check valve disc swingable between open and closed positions. The disc is supported by a high strength wire secured at one end in a support spacer pinned through bearing blocks fixed to the valve body and at its other end in a groove formed on the outer peripheral surface of the disc. The parts are designed and chosen such to provide a lightweight valve disc which is held open by minimum velocity of fluid flowing through the valve which thus reduces oscillations and accompanying wear of bearings supporting the valve operating parts. (Auth.)

  2. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  3. Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering

    International Nuclear Information System (INIS)

    Wislicki, W.

    1998-01-01

    We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world

  4. Sequence- and structure-dependent DNA base dynamics: Synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA

    International Nuclear Information System (INIS)

    Spaltenstein, A.; Robinson, B.H.; Hopkins, P.B.

    1989-01-01

    A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1 H NMR, CD, and thermal denaturation studies indicate that 1a (T) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules

  5. The E142 SLAC experiment: measurement of the neutron gn1(x) spin structure function

    International Nuclear Information System (INIS)

    Roblin, Y.

    1995-01-01

    This thesis describes the E142 experiment which has been carried out at the Stanford Linear Accelerator (SLAC), USA, from October to December 1992. This experiment of polarized inelastic scattering of a 22.6 GeV electron beam on a polarized helium 3 target has allowed the first measurement of the neutron g n 1 (x) spin structure function. The knowledge of this structure function gives informations on the nucleon spin structure. On the other hand, the g n 1 (x) structure function integral value on the 0 2 mean value of 2 GeV 2 after some extrapolations. This value is at about two standard deviations away from the theoretical predictions of the Ellis-Jaffe rule. Thanks to the existing experimental results for the proton (E143 experiment), the Bjorken sum rule has been precisely tested and is perfectly compatible with the theoretical value. The results have allowed to estimate the nucleon spin fraction carried by the quarks. (J.S.). 86 refs., 58 figs., 13 tabs

  6. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini

    2009-08-01

    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  7. PARAMETER ESTIMATION OF VALVE STICTION USING ANT COLONY OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    S. Kalaivani

    2012-07-01

    Full Text Available In this paper, a procedure for quantifying valve stiction in control loops based on ant colony optimization has been proposed. Pneumatic control valves are widely used in the process industry. The control valve contains non-linearities such as stiction, backlash, and deadband that in turn cause oscillations in the process output. Stiction is one of the long-standing problems and it is the most severe problem in the control valves. Thus the measurement data from an oscillating control loop can be used as a possible diagnostic signal to provide an estimate of the stiction magnitude. Quantification of control valve stiction is still a challenging issue. Prior to doing stiction detection and quantification, it is necessary to choose a suitable model structure to describe control-valve stiction. To understand the stiction phenomenon, the Stenman model is used. Ant Colony Optimization (ACO, an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model are estimated using ant colony optimization, from the input-output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.

  8. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  9. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  10. Investigations on the local structure and the spin-Hamiltonian ...

    Indian Academy of Sciences (India)

    2016-07-13

    Jul 13, 2016 ... (2016) 87: 22 c Indian Academy of Sciences. DOI 10.1007/s12043-016-1234-6. Investigations on the local structure and the spin-Hamiltonian parameters for the tetragonal Cu. 2+ centre in ZnGeF6·6H2O crystal. LI CHAO-YING. ∗. , HUANG YING and ZHENG XUE MEI. School of Physics and Electronic ...

  11. Development of multilayer piezoelectric actuator valve for JT-60

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Hiratsuka, Hajime; Masui, Hiroshi; Hosogane, Nobuyuki; Miya, Naoyuki

    2001-11-01

    In order to improve the gas injection valve used for the operation of JT-60, a new type of valve (multilayer piezoelectric actuator valve) was developed. The conventional valve (bimorph piezoelectric valve) has been used for 15 years since the beginning of experimental operation in April, 1985. However, it came to be hard to keep the performance of the valve because of the deterioration of the driving source, i.e. piezoelectric element. Developments of the new valve were carried out based on experiences through experimental operations in JT-60. Requirements for the design are: (1) to be hard structure for making a sheet leak, (2) to allow a repair work at atmosphere side without an air vent of the vacuum vessel, (3) to be more smaller and lighter compared with the conventional one, and (4) to have a high maintenance efficiency by utilizing of the commercial piezoelectric elements and power supplies. The newly developed valve was examined with various tests such as gas flow characteristic test, high magnetic field proof test, high temperature proof test and gas flow rate test for aged deterioration. Results, confirm that the performance of the valve is applicable for JT-60 operations. (author)

  12. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K; Hatsukawa, Y [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  13. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  14. Anesthetic management for combined mitral valve replacement and aortic valve repair in a patient with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Huang Jiapeng

    2011-01-01

    Full Text Available Osteogenesis imperfecta is a rare disorder of connective tissues and presents multiple challenges, including difficult airway, hyperthermia, coagulopathy and respiratory dysfunction, for anesthesiologists, especially during cardiac surgery. We present anesthetic management of a patient with osteogenesis impertecta during double valve surgery. Dexmedetomidine infusion minimized the risks of malignant hyperthermia. Glidescope and in-line stabilization facilitated endotracheal intubation and protected his oral structures and cervical spine. Transesophageal echocardiography (TEE diagnosed a flail A3 segment and redundant left coronary cusp causing mitral and aortic regurgitation. The mitral valve was replaced and the aortic valve repaired. Coagulopathy was corrected according to comprehensive coagulation analysis. Glidescope, dexmedetomidine, coagulation analysis and TEE could facilitate anesthetic management in these patients.

