WorldWideScience

Sample records for spin valve structure

  1. Magnetic structure of the spin valve interface

    International Nuclear Information System (INIS)

    Nicholson, D.M.C.; Butler, W.H.; Zhang, X.; MacLaren, J.M.; Gurney, B.A.; Speriosu, V.S.

    1994-01-01

    Nonferromagnetic atoms present at Ni/Cu and Permalloy/Cu interfaces in sputtered spin valve magnetoresistive layered structures have been shown to cause reduced magnetoresistance. Here we show that a model in which the moments on the Ni atoms in the interfacial region of Ni/Cu are reduced substantially by interdiffusion with Cu is consistent with the experimental results. In contrast, we believe that moments persist at the permalloy/Cu interface, which first principle total energy calculations suggest will be disordered at finite temperatures. These reduced or disordered moments are expected to significantly reduce the GMR

  2. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    Science.gov (United States)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  3. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    Science.gov (United States)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  4. The magnetoresistive effect induced by stress in spin-valve structures

    International Nuclear Information System (INIS)

    Li-Jie, Qian; Xiao-Yong, Xu; Jing-Guo, Hu

    2009-01-01

    Using a method of free energy minimization, this paper investigates the magnetization properties of a ferromagnetic (FM) monolayer and an FM/antiferromagnetic (AFM) bilayer under a stress field, respectively. It then investigates the magnetoresistance (MR) of the spin-valve structure, which is built by an FM monolayer and an FM/AFM bilayer, and its dependence upon the applied stress field. The results show that under the stress field, the magnetization properties of the FM monolayer is obviously different from that of the FM/AFM bilayer, since the coupled AFM layer can obviously block the magnetization of the FM layer. This phenomenon makes the MR of the spin-valve structure become obvious. In detail, there are two behaviors for the MR of the spin-valve structure dependence upon the stress field distinguished by the coupling (FM coupling or AFM coupling) between the FM layer and the FM/AFM bilayer. Either behavior of the MR of the spin-valve structure depends on the stress field including its value and orientation. Based on these investigations, a perfect mechanical sensor at the nano-scale is suggested to be devised experimentally

  5. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  6. Magnetic transport property of NiFe/WSe{sub 2}/NiFe spin valve structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Kangkang [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Xing, Yanhui, E-mail: xingyanhui@bjut.edu.cn [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Han, Jun [Key Lab of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Feng, Jiafeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190 (China); Shi, Wenhua; Zhang, Baoshun [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zeng, Zhongming, E-mail: zmzeng2012@sinano.ac.cn [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China)

    2017-06-15

    Highlight: • Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. • In this article, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. • In this junction, the WSe{sub 2} spacer exhibits metallic behavior. • We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. • A general phenomenological analysis of the negative MR property is discussed. • Our result is anticipated to be beneficial for future spintronic applications. - Abstract: Two-dimensional (2D) materials have been proposed as promising candidate for spintronic applications due to their atomic crystal structure and physical properties. Here, we introduce exfoliated few-layer tungsten diselenide (WSe{sub 2}) as spacer in a Py/WSe{sub 2}/Py vertical spin valve. In this junction, the WSe{sub 2} spacer exhibits metallic behavior. We observed negative magnetoresistance (MR) with a ratio of −1.1% at 4 K and −0.21% at 300 K. A general phenomenological analysis of the negative MR property is discussed. Our result is anticipated to be beneficial for future spintronic applications.

  7. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  8. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  9. Correlations between atomic structure and giant magnetoresistance ratio in Co2(Fe,Mn)Si spin valves

    International Nuclear Information System (INIS)

    Lari, L; Sizeland, J; Gilks, D; Uddin, G M; Nedelkoski, Z; Hasnip, P J; Lazarov, V K; Yoshida, K; Galindo, P L; Sato, J; Oogane, M; Ando, Y; Hirohata, A

    2014-01-01

    We show that the magnetoresistance of Co 2 Fe x Mn 1−x Si-based spin valves, over 70% at low temperature, is directly related to the structural ordering in the electrodes and at the electrodes/spacer (Co 2 Fe x Mn 1−x Si/Ag) interfaces. Aberration-corrected atomic resolution Z-contrast scanning transmission electron microscopy of device structures reveals that annealing at 350 °C and 500 °C creates partial B2/L2 1 and fully L2 1 ordering of electrodes, respectively. Interface structural studies show that the Ag/Co 2 Fe x Mn 1−x Si interface is more ordered compared to the Co 2 Fe x Mn 1−x Si/Ag interface. The release of interface strain is mediated by misfit dislocations that localize the strain around the dislocation cores, and the effect of this strain is assessed by first principles electronic structure calculations. This study suggests that by improving the atomic ordering and strain at the interfaces, further enhancement of the magnetoresistance of CFMS-based current-perpendicular-to-plane spin valves is possible. (fast track communication)

  10. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    Science.gov (United States)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  11. Spin motive forces, 'measurements', and spin-valves

    International Nuclear Information System (INIS)

    Barnes, S.E.

    2007-01-01

    Discussed is the spin motive force (smf) produced by a spin valve, this reflecting its dynamics. Relaxation implies an implicit measurement of the magnetization of the free layer of a valve. It is shown this has implications for the angular dependence of the torque transfer. Some discussion of recent experiments is included

  12. Local spin valve effect in lateral (Ga,MnAs/GaAs spin Esaki diode devices

    Directory of Open Access Journals (Sweden)

    M. Ciorga

    2011-06-01

    Full Text Available We report here on a local spin valve effect observed unambiguously in lateral all-semiconductor all-electrical spin injection devices, employing p+ −(Ga,MnAs/n+ −GaAs Esaki diode structures as spin aligning contacts. We discuss the observed local spin-valve signal as a result of the interplay between spin-transport-related contribution and the tunneling anisotropic magnetoresistance of the magnetic contacts. The magnitude of the spin-related magnetoresistance change is equal to 30 Ω which is twice the magnitude of the measured non-local signal.

  13. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  14. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2014-05-28

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green\\'s function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  15. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-01-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  16. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  17. Nanosized perpendicular organic spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Richter, Tim [Institut für Physik, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany); Fuhrmann, Bodo [Interdisziplinäres Zentrum für Materialwissenschaften, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany); Schmidt, Georg, E-mail: georg.schmidt@physik.uni-halle.de [Institut für Physik, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany); Interdisziplinäres Zentrum für Materialwissenschaften, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale) (Germany)

    2015-03-09

    A fabrication process for perpendicular organic spin-valve devices based on the organic semiconductor Alq3 has been developed which offers the possibility to achieve active device areas of less than 500 × 500 nm{sup 2} and is flexible in terms of material choice for the active layers. Characterization of the resulting devices shows a large magnetoresistance of sometimes more than 100%, however with equally large variation from device to device. Comparison with large area spin-valves indicates that the magnetoresistance of both large and small devices most likely originates from tunneling through pinholes and tunneling magnetoresistance.

  18. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  19. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  20. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei; Wang, Xianghao

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10 4  J/m 3 and 10 × 10 4  J/m 3 , the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  1. Interlayer quality dependent graphene spin valve

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas; Murtaza, Ghulam; Ramay, Shahid Mahmood

    2017-01-01

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  2. Interlayer quality dependent graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul, 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Ramay, Shahid Mahmood [Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2017-01-15

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  3. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  4. Thermal stability of low dose Ga+ ion irradiated spin valves

    International Nuclear Information System (INIS)

    Qi Xianjin; Wang Yingang; Zhou Guanghong; Li Ziquan

    2009-01-01

    The thermal stability of low dose Ga + ion irradiated spin valves has been investigated and compared with that of the as-prepared ones. The dependences of exchange field, measured using vibrating sample magnetometer at room temperature, on magnetic field sweep rate and time spent at negative saturation of the pinned ferromagnetic layer, and training effect were explored. The training effect is observed on both the irradiated spin valves and the as-prepared ones. The magnetic field sweep rate dependence of the exchange bias field of the irradiated spin valves is nearly the same as that of the as-prepared ones. For the as-prepared structure thermal activation has been observed, which showed that holding the irradiated structure at negative saturation of the pinned ferromagnetic layer for up to 28 hours results in no change in the exchange field. The results indicate that the thermal stability of the ion irradiated spin valves is the same as or even better than the as-prepared ones.

  5. Improved corrosion resistance of spin-valve film

    International Nuclear Information System (INIS)

    Tetsukawa, H.; Hommura, H.; Okabe, A.; Soda, Y.

    2007-01-01

    We investigated the corrosion behavior and magnetoresistance of spin-valve film in order to improve the corrosion resistance of the spin-valve head for a tape recording system. The conventional spin-valve head (sub./Ta/NiFe/CoFe/Cu/CoFe/PtMn/Ta) with no diamond-like carbon (DLC) protective layer showed poor corrosion resistance. This is because the CoFe for ferromagnetic layer and Cu for spacer in the spin-valve film exhibited poor corrosion resistance. The corrosion resistance of the CoFe film and Cu film improved with the addition of Ni and Au, respectively. The spin-valve film (sub./Ta/NiFe/CoNiFe/CuAu/CoNiFe/PtMn/Ta) showed higher pitting potential than the conventional spin-valve film by +0.45 V. This presents a significant improvement over the conventional spin-valve film. We also investigated the effect of the composition of ferromagnetic layer and spacer on the magnetoresistance of the spin-valve film. The magnetoresistance of the spin-valve film by substitution of CoNiFe for CoFe in ferromagnetic layer decreased slightly. The magnetoresistance of the spin-valve film decreased as the addition of Au of the spacer increased. The diffusion at CoNiFe/CuAu interface has not been observed in annealing process. The quantitative relation between corrosion resistance and magnetoresistance of spin-valve film, and its ferromagnetic layer and spacer's compositions have been clarified. The output voltage at 50 Oe of the corrosion-resistant spin-valve head with CoNiFe ferromagnetic layer and CuAu spacer was about 50% of that of the conventional spin-valve head

  6. Improved corrosion resistance of spin-valve film

    Energy Technology Data Exchange (ETDEWEB)

    Tetsukawa, H. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)]. E-mail: tetsukaw@arc.sony.co.jp; Hommura, H. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan); Okabe, A. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan); Soda, Y. [Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001 (Japan)

    2007-06-15

    We investigated the corrosion behavior and magnetoresistance of spin-valve film in order to improve the corrosion resistance of the spin-valve head for a tape recording system. The conventional spin-valve head (sub./Ta/NiFe/CoFe/Cu/CoFe/PtMn/Ta) with no diamond-like carbon (DLC) protective layer showed poor corrosion resistance. This is because the CoFe for ferromagnetic layer and Cu for spacer in the spin-valve film exhibited poor corrosion resistance. The corrosion resistance of the CoFe film and Cu film improved with the addition of Ni and Au, respectively. The spin-valve film (sub./Ta/NiFe/CoNiFe/CuAu/CoNiFe/PtMn/Ta) showed higher pitting potential than the conventional spin-valve film by +0.45 V. This presents a significant improvement over the conventional spin-valve film. We also investigated the effect of the composition of ferromagnetic layer and spacer on the magnetoresistance of the spin-valve film. The magnetoresistance of the spin-valve film by substitution of CoNiFe for CoFe in ferromagnetic layer decreased slightly. The magnetoresistance of the spin-valve film decreased as the addition of Au of the spacer increased. The diffusion at CoNiFe/CuAu interface has not been observed in annealing process. The quantitative relation between corrosion resistance and magnetoresistance of spin-valve film, and its ferromagnetic layer and spacer's compositions have been clarified. The output voltage at 50 Oe of the corrosion-resistant spin-valve head with CoNiFe ferromagnetic layer and CuAu spacer was about 50% of that of the conventional spin-valve head.

  7. Spin injection and spin accumulation in all-metal mesoscopic spin valves

    NARCIS (Netherlands)

    Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ

    2003-01-01

    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin

  8. Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves

    Science.gov (United States)

    Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer

    2018-05-01

    Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.

  9. Spin injection and detection in lateral spin valves with hybrid interfaces

    Science.gov (United States)

    Wang, Le; Liu, Wenyu; Ying, Hao; Chen, Luchen; Lu, Zhanjie; Han, Shuo; Chen, Shanshan; Zhao, Bing; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Spin injection and detection in lateral spin valves with hybrid interfaces comprising a Co/Ag transparent contact and a Co/MgO/Ag junction (III) are investigated at room temperature in comparison with pure Co/Ag transparent contacts (I) and Co/MgO/Ag junctions (II). The measured spin-accumulation signals of a type III device are five times higher than those for type I. The extracted spin diffusion length in Ag is 180 nm for all three types of devices. The enhancement of the spin signal of the hybrid structure is mainly attributed to the increase of the interfacial spin polarization from the Co/MgO/Ag junction.

  10. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  11. Large spin current injection in nano-pillar-based lateral spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Tatsuya [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2016-08-26

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization by the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.

  12. Towards sub-200 nm nano-structuring of linear giant magneto-resistive spin valves by a direct focused ion beam milling process

    International Nuclear Information System (INIS)

    Riedmüller, Benjamin; Huber, Felix; Herr, Ulrich

    2014-01-01

    In this work, we present a detailed investigation of a focused ion beam (FIB) assisted nano-structuring process for giant magneto-resistive (GMR) spin valve sensors. We have performed a quantitative study of the dependence of the GMR ratio as well as the sensor resistance on the ion dose, which is implanted in the active region of our sensors. These findings are correlated with the decrease of magneto-resistive properties after micro- and nano-structuring by the FIB and reveal the importance of ion damage which limits the applicability of FIB milling to GMR devices in the low μm range. Deposition of a protective layer (50 nm SiO 2 ) on top of the sensor structure before milling leads to a preservation of the magneto-resistive properties after the milling procedure down to sensor dimensions of ∼300 nm. The reduction of the sensor dimensions to the nanometer regime is accompanied by a shift of the GMR curves, and a modification of the saturation behavior. Both effects can be explained by a micromagnetic model including the magnetic interaction of free and pinned layer as well as the effect of the demagnetizing field of the free layer on the sensor behavior. The results demonstrate that the FIB technology can be successfully used to prepare spintronic nanostructures

  13. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  14. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  15. Spin valve effect in single-atom contacts

    International Nuclear Information System (INIS)

    Ziegler, M; Neel, N; Berndt, R; Lazo, C; Ferriani, P; Heinze, S; Kroeger, J

    2011-01-01

    Magnetic single-atom contacts have been controllably fabricated with a scanning tunnelling microscope. A voltage-dependent spin valve effect with conductance variations of ∼40% is reproducibly observed from contacts comprising a Cr-covered tip and Co and Cr atoms on ferromagnetic nanoscale islands on W(110) with opposite magnetization. The spin-dependent conductances are interpreted from first-principles calculations in terms of the orbital character of the relevant electronic states of the junction.

  16. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  17. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  18. Magnon detection using a ferroic collinear multilayer spin valve.

    Science.gov (United States)

    Cramer, Joel; Fuhrmann, Felix; Ritzmann, Ulrike; Gall, Vanessa; Niizeki, Tomohiko; Ramos, Rafael; Qiu, Zhiyong; Hou, Dazhi; Kikkawa, Takashi; Sinova, Jairo; Nowak, Ulrich; Saitoh, Eiji; Kläui, Mathias

    2018-03-14

    Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y 3 Fe 5 O 12 |CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y 3 Fe 5 O 12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.

  19. Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs

    Science.gov (United States)

    Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.

  20. Spin-dependent Seebeck coefficients of Ni80Fe20 and Co in nanopillar spin valves

    NARCIS (Netherlands)

    Dejene, F. K.; Flipse, J.; van Wees, B. J.

    2012-01-01

    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni80Fe20) and cobalt (Co) using nanopillar spin valve devices, a stack of two ferromagnetic layers separated by a nonmagnetic layer. The devices were specifically designed to separate heat-related effects from

  1. Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves

    Science.gov (United States)

    Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.

    2015-03-01

    We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.

  2. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  3. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Luping [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Tan, Xiaohua [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China)

    2016-03-15

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  4. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    International Nuclear Information System (INIS)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Li, Run-Wei; Tan, Xiaohua

    2016-01-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  5. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers

    Science.gov (United States)

    Liu, Luping; Zhan, Qingfeng; Yang, Huali; Li, Huihui; Zhang, Shuanglan; Liu, Yiwei; Wang, Baomin; Tan, Xiaohua; Li, Run-Wei

    2016-03-01

    We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases more quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.

  6. Flexible semi-transparent organic spin valve based on bathocuproine

    International Nuclear Information System (INIS)

    Sun, Xiangnan; Bedoya-Pinto, Amilcar; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    Organic semiconductors are attractive materials for advanced spintronic applications due to their long spin lifetimes and, simultaneously, their mechanical flexibility. With the aim of combining these advantages in a single device, we report on the fabrication and properties of a mechanically flexible bathocuproine-based spin valve. This organic spin device shows great stability on both electrical and magneto-transport properties upon mechanical bending at different radius (up to r = 5 mm), while featuring long-lasting endurance (on bending over 50 times). The room-temperature magnetoresistance ratio reaches up to 3.5%, and is notably preserved under air atmosphere. The observation of spin transport at room-temperature, combined with the outstanding mechanical properties and air stability, highlights the potential of bathocuproine-based spin devices towards applications.

  7. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  9. Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves

    Science.gov (United States)

    Cheng, Yihong; Chen, Kai; Zhang, Shufeng

    2018-01-01

    We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.

  10. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  11. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  12. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve

    Science.gov (United States)

    Majidi, Leyla; Asgari, Reza

    2014-10-01

    We propose a hole-doped molybdenum disulfide (MoS2) superconducting spin valve (F/S/F) hybrid structure in which the Andreev reflection process is suppressed for all incoming waves with a determined range of the chemical potential in ferromagnetic (F) region and the cross-conductance in the right F region depends crucially on the configuration of magnetizations in the two F regions. Using the scattering formalism, we find that the transport is mediated purely by elastic electron cotunneling (CT) process in a parallel configuration and changes to the pure crossed Andreev reflection (CAR) process in the low-energy regime, without fixing of a unique parameter, by reversing the direction of magnetization in the right F region. This suggests both valley- and spin-switch effects between the perfect elastic CT and perfect CAR processes and makes the nonlocal charge current to be fully valley- and spin-polarized inside the right F region where the type of the polarizations can be changed by reversing the magnetization direction in the right F region. We further demonstrate that the presence of the strong spin-orbit interaction λ and an additional topological term (β ) in the Hamiltonian of MoS2 result in an enhancement of the charge conductance of the CT and CAR processes and make them to be present for long lengths of the superconducting region. Besides, we find that the thermal conductance of the structure with a small length of the highly doped superconducting region exhibits linear dependence on the temperature at low temperatures, whereas it enhances exponentially at higher temperatures. In particular, we demonstrate that the thermal conductance versus the strength of the exchange field (h ) in F region displays a maximum value at h <λ , which moves towards larger exchange fields by increasing the temperature.

  13. Superconducting spin valve effect in Fe/In based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Kataev, Vladislav; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences (Russian Federation)

    2015-07-01

    We report on magnetic and superconducting properties of the spin-valve multilayer system CoOx/Fe1/Cu/Fe2/In. The Superconducting Spin Valve Effect (SSVE) assumes the T{sub c} difference between parallel (P) and antiparallel (AP) orientations of the Fe1 and Fe2 layers' magnetizations. The SSVE value oscillates and changes its sign when the Fe2 layer thickness d{sub Fe2} is varied from 0 to 5 nm. The SSVE value is positive, as expected, in the range 0.4 nm ≤ d{sub Fe2} ≤ 0.8 nm. For a rather broad range of thicknesses 1 nm ≤ d{sub Fe2} ≤ 2.6 nm the SSVE has negative sign assuming the inverse SSVE. Moreover, the magnitude of the inverse effect is larger than that of the positive direct effect. We attribute these oscillations to a quantum interference of the cooper pair wave functions in the magnetic part of the system. For most of the spin-valve samples from this set we experimentally realized the full switching between normal and superconducting states due to direct and inverse SSVE. The analysis of the experimental data has enabled the determination of all microscopic parameters of the studied system.

  14. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    Science.gov (United States)

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  15. Structure and magnetoresistive properties of current-perpendicular-to-plane pseudo-spin valves using polycrystalline Co2Fe-based Heusler alloy films

    International Nuclear Information System (INIS)

    Nakatani, T.M.; Du, Ye; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2013-01-01

    We report current-perpendicular-to-plane giant magnetoresistance (CPP–GMR) of pseudo-spin valves (PSVs) with polycrystalline Co 2 Fe(Al 0.5 Si 0.5 ) (CFAS) and Co 2 Fe(Ga 0.5 Ge 0.5 ) (CFGG) Heusler alloy films. Strongly [0 1 1] textured polycrystalline Heusler alloy films grew on the Ta/Ru/Ag underlayer. Relatively large CPP–GMR values of ΔRA up to 4 mΩ μm 2 and ΔR/R up to 10% were obtained with 5 nm thick Heusler alloy films and Ag spacer layer by annealing CFAS PSV at 450 °C and CFGG PSV at 350 °C. Transmission electron microscopy revealed a flat and sharp interface between the [0 1 1] textured CFAS layers and the [1 1 1] textured Ag spacer layer. Annealing above an optimal temperature for each PSV led to reductions in MR values as a result of the thickening of the spacer layer induced by the Ag diffusion from the outer Ag layers

  16. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers

    International Nuclear Information System (INIS)

    Steiner, Roland Johannes

    2006-01-01

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T c (H)- and the R(H)-curve. (orig.)

  17. Stretchable Spin Valve with Stable Magnetic Field Sensitivity by Ribbon-Patterned Periodic Wrinkles.

    Science.gov (United States)

    Li, Huihui; Zhan, Qingfeng; Liu, Yiwei; Liu, Luping; Yang, Huali; Zuo, Zhenghu; Shang, Tian; Wang, Baomin; Li, Run-Wei

    2016-04-26

    A strain-relief structure by combining the strain-engineered periodic wrinkles and the parallel ribbons was employed to fabricate flexible dual spin valves onto PDMS substrates in a direct sputtering method. The strain-relief structure can accommodate the biaxial strain accompanying with stretching operation (the uniaxial applied tensile strain and the induced transverse compressive strain due to the Poisson effect), thus significantly reducing the influence of the residual strain on the giant magnetoresistance (GMR) performance. The fabricated GMR dual spin-valve sensor exhibits the nearly unchanged MR ratio of 9.9%, magnetic field sensitivity up to 0.69%/Oe, and zero-field resistance in a wide range of stretching strain, making it promising for applications on a conformal shape or a movement part.

  18. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  19. Structural valve deterioration in the Mitroflow biological heart valve prosthesis

    DEFF Research Database (Denmark)

    Issa, Issa Farah; Poulsen, Steen Hvitfeldt; Waziri, Farhad

    2018-01-01

    OBJECTIVES: Concern has been raised regarding the long-term durability of the Mitroflow biological heart valve prosthesis. Our aim was to assess the incidence of structural valve degeneration (SVD) for the Mitroflow bioprosthesis in a nationwide study in Denmark including all patients alive......: A total of 173 patients were diagnosed with SVD by echocardiography. Of these, 64 (11%) patients had severe SVD and 109 (19%) patients moderate SVD. Severe SVD was associated with the age of the prosthesis and small prosthesis size [Size 21: hazard ratio (95% confidence interval, CI) 2.72 (0.97-8.56), P...

  20. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...... canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation....... Here, we give a short review of anomalous spin structures in nanoparticles....

  1. Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tae Jong; Kim, Dong Ho [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-09-15

    We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.

  2. On the temperature dependence of spin pumping in ferromagnet–topological insulator–ferromagnet spin valves

    Directory of Open Access Journals (Sweden)

    A.A. Baker

    Full Text Available Topological insulators (TIs have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet–TI–ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature. Keywords: Topological insulator, Spin pumping, Spintronics, Ferromagnetic resonance

  3. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  4. Effective suppression of thermoelectric voltage in nonlocal spin-valve measurement

    Science.gov (United States)

    Ariki, Taisei; Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi

    2017-06-01

    We demonstrate that the background signal in the nonlocal spin-valve measurement can be sufficiently suppressed by optimizing the electrode design of the lateral spin valve. A relatively long length scale of heat propagation produces spin-independent thermoelectric signals under the combination of the Peltier and Seebeck effects. These unfavorable signals can be reduced by mixing the Peltier effects in two transparent ferromagnetic/nonmagnetic junctions. Proper understanding of the contribution from the heat current in no spin-current area is a key for effective reduction of the spin-independent background signal.

  5. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    Science.gov (United States)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  6. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    International Nuclear Information System (INIS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-01-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.

  7. Aging effect of spin accumulation in non-local spin valves

    International Nuclear Information System (INIS)

    Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng; Wang, Le; Xu, Xiaoguang; Jiang, Yong

    2017-01-01

    Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.

  8. Aging effect of spin accumulation in non-local spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bing; Zhang, Ziyu; Chen, Xiaobing; Zhang, Xiaohan; Pan, Jiahui; Ma, Jiajun; Li, Juan; Wang, Zhicheng [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Le, E-mail: wangle@ruc.edu.cn [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, Xiaoguang, E-mail: xgxu@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiang, Yong [State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-06-15

    Highlights: • First time to reveal the whole temporal evolution life of spintronics devices. • The gradual oxidation of the junctions’ areas and that of the channel are confirmed to be the predominant factors to determine the temporal evolution. • Physically, the temporal evolution can be evaluated by theories of S. Takahashi and A. Fert. • This study may offer some useful advice for the design and protection of future industrial spintronics devices. - Abstract: A temporal evolution of spin accumulation of Co/MgO/Ag spin valves have been studied by using the nonlocal spin detection technique over almost a 3-month period in the ambient environment after the fabrication of the devices. Three different stages of the spin accumulation are first observed due to aging effect. The aging effect comes from two contributions–the gradual oxidation of the Ag/MgO and MgO/Co interfaces at the junctions’ areas which arises from the annealing process and the oxidation of the side surfaces of the Ag channels. The theories of S. Takahashi and A. Fert are introduced to evaluate the different evolution stages of spin accumulation.

  9. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  10. Microwave spectroscopy and electronic transport properties of ferromagnetic Josephson junctions and superconducting spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, Marcel; Rudolf, Marcel; Pietsch, Torsten [Zukunftskolleg and Department of Physics, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz (Germany)

    2016-07-01

    Hybrid superconducting nanostructures recently attracted tremendous interest, due to their great potential in dissipation-less spin-electronics with unprecedented switching rates. The practical realisation of such devices, however, requires a complete understanding of the transfer and dynamics of spin- and charge currents between superconducting (S) and ferromagnetic (F) circuit elements, as well as the coupling between spin- and charge degrees of freedom in these systems. We investigate novel transport phenomena in superconductor-ferromagnet hybrid nanostructures under non-equilibrium conditions. Microwave spectroscopy is used to elucidate fundamental questions related to the complex interplay of competing order parameters and the question of relaxation mechanisms of non-equilibrium distributions with respect to spin, charge and energy. Recent experiments on two complimentary device structures are discussed: (I) in diffusive S/F/S Josephson junctions with non-sinusoidal current-phase relationship and (II) local and non-local transport measurements and microwave spectroscopy in F/S/F lateral spin-valves.

  11. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  12. Current-induced magnetization changes in a spin valve due to incoherent emission of non-equilibrium magnons

    OpenAIRE

    Kozub, V. I.; Caro, J.

    2004-01-01

    We describe spin transfer in a ferromagnet/normal metal/ferromagnet spin-valve point contact. Spin is transferred from the spin-polarized device current to the magnetization of the free layer by the mechanism of incoherent magnon emission by electrons. Our approach is based on the rate equation for the magnon occupation, using Fermi's golden rule for magnon emission and absorption and the non-equilibrium electron distribution for a biased spin valve. The magnon emission reduces the magnetizat...

  13. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling

    NARCIS (Netherlands)

    Schoonus, J.J.H.M.; Lumens, P.G.E.; Wagemans, W.; Kohlhepp, J.T.; Bobbert, P.A.; Swagten, H.J.M.; Koopmans, B.

    2009-01-01

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5nm)/tris(8- hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of

  14. The multi-step tunneling analogue of conductivity mismatch in organic spin valves

    NARCIS (Netherlands)

    Tran, T. Lan Ahn; Le, T.Q.; Sanderink, Johannes G.M.; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    Carbon-based, molecular semiconductors offer several attractive attributes for spintronics, such as exceptionally weak spin-orbit coupling and compatibility with bottom-up nanofabrication. In spite of the promising properties of organic spin valves, however, the physical mechanisms governing

  15. Spin dependent photon structure functions

    International Nuclear Information System (INIS)

    Manohar, A.V.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    Spin dependent structure functions of the photon are studied using the operator product expansion. There are new twist-two photon and gluon operators which contribute. The structure functions g 1 and F 3 are calculable in QCD, but differ from their free quark values. The corrections to F 3 are suppressed by 1/log Q 2 . The calculation is an extension of the analysis of Witten for the spin averaged structure functions F 1 and F 2 . (orig.)

  16. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Tang, XiaoLi, E-mail: tangtang1227@163.com; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan

    2017-05-01

    A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from −80 Oe – +80 Oe to −150 Oe – +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors. - Highlights: • Increasing exchange bias was achieved in bilayer at ultra-low-pressure sputtering. • The low void density and smooth surface were achieved in low pressure. • Varying exchange bias achieved tunable linear range in spin valve.

  17. Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve

    Science.gov (United States)

    Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus

    2018-03-01

    Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.

  18. Spin Structure Analyses of Antiferromagnets

    International Nuclear Information System (INIS)

    Chung, Jae Ho; Song, Young Sang; Lee, Hak Bong

    2010-05-01

    We have synthesized series of powder sample of incommensurate antiferromagnetic multiferroics, (Mn, Co)WO 4 and Al doped Ba 0.5 Sr 1.5 Zn 2 Fe 12 O 22 , incommensurate antiferromagnetic multiferroics. Their spin structure was studied by using the HRPD. In addition, we have synthesized series of crystalline samples of incommensurate multiferroics, (Mn, Co)WO 4 and olivines. Their spin structure was investigated using neutron diffraction under high magnetic field. As a result, we were able to draw the phase diagram of (Mn, Co)WO 4 as a function of composition and temperature. We learned the how the spin structure changes with increased ionic substitution. Finally we have drawn the phase diagram of the multicritical olivine Mn2SiS4/Mn2GeS4 as a function of filed and temperature through the spin structure studies

  19. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  20. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  1. Nucleon spin structure functions

    International Nuclear Information System (INIS)

    Close, F.E.

    1989-01-01

    There has been recent excitement arising from the claim by the EMC collaboration that none of the proton's spin is carried by quarks. There are many textbooks, including those written by some members of this audience which assert that the proton's spin is carried by quarks. I will review the history of deep inelastic scattering of polarized leptons from polarized protons, culminating in this most recent dramatic claim. I will show that, for the last decade, data have appeared consistent with predictions of the quark model and highlight what the new and potentially exciting data are. I will conclude with suggestions for the future, and discuss the polarization dependence of inclusive hadron production. 35 refs

  2. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    dependence of the magnetisation in certain nanoparticle systems, as welll bulk systems with spin canting due to defects. In accordance with this model magnetisation measurements on goethtie (a-FeOOH) nanoparticles are presented, showing a low temperature increase in the magnetisation. The spin orientation...... experimental data from unpolarised neutron diffraction. The spin orientation is found to be close to the particle plane, which is the (111) plane of the FCC structure of NiO for particles with thickness ranging from 2.2 nm to bulk (= 200 nm) particles. In the smallest particles, with a thickness of 2.0 nm, we...

  3. Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

    2012-01-01

    New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light

  4. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  5. Measurement of variable magnetic reversal paths in electrically contacted pseudo-spin-valve rings

    International Nuclear Information System (INIS)

    Hayward, T J; Llandro, J; Schackert, F D O; Morecroft, D; Balsod, R B; Bland, J A C; Castano, F J; Ross, C A

    2007-01-01

    In this work we show that the measurement of single magnetic reversal events is of critical importance in order to correctly characterize the switching of magnetic microstructures. Magnetoresistance measurements are performed on two pseudo-spin-valve ring structures with high enough signal to noise to allow the probing of single reversal events. Using this technique we acquire 'switching spectra' which demonstrate that the rings exhibit a range of variable reversal paths, including a bistable reversal mechanism of the hard layer, where the two switching routes have substantially different switching fields. The signature of the variable reversal paths would have been obscured in field cycle averaged data and in the bistable case would cause a fundamental misinterpretation of the reversal behaviour

  6. Nanostructures based on superconducting Nb and ferromagnetic CuNi alloy for elaboration of spin-valve core

    International Nuclear Information System (INIS)

    Morari, Roman

    2013-01-01

    The main goal of our research group is the elaboration of superconducting spin-switch (valve) based on Ferromagnetic/Superconductor/Ferromagnetic core. We could realize all building blocks necessary for the fabrication of the core structure of the superconducting spin valve, consisting of two mirror symmetric bilayers. In other words, the spin valve consists of a F/S * /F trilayer, which can be regarded as a package of a F/S and S/F bilayer so that S * =2S in the trilayer. For such a trilayer, the theory predicts that the critical temperature depends on the relative orientation of the magnetization of the ferromagnetic layers. To enable a reversal of one of the magnetizations of the layers with respect to the other by an external magnetic field, the coercive forces of the F layers have to be different due to either intrinsic properties or to an antiferromagnetic pinning layer delivering an exchange bias. The main points of our study are presented here. (author)

  7. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    International Nuclear Information System (INIS)

    Huong Giang, D.T.; Thuc, V.N.; Duc, N.H.