  15. Self-sustained spin-polarized current oscillations in multiquantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, Ramon [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, Manuel; Bonilla, Luis L [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Platero, Gloria [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco (Spain)], E-mail: escobedo@unican.es, E-mail: manuel.carretero@uc3m.es, E-mail: bonilla@ing.uc3m.es, E-mail: gplatero@icmm.csic.es

    2009-01-15

    Nonlinear transport through diluted magnetic semiconductor nanostructures is investigated. We have considered a II-VI multiquantum well nanostructure whose wells are selectively doped with Mn. The response to a dc voltage bias may be either a stationary or an oscillatory current. We have studied the transition from stationary to time-dependent current as a function of the doping density and the number of quantum wells. Analysis and numerical solution of a nonlinear spin transport model shows that the current in a structure without magnetic impurities is stationary, whereas current oscillations may appear if at least one well contains magnetic impurities. For long structures having two wells with magnetic impurities, a detailed analysis of nucleation of charge dipole domains shows that self-sustained current oscillations are caused by repeated triggering of dipole domains at the magnetic wells and motion towards the collector. Depending on the location of the magnetic wells and the voltage, dipole domains may be triggered at both wells or at only one. In the latter case, the well closer to the collector may inhibit domain motion between the first and the second well inside the structure. Our study could allow design of oscillatory spin-polarized current injectors.

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.

    Science.gov (United States)

    Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M

    1997-04-01

    This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.

  18. 241-AN-A valve pit manifold valves and position indication acceptance test procedure

    Energy Technology Data Exchange (ETDEWEB)

    VANDYKE, D.W.

    1999-08-25

    This document describes the method used to test design criteria for gear actuated ball valves installed in 241-AN-A Valve Pit located at 200E Tank Farms. The purpose of this procedure is to demonstrate the following: Equipment is properly installed, labeled, and documented on As-Built drawings; New Manifold Valves in the 241-AN-A Valve Pit are fully operable using the handwheel of the valve operators; New valve position indicators on the valve operators will show correct valve positions; New valve position switches will function properly; and New valve locking devices function properly.

  19. Feasibility of Valve-in-Valve Procedure for Degenerated St. Jude Medical Trifecta Bioprosthesis.

    Science.gov (United States)

    Verhoye, Jean-philippe; Harmouche, Majid; Soulami, Reda Belhaj; Thebault, Christophe; Boulmier, Dominique; Leguerrier, Alain; Anselmi, Amedeo

    2015-07-01

    The valve-in-valve (ViV) procedure is an option for patients with symptomatic structural degeneration of a bioprosthesis and excessive reoperative risk. The risk of coronary obstruction appears to be increased if ViV is performed for certain pericardial prostheses in which the leaflets are mounted outside the stent posts. Herein is described a successful ViV for a degenerated Trifecta aortic bioprosthesis, and the technical considerations for performing a ViV procedure within such types of prosthesis are considered. Emphasis is placed on the importance of preoperative investigations (computed tomography scan-based measurements of coronary ostial height and of sinus of Valsalva diameters), and on the precise deployment of the valve (transapical approach with transesophageal echocardiography control) to minimize the risk of major complications. The presence of a failing Trifecta bioprosthesis should not be considered an absolute contraindication to ViV on the basis of the risk of coronary obstruction.

  20. Aortic Valve Stenosis

    Science.gov (United States)

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  1. Max Auwaerter symposium: spin mapping and spin manipulation on the atomic scale

    International Nuclear Information System (INIS)

    Wiesendanger, R.

    2008-01-01

    Full text: A fundamental understanding of magnetic and spin-dependent phenomena requires the determination of spin structures and spin excitations down to the atomic scale. The direct visualization of atomic-scale spin structures has first been accomplished for magnetic metals by combining the atomic resolution capability of Scanning Tunnelling Microscopy (STM) with spin sensitivity, based on vacuum tunnelling of spin-polarized electrons. The resulting technique, Spin-Polarized Scanning Tunnelling Microscopy (SP-STM), nowadays provides unprecedented insight into collinear and non-collinear spin structures at surfaces of magnetic nanostructures and has already led to the discovery of new types of magnetic order at the nanoscale. More recently, the development of subkelvin SP-STM has allowed studies of ground-state magnetic properties of individual magnetic adatoms on non-magnetic substrates as well as the magnetic interactions between them. Based on SP-STM experiments performed at temperatures of 300 mK, indirect magnetic exchange interactions at the sub-milli-electronvolt energy scale between individual paramagnetic adatoms as well as between adatoms and nearby magnetic nanostructures could directly be revealed in real space up to distances of several nanometers. In both cases we have observed an oscillatory behavior of the magnetic exchange coupling, alternating between ferromagnetic and antiferromagnetic, as a function of distance. Moreover, the detection of spin-dependent exchange and correlation forces has allowed a first direct real-space observation of spin structures at surfaces of antiferromagnetic insulators. This new type of scanning probe microscopy, called Magnetic Exchange Force Microscopy (MExFM), offers a powerful new tool to investigate different types of spin-spin interactions based on direct-, super-, or RKKY-type exchange down to the atomic level. By combining MExFM with high-precision measurements of damping forces, localized or confined spin

  2. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui

    2016-01-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  3. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Benliang [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Benhu [Department of Physics, Shaoyang University, Shaoyang 422001 (China); Liu, Guang; Guo, Dan [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China)

    2016-11-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  4. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  5. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  6. Operational durability of a giant ER valve for Braille display

    Science.gov (United States)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  7. Bimodule structure in the periodic gℓ(1|1) spin chain

    International Nuclear Information System (INIS)

    Gainutdinov, A.M.; Read, N.; Saleur, H.

    2013-01-01

    This paper is the second in a series devoted to the study of periodic super-spin chains. In our first paper (Gainutdinov et al., 2013 [3]), we have studied the symmetry algebra of the periodic gℓ(1|1) spin chain. In technical terms, this spin chain is built out of the alternating product of the gℓ(1|1) fundamental representation and its dual. The local energy densities — the nearest neighbour Heisenberg-like couplings — provide a representation of the Jones–Temperley–Lieb (JTL) algebra JTL N . The symmetry algebra is then the centralizer of JTL N , and turns out to be smaller than for the open chain, since it is now only a subalgebra of U q sℓ(2) at q=i — dubbed U q odd sℓ(2) in Gainutdinov et al. (2013) [3]. A crucial step in our associative algebraic approach to bulk logarithmic conformal field theory (LCFT) is then the analysis of the spin chain as a bimodule over U q odd sℓ(2) and JTL N . While our ultimate goal is to use this bimodule to deduce properties of the LCFT in the continuum limit, its derivation is sufficiently involved to be the sole subject of this paper. We describe representation theory of the centralizer and then use it to find a decomposition of the periodic gℓ(1|1) spin chain over JTL N for any even N and ultimately a corresponding bimodule structure. Applications of our results to the analysis of the bulk LCFT will then be discussed in the third part of this series

  8. Onset of Spin Polarization in Four-Gate Quantum Point Contacts

    Science.gov (United States)

    Jones, Alex

    A series of simulations which utilize a Non-equilibrium Green's function (NEGF) formalism is suggested which can provide indirect evidence of the fine and non-local electrostatic tuning of the onset of spin polarization in two closely spaced quantum point contacts (QPCs) that experience a phenomenon known as lateral spin-orbit coupling (LSOC). Each of the QPCs that create the device also has its own pair of side gates (SGs) which are in-plane with the device channel. Numerical simulations of the conductance of the two closely spaced QPCs or four-gate QPC are carried out for different biasing conditions applied to two leftmost and rightmost SGs. Conductance plots are then calculated as a function of the variable, Vsweep, which is the common sweep voltage applied to the QPC. When Vsweep is only applied to two of the four side gates, the plots show several conductance anomalies, i.e., below G0 = 2e2/h, characterized by intrinsic bistability, i.e., hysteresis loops due to a difference in the conductance curves for forward and reverse common voltage sweep simulations. The appearance of hysteresis loops is attributed to the co-existence of multistable spin textures in the narrow channel of the four-gate QPC. The shape, location, and number of hysteresis loops are very sensitive to the biasing conditions on the four SGs. The shape and size of the conductance anomalies and hysteresis loops are shown to change when the biasing conditions on the leftmost and rightmost SGs are swapped, a rectifying behavior providing an additional indirect evidence for the onset of spontaneous spin polarization in nanoscale devices made of QPCs. The results of the simulations reveal that the occurrence and fine tuning of conductance anomalies in QPC structures are highly sensitive to the non-local action of closely spaced SGs. It is therefore imperative to take into account this proximity effect in the design of all electrical spin valves making use of middle gates to fine tune the spin

  9. Valve microstructure and phylomineralogy of New Zealand chitons.

    Science.gov (United States)

    Peebles, B A; Smith, A M; Spencer, H G

    2017-03-01

    The microstructure and mineralogy of chiton valves has been largely ignored in the literature and only described in 29 species to date. Eight species: Acanthochitona zelandica, Notoplax violacea (Family Acanthochitonidae, Suborder Acanthochitonina, Order Chitonida), Chiton glaucus, Onithochiton neglectus, Sypharochiton spelliserpentis, Sypharochiton sinclairi (Family Chitonidae, Suborder, Chitonina, Order Chitonida), Ischnochiton maorianus (Family Ischnochitonidae, Suborder Chitonina, Order Chitonida), and Leptochiton inquinatus (Family Leptochitonidae, Suborder Lepidopleurina, Order Lepidopleurida) were collected from the Otago Peninsula, South Island, New Zealand. The valves of these chitons were analysed with X-ray diffractometry, Raman spectrometry, and Scanning Electron Micrography (SEM) to determine their mineralogy and microstructure. Both the XRD and Raman data show that the valves consisted solely of aragonite. The observed microstructures of the valves were complex, typically composed of four to seven sublayers, and varied among species. The dorsal layer, the tegmentum, of each species was granular and the ventral layer, the articulamentum, was predominately composed of a spherulitic sublayer, a crossed lamellar sublayer, and an acicular sublayer. The chitonids Sypharochiton pelliserpentis and S. sinclairi had the most complex microstructure layering with three crossed lamellar, two spherulitic sublayers, and a ventral acicular sublayer while the acanthochitonids Acanthochitona zelandica and Notoplax violacea as well as the ischnochitonid Ischnochiton maorianus had the simplest structure with one spherulitic, one crossed lamellar sublayer, and a ventral acicular sublayer. Terminal valves were less complex than intermediate valves and tended to be dominated by the crossed lamellar structure. The leptochitonid Leptochiton inquinatus generated a unique crossed lamellar sublayer different from the other analysed chitonids. Acanthochitona zelandica is the only

  10. Is valve choice a significant determinant of paravalular leak post-transcatheter aortic valve implantation? A systematic review and meta-analysis.