    2012-01-01

    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni 80 Fe 20 /Cu/Fe 50 Co 50 /IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: ► Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. ► Magnetization, magnetoresistance changes under electric field across piezoelectric. ► Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. ► This advance shows great implications for low-power electronics and spintronics.

  8. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    Science.gov (United States)

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  9. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  10. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  11. The proton spin structure; La structure en spin du proton

    Energy Technology Data Exchange (ETDEWEB)

    Breton, V.

    1996-05-13

    The author presents first the theoretical frame of the nucleon spin structure study carried out through the deep inelastic scattering of polarised leptons on a polarised target. The interest of the lepton scattering reaction to study the hadronic structure is discussed and the formalism of the inclusive inelastic scattering presented. If the target and the beam are both polarised, the formalism enables to connect the experimentally measured asymmetries to the contribution of quarks to the spin of nucleon. The recent knowledge about the nucleon spin structure is also presented. The Bjorken sum rule is then discussed: it correlates the difference of spin structure between proton and neutron to the neutron lifetime. Then, the author mentions the experimental results of SMC (CERN) and E142, E143 (SLAC). The transition from rough asymmetry to the g sub 1 structure function integral is discussed as well as the main causes of uncertainty. Compared to theoretical data, the measurements confirm the reliability of the Bjorken sum rule. They also confirm the deficit of the quark contribution with respect to the naive unpolarized strange sea model. The possible origins of this discrepancy and the contributions of the current and planned experiments are also discussed. Finally, the author brings up the next major step for nucleon spin studies: the estimation of the gluon contribution. He discusses the experimental knowledge about the polarised gluon distribution function with regard to the multiple existing parameter set. Concerning the experimental determination of this distribution function, outlooks are proposed with respect to feasibility on current experimental facilities. (N.T.). 134 refs.

  12. Current-induced magnetic switching of a single molecule magnet on a spin valve

    International Nuclear Information System (INIS)

    Zhang, Xiao; Wang, Zheng-Chuan; Zheng, Qing-Rong; Zhu, Zheng-Gang; Su, Gang

    2015-01-01

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs

  13. Current-induced magnetic switching of a single molecule magnet on a spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zheng-Chuan, E-mail: wangzc@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Qing-Rong [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Zheng-Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); School of Electronics, Electric and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Su, Gang, E-mail: gsu@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-04-17

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs.

  14. Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves

    NARCIS (Netherlands)

    Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.

    2010-01-01

    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third

  15. Spin structure of the proton

    International Nuclear Information System (INIS)

    Nathan Isgur

    1995-01-01

    In these lectures the author argues that their response to the spin crisis should not be to abandon the naive quark model baby, but rather to allow it to mature. He begin by recalling what a beautiful baby the quark model is via an overview of its successes in spectroscopy, dynamics, and valence spin structure. He also introduces the conservative hypothesis that dynamical qanti q pairs are its key missing ingredient. He then discusses dressing the baby. He first shows that it can be clothed in glue without changing its spectroscopic successes. In the process, several dynamical mysteries associated with quark model spectroscopy are potentially explained. Next, he dresses the baby in qanti q pairs, first showing that this can be done without compromising the naive quark model's success with either spectroscopy or the OZI rule. Finally, he shows that despite their near invisibility elsewhere, pairs do play an important role in the proton's spin structure by creating an antipolarized qanti q sea. In the context of an explicit calculation he demonstrate that it is plausible that the entire ''spin crisis'' arises from this effect

  16. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    Science.gov (United States)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  17. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  18. An analytical method for optimal design of MR valve structures

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2009-01-01

    This paper proposes an analytical methodology for the optimal design of a magnetorheological (MR) valve structure. The MR valve structure is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the yield stress pressure drop of a MR valve or the yield stress damping force of a MR damper. In this paper, the single-coil and two-coil annular MR valve structures are considered. After describing the schematic configuration and operating principle of a typical MR valve and damper, a quasi-static model is derived based on the Bingham model of a MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying Kirchoff's law and the magnetic flux conservation rule. Based on quasi-static modeling and magnetic circuit analysis, the optimization problem of the MR valve and damper is built. In order to reduce the computation load, the optimization problem is simplified and a procedure to obtain the optimal solution of the simplified optimization problem is presented. The optimal solution of the simplified optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution of the original optimization problem and the optimal solution obtained from the finite element method

  19. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling.

    Science.gov (United States)

    Schoonus, J J H M; Lumens, P G E; Wagemans, W; Kohlhepp, J T; Bobbert, P A; Swagten, H J M; Koopmans, B

    2009-10-02

    By combining experiments with simple model calculations, we obtain new insight in spin transport through hybrid, CoFeB/Al2O3(1.5 nm)/tris(8-hydroxyquinoline)aluminium (Alq3)/Co spin valves. We have measured the characteristic changes in the I-V behavior as well as the intrinsic loss of magnetoresistance at the onset of multiple-step tunneling. In the regime of multiple-step tunneling, under the condition of low hopping rates, spin precession in the presence of hyperfine coupling is conjectured to be the relevant source of spin relaxation. A quantitative analysis leads to the prediction of a symmetric magnetoresistance around zero magnetic field in addition to the hysteretic magnetoresistance curves, which are indeed observed in our experiments.

  20. Gate-tunable large magnetoresistance in an all-semiconductor spin valve device.

    Science.gov (United States)

    Oltscher, M; Eberle, F; Kuczmik, T; Bayer, A; Schuh, D; Bougeard, D; Ciorga, M; Weiss, D

    2017-11-27

    A large spin-dependent and electric field-tunable magnetoresistance of a two-dimensional electron system is a key ingredient for the realization of many novel concepts for spin-based electronic devices. The low magnetoresistance observed during the last few decades in devices with lateral semiconducting transport channels between ferromagnetic source and drain contacts has been the main obstacle for realizing spin field effect transistor proposals. Here, we show both a large two-terminal magnetoresistance in a lateral spin valve device with a two-dimensional channel, with up to 80% resistance change, and tunability of the magnetoresistance by an electric gate. The enhanced magnetoresistance is due to finite electric field effects at the contact interface, which boost spin-to-charge conversion. The gating scheme that we use is based on switching between uni- and bidirectional spin diffusion, without resorting to spin-orbit coupling. Therefore, it can also be employed in materials with low spin-orbit coupling.

  1. Large Magnetoresistance at High Bias Voltage in Double-layer Organic Spin Valves

    Science.gov (United States)

    Subedi, R. C.; Liang, S. H.; Geng, R.; Zhang, Q. T.; Lou, L.; Wang, J.; Han, X. F.; Nguyen, T. D.

    We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages. University of Georgia start-up fund, Ministry of Education, Singapore, National Natural Science Foundation of China.

  2. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface.

    Science.gov (United States)

    Burton, J D; Tsymbal, E Y

    2011-04-15

    A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.

  3. Investigations of the polymer/magnetic interface of organic spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Morley, N.A., E-mail: n.a.morley@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Dost, R.; Lingam, A.S.V. [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Barlow, A.J. [National EPSRC XPS Users’ Service, School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-12-30

    Graphical abstract: - Highlights: • Metal carbide and sulphide species are detected at a polymer–magnetic interface. • Top magnetic electrodes on P3HT have uniaxial anisotropy. • Top magnetic electrodes on PBTTT are isotropic. - Abstract: This work investigates the top interface of an organic spin-valve, to determine the interactions between the polymer and top magnetic electrode. The polymers studied are regio-regular poly(3-hexylthiophene) (RR-P3HT) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and the magnetic top electrodes are NiFe and Fe. X-ray photoelectron spectroscopy (XPS) is used to determine the bonding at the interface, along with the extent of how oxidised the magnetic layers are, while atomic force microscopy (AFM) is used to determine the surface roughness. A magneto-optic Kerr effect (MOKE) magnetometer is used to study the magnetic properties of the top electrode. It is shown that at the organic–magnetic interface the magnetic atoms interact with the polymer, as metallic–sulphide and metallic-carbide species are present at the interface. It is also shown that the structure of the polymer influences the anisotropy of the magnetic electrode, such that the magnetic electrodes grown on RR-P3HT have uniaxial anisotropy, while those grown on PBTTT are isotropic.

  4. Resistive Switching and Voltage Induced Modulation of Tunneling Magnetoresistance in Nanosized Perpendicular Organic Spin Valves

    Science.gov (United States)

    Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo

    Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.

  5. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers; Magnetotransport in Spinventil-Systemen mit amorphen magnetischen und supraleitenden Teilschichten

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Roland Johannes

    2006-04-27

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T{sub c}(H)- and the R(H)-curve. (orig.)

  6. Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact

    Directory of Open Access Journals (Sweden)

    Mohammad Koleini

    2012-08-01

    Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.

  7. Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Brandbyge, Mads

    2012-01-01

    Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....

  8. Photoemission microscopy study of picosecond magnetodynamics in spin-valve-type thin film elements

    International Nuclear Information System (INIS)

    Schneider, C.M.; Kaiser, A.; Wiemann, C.; Tieg, C.; Cramm, S.

    2010-01-01

    Exploring ultimate time scales of magnetic switching processes is an important issue in spin electronics. In spin valves or magnetic tunnelling junctions magnetic anisotropies and coupling phenomena alter the magnetodynamic response of the entire system. Understanding the role of these interactions is a key to the design of optimized devices. We have employed time-resolved X-ray photoemission microscopy to address the magnetodynamics in spin-valve-type model systems in the ns- and ps-regime. In Co/Cr/Fe(0 0 1) single crystal elements we find a strong influence of the magnetocrystalline anisotropy, which tends to suppress rotation processes. In addition, we observe a dynamic 'decoupling' of the layers. In low-anisotropy FeNi/Cr/FeCo trilayers, the interlayer coupling character determines the dynamic response. Particularly, rotational processes in the FeNi and FeCo layers are temporarily shifted to each other, which can be related to different coercivities of the individual layers. By contrast, the domain wall motion in both layers closely agrees, caused by an enhanced coupling due to the domain wall stray fields. Our examples demonstrate that the detailed magnetodynamics in coupled magnetic layers is quite complex and depends strongly on the timescale under consideration.

  9. Interfacial spectroscopic characterization of organic/ferromagnet hetero-junction of 3,4,9,10-perylene-teracarboxylic dianhydride-based organic spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jhen-Yong; Ou Yang, Kui-Hon; Li, Kai-Shin [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Wang, Bo-Yao [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China); Shiu, Hung-Wei; Chen, Chia-Hao; Chan, Yuet-Loy; Wei, Der-Hsin; Chang, Fan-Hsiu; Lin, Hong-Ji [National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan (China); Chiang, Wen-Chung, E-mail: wchiang@faculty.pccu.edu.tw [Department of Physics, Chinese Culture University, 11114 Taipei, Taiwan (China); Lin, Minn-Tsong, E-mail: mtlin@phys.ntu.edu.tw [Department of Physics, National Taiwan University, 10617 Taipei, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China)

    2014-02-24

    We report interfacial characterization of 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA)-based organic spin valves (OSV) dusted with a thin layer of partially oxidized alumina at the organic semiconductor (OSC)/ferromagnet (FM) interfaces. Up to 13.5% magnetoresistance is achieved at room temperature. X-ray photoelectron spectroscopy measurements reveal interfacial electronic interaction between PTCDA and FM while the application of a thin alumina layer at the PTCDA/FM interfaces prevents the electronic hybridization and effectively preserves the spin injection into the OSC spacer. This finding demonstrates the critical effect of interfacial structure on magnetotransport behavior in OSV.

  10. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  11. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  12. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  13. Internal spin structure of the nucleon

    International Nuclear Information System (INIS)

    Hughes, V.W.; Kuti, J.

    1983-01-01

    The study of the structure of the proton and neutron through deep inelastic scattering, initially with electrons but subsequently with muons and neutrinos as well, has played a central role in establishing the quark-parton theory of the composition of hadrons and of quantum chromodynamics (QCD). One important aspect of these theoretical and experimental developments is the two spin-dependent structure functions, which are independent of the two spin-averaged structure functions and define the internal spin structure of the nucleon. Since both quarks and gluons possess spin and the forces between them are spin dependent, we can expect important information on these forces and on nucleon structure to be obtained through the study of the spindependent aspects of the nucleon wave function, as has been the case before in atomic and nuclear physics

  14. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers.

    Science.gov (United States)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E; Hankiewicz, Ewelina M; Žutić, Igor

    2016-10-14

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  15. Pseudo spin-valve behavior in oxide ferromagnet/superconductor/ferromagnet trilayers

    International Nuclear Information System (INIS)

    Pang, B.S.H.; Bell, C.; Tomov, R.I.; Durrell, J.H.; Blamire, M.G.

    2005-01-01

    La 0.7 Ca 0.3 MnO 3 /YBa 2 Cu 3 O 7-δ /La 0.67 Sr 0.33 MnO 3 heterostructural devices with double coercivity have been fabricated. The superconducting critical current (I c ) and critical temperature in both parallel (P) and antiparallel (AP) magnetic configurations remained unchanged within our measurement limits. This observation is contrary to results obtained elsewhere using similar metallic systems. A pseudo spin-valve magnetoresistive (MR) characteristic was observed at bias current (I bias )∼I c at temperatures below the onset of superconductivity. The effect increased with decreasing temperature and I bias and can be explained using the assumption of the electron spin-charge separation

  16. Effect of nano-oxide layers on giant magnetoresistance in pseudo-spin-valves using Co2FeAl electrodes

    International Nuclear Information System (INIS)

    Zhang, D.L.; Xu, X.G.; Wu, Y.; Miao, J.; Jiang, Y.

    2011-01-01

    We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2 FeAl/NOL 1 /Co 2 FeAl/Cu/Co 2 FeAl/NOL 2 /Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2 FeAl (CFA) PSV with a structure of Ta/Co 2 FeAl/Cu/Co 2 FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2 O 3 )(Al 2 O 3 )] in NOL 1 and [(Fe 2 O 3 )(Al 2 O 3 )(Ta 2 O 5 )] in NOL 2 . Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure. - Research highlights: → Nano-oxide layers are applied in the pseudo-spin-valves with the Heusler alloy. → The CIP-GMR of pseudo-spin-valves is improved from 0.03% to 5.84%. → The GMR ratio is decided by the position of nano-oxide layers.

  17. Spin structure of the nucleon and polarization

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1994-09-01

    Recent experiments at CERN and SLAC have added new knowledge about the spin structure of the proton and the deuteron. A brief historical background is presented, the status of experiments is discussed, and progress in the understanding of the spin of the nucleon in the context of the quark parton model is summarized

  18. Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film

    Science.gov (United States)

    Elda Swastika, P.; Antarnusa, G.; Suharyadi, E.; Kato, T.; Iwata, S.

    2018-04-01

    A potential wheatstone bridge giant magnetoresistance (GMR) biosensor have been successfully developed for biomolecule detection. [IrMn(10 nm)/CoFe(3 nm)/Cu(2.2 nm)/CoFeB(10 nm)] spin-valve structure has been chosen as the magnetic sensing surface, showing a magnetoresistance (MR) of 6% fabricated by DC magnetron sputtering method. The Fe3O4 magnetic nanoparticles used as biomolecular labels (nanotags) was synthesized by co-precipitation method, exhibiting soft magnetic behavior with saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 77.2 emu/g, 7.8 emu/g and 51 Oe, respectively. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and grew in their inverse spinel structure, highly uniform morphology with an average grain size was about 20 nm. Fe3O4 was coated with polyethylene-glycol (PEG)-4000 for surface functionalization. Detection of biomolecule such as formalin, gelatin from bovine-skin and porcine-skin were dispersed in ethanol at room temperature. Induction would cause a shift in output voltage with a minimum delta output voltage (ΔV) 4.937 mV (10%) for formalin detection, 2.268 mV (7%) for bovine-skin gelatin and 2.943 mV (7%) for porcine-skin gelatin detection. The ΔV of the wheatstone bridge in real-time measurement decrease by increase in biomolecules concentration. The change of ΔV with various concentration of biomolecule indicates that the spin-valve thin film with wheatstone-bridge circuit is potential as a biosensor.

  19. Proton spin structure in the rest frame

    International Nuclear Information System (INIS)

    Zavada, P.

    1997-01-01

    It is shown that the quark-parton model in the standard infinite momentum approach overestimates the proton spin structure function g 1 (x) in comparison with the approach taking consistently into account the internal motion of quarks described by a spherical phase space in the proton rest frame. Particularly, it is shown the first moment of the spin structure function in the latter approach, assuming only the valence quarks contribution to the proton spin, does not contradict the experimental data. copyright 1997 The American Physical Society

  20. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Directory of Open Access Journals (Sweden)

    Robert Göckeritz

    2016-04-01

    Full Text Available Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  1. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Deur, A.

    2008-02-01

    This document describes the recent experimental results on the spin structure of the nucleon obtained with the electron accelerator Thomas Jefferson National Facility (Jefferson Lab), Virginia. We first discuss the goal of studying the nucleon spin structure and give the basis and phenomenology of high energy lepton scattering. Then, we discuss with some details a few sum rules concerning the spin structure of the nucleon. Those are important tools for studying the nucleon spin structure at Jefferson Lab. We then describe the present experimental situation and analyze the results. We have been able to determine an effective coupling constant for the strong interaction for any regime of quantum chromodynamics which proves that QCD is an approximately conformal theory. We conclude on the perspectives for this field of research, in particular with the 12 GeV energy upgrade of Jefferson Lab. The top priority will be the measurement of generalised parton distributions. The only issue that will stay misunderstood is the role of the very low x domain on the spin structure of the nucleon

  2. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  3. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  4. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  5. Nucleon Spin Structure: Longitudinal and Transverse

    International Nuclear Information System (INIS)

    Chen, Jian-Ping

    2011-01-01

    Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.

  6. Experimental validation of the fluid–structure interaction simulation of a bioprosthetic aortic heart valve

    International Nuclear Information System (INIS)

    Kemp, I.; Dellimore, K.; Rodriguez, R.; Scheffer, C.; Blaine, D.; Weich, H.; Doubell, A.

    2013-01-01

    Experiments performed on a 19 mm diameter bioprosthetic valve were used to successfully validate the fluid–structure interaction (FSI) simulation of an aortic valve at 72 bpm. The FSI simulation was initialized via a novel approach utilizing a Doppler sonogram of the experimentally tested valve. Using this approach very close quantitative agreement (≤12.5 %) between the numerical predictions and experimental values for several key valve performance parameters, including the peak systolic transvalvular pressure gradient, rapid valve opening time and rapid valve closing time, was obtained. The predicted valve leaflet kinematics during opening and closing were also in good agreement with the experimental measurements.

  7. The spin structure of the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Frois, B. [DAPNIA/SPHN, Gif-sur-Yvette (France)

    1994-12-01

    The Spin Muon Collaboration (SMC) has measured for the first time the spin-dependent structure function g{sub 1}{sup d} of the deuteron in the deep inelastic scattering of polarized muons on polarized deuterons in the kinematic range Q{sup 2} > 1 GeV{sup 2}, 0.006 < x < 0.6. The first moment {Gamma}{sub 1}{sup d} = {integral}{sub 0}{sup 1}g{sub 1}{sup d}dx = 0.023 {+-} 0.020(stat.) {+-} 0.015(syst.) is smaller than the prediction of the Ellis-Jaffe sum rules. The author finds that the fraction of the nucleon spin carried by strange quarks {Delta}s is appreciable and negative. Using earlier measurements of g{sub 1}{sup p}, the group can infer the first moment of the spin-dependent neutron structure function g{sub 1}{sup n}. The combined analysis of all the available data on the spin-dependent structure functions of the nucleon shows an excellent agreement among the data sets. The author does not find significant deviations from the prediction of the Bjorken sum rule.

  8. The spin structure of the pion

    Energy Technology Data Exchange (ETDEWEB)

    Broemmel, D. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)]|[Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Diehl, M. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2007-08-15

    We present the first calculation of the transverse spin structure of the pion in lattice QCD. We find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in magnitude to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike. (orig.)

  9. Structural alterations in heart valves during left ventricular pressure overload in the rat

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; Smits, J. F.; Daemen, M. J.

    1994-01-01

    Heart valves are an important denominator of the function of the heart but detailed studies of structural alterations of heart valves after hemodynamic changes are lacking. Structural alterations of heart valves, including DNA synthesis, collagen mRNA, and protein concentration were measured in

  10. MnNi-based spin valve sensors combining high thermal stability, small footprint and pTesla detectivities

    Science.gov (United States)

    Silva, Marília; Leitao, Diana C.; Cardoso, Susana; Freitas, Paulo

    2018-05-01

    Magnetoresistive sensors with high thermal robustness, low noise and high spatial resolution are the answer to a number of challenging applications. Spin valve sensors including MnNi as antiferromagnet layer provide higher exchange bias field and improved thermal stability. In this work, the influence of the buffer layer type (Ta, NiFeCr) and thickness on key sensor parameters (e.g. offset field, Hf) is investigated. A Ta buffer layer promotes a strong (111) texture which leads to a higher value of MR. In contrast, Hf is lower for NiFeCr buffer. Micrometric sensors display thermal noise levels of 1 nT/Hz1/2 and 571 pT/Hz1/2 for a sensor height (h) of 2 and 4 μm, respectively. The temperature dependence of MR and sensitivity is also addressed and compared with MnIr based spin valves. In this case, MR abruptly decreases after heating at 160°C (without magnetic field), contrary to MnNi-based spin valves, where only a 10% MR decrease (relative to the initial value) is seen at 275°C. Finally, to further decrease the noise levels and improve detectivity, MnNi spin-valves are deposited vertically, and connected in parallel and series (in-plane) to create a device with low resistance and high sensitivity. A field detection at thermal level of 346 pT/Hz1/2 is achieved for a device with a total of 300 SVs (4 vertical, 15 in series, 5 in parallel).

  11. Assessment of structural valve deterioration of transcatheter aortic bioprosthetic balloon-expandable valves using the new European consensus definition.

    Science.gov (United States)

    Eltchaninoff, Hélène; Durand, Eric; Avinée, Guillaume; Tron, Christophe; Litzler, Pierre-Yves; Bauer, Fabrice; Dacher, Jean-Nicolas; Werhlin, Camille; Bouhzam, Najime; Bettinger, Nicolas; Candolfi, Pascal; Cribier, Alain

    2018-03-30

    Durability of transcatheter aortic bioprosthetic valves remains a major issue. Standardised definitions of deterioration and failure of bioprosthetic valves have recently been proposed. The aim of this study was to assess structural transcatheter valve deterioration (SVD) and bioprosthetic valve failure (BVF) using these new definitions. All TAVI patients implanted up to September 2012 with a minimal theoretical five-year follow-up were included. Systematic clinical and echocardiographic follow-up was performed annually. New standardised definitions were used to assess durability of transcatheter aortic bioprosthetic valves. From 2002 to 2012, 378 patients were included. Mean age and logistic EuroSCORE were 83.3±6.8 years and 22.8±13.1%. Thirty-day mortality was 13.2%. Nine patients had SVD including two severe forms and two patients had definite late BVF. The incidence of SVD and BVF at eight years was 3.2% (95% CI: 1.45-6.11) and 0.58% (95% CI: 0.15-2.75), respectively. Even though limited by the poor survival of the very high-risk/compassionate early population, our data do not demonstrate any alarm concerning transcatheter aortic valve durability. Careful prospective assessment in younger and lower-risk patients and comparison with surgical bioprosthetic valves are required for further assessment of the long-term durability of transcatheter valves.

  12. Spin Hall Effect in Doped Semiconductor Structures

    Science.gov (United States)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  13. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  14. Electronic heat, charge and spin transport in superconductor-ferromagnetic insulator structures

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, Sebastian [Materials Physics Center (CFM-CSIC), San Sebastian (Spain); Donostia International Physics Center (DIPC), San Sebastian (Spain)

    2015-07-01

    It is known for some time that a superconducting (S) film in contact with a ferromagnetic insulator (FI) exhibits a spin-splitting in the density of states (DoS). Recently we have explored different S-FI hybrid structures and predicted novel effects exploiting such spin-splitting of the DoS. In this talk I will briefly discuss (i) a heat valve based on a FI-S-I-S-FI Josephson junction; (ii) a thermoelectric transistor and (iii) the occurrence of a giant thermophase in a thermally-biased Josephson junction.

  15. Thickness dependence of the triplet spin-valve effect in superconductor-ferromagnet heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Zdravkov, Vladimir I.; Kehrle, Jan; Obermeier, Guenther; Krug von Nidda, Hans-Albrecht; Mueller, Claus; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Sidorenko, Anatolie S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Tagirov, Lenar [Solid State Physics Department, Kazan Federal University (Russian Federation)

    2015-07-01

    We investigated the triplet spin-valve effect in nanoscale layered S/F{sub 1}/N/F{sub 2}/AF heterostructures with varying F{sub 1}-layer thickness (where S=Nb is a singlet superconducting, F{sub 1}=Cu{sub 41}Ni{sub 59} and F{sub 2}=Co a ferromagnetic, and N a normal-conducting, non-magnetic layer). The theory predicts a long-range, odd-in-frequency triplet component of superconductivity at non-collinear alignment of the magnetizations of F{sub 1} and F{sub 2}. This triplet component exhausts the singlet state and, thus, lowers the superconducting transition temperature, T{sub c}, yielding a global minimum of T{sub c} close to the perpendicular mutual orientations of the magnetizations. We found an oscillating decay of T{sub c} suppression, due to the generation of the triplet component, with increasing F{sub 1} layer thickness, which we discuss in the framework of recent theories.

  16. Nanoscale magnetic characterization of tunneling magnetoresistance spin valve head by electron holography.

    Science.gov (United States)

    Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira

    2012-12-07

    Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ordinary and triplet superconducting spin valve effect in Fe/Pb based systems

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Krupskaya, Yulia; Kataev, Vladislav; Hess, Christian; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute of RAS, Kazan (Russian Federation); Fominov, Yakov [L. D. Landau Institute for Theoretical Physics of RAS, Moscow (Russian Federation)

    2015-07-01

    We report on experimental evidence for the occurrence of the long range triplet correlations (LRTC) of the superconducting (SC) condensate in the spin-valve heterostructures CoO{sub x}/Fe1/Cu/Fe2/Pb. The LRTC generation in this layer sequence is accompanied by a T{sub c} suppression near the orthogonal mutual orientation of the Fe1 and Fe2 layers' magnetization. This T{sub c} drop reaches its maximum of 60mK at the Fe2 layer thickness d{sub Fe2} = 0.6 nm and falls down when d{sub Fe2} is increased. The modification of the Fe/Pb interface by using a thin Cu layer between Fe and Pb layers reduces the SC transition width without preventing the interaction between Pb and Fe2 layers. The dependence of the SSVE magnitude on Fe1 layer thickness d{sub Fe1} reveals maximum of the effect when d{sub Fe1} and d{sub Fe2} are equal and the d{sub Fe2} value is minimal. Using the optimal d{sub Fe1}, d{sub Fe2} and the intermediate Cu layer we realized almost full switching from normal to SC state due to SSVE.

  18. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    International Nuclear Information System (INIS)

    Park, J.-S.; Lee, S.-R.; Kim, Y.K.

    2004-01-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field (H ex.eff ) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply

  19. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    Science.gov (United States)

    Park, Jeong-Suk; Lee, Seong-Rae; Kim, Young Keun

    2004-08-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field ( Hex.eff) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply.

  20. [Functional characteristics of flexible supporting structures for heart valve bioprosthesis].

    Science.gov (United States)

    Dobrova, N B; Agafonov, A V; Barbarash, L S; Zavalishin, N N; Neniukov, A K

    1984-01-01

    Hydraulic characteristics of heart valve bioprostheses mounted on supporting structures of various rigidity have been studied under physiologic conditions. An actual mobility of the supporting structures made of different polymers is determined. Static and dynamic components of the support displacements have been shown to develop as the bioprosthesis is under the load, the dynamic component being strongly dependent upon the rigidity of fastening the bioprosthesis on the axis. It is noted that considerable improvements in hydraulic characteristics of bioprostheses are achieved through the use of flexible supporting structures.

  1. Patient-prosthesis mismatch and risk of structural valve deterioration in patients undergoing bioprosthetic aortic valve implantation

    OpenAIRE

    Urso, Stefano

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Medicina. Fecha de lectura: 15-06-2015 Patient-prosthesis mismatch (PPM) has been identified as a risk factor for mortality after aortic valve replacement. Recently PPM has been also reported to increase the risk of structural valve degeneration (SVD) in patients receiving a bioprosthetic aortic valve. The aim of the present study was to compare the incidence of reoperation because of S...

  2. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    Science.gov (United States)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  3. Spin as a probe of hadron structure

    International Nuclear Information System (INIS)

    Ali, R.

    1995-01-01

    In this thesis, hadron structure was explored by studying three problems. In each case some underlying hard process, or a characteristic hard momentum, yielded important physical information such as structure and fragmentation functions describing hadrons. This provided a test of QCD predictions. In the first problem, spin dependent quark structure functions were estimated for nuclei. The multipole L=2 structure function, measurable in deeply inelastic scattering of unpolarized leptons off a polarized J > 1 nuclear target, is a good indicator of exotic quark gluon components in the nucleus. I estimated this structure function for two different classes of nuclei light nuclei describable in an independent particle model approach, as well as for heavy nuclei described by slowly rotating collective variables. In the second problem, spin dependent gluonic structure functions in a transversely polarized proton were identified and the classification according to twist was discussed. I found that there were two twist three transverse spin gluonic structure functions, called herein H1(x,Q2) and H2(x,Q2). Cross section formulae were calculated for a variety of polarization states, assuming a simple effective interaction for X2 production from gluon fusion. In the third, and final problem, the emphasis shifted from spin dependent structure functions of polarised hadrons to the formulation of an effective, low energy, field theory of s wave quarkonia, constituent heavy quarks, and gluons. and radiative transitions were shown to be easily recovered. The light-cone gluon momentum distribution at very small x was calculated and shown to be uniquely determined by the non relativistic wave function. I found that the emission of low momentum gluons made this process quite sensitive to assumptions about the binding energy of heavy quarks in quarkonia. This gauge invariant theory is extend able to p-wave quarkonia where the non locality of the meson state is enhanced by the

  4. Exchange bias mechanism in FM/FM/AF spin valve systems in the presence of random unidirectional anisotropy field at the AF interface: The role played by the interface roughness due to randomness

    Science.gov (United States)

    Yüksel, Yusuf

    2018-05-01

    We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.

  5. Spin structure of nucleon in QCD: inclusive and exclusive processes

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    2001-01-01

    There are two basically independent ways to describe the nucleon spin structure. One is related to quark and gluon spins and another one to their total angular momenta. The latter spin structure may be studied, in principle, in hard exclusive processes

  6. Chemical properties and GMR improvement of specular spin valves with nano-oxide layers, formed in ambient mixed gases

    International Nuclear Information System (INIS)

    Quang, H D; Hien, N T; Oh, S K; Sinh, N H; Yu, S C

    2004-01-01

    Specular spin valves (SVs) containing nano-oxide layers (NOLs) structured as substrate/seed/AF/P 1 /NOL/P 2 /Cu/F/NOL, have been fabricated. The NOLs were formed by natural oxidation in different ambient atmospheres of pure oxygen, oxygen/nitrogen and oxygen/argon gas mixtures. The fabrication conditions were optimized to enhance the magnetoresistance (MR) ratio, to suppress the interlayer coupling fields (H f ) between the free and pinned layers, to suppress the high interface density of the NOL, to ease the control of the NOL thickness and to form a smooth NOL/P 2 interface for promoting specular electron scattering. The characteristics of our specular SVs are the MR ratio of 14.1%, the exchange bias field of 44-45 mT, and H f weaker than 1.0 mT. The optimal conditions for oxidation time, total oxidation pressure and the annealing temperature were found to be 300 s, 0.14 Pa (oxygen/argon = 80/20) and 250 deg. C, respectively. Also, the origin of thermal stability of MMn-based (M = Fe, Pt, Ir, etc) specular SVs has been explained in detail by chemical properties of NOL using secondary-ion mass spectroscopy and x-ray photoelectron spectroscopy depth profile analyses. Thermal stability turns out to be caused by a decrease in MR ratios at high temperatures (>250 deg. C), which is a serious problem for device applications using the SV structure as a high density read head device

  7. Effect of NiAl underlayer and spacer on magnetoresistance of current-perpendicular-to-plane spin valves using Co2Mn(Ga0.5Sn0.5) Heusler alloy

    International Nuclear Information System (INIS)

    Hase, N.; Nakatani, T.M.; Kasai, S.; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2012-01-01

    We investigated the effect of a NiAl underlayer and spacer on magnetoresistive (MR) properties in current-perpendicular-to-plane spin valves (CPP-SVs) using Co 2 Mn(Ga 0.5 Sn 0.5 ) (CMGS) Heusler alloy ferromagnetic layers. The usage of a NiAl underlayer allowed a high temperature annealing for the L2 1 ordering of the bottom CMGS layer, giving rise to a MR ratio of 10.2% at room temperature. We found that the usage of a NiAl spacer layer also improved the tolerance of the multilayer structure against thermal delamination, which allowed annealing to induce the L2 1 structure in both the bottom and top CMGS layers. However, the short spin diffusion length of NiAl resulted in a lower MR ratio compared to that obtained using a Ag spacer. Transmission electron microscopy of the multilayer structure of CPP-SVs showed that the atomically flat layered structure was maintained after the annealing. - Highlights: → CPP spin valves using Co 2 Mn(Ga 0.5 Sn 0.5 ) ferromagnetic layers with a new underlayer material. → NiAl underlayer and spacer improve the thermal tolerance of the spin valve structure. → NiAl underlayer improves MR ratio compared to Ag because of higher annealing temperature. → NiAl spacer degrades MR ratios compared to Ag because of short spin diffusion length. → Potential of heat resistant underlayer and spacer layer for CPP-SV using Heusler alloy.