    Science.gov (United States)

    O'Sullivan, Katie E; Gough, Aideen; Segurado, Ricardo; Barry, Mitchel; Sugrue, Declan; Hurley, John

    2014-05-01

    Paravalvular regurgitation (PVR) following transcatheter aortic valve implantation (TAVI) is associated with poor survival. The two main valve delivery systems used to date differ significantly in both structure and deployment technique. The primary objective of this study was to perform a systematic review and meta-analysis of studies identifying PVR in patients post-TAVI using Medtronic CoreValve (MCV) and Edward Sapien (ES) valves in order to identify whether a significant difference exists between valve types. The secondary objective was to identify additional factors predisposing to PVR to provide an overview of the other associated considerations. A systematic review and meta-analysis of the current literature to identify PVR rate in patients with MCV and ES valves was performed. We also sought to examine other factors predisposing to PVR. A total of 5910 patients were identified from 9 studies. PVR rates for MCV and ES were analysed. MCV was associated with a higher PVR rate of 15.75% [95% confidence interval (CI) 12.48-19.32] compared with ES 3.93% [95% CI 1.05-8.38]. We separately reviewed predisposing factors associated with PVR. A formal comparison of the MCV and ES valve leakage rates by mixed-effects meta-regression with a fixed-effect moderator variable for valve type (MCV or ES) suggested a statistically significant difference in leakage rate between the two valve types (P = 0.0002). Unfavourable anatomical and pathological factors as well as valve choice have an impact on rates of PVR. Additionally, certain anatomical features dictate valve choice. A direct comparison of all the predisposing factors at this time is not possible and will require prospective multivariate analysis. There is, however, a significant difference in the PVR rates between valves based on the published observational data available to date. The ES valve associated with a lower incidence of PVR overall; therefore, we conclude that valve choice is indeed a significant

  11. Evaluation of structural integrity and controllability of main feed water control valve for APWRS

    International Nuclear Information System (INIS)

    Koji Tachibana; Toshikazu Maeda; Hideyuki Morita; Takaharu Hiroe; Koichiro Oketani

    2005-01-01

    In Pressurized Water Reactors (PWR), the main feed water control valve always controls the mass flow rate of main feed water to maintain the water level of steam generator within the allowable range. For the main feed water control valve of PWR, we have used an air operated globe valve conventionally since it has large capacity and quick responsibility. On the Advanced Pressurized Water Reactors (APWR) system conditions, the mass flow rate of main feed water increases compared with the conventional PWR system conditions as an increase of the generating power. So, it is expected that the fluid force will increase, and it could cause critical damage on internal parts of the valve, such as plug, stem, etc. and uncontrollability of the valve. In this study, we measured the stem strain in the fluid tests using scale model and test loop under the APWR feed water flow rate conditions. The stem strain gave the stem stress and the fluid force acting on the plug surface. We evaluated the stem integrity from the stem stress and confirmed the influence which the fluid force had on the valve controllability by simulating the feed water system considering the fluid force. (authors)

  12. Minimally invasive mitral valve repair in osteogenesis imperfecta.

    Science.gov (United States)

    Tagliasacchi, Isabella; Martinelli, Luigi; Bardaro, Leopoldo; Chierchia, Sergio

    2017-10-01

    Osteogenesis imperfecta is a disorder of the connective tissue that affects several structures including heart valves. However, cardiac surgery is associated with high mortality and morbidity rates. In a 48-year-old man with osteogenesis imperfecta and mitral valve prolapse, we performed the first successful mitral valve repair by right anterior mini-thoracotomy. At the 1-year follow-up, he was asymptomatic and echocardiography confirmed the initial success. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF_4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by "1"9F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  14. Mitral Valve Stenosis

    Science.gov (United States)

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  15. Study of the spin structure functions of the nucleon: the E143 experiment at SLAC

    International Nuclear Information System (INIS)

    Grenier, Philippe

    1995-01-01

    In this thesis, we present the results of the E143 experiment of deep inelastic scattering of 29 GeV polarized electrons from polarized NH 3 and ND 3 targets, at SLAC. The goal of the experiment is the measurement of the spin structure functions g 1 and g 2 of the nucleon which provide information on its internal spin structure. Experimentally, the structure functions are extracted from the measurement of cross section asymmetries. Our measured values of the first moment of g 1 are two and three standard deviations below the Ellis-Jaffe sum rule predictions, for the proton and for the deuteron, respectively. The Bjoerken sum rule, a QCD fundamental prediction, has been confirmed. We find the quark contribution to the nucleon spin to be around 30 pc. Our results on g 2 are well described by the Wandzura-Wilczek expression. (author) [fr

  16. Spin-orbit excitations and electronic structure of the putative Kitaev magnet $\\alpha$-RuCl$_3$

    OpenAIRE

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, Kemp W.; Kee, Hae-Young; Kim, Young-June; Burch, Kenneth S.

    2015-01-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $\\alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations i...

  17. Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    G. A. Nemnes

    2012-01-01

    Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.

  18. Aortic valve replacement and the stentless Freedom SOLO valve

    NARCIS (Netherlands)

    Wollersheim, L.W.L.M.