  8. Impact of hypertension on left ventricular structure in patients with asymptomatic aortic valve stenosis (a SEAS substudy)

    DEFF Research Database (Denmark)

    Rieck, Ashild E; Cramariuc, Dana; Staal, Eva M

    2010-01-01

    Both hypertension and aortic valve stenosis induce left ventricular hypertrophy. However, less is known about the influence of concomitant hypertension on left ventricular structure in patients with aortic valve stenosis.......Both hypertension and aortic valve stenosis induce left ventricular hypertrophy. However, less is known about the influence of concomitant hypertension on left ventricular structure in patients with aortic valve stenosis....

  9. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  10. Ferromagnetic resonance study of the half-Heusler alloy NiMnSb. The benefit of using NiMnSb as a ferromagnetic layer in pseudo-spin-valve based spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, Andreas

    2011-11-25

    Since the discovery of spin torque in 1996, independently by Berger and Slonczewski, and given its potential impact on information storage and communication technologies, (e.g. through the possibility of switching the magnetic configuration of a bit by current instead of a magnetic field, or the realization of high frequency spin torque oscillators (STO)), this effect has been an important field of spintronics research. One aspect of this research focuses on ferromagnets with low damping. The lower the damping in a ferromagnet, the lower the critical current that is needed to induce switching of a spin valve or induce precession of its magnetization. In this thesis ferromagnetic resonance (FMR) studies of NiMnSb layers are presented along with experimental studies on various spin-torque (ST) devices using NiMnSb. NiMnSb, when crystallized in the half-Heusler structure, is a half-metal which is predicted to have 100% spin polarization, a consideration which further increases its potential as a candidate for memory devices based on the giant magnetoresistance (GMR) effect. The FMR measurements show an outstandingly low damping factor for NiMnSb, in low 10{sup -3} range. This is about a factor of two lower than permalloy and well comparable to lowest damping for iron grown by molecular beam epitaxy (MBE). According to theory the 100% spin polarization properties of the bulk disappear at interfaces where the break in translational symmetry causes the gap in the minority spin band to collapse but can remain in other crystal symmetries such as (111). Consequently NiMnSb layers on (111)(In,Ga)As buffer are characterized in respect of anisotropies and damping. The FMR measurements on these samples indicates a higher damping that for the 001 samples, and a thickness dependent uniaxial in-plane anisotropy. Investigations of the material for device use is pursued by considering sub-micrometer sized elements of NiMnSb on 001 substrates, which were fabricated by electron

  11. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  12. Magnon Valve Effect between Two Magnetic Insulators

    Science.gov (United States)

    Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.

    2018-03-01

    The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.

  13. Role of motive forces for the spin torque transfer for nano-structures

    Science.gov (United States)

    Barnes, Stewart

    2009-03-01

    Despite an announced imminent commercial realization of spin transfer random access memory (SPRAM) the current theory evolved from that of Slonczewski [1,2] does not conserve energy. Barnes and Maekawa [3] have shown, in order correct this defect, forces which originate from the spin rather than the charge of an electron must be accounted for, this leading to the concept of spin-motive-forces (smf) which must appear in Faraday's law and which significantly modifies the theory for spin-valves and domain wall devices [4]. A multi-channel theory in which these smf's redirect the spin currents will be described. In nano-structures it is now well known that the Kondo effect is reflected by conductance peaks. In essence, the spin degrees of freedom are used to enhance conduction. In a system with nano-magnets and a Coulomb blockade [5] the similar spin channels can be the only means of effective conduction. This results in a smf which lasts for minutes and an enormous magneto-resistance [5]. This implies the possibility of ``single electron memory'' in which the magnetic state is switched by a single electron. [4pt] [1] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers J. Magn. Magn. Mater. 159, L1 (1996). [0pt] [2] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [3] S. E. Barnes and S. Maekawa, Generalization of Faraday's Law to Include Nonconservative Spin Forces Phys. Rev. Lett. 98, 246601 (2007); S. E. Barnes and S. Maekawa, Currents induced by domain wall motion in thin ferromagnetic wires. arXiv:cond-mat/ 0410021v1 (2004). [0pt] [4] S. E., Barnes, Spin motive forces, measurement, and spin-valves. J. Magn. Magn. Mat. 310, 2035-2037 (2007); S. E. Barnes, J. Ieda. J and S. Maekawa, Magnetic memory and current amplification devices using moving domain walls. Appl. Phys. Lett. 89, 122507 (2006). [0pt] [5] Pham-Nam Hai, Byung-Ho Yu

  14. Structure and spin of the nucleon

    Directory of Open Access Journals (Sweden)

    Avakian H.

    2014-03-01

    Great progress has been made since then in measurements of different Single Spin Asymmetries (SSAs in semi-inclusive and hard exclusive processes providing access to TMDs and GPDs, respectively. Facilities world-wide involved in studies of the 3D structure of nucleon include HERMES, COMPASS, BELLE, BaBar, Halls A, B, and C at JLab, and PHENIX and STAR at RHIC (BNL. TMD studies in the Drell-Yan process are also becoming an important part of the program of hadron scattering experiments. Studies of TMDs are also among the main driving forces of the JLab 12-GeV upgrade project, several of the forward upgrade proposals of STAR and PHENIX at RHIC, and future facilities, such as the Electron Ion Collider (EIC, FAIR in Germany, and NICA in Russia. In this contribution we present an overview of the latest developments in studies of parton distributions and discuss newly released results, ongoing activities, as well as some future measurements.

  15. Flavour and spin structure of linear baryons

    International Nuclear Information System (INIS)

    Kawarabayashi, K.; Kitakado, S.; Inami, T.

    1979-01-01

    Based on the string picture, a phenomenological model for baryons is constructed and their flavour symmetry, exchange degeneracy pattern and spin structure are studied. Baryons on leading trajectories are assumed to have the configuration of two quarks being attached to the ends of a linear string and the third sitting in the middle, called linear baryons. For such linear baryons, a unitarization scheme can be constructed in a manner similar to the dual unitarity scheme for mesons but without recourse to the 1/N expansion. It is found that the interchange interaction of the middle quark with one of the other two quarks at the ends of the string can give rise to a larger exchange degeneracy breaking of the baryon spectrum. With this non-planar correction, the model of linear baryons can account for the observed pattern of leading baryon states. (Auth.)

  16. Spin fine structure of optically excited quantum dot molecules

    Science.gov (United States)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  17. The Spin Structure of the Neutron

    Energy Technology Data Exchange (ETDEWEB)

    Churchwell, S

    2003-12-18

    A description of SLAC experiment E154, a precision measurement of the neutron's longitudinal spin structure function g{sub 1}{sup n}, is presented. Deep inelastic electron scattering was used to measure the structure function in the kinematic range 0.014 < x < 0.7, and 1 < Q{sup 2} < 17 GeV{sup 2}. A measurement of the transverse spin structure function g{sub 2}{sup n} was also made, but with significantly lower statistical precision. Electrons with an average polarization of 82 {+-} 2% and an energy of 48.3 GeV were scattered off polarized {sup 3}He nuclei having an average polarization of 38%. Two independent magnetic spectrometers set at scattering angles of 2.75{sup o} and 5.5{sup o} were used to acquire about 100 million events during a two month run in late 1995. The data were analyzed to yield the integral over the measured region: {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst), which is several standard deviations below the Ellis-Jaffe sum rule predictions. When these data were combined with the proton g{sub 1}{sup p} structure function data from the SMC and E143 experiments, the Bjorken sum rule over the measured x range was found to be within 10% of the predicted value. The integral of the g{sub 2}{sup n} data, dominated by the statistical uncertainty, was found to be {integral}{sub 0.014}{sup 0.7} g{sub 2}{sup n}(x)dx = 0.19 {+-} 0.17(stat) {+-} 0.02(syst), in agreement with the Burkhardt-Cottingham sum rule prediction. The g{sub 1}{sup n} structure function data at low x were found to be inconsistent with the traditional asymptotic forms, bringing into question the methods used in the past.

  18. Fluid-Structure Interaction of a Reed Type Valve Subjected to Piston Displacement

    OpenAIRE

    Estruch, Olga; Lehmkuhl, Oriol; Rigola, Joaquim; Pérez-Segarra, Carles David

    2014-01-01

    In the field of reciprocating compressors, the developing of reed type valves is a challenging task. The understanding of the fluid flow behaviour through the valve reed is essential to improve the valve design. Hence, this work attempts the dynamic simulation of this fluid-structure interaction (FSI) problem, taking into account valve movement due to piston displacement. In this work attends the in-house implemented CFD&HT and moving mesh coupled code TermoFluids [1]. The CFD&HT solver consi...

  19. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Rezania, H.

    2017-01-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  20. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, H., E-mail: rezania.hamed@gmail.com

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed. - Highlights: • Theoretical calculation of spin structure factors of Heisenberg chain. • The investigation of the effect of anisotropy spin structure factors of Heisenberg chain. • The investigation of the effect of magnetic field on spin structure factors of Heisenberg chain.

  1. Measurement of the proton spin structure function g1p

    International Nuclear Information System (INIS)

    Pussieux, T.

    1994-10-01

    In order to check the Bjorken sum rule and confirm the EMC surprising conclusion on the spin structure of the proton, the measurement of the spin structure function of the proton has been performed by the Spin Muon Collaboration via the polarized muon nucleon deep inelastic scattering. The results of the 1993 run are presented within a kinematical range of 0.003 2 = 10 GeV 2 . The first moment of the polarized spin structure function g 1 p is found to be two standard deviations below the Ellis-Jaffe sum rule. Assuming SU(3) for hyperons β decays, the quark spin contribution to the proton spin is extracted. Combining all available data on proton, neutron and deuton, The Bjorken sum rule is confirmed within 10%. (author). 25 refs., 3 figs., 2 tabs

  2. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.

    Science.gov (United States)

    Toma, Milan; Einstein, Daniel R; Bloodworth, Charles H; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2017-04-01

    Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be 'invisible' to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Spin-torsion effects in the hyperfine structure of methanol

    International Nuclear Information System (INIS)

    Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.

    2015-01-01

    The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling

  4. Using spin to probe hadronic structure

    International Nuclear Information System (INIS)

    Ramsey, G.P.; Argonne National Lab., IL

    1994-01-01

    The theoretical and experimental status of high energy spin phenomena is summarized, with emphasis on the spin properties of nucleons. It is stressed that crucial tests of the Standard Model can be made with polarization experiments. By performing the experiments discussed here, the authors will reveal important constituent and composite properties of protons and neutrons. The future prospects for planned polarization experiments are discussed

  5. Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers

    Science.gov (United States)

    Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.

    2003-05-01

    Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.

  6. Ultra-Compact 100 × 100 μm2 Footprint Hybrid Device with Spin-Valve Nanosensors

    Directory of Open Access Journals (Sweden)

    Diana C. Leitao

    2015-12-01

    Full Text Available Magnetic field mapping with micrometric spatial resolution and high sensitivity is a challenging application, and the technological solutions are usually based on large area devices integrating discrete magnetic flux guide elements. In this work we demonstrate a high performance hybrid device with improved field sensitivity levels and small footprint, consisting of a ultra-compact 2D design where nanometric spin valve sensors are inserted within the gap of thin-film magnetic flux concentrators. Pole-sensor distances down to 400 nm are demonstrated using nanofabrication techniques combined with an optimized liftoff process. These 100 × 100 μm 2 pixel sensors can be integrated in modular devices for surface mapping without moving parts.

  7. A Structural Analysis of a Mechanical Heart Valve Prosthesis with Flat Leaflet

    Science.gov (United States)

    Kwon, Young Joo

    This paper addresses the basic concept of MDO methodology and the structural analysis that should be performed in the design process of a mechanical heart valve prosthesis with flat leaflet using MDO methodology. In the structural design of the mechanical heart valve (MHV) prosthesis, the fluid mechanics analysis is executed for the blood flow passing through the leaflets of a mechanical heart valve prosthesis. Thereafter, the rigid body dynamics analysis of the leaflet motion is performed to obtain the structural condition for the structural mechanics analysis of the deformed leaflet. Then the structural mechanics analysis of the deformed leaflet follows to confirm the minimum thickness of the leaflet for the structural durability of the mechanical heart valve prosthesis. This paper shows that the minimum leaflet thickness can be evaluated to be 0.6mm among the suggested thicknesses.

  8. The spin structure of the nucleon

    International Nuclear Information System (INIS)

    Le Goff, J.M.

    2005-02-01

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*ΔΣ + Δg + L q + L g where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L q and L g are the orbital momentum of the quark and the gluon respectively. The ΔΣ contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization Δg/g and the so-called transversity. (A.C.)

  9. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  10. Structure and thermal evolution of spinning-down neutron stars

    International Nuclear Information System (INIS)

    Negreiros, R.; Schramm, S.; Weber, F.

    2011-01-01

    In this paper we address the effects of spin-down on the cooling of neutron stars. During its evolution, stellar composition and structure might be substantially altered, as a result of spin-down and the consequent density increase. Since the timescale of cooling might be comparable to to that of the spin-evolution, the modifications to the structure/composition might have important effects on the thermal evolution of the object. We show that the direct Urca process might be delayed or supressed, when spin-down is taken into account. This leads to neutron stars with slow cooling, as opposed to enhanced cooling as would be the case if a "froze-in" structure and composition were considered. In conclusion we demonstrate that the inclusion of spin-down effects on the cooling of neutron stars have far-reaching implications for the interpretation of pulsars. (author)

  11. Reoperation for non-structural valvular dysfunction caused by pannus ingrowth in aortic valve prosthesis.

    Science.gov (United States)

    Oh, Se Jin; Park, Samina; Kim, Jun Sung; Kim, Kyung-Hwan; Kim, Ki Bong; Ahn, Hyuk

    2013-07-01

    The authors' clinical experience is presented of non-structural valvular dysfunction of the prosthetic aortic valve caused by pannus ingrowth during the late postoperative period after previous heart valve surgery. Between January 1999 and April 2012, at the authors' institution, a total of 33 patients underwent reoperation for increased mean pressure gradient of the prosthetic aortic valve. All patients were shown to have pannus ingrowth. The mean interval from the previous operation was 16.7 +/- 4.3 years, and the most common etiology for the previous aortic valve replacement (AVR) was rheumatic valve disease. The mean effective orifice area index (EOAI) of the previous prosthetic valve was 0.97 +/- 0.11 cm2/m2, and the mean pressure gradient on the aortic prosthesis before reoperation was 39.1 +/- 10.7 mmHg. Two patients (6.1%) died in-hospital, and late death occurred in six patients (18.2%). At the first operation, 30 patients underwent mitral or tricuspid valve surgery as a concomitant procedure. Among these operations, mitral valve replacement (MVR) was combined in 24 of all 26 patients with rheumatic valve disease. Four patients underwent pannus removal only while the prosthetic aortic valve was left in place. The mean EOAI after reoperation was significantly increased to 1.16 +/- 0.16 cm2/m2 (p pannus ingrowth was shown in patients with a small EOAI of the prosthetic aortic valve and combined MVR for rheumatic disease. As reoperation for pannus overgrowth showed good clinical outcomes, an aggressive resection of pannus and repeated AVR should be considered in symptomatic patients to avoid the complications of other cardiac diseases.

  12. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.

    Science.gov (United States)

    Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng

    2011-03-28

    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:

  13. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    Directory of Open Access Journals (Sweden)

    Ma Jing-Min

    2011-01-01

    Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:

  14. The spin structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J.M

    2005-02-15

    The nucleon is a spin 1/2 particle. This spin can be decomposed into the contributions of its constituents: 1/2 equals 1/2*{delta}{sigma} + {delta}g + L{sub q} + L{sub g} where the first term is the contribution from the spin of the quarks, the second term is the contribution from the spin of the gluons and L{sub q} and L{sub g} are the orbital momentum of the quark and the gluon respectively. The {delta}{sigma} contribution of the spin of quarks can be studied through polarized deep inelastic scattering (DIS). We introduce DIS and the so-called parton model and then turn to the case of polarized DIS in the inclusive and semi-inclusive cases. We also discuss how a third parton distribution, called transversity, appears together with the unpolarized and the longitudinally polarized (or helicity) ones. We show how the longitudinally polarized gluon distribution can be measured. Then we focus on the SMC and COMPASS experiments performed at CERN. SMC confirmed a previous result by showing that the contribution of the spin of the quark to the spin of the nucleon was small. SMC also performed a measurement on the deuterium in order to test, for the first time, the Bjorker sum rules, which is a fundamental prediction of quantum chromodynamics. The COMPASS experiment started collecting data in 2002. Its main objectives are the gluon polarization {delta}g/g and the so-called transversity. (A.C.)

  15. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  16. High spin structure in 130Ba

    International Nuclear Information System (INIS)

    Singh, Amandeep; Kaur, Navneet; Kumar, A.; Singh, Varinderjit; Sandal, Rohit; Kaur, Rajbir; Behera, B.R.; Singh, K.P.; Singh, G.; Shukla, Aaradhya; Sharma, H.P.; Kumar, Suresh; Kumar Raja, M.; Madhusudan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, M.; Bhowmik, R.K.

    2009-01-01

    Nuclei with mass A ∼130 has been of great interest to experimental studies on high spin states. This is particularly so for the nuclei in the A∼130 region which exhibit a softness to γ. Evidence for characteristics such as shape coexistence and γ-softness has been gathered during the last two decades for many nuclei from Xe to Nd. Another interesting feature of this mass region is the existence of a regular M1 band which has been considered to be a promising candidate for magnetic rotation. In several nuclei of the A ∼130 mass region M1 bands like those observed in the A < 200 mass region are known. One signature of magnetic rotation is the decrease of the B (M1) values with increasing spin. The aim of the work is to study the high spin states and lifetime measurements using the DSAM technique

  17. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  18. Structure of Se at high spin

    Indian Academy of Sciences (India)

    the proton-rich mass-80 nuclei shows considerable variation in going from one nucleus to ... shell gaps at N, Z = 34, 36 and 38 at large deformation. ... systematic increase of the B(E2) values for spins up to I = 14-h has been observed [2] in. 72.

  19. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  20. Supra-annular structure assessment for self-expanding transcatheter heart valve size selection in patients with bicuspid aortic valve.

    Science.gov (United States)

    Liu, Xianbao; He, Yuxin; Zhu, Qifeng; Gao, Feng; He, Wei; Yu, Lei; Zhou, Qijing; Kong, Minjian; Wang, Jian'an

    2018-04-01

    To explore assessment of supra-annular structure for self-expanding transcatheter heart valve (THV) size selection in patients with bicuspid aortic stenosis (AS). Annulus-based device selection from CT measurement is the standard sizing strategy for tricuspid aortic valve before transcatheter aortic valve replacement (TAVR). Because of supra-annular deformity, device selection for bicuspid AS has not been systemically studied. Twelve patients with bicuspid AS who underwent TAVR with self-expanding THVs were included in this study. To assess supra-annular structure, sequential balloon aortic valvuloplasty was performed in every 2 mm increments until waist sign occurred with less than mild regurgitation. Procedural results and 30 day follow-up outcomes were analyzed. Seven patients (58.3%) with 18 mm; three patients (25%) with sequential 18 mm, 20 mm; and only two patients (16.7%) with sequential 18 mm, 20 mm, and 22 mm balloon sizing were performed, respectively. According to the results of supra-annular assessment, a smaller device size (91.7%) was selected in all but one patient compared with annulus based sizing strategy, and the outcomes were satisfactory with 100% procedural success. No mortality and 1 minor stroke were observed at 30 d follow-up. The percentage of NYHA III/IV decreased from 83.3% (9/12) to 16.7% (2/12). No new permanent pacemaker implantation and no moderate or severe paravalvular leakage were found. A supra-annular structure based sizing strategy is feasible for TAVR in patients with bicuspid AS. © 2018 The Authors Catheterization and Cardiovascular Interventions Published by Wiley Periodicals, Inc.

  1. Relativistic impulse approximation and deuteron spin structure

    International Nuclear Information System (INIS)

    Tokarev, M.V.

    1992-01-01

    The fragmentation processes were considered of tensor- and vector-polarized deuterons to protons in the framework of the covariant approach in the light cone variables on the basis of the relativistic deuteron wave function with one nucleon on-mass shell. The experimental verification of predicted dependences of T 20 and K is of interest for the research of the momentum and spin distributions of high momentum deuteron constituents. 21 refs.; 6 figs

  2. Masses, magnetic moments, QCD and proton spin structure

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1990-10-01

    This talk is dedicated to the memory of Andrei D. Sakharov. In addition to his well-known contributions to society, Sakharov was also a pioneer in spin physics and the application of the basic ideas of QCD to spin structure of hadrons. He took quarks seriously at the time when the particle physicists ridiculed the quark model. Immediately after the quark proposal Sakharov asked: 'Why is M Λ ≠ M Σ ? They contain the same quarks' His answer was 'Spin Physics! A flavor-dependent hyperfine interaction'. (author)

  3. Probing spin-1 diquarks in deep inelastic structure functions

    International Nuclear Information System (INIS)

    Fredriksson, S.; Jaendel, M.; Larsson, T.

    1983-01-01

    Within the scope of a new diquark model for deep inelastic structure functions presented by us recently we use the existing data on F 1 sup(ep)(x,Q 2 ) to learn about the admixture of spin-1 diquarks in nucleons. It turns out that they are so rare, heavy and extended compared to spin-0 diquarks that they are presumably accidental and not dynamical. Their number and form factors can be understood qualitatively within this picture. Still, the spin-1 diquarks give interesting structures in data and, together with quarks and spin-0 diquarks, carry enough momentum to account for the full nucleon energy. A gluon component is hence not needed in the nucleon. (orig.)

  4. Spin valve-like magnetic tunnel diode exhibiting giant positive junction magnetoresistance at low temperature in Co2MnSi/SiO2/p-Si heterostructure

    Science.gov (United States)

    Maji, Nilay; Kar, Uddipta; Nath, T. K.

    2018-02-01

    The rectifying magnetic tunnel diode has been fabricated by growing Co2MnSi (CMS) Heusler alloy film carefully on a properly cleaned p-Si (100) substrate with the help of electron beam physical vapor deposition technique and its structural, electrical and magnetic properties have been experimentally investigated in details. The electronic- and magneto-transport properties at various isothermal conditions have been studied in the temperature regime of 78-300 K. The current-voltage ( I- V) characteristics of the junction show an excellent rectifying magnetic tunnel diode-like behavior throughout that temperature regime. The current ( I) across the junction has been found to decrease with the application of a magnetic field parallel to the plane of the CMS film clearly indicating positive junction magnetoresistance (JMR) of the heterostructure. When forward dc bias is applied to the heterostructure, the I- V characteristics are highly influenced on turning on the field B = 0.5 T at 78 K, and the forward current reduces abruptly (99.2% current reduction at 3 V) which is nearly equal to the order of the magnitude of the current observed in the reverse bias. Hence, our Co2MnSi/SiO2/p-Si heterostructure can perform in off ( I off)/on ( I on) states with the application of non-zero/zero magnetic field like a spin valve at low temperature (78 K).

  5. Infective endocarditis involving an apparently structurally normal valve: new epidemiological trend?

    Science.gov (United States)

    Song, Jae-Kwan

    2015-07-01

    Infective endocarditis (IE) has been increasingly diagnosed in patients without previously detected predisposing heart disease, but its clinical features have yet to be fully determined. A recent single-center study including echocardiographic images and surgical findings investigated the incidence of undiagnosed, clinically silent valvular or congenital heart diseases and healthcare-associated infective endocarditis (HAIE). The study confirmed that a large proportion of patients with IE have no previous history of heart disease. Analysis of underlying disease in these patients showed that undetected mitral valve prolapse was the most common disease, followed by an apparently structurally normal valve. The patients who developed IE of apparently structurally normal valves had different clinical characteristics and worse outcomes. IE involving a structurally normal valve was associated with both nosocomial and non-nosocomial HAIE, whereas community-acquired IE was more frequent than HAIE. The pathophysiologic mechanism involving the development of non-HAIE or community-acquired IE due to predominantly staphylococcal infection in an apparently structurally normal valve is not yet clearly understood. Structurally normal valves are not necessarily free of regurgitation or abnormal turbulence and, given the dynamic nature and fluctuating hemodynamic effects of conditions such as poorly controlled hypertension, end-stage renal disease, and sleep apnea, further investigation is necessary to evaluate the potential role of these diseases in the development of IE. An apparently normal-looking valve is associated with IE development in patients without previously recognized predisposing heart disease, warranting repartition of at-risk groups to achieve better clinical outcomes.

  6. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction

    Czech Academy of Sciences Publication Activity Database

    Park, B.G.; Wunderlich, Joerg; Martí, X.; Holý, V.; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Shick, Alexander; Jungwirth, Tomáš

    2011-01-01

    Roč. 10, č. 5 (2011), s. 347-351 ISSN 1476-1122 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : spintronics * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 32.841, year: 2011

  7. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    Science.gov (United States)

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  8. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  9. Element-specific ferromagnetic resonance in epitaxial Heusler spin valve systems

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, P; Jorge, E Arbelo; Jourdan, M; Elmers, H J [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Hoffmann, F; Woltersdorf, G; Back, C H, E-mail: elmers@uni-mainz.de [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2011-10-26

    Time-resolved x-ray magnetic circular dichroism was used to investigate epitaxial MgO(100)/Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al and MgO(100)/Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al/Cr/CoFe films. The precessional motion of the individual sublattice magnetization, excited by continuous microwave excitation in the range 2-10 GHz, was detected by tuning the x-ray photon energy to the L{sub 3} absorption edges of Cr, Fe and Co. The relative phase angle of the sublattice magnetization's response is smaller than the detection limit of 2{sup 0}. A weakly antiferromagnetically coupled CoFe layer causes an increase in the ferromagnetic resonance linewidth consisting of a constant offset and a component linearly increasing with frequency that we partly attribute to non-local damping due to spin pumping.

  10. Quark-hadron duality of nucleon spin structure function

    International Nuclear Information System (INIS)

    Dong, Y.B.

    2005-01-01

    Bloom-Gilman quark-hadron duality of nuclear spin structure function is studied by comparing the integral of g 1 from perturbative QCD prediction in the scaling region to the moment of g 1 in the resonance region. The spin structure function in the resonance region is estimated by the parametrization forms of non-resonance background and of resonance contributions. The uncertainties of our calculations due to those parametrization forms are discussed. Moreover, the effect of the Δ(1232)-resonance in the first resonance region and the role of the resonances in the second resonance region are explicitly shown. Elastic peak contribution to the duality is also analyzed. (orig.)

  11. The Spin Structure of the Proton in the Resonance Region

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Renee H. [Univ. of Virginia, Charlottesville, VA (United States)

    2002-01-01

    Inclusive double spin asymmetries have been measured for $\\vec{p}$($\\vec{e}$,e') using the CLAS detector and a polarized 15NH3 target at Jefferson Lab in 1998. The virtual photon asymmetry A1, the longitudinal spin structure function, g1 (x, Q2), and the first moment Γ$1\\atop{p}$, have been extracted for a Q2 range of 0.15-2.0 GeV2. These results provide insight into the low Q2 evolution of spin dependent asymmetries and structure functions as well as the transition of Γ$1\\atop{p}$ from the photon point, where the Gerasimov, Drell and Hearn Sum Rule is expected to be satisfied, to the deep inelastic region.

  12. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    Science.gov (United States)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  13. Micro-nanofibers with hierarchical structure by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Liu Peng

    2015-01-01

    Full Text Available Bubbfil spinning is used to fabricate micro/nanofibers with hierarchical structure. The wall of a polymer film is attenuated unevenly by a blowing air. The burst of the bubble results in film fragments with different thickness, as a result, different sizes of fibers are obtained.

  14. Level Structure of 103Ag at high spins

    OpenAIRE

    Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.

    2007-01-01

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...

  15. Structural analysis strategies of the pressurized relief and safety valves discharge piping of NPP Angra 1

    International Nuclear Information System (INIS)

    Lima, Maria Ines Prates de; Kuramoto, Edson; Suanno, Rodolfo

    2002-01-01

    The pressurizer relief and safety valve system provides the reactor coolant system overpressure protection and, therefore, it is fundamental for the security of a nuclear plant. This paper discusses the safety valve loop seal strategies adopted by others nuclear power plants over the world in order to attend the recommendations of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short Term Recommendations). The technical option adopted for Angra 1 consists in making specific modifications on the original piping and support configuration of the pressurizer relief and safety valve system. These modifications were proposed in order to reduce the high stress levels induced by the thermal-hydrodynamic loads caused by the discharge of the sub-cooled water during the opening of the relief or the safety valves. Several thermal-hydraulic models were tested to assess the influence of the seal water heating and the simultaneous opening of the valves in order to minimize the thermal hydrodynamic loads effects. The piping structural analysis was performed, using the computer program system KWUROHR, to satisfy the requirements of the appropriate equations of the code ASME Section III, Subsections NB3650 and NC3650. (author)

  16. Lagrangian coherent structures in the left ventricle in the presence of aortic valve regurgitation

    Science.gov (United States)

    di Labbio, Giuseppe; Vetel, Jerome; Kadem, Lyes

    2017-11-01

    Aortic valve regurgitation is a rather prevalent condition where the aortic valve improperly closes, allowing filling of the left ventricle of the heart to occur partly from backflow through the aortic valve. Although studies of intraventricular flow are rapidly gaining popularity in the fluid dynamics research community, much attention has been given to the left ventricular vortex and its potential for early detection of disease, particularly in the case of dilated cardiomyopathy. Notably, the subsequent flow in the left ventricle in the presence of aortic valve regurgitation ought to be appreciably disturbed and has yet to be described. Aortic valve regurgitation was simulated in vitro in a double-activation left heart duplicator and the ensuing flow was captured using two-dimensional time-resolved particle image velocimetry. Further insight into the regurgitant flow is obtained by computing attracting and repelling Lagrangian coherent structures. An interesting interplay between the two inflowing jets and their shear layer roll-up is observed for various grades of regurgitation. This study highlights flow features which may find use in further assessing regurgitation severity.

  17. Chiral effective-field theory of the nucleon spin structure

    Science.gov (United States)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  18. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  19. Spin-spin interactions of electrons and also of nucleons create atomic molecular and nuclear structures

    International Nuclear Information System (INIS)

    Kaliambos, L.A.

    2008-01-01

    Fundamental interactions of spinning electrons at an interelectron separation less than 578.8 fm yield attractive electromagnetic forces with S = 0 creating vibrations under a motional emf. They explain the indistinguishability of electrons and give a vibration energy able for calculating the ground-state energies of many-electron atoms without using any perturbative approximation. Such forces create two-electron orbitals able to account for the exclusion principal and the mechanism of covalent bonds. In the outer subshells of atoms the penetrating orbitals interact also as pair-pair systems and deform drastically the probability densities of the quantum mechanical electron clouds. Such a dynamics of deformation removes the degeneracy and leads to the deviation from the shell scheme. However in the interior of atoms the large nuclear charge leads to a spherically symmetric potential with non-interacting pairs for creating shells of degenerate states giving an accurate explanation of the X-ray lines. On the other hand, considerable charge distributions in nucleons as multiples of 2e/3 and - e/3 determined by the magnetic moments, interact for creating the nuclear structure with p-n bonds. Such spin-spin interactions show that the dominant concept of the untisymmetric wave function for fermions is inapplicable not only in the simple p-n, p-p, and n-n systems but also in the LS coupling of atoms in which the electrons interact from different quantum states giving either S = 0 or S = l. (author)

  20. Investigations on the local structure and the spin-Hamiltonian ...

    Indian Academy of Sciences (India)

    2016-07-13

    Jul 13, 2016 ... (2016) 87: 22 c Indian Academy of Sciences. DOI 10.1007/s12043-016-1234-6. Investigations on the local structure and the spin-Hamiltonian parameters for the tetragonal Cu. 2+ centre in ZnGeF6·6H2O crystal. LI CHAO-YING. ∗. , HUANG YING and ZHENG XUE MEI. School of Physics and Electronic ...

  1. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  2. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin-orbit coupling

    Science.gov (United States)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Newrock, Richard S.; Cahay, Marc; Herbert, Stephen T.

    2013-03-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta-Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin-orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin-orbit coupling and a strong e-e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. Keynote talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  3. Research on micro-structure and hemo-compatibility of the artificial heart valve surface

    International Nuclear Information System (INIS)

    Ye Xia; Shao Yunliang; Zhou Ming; Li Jian; Cai Lan

    2009-01-01

    In order to seek the method to improve the hemo-compatibility of artificial mechanical heart valve, the surface of rabbit's heart valve was observed using the scanning electron microscopy (SEM). The results showed that the dual-scale structure which consists of cobblestones-like structure of 8 μm in underside diameter and 3 μm in height, and the fine cilia of about 150 nm in diameter, was helpful to the hemo-compatibility of the heart valve. Therefore, the polydimethylsiloxane (PDMS) surface with hierarchical micro-structure was fabricated using femtosecond laser fabrication technique and soft lithography. At the same time, the tests of apparent contact angle and platelet adhesion on both smooth and textured PDMS surfaces were carried out to study their wettability and hemo-compatibility. The results demonstrated that the surface with textured structure displayed more excellent wettabililty and anti-coagulation property than that of smooth surface. The apparent contact angle of textured surface enhanced from 113.1 deg. to 163.6 deg. and the amount of adsorbed platelet on such surface was fewer, no distortion and no activation were found.

  4. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  5. Fractional vortex lattice structures in spin-triplet superconductors

    International Nuclear Information System (INIS)

    Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A

    2009-01-01

    Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .

  6. Dynamical spin structure factors of α-RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-03-01

    Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.

  7. High spin structure in 130,131Ba

    International Nuclear Information System (INIS)

    Kaur, Navneet; Kumar, A.; Singh, Amandeep; Kumar, S.; Kaur, Rajbir; Singh, Varinderjit; Behera, B.R.; Singh, K.P.; Singh, G.; Mukherjee, G.; Sharma, H.P.; Kumar, Suresh; Kumar Raju, M.; Madhusudhan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, N.; Bhowmik, R.K.

    2014-01-01

    High spin states of 130,131 Ba have been investigated via fusion evaporation reactions 122 Sn( 13 C,4n) 131 Ba and 122 Sn( 13 C, 5n) 130 Ba at E beam =65 MeV. The level schemes of 130,131 Ba have been extended by placing several new γ transitions. A few interband transitions connecting two negative-parity bands, which are the experimental fingerprints of signature partners, have been established in 130 Ba. Spin and parity of a side band have been assigned in 131 Ba and this dipole band is proposed to have a three-quasiparticle configuration, νh 11/2 x πh 11/2 x πg 7/2 . The observed band structures and nuclear shape evolution as a function of the angular momentum have been discussed in the light of Total-Routhian-Surface calculations. (orig.)

  8. Measuring spin-dependent structure functions at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Universitaet Frankfurt (Germany)

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  9. Measuring spin-dependent structure functions at CEBAF

    International Nuclear Information System (INIS)

    Schaefer, A.

    1994-01-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q 2 dependence of the spin-dependent structure functions g 1 (x) and G 2 (x) and (2) the by far most precise determination of the third moments of g 1 (x) and g 2 (x) the latter of which the author argues to be related to a fundamental property of the nucleon

  10. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  11. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  12. Fully coupled fluid-structure interaction model of reed valves in a multi-cylinder reciprocating piston compressor

    Science.gov (United States)

    Xie, F.; Nieter, J.; Lifson, A.; Reba, R.; Sishtla, V.

    2017-08-01

    For years compressor researchers have tried to account for the fluid interaction effect of the working fluid on valve motion in displacement compressors. In recent years, the computing capacities and available CFD and FEA programs have allowed fully coupled interaction of fluids and moving structures to be modelled more comprehensively. This paper describes our experience and results from developing a model of a multi-cylinder reciprocating piston compressor with suction and discharge valve systems that are fully coupled with the pressure pulsation in the adjacent plenum. Valve dynamics are captured by the model that affects compressor performance. The results show that higher running speed causes more discharge valve delay on closing due to higher pressure pulsation in discharge plenum. The acoustic property of the discharge plenum as it relates to valve motion is studied by the developed cost-effective standalone model.

  13. Spin injection and transport in semiconductor and metal nanostructures

    Science.gov (United States)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes

  14. Measurement of the spin dependent structure functions of proton and neutron

    International Nuclear Information System (INIS)

    Rith, K.

    1989-01-01

    Recent results from the EMC experiment on the spin dependent structure function g 1 p (x) of the proton are discussed. They suggest that the nucleon spin does not originate from quark spins but rather from angular orbital momentum and gluon contributions. A proposed experiment at HERA is presented which will allow a very accurate measurement of the spin dependent structure functions and their integrals of both proton and neutron and a precise test of the Bjorken sum rule. (orig.)

  15. Precision measurement of the neutron spin dependent structure functions

    International Nuclear Information System (INIS)

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g 1 n (x, Q 2 ) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3 He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 ≤ x ≤ 0.7 with an average Q 2 of 5 GeV 2 . The author reports the integral of the spin dependent structure function in the measured range to be ∫ 0.014 0.7 dx g 1 n (x, 5 GeV 2 ) = -0.036 ± 0.004(stat.) ± 0.005(syst.). The author observes relatively large values of g 1 n at low x that call into question the reliability of data extrapolation to x → 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g 1 p and g 1 n paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q 2 = 5 GeV 2 , determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule

  16. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve.

    Science.gov (United States)

    Straka, Frantisek; Schornik, David; Masin, Jaroslav; Filova, Elena; Mirejovsky, Tomas; Burdikova, Zuzana; Svindrych, Zdenek; Chlup, Hynek; Horny, Lukas; Daniel, Matej; Machac, Jiri; Skibová, Jelena; Pirk, Jan; Bacakova, Lucie

    2018-04-01

    The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.

  17. Molecular structure of human aortic valve by μSR- FTIR microscopy

    Science.gov (United States)

    Borkowska, Anna M.; Nowakowski, Michał; Lis, Grzegorz J.; Wehbe, Katia; Cinque, Gianfelice; Kwiatek, Wojciech M.

    2017-11-01

    Aortic valve is a part of the heart most frequently affected by pathological processes in humans what constitute a very serious health problem. Therefore, studies of morphology and molecular microstructure of the AV are needed. μSR- FTIR spectroscopy and microscopy represent unique tools to study chemical composition of the tissue and to identify spectroscopic markers characteristic for structural and functional features. Normal AV reveals a multi-layered structure and the compositional and structural changes within particular layers may trigger degenerative processes within the valve. Thus, deep insight into the structure of the valve to understand pathological processes occurring in AV is needed. In order to identify differences between three layers of human AV, tissue sections of macroscopically normal AV were studied using μSR- FTIR spectroscopy in combination with histological and histochemical stainings. Tissue sections deposited onto CaF2 substrates were mapped and representative set of IR spectra collected from fibrosa, spongiosa and ventricularis were analysed by Principal Component Analysis (PCA) in the spectral range between 1850-1000 cm-1 and 3050-2750 cm-1. PCA revealed a layered molecular structure of the valve and it was possible to identify IR bands associated to different tissue parts. Spongiosa layer was well differentiated from other two layers mainly based on IR bands characteristic for the distribution of glycosaminoglycans (GAGs) in the tissue - like 1170 cm-1 (υas(C-O-S)) and 1380 cm-1 (acetyl amino group). Additionally, it was distinguished from fibrosa and ventricularis based on 1085 cm-1 and 1240 cm-1 bands characteristic for GAGs and for carbohydrates- ν(C-O) and ν(C-O-C) respectively and nucleic acids -νsym(PO2-) and νasym(PO2-) respectively, which were less specific for this layer. The use of μSR- FTIR spectroscopy demonstrated co-localization of GAGs and lipids in spongiosa layer what may indicate their contribution in the very

  18. Structural Safety Analysis Based on Seismic Service Conditions for Butterfly Valves in a Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Sang-Uk Han

    2014-01-01

    Full Text Available The structural integrity of valves that are used to control cooling waters in the primary coolant loop that prevents boiling within the reactor in a nuclear power plant must be capable of withstanding earthquakes or other dangerous situations. In this study, numerical analyses using a finite element method, that is, static and dynamic analyses according to the rigid or flexible characteristics of the dynamic properties of a 200A butterfly valve, were performed according to the KEPIC MFA. An experimental vibration test was also carried out in order to verify the results from the modal analysis, in which a validated finite element model was obtained via a model-updating method that considers changes in the in situ experimental data. By using a validated finite element model, the equivalent static load under SSE conditions stipulated by the KEPIC MFA gave a stress of 135 MPa that occurred at the connections of the stem and body. A larger stress of 183 MPa was induced when we used a CQC method with a design response spectrum that uses 2% damping ratio. These values were lower than the allowable strength of the materials used for manufacturing the butterfly valve, and, therefore, its structural safety met the KEPIC MFA requirements.

  19. Anatomy of a Spin: The Information-Theoretic Structure of Classical Spin Systems

    Directory of Open Access Journals (Sweden)

    Vikram S. Vijayaraghavan

    2017-05-01

    Full Text Available Collective organization in matter plays a significant role in its expressed physical properties. Typically, it is detected via an order parameter, appropriately defined for each given system’s observed emergent patterns. Recent developments in information theory, however, suggest quantifying collective organization in a system- and phenomenon-agnostic way: decomposing the system’s thermodynamic entropy density into a localized entropy, that is solely contained in the dynamics at a single location, and a bound entropy, that is stored in space as domains, clusters, excitations, or other emergent structures. As a concrete demonstration, we compute this decomposition and related quantities explicitly for the nearest-neighbor Ising model on the 1D chain, on the Bethe lattice with coordination number k = 3 , and on the 2D square lattice, illustrating its generality and the functional insights it gives near and away from phase transitions. In particular, we consider the roles that different spin motifs play (in cluster bulk, cluster edges, and the like and how these affect the dependencies between spins.

  20. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  1. Studies of the neutron spin structure at Jefferson Lab

    International Nuclear Information System (INIS)

    Korsch, W.

    2003-01-01

    The polarized 3 He program of Hall A at Jefferson Lab will be described. Results on the generalized Gerasimov-Drell-Hearn integral for the neutron in a Q 2 range between 0.02 GeV 2 /c 2 2 2 /c 2 will be presented. Preliminary results of the virtual photon asymmetry A 1 n (x,Q 2 ) and the spin structure function g 2 n (x,Q 2 ) at large values of Bjorken x and low Q 2 , respectively, will be discussed. (orig.)

  2. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  3. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  4. Experimental verification of the rotational type of chiral spin spiral structures by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio

    2017-10-16

    We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

  5. Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures

    Energy Technology Data Exchange (ETDEWEB)

    Deorani, Praveen; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2013-12-02

    From spin pumping measurements in Ta/Py devices for different thicknesses of Ta, we determine the spin Hall angle to be 0.021–0.033 and spin diffusion length to be 8 nm in Ta. We have also studied the effect of changing the properties of non-magnet/ferromagnet interface by adding a Cu interlayer. The experimental results show that the effective spin mixing conductance increases in the presence of Cu interlayer for Ta/Cu/Py devices whereas it decreases in Pt/Cu/Py devices. Our findings allow the tunability of the spin pumping efficiency by adding a thin interlayer at the non-magnet/ferromagnet interface.

  6. Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure.

    Science.gov (United States)

    Xiao, Wen; Song, Wendong; Herng, Tun Seng; Qin, Qing; Yang, Yong; Zheng, Ming; Hong, Xiaoliang; Feng, Yuan Ping; Ding, Jun

    2016-08-25

    Herein, we design a room-temperature spin-valve-like magnetoresistance in a nano-column Fe3O4/Ni heterostructure without using a non-magnetic spacer or pinning layer. An Fe3O4 nano-column film is self-assembled on a Ni underlayer by the thermal decomposition method. The wet-chemical self-assembly is facile, economical and scalable. The magnetoresistance (MR) response of the Ni underlayer in the heterostructure under positive and negative out-of-plane magnetic fields differ by ∼0.25 at room temperature and ∼0.43 at 100 K. We attribute the spin-valve-like magnetoresistance to the unidirectional magnetic anisotropy of the Ni underlayer when being magnetically coupled by the Fe3O4 nano-column film. The out-of-plane negative-field magnetization is higher than the positive-field magnetization, affirming the unidirectional magnetic anisotropy of the Fe3O4/Ni heterostructure. Temperature-dependent magnetic and resistivity studies illustrate a close correlation between the magnetization transition of Fe3O4 and resistivity transition of Ni and prove a magnetic coupling between the Fe3O4 and Ni. First-principles calculations reveal that the Fe3O4/Ni model under a negative magnetic field is energetically more stable than that under a positive magnetic field. Furthermore, partial density of states (PDOS) analysis demonstrates the unidirectional magnetic anisotropy of the Ni 3d orbital. This is induced by the strong ferromagnetic coupling between Fe3O4 and Ni via oxygen-mediated Fe 3d-O 2p-Ni 3d hybridizations.

  7. Nanoscale spin-dependent transport of electrons and holes in Si-ferromagnet structures

    NARCIS (Netherlands)

    Ul Haq, E.

    Given the rapid development of magnetic data storage and spin-electronics into the realm of nanotechnology, the understanding of the spin-dependent electronic transport and switching behavior of magnetic structures at the nanoscale is an important issue. We have developed spin-sensitive techniques

  8. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  9. Spin current and electrical polarization in GaN double-barrier structures

    OpenAIRE

    Litvinov, V. I.

    2007-01-01

    Tunnel spin polarization in a piezoelectric AlGaN/GaN double barrier structure is calculated. It is shown that the piezoelectric field and the spontaneous electrical polarization increase an efficiency of the tunnel spin injection. The relation between the electrical polarization and the spin orientation allows engineering a zero magnetic field spin injection manipulating the lattice-mismatch strain with an Al-content in the barriers.

  10. Modeling the collective excitations in a full Heusler Co2 FeAl0.5 Si0.5 (CFAS) spin valve magnetic nanopillar in the electromagnetic field

    International Nuclear Information System (INIS)

    David, Cherine; Arumugam, Brinda; Rajamani, Amuda; Natarajan, Kanimozhi

    2014-01-01

    This paper describes the physics of collective excitations that are caused by spin-transfer torques in CFAS magnetic multilayer. When the magnetizations of the pinned and free layers are not collinear with each other, the spin-polarized currents transfer angular momentum to the magnetizations near the interfaces, giving rise to spin-transfer torques. The currents in magnetic multilayer are spin polarised and can carry enough angular momentum. When an electron spin carried by the current interacts with a magnetic layer, the exchange interaction leads to torque between the spin and the magnetization vector of the free layer. This is Spin Transfer Torque (STT) and it excites the magnetization when it is large enough. The Spin Transfer Torque induced collective excitations for the CFAS spin valve pillar have been extensively studied in this paper. - Highlights: • We have modeled LLGS equation for CFAS multilayer array. • The dynamics of collective excitation induced by STT is investigated. • The interactions exhibit solitonic behaviour at both limiting modes of polarization. • The spin components of the solitons are graphically represented

  11. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves

    Science.gov (United States)

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading

  12. Soil-structure interaction for transient loads due to safety relief valve discharges

    International Nuclear Information System (INIS)

    Tseng, W.S.; Tsai, N.C.

    1978-01-01

    Dynamic responses of BWR Mark II containment structures subjected to axisymmetric transient pressure loadings due to simultaneous safety relief valve discharges were investigated using finite element analysis, including the soil-structure interaction effect. To properly consider the soil-structure interaction effect, a simplified lumped parameter foundation model and axisymmetric finite element foundation model with viscous boundary impedance are used. Analytical results are presented to demonstrate the effectiveness of the simplified foundation model and to exhibit the dynamic response behavior of the structure as the transient loading frequency and the foundation rigidity vary. The impact of the dynamic structural response due to this type of loading on the equipment design is also discussed. (Auth.)

  13. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  14. Quasi spin pairing and the structure of the Lipkin model

    International Nuclear Information System (INIS)

    Cambiaggio, M.C.; Plastino, A.

    1978-01-01

    By introducing the concepts of quasi-spin pairing and quasi-spin seniority, the Lipkin model is extended to a variable number of particles. The properties of quasi-spin pairing are seen to be quite similar to those of ordinary pairing. The quasi-spin seniority allows one to obtain a simple classification of excited multiplets. A 'pairing plus monopole' model is studied in connection with the Hartree-Fock theory. (orig.) [de

  15. Global symplectic structure-preserving integrators for spinning compact binaries

    Science.gov (United States)

    Zhong, Shuang-Ying; Wu, Xin; Liu, San-Qiu; Deng, Xin-Fa

    2010-12-01

    This paper deals mainly with the application of the second-order symplectic implicit midpoint rule and its symmetric compositions to a post-Newtonian Hamiltonian formulation with canonical spin variables in relativistic compact binaries. The midpoint rule, as a basic algorithm, is directly used to integrate the completely canonical Hamiltonian system. On the other hand, there are symmetric composite methods based on a splitting of the Hamiltonian into two parts: the Newtonian part associated with a Kepler motion, and a perturbation part involving the orbital post-Newtonian and spin contributions, where the Kepler flow has an analytic solution and the perturbation can be calculated by the midpoint rule. An example is the second-order mixed leapfrog symplectic integrator with one stage integration of the perturbation flow and two semistage computations of the Kepler flow at every integration step. Also, higher-order composite methods such as the Forest-Ruth fourth-order symplectic integrator and its optimized algorithm are applicable. Various numerical tests including simulations of chaotic orbits show that the mixed leapfrog integrator is always superior to the midpoint rule in energy accuracy, while both of them are almost equivalent in computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides good precision and needs no expensive additional computational time. As a result, it is worth performing a more detailed and careful examination of the dynamical structure of chaos and order in the parameter windows and phase space of the binary system.

  16. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    Science.gov (United States)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  17. A Determination of the Neutron Spin Structure Function

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Emlyn W

    2003-08-18

    The authors report the results of the experiment E142 which measured the spin dependent structure function of the neutron, g{sub 1}{sup n}(x, Q{sup 2}). The experiment was carried out at the Stanford Linear Accelerator Center by measuring an asymmetry in the deep inelastic scattering of polarized electrons from a polarized {sup 3}He target, at electron energies from 19 to 26 GeV. The structure function was determined over the kinematic range 0.03 < BJorken x < 0.6 and 1.0 < Q{sup 2} < 5.5 (GeV/c){sup 2}. An evaluation of the integral {integral}{sub 0}{sup 1} g{sub 1}{sup n}(x,Q{sup 2})dx at fixed Q{sup 2} = 2 (GeV/c){sup 2} yields the final result {Lambda}{sub 1}{sup n} = -0.032 {+-} 0.006 (stat.) {+-} 0.009 (syst.). This result, when combined with the integral of the proton spin structure function measured in other experiments, confirms the fundamental Bjorken sum rule with O({alpha}{sub s}{sup 3}) corrections to within one standard deviation. This is a major success for perturbative Quantum Chromodynamics. Some ancillary results include the findings that the Ellis-Jaffe sum rule for the neutron is violated at the 2 {sigma} level, and that the total contribution of the quarks to the helicity of the nucleon is 0.36 {+-} 0.10. The strange sea polarization is estimated to be small and negative, {Delta}s = -0.07 {+-} 0.04.

  18. Local quark-hadron duality of nucleon spin structure functions with target mass corrections

    International Nuclear Information System (INIS)

    Dong, Y.B. . E-mail dongyb@mail.ihep.ac.cn; Chen, D.Y.

    2007-01-01

    Target mass corrections to nucleon spin structure functions are analyzed. Our results show that the corrections are important to the structure functions in a large x region. Moreover, they play a remarkable role to the local quark-hadron duality of the nucleon spin structure functions in three individual inelastic resonance production regions

  19. Quaternary structure and spin state of human fetal methemoglobin

    International Nuclear Information System (INIS)

    Chevion, M.; Navok, T.; Ilan, Y.A.; Czapski, G.

    1981-01-01

    Using the pulse-radiolysis technique, solutions of fetal human methemoglobin were irradiated in order to reduce a single heme-iron within the protein tetramers. The valence-hybrids thus formed ere reacted wjth oxygen. Kinetics of the reactions were studied. The effects of p and inositol-hexaphosphate (IHP) were examined. The kinetics of the ligation of oxygen to stripped valence-hybrids showed a single-phase behaviour at the pH range 7-9. As the pH was lowered below 6.5, a second slower phase became apparent. This slow phase consisted of approximately 50% at pH 5.8. In the presence of IHP above pH 7.4, the kinetics of oxygen-binding was of a single-phase. As the pH was lowered a transition to a second, slower phase was noticed. Below pH 7 the slower phase was the only detectable one. The analysis of the relative contribution of the faster phase to the total reaction, as a function of the pH, showed a typical sigmoidal transition curve characterized by a pK = 7.2 and a Hill parameter n = 3.06. On this basis it is concluded that stripped, fetal human methemoglobin resides in an R quaternary structure while the presence of IHP stabilizes the T structure at pH below 7.2. The switch between the high spin aquomet- and the low spin hydroxymet-derivatives of adult and fetal human hemoglobins was studied optically in detail. These switches were found to be only slightly affected by IHP, and exhibited very low cooperativity (pK = 8.04; n = 1.1 and pK = 8.10; n = 1.3 for adult methemoglobin when stripped and in the presence of IHP, respectively; pK = 8.18; n = 1.11 and pK = 8.21; n = 1.28 for fetal methemoglobin when stripped and in the presence of IHP, respectively). These findings lead to the conclusion that the transition between quaternary structures in either human or fetal methemoglobins is not coupled to the switch of the spin state of the ferric heme. (author)

  20. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  1. Spin-flavor structure of large Nc baryons

    International Nuclear Information System (INIS)

    Dashen, R.F.; Jenkins, E.; Manohar, A.V.

    1995-01-01

    The spin-flavor structure of large N c baryons is described in the 1/N c expansion of QCD using quark operators. The complete set of quark operator identities is obtained, and used to derive an operator reduction rule which simplifies the 1/N c expansion. The operator reduction rule is applied to the axial vector currents, masses, magnetic moments, and hyperon nonleptonic decay amplitudes in the SU(3) limit, to first order in SU(3) breaking, and without assuming SU(3) symmetry. The connection between the Skyrme and quark operator representations is discussed. An explicit formula is given for the quark model operators in terms of the Skyrme model operators to all orders in 1/N c for the two flavor case

  2. Nuclear structure at high and very high spin theoretical description

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  3. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  4. Structural and magnetic characterization of Fe2CrSi Heusler alloy nanoparticles as spin injectors and spin based sensors

    Science.gov (United States)

    Saravanan, G.; Asvini, V.; Kalaiezhily, R. K.; Parveen, I. Mubeena; Ravichandran, K.

    2018-05-01

    Half-metallic ferromagnetic [HMF] nanoparticles are of considerable interest in spintronics applications due to their potential use as a highly spin polarized current source. HMF exhibits a semiconductor in one spin band at the Fermi level Ef and at the other spin band they poses strong metallic nature which shows 100 % spin polarization at Ef. Fe based full Heusler alloys are primary interest due to high Curie temperature. Fe2CrSi Heusler alloys are synthesized using metallic powders of Fe, Cr and Si by mechanical alloying method. X-Ray diffractions studies were performed to analyze the structural details of Fe2CrSi nanoparticles with High resolution scanning electron microscope (HRSEM) studies for the morphological details of nanoparticles and magnetic properties were studied using Vibrating sample magnetometer (VSM). XRD Data analysis conforms the Heusler alloy phase showing the existence of L21 structure. Magnetic properties are measured for synthesized samples exhibiting a soft magnetic property possessing low coercivity (HC = 60.5 Oe) and saturation magnetic moment of Fe2CrSi is 3.16 µB, which is significantly higher than the ideal value of 2 µB from the Slater-Pauling rule due to room temperature measurement. The change in magnetic properties are half-metallic nature of Fe2CrSi is due to the shift of the Fermi level with respect to the gap were can be used as spin sensors and spin injectors in magnetic random access memories and other spin dependent devices.

  5. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  6. Understanding the proton's spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Myhrer, Fred [Univ. of South Carolina, Columbia, SC (United States); Thomas, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    We discuss the tremendous progress that has been towards an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest twenty years ago with the discovery of the proton "spin crisis" by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks.

  7. Spin Coherence in Silicon-based Quantum Structures and Devices

    Science.gov (United States)

    2017-08-31

    Using electron spin resonance (ESR) to measure the den- sity of shallow traps, we find that the two sets of devices are nearly identical , indicating...experiments which cannot utilize a clock transition or a field-cancelling decoherence-free subspace. Our approach was to lock the microwave source driving...the electron spins to a strong nuclear spin signal. In our initial experiments we locked to the proton signal in a water cell. However, the noise in

  8. Spin structure at the partonic level. Pt. 2

    International Nuclear Information System (INIS)

    Leader, E.

    1983-01-01

    Knowledge of the spin and momentum distribution of partons inside a polarised nucleon, as deduced from lepton scattering, is combined with lowest order QCD to calculate spin dependent parameters in large psub(T) hadronic reactions. Clear predictions emerge in some cases and are in conflict with present experimental results. There is a real challenge to improve both theory and experiment. (orig.)

  9. The boundary condition at the valve for numerical modelling of transient pipe flow with fluid structure interaction

    Science.gov (United States)

    Henclik, S.

    2014-08-01

    Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.

  10. The spin structure of magnetic nanoparticles and in magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Disch, Sabrina

    2011-09-26

    The present thesis provides an extensive and original contribution to the investigation of magnetic nanoparticles regarding synthesis and structural characterization using advanced scattering methods in all length scales between the atomic and mesoscopic size range. Particular emphasis is on determination of the magnetic structure of single nanoparticles as well as preparation and characterization of higher dimensional assemblies thereof. The unique physical properties arising from the finite size of magnetic nanoparticles are pronounced for very small particle sizes. With the aim of preparing magnetic nanoparticles suitable for investigation of such properties, a micellar synthesis route for very small cobalt nanoparticles is explored. Cobalt nanoparticles with diameters of less than 3 nm are prepared and characterized, and routes for variation of the particle size are developed. The needs and limitations of primary characterization and handling of such small and oxidation-sensitive nanoparticles are highlighted and discussed in detail. Comprehensive structural and magnetic characterization is performed on iron oxide nanoparticles of {proportional_to} 10 nm in diameter. Particle size and narrow size distribution are determined with high precision. Investigation of the long range and local atomic structure reveals a particle size dependent magnetite - maghemite structure type with lattice distortions induced at the particle surface. The spatial magnetization distribution within these nanoparticles is determined to be constant in the particle core with a decrease towards the particle surface, thus indicating a magnetic dead layer or spin canting close to the surface. Magnetically induced arrangements of such nanoparticles into higher dimensional assemblies are investigated in solution and by deposition of long range ordered mesocrystals. Both cases reveal a strong dependence of the found structures on the nanoparticle shape (spheres, cubes, and heavily truncated

  11. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, Armen N. [Department of Physics, California State University, Los Angeles, CA 90032 (United States); Fernando, Gayanath W.; Fang, Kun [Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States); Palandage, Kalum [Department of Physics, Trinity College, Hartford, Connecticut 06106 (United States); Balatsky, Alexander V. [AlbaNova University Center Nordita, SE-106 91 Stockholm (Sweden)

    2016-05-15

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  12. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  13. Spin Dependent Electronic Structure of Doped Manganese Perovskites

    International Nuclear Information System (INIS)

    Park, J.-H.

    1999-01-01

    The spin-resolved photoemission spectra were successfully obtained from La0.7Sr0.3MnO3 190 nm thick epitaxial film on SrTiO3(001). Well below Tc the results clearly manifest the half-metallic nature, i.e., for the majority spin, the photoemission spectrum clearly shows a metallic Fermi cut-off, whereas for the minority spin, it shows an insulating gap with disappearance of the spectral weight at ∼0.6 eV binding energy. On heating through Tc the spectra show no difference for different spins and the spectra weight at the Fermi level (EF disappears, indicating that the Mn 3d spins become disordered) and the system undergoes the ferromagnetic metal to paramagnetic non-metal transition. (c) 2000 American Vacuum Society

  14. Spin-related transport phenomena in HgTe-based quantum well structures

    International Nuclear Information System (INIS)

    Koenig, Markus

    2007-12-01

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg 0.3 Cd 0.7 Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  15. New Results on Testing Duality in Spin Structure from Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nilanga Liyanage

    2005-10-01

    The Bloom-Gilman duality has been experimentally demonstrated for spin independent structure functions. Duality is observed when the smooth scaling curve at high momentum transfer is an average over the resonance bumps at lower momentum transfer, but at the same value of scaling variable x. Signs of quark-hadron duality for the spin Dependant structure function g1 of the proton has been recently reported by the Hermes collaboration. Experimental Halls A, B and C at Jefferson lab have recently measured spin structure functions in the resonance region for the proton and the neutron. Data from these experiments combined with Deep-Inelastic-Scattering data provide a precision test of quark-hadron duality predictions for spin structure functions for both the proton and the neutron. This will be one of the first precision tests of spin and flavor dependence of quark-hadron duality.

  16. Spin-related transport phenomena in HgTe-based quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Markus

    2007-12-15

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  17. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  18. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  19. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  20. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  1. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  2. The determination of the in situ structure by nuclear spin contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS Forschungszentrum, Geesthacht (Germany); Nierhaus, K.H. [Max-Planch-Institut fuer Molekulare Genetik, Berlin (Germany)

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  3. General structure of a two-body operator for spin-(1/2) particles

    International Nuclear Information System (INIS)

    Ershov, S.N.

    2004-01-01

    A direct derivation of the operator structure for two spin-(1/2) particles is presented subject to invariance under basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions, valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum decomposition for general spin-dependent potentials are obtained

  4. The determination of the in situ structure by nuclear spin contrast variation

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-01-01

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome

  5. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...

  6. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  7. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model

    Directory of Open Access Journals (Sweden)

    Jeannette H. Spühler

    2018-04-01

    Full Text Available Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening or regurgitation (leaking and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  8. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.

    Science.gov (United States)

    Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  9. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  10. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  11. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  12. Spin structure measurements from E143 at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, L.M. [Stanford Univ., CA (United States)

    1997-01-01

    Measurements have been made of the proton and deuteron spin structure functions, g{sub 1}{sup p} at beam energies of 29.1, 16.2, and 9.7 GeV, and g{sub 2}{sup p} and g{sub 2}{sup d} at a beam energy of 29.1 GeV. The integrals {Gamma}{sub p} = {integral}{sub 0}{sup 1} g{sub 1}{sup p} (x, Q{sup 2})dx and {Gamma}{sub d} = {integral}{sub 0}{sup 1} g{sub 1}{sup d}(x, Q{sup 2})dx have been evaluated at fixed Q{sup 2} = 3 (GeV/c){sup 2} using the 29.1 GeV data to yield {Gamma}{sub p} = 0.127 {+-} 0.004(stat.) {+-} 0.010(syst.) and {Gamma}{sub d} = 0.041 {+-} 0.003 {+-} 0.004. The Q{sup 2} dependence of the ratio g{sub 1}/F{sub 1} has been studied and is found to be small for Q{sup 2} > 1 (GeV/c){sup 2}. Within experimental precision, the g{sub 2} data are well-described by the twist-2 contribution, g{sub 2}{sup ww}. Twist-3 matrix elements have been extracted and are compared to theoretical predictions. The asymmetry A{sub 2} has also been measured and is found to be significantly smaller than the positivity limit {radical}R for both targets A{sub 2}{sup p} is found to be positive and inconsistent with zero.