    2016-01-01

    Aortic valve stenosis has become the most prevalent valvular heart disease in Europe and North America, and is generally caused by age-related calcification of the aortic valve. For most patients, severe symptomatic aortic stenosis needs effective mechanical relief in the form of valve replacement

  19. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    Science.gov (United States)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  20. Initial Surgical Experience with Aortic Valve Repair: Clinical and Echocardiographic Results

    Directory of Open Access Journals (Sweden)

    Francisco Diniz Affonso da Costa

    Full Text Available Abstract Introduction: Due to late complications associated with the use of conventional prosthetic heart valves, several centers have advocated aortic valve repair and/or valve sparing aortic root replacement for patients with aortic valve insufficiency, in order to enhance late survival and minimize adverse postoperative events. Methods: From March/2012 thru March 2015, 37 patients consecutively underwent conservative operations of the aortic valve and/or aortic root. Mean age was 48±16 years and 81% were males. The aortic valve was bicuspid in 54% and tricuspid in the remaining. All were operated with the aid of intraoperative transesophageal echocardiography. Surgical techniques consisted of replacing the aortic root with a Dacron graft whenever it was dilated or aneurysmatic, using either the remodeling or the reimplantation technique, besides correcting leaflet prolapse when present. Patients were sequentially evaluated with clinical and echocardiographic studies and mean follow-up time was 16±5 months. Results: Thirty-day mortality was 2.7%. In addition there were two late deaths, with late survival being 85% (CI 95% - 68%-95% at two years. Two patients were reoperated due to primary structural valve failure. Freedom from reoperation or from primary structural valve failure was 90% (CI 95% - 66%-97% and 91% (CI 95% - 69%-97% at 2 years, respectively. During clinical follow-up up to 3 years, there were no cases of thromboembolism, hemorrhage or endocarditis. Conclusions: Although this represents an initial series, these data demonstrates that aortic valve repair and/or valve sparing aortic root surgery can be performed with satisfactory immediate and short-term results.

  1. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.

    Science.gov (United States)

    Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng

    2011-03-28

    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:

  2. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Directory of Open Access Journals (Sweden)

    Ma Jing-Min

    2011-01-01

    Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:

  3. Development of magnetic drive packless valves for commercial purpose

    International Nuclear Information System (INIS)

    Hwang, Sung Tae; Park, Jin Ho; Choi, Yoon Dong; Choi, Jong Hyun; Cho, Byung Ryeol; Kim, Tae Jun; Moon, Byung Hwan; Hong, Soon Bok; Jeong, Ji Young

    1995-09-01

    A study on development of magnetic drive packless valves for commercial purpose showed the results as follows; 1. Study on the radial rays effecting to the permanent magnets -Measurement of the strength of Nd-magnets according to irradiation of radial rays. 2. Effects of temperature on the magnetic driving device -Temperature dependency of the Nd-casting magnets. -Effects of temperature on the heat releasing fins of high-temperature valve. 3. Optimization of torque -Arranging method of permanent magnets -Measuring method and results of torque. 4. Design, manufacture and test for the pressure-resisting structure of magnetic power transmitting device -Calculation and design for the flat circular plates under pressure of the magnetic power transmitting device -Design, manufacture and test for the pressure-resisting structure of magnetic power transmitting device -Comparison of the characteristics between magnetic drive valve and general/bellows-sealed valves. 5. Pressure test and strength analysis of flat circular plates under pressure. 6. Patent application. 12 tabs., 24 figs., 1 ref. (Author)

  4. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  5. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  6. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  7. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  8. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  9. Theoretical seismic analysis of butterfly valve for nuclear power plant

    International Nuclear Information System (INIS)

    Han, Sang Uk; Ahn, Jun Tae; Han, Seung Ho; Lee, Kyung Chul

    2012-01-01

    Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been preformed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135MPa. In addition, the result of dynamic analysis gave an applied stress of 183MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA

  10. Theoretical seismic analysis of butterfly valve for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Uk; Ahn, Jun Tae; Han, Seung Ho [Donga Univ., Busan (Korea, Republic of); Lee, Kyung Chul [Dukwon Valve Co., Ltd., Busan (Korea, Republic of)

    2012-09-15

    Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been preformed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135MPa. In addition, the result of dynamic analysis gave an applied stress of 183MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

  11. Quantitative assessment of an aortic and pulmonary valve function according to valve fenestration

    International Nuclear Information System (INIS)

    Mirkhani, S.H.; Golestani, M.G.; Hosini, M.; Kazemian, A.

    1999-01-01

    There are some reasons for malfunction of aortic and pulmonary valve like fibrosis, calcification, and atheroma. Although, in some papers fenestration were known as a pathologic sign, but it is not generally accepted, while this matter is important in choosing suitable Homograft Heart Valve. In this paper fenestrations and its size, numbers and situation effect was studied. We collected 98 hearts, the donors died because of accident, we excluded valves with atheroma, calcification, fibrosis and unequal cusps, 91 aortic and 93 pulmonary valves were given further consideration. We classified valves according to situation, number and size of fenestration. Each valve was tested with 104 cm of non-nal saline column pressure which is equal to 76 mm Hg. Valve efficacy was detected by fluid flow assay. With study of 184 valves, 95 had no fenestration, 64 had less than 2 fenestration and 25 had more than 2 fenestration. Valve efficacy in condition of less than 2 fenestration was more than others (p <0.01). Malfunction effects of fenestration increased in larger valve and it will be decreased if their situation would be marginal (free margin of cusp). In the comparison of aortic and pulmonary valve we saw that malfunction effect of fenestration in pulmonary valve was more than aortic valve. Our experience in Immam Khomeini Homograft Valve Bank has shown that a great deal of valves is fenestrated. It seems that fenestration must be considered as a quality criterion in homograft valve preparation, especially in pulmonary and large aortic valves; but complementary studies is necessary