  13. Large spin Hall magnetoresistance and its correlation to the spin-orbit torque in W/CoFeB/MgO structures

    Science.gov (United States)

    Cho, Soonha; Baek, Seung-heon Chris; Lee, Kyeong-Dong; Jo, Younghun; Park, Byong-Guk

    2015-01-01

    The phenomena based on spin-orbit interaction in heavy metal/ferromagnet/oxide structures have been investigated extensively due to their applicability to the manipulation of the magnetization direction via the in-plane current. This implies the existence of an inverse effect, in which the conductivity in such structures should depend on the magnetization orientation. In this work, we report a systematic study of the magnetoresistance (MR) of W/CoFeB/MgO structures and its correlation with the current-induced torque to the magnetization. We observe that the MR is independent of the angle between the magnetization and current direction but is determined by the relative magnetization orientation with respect to the spin direction accumulated by the spin Hall effect, for which the symmetry is identical to that of so-called the spin Hall magnetoresistance. The MR of ~1% in W/CoFeB/MgO samples is considerably larger than those in other structures of Ta/CoFeB/MgO or Pt/Co/AlOx, which indicates a larger spin Hall angle of W. Moreover, the similar W thickness dependence of the MR and the current-induced magnetization switching efficiency demonstrates that MR in a non-magnet/ferromagnet structure can be utilized to understand other closely correlated spin-orbit coupling effects such as the inverse spin Hall effect or the spin-orbit spin transfer torques. PMID:26423608

  14. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  15. Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q2 = 0)

    International Nuclear Information System (INIS)

    Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.

    1995-01-01

    Energy weighted integrals of the difference in helicity-dependent photo-production cross sections (σ 1/2 - σ 3/2 ) provide information on the nucleon's Spin-dependent Polarizability (γ), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q 2 =0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of σ 1/2 or σ 3/2 , for either the proton or the neutron. Estimates from current π-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations (χPT) for γ but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of rvec H · rvec D in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4π. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties

  16. The build up of the correlation between halo spin and the large-scale structure

    Science.gov (United States)

    Wang, Peng; Kang, Xi

    2018-01-01

    Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.

  17. Effects of structure parameters on flow and cavitation characteristics within control valve of fuel injector for modern diesel engine

    International Nuclear Information System (INIS)

    Wang, Chao; Li, Guo-Xiu; Sun, Zuo-Yu; Wang, Lan; Sun, Shu-Ping; Gu, Jiao-Jiao; Wu, Xiao-Jun

    2016-01-01

    Highlights: • The Schnerr-Sauer model was used to calculate the cavitation source term. • The development process and influencing factors of cavitation were studied. • The flow process inside control valve during the ball valve opened were studied. • The effects of the structure parameters of the control valve on the cavitation and flow were studied. - Abstract: Cavitation is a common phenomenon in diesel injector and has a strong influence on the internal flow. However, studies so far have focused on cavitation characteristics inside the nozzle. Its influence on the flow during control valve opening remains still unclear. In the paper, a computational study focused on the flow and cavitation phenomena within control valve has been reported and the effects of control valve’s structure parameters (including rounded edge, seal cone angle and outflowing control-orifice structure) on the flow and cavitation characteristics have been investigated in detail. Firstly the 3D model has been validated in terms of single injection quantity and fuel injection duration, showing a good consistency. And then, the development from sheet cavitation to cloud cavitation and the relationship between cavitation, pressure and velocity has been discussed. Based on the numerical results obtained, it is shown that not only the variation of pressure but also the velocity is the important factor which affects cavitation. The increase of the flow velocity reduces the pressure within the flow field which can aggravate the development of cavitation. As cavitation region increases, the fuel flow is hindered and the flow velocity decreases. However, the decrease of flow velocity has suppressed the development of cavitation. All of those variations form a cyclical process.

  18. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  19. A next-to-leading order QCD analysis of the spin structure function $g_1$

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1998-01-01

    We present a next-to-leading order QCD analysis of the presently available data on the spin structure function $g_1$ including the final data from the Spin Muon Collaboration (SMC). We present resu lts for the first moments of the proton, deuteron and neutron structure functions, and determine singlet and non-singlet parton distributions in two factorization schemes. We also test the Bjor ken sum rule and find agreement with the theoretical prediction at the level of 10\\%.

  20. RosettaEPR: rotamer library for spin label structure and dynamics.

    Directory of Open Access Journals (Sweden)

    Nathan S Alexander

    Full Text Available An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta's ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2 is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.

  1. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.

  2. A computational method to predict fluid-structure interaction of pressure relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. K.; Lee, D. H.; Park, S. K.; Hong, S. R. [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    An effective CFD (Computational fluid dynamics) method to predict important performance parameters, such as blowdown and chattering, for pressure relief valves in NPPs is provided in the present study. To calculate the valve motion, 6DOF (six degree of freedom) model is used. A chimera overset grid method is utilized to this study for the elimination of grid remeshing problem, when the disk moves. Further, CFD-Fastran which is developed by CFD-RC for compressible flow analysis is applied to an 1' safety valve. The prediction results ensure the applicability of the presented method in this study.

  3. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  4. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  5. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  6. Tight valve

    International Nuclear Information System (INIS)

    Guedj, F.

    1987-01-01

    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  7. Magnetic resonance imaging in patients with heart valve prostheses

    International Nuclear Information System (INIS)

    Bachmann, R.; Juengehuelsing, M.; Schicha, H.; Deutsch, H.J.; Sechtem, U.; Hilger, H.H.

    1991-01-01

    Artifical valve prostheses are often regarded as a contraindication for magnetic resonance imaging (MRI), although preliminary in vitro studies suggested, that patients with these metallic implants might safely undergo MR examination. This study reports on the experience with a group of 89 patients with 100 heart valve prostheses who were examined by spin-echo MR and gradient-echo MR. MR examination was performed in all patients without complications. The spin-echo sequence showed advantages in the depiction of anatomical structures like paravalvular abcesses. Anatomical structures adjacent to the artificial valve were clearly visivle and the metal components of the valves showes no or only small artifacts. Artifacts were accentuated when using gradient-echo sequences. Gradient-echo sequences provided valuable information regarding the presence of valvular insufficiency. Physiological valvular regurgitation was easy to differentiate from pathological paravalvular or transvalvular regurgitation. These results demonstrate that patients with artificial valve prostheses can be imaged by MR without risk and that prosthesis-induced artifacts do no interfere with image interpretation. (orig.) [de

  8. A new magnetorheological mount featured by changeable damping gaps using a moved-plate valve structure

    International Nuclear Information System (INIS)

    Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

    2014-01-01

    In this work, a new type of a magnetorheological (MR) fluid mount is proposed and its performances are experimentally investigated. The design of this MR mount is based on two operating modes of MR fluid: flow mode and shear mode. These modes are applied to the mechanism design consisting of two components: a fixed plate for applying the flow mode, and a moved plate for applying the shear mode of MR fluid motion. These plates belong to the valve-type structure of MR mount. The primary objective using the moved plate is to overcome the block-up phenomenon which frequently occurs in the conventional-type MR mount, in which there is no flow of MR fluid through the damping gap. In this research, a laboratorial fluid (MRF140) is used in the design and optimization of MR mount. This fluid features plate-like particles unlike the sphere particles. The yield stress of the fluid is measured as a function of the magnetic field and the theoretical analysis for the mount design is undertaken using the properties of the MR fluid, followed by design optimization. The objective function is concentrated on maximal damping force of the MR mount subjected to parameter constraints. Based on the results of optimization, the proposed MR mount is manufactured and tested for the performance evaluation. Vibration control capability and block-up phenomenon are investigated and compared between the proposed and conventional MR mounts. (paper)

  9. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  10. Evaluation of structural integrity and controllability of main feed water control valve for APWRS

    International Nuclear Information System (INIS)

    Koji Tachibana; Toshikazu Maeda; Hideyuki Morita; Takaharu Hiroe; Koichiro Oketani

    2005-01-01

    In Pressurized Water Reactors (PWR), the main feed water control valve always controls the mass flow rate of main feed water to maintain the water level of steam generator within the allowable range. For the main feed water control valve of PWR, we have used an air operated globe valve conventionally since it has large capacity and quick responsibility. On the Advanced Pressurized Water Reactors (APWR) system conditions, the mass flow rate of main feed water increases compared with the conventional PWR system conditions as an increase of the generating power. So, it is expected that the fluid force will increase, and it could cause critical damage on internal parts of the valve, such as plug, stem, etc. and uncontrollability of the valve. In this study, we measured the stem strain in the fluid tests using scale model and test loop under the APWR feed water flow rate conditions. The stem strain gave the stem stress and the fluid force acting on the plug surface. We evaluated the stem integrity from the stem stress and confirmed the influence which the fluid force had on the valve controllability by simulating the feed water system considering the fluid force. (authors)

  11. The spin dependent structure function g1 of the deuteron and the proton

    International Nuclear Information System (INIS)

    Klostermann, L.

    1995-01-01

    This thesis presents a study on the spin structure of the nucleon, via deep inelastic scattering (DIS) of polarised nuons on polarised proton and deuterium targets. The work was done in the Spin Muon Collaboration (SMC) at CERN in Geneva. From the asymmetry in the scattering cross section for nucleon and lepton spins parallel and anti-parallel, one con determine the spin dependent structure function g 1 , which contains information on the quark and gluon spin distribution functions. The interpretation in the frame work of the quark parton model (QPM) of earlier results on g 1 p by the European Muon Collaboration (EMC), gave an indication that only a small fraction of the proton spin, compatible with zero, is carried by the spins of the constituent quarks. The SMC was set up to check this unexpected result with improved accuracy, and to combine measurements of g 1 p and g 1 d to test a fundamental sum rule in quantum chromodynamics (QCD), the Bjorken sum rule. (orig./WL)

  12. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    Science.gov (United States)

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.

    2015-03-01

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.

  13. M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures

    International Nuclear Information System (INIS)

    Tsimpis, Dimitrios

    2006-01-01

    The requirement of N = 1 supersymmetry for M-theory backgrounds of the form of a warped product M x w X, where X is an eight-manifold and M is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ on X. ξ lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y: = X x S 1 , where S 1 is a circle of constant radius, implying the reduction of the structure group of Y to Spin(7). In general, however, there is no reduction of the structure group of X itself. This situation can be described in the language of generalized Spin(7) structures, defined in terms of certain spinors of Spin(TY+T*Y). We express the condition for N = 1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in X in terms of a 'preferred' Spin(7) structure, we show that the requirement of N = 1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27 of Spin(7), in terms of the warp factor and a one-form L on X (not necessarily nowhere-vanishing) constructed as a ξ bilinear; in addition, L is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7) holonomy

  14. Spin-dependent Nucleon Structure Studies at MIT/Bates

    International Nuclear Information System (INIS)

    Botto, T.

    2005-01-01

    We present preliminary results from recent measurements of the proton, neutron and deuterium electro-magnetic form factors obtained by the BLAST collaboration at the MIT/Bates Linear Accelerator Facility. BLAST (Bates Large Acceptance Spectrometer Toroid) is a large-acceptance multi-purpose detector dedicated to studies of exclusive spin-dependent electron scattering from internal polarized targets. BLAST makes use of stored electron beam currents in excess of 150 mA with a 60-70% polarization. The electron beam is let through a 15 mm diameter, 60 cm long open-ended storage cell which is fed with ultra-pure, high-polarization H1,D1 gas from an Atomic Beam Source. The target polarization can be rapidly reversed between different vector and tensor target states, thus minimizing systematic uncertainties. The target spin can be oriented to any in-plane direction via a set of Helmholtz coils. Target polarizations in the storage cell of up to 80% (vector) and 70% (tensor) have been routinely achieved over a period of several months. Our data on the D-vector(e-vector,e'n) reaction off vector polarized deuterium allow for a unique extraction of the neutron charge form factor G E n . At same time, complementary measurements of G M n , T20 and the spin-dependent nucleon momentum distributions in deuterium are obtained via the D-vector(e-vector,e'), D (e-vector,e'd) and D (e-vector,e'p) reactions. In addition, BLAST data on vector polarized hydrogen will provide novel measurements of the GE/GM form-factor ratio on the proton as well as of the spin-dependent electro-excitation of the Δ(1232) resonance. Such comprehensive program on few body physics is now well underway and preliminary data will be presented

  15. Ferromagnetic domain structures and spin configurations measured in doped manganite

    DEFF Research Database (Denmark)

    He, J.Q.; Volkov, V.V.; Beleggia, Marco

    2010-01-01

    We report on measurements of the spin configuration across ferromagnetic domains in La0.325Pr0.3Ca0.375MnO3 films obtained by means of low-temperature Lorentz electron microscopy with in situ magnetizing capabilities. Due to the particular crystal symmetry of the material, we observe two sets of ...... and the crystal symmetry might affect the magnetoresistivity under an applied magnetic field in a strongly correlated electron system....

  16. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  17. Bioprinting a cardiac valve.

    Science.gov (United States)

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Bahmad, L. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco)

    2015-09-01

    The magnetic behaviors of a mixed spins (2-1) hexagonal Ising nanowire with core–shell structure are investigated by using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperatures of core–shell are studied for different values of crystal field and exchange interactions. The thermal and magnetic hysteresis cycles are given for different values of the crystal field. - Highlights: • Critical temperature increase when exchange interaction increasing in core-shell. • Hysteresis loop areas decrease at above transition temperature. • Magnetic coercive field decrease when crystal field increasing. • Magnetic coercive field increase when exchange interaction increasing.

  19. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  20. The MONSTER solves nuclear structure problems at low and high spins

    International Nuclear Information System (INIS)

    Hammaren, E.; Schmid, K.W.; Gruemmer, F.

    1984-01-01

    A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region

  1. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  2. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  3. Zero-Field Spin Structure and Spin Reorientations in Layered Organic Antiferromagnet, κ-(BEDT-TTF)2Cu[N(CN)2]Cl, with Dzyaloshinskii-Moriya Interaction

    Science.gov (United States)

    Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki

    2018-06-01

    Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the

  4. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].

    Science.gov (United States)

    Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P

    2015-12-01

    Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl  · min(-1) and 2.7 × 10(-3) mmHg/µl  · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost

  5. Unique spin-polarized transmission effects in a QD ring structure

    Science.gov (United States)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  6. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  7. Structure and function of the tricuspid and bicuspid regurgitant aortic valve: an echocardiographic study.

    Science.gov (United States)

    Rönnerfalk, Mattias; Tamás, Éva

    2015-07-01

    The emerging new treatment options for aortic valve disease call for more sophisticated diagnostics. We aimed to describe the echocardiographic pathophysiology and characteristics of the purely regurgitant aortic valve in detail. Twenty-nine men, with chronic aortic regurgitation without concomitant heart disease referred for aortic valve intervention, underwent 2D transoesophageal echocardiographic (TEE) examination prior to surgery according to a previously published matrix. Measurements of the aortic valve apparatus in long and short axis view were made in systole and diastole and analysed off-line. The aortic valves were grouped as tricuspid (TAV) or bicuspid (BAV), and classified by regurgitation mechanism. Twenty-four examinations were eligible for analysis of which 13 presented TAV and 11 BAV. The regurgitation mechanism was classified as dilatation of the aorta in 6 cases, as prolapse in 11 cases and as poor cusp tissue quality or quantity in 7 cases. The ventriculo-aortic junction (VAJ) and valve opening were closely related (TAV r = 0.5, BAV r = 0.73) but no correlation was found between the VAJ and the maximal sinus diameter (maxSiD) or the sinotubular junction (STJ). However, the STJ and maxSiD were significantly related (TAV vs BAV: systole r = 0.9, r = 0.8; diastole r = 0.9, r = 0.7), forming an entity. The conjoined BAV cusps were shorter than the anterior cusps when closed (P = 0.002); the inter-commissural distances of the cusps in the BAV group were significantly different (P = 0.001 resp. 0.03) in both systole and diastole. The VAJ was independent of other aortic dimensions and should thereby be considered as a separate entity with influence on valve opening. The detailed 2D TEE measurements of this study add further important information to our knowledge about the function and echocardiographic anatomy of the pathological aortic valve and root either as a stand-alone examination or as a benchmark and complement to 3D echocardiography. This may

  8. Determining the spin dependent mean free path in Co90Fe10 using giant magnetoresistance

    Science.gov (United States)

    Shakespear, K. F.; Perdue, K. L.; Moyerman, S. M.; Checkelsky, J. G.; Harberger, S. S.; Tamboli, A. C.; Carey, M. J.; Sparks, P. D.; Eckert, J. C.

    2005-05-01

    The spin dependent mean free path in Co90Fe10 is determined as a function of temperature down to 5K using two different spin valve structures. At 5K the spin dependent mean free path for one structure was measured to be 9.4±1.4nm, decreasing by a factor of 3 by 350K. For the other structure, it is 7.5±0.5nm at 5K and decreased by a factor of 1.5 by 350K. In both cases, the spin dependent mean free path approaches the typical thickness of ferromagnetic layers in spin valves at room temperature and, thus, has an impact on the choice of design parameters for the development of new spintronic devices.

  9. Spin and lattice structures of single-crystalline SrFe2As2

    Science.gov (United States)

    Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng

    2008-10-01

    We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.

  10. The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2

    Science.gov (United States)

    Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.

    2018-05-01

    The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.

  11. Check valve

    Science.gov (United States)

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  12. Check valve

    International Nuclear Information System (INIS)

    Upton, H.A.; Garcia, P.

    1999-01-01

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  13. An overview of recent nucleon spin structure measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.

  14. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity

    International Nuclear Information System (INIS)

    Cicero, S.; Setien, J.; Gorrochategui, I.

    2009-01-01

    This paper analyzes the thermal aging embrittlement occurred in a cast stainless steel valve, which is part of the reactor water clean-up (RWCU) system of a Spanish boiling water reactor (BWR) nuclear power plant. The aim is to estimate the current and future state of the material and the corresponding structural integrity of the valve. Given that there is no data available for the experimental characterization of the material, the evolution of the mechanical properties (fracture toughness, yield stress, flow stress and Ramberg-Osgood parameters) has been estimated using the ANL procedure. With the obtained estimations, the critical crack size has been calculated using the European procedure FITNET FFS and the ASME Code. This analysis considers not only the evolution of the mechanical properties up to now but also its future evolution in case there is a life extension of the plant until year 2029

  15. The Spin Structure of the Proton at Low Q2: A Measurement of the Structure Function g2p

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Chao [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-31

    The spin structure of the nucleon has remained as one of the key points of interest in hadronic physics, which has attracted many efforts from both experimentalists and theorists. Quantum Chromodynamics (QCD) is the fundamental theory that describes the strong interaction. It has been verified in the asymptotically free region. However, the non-perturbative confinement of quarks within the nucleon is still not well understood within QCD. In the non-perturbative regime, low-energy effective field theories such as chiral perturbation theory (XPT) provide predictions for the spin structure functions. The neutron spin structure functions, gp1 and gp2 , and the proton spin structure function, gp1, have been measured over a wide kinematic range and compared with the theoretical predictions. However, the proton spin structure function, gp2, remains largely unmeasured. The E08-027 collaboration successfully performed the first measurement of the inclusive electron-proton scattering in the kinematic range 0.02 < Q2 < 0.2 GeV2. The experiment took place in experimental Hall A at Jefferson Lab in 2012. A longitudinally polarized electron beam with incident energies between 1.1 GeV and 3.3 GeV was scattered from a longitudinally or transversely polarized NH3 target. Asymmetries and polarized cross-section differences were measured in the resonance region to extract the proton spin structure functions g2. The results allow us to obtain the generalized spin polarizabilities γ0 and δLT and test the Burkhardtt-Cottingham (BC) sum rule. Chiral perturbation theory is expected to work in this kinematic range and this measurement of δLT will give a benchmark test to XPT calculations. This thesis will discuss preliminary results from the E08-027 data analysis.

  16. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  17. Investigation of high spin structure of N ∼ 28 nuclei with PHF model

    International Nuclear Information System (INIS)

    Naik, Z.

    2016-01-01

    Nucleus in 50 mass shows verity of high spin phenomena. Some of them are K-Isomer, Band termination, States Beyond Band termination, Superdeformed Structure, Shape co-existence and many more. Some of these phenomena with Projected Hartree-Fock (PHF) model are addressed and the microscopic structure associate with them is discussed

  18. Shell structure at high spin and the influence on nuclear shapes

    International Nuclear Information System (INIS)

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  19. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  20. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  1. Interfacial symmetry of Co–Alq_3–Co hybrid structures for effective spin filtering

    International Nuclear Information System (INIS)

    Lam, Tu-Ngoc; Lai, Yu-Ling; Chen, Chih-Han; Chen, Po-Hung; Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T.; Sheu, Jeng-Tzong; Hsu, Yao-Jane

    2015-01-01

    Graphical abstract: - Highlights: • The spin interface at Alq_3/Co and Co/Alq_3 contacts was examined. • An interfacial symmetry was determined at Co–Alq_3–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq_3 hybridized interface. • The spin-filter role at the top contact interface of Alq_3/Co is proved. • Effective spin-filtering at Co–Alq_3–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq_3 adsorption on Co, Co/Alq_3) and the top contact (Co atop Alq_3, Alq_3/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq_3 and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq_3/Co and Co/Alq_3 heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq_3–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq_3 at both contacts, proving Alq_3 a unique and promising organic material for spin filtering in OSV.

  2. Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers

    Science.gov (United States)

    Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.

    2018-04-01

    In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.

  3. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations

    Science.gov (United States)

    Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.

    2017-11-01

    We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.

  4. Study of the spin structure functions of the nucleon: the E143 experiment at SLAC

    International Nuclear Information System (INIS)

    Grenier, Philippe

    1995-01-01

    In this thesis, we present the results of the E143 experiment of deep inelastic scattering of 29 GeV polarized electrons from polarized NH 3 and ND 3 targets, at SLAC. The goal of the experiment is the measurement of the spin structure functions g 1 and g 2 of the nucleon which provide information on its internal spin structure. Experimentally, the structure functions are extracted from the measurement of cross section asymmetries. Our measured values of the first moment of g 1 are two and three standard deviations below the Ellis-Jaffe sum rule predictions, for the proton and for the deuteron, respectively. The Bjoerken sum rule, a QCD fundamental prediction, has been confirmed. We find the quark contribution to the nucleon spin to be around 30 pc. Our results on g 2 are well described by the Wandzura-Wilczek expression. (author) [fr

  5. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  6. The structure and material composition of ossified aortic valves identified using a set of scientific methods

    Science.gov (United States)

    Zeman, Antonín; Šmíd, Michal; Havelcová, Martina; Coufalová, Lucie; Kučková, Štěpánka; Velčovská, Martina; Hynek, Radovan

    2013-11-01

    Degenerative aortic stenosis has become a common and dangerous disease in recent decades. This disease leads to the mineralization of aortic valves, their gradual thickening and loss of functionality. We studied the detailed assessment of the proportion and composition of inorganic and organic components in the ossified aortic valve, using a set of analytical methods applied in science: polarized light microscopy, scanning electron microscopy, X-ray fluorescence, X-ray diffraction, gas chromatography/mass spectrometry and liquid chromatography-tandem mass spectrometry. The sample valves showed the occurrence of phosphorus and calcium in the form of phosphate and calcium carbonate, hydroxyapatite, fluorapatite and hydroxy-fluorapatite, with varying content of inorganic components from 65 to 90 wt%, and with phased development of degenerative disability. The outer layers of the plaque contained an organic component with peptide bonds, fatty acids, proteins and cholesterol. The results show a correlation between the formation of fluorapatite in aortic valves and in other parts of the human bodies, associated with the formation of bones.

  7. Changing the cubic ferrimagnetic domain structure in temperature region of spin flip transition

    International Nuclear Information System (INIS)

    Djuraev, D.R.; Niyazov, L.N.; Saidov, K.S.; Sokolov, B.Yu.

    2011-01-01

    The transformation of cubic ferrimagnetic Tb 0.2 Y 2.8 Fe 5 O 12 domain structure has been studied by magneto optic method in the temperature region of spontaneous spin flip phase transition (SPT). It has been found that SPT occurs in a finite temperature interval where the coexistence of low- and high- temperature magnetic phase domains has observed. A character of domain structure evolution in temperature region of spin flip essentially depends on the presence of mechanical stresses in crystal. Interpretation of experimental results has been carried out within the framework of SPT theory for a cubic crystal. (authors)

  8. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF_4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by "1"9F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  9. Interface-induced spin Hall magnetoresistance enhancement in Pt-based tri-layer structure.

    Science.gov (United States)

    Huang, Shun-Yu; Li, Hong-Lin; Chong, Cheong-Wei; Chang, Yu-Ying; Lee, Min-Kai; Huang, Jung-Chun-Andrew

    2018-01-08

    In this study, we integrated bilayer structure of covered Pt on nickel zinc ferrite (NZFO) and CoFe/Pt/NZFO tri-layer structure by pulsed laser deposition system for a spin Hall magnetoresistance (SMR) study. In the bilayer structure, the angular-dependent magnetoresistance (MR) results indicate that Pt/NZFO has a well-defined SMR behavior. Moreover, the spin Hall angle and the spin diffusion length, which were 0.0648 and 1.31 nm, respectively, can be fitted by changing the Pt thickness in the longitudinal SMR function. Particularly, the MR ratio of the bilayer structure (Pt/NZFO) has the highest changing ratio (about 0.135%), compared to the prototype structure Pt/Y 3 Fe 5 O 12 (YIG) because the NZFO has higher magnetization. Meanwhile, the tri-layer samples (CoFe/Pt/NZFO) indicate that the MR behavior is related with CoFe thickness as revealed in angular-dependent MR measurement. Additionally, comparison between the tri-layer structure with Pt/NZFO and CoFe/Pt bilayer systems suggests that the SMR ratio can be enhanced by more than 70%, indicating that additional spin current should be injected into Pt layer.

  10. Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-05-01

    The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.

  11. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.

    Science.gov (United States)

    Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M

    1997-04-01

    This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.

  12. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  13. Spin-orbit coupling effects in indium antimonide quantum well structures

    Science.gov (United States)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  14. On the structure of spin-isospin excitations in nuclei

    International Nuclear Information System (INIS)

    Haerting, A.

    1984-01-01

    In this thesis properties of spin-isospin operators in nuclei are studied. Corresponding excited states carry the quantum numbers of the pion and couple therefore strongly to the virtual meson fields existing in the nucleus. The main emphasis in this thesis lies on the 1 + states in 48 Ca at 10.23 MeV and in 88 Sr at 3.48 MeV, the (e,e') form factors of which were measured over a large range of momentum transfers. Many-particle calculations yield against the one-particle model an essential improvement of the description of these form factors. But in the first maximum always by about a factor 2 too large values are obtained. Also the dependence on the momentum transfer cannot be explained correctly. The model space of these many-particle calculations must therefore be extended. We start from a shell-model calculation which regards many-particle-many-hole correlations completely in a relatively small model space and study furthermore nucleonic and non-nucleonic degrees of freedom. (orig./HSI) [de

  15. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  16. Impact of recipient-related factors on structural dysfunction of xenoaortic bioprosthetic heart valves

    Directory of Open Access Journals (Sweden)

    Barbarash O

    2015-03-01

    Full Text Available Olga Barbarash, Natalya Rutkovskaya, Oksana Hryachkova, Olga Gruzdeva, Evgenya Uchasova, Anastasia Ponasenko, Natalya Kondyukova, Yuri Odarenko, Leonid Barbarash Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia Objective: To analyze the influence of recipient-related metabolic factors on the rate of structural dysfunction caused by the calcification of xenoaortic bioprostheses. Materials and methods: We retrospectively analyzed clinical status, calcium–phosphorus metabolism, and nonspecific markers of inflammatory response in bioprosthetic mitral valve recipients with calcific degeneration confirmed by histological and electron microscopic studies (group 1, n=22, and in those without degeneration (group 2, n=48. Results: Patients with confirmed calcification of bioprostheses were more likely to have a severe clinical state (functional class IV in 36% in group 1 versus 15% in group 2, P=0.03 and a longer cardiopulmonary bypass period (112.8±18.8 minutes in group 1 versus 97.2±23.6 minutes in group 2, P=0.02 during primary surgery. Patients in group 1 demonstrated moderate hypovitaminosis D (median 34.0, interquartile range [21.0; 49.4] vs 40 [27.2; 54.0] pmol/L, P>0.05, osteoprotegerin deficiency (82.5 [44.2; 115.4] vs 113.5 [65.7; 191.3] pg/mL, P>0.05 and osteopontin deficiency (4.5 [3.3; 7.7] vs 5.2 [4.1; 7.2] ng/mL, P>0.05, and significantly reduced bone-specific alkaline phosphatase isoenzyme (17.1 [12.2; 21.4] vs 22.3 [15.5; 30.5] U/L, P=0.01 and interleukin-8 levels (9.74 [9.19; 10.09] pg/mL vs 13.17 [9.72; 23.1] pg/mL, P=0.045 compared with group 2, with an overall increase in serum levels of proinflammatory markers. Conclusion: Possible predictors of the rate of calcific degeneration of bioprostheses include the degree of decompensated heart failure, the duration and invasiveness of surgery, and the characteristics of calcium–phosphorus homeostasis in

  17. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  18. Q2 dependence of the spin structure function in the resonance region

    International Nuclear Information System (INIS)

    Li, Z.; Li, Z.

    1994-01-01

    In this paper, we show what we can learn from the CEBAF experiments on spin-structure functions, and the transition from the Drell-Hearn-Gerasimov sum rule in the real photon limit to the spin-dependent sum rules in deep inelastic scattering, and how the asymmetry A 1 (x,Q 2 ) approaches the scaling limit in the resonance region. The spin structure function in the resonance region alone cannot determine the spin-dependent sum rule due to the kinematic restriction of the resonance region. The integral ∫ 0 1 {A 1 (x,Q 2 )F 2 (x,Q 2 )/2x[1+R(x,Q 2 )]}dx is estimated from Q 2 =0--2.5 GeV 2 . The result shows that there is a region where both contributions from the baryon resonances and the deep inelastic scattering are important; thus it provides important information on the high twist effects on the spin-dependent sum rule

  19. Structure of large spin expansion of anomalous dimensions at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk

    2009-05-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.

  20. Structure of large spin expansion of anomalous dimensions at strong coupling

    International Nuclear Information System (INIS)

    Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.

    2009-01-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions

  1. Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering

    International Nuclear Information System (INIS)

    Wislicki, W.

    1998-01-01

    We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world

  2. Catheterization Laboratory: Structural Heart Disease, Devices, and Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Fiorilli, Paul N; Anwaruddin, Saif; Zhou, Elizabeth; Shah, Ronak

    2017-12-01

    The cardiac catheterization laboratory is advancing medicine by performing procedures on patients who would usually require sternotomy and cardiopulmonary bypass. These procedures are done percutaneously, allowing them to be performed on patients considered inoperable. Patients have compromised cardiovascular function or advanced age. An anesthesiologist is essential for these procedures in case of hemodynamic compromise. Interventionalists are becoming more familiar with transcatheter aortic valve replacement and the device has become smaller, both contributing to less complications. Left atrial occlusion and the endovascular edge-to-edge mitral valve repair devices were approved. Although these devices require general anesthesia, an invasive surgery and cardiopulmonary bypass machine are not necessary for deployment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Spin factor and spinor structure of Dirac propagator in constant field

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Cruz, W. da [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zlatev, S.I. [Sergipe Univ., Aracaju, SE (Brazil). Dept. de Fisica

    1996-06-01

    We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger`s one but the equivalence can be checked. (author). 21 refs.

  4. Spin factor and spinor structure of Dirac propagator in constant field

    International Nuclear Information System (INIS)

    Gitman, D.M.; Cruz, W. da; Zlatev, S.I.

    1996-01-01

    We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger's one but the equivalence can be checked. (author). 21 refs

  5. Roles of quarks and gluons in the spin structure of nucleons

    International Nuclear Information System (INIS)

    Modarres, M.; Amir-Kabir Univ., Teheran; Ghafoori-Tabrizi, K.; Shahid-Beheshti Univ., Teheran

    1992-01-01

    The spin structure of protons will be discussed by using MIT-bag model and considering constituent quarks to be combined from current quarks and gluons. It will be shown that the gluonic degrees of freedom play an important role in prediction of the recent EMC results. (orig.)

  6. The influence of boundary conditions on domain structure stability in spin wave approximation

    International Nuclear Information System (INIS)

    Wachinewski, A.

    1974-01-01

    Instead of the usually used Born-Karman cyclic conditions, boundary conditions which take into account the situation of the boundary lattice sites lying on the crystal's surface are assumed. It is shown that the particular choice of the boundary conditions secures the stability of domain structure in ferromagnet (positive spin wave energies), without including the Winter term in Hamiltonian. (author)

  7. Spin structure of the 3He from the dd → 3Hen reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    1995-01-01

    The polarization observables in the reaction dd → 3 Hen are considered. Their high sensitivity to the 3 He wave function at short distances is shown. Using of both polarized target and beam allows to extend sufficiently the number of possible experiments and to separate 3 He structure from the reaction mechanisms using different relative orientations of initial deuteron spins. 27 refs., 5 figs

  8. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  9. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong

    2016-01-01

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations

  10. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  11. Effect of spin polarization on the structural properties and bond ...

    Indian Academy of Sciences (India)

    ties such as structural, hardness, Young modulus and frac- ture toughness ... measurements showed that hardness ranged between 14.5 and 19GPa ... the relative binding forces, is a useful fundamental property. ..... strength [36,39]. Zhang et ...

  12. Co-linear spin configurations in corundum-type structures

    International Nuclear Information System (INIS)

    Bertaut, F.

    1961-01-01

    The colinear magnetic configurations possible in corundum-type structures (α-Fe 2 O 3 ; Cr 2 O 3 ) are solutions of a matrices problem. Their regions of stability are bounded by inequality relationships between exchange integrals. (author) [fr

  13. Superdeformed and high-spin nuclear structure data on the INTERNET

    International Nuclear Information System (INIS)

    Singh, B.; Firestone, R.B.; Chu, S.Y.F.

    1997-01-01

    With the advent of the large detector arrays GAMMASPHERE, EUROGAM, and GASP, a wealth of new information about the properties of nuclei at high spin has become available. Superdeformed and high-spin nuclear structure data and associated bibliographic information made available on INTERNET by the Isotopes Project at LBNL are described. The Table of Superdeformed Bands and Fission Isomers on the INTERNET will be updated continuously, and new recent reference lists will be provided approximately every three months. This information will also be published annually in the Table of Isotopes CD-ROM updates. (author)

  14. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    Science.gov (United States)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  15. The high-spin structure of 158Er - a theoretical study

    International Nuclear Information System (INIS)

    Bengtsson, Tord.

    1990-01-01

    To demonstrate the use of diabatic orbitals in high-spin calculations, the yrast structure of 158 Er is calculated and compared to experiment. A very satisfactory reproduction of the observed spectra is obtained form lowest spins through the collective bands up to band terminations. From results like this, a detailed understanding of the observed features emerge. In this case for example, the different alignment properties in negative parity bands can be understood as due to deformation differences and the existence of additional bands are predicted. Furthermore, the limitations of the cranked mean field approach can be investigated due to the high level of detail in this approach. (author)

  16. Structure of high-spin isomers in trans-lead nuclei

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1990-01-01

    The structure of core-excited high-spin isomers in the N ≤ 126 isotopes of At, Rn and Fr is reviewed. New results for high-spin states in 211 Rn and 212 Rn, approaching the limit of the available angular momentum from the valence particles, are presented. The recurring experimental feature is decay by very enhanced E3 transitions. These, and other properties are explained in a natural way by inclusion of particle-octupole vibration coupling, in a semi-empirical shell model. The deformed independent particle model is not successful in explaining these features. 40 refs., 4 tabs., 11 figs

  17. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  18. Helicity in proton–proton elastic scattering and the spin structure of the pomeron

    Directory of Open Access Journals (Sweden)

    Carlo Ewerz

    2016-12-01

    Full Text Available We discuss different models for the spin structure of the nonperturbative pomeron: scalar, vector, and rank-2 symmetric tensor. The ratio of single-helicity-flip to helicity-conserving amplitudes in polarised high-energy proton–proton elastic scattering, known as the complex r5 parameter, is calculated for these models. We compare our results to experimental data from the STAR experiment. We show that the spin-0 (scalar pomeron model is clearly excluded by the data, while the vector pomeron is inconsistent with the rules of quantum field theory. The tensor pomeron is found to be perfectly consistent with the STAR data.

  19. Measurement of the Spin Structure of the Deuteron in the DIS Region

    CERN Document Server

    Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rojdestvenski, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, L.; Schmitt, H.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Thers, D.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Walcher, T.; Webb, R.; Weise, E.; Weitzel, Q.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2005-01-01

    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.

  20. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine

    2014-01-01

    for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  1. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  2. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  3. Recent COMPASS results on the nucleon longitudinal spin structure and QCD fits

    Directory of Open Access Journals (Sweden)

    Andrieux Vincent

    2014-01-01

    Full Text Available The latest measurements of the proton longitudinal spin structure function, ɡ1p, in the deep inelastic (DIS regime are presented. They improve the statistical accuracy of the existing data and extend the kinematic domain to a lower value of x and higher values of Q2. A global NLO QCD fit of all ɡ1 world data on the proton, deuteron and neutron has been achieved. The results give a quantification of the quark spin contribution to the nucleon spin, 0.26 < ΔΣ < 0.34 at 3 (GeV/c2 in M̅S̅ scheme. The errors are dominated by the uncertainty on the shape of the functional forms assumed in the fit. A new verification of the fundamental Bjorken sum rule is obtained at a 9% level, using only COMPASS ɡ1 proton and deuteron measurements. Preliminary results of a reevaluation of the gluon polarization Δɡ/ɡ are presented. The analysis is based on double spin asymmetry of high-pT hadron production cross-sections in the DIS regime. A positive value of 〈Δɡ/ɡ〉 = 0.113 ± 0.038 ± 0.035 is obtained at leading order at x ~ 0.1. In parallel, the double spin asymmetry in the photoproduction regime is also studied. Finally, preliminary results on quark fragmentation functions into pions extracted from a LO fit of pion multiplicities in semi-inclusive DIS are presented.

  4. The spin-dependent structure function g1 of the deuteron

    International Nuclear Information System (INIS)

    Bueltmann, S.

    1996-01-01

    Results on the spin-dependent structure function g 1 d of the deuteron measured by the Spin Muon Collaboration at CERN are presented. They are based on deep-inelastic scattering of 190 GeV polarized muons off a polarized deuteron target in the kinematic range of 0.003 ≤ x Bj ≤ 0.7 and 1 GeV 2 ≤ Q 2 ≤ 60 GeV 2 . The structure function is found to be negative for small values of x Bj , while the proton structure function g 1 p measured earlier by the SMC is positive over the whole x Bj -range. The Bjorken sum rule is in good agreement with the first moments of the structure functions, while the Ellis-Jaffe sum rule is violated by more than three standard deviations for the deuteron measurement. (author)

  5. Simplicity of state and overlap structure in finite-volume realistic spin glasses

    International Nuclear Information System (INIS)

    Newman, C.M.; Stein, D.L.

    1998-01-01

    We present a combination of heuristic and rigorous arguments indicating that both the pure state structure and the overlap structure of realistic spin glasses should be relatively simple: in a large finite volume with coupling-independent boundary conditions, such as periodic, at most a pair of flip-related (or the appropriate number of symmetry-related in the non-Ising case) states appear, and the Parisi overlap distribution correspondingly exhibits at most a pair of δ functions at ±q EA . This rules out the nonstandard mean-field picture introduced by us earlier, and when combined with our previous elimination of more standard versions of the mean-field picture, argues against the possibility of even limited versions of mean-field ordering in realistic spin glasses. If broken spin-flip symmetry should occur, this leaves open two main possibilities for ordering in the spin glass phase: the droplet-scaling two-state picture, and the chaotic pairs many-state picture introduced by us earlier. We present scaling arguments which provide a possible physical basis for the latter picture, and discuss possible reasons behind numerical observations of more complicated overlap structures in finite volumes. copyright 1998 The American Physical Society

  6. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  7. Collimated-hole structures as efficient differential pumping barrier, one-way valve and tool for aligning Penning traps

    International Nuclear Information System (INIS)

    Kluge, H.-Jürgen; Block, Michael; Herfurth, Frank

    2011-01-01

    A collimated-hole structure consists of a very large number of parallel channels which have each a very small diameter and are closely packed together. Such devices, installed in vacuum systems allow one to separate regions of very different gas pressures. A collimated-hole structure has high transmission for a directed ion beam with low emittance but a very low conductance for rest gas atoms or molecules exhibiting random walk. Therefore it is proposed to use such a structure as one-way valve and/or efficient differential pumping barrier in set-ups using Penning traps. Furthermore, these devices might be very useful to align the axis of a Penning trap with the direction of the magnetic field lines which is essential to avoid systematic uncertainties in high-accuracy mass spectroscopy.

  8. Spin-dependent parton distributions and structure functions

    International Nuclear Information System (INIS)

    Bentz, W.; Ito, T.; Cloet, I.C.; Thomas, A.W.; Yazaki, K.

    2008-01-01

    Nuclear parton distributions and structure functions are determined in an effective chiral quark theory. We also discuss an extension of our model to fragmentation functions. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)

  9. Spin structure at the partonic level. Pt. 1

    International Nuclear Information System (INIS)

    Leader, E.

    1983-01-01

    The fundamental internal structure of hadrons can only be probed fully using polarised beams and targets. We describe some of the essential features that can be studied in electromagnetic and weak charged current reactions and make some comments about Drell-Yan processes. (orig.)

  10. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  11. Mitral Valve Structure in Addition to Myocardial Viability Determines the Outcome of Functional Mitral Regurgitation After Coronary Artery Bypass Grafting.

    Science.gov (United States)

    Yoshida, Shohei; Fukushima, Satsuki; Miyagawa, Shigeru; Nakamura, Teruya; Yoshikawa, Yasushi; Hata, Hiroki; Saito, Shunsuke; Yoshioka, Daisuke; Domae, Keitaro; Kashiyama, Noriyuki; Yamamoto, Kouji; Shintani, Ayumi; Nakatani, Satoshi; Toda, Koichi; Sawa, Yoshiki

    2017-10-25

    Coronary artery bypass grafting (CABG) reduces functional mitral regurgitation (MR) associated with ischemic heart disease, although the predictive factors or mechanisms of reversibility of functional MR after CABG are not fully understood.We investigated whether mitral valve structure is associated with the outcome of functional MR after CABG.Methods and Results:From a consecutive series of 98 patients with mild-moderate functional MR preoperatively who underwent isolated CABG, we enrolled 66 patients who were followed up for >1 year postoperatively using echocardiography. The degree of MR was reduced in 34 patients (52%) postoperatively, in association with a lower rate of in-hospital treatment for cardiac failure in the long term, compared with the 32 patients (48%) with residual MR postoperatively. The patients with reduced MR postoperatively had longer estimated coaptation length and more anteriorly or centrally directed MR jets than those without reduced MR. On statistical analysis, the addition of estimated coaptation length and jet direction to the reported predictors (ejection fraction, left ventricular end-diastolic dimension, and tenting height) more accurately predicted changes in post-CABG MR than the reported 3 factors alone. Residual MR was associated with the emergence of congestive heart failure in the long term after CABG. A specific mitral valve structure, such as large mitral leaflet size or predominant tethering of the posterior leaflet, was a predictive factor for the reversibility of post-CABG functional MR.

  12. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  13. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin–orbit coupling

    International Nuclear Information System (INIS)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Cahay, Marc; Newrock, Richard S; Herbert, Stephen T

    2013-01-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta–Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin–orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin–orbit coupling and a strong e–e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. (review)

  14. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.

    Science.gov (United States)

    Lefèvre, Thierry; Paquet-Mercier, François; Rioux-Dubé, Jean-François; Pézolet, Michel

    2012-06-01

    Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers. Copyright © 2011 Wiley Periodicals, Inc.

  15. Spin-orbit excitations and electronic structure of the putative Kitaev magnet $\\alpha$-RuCl$_3$

    OpenAIRE

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, Kemp W.; Kee, Hae-Young; Kim, Young-June; Burch, Kenneth S.

    2015-01-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $\\alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations i...

  16. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    Zhao, Hongming

    2010-01-01

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  17. Direct observation of the spin-dependent Peltier effect.

    Science.gov (United States)

    Flipse, J; Bakker, F L; Slachter, A; Dejene, F K; van Wees, B J

    2012-02-05

    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. When two materials with different Peltier coefficients are placed in contact with one another, the Peltier effect causes a net flow of heat either towards or away from the interface between them. Spintronics describes the transport of electric charge and spin angular momentum by separate spin-up and spin-down channels in a device. The observation that spin-up and spin-down charge transport channels are able to transport heat independently of each other has raised the possibility that spin currents could be used to heat or cool the interface between materials with different spin-dependent Peltier coefficients. Here, we report the direct observation of the heating and cooling of such an interface by a spin current. We demonstrate this spin-dependent Peltier effect in a spin-valve pillar structure that consists of two ferromagnetic layers separated by a non-ferromagnetic metal. Using a three-dimensional finite-element model, we extract spin-dependent Peltier coefficients in the range -0.9 to -1.3 mV for permalloy. The magnetic control of heat flow could prove useful for the cooling of nanoscale electronic components or devices.

  18. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  19. Spin-mapping of Coal Structures with ESE and ENDOR

    Science.gov (United States)

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  20. Measuring the Neutron and 3He Spin Structure at Low Q2

    International Nuclear Information System (INIS)

    Vince Sulkosky

    2005-01-01

    The spin structure of the nucleon has been of great interest over the past few decades. Sum rules, including the Gerasimov-Drell-Hearn (GDH), and moments of the spin structure functions are powerful tools for understanding nucleon structure. The GDH sum rule, originally derived for real photon absorption, has been generalized to nonzero Q 2 . The goal of Jefferson Lab experiment E97-110 is to perform a precise measurement of the Q 2 dependence of the generalized GDH integral and of the moments of the neutron and 3 He spin structure functions between 0.02 and 0.3 GeV 2 . This Q 2 range will allow us to test predictions of Chiral Perturbation Theory, and verify the GDH sum rule by extrapolating the integral to the real photon point. The measurement will also contribute to the understanding of nucleon resonances. The data have been taken in Hall A using a high resolution spectrometer with the addition of a septum magnet, which allowed us to access the low Q 2 region. The analysis's status, prospects and impact will be discussed

  1. The E142 SLAC experiment: measurement of the neutron gn1(x) spin structure function

    International Nuclear Information System (INIS)

    Roblin, Y.

    1995-01-01

    This thesis describes the E142 experiment which has been carried out at the Stanford Linear Accelerator (SLAC), USA, from October to December 1992. This experiment of polarized inelastic scattering of a 22.6 GeV electron beam on a polarized helium 3 target has allowed the first measurement of the neutron g n 1 (x) spin structure function. The knowledge of this structure function gives informations on the nucleon spin structure. On the other hand, the g n 1 (x) structure function integral value on the 0 2 mean value of 2 GeV 2 after some extrapolations. This value is at about two standard deviations away from the theoretical predictions of the Ellis-Jaffe rule. Thanks to the existing experimental results for the proton (E143 experiment), the Bjorken sum rule has been precisely tested and is perfectly compatible with the theoretical value. The results have allowed to estimate the nucleon spin fraction carried by the quarks. (J.S.). 86 refs., 58 figs., 13 tabs

  2. Spin effects in elastic scattering of nucleons and new approach to problem of account for spin structure of hadrons

    International Nuclear Information System (INIS)

    Babaev, Z.R.; Shchelkachev, A.V.

    1991-01-01

    Prospects of decribing polarization effects within the framework of quark-parton models (QPM) using a density matrix in order to describe the parton spin states in hadrons are discussed. Such an approach allows one to get rid of contradictions occuring when describing the QPM of reactions of hadrons polarized in perpendicular to the scattering plane in case of applying spin distribution functions. Different model predictions for the observed one- and two-spin correlations in elastic nucleon-nucleon scattering are analyzed. 12 refs., 2 tabs

  3. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  4. New COMPASS results on the spin structure function $g_1^p$, and QCD fit

    CERN Document Server

    Wilfert, Malte

    2014-01-01

    The COMPASS experiment at CERN SPS has taken data with a polarised muon beam scattering off a polarised NH 3 target in 2011. The beam energy has been increased to 200 GeV compared to 160 GeV in 2007 and thus, higher values of Q 2 and lower values of x are reached. From these data the longitudinal double spin asymmetry A p 1 and the spin-dependent structure function g p 1 are extracted. The results are used in a NLO QCD fit to the world data to obtain the polarised parton distributions and also to test the Bjorken sum rule, connecting the integral of the non-singlet structure function with the ratio of the weak coupling constants

  5. Spin structures on algebraic curves and their applications in string theories

    International Nuclear Information System (INIS)

    Ferrari, F.

    1990-01-01

    The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)

  6. High-spin structure of 121Xe: triaxiality, band termination and signature inversion

    International Nuclear Information System (INIS)

    Timar, J.; Paul, E.S.; Beausang, C.W.; Joyce, M.J.; Sharpey-Schafer, J.F.

    1995-01-01

    High-spin states of the odd-neutron 121 Xe nucleus have been studied with Eurogam using the 96 Zr( 30 Si, 5n) 121 Xe fusion-evaporation reaction. The level scheme has been extended up to a tentative spin of 67/2h at an excitation energy of ∼ 14 MeV. Several new rotational bands have been observed and the previously known bands extended. Two of them lose their regular character at high spins, which may be interpreted as transition from collective behaviour to a regime of noncollective oblate states. The deduced high-spin structure is compared to Woods-Saxon TRS cranking and CSM calculations. Configurations of the bands have been suggested. The νh 1 1/2 band is interpreted as having a triaxial shape. Signature inversion and an unexpectedly large staggering of the B(M1)/B(E2) ratios has been found for one of the bands. Enhanced E1 transitions have been observed between the νd 5/2 and the νh 1 1/2 bands. (orig.)

  7. Crystal structures and Moessbauer spectra of spin-crossover iron(III) complexes of quinquedentate ligands

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Noda, Yosuke; Oshio, Hiroki; Takashima, Yoshimasa; Matsumoto, Naohide

    1994-01-01

    Magnetic properties, Moessbauer spectra and crystal structures of spin-crossover iron(III) complexes with a quinquedentate ligand [FeLX]BPh 4 are reported. X and L denote a unidentate ligand and a quinquedentate ligand, respectively. [Fe(mbpN)(im)]BPh 4 shows spin-crossover behavior in an appropriate organic solvent, and [Fe(mbpN)(lut)]BPh 4 , [Fe(bpN)(py)]BPh 4 and [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im) show spin-crossover behavior in a solid and in an organic solvent. It was found that the ligand field strength of salten was stronger than that of mbpN. The rates of spin-state interexchange in the complexes are as fast as the inverse of the lifetime (1 x 10 -7 s) of the Moessbauer nuclear level. The Moessbauer spectroscopic behavior of [Fe(mbpN)(lut)]BPh 4 and [Fe(bpN)(py)]BPh 4 is different to that of [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im). The difference was ascribed to the different geometrical positions of the corresponding anions. (orig.)

  8. Design of a spin-flip cavity for the measurement of the antihydrogen hyperfine structure

    CERN Document Server

    Kroyer, T

    2008-01-01

    In the framework of the ASACUSA collaboration at the CERN Antiproton Decelerator an experiment for precisely testing the CPT invariance of the hydrogen hyperfine structure is currently being designed. An integral part of the set-up is the 1.42 GHz spin-flipping cavity, which should have a good field homogeneity over the large aperture of the antihydrogen beam. After the evaluation of various approaches a structure based on a resonant stripline is proposed as a concrete cavity design. For this structure the field homogeneity, undesired modes, coupling and power issues are discussed in detail.

  9. Structural concept of angle type of hot isolation valve and its test program at an out-of-pile test facility

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiko; Fujisaki, Katsuo; Shibata, Taijyu; Inagaki, Yoshiyuki; Hino, Ryutaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Koiso, Hiroshi

    1997-02-01

    The Japanese safety regulation generally requires to set an isolation valve at the penetration of the reactor containment vessel on the secondary helium piping system which connects a steam reforming hydrogen production system, located outside the reactor building, to an intermediate heat exchanger (IHX) in the HTTR reactor system. The hot secondary helium which is heated up to the high temperature of 905degC and at the high pressure of 4.1MPa is passing through the isolation valve. So far, such a hot isolation valve has not been industrialized. The present report presents a proposal of a structural design concept of an angle valve as a promising candidate of the hot isolation valve, and a proposal on a test program for demonstrating the technological feasibility of the concept at an out-of-pile test facility before installing at the HTTR. A closing time and a leak rate at a valve seat are the key design parameters for developing the design concept. To set a reasonable value to each parameter, safety requirements on the isolation valve were discussed at first. The target closing time and the acceptable design limit of leak rate at the valve seat for meeting the requirements were specified 30 seconds and 10 STP cm{sup 3}/s, respectively. A nickel-base superalloy Hastelloy XR is feasible as such a valve seat material as to withstand the internal/external pressure of 4.1MPa at the high temperature of 905degC, the severest loading conditions of the valve seat at the accident of secondary helium pipe rupture. Correlation of leak rate at the ambient temperature to that at an operating temperature (900degC) is one of key test subjects of test program at an out-of-pile test facility. Leak rate at the operating temperature is the real parameter to be checked but only the leak rate at the ambient temperature is measured at regulatory examination in service. A test method to develop such correlation was proposed. (author)

  10. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  11. su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame

    International Nuclear Information System (INIS)

    Jin Shuo; Xie Binghao; Yu Zhaoxian; Hou Jingmin

    2008-01-01

    The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) algebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics

  12. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  13. MFM observation of spin structures in nano-magnetic-dot arrays fabricated by damascene technique

    International Nuclear Information System (INIS)

    Sato, K.; Yamamoto, T.; Tezuka, T.; Ishibashi, T.; Morishita, Y.; Koukitu, A.; Machida, K.; Yamaoka, T.

    2006-01-01

    Regularly aligned arrays of magnetic nano dots buried in silicon wafers have been fabricated using damascene technique with the help of electron beam lithography. Arrays of square, rectangular, cross-shaped and Y-shaped structures of submicron size have been obtained. Spin distributions have been observed by means of magnetic force microscopy and analyzed by a micromagnetic simulation with Landau-Lifshitz-Gilbert equations. Importance of magnetostatic interactions working between adjacent dots has been elucidated

  14. Spinning, structure and properties of PP/CNTs and PP/carbon black composite fibers

    Science.gov (United States)

    Marcincin, A.; Hricova, M.; Ujhelyiova, A.

    2014-08-01

    In this paper, the effect of the compatibilisers-dispersants and other nanofillers on melt spinning of the polypropylene (PP) composites, containing carbon nanotubes (CNTs), and carbon black pigment (CBP) has been investigated. Further, the structure and selected properties of composite fibers, such as mechanical and electrical have been studied. The results revealed, that percolation threshold for PP/CBP composite fibres was situated within the concentration of 15 - 20 wt%, what is several times higher than for PP/CNTs fibers.

  15. Valve Corporation: Strategy Tipping Points and Thresholds

    OpenAIRE

    Teppo Felin

    2015-01-01

    Valve Corporation represents an intriguing case study of flat structure and self organization (Puranam & Håkonsson, 2015; Valve, 2012).  The structures and practices of Valve of course are not new. But the company provides an interesting experiment and illustration that powerfully highlights how organizational design can impact individual and collective behavior, strategy and performance.

  16. Valve Corporation: Strategy Tipping Points and Thresholds

    Directory of Open Access Journals (Sweden)

    Teppo Felin

    2015-06-01

    Full Text Available Valve Corporation represents an intriguing case study of flat structure and self organization (Puranam & Håkonsson, 2015; Valve, 2012.  The structures and practices of Valve of course are not new. But the company provides an interesting experiment and illustration that powerfully highlights how organizational design can impact individual and collective behavior, strategy and performance.

  17. Mechanistic insights of the left ventricle structure and fibrosis in the arrhythmogenic mitral valve prolapse.

    Science.gov (United States)

    Fernández-Friera, Leticia; Salguero, Rafael; Vannini, Luca; Argüelles, Ana Fidalgo; Arribas, Fernando; Solís, Jorge

    2018-03-14

    Mitral valve prolapse (MVP) is a common and benign condition. However, some anatomic forms have been recently associated with life-threatening ventricular arrhythmias and sudden cardiac death. Imaging MVP holds the promise of individualized MVP risk assessment. Noninvasive imaging techniques available today are playing an increasingly important role in the diagnosis, prognosis and monitoring of MVP. In this article, we will review the current evidence on arrhythmogenic MVP, with special focus on the utility of echocardiography and CMR for identifying benign and "malignant" forms of MVP. The clinical relevance of this manuscript lies in the value of imaging technology to improve MVP risk prediction, including those arrhythmic-MVP cases with a higher risk of sudden cardiac death.

  18. High-spin states in 136La and possible structure change in the N =79 region

    Science.gov (United States)

    Nishibata, H.; Leguillon, R.; Odahara, A.; Shimoda, T.; Petrache, C. M.; Ito, Y.; Takatsu, J.; Tajiri, K.; Hamatani, N.; Yokoyama, R.; Ideguchi, E.; Watanabe, H.; Wakabayashi, Y.; Yoshinaga, K.; Suzuki, T.; Nishimura, S.; Beaumel, D.; Lehaut, G.; Guinet, D.; Desesquelles, P.; Curien, D.; Higashiyama, K.; Yoshinaga, N.

    2015-05-01

    High-spin states in the odd-odd nucleus 136La, which is located close to the β -stability line, have been investigated in the radioactive-beam-induced fusion-evaporation reaction 124Sn(17N,5 n ). The use of the radioactive beam enabled a highly sensitive and successful search for a new isomer [14+,T1 /2=187 (27 ) ns] in 136La. In the A =130 -140 mass region, no such long-lived isomer has been observed at high spin in odd-odd nuclei. The 136La level scheme was revised, incorporating the 14+ isomer and six new levels. The results were compared with pair-truncated shell model (PTSM) calculations which successfully explain the level structure of the π h11 /2⊗ν h11/2 -1 bands in 132La and 134La. The isomerism of the 14+ state was investigated also by a collective model, the cranked Nilsson-Strutinsky (CNS) model, which explains various high-spin structures in the medium-heavy mass region. It is suggested that a new type of collective structure is induced in the PTSM model by the increase of the number of π g7 /2 pairs, and/or in the CNS model by the configuration change associated with the shape change in 136La.

  19. Spin-transfer phenomena in layered magnetic structures: Physical phenomena and materials aspects

    International Nuclear Information System (INIS)

    Gruenberg, P.; Buergler, D.E.; Dassow, H.; Rata, A.D.; Schneider, C.M.

    2007-01-01

    During the past 20 years, layered structures consisting of ferromagnetic layers and spacers of various material classes with a thickness of only a few nanometers have revealed a variety of exciting and potentially very useful phenomena not present in bulk material. Representing distinct manifestations of spin-transfer processes, these phenomena may be categorized into interlayer exchange coupling (IEC), giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and the more recently discovered spin-transfer torque effect leading to current-induced magnetization switching (CIMS) and current-driven magnetization dynamics. These phenomena clearly confer novel material properties on magnetic layered structures with respect to the (magneto-)transport and the magnetostatic as well as magnetodynamic behavior. Here, we will first concentrate on the less well understood aspects of IEC across insulating and semiconducting interlayers and relate the observations to TMR in the corresponding structures. In this context, we will also discuss more recent advances in TMR due to the use of electrodes made from Heusler alloys and the realization of coherent tunneling in epitaxial magnetic tunneling junctions. Finally, we will review our results on CIMS in epitaxial magnetic nanostructures showing that normal and inverse CIMS can occur simultaneously in a single nanopillar device. In all cases discussed, material issues play a major role in the detailed understanding of the spin-transfer effects, in particular in those systems that yield the largest effects and are thus of utmost interest for applications

  20. Spin asymmetry Ad1 and the spin-dependent structure function gd1 of the deuteron at low values of x and Q2

    Czech Academy of Sciences Publication Activity Database

    Alexakhin, V.; Alexandrov, Y.; Alexeev, G.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.; Bytchkov, V.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.; Costa, S.; Crespo, M.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Denisov, O.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.; Dolgopolov, A.; Donskov, S.; Dorofeev, V.; Doshita, N.; Duic, V.; Dünnweber, W.; Ehlers, J.; Eversheim, P.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.; Grajek, O.; Grasso, A.; Grube, B.; Grünemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.; Ilgner, C.; Ioukaev, A.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Khomutov, N.; Kisselev, Y.; Klein, F.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Komissarov, E.; Kondo, K.; Königsmann, K.; Konoplyannikov, A.; Konorov, I.; Konstantinov, V.; Korentchenko, A.; Korzenev, A.; Kotzinian, A.; Koutchinski, N.; Kowalik, K.; Kravchuk, N.; Krivokhizhin, G.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.; Lamanna, M.; Le Goff, J.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Manuilov, I.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.; Medved, K.; Meyer, W.; Mielech, A.; Mikhailov, Y.; Moinester, M.; Nähle, O.; Nassalski, J.; Neliba, S.; Neyret, D.; Nikolaenko, V.; Nozdrin, A.; Obraztsov, V.; Olshevsky, A.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.; Peshekhonov, D.; Peshekhonov, V.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.; Popov, A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.; Rondio, E.; Sadovski, A.; Saller, E.; Samoylenko, V.; Sandacz, A.; Sans, M.; Sapozhnikov, M.; Savin, I.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.; Shishkin, A.; Siebert, H.; Sinha, L.; Sissakian, A.; Skachkova, A.; Slunecka, M.; Smirnov, G.; Sozzi, F.; Sugonyaev, V.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.; Tassarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.; Toeda, T.; Tretyak, V.; Trousov, S.; Varanda, M.; Virius, M.; Vlassov, N.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    Roč. 647, 5-6 (2007), s. 330-340 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : inelastic muon scattering * spin * structure function Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.189, year: 2007

  1. Spin asymmetry $A^d_1$ and the spin-dependent structure function $g^d_1$ of the deuteron at low values of $x$ and $Q^2$

    CERN Document Server

    Ageev, E.S.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; He, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Khomutov, N.V.; Kisselev, Yu.; Klein, F.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Quintans, C.; Ramos, S.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rith, K.; Rozhdestvensky, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sans, M.; Sapozhnikov, M.G.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.-W.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Sugonyaev, V.P.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sulc, M.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trusov, Sergey V.; Varanda, M.; Virius, M.; Vlassov, N.V.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    We present a precise measurement of the deuteron longitudinal spin asymmetry $A_1^d$ and of the deuteron spin-dependent structure function $g_1^d$ at $Q^2 < $ 1~(GeV/$c$)$^2$ and $4\\cdot$10$^{-5} < x < $~2.5$\\cdot$10$^{-2}$ based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured $A_1^d$ and $g_1^d$ are found to be consistent with zero in the whole range of $x$.

  2. Bimodule structure in the periodic gℓ(1|1) spin chain

    International Nuclear Information System (INIS)

    Gainutdinov, A.M.; Read, N.; Saleur, H.

    2013-01-01

    This paper is the second in a series devoted to the study of periodic super-spin chains. In our first paper (Gainutdinov et al., 2013 [3]), we have studied the symmetry algebra of the periodic gℓ(1|1) spin chain. In technical terms, this spin chain is built out of the alternating product of the gℓ(1|1) fundamental representation and its dual. The local energy densities — the nearest neighbour Heisenberg-like couplings — provide a representation of the Jones–Temperley–Lieb (JTL) algebra JTL N . The symmetry algebra is then the centralizer of JTL N , and turns out to be smaller than for the open chain, since it is now only a subalgebra of U q sℓ(2) at q=i — dubbed U q odd sℓ(2) in Gainutdinov et al. (2013) [3]. A crucial step in our associative algebraic approach to bulk logarithmic conformal field theory (LCFT) is then the analysis of the spin chain as a bimodule over U q odd sℓ(2) and JTL N . While our ultimate goal is to use this bimodule to deduce properties of the LCFT in the continuum limit, its derivation is sufficiently involved to be the sole subject of this paper. We describe representation theory of the centralizer and then use it to find a decomposition of the periodic gℓ(1|1) spin chain over JTL N for any even N and ultimately a corresponding bimodule structure. Applications of our results to the analysis of the bulk LCFT will then be discussed in the third part of this series

  3. ESC Working Group on Valvular Heart Disease position paper--heart valve clinics: organization, structure, and experiences.

    Science.gov (United States)

    Lancellotti, Patrizio; Rosenhek, Raphael; Pibarot, Philippe; Iung, Bernard; Otto, Catherine M; Tornos, Pilar; Donal, Erwan; Prendergast, Bernard; Magne, Julien; La Canna, Giovanni; Piérard, Luc A; Maurer, Gerald

    2013-06-01

    With an increasing prevalence of patients with valvular heart disease (VHD), a dedicated management approach is needed. The challenges encountered are manifold and include appropriate diagnosis and quantification of valve lesion, organization of adequate follow-up, and making the right management decisions, in particular with regard to the timing and choice of interventions. Data from the Euro Heart Survey have shown a substantial discrepancy between guidelines and clinical practice in the field of VHD and many patients are denied surgery despite having clear indications. The concept of heart valve clinics (HVCs) is increasingly recognized as the way to proceed. At the same time, very few centres have developed such expertise, indicating that specific recommendations for the initial development and subsequent operating requirements of an HVC are needed. The aim of this position paper is to provide insights into the rationale, organization, structure, and expertise needed to establish and operate an HVC. Although the main goal is to improve the clinical management of patients with VHD, the impact of HVCs on education is of particular importance: larger patient volumes foster the required expertise among more senior physicians but are also fundamental for training new cardiologists, medical students, and nurses. Additional benefits arise from research opportunities resulting from such an organized structure and the delivery of standardized care protocols. The growing volume of patients with VHD, their changing characteristics, and the growing technological opportunities of refined diagnosis and treatment in addition to the potential dismal prognosis if overlooked mandate specialized evaluation and care by dedicated physicians working in a specialized environment that is called the HVC.