  12. Interfacial symmetry of Co–Alq{sub 3}–Co hybrid structures for effective spin filtering

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tu-Ngoc [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Lai, Yu-Ling; Chen, Chih-Han [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Chen, Po-Hung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Sheu, Jeng-Tzong, E-mail: jtsheu@faculty.nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Hsu, Yao-Jane, E-mail: yjhsu@nsrrc.org.tw [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-11-01

    Graphical abstract: - Highlights: • The spin interface at Alq{sub 3}/Co and Co/Alq{sub 3} contacts was examined. • An interfacial symmetry was determined at Co–Alq{sub 3}–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq{sub 3} hybridized interface. • The spin-filter role at the top contact interface of Alq{sub 3}/Co is proved. • Effective spin-filtering at Co–Alq{sub 3}–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq{sub 3} adsorption on Co, Co/Alq{sub 3}) and the top contact (Co atop Alq{sub 3}, Alq{sub 3}/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq{sub 3} and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq{sub 3}/Co and Co/Alq{sub 3} heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq{sub 3}–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq{sub 3} at both contacts, proving Alq{sub 3} a unique and promising organic material for spin filtering in OSV.

  13. Sequential transcatheter aortic valve implantation due to valve dislodgement - a Portico valve implanted over a CoreValve bioprosthesis.

    Science.gov (United States)

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel; Brito, João; Sondergaard, Lars; Neves, José P; Abecasis, João; M Gabriel, Henrique

    2017-03-01

    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected for surgery due to advanced age and comorbidities. The patient underwent a first TAVI, with implantation of a Medtronic CoreValve ® , which became dislodged and migrated to the ascending aorta. Due to the previous balloon valvuloplasty, the patient's AS became moderate, and her symptoms improved. After several months, she required another intervention, performed with a St. Jude Portico ® repositionable self-expanding transcatheter aortic valve. There was a good clinical response that was maintained at one-year follow-up. The use of a self-expanding transcatheter bioprosthesis with repositioning features is a solution in cases of valve dislocation to avoid suboptimal positioning of a second implant, especially when the two valves have to be positioned overlapping or partially overlapping each other. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  15. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong

    2016-01-01

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations

  16. Methods of estimation of mitral valve regurgitation for the cardiac surgeon

    Directory of Open Access Journals (Sweden)

    Baikoussis Nikolaos G

    2009-07-01

    Full Text Available Abstract Mitral valve regurgitation is a relatively common and important heart valve lesion in clinical practice and adequate assessment is fundamental to decision on management, repair or replacement. Disease localised to the posterior mitral valve leaflet or focal involvement of the anterior mitral valve leaflet is most amenable to mitral valve repair, whereas patients with extensive involvement of the anterior leaflet or incomplete closure of the valve are more suitable for valve replacement. Echocardiography is the recognized investigation of choice for heart valve disease evaluation and assessment. However, the technique is depended on operator experience and on patient's hemodynamic profile, and may not always give optimal diagnostic views of mitral valve dysfunction. Cardiac catheterization is related to common complications of an interventional procedure and needs a hemodynamic laboratory. Cardiac magnetic resonance (MRI seems to be a useful tool which gives details about mitral valve anatomy, precise point of valve damage, as well as the quantity of regurgitation. Finally, despite of its higher cost, cardiac MRI using cine images with optimized spatial and temporal resolution can also resolve mitral valve leaflet structural motion, and can reliably estimate the grade of regurgitation.

  17. Swirling flow in bileaflet mechanical heart valve

    Science.gov (United States)

    Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.

    2018-05-01

    Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.

  18. Spin helical states and spin transport of the line defect in silicene lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-02-06

    We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.

  19. Vortex dynamics in Patient-Specific Stenotic Tricuspid and Bicuspid Aortic Valves pre- and post- Trans-catheter Aortic Valve Replacement

    Science.gov (United States)

    Hatoum, Hoda; Dasi, Lakshmi Prasad

    2017-11-01

    Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.

  20. Understanding the proton's spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Myhrer, Fred [Univ. of South Carolina, Columbia, SC (United States); Thomas, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    We discuss the tremendous progress that has been towards an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest twenty years ago with the discovery of the proton "spin crisis" by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks.

  1. Rotary pneumatic valve

    Science.gov (United States)

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  2. Measurement of the Spin Structure of the Deuteron in the DIS Region

    CERN Document Server

    Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rojdestvenski, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, L.; Schmitt, H.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Thers, D.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Walcher, T.; Webb, R.; Weise, E.; Weitzel, Q.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2005-01-01

    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.