  4. Characteristics of Carotid Artery Structure and Mechanical Function and Their Relationships with Aortopathy in Patients with Bicuspid Aortic Valves

    Directory of Open Access Journals (Sweden)

    Mihyun Kim

    2017-08-01

    Full Text Available Patients with a bicuspid aortic valve (BAV often have proximal aortic dilatation and systemic vascular dysfunction. We hypothesized that BAV patients would have different carotid artery structural and functional characteristics compared to tricuspid aortic valve (TAV patients. In 28 patients with surgically confirmed BAV and 27 patients with TAV, intima media thickness (IMT, number of plaques, fractional area change (FAC, global circumferential strain (GCS, and standard deviation of CS (SD-CS in both common carotid arteries were assessed using duplex ultrasound and velocity vector imaging (VVI. Patients with BAV were younger and had less co-morbidity, but showed a significantly larger ascending aorta (43.3 ± 7.5 vs. 37.0 ± 6.2 mm, p < 0.001 and a higher prevalence of aortopathy (61 vs. 30%, p = 0.021 than those with TAV. BAV patients showed a significantly lower IMT and fewer plaques. Although FAC and GCS were not significantly different between the two groups, they tended to be lower in the BAV group when each group was divided into three subgroups according to age. There was a significant age-dependent increase in IMT and decreases in FAC and GCS in the TAV group (p = 0.005, p = 0.001, p = 0.002, respectively, but this phenomenon was not evident in the BAV group (p = 0.074, p = 0.248, p = 0.394, respectively. BAV patients with aortopathy showed a higher SD-CS than those without aortopathy (p = 0.040, reflecting disordered mechanical function. In conclusion, BAV patients have different carotid artery structure and function compared with TAV patients, suggesting intrinsic vascular abnormalities that are less affected by established cardiovascular risk factors and more strongly related to the presence of aortopathy.

  5. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    Energy Technology Data Exchange (ETDEWEB)

    Czapla-Masztafiak, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland); Lis, G.J.; Gajda, M.; Jasek, E. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków (Poland); Czubek, U. [Department of Coronary Disease, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków (Poland); Bolechała, F. [Department of Forensic Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków (Poland); Borca, C. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kwiatek, W.M. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland)

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe{sup 3+} is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe{sup 3+} form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  6. Precision Measurement of the Neutron Spin Asymmetries and Spin-dependent Structure Functions in the Valence Quark Region

    International Nuclear Information System (INIS)

    Xiaochao Zheng; Konrad Aniol; David Armstrong; Todd Averett; William Bertozzi; Sebastien Binet; Etienne Burtin; Emmanuel Busato; Cornel Butuceanu; John Calarco; Alexandre Camsonne; Gordon Cates; Zhengwei Chai; Jian-ping Chen; Seonho Choi; Eugene Chudakov; Francesco Cusanno; Raffaele De Leo; Alexandre Deur; Sonja Dieterich; Dipangkar Dutta; John Finn; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Shalev Gilad; Ronald Gilman; Javier Gomez; Jens-ole Hansen; Douglas Higinbotham; Wendy Hinton; Tanja Horn; Cornelis De Jager; Xiaodong Jiang; Lisa Kaufman; James Kelly; Wolfgang Korsch; Kevin Kramer; John Lerose; David Lhuillier; Nilanga Liyanage; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Kathy Mccormick; Zein-eddine Meziani; Robert Michaels; Bryan Moffit; Sirish Nanda; Damien Neyret; Sarah Phillips; Anthony Powell; Thierry Pussieux; Bodo Reitz; Julie Roche; Michael Roedelbronn; Guy Ron; Marat Rvachev; Arunava Saha; Nikolai Savvinov; Jaideep Singh; Simon Sirca; Karl Slifer; Patricia Solvignon; Paul Souder; Daniel Steiner; Steffen Strauch; Vincent Sulkosky; William Tobias; Guido Urciuoli; Antonin Vacheret; Bogdan Wojtsekhowski; Hong Xiang; Yuan Xiao; Feng Xiong; Bin Zhang; Lingyan Zhu; Xiaofeng Zhu; Piotr Zolnierczuk

    2004-01-01

    We report on measurements of the neutron spin asymmetries A 1,2 n and polarized structure functions g 1,2 n at three kinematics in the deep inelastic region, with x = 0.33, 0.47 and .60 and Q 2 = 2.7, 3.5 and 4.8 (GeV/c) 2 , respectively. These measurements were performed using a 5.7 GeV longitudinally-polarized electron beam and a polarized 3 He target. The results for A 1 n and g 1 n at x = 0.33 are consistent with previous world data and, at the two higher x points, have improved the precision of the world data by about an order of magnitude. The new A 1 n data show a zero crossing around x = 0.47 and the value at x = 0.60 is significantly positive. These results agree with a next-to-leading order QCD analysis of previous world data. The trend of data at high x agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (pQCD) assuming hadron helicity conservation. Results for A 2 n and g 2 n have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment d 2 n was evaluated and the new result has improved the precision of this quantity by about a factor of two. When combined with the world proton data, polarized quark distribution functions were extracted from the new g 1 n /F 1 n values based on the quark parton model. While results for Δu/u agree well with predictions from various models, results for Δd/d disagree with the leading-order pQCD prediction when hadron helicity conservation is imposed

  7. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  8. Spin- and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi

    2017-10-01

    We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.

  9. Study of the nucleon spin structure functions: the E154 experiment at SLAC

    International Nuclear Information System (INIS)

    Sabatie, Franck

    1998-01-01

    In experiment E154 at SLAC, the spin dependent structure function g 1 n was measured by scattering longitudinally polarized 50 GeV electrons off a longitudinally polarized helium 3 target. We report the integral over the measured x range to be ∫ 0.014 0.7 g 1 n (x,5 GeV 2 )dx = -0.0348 ± 0.0033 ± 0.0043 ± 0.0014. We observe relatively large values of g 1 n at low x, calling into question the reliability of the data extrapolation down to x equal 0. Such a divergent behavior seems to disagree with the prediction of the Regge theory but can be quantitatively explained by perturbative QCD. Moreover, we have performed a NLO perturbative QCD analysis of the world data on g 1 , paying careful attention to both the theoretical hypothesis and the calculation of errors. Using a parametrization of the polarized parton distribution at a low scale, we can access the fraction of spin carried by quarks: ΔΣ = 29 ± 6 pc in the MS-bar scheme, and ΔΣ = 37 ± 7 pc in the AB scheme. The gluon contribution to the nucleon spin is not well enough constrained by the current data, but seems to lie between 0 and 2. This study allows us to extract the first moment of the g 1 structure function and we find agreement with the Bjorken sum rule expectations. (author) [fr

  10. Proposal to measure spin-structure functions and semi-exclusive asymmetries for the proton and neutron at HERA

    International Nuclear Information System (INIS)

    Jackson, H.E.; Hansen, J.O.; Jones, C.E.

    1995-01-01

    Nucleon spin physics will be studied in the HERMES experiment, that will use polarized internal targets of essentially pure atomic H, D, and 3 He in the HERA electron storage ring at DESY. A series of measurements of spin-dependent properties of the nucleon and few-body nuclei will be made; the spin structure function g 1 (x) of the proton and neutron will be measured to test the Bjorken sum rule and study the fraction of the nucleon spin carried by quarks; the spin structure function g 2 W, sensitive to quark-gluon correlations, and the structure functions b 1 (x), and Δ(x), sensitive to nuclear binding effects, will be measured; and, using the particle identification capability of the HERMES detector, pions will be detected in coincidence with the scattered electrons. The coincident hadron measurements represent the most important extension that can be made at this time to the existing measurements on the nucleon spin structure functions because they provide information about the flavor-dependence of the quark spin distribution in the nucleon. Argonne is providing the Cerenkov counter to be used for particle identification and developing the drifilm coating technique for the ultrathin target cell required for this experiment. The HERMES collaboration intends to use polarized targets with the highest available figures of merit, and the Argonne laser-driven source offers the most promise for a significant advance in present-day targets

  11. High spin structure of {sup 35}Cl and the sd-fp shell gap

    Energy Technology Data Exchange (ETDEWEB)

    Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Ray, Indrani [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, S. [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, J.M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dey, C.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhowal, Samit [Department of Physics, Surendranath Evening College, Kolkata 700009 (India); Gangopadhyay, G. [University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India); Datta, P. [Anandamohan College, 102/1, Raja Rammohan Sarani, Kolkata 700009 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhowmik, R.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Muralithar, S.; Singh, R.P.; Kumar, R. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2007-01-15

    The high spin states of {sup 35}Cl have been studied by in-beam {gamma}-spectroscopy following the fusion-evaporation reaction {sup 12}C({sup 28}Si,{alpha}p){sup 35}Cl at E{sub lab}=70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states.

  12. High spin structure of 35Cl and the sd-fp shell gap

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Saha Sarkar, M.; Ray, Indrani; Banerjee, P.; Sarkar, S.; Raut, Rajarshi; Goswami, A.; Chatterjee, J.M.; Chattopadhyay, S.; Datta Pramanik, U.; Mukherjee, A.; Dey, C.C.; Bhattacharya, S.; Dasmahapatra, B.; Bhowal, Samit; Gangopadhyay, G.; Datta, P.; Jain, H.C.; Bhowmik, R.K.; Muralithar, S.; Singh, R.P.; Kumar, R.

    2007-01-01

    The high spin states of 35 Cl have been studied by in-beam γ-spectroscopy following the fusion-evaporation reaction 12 C( 28 Si,αp) 35 Cl at E lab =70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states

  13. Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius

    2007-01-01

    LiNiPO4 is a magneto-electric material, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied at low temperatures. Such systems have received growing interest in recent years, but the nature of the magneticelectric couplings is yet to be fully...... through the last three years, it is not the primary subject of this thesis. The objective of the phD project has been to provide groundwork that may be beneficiary to future studies of LiNiPO4. More specifically, we have mapped out the magnetic HT phase diagram with magnetic fields below 14.7 T applied...... along the crystallographic c-axis, determined the magnetic structures for the phases in the phase diagram, and have set up a spin model Hamiltonian describing the spin wave dynamics and estimating the relevant magnetic interactions....

  14. The effect of spin-orbit coupling in band structure of few-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi, E-mail: sahdan89@yahoo.co.id; Darma, Yudi, E-mail: sahdan89@yahoo.co.id [Department of Physics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  15. Investigation of ferromagnetic resonance and magnetoresistance in anti-spin ice structures

    Science.gov (United States)

    Ribeiro, I. R. B.; Felix, J. F.; Figueiredo, L. C.; Morais, P. C.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Quindeau, A.; de Araujo, C. I. L.

    2016-11-01

    In this work, we report experimental and theoretical investigations performed in anti-spin ice structures, composed by square lattice of elongated antidots, patterned in nickel thin film. The magnetic vortex crystal state was obtained by micromagnetic simulation as the ground state magnetization, which arises due to the magnetic stray field at the antidot edges inducing chirality in the magnetization of platters among antidots. Ferromagnetic resonance (FMR) and magnetoresistance (MR) measurements were utilized to investigate the vortex crystal magnetization dynamics and magnetoelectric response. By using FMR, it was possible to detect the spin wave modes and vortex crystal resonance, in good agreement with dynamic micromagnetic simulation results. The vortex crystal magnetization configuration and its response to the external magnetic field, were used to explain the isotropic MR behaviour observed.

  16. The Deuteron Spin-dependent Structure Function $g^{d}_1$ and its First Moment

    CERN Document Server

    Alexakhin, V.Yu.; Alexeev, G.D.; Alexeev, M.; Amoroso, A.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; M. Finger jr.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu. V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Zvyagin, A.

    2007-01-01

    We present a measurement of the deuteron spin-dependent structure function g^d_1 based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for \\Gamma^d_1, the first moment of g^d_1(x), and for the matrix element of the singlet axial current, a_0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function \\Delta_G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3(GeV/c)^2 the first moment of \\Delta G is found to be of the order of 0:2 - 0:3 in absolute value.

  17. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  18. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K; Hatsukawa, Y [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  19. Measurement of the Proton and Deuteron Spin Structure Functions G1 and G2

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Al

    2003-04-02

    The SLAC experiment E155 was a deep-inelastic scattering experiment that scattered polarized electrons off polarized proton and deuteron targets in the effort to measure precisely the proton and deuteron spin structure functions. The nucleon structure functions g{sub 1} and g{sub 2} are important quantities that help test our present models of nucleon structure. Such information can help quantify the constituent contributions to the nucleon spin. The structure functions g{sub 1}{sup p} and G{sub 1}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.9 and 1 {le} Q{sup 2} {le} 40 GeV{sup 2} by scattering 48.4 GeV longitudinally polarized electrons off longitudinally polarized protons and deuterons. In addition, the structure functions g{sub 2}{sup p} and g{sub 2}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.7 and 1 {le} Q{sup 2} {le} 17 GeV{sup 2} by scattering 38.8 GeV longitudinally polarized electrons off transversely polarized protons and deuterons. The measurements of g{sub 1} confirm the Bjorken sum rule and find the net quark polarization to be {Delta}{Sigma} = 0.23 {+-} 0.04 {+-} 0.6 while g{sub 2} is found to be consistent with the g{sub 2}{sup WW} model.

  20. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    Science.gov (United States)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  1. Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core–shell structure

    International Nuclear Information System (INIS)

    Deviren, Bayram; Şener, Yunus

    2015-01-01

    The magnetic properties of mixed spin-1 and spin-3/2 Ising nanoparticles with core/shell structure are studied by using the effective-field theory with correlations. We investigate the thermal variations of the core, shell and total magnetizations and the Q-, R-, P-, S-, N- and L-types of compensation behavior in Néel classification nomenclature exists in the system. The effects of the crystal-field, core and shell interactions and interface coupling, on the phase diagrams are investigated in detail and the obtained phase diagrams are presented in three different planes. The system exhibits both second- and first-order phase transitions besides tricritical point, double critical end point, triple point and critical end point depending on the appropriate values of the interaction parameters. The system strongly affected by the surface situations and some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. - Highlights: • Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles are investigated. • The system exhibits tricritical, double critical end, triple, critical end points. • Q-, R-, P-, S-, N- and L-types of compensation behavior are found. • Some characteristic phenomena are found depending on the interaction parameters. • Effects of crystal-field and bilinear interactions on the system are examined

  2. Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Şener, Yunus [Institute of Science, Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey)

    2015-07-15

    The magnetic properties of mixed spin-1 and spin-3/2 Ising nanoparticles with core/shell structure are studied by using the effective-field theory with correlations. We investigate the thermal variations of the core, shell and total magnetizations and the Q-, R-, P-, S-, N- and L-types of compensation behavior in Néel classification nomenclature exists in the system. The effects of the crystal-field, core and shell interactions and interface coupling, on the phase diagrams are investigated in detail and the obtained phase diagrams are presented in three different planes. The system exhibits both second- and first-order phase transitions besides tricritical point, double critical end point, triple point and critical end point depending on the appropriate values of the interaction parameters. The system strongly affected by the surface situations and some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. - Highlights: • Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles are investigated. • The system exhibits tricritical, double critical end, triple, critical end points. • Q-, R-, P-, S-, N- and L-types of compensation behavior are found. • Some characteristic phenomena are found depending on the interaction parameters. • Effects of crystal-field and bilinear interactions on the system are examined.

  3. Measurement of the spin-dependent structure-functions of the proton and the deuteron

    CERN Multimedia

    2002-01-01

    % NA47 %title \\\\ \\\\The physics motivation of the experiments of the Spin Muon Collaboration is to better understand how the nucleon spin is built-up by its partons and to test the fundamental Bjorken sum rule. \\\\ \\\\The spin-dependent structure functions $g _{1}(x)$ of the proton and the deuteron are determined from the measured cross section asymmetries for deep inelastic scattering of longitudinally polarized muons from longitudinally polarized nucleons. The experiment is similar to the NA2 one of the European Muon Collaboration in which the violation of the Ellis-Jaffe sum rule for the proton was found. \\\\ \\\\The apparatus is the upgraded forward spectrometer which was used originally by the European and New Muon Collaborations. To minimize the systematic uncertainties the target contains two oppositely polarized cells, which were exposed to the muon beam simultaneously. For the experiments in 1991 and 1992 the original EMC polarized target was reinstalled. In 1993 a new polarized target was put into operati...

  4. Porcine Tricuspid Valve Anatomy and Human Compatibility

    DEFF Research Database (Denmark)

    Waziri, Farhad; Lyager Nielsen, Sten; Hasenkam, J. Michael

    2016-01-01

    before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. METHODS: The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin...

  5. Unravelling the spin-state of solvated [Fe(bpp)2]2+ spin-crossover complexes: structure-function relationship.

    Science.gov (United States)

    Giménez-López, Maria Del Carmen; Clemente-León, Miguel; Giménez-Saiz, Carlos

    2018-05-23

    This paper reports firstly the syntheses, crystal structures, and thermal and magnetic properties of spin crossover salts of formulae [Fe(bpp)2]3[Cr(CN)6]2·13H2O (1) and [Fe(bpp)2][N(CN)2]2·H2O (2) (bpp = 2,6-bis(pyrazol-3-yl)pyridine) exhibiting hydrogen-bonded networks of low-spin [Fe(bpp)2]2+ complexes and [Cr(CN)6]3- or [N(CN)2]- anions, with solvent molecules located in the voids. Desolvation of 1 is accompanied by a complete low-spin (LS) to a high-spin (HS) transformation that becomes reversible after rehydration by exposing the sample to the humidity of air. The influence of the lattice water on the magnetic properties of spin-crossover [Fe(bpp)2]X2 complex salts has been documented. In most cases, it stabilises the LS state over the HS one. In other cases, it is rather the contrary. The second part of this paper is devoted to unravelling the reasons why the lattice solvent stabilises one form over the other through magneto-structural correlations of [Fe(bpp)2]2+ salts bearing anions with different charge/size ratios (Xn-). The [Fe(bpp)2]2+ stacking explaining these two different behaviours is correlated here with the composition of the second coordination sphere of the Fe centers and the ability of these anions to form hydrogen bonds and/or π-π stacking interactions between them or the bpp ligand.

  6. Structure and properties of quarternary and tetragonal Heusler compounds for spintronics and spin transver torque applications

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Vajiheh Alijani

    2012-03-07

    This work is divided into two parts: part 1 is focused on the prediction of half-metallicity in quaternary Heusler compounds and their potential for spintronic applications and part 2 on the structural properties of Mn{sub 2}-based Heusler alloys and tuning the magnetism of them from soft to hard-magnetic for spin-transfer torque applications. In part 1, three different series of quaternary Heusler compounds are investigated, XX'MnGa (X=Cu, Ni and X'=Fe,Co), CoFeMnZ (Z=Al,Ga,Si,Ge), and Co{sub 2-x}Rh{sub x}MnZ (Z=Ga,Sn,Sb). All of these quaternary compounds except CuCoMnGa are predicted to be half-metallic ferromagnets by ab-initio electronic structure calculations. In the XX'MnGa class of compounds, NiFeMnGa has a low Curie temperature for technological applications but NiCoMnGa with a high spin polarization, magnetic moment, and Curie temperature is an interesting new material for spintronics applications. All CoFeMnZ compounds exhibit a cubic Heusler structur and their magnetic moments are in fair agreement with the Slater-Pauling rule indicating the halfmetallicity and high spin polarization required for spintronics applications. Their high Curie temperatures make them suitable for utilization at room temperature and above. The structural investigation revealed that the crystal structure of all Co{sub 2-x}Rh{sub x}MnZ compounds aside from CoRhMnSn exhibit different types of anti-site disorder. The magnetic moments of the disordered compounds deviate from the Slater-Pauling rule indicating that 100% spin polarization are not realized in CoRhMnGa, CoRhMnSb, and Co{sub 0.5}Rh{sub 1.5}MnSb. Exchange of one Co in Co{sub 2}MnSn by Rh results in the stable, well-ordered compound CoRhMnSn. This exchange of one of the magnetic Co atoms by a non-magnetic Rh atom keeps the magnetic properties and half-metallicity intact. In part 2, two series of Mn{sub 2}-based Heusler alloys are investigated, Mn{sub 3-x}Co{sub x}Ga and Mn{sub 2-x}Rh{sub 1+x}Sn. It has been

  7. Spin transport in nanowires

    OpenAIRE

    Pramanik, S.; bandyopadhyay, S.; Cahay, M.

    2003-01-01

    We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...

  8. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  9. Spin reorientation and structural relaxation of atomic layers: Pushing the limits of accuracy

    International Nuclear Information System (INIS)

    Meyerheim, H.L.; Sander, D.; Popescu, R.; Kirschner, J.; Robach, O.; Ferrer, S.

    2004-01-01

    The correlation between an ad-layer-induced spin reorientation transition (SRT) and the ad-layer-induced structural relaxation is investigated by combined in situ surface x-ray diffraction and magneto-optical Kerr-effect experiments on Ni/Fe/Ni(111) layers on W(110). The Fe-induced SRT from in-plane to out-of-plane, and the SRT back to in-plane upon subsequent coverage by Ni, are each accompanied by a small lattice relaxation of at most 0.002 Angstrom. Such a small strain variation excludes a magnetoelasticity driven SRT, and we suggest the interface anisotropy as a possible driving force

  10. The deuteron spin-dependent structure function and its first moment

    Czech Academy of Sciences Publication Activity Database

    Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Alexeev, M.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; De Masi, R.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A. M.; Donskov, S.V.; Dorofeev, V. A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger jr., M.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Grajek, O.A.; Grasso, A.; Grube, B.; Guskov, A.; Haas, F.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Ladygin, M.E.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Neyret, D.P.; Nikolaenko, V.I.; Nikolaev, K.; Nozdrin, A.A.; Obraztsov, V. F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Ramos, S.; Reicherz, G.; Rondio, E.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shevchenko, O.Yu.; Siebert, H.-W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sozzi, F.; Srnka, Aleš; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Trippel, S.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Webb, R.; Weise, E.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2007-01-01

    Roč. 647, č. 1 (2007), s. 8-17 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : Deep inelastic scattering * Spin * Structure function * QCD analysis * A1 * g1 Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.189, year: 2007 http://www.sciencedirect.com/science/article/B6TVN-4MYVG5P-1/2/387d70e7f30fb736514de259c62118d9

  11. Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange.

    Science.gov (United States)

    Kumar, Manoranjan; Parvej, Aslam; Soos, Zoltán G

    2015-08-12

    The spin-1/2 chain with isotropic Heisenberg exchange J1, J2  >  0 between first and second neighbors is frustrated for either sign of J1. Its quantum phase diagram has critical points at fixed J1/J2 between gapless phases with nondegenerate ground state (GS) and quasi-long-range order (QLRO) and gapped phases with doubly degenerate GS and spin correlation functions of finite range. In finite chains, exact diagonalization (ED) estimates critical points as level crossing of excited states. GS spin correlations enter in the spin structure factor S(q) that diverges at wave vector qm in QLRO(q(m)) phases with periodicity 2π/q(m) but remains finite in gapped phases. S(q(m)) is evaluated using ED and density matrix renormalization group (DMRG) calculations. Level crossing and the magnitude of S(q(m)) are independent and complementary probes of quantum phases, based respectively on excited and ground states. Both indicate a gapless QLRO(π/2) phase between  -1.2  quantum critical points at small frustration J2 but disagree in the sector of weak exchange J1 between Heisenberg antiferromagnetic chains on sublattices of odd and even-numbered sites.

  12. Self-sustained spin-polarized current oscillations in multiquantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, Ramon [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, Manuel; Bonilla, Luis L [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Platero, Gloria [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco (Spain)], E-mail: escobedo@unican.es, E-mail: manuel.carretero@uc3m.es, E-mail: bonilla@ing.uc3m.es, E-mail: gplatero@icmm.csic.es

    2009-01-15

    Nonlinear transport through diluted magnetic semiconductor nanostructures is investigated. We have considered a II-VI multiquantum well nanostructure whose wells are selectively doped with Mn. The response to a dc voltage bias may be either a stationary or an oscillatory current. We have studied the transition from stationary to time-dependent current as a function of the doping density and the number of quantum wells. Analysis and numerical solution of a nonlinear spin transport model shows that the current in a structure without magnetic impurities is stationary, whereas current oscillations may appear if at least one well contains magnetic impurities. For long structures having two wells with magnetic impurities, a detailed analysis of nucleation of charge dipole domains shows that self-sustained current oscillations are caused by repeated triggering of dipole domains at the magnetic wells and motion towards the collector. Depending on the location of the magnetic wells and the voltage, dipole domains may be triggered at both wells or at only one. In the latter case, the well closer to the collector may inhibit domain motion between the first and the second well inside the structure. Our study could allow design of oscillatory spin-polarized current injectors.

  13. The Charge-Mass-Spin Relation of Clifford Polyparticles, Kerr-Newman Black Holes and the Fine Structure Constant

    CERN Document Server

    Castro, C

    2003-01-01

    A Clifford-algebraic interpretation is proposed of the charge, mass, spin relationship found recently by Cooperstock and Faraoini which was based on the Kerr-Newman metric solutions of the Einstein-Maxwell equations. The components of the polymomentum associated with a Clifford polyparticle in four dimensions provide for such a charge, mass, spin relationship without the problems encountered in Kaluza-Klein compactifications which furnish an unphysically large value for the electron charge. A physical reasoning behind such charge, mass, spin relationship is provided, followed by a discussion on the geometrical derivation of the fine structure constant by Wyler, Smith, Gonzalez-Martin and Smilga. To finalize, the renormalization of electric charge is discussed and some remarks are made pertaining the modifications of the charge-scale relationship, when the spin of the polyparticle changes with scale, that may cast some light into the alleged Astrophysical variations of the fine structure constant.

  14. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves.

    Science.gov (United States)

    Theodoridis, Karolina; Müller, Janina; Ramm, Robert; Findeisen, Katja; Andrée, Birgit; Korossis, Sotirios; Haverich, Axel; Hilfiker, Andres

    2016-10-01

    Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis

  15. Intrinsic properties of high-spin band structures in triaxial nuclei

    Science.gov (United States)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  16. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  17. Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’

    International Nuclear Information System (INIS)

    De Gier, Jan

    2012-01-01

    We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)

  18. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  19. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  20. Echocardiographic evaluation of heart valve prosthetic dysfunction

    Directory of Open Access Journals (Sweden)

    Yuriy Ivaniv

    2018-02-01

    Full Text Available Patients with replaced heart valve submitted to echocardiographic examination may have symptoms related either to valvular malfunction or ventricular dysfunction from different causes. Clinical examination is not reliable in a prosthetic valve evaluation and the main information regarding its function could be obtained using different cardiac ultrasound modalities. This review provides a description of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. For the interpretation of echocardiography there is a need in special knowledge of prosthesis types and possible reasons of prosthetic function deterioration. Echocardiography allows to reveal valve thrombosis, pannus formation, vegetation and such complications of infective endocarditis as valve ring abscess or dehiscence. Transthoracic echocardiography requires different section plane angles and unconventional views. Transesophageal echocardiography is more often used than in native valve examination due to better visualization of prosthetic valve structure and function. Three-dimensional echocardiography could provide more detailed visual information especially in the assessment of paravalvular regurgitation or valve obstruction.

  1. Three-dimensional flow structures past a bio-prosthetic valve in an in-vitro model of the aortic root.

    Science.gov (United States)

    Hasler, David; Obrist, Dominik

    2018-01-01

    The flow field past a prosthetic aortic valve comprises many details that indicate whether the prosthesis is functioning well or not. It is, however, not yet fully understood how an optimal flow scenario would look, i.e. which subtleties of the fluid dynamics in place are essential regarding the durability and compatibility of a prosthetic valve. In this study, we measured and analyzed the 3D flow field in the vicinity of a bio-prosthetic heart valve in function of the aortic root size. The measurements were conducted within aortic root phantoms of different size, mounted in a custom-built hydraulic setup, which mimicked physiological flow conditions in the aorta. Tomographic particle image velocimetry was used to measure the 3D instantaneous velocity field at various instances. Several 3D fields (e.g. instantaneous and mean velocity, 3D shear rate) were analyzed and compared focusing on the impact of the aortic root size, but also in order to gain general insight in the 3D flow structure past the bio-prosthetic valve. We found that the diameter of the aortic jet relative to the diameter of the ascending aorta is the most important parameter in determining the characteristics of the flow. A large aortic cross-section, relative to the cross-section of the aortic jet, was associated with higher levels of turbulence intensity and higher retrograde flow in the ascending aorta.

  2. Spin structure of exchange biased heterostructures. Fe/MnF{sub 2} and Fe/FeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B

    2006-12-18

    In this work, the {sup 57}Fe probe layer technique is used in order to investigate the depth- and temperature-dependent Fe-layer spin structure of exchange biased Fe/MnF{sub 2} and Fe/FeF{sub 2} (pseudo-twinned) antiferromagnetic (AFM) systems by conversion electron Moessbauer spectroscopy (CEMS) and nuclear resonant scattering (NRS) of synchrotron radiation. Two kinds of samples with a 10 A {sup 57}Fe probe layer directly at or 35 A away from the interface, labeled as interface and center sample, respectively, were studied in this work. The results obtained by CEMS for Fe/MnF{sub 2} suggests that, at 80 K, i.e., above T{sub N}=67 K of MnF{sub 2}, the remanent state Fe-layer spin structure of the two studied samples are slightly different due to their different microstructure. In the temperature range from 300 K to 80 K, the Fe-layer spin structure does not change just by zero-field cooling the sample in remanence. For Fe/FeF{sub 2}, a continuous non-monotonic change of the remanent-state Fe spin structure was observed by cooling from 300 K to 18 K. NRS of synchrotron radiation was used to investigate the temperature- and depth-dependent Fe-layer spin structure during magnetization reversal in pseudo-twinned Fe/MnF{sub 2}. A depthdependent Fe spin structure in an applied magnetic field (applied along the bisector of the twin domains) was observed at 10 K, where the Fe spins closer to the interface are not aligned along the field direction. The depth-dependence disappears at 150 K. (orig.)

  3. Circuit Simulation of All-Spin Logic

    KAUST Repository

    Alawein, Meshal

    2016-05-01

    With the aggressive scaling of complementary metal-oxide semiconductor (CMOS) nearing an inevitable physical limit and its well-known power crisis, the quest for an alternative/augmenting technology that surpasses the current semiconductor electronics is needed for further technological progress. Spintronic devices emerge as prime candidates for Beyond CMOS era by utilizing the electron spin as an extra degree of freedom to decrease the power consumption and overcome the velocity limit connected with the charge. By using the nonvolatility nature of magnetization along with its direction to represent a bit of information and then manipulating it by spin-polarized currents, routes are opened for combined memory and logic. This would not have been possible without the recent discoveries in the physics of nanomagnetism such as spin-transfer torque (STT) whereby a spin-polarized current can excite magnetization dynamics through the transfer of spin angular momentum. STT have expanded the available means of switching the magnetization of magnetic layers beyond old classical techniques, promising to fulfill the need for a new generation of dense, fast, and nonvolatile logic and storage devices. All-spin logic (ASL) is among the most promising spintronic logic switches due to its low power consumption, logic-in-memory structure, and operation on pure spin currents. The device is based on a lateral nonlocal spin valve and STT switching. It utilizes two nanomagnets (whereby information is stored) that communicate with pure spin currents through a spin-coherent nonmagnetic channel. By using the well-known spin physics and the recently proposed four-component spin circuit formalism, ASL can be thoroughly studied and simulated. Previous attempts to model ASL in the linear and diffusive regime either neglect the dynamic characteristics of transport or do not provide a scalable and robust platform for full micromagnetic simulations and inclusion of other effects like spin Hall

  4. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  5. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  6. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E. [Stanford Univ., CA (United States)

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results of the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.

  7. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  8. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien; Saidaoui, Hamed Ben Mohamed; Ghosh, Sumit

    2015-01-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  9. Antiferromagnetic spin-orbitronics

    KAUST Repository

    Manchon, Aurelien

    2015-05-01

    Antiferromagnets have long remained an intriguing and exotic state of matter, whose application has been restricted to enabling interfacial exchange bias in metallic and tunneling spin-valves [1]. Their role in the expanding field of applied spintronics has been mostly passive and the in-depth investigation of their basic properties mostly considered from a fundamental perspective.

  10. [Tricuspid valve insufficiency: what should be done?].

    Science.gov (United States)

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G

    1998-12-01

    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  11. Injection and Scattering of Polarized Spins at Nanoscale Polymer Interfaces

    National Research Council Canada - National Science Library

    Epstein, Arthur J

    2004-01-01

    We made excellent progress several directions. We demonstrated that V[TCNE]̃2 is a room temperature fully spin polarized magnetic semiconductor of interest for spintronic applications, including spin valves...

  12. Thermal-structural Analysis and Fatigue Life Evaluation of a Parallel Slide Gate Valve in Accordance with ASME B and PVC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Han, Jeong Sam [Andong Nat’l Univ., Andong (Korea, Republic of); Jae Seung Choi [Key Valve Technologies Ltd., Siheung (Korea, Republic of)

    2017-02-15

    A parallel slide gate valve (PSGV) is located between the heat recovery steam generator (HRSG) and the steam turbine in a combined cycle power plant (CCPP). It is used to control the flow of steam and runs with repetitive operations such as startups, load changes, and shutdowns during its operation period. Therefore, it is necessary to evaluate the fatigue damage and the structural integrity under a large compressive thermal stress due to the temperature difference through the valve wall thickness during the startup operations. In this paper, the thermal-structural analysis and the fatigue life evaluation of a 16-inch PSGV, which is installed on the HP steam line, is performed according to the fatigue life assessment method described in the ASME B and PVC VIII-2; the method uses the equivalent stress from the elastic stress analysis.

  13. Measurement of the Proton and Deuteron Spin Structure Function g1 in the Resonance Region

    International Nuclear Information System (INIS)

    Abe, K.; Akagi, T.; Perry Anthony; Antonov, R.; Arnold, R.G.; Todd Averett; Band, H.R.; Bauer, J.M.; Borel, H.; Peter Bosted; Vincent Breton; Button-Shafer, J.; Jian-Ping Chen; T.E. Chupp; J. Clendenin; C. Comptour; K.P. Coulter; G. Court; Donald Crabb; M. Daoudi; Donal Day; F.S. Dietrich; James Dunne; H. Dutz; R. Erbacher; J. Fellbaum; Andrew Feltham; Helene Fonvieille; Emil Frlez; D. Garvey; R. Gearhart; Javier Gomez; P. Grenier; Keith Griffioen; S. Hoeibraten; Emlyn Hughes; Charles Hyde-Wright; J.R. Johnson; D. Kawall; Andreas Klein; Sebastian Kuhn; M. Kuriki; Richard Lindgren; T.J. Liu; R.M. Lombard-Nelsen; Jacques Marroncle; Tomoyuki Maruyama; X.K. Maruyama; James Mccarthy; Werner Meyer; Zein-Eddine Meziani; Ralph Minehart; Joseph Mitchell; J. Morgenstern; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; C. Prescott; R. Prepost; P. Raines; Brian Raue; D. Reyna; A. Rijllart; Yves Roblin; L. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Ingo Sick; Lee Smith; Tim Smith; M. Spengos; F. Staley; P. Steiner; S. St. Lorant; L.M. Stuart; F. Suekane; Z.M. Szalata; Huabin Tang; Y. Terrien; Tracy Usher; Dieter Walz; Frank Wesselmann; J.L. White; K. Witte; C. Young; Brad Youngman; Haruo Yuta; G. Zapalac; Benedikt Zihlmann; Zimmermann, D.

    1997-01-01

    We have measured the proton and deuteron spin structure functions g 1 p and g 1 d in the region of the nucleon resonances for W 2 2 and Q 2 ≅ 0.5 and Q 2 ≅ 1.2 GeV 2 by inelastically scattering 9.7 GeV polarized electrons off polarized 15 NH 3 and 15 ND 3 targets. We observe significant structure in g 1 p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W 2 , to extract Γ(Q 2 ) (triple b ond) ∫ 0 1 g 1 (x,Q 2 ) dx. This is the first information on the low-Q 2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q 2 = 0

  14. A lattice calculation of the nucleon's spin-dependent structure function g2 revisited

    International Nuclear Information System (INIS)

    Goeckeler, M.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.

    2000-11-01

    Our previous calculation of the spin-dependent structure function g 2 is revisited. The interest in this structure function is to a great extent motivated by the fact that it receives contributions from twist-two as well as from twist-three operators already in leading order of 1/Q 2 thus offering the unique possibility of directly assessing higher-twist effects. In our former calculation the lattice operators were renormalized perturbatively and mixing with lower-dimensional operators was ignored. However, the twist-three operator which gives rise to the matrix element d 2 mixes non-perturbatively with an operator of lower dimension. Taking this effect into account leads to a considerably smaller value of d 2 , which is consistent with the experimental data. (orig.)

  15. Enhancement of Lithium Niobate nanophotonic structures via spin-coating technique for optical waveguides application

    Directory of Open Access Journals (Sweden)

    Fakhri Makram A.

    2017-01-01

    Full Text Available This work is dedicated to investigation of temperature effects in Lithium Niobate (LiNbO3 nanostructures. The LiNbO3 nanostructures were deposited on glass substrate by spin-coating technique. LiNbO3 was set down at 3000 rpm for 30 sec and annealed from 100 to 600 °C. The structures were characterized and analyzed by scanning electron microscopy (SEM and ultra-violet visible (UV-vis spectrophotometer. The measured results have showed that by increasing annealing temperatures, the structures start to be more crystallized and be more homogenized until the optimum arrangement was achieved. Once this was accomplished, it's applicable for optical waveguides development. Eventually, it starts to be less crystallization and non-homogeneous. Energy gap was recorded to be at average value of 3.9 eV.

  16. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    Science.gov (United States)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  17. Spin resonance in the new-structure-type iron-based superconductor CaKFe4As4

    International Nuclear Information System (INIS)

    Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira

    2017-01-01

    The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe 4 As 4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Q res = 1.17(1) Å -1 , corresponding to the (π, π) nesting wave vector in tetragonal notation, evolves below T c . The characteristic energy of the spin resonance E res = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe 4 As 4 is the s ± symmetry. (author)

  18. A study of the internal spin structure of the proton through polarized deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Piegaia, R.N.

    1988-01-01

    This thesis presents a study of the internal spin structure of the proton through the measurement performed by the European Muon Collaboration, EMC, at the European Center for Nuclear Research, CERN, of the spin asymmetry in the deep-inelastic scattering of longitudinally polarized muons by longitudinally polarized protons. The data obtained considerably extend the kinematic range covered by a previous lower-energy polarized electron-proton scattering experiment. Although the results were found to be in agreement in the region of overlap, the study of the low x range (0.01 1 p was computed and found to be in disagreement with the Ellis-Jaffe sum rule. The result seems to indicate that only a small fraction of the proton spin originates from the spins of the quarks

  19. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.

    Directory of Open Access Journals (Sweden)

    Alessandra M Bavo

    Full Text Available In recent years the role of FSI (fluid-structure interaction simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results.

  20. Spin-transport-phenomena in metals, semiconductors, and insulators

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias Klaus

    2012-07-19

    Assuming that one could deterministically inject, transport, manipulate, store and detect spin information in solid state devices, the well-established concepts of charge-based electronics could be transferred to the spin realm. This thesis explores the injection, transport, manipulation and storage of spin information in metallic conductors, semiconductors, as well as electrical insulators. On the one hand, we explore the spin-dependent properties of semiconducting zinc oxide thin films deposited via laser-molecular beam epitaxy (laser-MBE). After demonstrating that the zinc oxide films fabricated during this thesis have excellent structural, electrical, and optical properties, we investigate the spin-related properties by optical pump/probe, electrical injection/optical detection, and all electrical spin valve-based experiments. The two key results from these experiments are: (i) Long-lived spin states with spin dephasing times of 10 ns at 10 K related to donor bound excitons can be optically addressed. (ii) The spin dephasing times relevant for electrical transport-based experiments are {<=} 2 ns at 10 K and are correlated with structural quality. On the other hand we focus on two topics of current scientific interest: the comparison of the magnetoresistance to the magnetothermopower of conducting ferromagnets, and the investigation of pure spin currents generated in ferromagnetic insulator/normal metal hybrid structures. We investigate the magnetoresistance and magnetothermopower of gallium manganese arsenide and Heusler thin films as a function of external magnetic field orientation. Using a series expansion of the resistivity and Seebeck tensors and the inherent symmetry of the sample's crystal structure, we show that a full quantitative extraction of the transport tensors from such experiments is possible. Regarding the spin currents in ferromagnetic insulator/normal metal hybrid structures we studied the spin mixing conductance in yttrium iron garnet

  1. Spin-dependent structure functions of sea quarks in the framework of nonperturbative QCD and new Regge trajectory

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kochelev, N.I.

    1991-01-01

    Within the model of QCD vacuum as an instanton liquid the spin-dependent structure functions of sea quarks are obtained. It is shown that the EMC data manages the definition of new Regge trajectory connected with the axial anomaly. The model explains the modern experimental data on the sea quark structure functions. 23 refs.; 3 figs

  2. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    Gurieva, Tatiana

    2016-05-01

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  3. Interfacial symmetry of Co–Alq{sub 3}–Co hybrid structures for effective spin filtering

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tu-Ngoc [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Lai, Yu-Ling; Chen, Chih-Han [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Chen, Po-Hung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Sheu, Jeng-Tzong, E-mail: jtsheu@faculty.nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Hsu, Yao-Jane, E-mail: yjhsu@nsrrc.org.tw [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-11-01

    Graphical abstract: - Highlights: • The spin interface at Alq{sub 3}/Co and Co/Alq{sub 3} contacts was examined. • An interfacial symmetry was determined at Co–Alq{sub 3}–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq{sub 3} hybridized interface. • The spin-filter role at the top contact interface of Alq{sub 3}/Co is proved. • Effective spin-filtering at Co–Alq{sub 3}–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq{sub 3} adsorption on Co, Co/Alq{sub 3}) and the top contact (Co atop Alq{sub 3}, Alq{sub 3}/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq{sub 3} and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq{sub 3}/Co and Co/Alq{sub 3} heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq{sub 3}–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq{sub 3} at both contacts, proving Alq{sub 3} a unique and promising organic material for spin filtering in OSV.

  4. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    Science.gov (United States)

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A measurement of the proton’s spin structure function g2 at low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Pengjia [Univ. of Science and Technology of China, Hefei (China)

    2015-10-21

    JLab E08-027, a measurement of g2p and the longitudinal-transverse (LT) spin polarizability, successfully collected data from March to May, 2012. Nucleon spin structure study has been an active research area, which has attracted a very large effort from both experimentalists and theorists. The spin structure study for the last 2 decades has provided us with many exciting and often surprising results. Recently, new precision results in the low-to-intermediate momentum transfer Q2 region from JLab have provided extensive information on the nucleon structure in the confinement region and the transition region between asymptotic free to confinement. In particular, the extensive comparisons of experimental results with Chiral Perturbation Theory (the effective theory of QCD at low energy) calculations show general good agreements, but strong disagreement in the case of the neutron LT spin polarizability. This experiment completed the measurements of gp2 and the LT spin polarizability on the proton in the low-to-intermediate Q2 region. The experiment used a polarized proton (NH3) target for the first time in Hall A. Scattered electrons were detected by a pair of Hall A high resolution spectrometer (HRS) with a pair of septum magnets. To avoid too much depolarization of the target, beam current was limited to 50-100 nA during the experiment. Since the existing beam current monitors (BCMs), beam position monitors (BPMs) and calibration methods did not work at such a low current range, new BPM and BCM receivers were designed and used for current condition. A pair of super-harps and a tungsten calorimeter were installed to calibrate the BPMs and BCMs. To compensate for the effect of the 2.5/5T transverse magnet field, two chicane dipole magnets were installed. A pair of slow rasters were installed for the first time in Hall A, combining with a pair of fast raster. The standard Hall A DAQ system and the improved high resolution DAQ system were used to record the detector

  6. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Wang, Lan; Wang, Wei-Hong; Gao, Qing-Xiu; Wang, Jie

    2016-01-01

    Highlights: • The static electromagnetic characteristics of solenoid valve were numerically studied. • The effects of driving current were considered. • The effects of solenoid valve’s eight essential structure parameters were considered. - Abstract: In the present paper, the effects of driving current and solenoid valve’s structure parameters (including iron-core’s length, magnetic pole’s cross-sectional area, coil turn, coil’s position, armature’s thickness, damping hole’s position, damping hole’s size, and width of working air–gap) on the static electromagnetic characteristics have been numerically investigated. From the results, it can be known that the electromagnetic energy conversion will be seriously influenced by driving current for its effects on magnetic field strength and magnetic saturation phenomenon, an excessive increase of current will weak electromagnetic energy conversion for the accelerating power losses. The capacity of electromagnetic energy conversion is also relative to each solenoid valve’s parameter albeit it is not very sensitive to each parameters. The generated electromagnetic force will be enhanced by rising iron-core’s length, equalizing the cross-sectional areas of major and vice poles, increasing coil turn within a moderate range, closing the coil’s position towards armature’s centre, enlarging armature’s thickness, pushing the damping holes’ positions away from armature’s centre, reducing the sizes of damping holes, and reducing the width of working air–gap; but such enhancements won’t be realized once the driving current is excessively higher.

  7. Fabrication of three-dimensional micro-nanofiber structures by a novel solution blow spinning device

    Directory of Open Access Journals (Sweden)

    Feng Liang

    2017-02-01

    Full Text Available The fabrication of three-dimensional scaffolds has attracted more attention in tissue engineering. The purpose of this study is to explore a new method for the fabrication of three-dimensional micro-nanofiber structures by combining solution blow spinning and rotating collector. In this study, we successfully fabricated fibers with a minimum diameter of 200 nm and a three-dimensional structure with a maximum porosity of 89.9%. At the same time, the influence of various parameters such as the solvent volatility, the shape of the collector, the feed rate of the solution and the applied gas pressure were studied. It is found that solvent volatility has large effect on the formation of the three-dimensional shape of the structure. The shape of the collector affects the porosity and fiber distribution of the three-dimensional structure. The fiber diameter and fiber uniformity can be controlled by adjusting the solution feed rate and the applied gas pressure. It is feasible to fabricate high-quality three-dimensional micro-nanofiber structure by this new method, which has great potential in tissue engineering.

  8. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  9. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  10. Hard-magnetic surface layer effect on the erbium orthoferrite plate domain structure in the region of gradual spin reorientation

    International Nuclear Information System (INIS)

    Belyaeva, A.I.; Vojtsenya, S.V.; Yur'ev, V.P.

    1988-01-01

    Rearrangement of domain structures in the erbium orthoferrite plates with hard-magnetic surface layer is investigated during gradual spin reorientation. This phenomenon is explained by means of the proposed physical models. It is shown that in these plates an approach to the temperature interval of spin reorientation causes a decrease in the density of energy of domain walls separating the internal and surface domains. This decrease results in transition to the domain structure which are close to equilibrium ones inside the crystal. 30 refs.; 4 figs

  11. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  12. USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES

    Directory of Open Access Journals (Sweden)

    Diego A. Torres

    2011-07-01

    Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  13. Fabrication of self-assembled photonic-crystal structures by centrifugation and spin coating

    Science.gov (United States)

    Xu, Yan; Schneider, Garrett J.; Wetzel, Eric D.; Prather, Dennis W.

    2003-11-01

    We have developed a simple, low-cost process for the fabrication of high-quality three-dimensional artificial-opal and inverse-opal photonic crystals. The process is based on the self-assembly of a template from a uniform suspension of polystyrene microspheres, which is sintered for added strength and subsequently back-filled with high-index material. The template formation is assisted by a combination of centrifugation and spin-annealing, which requires relatively short process times and inexpensive laboratory equipment. The process has been used to fabricate polycrystalline photonic crystals with photonic stop gaps in the mid-IR portion of the spectrum. Details of the fabrication process and fabricated samples will be presented. In addition, Fourier-transform IR reflection spectroscopy has been used to characterize the samples; the results are shown to be in excellent agreement with band structure diffraction calculations.

  14. Recent SLAC measurements of the spin dependent structure functions for the proton and neutron

    International Nuclear Information System (INIS)

    Zapalac, G.

    1995-09-01

    The authors present results from SLAC experiments E142 and E143 for the spin dependent structure functions of the proton g 1 p (x, Q 2 ) and neutron g 1 n (x,Q 2 ) measured in deep inelastic scattering of polarized electrons from a polarized target. Experiment E142 measures ∫ 0 1 g 1 n (x)dx = -0.022 ± 0.011 at 2 > = 2 (GeV/c) 2 using a polarized 3 He target. Experiment E143 measures ∫ 0 1 g 1 p (x)dx = 0.129 ± 0.011 at 2 > = 3 (GeV/c) 2 using a polarized NH 3 target. These results are combined at Q 2 = 3 (GeV/c) 2 to yield ∫ 0 1 [g 1 p (x) - g 1 n (x)]dx = 0.151 ± 0.015. The Bjorken sum rule predicts 0.171 ± 0.008

  15. Structural transition in Mo{sub 3}Sb{sub 7} probed by muon spin relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Y. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koyama, T.; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Watanabe, I. [Advanced Meson Science Laboratory, RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nakamura, H., E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2009-04-15

    Longitudinal-field muSR measurements have been made for Mo{sub 3}Sb{sub 7} focusing on the nature of the structural transition recently found at T{sub S}approx =50K. Taking account of a critical behavior of the relaxation rate lambda at approxT{sub S}, together with the motional narrowing of the nuclear dipolar field revealed in a zero-field experiment, and the tetragonal lattice symmetry lowering below T{sub S}, we propose long-range order of spin-singlet dimers, i.e., the formation of the valence bond crystal below T{sub S}. As a possible origin, the frustration in the interdimer antiferromagnetic interaction is suggested.

  16. Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    International Nuclear Information System (INIS)

    Perry Anthony; Arnold, R.G.; Todd Averett; Band, H.R.; Berisso, M.C.; Borel, H.; Peter Bosted; Stephen Bueltmann; M. Buenerd; T. Chupp; Steve Churchwell; G.R. Court; Donald Crabb; Donal Day; Piotr Decowski; P. DePietro; Robin D. Erbacher; R. Erickson; Andrew Feltham; Helene Fonvieille; Emil Frlez; R. Gearhart; V. Ghazikhanian; Javier Gomez; Keith Griffioen; C. Harris; M.A. Houlden; E.W. Hughes; Charles Hyde-Wright; G. Igo; Sebastien Incerti; John Jensen; J.K. Johnson; Paul King; Yu.G. Kolomensky; Sebastian Kuhn; Richard Lindgren; R.M. Lombard-Nelsen; Jacques Marroncle; James Mccarthy; Paul McKee; W. Meyer; Gregory Mitchell; Joseph Mitchell; Michael Olson; S. Penttila; Gerald Peterson; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; R. Prepost; C. Prescott; Liming Qin; Brian Raue; D. Reyna; L.S. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Franck Sabatie; Ingo Sick; T. Smith; L. Sorrell; F. Staley; S. St. Lorant; L.M. Stuart; Z. Szalata; Y. Terrien; William Tobias; Luminita Todor; T. Toole; S. Trentalange; Dieter Walz; Robert Welsh; Frank Wesselmann; T.R. Wright; C.C. Young; Markus Zeier; Hong Guo Zhu; Benedikt Zihlmann

    1999-01-01

    We have measured the spin structure functions g 2 p and g 2 d and the virtual photon asymmetries A 2 p and A 2 d over the kinematic range 0.02 2 (le) 30(GeV/c) 2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH 3 and 6 LiD targets.The absolute value of A 2 is significantly smaller than the √R positivity limit over the measured range, while g 2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d 2 p , d 2 d and d 2 n . The Burkhardt-Cottingham sum rule integral (g 2 (x)dx) is reported for the range 0.02 (le) x (le) 0.8

  17. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  18. D term and the structure of pointlike and composed spin-0 particles

    Science.gov (United States)

    Hudson, Jonathan; Schweitzer, Peter

    2017-12-01

    This work deals with form factors of the energy-momentum tensor (EMT) of spin-0 particles and the unknown particle property D term related to the EMT, and it is divided into three parts. The first part explores free, weakly and strongly interacting theories to study EMT form factors with the following findings. (i) The free Klein-Gordon theory predicts for the D term D =-1 . (ii) Even infinitesimally small interactions can drastically impact D . (iii) In strongly interacting theories one can encounter large negative D though notable exceptions exist, which include Goldstone bosons of chiral symmetry breaking. (iv) Contrary to common belief one cannot arbitrarily add "total derivatives" to the EMT. Rather the EMT must be defined in an unambiguous way. The second part deals with the interpretation of the information content of EMT form factors in terms of 3D densities with the following results. (i) The 3D-density formalism is internally consistent. (ii) The description is subject to relativistic corrections but those are acceptably small in phenomenologically relevant situations including nucleons and nuclei. (iii) The free-field result D =-1 persists when a spin-0 boson is not pointlike but "heuristically given some internal structure." The third part investigates the question of whether such "giving of an extended structure" can be implemented dynamically, and it has the following insights. (i) We construct a consistent microscopic theory which, in a certain parametric limit, interpolates between extended and pointlike solutions. (ii) This theory is exactly solvable which is rare in 3 +1 dimensions, admits nontopological solitons of Q -ball type, and has a Gaussian field amplitude. (iii) The interaction of this theory belongs to a class of logarithmic potentials which were discussed in the literature, albeit in different contexts including beyond-standard-model phenomenology, cosmology, and Higgs physics.

  19. Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bauer, J.M.

    1996-09-01

    Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x Bj > 0.03 and 1 2 2 . From these data, the spin-dependent structure functions g 1 were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g 1 d over x from x = 0 to x = 1 is Γ 1 d = 0.046 ± 0.003 (stat)±0.004 (syst) at Q 2 = 3 GeV 2 and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 ± 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g 1 d was determined to be Γ 1 p = 0.127 ± 0.003(stat)±0.008(syst). By Combining the deuteron data with the proton data, the integral Γ 1 n was extracted as -0.027 ± 0.008 (stat)±0.010 (syst). The integral Γ 1 p - Γ 1 n is 0.154±0.010(stat) ±0.016 (syst) according to the E143 analysis. This result agrees with the important Bjorken sum rule of 0.171 ± 0.009 at Q 2 = 3 GeV 2 within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g 1 at these energies are presented

  20. Measurement of the deep-inelastic spin-dependent structure functions of the proton and neutron at HERA

    International Nuclear Information System (INIS)

    Beck, D.H.; Filippone, B.W.; Jourdan, J.

    1988-01-01

    It is possible to measure the deep-inelastic spin-dependent structure functions g 1 /sup p/(x) and g 1 /sup n/(x) for the proton and neutron using internal polarized hydrogen, deuterium, and 3 He targets of polarization 50% and thickness 10 14 to 10 15 cm -2 and the 60 mA longitudinally polarized 30 GeV electron beam in the HERA electron storage ring. The measurement of the deep-inelastic spin-structure of both isospin states of the nucleon at the same kinematics and using the same apparatus allows the Bjorken sum rule to be experimentally checked. In addition, it uniquely constrains the spin distribution of the u and d quarks as a function of x in any model of the nucleon. Possible target and detector configurations are described and an estimate of the accuracy of such a measurement is presented

  1. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-01-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  2. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  3. Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries

    OpenAIRE

    Yu, Guoqiang; Akyol, Mustafa; Upadhyaya, Pramey; Li, Xiang; He, Congli; Fan, Yabin; Montazeri, Mohammad; Alzate, Juan G.; Lang, Murong; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.

    2016-01-01

    Current-induced spin-orbit torques (SOTs) in structurally asymmetric multilayers have been used to efficiently manipulate magnetization. In a structure with vertical symmetry breaking, a damping-like SOT can deterministically switch a perpendicular magnet, provided an in-plane magnetic field is applied. Recently, it has been further demonstrated that the in-plane magnetic field can be eliminated by introducing a new type of perpendicular field-like SOT via incorporating a lateral structural a...

  4. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  5. A Precision Measurement of the Spin Structure of the Proton at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robin D

    1999-09-22

    E143 at SLAC Endstation A performed deep-inelastic scattering measurements of polarized electrons from polarized protons and deuterons within cryogenic {sup 15}NH{sub 3} and {sup 15}ND{sub 3}, respectively. Data were taken at incident energies of 29.1, 16.2 and 9.7 GeV, and covered the kinematical range x > 0:03 and 0:3 < Q{sup 2} < 12 (GeV/c){sup 2}. The scattered electrons were detected by two spectrometers at angles of 4.5{sup o} and 7.0{sup o}. From these data, the spin-dependent structure functions g{sub 1}{sup p}(x; Q{sup 2}) and g{sub 1}{sup d}(x; Q{sup 2}) were determined. This dissertation describes the experiment, with emphasis on the results on the proton spin structure. The integral of g{sub 1} over the range 0 < x < 1 was found to be {Gamma}{sub 1}{sup p} = 0.130 {+-} 0.003 {+-} 0.008 for the proton and {Gamma}{sub 1}{sup d} = 0.044 {+-} 0.003 {+-} 0.004 for the deuteron. Both values are in agreement with world data, and violate the Ellis-Jaffe sum rule by more than 3 standard deviations. The neutron structure function was obtained by combining proton and deuteron results, giving {Gamma}{sub 1}{sup n} = [0.035 {+-} 0.007 {+-} 0.010]. From this the integral {Gamma}{sub 1}{sup p}-{Gamma}{sub 1}{sup n} followed, yielding 0.165 {+-} 0.009 {+-} 0.016 at Q{sup 2} = 3 (GeV/c){sup 2}, in agreement with the Bjorken sum rule to within one standard deviation. The Q{sup 2}-dependence of the ratio g{sub 1}/F{sub 1} was determined to be small for Q{sup 2} > 1 (GeV/c){sup 2}, validating the assumption of no Q{sup 2}-dependence used in obtaining the integrals. A small rise with increasing Q{sup 2} was seen in the ratio for Q{sup 2} < 1 (GeV/c){sup 2}, however. The total quark contribution to the spin was found to be {Delta}q = 0.28 {+-} 0.09 for the proton, and {Delta}q = 0.32 {+-} 0.05 for the deuteron. Furthermore, a large negative spin contribution from the strange sea quarks was measured for both nucleons, giving {Delta}s = 0.10 {+-} 0.03 and {Delta}s = -0

  6. Highly Efficient Spin-Current Operation in a Cu Nano-Ring

    Science.gov (United States)

    Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi

    2016-11-01

    An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.

  7. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  8. Mapping the influence of molecular structure on rates of electron transfer using direct measurements of the electron spin-spin exchange interaction.

    Science.gov (United States)

    Lukas, Aaron S; Bushard, Patrick J; Weiss, Emily A; Wasielewski, Michael R

    2003-04-02

    The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination

  9. Annealing effect on spin density of broken bonds and on the structure of amorphous germanium

    International Nuclear Information System (INIS)

    Bukhan'ko, F.N.; Okunev, V.D.; Samojlenko, Z.A.

    1989-01-01

    Dependence of volumetric spin density of broken bonds in a-Ge films, produced by cathode sputtering in argon, on the annealing temperature is investigated by ESR method. The film structure is controlled by the X-ray method. Two ESR lines with g=2.019 and g=2.003, their intensities changing non-monotonously with annealing temperature are observed. The line with g=2.019 is typical of only amorphous germanium state, and the line with g=2.003 is preserved after film crystallization. Under comparison of results with structural data a conclusion is made that the observed lines in ESR spectra are linked with broken bonds in peripheral regions of two types of clusters. The line with g=2.003 is conditioned by broken bonds in the peripheral cluster regions with standard cubic atom packing and the line with g=2.019 is linked with clusters of hexagonal type which is not typical of crystalline germanium standard structure

  10. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  11. Study of high-spin structure of the nuclei around A∼120 near proton-drip line

    International Nuclear Information System (INIS)

    Ray, I; Datta Pramanik, U.; Banerjee, P.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Mukherjee, A.; Mukherjee, B.; Saha Sarkar, M.; Basu, S.K.; Bhowmik, R.K.; Rakesh Kumar; Muralithar, S.; Singh, R.P.; Mandal, S.; Ranjet

    2005-01-01

    It would be interesting to explore the shell structure for nuclei near proton-drip line. The nuclei around A∼ 110-130 region show a wide range of interesting features in high spin states which reflect different types of symmetry breaking mechanisms as well as maintaining symmetries

  12. Final COMPASS results on the deuteron spin-dependent structure function g(1)(d) and the Bjorken sum rule

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlák, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giarra, J.; Giordano, A.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jarý, V.; Joosten, R.; Jörg, P.; Kabuss, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W. D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D.; Rybnikov, A.; Rychter, A.; Salač, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolík, J.; Srnka, Aleš; Steffen, D.; Stolarski, M.; Subrt, O.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Vauth, A.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Ter Wolbeek, J.; Zaremba, K.; Závada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-01-01

    Roč. 769, JUNE (2017), s. 34-41 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : COMPASS * deep inelastic scattering * spin * structure function * parton helicity distributions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 4.807, year: 2016

  13. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cell

    NARCIS (Netherlands)

    Iashina, E.G.; Bouwman, W.G.; Duif, C.P.; Filatov, M.V.; Grigoriev, S. V.

    2017-01-01

    Spin-echo small-angle scattering (SESANS) technique is a method to measure the structure of materials from nano- to micrmeter length scales. This method could be important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS function from chicken erythrocyte nuclei

  14. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions

    International Nuclear Information System (INIS)

    Salmon, L.; Licinio, A.; Jensen, M.R.; Blackledge, M.; Ortega Roldan, J.L.; Van Nuland, N.; Lescop, E.

    2011-01-01

    We have recently presented a titration approach for the determination of residual dipolar couplings (RDCs) from experimentally inaccessible complexes. Here, we extend this approach to the measurement of 15 N spin relaxation rates and demonstrate that this can provide long-range structural, dynamic, and kinetic information about these elusive systems. (authors)

  15. Mechanical versus bioprosthetic aortic valve replacement.

    Science.gov (United States)

    Head, Stuart J; Çelik, Mevlüt; Kappetein, A Pieter

    2017-07-21

    Mechanical valves used for aortic valve replacement (AVR) continue to be associated with bleeding risks because of anticoagulation therapy, while bioprosthetic valves are at risk of structural valve deterioration requiring reoperation. This risk/benefit ratio of mechanical and bioprosthetic valves has led American and European guidelines on valvular heart disease to be consistent in recommending the use of mechanical prostheses in patients younger than 60 years of age. Despite these recommendations, the use of bioprosthetic valves has significantly increased over the last decades in all age groups. A systematic review of manuscripts applying propensity-matching or multivariable analysis to compare the usage of mechanical vs. bioprosthetic valves found either similar outcomes between the two types of valves or favourable outcomes with mechanical prostheses, particularly in younger patients. The risk/benefit ratio and choice of valves will be impacted by developments in valve designs, anticoagulation therapy, reducing the required international normalized ratio, and transcatheter and minimally invasive procedures. However, there is currently no evidence to support lowering the age threshold for implanting a bioprosthesis. Physicians in the Heart Team and patients should be cautious in pursuing more bioprosthetic valve use until its benefit is clearly proven in middle-aged patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  16. Heterostructures for Realizing Magnon-Induced Spin Transfer Torque

    Directory of Open Access Journals (Sweden)

    P. B. Jayathilaka

    2012-01-01

    Full Text Available This work reports efforts fabricating heterostructures of different materials relevant for the realization of magnon-induced spin transfer torques. We find the growth of high-quality magnetite on MgO substrates to be straightforward, while using transition metal buffer layers of Fe, Cr, Mo, and Nb can alter the structural and magnetic properties of the magnetite. Additionally, we successfully fabricated and characterized Py/Cr/Fe3O4 and Fe3O4/Cr/Fe3O4 spin valve structures. For both, we observe a relatively small giant magnetoresistance and confirm an inverse dependence on spacer layer thickness. Thus, we have shown certain materials combinations that may form the heterostructures that are the building blocks necessary to achieve magnon-induced spin transfer torque devices.

  17. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  18. Structural, compositional and optical properties of spin coated MoO3 thin film

    Science.gov (United States)

    Jain, Vishva; Shah, Dimple; Patel, K. D.; Zankat, Chetan

    2018-05-01

    The attraction towards the MoO3 thin film is due to its wide range of application base on its properties. Its application in the field of energy storage and conversion as a cathode material for rechargeable lithium ion battery, hole selective layer in solar cell and in pseudocapacitors makes it more attractive material. Taking in consideration, economical route and tailoring advantage of film formation we have used spin coating method for the synthesis of the film with Ammonium heptamolybdate (NH4)6Mo7O24 4H2O) and distilled water as the precursor and solvent respectively on the glass substrate. The method also provides the large area synthesis of the film which is beneficial for the commercial applications. The film was spin coated at 1600 rpm with 4 % weight per volume ratio. The film so formed was annealed at 300 °C for 3 hours. The structural investigation was done by the X-Ray diffraction technique which shows the thin film of polycrystalline type. The average crystallize size is about 50 nm. The composition of the film was studied with the help of EDAX. The optical properties were studied by the photoluminescence and UV Spectroscopy. The results from both the characterization are well matched with each other. Photoluminescence studies show band to band emission observed at 416 nm shown in the fig. 5. From UV spectroscopy, using transmission and absorption spectra we observed the band gap edge around 3 eV. This is in accordance with the photoluminescence result.

  19. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  20. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.