  3. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  4. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  5. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  6. Heavy gas valves

    Energy Technology Data Exchange (ETDEWEB)

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)

    1979-01-01

    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  7. Mean-Field Studies of a Mixed Spin-3/2 and Spin-2 and a Mixed Spin-3/2 and Spin-5/2 Ising System with Different Anisotropies

    International Nuclear Information System (INIS)

    Wei Guozhu; Miao Hailing

    2009-01-01

    The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromagnetic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and tricritical line. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Complementary role of cardiac CT in the assessment of aortic valve replacement dysfunction

    Science.gov (United States)

    Moss, Alastair J; Dweck, Marc R; Dreisbach, John G; Williams, Michelle C; Mak, Sze Mun; Cartlidge, Timothy; Nicol, Edward D; Morgan-Hughes, Gareth J

    2016-01-01

    Aortic valve replacement is the second most common cardiothoracic procedure in the UK. With an ageing population, there are an increasing number of patients with prosthetic valves that require follow-up. Imaging of prosthetic valves is challenging with conventional echocardiographic techniques making early detection of valve dysfunction or complications difficult. CT has recently emerged as a complementary approach offering excellent spatial resolution and the ability to identify a range of aortic valve replacement complications including structural valve dysfunction, thrombus development, pannus formation and prosthetic valve infective endocarditis. This review discusses each and how CT might be incorporated into a multimodal cardiovascular imaging pathway for the assessment of aortic valve replacements and in guiding clinical management. PMID:27843568

  9. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  10. High-spin structure of 121Xe: triaxiality, band termination and signature inversion

    International Nuclear Information System (INIS)

    Timar, J.; Paul, E.S.; Beausang, C.W.; Joyce, M.J.; Sharpey-Schafer, J.F.

    1995-01-01

    High-spin states of the odd-neutron 121 Xe nucleus have been studied with Eurogam using the 96 Zr( 30 Si, 5n) 121 Xe fusion-evaporation reaction. The level scheme has been extended up to a tentative spin of 67/2h at an excitation energy of ∼ 14 MeV. Several new rotational bands have been observed and the previously known bands extended. Two of them lose their regular character at high spins, which may be interpreted as transition from collective behaviour to a regime of noncollective oblate states. The deduced high-spin structure is compared to Woods-Saxon TRS cranking and CSM calculations. Configurations of the bands have been suggested. The νh 1 1/2 band is interpreted as having a triaxial shape. Signature inversion and an unexpectedly large staggering of the B(M1)/B(E2) ratios has been found for one of the bands. Enhanced E1 transitions have been observed between the νd 5/2 and the νh 1 1/2 bands. (orig.)

  11. THE RESULTS OF SURGICAL TREATMENT OF TRICUSPID VALVE INFECTIVE ENDOCARDITIS USING VALVE REPAIR AND VALVE REPLACEMENT OPERATIONS

    Directory of Open Access Journals (Sweden)

    S. A. Kovalev

    2015-01-01

    Full Text Available Aim. To evaluate in-hospital and long-term results of surgical treatment of patients with infective endocarditis of the tricuspid valve, to compare the effectiveness of valve repair and valve replacement techniques, and to identify risk factors of mortality and reoperations. Materials and methods. 31 surgical patients with tricuspid valve infective endocarditis were evaluated. Patients were divided into 2 groups. In Group 1 (n = 14 repairs of the tricuspid valve were performed, in Group 2 (n = 17 patients had undergone tricuspid valve replacements. Epidemiological, clinical, microbiological and echocardiographic data were studied. Methods of comparative analysis, the Kaplan–Meier method, and Cox risk models were applied. Results. The most common complication of in-hospital stay was atrioventricular block (17.7% of cases in Group 2. In Group 1, this type of complication was not found. Hospital mortality was 7.14% in Group 1, and 0% in Group 2. Long-term results have shown the significant reduction of heart failure in general cohort and in both groups. In Group 1 the severity of heart failure in the long term was less than in Group 2. No significant differences in the severity of tricuspid regurgitation were found between the groups. In 7-year follow up no cases of death were registered in Group 1. Cumulative survival rate in Group 2 within 60 months was 67.3 ± 16.2%. No reoperations were performed in patients from Group 1. In Group 2, the freedom from reoperation within 60 months was 70.9 ± 15.3%. Combined intervention was found as predictor of postoperative mortality. Prosthetic valve endocarditis was identified as risk factor for reoperation. Conclusion. Valve repair and valve replacement techniques of surgical treatment of tricuspid valve endocarditis can provide satisfactory hospital and long-term results. Tricuspid valve repair techniques allowed reducing the incidence of postoperative atrioventricular block. In the long-term, patients

  12. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  13. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  14. Structure and function of the tricuspid and bicuspid regurgitant aortic valve: an echocardiographic study.

    Science.gov (United States)

    Rönnerfalk, Mattias; Tamás, Éva

    2015-07-01

    The emerging new treatment options for aortic valve disease call for more sophisticated diagnostics. We aimed to describe the echocardiographic pathophysiology and characteristics of the purely regurgitant aortic valve in detail. Twenty-nine men, with chronic aortic regurgitation without concomitant heart disease referred for aortic valve intervention, underwent 2D transoesophageal echocardiographic (TEE) examination prior to surgery according to a previously published matrix. Measurements of the aortic valve apparatus in long and short axis view were made in systole and diastole and analysed off-line. The aortic valves were grouped as tricuspid (TAV) or bicuspid (BAV), and classified by regurgitation mechanism. Twenty-four examinations were eligible for analysis of which 13 presented TAV and 11 BAV. The regurgitation mechanism was classified as dilatation of the aorta in 6 cases, as prolapse in 11 cases and as poor cusp tissue quality or quantity in 7 cases. The ventriculo-aortic junction (VAJ) and valve opening were closely related (TAV r = 0.5, BAV r = 0.73) but no correlation was found between the VAJ and the maximal sinus diameter (maxSiD) or the sinotubular junction (STJ). However, the STJ and maxSiD were significantly related (TAV vs BAV: systole r = 0.9, r = 0.8; diastole r = 0.9, r = 0.7), forming an entity. The conjoined BAV cusps were shorter than the anterior cusps when closed (P = 0.002); the inter-commissural distances of the cusps in the BAV group were significantly different (P = 0.001 resp. 0.03) in both systole and diastole. The VAJ was independent of other aortic dimensions and should thereby be considered as a separate entity with influence on valve opening. The detailed 2D TEE measurements of this study add further important information to our knowledge about the function and echocardiographic anatomy of the pathological aortic valve and root either as a stand-alone examination or as a benchmark and complement to 3D echocardiography. This may

  15. Ureteral valve masquerading as obstructive megaureter

    Directory of Open Access Journals (Sweden)

    Sushmita Bhatnagar

    2017-05-01

    Full Text Available Primary obstructed megaureter is a common urological condition in the pediatric age group. It is one of the differentials for congenital anomalies of the kidney and urinary tract that include a myriad of structural anomalies of the urinary tract. The obstructive conditions are usually managed conservatively unless there is deterioration in renal function, repeated urinary tract infection, or any other symptom such as abdominal pain on ipsilateral side and hypertension. Presented here is a case of left lower ureteral valve that was diagnosed as primary obstructed megaureter with pain in abdomen and reduced ipsilateral renal function wherein ureteral valve was detected incidentally intraoperatively. Excision of the valve with end to end uretero-ureteral anastomoses over a D-J stent, without resorting to ureteric reimplantation was successful in relieving the obstruction and hydronephrosis

  16. Spin-spin interactions of electrons and also of nucleons create atomic molecular and nuclear structures

    International Nuclear Information System (INIS)

    Kaliambos, L.A.

    2008-01-01

    Fundamental interactions of spinning electrons at an interelectron separation less than 578.8 fm yield attractive electromagnetic forces with S = 0 creating vibrations under a motional emf. They explain the indistinguishability of electrons and give a vibration energy able for calculating the ground-state energies of many-electron atoms without using any perturbative approximation. Such forces create two-electron orbitals able to account for the exclusion principal and the mechanism of covalent bonds. In the outer subshells of atoms the penetrating orbitals interact also as pair-pair systems and deform drastically the probability densities of the quantum mechanical electron clouds. Such a dynamics of deformation removes the degeneracy and leads to the deviation from the shell scheme. However in the interior of atoms the large nuclear charge leads to a spherically symmetric potential with non-interacting pairs for creating shells of degenerate states giving an accurate explanation of the X-ray lines. On the other hand, considerable charge distributions in nucleons as multiples of 2e/3 and - e/3 determined by the magnetic moments, interact for creating the nuclear structure with p-n bonds. Such spin-spin interactions show that the dominant concept of the untisymmetric wave function for fermions is inapplicable not only in the simple p-n, p-p, and n-n systems but also in the LS coupling of atoms in which the electrons interact from different quantum states giving either S = 0 or S = l. (author)

  17. Using spin to probe hadronic structure

    International Nuclear Information System (INIS)

    Ramsey, G.P.; Argonne National Lab., IL

    1994-01-01

    The theoretical and experimental status of high energy spin phenomena is summarized, with emphasis on the spin properties of nucleons. It is stressed that crucial tests of the Standard Model can be made with polarization experiments. By performing the experiments discussed here, the authors will reveal important constituent and composite properties of protons and neutrons. The future prospects for planned polarization experiments are discussed

  18. Roles of quarks and gluons in the spin structure of nucleons

    International Nuclear Information System (INIS)

    Modarres, M.; Amir-Kabir Univ., Teheran; Ghafoori-Tabrizi, K.; Shahid-Beheshti Univ., Teheran

    1992-01-01

    The spin structure of protons will be discussed by using MIT-bag model and considering constituent quarks to be combined from current quarks and gluons. It will be shown that the gluonic degrees of freedom play an important role in prediction of the recent EMC results. (orig.)

  19. 3-D analysis of reactor loop isolation valves

    International Nuclear Information System (INIS)

    Dietrich, D.E.

    1975-01-01

    A full three-dimensional analysis for the design and operational loading conditions was performed on a 29 inch loop isolation valve using the Westinghouse finite element computer code. The 3-D analysis was employed for the valve design in place of utilizing the standard ASME valve design criteria. The valve design employs the design by analysis concept allowed for nuclear class valve. The valve design was evaluated for a set of independent load including pipe reactions and internal pressure. The design pipe reaction loads were based upon maximum fiber pipe stresses at yield for the bending moments, pipe membrane stresses at half yield for the axial load, and pipe maximum shear stress at half yield for the torsional moment. The valve design pressure was the system loop design pressure. The operating and accident condition evaluation included pipe reactions, extended structure forces, system pressure, and system thermal transients. The valve was analyzed for the normal operating, upset, emergency, and faulted loading conditions. These operating and accident conditions used various specified combinations of the supplied generic system pressure, deadweight, thermal, seismic, and LOCA pipe load components. The generic pipe loads are the worst possible postulated loads for any system design. These generic pipe load components were supplied as maximums and minimums so a simplified nozzle analysis was performed to determine the worst case combination for each loading condition. The valve design was shown to meet the design, operating, and accident condition requirements of the ASME code. The design by analysis concept for nuclear class 1 valves gave a significant reduction in required minimum wall thickness, 3.75 inches vs. 5.4 inches. These translate into significant material savings

  20. The magnetization dynamics of nano-contact spin-torque vortex oscillators

    Science.gov (United States)

    Keatley, Paul

    The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization